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Abstract

POLO, F. M. Covariate Shift Adaptation and Dataset Shift Decomposition in
Machine Learning. Master in Statistics - Instituto de Matemática e Estatística, Universidade
de São Paulo, São Paulo, 2021.

In supervised learning, we often have access to a limited sample, in size or quality
(e.g., lack of labels), of the population/distribution of interest, for which we want to create
predictive models. However, it is possible that we have less limited access to data sampled
from another population, more or less similar to the one of interest. Training models using
only data from the population of interest may be impossible or result in sub-optimal models,
so it would be interesting to use data from the other population in order to get better results
or make training possible. In these situations, as the distributions of interest and the one
that we can sample with few restrictions are different, we say that there is dataset shift. In
dataset shift situations, employing domain adaptation techniques when training supervised
models is essential for theoretical guarantees of good results in the population of interest.
The two kinds of dataset shift we will discuss about in this work are covariate shift and
concept drift/shift.

The main objectives of this work are: (i) to review the main concepts and methods related
to covariate shift and covariate shift adaptation; (ii) propose contributions to the covariate
shift adaptation literature, connecting concepts present in modern literature; (iii) propose
the decomposition of the dataset shift into covariate shift and expected concept drift/shift
as a new approach to better understand situations in which we deal with dataset shift.

Keywords: Dataset Shift, Covariate Shift, Domain Adaptation, Effective Sample Size,
Dimensionality, Dataset Shift Decomposition, Concept Drift, Machine Learning, Statistics.
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Resumo

POLO, F. M. Adaptação para Covariate Shift e decomposição do Dataset Shift
no Aprendizado de Máquina. Programa de Mestrado em Estatística - Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

No aprendizado supervisionado, muitas vezes temos acesso a uma amostra limitada,
em tamanho ou qualidade (e.g., falta de rótulos), de dados da população/distribuição de
interesse, para a qual queremos criar modelos preditivos. No entanto, é possível que tenhamos
acesso pouco limitado a dados amostrados de outra população, mais ou menos parecida com
a de interesse. Treinar modelos utilizando somente dados da população de interesse pode
ser impossível ou resultar em modelos sub-ótimos, então seria interessante utilizar os dados
provenientes da outra população a fim de obter melhores resultados ou tornar o treinamento
possível. Nessas situações, como as distribuições de interesse e aquela que podemos amostrar
com poucas restrições são diferentes, dizemos que há dataset shift. Em situações de dataset
shift, empregar técnicas de adaptação de domínio ao treinar modelos supervisionados é
essencial para garantias teóricas de bons resultados na população de interesse. Os dois tipos
de dataset shift que discutiremos neste trabalho são covariate shift e concept drift/shift.

Os objetivos principais deste trabalho são: (i) revisar principais conceitos e métodos
relacionados ao covariate shift e covariate shift adaptation; (ii) propor contribuições para
a literatura de covariate shift adaptation, conectando conceitos presentes em discussões
atuais; (iii) propor a decomposição do dataset Shift em covariate shift e concept drift/shift
esperado como uma nova abordagem para melhor entendimento de situações em que lidamos
com dataset shift.

Palavras-chave: Dataset Shift, Covariate Shift, Adaptação de Domínio, Effective Sample
Size, Dimensionalidade, Decomposição do Dataset Shift, Concept Drift, Machine Learning,
Estatística.
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Chapter 1

Introduction

In supervised learning, we often have access to a limited sample, in size or quality

(e.g., lack of labels), of the population/distribution of interest, for which we want to create

predictive models. However, it is possible that we have less limited access to data sampled

from another population, more or less similar to the one of interest. Training models using

only data from the population of interest may be impossible or result in sub-optimal models,

so it would be interesting to use data from the other population in order to get better results

or make training possible. In these situations, as the distributions of interest and the one that

we can sample with few restrictions are different, we say that there is dataset shift. In dataset

shift situations, employing domain adaptation techniques when training supervised models

is essential for theoretical guarantees of good results in the population of interest. There are

several types of dataset shift already documented in the literature (Moreno-Torres et al.,

2012; Quionero-Candela et al., 2009), however the focus of this work will be almost complete

in a particular case called covariate shift (Sugiyama and Kawanabe, 2012), and in the last

chapter we also speak a little about concept drift/shift (Moreno-Torres et al., 2012).

The main contributions of this work are presented in the following. The first contribution

is presenting an extensive literature review regarding covariate shift and covariate shift

adaptation. We start the review presenting a general view of the covariate shift problem,

visiting fundamental works on the topics. We end our review presenting an extensive set

of methods for density ratio estimation, which offers a solution for the covariate shift

adaptation problem. We briefly discuss classic strategies for density ratio estimation and also

1



2 INTRODUCTION 1.0

present more modern methodologies. The second contribution of this work is proposing a

new understanding relationship between three central concepts in the modern covariate shift

literature, which are effective sample size (ESS), features’ dimensionality and generalization.

Despite the three concepts being present in the recent literature, their connections are still

unclear. We show that: (i) bigger ESSs lead to sharper generalization bounds, (ii) data

dimensionality is directly linked to the ESS, and (iii) dimensionality reduction can make

the ESS bigger. The third contribution is proposing a new way to characterize dataset shift

in supervised learning tasks, permiting the researcher to quantify and decompose the total

dataset shift, into a part that represents the covariate shift and another that represents the

concept shift. With that, one can quantify each term separately and better understand the

nature shifting data. We close that chapter showing an application using real credit data

from Brazilians in the transition to the COVID-19 pandemic period.

This work is organized as follows: in Chapter 2, we make a brief review of fundamental

concepts of statistical learning theory, which enables the formalization of concepts presented

later on; in Chapter 3, we explain the covariate shift problem, exploring theoretical and

applied aspects, besides reviewing the main way to solve the problem, which is using the

importance weighting method; in Chapter 4, we provide an extensive review of methods

for estimating density ratios used during importance weighting; in Chapter 5, we propose a

new unifying theory that connects effective sample size, dimensionality and generalization,

which are concepts present in the modern literature of covariate shift adaptation; finally, in

Chapter 6, we propose a new approach to better understand data under dataset shift - in

this approach, we decompose the dataset shift, materialized by a divergence between two

distributions, into covariate shift and expected concept drift/shift.

Have a good reading!



Chapter 2

Elements of Statistical Learning Theory

This chapter aims at introducing the reader to fundamental elements of statistical learning

theory. We present key concepts of the field that will be the basis of discussions in the

rest of this dissertation such as models, loss functions, risk/errors, learning algorithms,

generalization, and Bayes risk. For this chapter, we used as reference two textbooks used in

more theoretical courses on statistical learning, which are

Shalev-Shwartz and Ben-David (2014) and Mohri et al. (2012).

In the supervised learning framework, we have an independent and identically distributed

data set {(xi, yi)}
n
i=1

iid∼ Fx,y and we want to learn a function h that helps us to predict the

value of yn+1 if we know xn+1. The random vector (xn+1, yn+1) is an out-of-sample data

point sampled from the same distribution as the original data. Assuming the probability

distribution Fx,y measures events from a sigma-algebra of X ×Y , we call the set X the input

space, features’ space or covariates space and Y the output space, labels’ space or targets’

space.

Given that our goal is to learn a function h that helps us predict y when we know x, it

is important to give more details on the set in which h may be defined. We assume x to be

a random vector of features and y to be a random variable.

Definition 2.1. (Hypothesis Set or model): A hypothesis set H is a subset of measurable

functions that have X as domain and Y as cododomain.

In practice, we set H beforehand and try to find h ∈ H that best suits our context. For

example, H could be the set of all neural networks with a certain architecture or the set of

3
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all regression hyperplanes. To choose h ∈ H that best satisfies us, we first need to formaly

understand what "satisfy" means. We first define the concept of loss function.

Definition 2.2. (Loss Function): A loss function L is a function that compares, two

by two, elements of two sets Y ′ and Y and returns us a non-negative real scalar. That is,

L : Y ′ × Y → R+.

In many cases, Y ′ = Y , but this is not strictly necessary.

Suppose we have a loss function L, two hypotheses h1, h2 ∈ H and a data point (x, y)

sampled according to the distribution Fx,y. If L[h1(x), y] ≤ L[h2(x), y], we can think that the

hypothesis h1 explains y given x at least as well as h2 does. Despite giving us some intuition,

the last example has nothing to do with learning, as h1 and h2 are given in advance and

the (x, y) point is deterministic. To move forward, we have to understand the concept of

statistical risk. From now on, in order to facilitate the notation, we will assume that Fx is

the marginal distribution of x and Fy is the marginal distribution of y.

Definition 2.3. (Statistical Risk): The statistical risk associated with a loss function L

is a function of the hypothesis h ∈ H and it is defined as the expected value of L[h(x), y].

That is, the statistical risk associated with L is RL : H → R+, given that:

RL(h) = E
(x,y)∼Fx,y

L[h(x), y] (2.1)

The statistical risk is also known in the literature as the generalization error because it

gives us the expected out-of-sample error/loss. The ultimate goal of supervised statistical

learning is to find a h∗ ∈ H hypothesis that minimizes the statistical risk, that is, to find a

h∗ ∈ argminh∈H RL(h). The practical problem with this objective is that we, almost surely,

do not know the statistical risk; that is, we cannot assess it directly. What happens in the

real world is that we estimate the risk or some key features related to it and, in this way,

we try to minimize it. One way of estimating statistical risk is using the empirical risk.

Definition 2.4. (Empirical Risk): The empirical risk associated with a loss function L

is a function of the hypotheses h ∈ H and is defined as the arithmetic mean of L[h(.), .]

assessed on the data S = {(xi, yi)}
n
i=1 ∈ (X × Y)n sampled independently and identically
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from Fx,y. That is, the empirical risk associated with L is R̂L : H× (X ×Y)n → R+, where:

R̂L(h,S) =
1

n

n∑
i=1

L[h(xi), yi] (2.2)

The empirical risk is also known as empirical error. The empirical error can be seen as an

estimator for the generalization error. We can still notice that if h is fixed, this estimator is

an unbiased and consistent estimator for the generalization error. In the following example,

we can also infer about its convergence rate:

Example 2.5. (Generalization Bound): We address the classification case in this example.

In an ordinary classification problem we have X = Rd and Y = {0, 1, ..., K}, where Y is

a set of possible labels. We have a sample S = {(xi, yi)}
n
i=1 with components sampled

independently from Fx,y. We also denote S ∼ FS . Fixing H and ϵ > 0, we choose any

h ∈ H. It is natural that our loss function is defined as follows L(y′, y) = I[y′ ̸= y]. Then the

statistical risk is given by:

RL(h) = E
(x,y)∼Fx,y

I[h(x) ̸= y] (2.3)

= Fx,y ({h(x) ̸= y}) (2.4)

And the empirical risk is given by:

R̂L(h,S) =
1

n

n∑
i=1

I[h(xi) ̸= yi] (2.5)

Note that L is a bounded function (between 0 and 1) and, because of that, we can apply

Hoeffding’s inequality for bounded random variables (Vershynin, 2019) to get the following

result:

FS

[∣∣∣R̂L(h,S)−RL(h)
∣∣∣ ≥ ϵ

]
≤ 2 exp(−2nϵ2) (2.6)

This result assures us that, for a fixed hypothesis h ∈ H, if our sample size is large

enough, the empirical error will be close to the generalization error with high probability.
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So far, when working with a hypothesis in a class H, we assumed a fixed h. However,

this does not make much sense within our learning context because, given a sample, we

want to learn/infer the best possible hypothesis and not adopt one in advance. To introduce

ourselves to learning, we must first understand the concept of learning algorithm.

Definition 2.6. (Learning Algorithm): Given a class of hypothesis H and given the set

of the samples of size n, a learning algorithm A : (X × Y)n → H is a map with input

S ∈ (X × Y)n and output hS = A(S) ∈ H respecting some optimality criteria.

The optimality criteria could be, for example, minimizing the empirical error. Under

this criterion, we are working with the learning paradigm of empirical risk minimization -

ERM. More formally, under the empirical risk minimization paradigm, given the class of

hypotheses H, a loss function L and a sample S, the algorithm A returns a hypothesis

hERM
S ∈ argminh∈H R̂L(h,S) ⊆ H.

Next, we present the concept of Agnostic Probably Almost Correct (PAC) Learnability

(Shalev-Shwartz and Ben-David, 2014):

Definition 2.7. (Agnostic PAC Learnability): A hypothesis class H is Agnostic Probably

Almost Correct Learnable if there is a function nH : (0, 1)2 → N, often called by sample

complexity, with the following property: for every ϵ, δ ∈ (0, 1) and distribution Fx,y over

X × Y , when we feed a learning algorithm A with a sample S = {(xi, yi)}
n
i=1 sampled

independently from Fx,y, n ≥ nH(ϵ, δ), it returns a hypothesis hS such that:

FS

[
RL(hS)−min

h∈H
RL(h) ≥ ϵ

]
≤ δ (2.7)

In other words, we say a class of hypothesis is Agnostic PAC Learnable if, given a large

enough sample, we find a solution close to the best solution in the hypothesis class with high

probability. Agnostic PAC Learnability is a strong assumption given it is a "distribution-

free" concept, although it is still useful.

We now present and prove an important result that states the every finite hypothesis class

is Agnostic PAC Learnable when we work with bounded loss functions. Although we usually

do not work with finite classes in practice, that result is still appealing since infinite classes
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reduce to finite classes when we work with a computer due to models’ parameterization.

More details in that remark can be found in Chapter 4 of Shalev-Shwartz and Ben-David

(2014).

Theorem 2.8. (Finite hypothesis classes are PAC learnable): If H is a finite class,

the loss function1 L ∈ [0, 1], and we adopt the empirical risk minimization paradigm, we are

also able to minimize, with high probability, the generalization error when n is big. That is,

for every ϵ, δ ∈ (0, 1) and for every distribution Fx,y over X × Y, when we feed a learning

algorithm A with a sample S = {(xi, yi)}
n
i=1 sampled independently from Fx,y, n ≥ nH(ϵ, δ),

it returns a hypothesis hERM
S such that:

FS

[
RL(h

ERM
S )−min

h∈H
RL(h) ≥ ϵ

]
≤ δ (2.8)

Proof. The proof is similar to that presented in Shalev-Shwartz and Ben-David (2014) and

can be found in Appendix A.

In the paragraphs above and examples we only addressed the empirical risk minimization

(ERM) paradigm for learning, however there are other approaches such as the regularized risk

minimization (REG). In this approach, fixing a hypothesis class H and having a sample S,

the learning algorithm returns the hypothesis hREG
S that minimizes the sum of the empirical

error and a simple term that quantify the complexity of the hypothesis in H. Formally

we have hREG
S ∈ argminh∈H R̂L(h,S) + λ||h|| ⊆ H, where ||.|| is a norm and λ ≥ 0 is a

hyperparameter that controls the trade-off between the empirical risk minimization and the

complexity of h ∈ H (Mohri et al., 2012). The parameter λ is usually chosen in a cross-

validation procedure, and the regularized solution usually works better as it allows the

control for overfitting (Hastie et al., 2009).

So far, we have assumed that the hypothesis class H is taken a priori, which happens in

practice, but we have not commented on the consequences of that choice. By choosing a class

of hypotheses (linear regressions, neural networks, decision trees, etc.), we are embedding

in our analysis what we call by inductive bias (Shalev-Shwartz and Ben-David, 2014). The
1Actually, L only need to be bound in [a, b], for a, b reals. We assume a = 0 and b = 1, for a simplification

purpose and because this is the case of the popular loss function L(y′, y) = I[y′ ̸= y] used to assess models
in classification tasks.
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inductive bias is how we see the world through the hypothesis contained in the chosen class,

that is, from the model adopted. The inductive bias is inevitable in practice because we

do not know the process that generates data, and we work with approximations of reality.

It is important to reaffirm that we are exposed to this type of bias to understand how we

can have better models. An interesting way to better understand the dynamics of statistical

learning is to decompose the generalization error into the estimation, approximation, and

Bayes errors (Mohri et al., 2012). In order to understand this decomposition, we must first

understand the definition of Bayes Error/Risk (Mohri et al., 2012):

Definition 2.9. (Bayes Risk): Given a joint probability distribution Fx,y over the set

X ×Y and a loss function L, we define F as the set of all measurable functions with domain

X and codomain Y . The Bayes Risk is defined as:

RBAYES
L := inf

f∈F
RL(f) (2.9)

The Bayes Risk is a lower bound for the generalization error. An important observation

is that we never work with the function class/models F , but we work with a subset H of

it since the first is very broad. That is, almost inevitably infh∈HRL(h) > RBAYES
L , which

can be understood as a result of the inductive bias. Now that we can better understand

what the Bayes Risk is and its message, we are ready to understand how we can decompose

the generalization error. Fixing a hypothesis class H and a loss function L, we define h∗ ∈

argminh∈H RL(h) and we write the following decomposition for the generalization error of a

particular h in H:

RL(h) = [RL(h)−RL(h
∗)] + [RL(h

∗)−RBAYES
L ] +RBAYES

L (2.10)

It is possible to see that we have three terms on the RHS of the equation, the first is the

estimation error, the second is the approximation error and the third is the Bayes risk. This

equation tells us that h makes errors primarily because we were unable to reach the best

hypothesis of the class H defined a priori; second, h makes errors because the class H is not

as broad enough and does not include the best possible hypothesis; lastly, h makes errors
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because there is a irreducible risk - due to noise - which is impossible to settle. There is

usually a trade-off between the first two terms on the RHS: on the one hand we can choose

a richer hypothesis class H that makes the approximation error decrease but on the other

hand it is harder to approach the best solution within the class H increasing the estimation

error.



10 ELEMENTS OF STATISTICAL LEARNING THEORY 2.0



Chapter 3

Introducing the Problem of Covariate

Shift

The most fundamental assumption in statistical machine learning is that the training data

are sampled from the same probability distribution which we have interest in. Restricting

ourselves to the supervised learning scenario, we often assume that we have a random

sample/dataset S = {(xi, yi)}ni=1 sampled independently from a distribution Px,y and that

we would like to infer about a out-of-sample quantity ym+1 given the features xm+1, both

of which were also sampled from Px,y. Unfortunately, this is not the case in many practical

situations. When the distribution from which our data were sampled is not the same as the

distribution of interest, we can say that there was some kind of dataset shift or that we are

working with statistical learning in non-stationary environments. There are several types

of dataset shift problems (Quionero-Candela et al., 2009), that is, the distributions that we

can sample from and the one of our interest can be different for many reasons and this also

change the way we face each situation. In this work we are especially interested in one type

of dataset shift which is known as covariate shift - in this type of non-stationarity, we assume

that the joint distribution of features and labels shifts only by the marginal distribution of

the features, while the conditional distribution of the labels given the features remains static.

In Section 3.1 we focus our efforts on detailing the covariate shift problem.

We refer to the distribution we can completely sample from as the source/training

distribution (Qx,y) and the distribution of interest as the target/test distribution (Px,y). It is

11
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assumed we sample unlabeled samples from Px, in contrast to Qx,y, in which we can sample

labeled data points. Also, for the sake of simplicity, we assume both marginal distributions of

features Qx and Px are absolutely continuous w.r.t. the Lebesgue measure with probability

density functions qx and px, such that support(px) ⊆ support(qx).

3.1 Understanding Covariate Shift

Covariate shift is understood as a scenario in which we have a training/source joint

distribution Qx,y which differs from the test/target distribution Px,y. Features and labels are

sampled according to the same conditional distribution Qy|x = Py|x but different marginals

Qx ̸= Px. We thus suppose that labeled pairs {(xi, yi)}ni=1 are sampled independently from

Qx,y, while unlabeled vectors {x′
i}n

′
i=1 are independently sampled from Px. Our objective

is training supervised models with data sampled from Qx,y but with good performance to

predict labels from unlabeled samples from Px,y.

It remains to be understood why this is a problem within the statistical supervised

learning framework. The answer is not obvious, given that covariate shift is a problem

linked only to the marginal distribution of features, and we are generally concerned with

estimating quantities linked to the conditional distribution of labels given the features,

especially when using discriminative (and non-generative) models/algorithms such as linear

regression, logistic regression, MLP neural networks, random forest, XGBoost, etc.

By fixing a hypothesis class H, a loss function L and remembering the fundamental

concepts of the statistical learning theory presented in Chapter 2, we know that our main

objective here is to minimize, with respect to the hypotheses in H, the statistical risk assessed

according to the distribution of interest (target/test). Our goal then is to find h∗ ∈ H, such

that:

h∗ ∈ argmin
h∈H

RL(h) = (3.1)

= argmin
h∈H

E
(x,y)∼Px,y

[L(h(x), y)] (3.2)

= argmin
h∈H

Ex∼PxEy|x [L(h(x), y)] (3.3)
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Looking at the equations above, it is possible to check that the distribution Px can play

a central role giving more or less importance to different regions of X when evaluating the

hypothesis in H.

If we could find h ∈ H that minimizes the second expected value in 3.3 for all values

x ∈ X , then covariate shift would not cause big problems, since the minimization of RL(h)

would not depend on the measure associated with x. Moreover, this is the case explored

by Shimodaira (2000), in which the authors claim that correctly specified models would be

immune to covariate shift if we have a big enough sample. That is because the risk would

be minimized asymptotically. By a correctly specified model, Shimodaira (2000) means a

scenario in which we choose a model class H that contains the actual label generating

function we are trying to estimate.

However, in practical situations, H is usually a class of models that we use to approximate

reality and therefore we will not find h ∈ H that minimizes the second expected in 3.3 for

all values x ∈ X . Furthermore, we always work with limited sample size. Therefore the

marginal distribution of the features becomes an important factor in the computation of

risk since it weighs regions of X according to their importance. In Example 3.1, we present

a simple situation in which covariate shift is a relevant factor and should be considered in

the modeling process.

Example 3.1. (Covariate Shift): In this example, extracted from Sugiyama and Kawanabe

(2012), we show a situation in which covariate shift makes empirical error minimization,

with or without regularization, a learning strategy that does not work well. We assume that

the features are sampled from the following source distribution xi ∼ N
(
1, 1

4

)
and target

distribution x′
i ∼ N

(
2, 1

16

)
, i = 1, ..., 200. Since we are dealing with covariate shift, the

conditional distribution of labels is identical in both source and target domains. In this

example, the conditional distribution of labels is given as follows:

yi|xi = xi ∼ N
(

sen(πxi)
πxi

,
1

16

)
(3.4)

In the Figure 3.1 it is possible to see the theoretical densities of xi and x′
i.
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Figure 3.1: Theoretical densities of x′
i sampled from target distribution (blue) e xi sampled from

source distribution (green). This plot shows how divergent feature distributions are in different
populations.

In Figure 3.2, one can check the joint distribution of the sampled points of the feature

and label distributions of the two populations.

Figure 3.2: Scatter plot of samples (x, y) from both source and target populations. Even though the
conditional distribution of labels is the same in both populations, a supervised model that performs
well source (green) domain does not necessarily perform well on target (blue) domain.

It is important to remember that, in real situations, we do not have access to labels of

samples from the target distribution, but only to their features. In this example we deal

with the problem in a naive way: we consider the source/train and target/test population

distributions are the same - not performing any correction, just to see how our approach

fails. As with any other supervised task, we first define a hypothesis class and a learning

algorithm. For the sake of example, we use the hypothesis class H of linear regressions, so
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we model our response variable as follows:

y = h(x) + ε, ε ∼ N (0, σ2) (3.5)

= β0 + β1x + ε, ε ∼ N (0, σ2) (3.6)

In this example, our learning algorithm minimizes the empirical mean squared error given

by:

M̂SE(β) =
1

200
||Xβ − y||2 (3.7)

With

X =


1 x1
...

...

1 x200

 , y =


y1
...

y200

 , β =

β0
β1

 (3.8)

The solution for β is given by

β̂0
β̂1

 =
(
X⊤X

)−1
X⊤y (3.9)

After obtaining the line that minimizes the empirical error, we can plot it with the

dispersion of points already sampled.



16 INTRODUCING THE PROBLEM OF COVARIATE SHIFT 3.2

Figure 3.3: The solution for a linear regression model that minimizes empirical mean squared error
evaluated on source/training data. This model performs reasonably well on the source population but
poorly on the target population.

It is possible to see that the result worsens if we want to infer the labels for target/test

samples. The naive approach, that is, training our model only considering data from the

source distribution, works poorly due to covariate shift.

3.2 Covariate Shift Adaptation

A way to get around the covariate shift problem, obtaining results that generalize better

with respect to the target population, is to weight the data points in our sample in order to

mimic the distribution of interest (Huang et al., 2007; Kanamori et al., 2009a; Shimodaira,

2000; Sugiyama et al., 2008). In this approach, each data point from source distribution

(xi, yi) ∼ Qx,y in our training set receives a weight wi. These weights are used to adapt the

calculation of the empirical error, with or without a regularizer. A first step in understanding

the rationale behind this solution is to realize that the statistical risk assessed in the target

distribution Px,y can be rewritten in terms of the source distribution Qx,y. For now on we

assume: (i) Qy|x = Py|x and Qx ̸= Px; (ii) distributions Px and Qx have probability density
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functions px and qx such that support(px) ⊆ support(qx). Then:

RL(h) = E(x,y)∼Px,y [L(h(x), y)] (3.10)

= Ex∼PxEy|x [L(h(x), y)] (3.11)

=

∫
px(x)Ey|x [L(h(x), y)] dx (3.12)

=

∫
px(x)

qx(x)
qx(x)Ey|x [L(h(x), y)] dx (3.13)

= Ex∼QxEy|x [w(x)L(h(x), y)] (3.14)

= E(x,y)∼Qx,y [w(x)L(h(x), y)] (3.15)

The density ratio function w = px/qx is often called by "importance function" or

"weighting function". This result leads to the following definition:

Definition 3.2. (Weighted Statistical Risk): The weighted statistical risk associated

with a loss function L and a measurable non-negative weighting function w is a function

of the hypothesis h ∈ H. Assuming (x, y) ∼ Fx,y, it is defined as the expected value of

w(x)L[h(x), y]. That is, the statistical risk associated with L is RL : H → R+, where:

RL,w(h) = E
(x,y)∼Fx,y

[w (x)L (h (x) , y)] (3.16)

Now that we have expressed the statistical risk of our interest in terms of the source/training

distribution, it is easier to understand how we could minimize it. The two most direct

alternatives would be to minimize the weighted empirical error or the regularized weighted

empirical error weighted by the importance function w.

Definition 3.3. (Weighted Empirical Risk): The weighted empirical risk associated

with a loss function L and a measurable weighting function w is a function of the hypothesis

h ∈ H and is defined as the weighted average of L(h(.), .) evaluated in the sample S =

{(xi, yi)}
n
i=1 ∈ (X × Y)n independently sampled from Fx,y, where the weighting is done by

the measurable function w. Mathematically, the weighted empirical risk associated with L
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and the weighting function w is R̂L,w : H× (X × Y)n → R+:

R̂L,w(h,S) =
1

n

n∑
i=1

w(xi)L(h(xi), yi) (3.17)

Definition 3.4. (Weighted Regularized Empirical Risk): The weighted regularized

empirical risk associated with a loss function L and a measurable weighting function w is

a function of the hypothesis h ∈ H and is defined as the weighted average of L(h(.), .)

evaluated in the sample S = {(xi, yi)}
n
i=1 ∈ (X × Y)n independently sampled from Fx,y

plus a regularizer term Ω that controls the complexity of hypothesis. Mathematically, the

weighted regularized empirical risk associated with L and the weighting function w is R̂L,w,Ω :

H× (X × Y)n → R+:

R̂L,w,Ω(h,S) =
1

n

n∑
i=1

w(xi)L(h(xi), yi) + Ω(h) (3.18)

When the regularizer function Ω appears explicitly in the objective function above, it is

generally given by a norm. It can be implicitly constraining H, as it can happen when we

control tree depth in decision trees. To understand how minimizing the weighted empirical

risk would work in practice if we fix w equals the density ratio, we return to the Example

3.1.

Example 3.5. (Covariate Shift Adaptation): We follow everything as defined in the

Example 3.1, then we have that xi ∼ N
(
1, 1

4

)
and x′

i ∼ N
(
2, 1

16

)
, therefore the weighting

function in this case will be given by the function w as defined below:

w(x) =
px(x)

qx(x)
(3.19)

=

1
1
4

√
2π

1
1
2

√
2π

exp
[
− (x−2)2

2 1
16

]
exp

[
− (x−1)2

2 1
4

] (3.20)

= 2 exp
[
2(x− 1)2 − 8(x− 2)2

]
(3.21)

Our learning algorithm that now minimizes the weighted mean squared empirical error
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returns the following solution:

β̂0
β̂1

 =
(
X⊤WX

)−1
X⊤Wy (3.22)

Given that W is a diagonal matrix with entries Wi,i = w(xi). An interesting thing to

look at is how w takes values according to possible values of x. In Figure 3.4 it is possible

to see the function w and the marginal distributions from which the features were sampled.

Figure 3.4: Plotting the weighting function w(x) and theoretical densities of x′
i sampled from target

distribution (blue) e xi sampled from source distribution (green). This plot shows how w(x) is given
by the density ratio.

In the previous example, we can see from Figure 3.3 that the solution was not reasonable

when we wanted to generalize results to the population of the non-selected. Now we see from

Figure 3.5 that we achieved a much better result for our purpose.
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Figure 3.5: The solution for a linear regression model that minimizes the weighted empirical mean
squared error evaluated on source/training data. This model performs reasonably well on the target
population.

In real situations, we often do not know an analytical form for w, and we have to estimate

it. In the next chapter, we present methods to estimate w.

3.3 Importance Weighted Cross Validation (IWCV)

One of the most popular methods to evaluate machine learning models is cross-validation,

given its generality and easiness of understanding. It has been shown in the literature that

cross-validation offers an almost unbiased procedure to estimate the statistical risk of a

supervised model (Schölkopf et al., 2002). By "almost unbiased," we mean it is unbiased

considering the total of m < n data points used to train the model. Indeed, the classical

properties from cross-validation are not valid when we have covariate shift, but Sugiyama et al.

(2007) offers an adaption, and then it is possible to recover them.

Consider the training dataset T = {(yi,xi)}ni=1, a partition of T with randomly chosen

elements of roughly the same size {Tj}kj=1, a loss function L and the importance function

w(x) = p(x)/q(x). Also, let ĥj′ ∈ H be the hypothesis learned using as the training set

the data points ∪j ̸=j′Tj. Then, the k−fold importance weighting cross-validation (kIWCV)

estimate of the generalization error is given by

R̂L,kIWCV =
1

k

k∑
j=1

1

|Tj|
∑

(y,x)∈Tj

w(x)L(ĥj(x), y) (3.23)
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A special case is when k = n. In this case, we have the importance weighting leave-one-out

cross-validation (IWLOOCV) method

R̂L,IWLOOCV =
1

n

n∑
i=1

w(xi)L(ĥi(xi), yi) (3.24)

Where ĥi is learned using as training set T \ {(xi, yi)}.

3.4 Conclusion

In this chapter, we went through the fundamentals of covariate shift and covariate shift

adaptation. Firstly, we defined covariate shift and showed why it could a problem in real

applications of machine learning. Secondly, we discussed about covariate shift adaptation

using importance weighting, which is the most popular way of solving that problem. Finally,

we showed how to adapt cross validation when using importance weighting. In the next

chapter, we introduce several ways of estimating the importance function, also known as

density ratio.
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Chapter 4

Importance Estimation Methods for

Covariate Shift Adaptation

Although we presented a solution to the covariate shift problem, we still have to estimate

w in order to perform covariate shift adaptation. There are some popular ways of making

this estimate in the literature, and we present a literature review of importance/density ratio

estimation in the next sections. Other importance estimation methods are also presented in

Appendix B so this chapter is not too long.

We refer to the source/training distribution of features asQx and the target/test distribution

of features as Px. Also, for the sake of simplicity, we assume both distributions are absolutely

continuous with probability density functions qx and px, such that support(px) ⊆ support(qx).

Furthermore, we always consider x and {xi}ni=1 to be data points independently sampled

fromQx, and x′ and {x′
i}n

′
i=1 to be data points independently sampled from Px, i.e., realizations

of x ∼ Qx and x′ ∼ Px, respectively.

4.1 Kernel Density Estimation

The most direct solution for the weight function w estimation problem is to do nonparametric

estimation of the densities px(x) and qx(x) using kernels and then take the ratio between the

functions (Shimodaira, 2000). When x′ and x are absolutely continuous random variables/vectors,

a popular choice is to use the Gaussian kernel.

23
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Example 4.1. (Gaussian kernel): The Gaussian kernel is given by the map (x, c, σ) 7→

Kσ(x, c), where x, c ∈ Rd and σ > 0:

Kσ(x, c) = exp

(
−||x− c||2

2σ2

)
(4.1)

This kernel gets the special name of Gaussian kernel because its functional form is the

core of the density associated with a random variable with the normal distribution. In this

case, it is common to put the subscript σ to denote the kernel bandwidth and can be chosen

by cross validation (Wasserman, 2006). The Gaussian kernel gives us a measure of similarity

between x and c. We could also say that the kernel is centered at point c.

If x is an absolutely continuous random vector with density f and we have a sequence

of data points {xi}ni=1 which are independent realizations of that vector, then an estimate

for the density f using the Gaussian kernel Kσ would be given by:

f̂(x) =
1

n(2πσ2)d/2

n∑
i=1

Kσ(x,xi) (4.2)

Where d is the length of the vectors xi. In our case, in which we want to approximate

a density ratio, it would be enough to estimate the two densities separately and then take

the ratio of the estimated functions. Explicitly, having two sequences of data points, {xi}ni=1

and {x′
i}n

′
i=1, sampled i.i.d. from densities qx (source) and px (target), a training data point

is weighted by

ŵ(x) =
p̂x(x)

q̂x(x)
(4.3)

Although this solution potentially solves the problem of estimating w, when d is large,

this approach suffer from the curse of dimensionality - the points become widely spaced in

high dimensions and the number of them in our dataset would have to grow exponentially

as a function of d for a good estimate (Wasserman, 2006). An alternative is estimating w

directly, which can be an easier task.
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4.2 Probabilistic Classification Method

This is a relatively simple and effective way to estimate the weighting function. First,

consider a binary random variable t that indicates whether a random data point x is a sample

of the target distribution Px and not of the source distribution Qx. Thus, we can write

px(x) = fx|t(x|t = 1), qx(x) = fx|t(x|t = 0), and fx(x) = P(t = 0)qx(x) + P(t = 1)px(x).

Using Bayes’ Theorem, we can write w as follows (Sugiyama et al., 2012b):

w(x) =
px(x)

qx(x)
(4.4)

=
fx|t(x|t = 1)

fx|t(x|t = 0)
(4.5)

=
P(t = 0)

P(t = 1)

P(t = 1|x = x)

P(t = 0|x = x)
(4.6)

∝ P(t = 1|x = x)

P(t = 0|x = x)
(4.7)

Suppose we have data points {x′
i}n

′
i=1 independently sampled from Px and {xi}ni=1 independently

sampled from Qx. Appending {(x′
i, 1)}n

′
i=1 and {(xi, 0)}ni=1, and then training a probabilistic

classifier, e.g., MLP neural networks (Hastie et al., 2009) or XGBoost (Chen and Guestrin,

2016), to discriminate samples according to labels 1 and 0, it is possible to approximate

P(t = 1|x = x) and P(t = 0|x = x). On the other hand, the quantities P(t = 0) and

P(t = 1) can be estimated by n/(n′ + n) and n′/(n′ + n), respectively.

One particular situation where we can effectively use the probabilistic classifier method

is when we face a problem of sample selection bias due to "missing at random" (MAR)

data points (Moreno-Torres et al., 2012). That is a (covariate shift) problem of missing

data, where labels are missing for a dataset subset. Our interest is in the distribution that

generated the entire dataset, diverging from the most common way to understand covariate
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shift. In this specific case, the weighting function could be written as follows:

w(x) =
fx(x)

qx(x)
(4.8)

=
fx(x)

fx|t(x|t = 0)
(4.9)

=
P(t = 0)

P(t = 0|x = x)
(4.10)

∝ 1

P(t = 0|x = x)
(4.11)

The optimization of hyperparameters will depend on the model chosen to estimate the

conditional probability distribution of t. It can be done as in any other supervised task using

cross validation.

4.3 Spectral Series Estimator

The idea of the method introduced by Izbicki et al. (2014) is to decompose w into a series

of orthonormal eigenfunctions of a kernel-based operator. Let L2 (X , Qx) be a vector space

of functions h : X → R such that ||h||2Qx
= ⟨h, h⟩Qx

< ∞, where the inner product is given

by:

⟨h, g⟩Qx
=

∫
X
h(x)g(x)qx(x)dx (4.12)

Let Kσ be a Gaussian kernel1, and let {ψj}∞j=1 be eigenfunctions of the integral operator

(Rosasco et al., 2010; Wainwright, 2019) κ : L2 (X , Qx) → L2 (X , Qx) defined as

κ(h)(x) = ⟨Kσ(x, .), h(.)⟩Qx
(4.13)

The, the set of functions {ψj}∞j=1 forms a orthonormal basis of the space L2 (X , Qx)

1Other positive semidefinite, symmetric and bounded kernels are also possible.
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(Izbicki et al., 2014; Minh, 2010). If w ∈ L2 (X , Qx), then

w =
∞∑
j=1

βjψj (4.14)

For a set of scalars {βj}∞j=1. Given that {ψj}∞j=1 is an orthonormal basis, we have that

⟨ψi, ψj⟩Qx
= I(i = j) (4.15)

And,

βj = ⟨w,ψj⟩Qx
(4.16)

=

∫
X
w(x)ψj(x)qx(x)dx (4.17)

= E
x′∼Px

[
ψj(x

′)
]

(4.18)

That is, βjψj is the orthogonal projection of w onto the subspace generated by ψj.

Consider we have the samples {xi}ni=1 and {x′
i}n

′
i=1 sampled from Qx (source) and Px

(target). To estimate each element of the basis {ψj}∞j=1, we first calculate Gram’s matrix

[Kσ(xi,xj)]
n
i,j=1 and then diagonalize it in order to obtain the first J eigenvalues λ1 ≥ ... ≥

λJ ≥ 0 and their respective eigenvectors {ψ̃j}Jj=1. The eigenvectors of Gram’s matrix are

given by:

ψ̃j :=
(
ψ̃j(x1), ..., ψ̃j(xn)

)
, j ∈ [J ] (4.19)

To this point, we estimated the basis functions applied to the training sample from source

population. However, we would like to extend them to any other point in order to estimate

the scalars {βj}Jj=1 using samples from Px. For that, it is possible to use the Nystrom

Extension (Drineas and Mahoney, 2005; Izbicki et al., 2014) to obtain the desired function
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for all x ∈ X :

ψ̂j(x) =

√
n

λj

n∑
i=1

ψ̃j (xi)Kσ (x,xi) (4.20)

Then, each βj is estimated using samples from Px as:

β̂j =
1

n′

n′∑
i=1

ψ̂j (x
′
i) (4.21)

Finally, the Spectral Series Estimator is given by

ŵ = max

[
0,

J∑
j=1

β̂jψ̂j

]
(4.22)

The model selection step is straightforward using the empirical mean squared error and

cross validation to choose the best values for hyperparameters σ and J . In this case, J

controls the bias-variance trade-off (Izbicki et al., 2014).

4.4 Kullback-Leibler Importance Estimation Procedure

(KLIEP)

The Kullback-Leibler Importance Estimation Procedure (KLIEP) was introduced by

Sugiyama et al. (2008), and consists in modelling the importance function w as a linear

combination of basis functions:

wβ(x) =
T∑
t=1

βtφt(x) (4.23)

= β⊤φ(x) (4.24)

The basis functions φ = (φ1, ..., φT ) are hyperparameters and the vector β = (β1, ..., βT )

is learned from data. Due to the fact we can write a model for px as px(x;β) = wβ(x)qx(x),

we admit βt, φt ≥ 0 for t = 1, ..., T . The functions {φt}Tt=1 can be defined in many ways;

however, it is common to use Gaussian kernels centered at random points from the set of
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target/test data points, namely φt(x) = Kσ

(
x,x′

i

)
. For each t we randomly select a sample

from the test set. Writing the Kullback-Leibler Divergence (Kullback, 1997) between our

model px(x;β) and the data density px(x)

J(β) = DKL [px||px(.;β)] (4.25)

= E
x′∼Px

{
log

[
px (x

′)

px(x′;β)

]}
(4.26)

= E
x′∼Px

{
log

[
px (x

′)

wβ (x′) qx (x′)

]}
(4.27)

= E
x′∼Px

{
log

[
px (x

′)

qx (x′)

]}
− E

x′∼Px

{log [wβ (x′)]} (4.28)

= C − J ′(β) (4.29)

Where C is a constant term that does not depend on wβ and can be ignored. Minimizing

J(β) w.r.t. β is equivalent to maximizing J ′(β) w.r.t. β. Given the samples {xi}ni=1 and

{x′
i}n

′
i=1 independently sampled from Qx (source) and Px (target), we write the empirical

objective function as

Ĵ ′(β) =
1

n′

n′∑
i=1

log [wβ (x′
i)] (4.30)

=
1

n′

n′∑
i=1

log

[
T∑
t=1

βtφt(x
′
i)

]
(4.31)

=
1

n′

n′∑
i=1

log
[
β⊤φ(x′

i)
]

(4.32)

Interestingly, we could write Ĵ ′(β) = 1
n′

∑n′

i=1 log [px(x
′
i;β)]+C

′. Then maximizing Ĵ ′(β)

is equivalent to maximize the likelihood.

Note that it is not possible to identify β solely by maximizing the function above. Given

that px(.;β) must approximate a density function, it makes sense if we consider the following
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constraint:

1 =

∫
px(x;β)dx =

∫
wβ (x) qx (x) dx (4.33)

≈ 1

n

n∑
i=1

wβ(xi) =
1

n

n∑
i=1

β⊤φ(xi) (4.34)

Then, the empirical version of our optimization problem is:

max
β∈RT

n′∑
i=1

log
[
β⊤φ(x′

i)
]

(4.35)

s.t.
n∑

i=1

β⊤φ(xi) = n and β,φ ≥ 0 (4.36)

The optimization problem is then solved by a variation of the gradient ascent algorithm,

ensuring feasibility conditions in an iterative fashion (Sugiyama et al., 2008). According to

the authors, we may also include a regularization term, imposing some constraints on β. It

is also possible to lose the condition 4.34 to allow some variation (Sugiyama et al., 2008).

Gaussian kernels are used as basis functions. Sugiyama et al. (2008) recommends the

kernels to be centered at a subset of the target/test data points. Two points require clarification:

(i) why we choose points from the test set and (ii) why we work with a subset of the data

and not with all available data points. First, we chose to center the kernels on the test set

data points as they are located in regions of space where w assumes large values. Second,

we only work with a subset of the data because, according to Sugiyama et al. (2008), the

algorithm’s performance tends not to change much from a reasonable number of selected

points, e.g., T ≈ 100. On the other hand, the optimization algorithm can be very costly if

T is too large. Sampling without replacement T test data points from {x′
j}n

′
j=1, we get the

set of points {ct}T=1 and we can represent our model for w as:

wβ(x) =
T∑
t=1

βtKσ(x, ct) (4.37)

=
T∑
t=1

βt exp

(
−||x− ct||2

2σ2

)
(4.38)
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The model selection is straightforward since this is a hyperparameter tuning phase. As

our objective is to maximize Ĵ ′, Sugiyama et al. (2008) suggests researchers use an ordinary

K-fold cross validation procedure to tune regularization parameters or σ.

4.5 Least-Squares Importance Fitting (LSIF)

The Least-Squares Importance Fitting (LSIF) approach was introduced by Kanamori et al.

(2009b). Just like KLIEP, we model w as a linear combination of basis functions:

wβ(x) =
T∑
t=1

βtφt(x) (4.39)

= β⊤φ(x) (4.40)

The basis functions φ and the vector β follow the same specifications given in Section

4.4. Writing and manipulating the objective function J(β), which we want to minimize w.r.t.

β:

J(β) =
1

2
E

x∼Qx

{
[wβ (x)− w (x)]2

}
(4.41)

=
1

2
E

x∼Qx

[
w2

β (x)
]
− E

x∼Qx

[wβ (x)w (x)] +
1

2
E

x∼Qx

[
w2 (x)

]
(4.42)

=
1

2
E

x∼Qx

[
w2

β (x)
]
− E

x′∼Px

[wβ (x′)] + C (4.43)

=
1

2
E

x∼Qx

{[
β⊤φ (x)

]2}− E
x′∼Px

[
β⊤φ (x′)

]
+ C (4.44)

= J ′(β) + C (4.45)

Where C is a constant term that does not depend on wβ and we can simply ignore it.
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Our main optimization problem is then given by:

min
β∈RT

1

2
E

x∼Qx

{[
β⊤φ (x)

]2}− E
x′∼Px

[
β⊤φ (x′)

]
(4.46)

s.t. β,φ ≥ 0 (4.47)

Having the instances {xi}ni=1 and {x′
i}n

′
i=1, we write the empirical version of the objective

function as follows:

Ĵ ′(β) =
1

2n

n∑
i=1

[
β⊤φ (xi)

]2 − 1

n′

n′∑
i=1

β⊤φ
(
x′
j

)
(4.48)

=
1

2n

n∑
i=1

[
T∑
t=1

βtφt (xi)

]2
− 1

n′

n′∑
i=1

T∑
t=1

βtφt

(
x′
j

)
(4.49)

=
1

2n

n∑
i=1

T∑
t,t′=1

βtβt′φt (xi)φt′ (xi)−
1

n′

n′∑
i=1

T∑
t=1

βtφt

(
x′
j

)
(4.50)

=
1

2

T∑
t,t′=1

βtβt′

[
1

n

n∑
i=1

φt (xi)φt′ (xi)

]
−

T∑
t=1

βt

[
1

n′

n′∑
i=1

φt

(
x′
j

)]
(4.51)

=
1

2

T∑
t,t′=1

βtβt′Ĥt,t′ −
T∑
t=1

βtĥt (4.52)

=
1

2
β⊤Ĥβ − β⊤ĥ (4.53)

Where Ĥ is a matrix of dimensions T × T and ĥ is a vector of size T . The entry (t, t′)

of Ĥ and the entry t of ĥ are given by

Ĥt,t′ =
1

n

n∑
i=1

φt (xi)φt′ (xi) ĥt =
1

n′

n′∑
i=1

φt

(
x′
j

)
(4.54)
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Reformulating the optimization problem to its empirical version:

min
β∈RT

[
1

2
β⊤Ĥβ − β⊤ĥ+ λ||β||1

]
(4.55)

s.t. β,φ ≥ 0 (4.56)

Where ||β||1 is a regularization term of the type l1, which is used to induce sparsity in

the solution, and λ ≥ 0 is a hyperparameter used to control this penalty, consequently the

bias-variance trade-off. In practice, we could also use other regularization functions such

as ||β||22, which would give us a regularization of the type l2. The basis functions {φt}Tt=0

are usually given by Gaussian kernels, and the non-negativity condition for these functions

would already be satisfied - the reasoning behind the basis functions is the same as presented

in Section 4.4. The above problem is a convex quadratic program, so it has a unique solution,

and its solution can be calculated efficiently by ordinary nonlinear programming techniques.

Kanamori et al. (2009b) shows that if we work with regularization of the type l1, it is possible

to efficiently use an algorithm to obtain the regularization path solution.

Kanamori et al. (2009b) states the model selection procedure can be implemented using

Information Criteria or standard cross validation methods. Also, using regularization of type

l1 could make the choice of λ more efficient, as discussed above.

4.6 Conclusion

In this chapter, we introduced several ways of estimating the importance function, also

known as density ratio. Our presentation did not intend to cover all possible methods, but

indeed we tried to cover a good portion of what we considered to be the most important

ones, ensuring diversity in nature and motivations of the methods.
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Chapter 5

Effective Sample Size, Dimensionality,

and Generalization in Covariate Shift

Adaptation

In this chapter, we will briefly review what has been presented so far and then introduce

the reader to this dissertation’s major contributions. The ideas contained in this chapter

were reproduced from Polo and Vicente (2021).

5.1 Introduction

A fundamental assumption in supervised statistical learning is that the data used to

train our models and the data we want to make predictions for are sampled from the

same distribution. Usually, real-world machine leaning applications, explicitly or implicitly,

rely on this assumption. However, that assumption is violated when there is covariate shift

(Shimodaira, 2000; Sugiyama and Kawanabe, 2012). In this scenario, we have a training/source

joint distribution Qx,y which differs from the test/target distribution Px,y. Features are

sampled from different marginals Qx ̸= Px while labels are sampled according to the

same conditional distribution Qy|x = Py|x. In the training phase, labeled pairs {(xi, yi)}ni=1

are identically and independently sampled from Qx,y, while unlabeled vectors {x′
i}mi=1 are

identically and independently sampled from Px. If the marginal distributions of features

35
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have density functions px and qx, such that support(px) ⊆ support(qx), the most common

approach to adapt a model for the target distribution is to employ an empirical error

weighted by w(x) = px(x)/qx(x) (Huang et al., 2007; Kanamori et al., 2009a; Shimodaira,

2000; Sugiyama and Kawanabe, 2012; Sugiyama et al., 2007).

The weighting scheme may fail when the effective sample sizes (ESS) are small. According

to common wisdom, a small ESS hurts model’s performance in the target distribution. As

previous research argues, e.g., Wang and Rudin (2017), that kind of scenario is common

when working with high-dimensional data. However, to the best of our knowledge, there is

no unified and rigorous view on how the three key concepts (i) effective sample size (ESS),

(ii) data dimensionality, and (iii) generalization of supervised models under covariate shift

are connected to each other. In this chapter, we present a unified theory connecting the three

concepts. Moreover, we also explore how dimensionality reduction or feature selection can

increase the effective sample size.

This chapter is organized as follows. In Section 5.2, we discuss previous results and explain

our contribution to the debate. In Section 5.3, we briefly review importance weighting and

introduce a new connection between effective sample size and generalization in the context

of covariate shift adaptation. In Section 5.4, we introduce dimensionality to the problem

showing how it connects to the other two concepts and then illustrate these connections

with a toy experiment. Finally, in Section 5.5, we show how dimensionality reduction and

feature selection can lead to a larger effective sample size. We conclude our discussion with

real-data experiments that supports feature selection before covariate shift adaptation as a

good practice.

5.2 Related Work

There is a rich literature on the problem of covariate shift adaptation1 or related subjects.

The main interest has been to develop methods to estimate the density ratio w (Huang et al.,

2007; Izbicki et al., 2014; Kanamori et al., 2009a; Liu et al., 2017; Sugiyama et al., 2008).

Some of the proposed methods aim to reliably estimate w in high-dimensional and unstable
1See Sugiyama and Kawanabe (2012) for a general view.
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settings (Izbicki et al., 2014; Liu et al., 2017), when the more traditional approaches may

fail. However, according to the common wisdom of the area, even if we could perfectly

estimate w, we would still have to deal with poor performance due to small effective sample

sizes (ESS), especially in high-dimensional settings. Understanding the role of small ESS and

possible ways to attenuate it may, therefore, be productive. The covariate shift adaptation

literature has already tried to articulate the relationships between ESS and generalization in

high-dimensional settings, also proposing dimensionality reduction as a cure. In spite of that,

we believe these previous attempts fail in connecting these concepts in a unified manner and

as explicitly as we propose to do in this chapter.

In recent years, Reddi et al. (2015) proposed a regularization method that controls the

ESS and offers sharper generalization bounds while correcting for covariate shift. However,

the authors do not explore how the number of features plays an essential role. Another work

that explores the concept of ESS in the context of covariate shift adaptation is Gretton et al.

(2009). In that work, the authors present the relationship between ESS and generalization

bounds in a transductive learning scenario. Besides transductive learning not being as

common as inductive learning in practice, the authors also do not explore how dimensionality

plays an essential role in the problem.

The idea of features dimensionality being related to ESS is explored in Wang and Rudin

(2017), without formalizing the connection to generalization. The authors also motivate how

dimensionality reduction can make ESS bigger, however, the central hypothesis adopted in

this case is that dimensionality reduction does not depend on the data, which, in most

cases, is not valid. In a more recent paper, Stojanov et al. (2019) proposes a dimensionality

reduction method to make covariate shift adaptation feasible, especially when estimating

weights. The authors show how the number of features is indirectly related to transductive

generalization bounds and effective sample size when the correction is made by Kernel Mean

Matching (Huang et al., 2007). In addition to the results being restricted to a particular

case, the authors implicitly assume that the mapping that defines dimensionality reduction

is given beforehand and does not depend on the training data, what is not realistic.

In this chapter, we complement previous works by formally articulating the relationship

among ESS, generalization of predictive models in the inductive scenario, and dimensionality
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as explicitly as possible. We present a unified theory connecting the three concepts, which

was not observed by us in the literature. We also show that dimensionality reduction, even

considering that the mapping may depend on the data, mitigates low ESS by making the

source and target domains less divergent.

5.3 Effective Sample Size (ESS) and Generalization in

Covariate Shift Adaptation

5.3.1 Importance Weighting

To keep our discussion as self-contained as possible, we first use this subsection to quickly

summarize key points behind importance weighting.

Given a hypothesis class H and a loss function L, our goal is finding a hypothesis h∗ ∈ H

that minimizes the risk R assessed in the target distribution Px,y using data from source

distribution Qx,y. From now on we assume: (i) Qy|x = Py|x and Qx ̸= Px; (ii) distributions

Px and Qx have probability density functions (p.d.f.s) px and qx such that support(px) ⊆

support(qx). Then, the risk can be written in terms of the source distribution:

R(h) = Ex∼PxEy|x [L(h(x), y)] (5.1)

=

∫
px(x)

qx(x)
qx(x)Ey|x [L(h(x), y)] dx (5.2)

= Ex∼QxEy|x [w(x) · L(h(x), y)] (5.3)

We would like to find a hypothesis hERM
ŵ ∈ H that minimizes a weighted version of the

empirical risk while also obtaining a low value for R. Assume we have an estimate ŵ for the

“true" weighting function w = px/qx and that we have pairs {(xi, yi)}ni=1 that are identically

and independently (i.i.d.) sampled from Qx,y. The weighted empirical risk is thus given by

R̂ŵ(h) =
1

n

n∑
i=1

ŵ(xi) · L(h(xi), yi) (5.4)
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In practice, we might also want to add a regularization term Ω(h) to penalize for the

complexity of the hypothesis h.

5.3.2 Relationship of Effective Sample Size (ESS) and Generalization

in Covariate Shift Adaptation

To introduce the concept of effective sample size in the context of covariate shift adaptation,

we first describe how this heuristic is employed within the importance sampling literature

(Martino et al., 2017; Owen, 2013; Robert et al., 2010), where it originally comes from. We

assume the “true” importance function (density ratio) is known up to a constant. This

assumption enables us to achieve some theoretical results and is also adopted in previous

works (Cortes et al., 2010, 2019; Wang and Rudin, 2017). The strategy we use to show the

relevance of the effective sample size in covariate shift adaptation is to find an asymptotic

approximation for that quantity, and then connect it to a known generalization bound.

The ESS formulation we use is slightly different from the most usual one (Martino et al.,

2017; Owen, 2013; Robert et al., 2010) in the sense we are concerned with percentage of

effective samples and not with the number of effective samples2. Given the two definitions

are not very different, the intuitions and some results regarding ESS are easily adaptable.

We present our definition in the following.

Consider two probability distributions Pz and Qz over Z ⊆ Rd with probability density

functions pz and qz such that support(pz) ⊆ support(qz). From now on, we call Pz the target

distribution and Qz the source distribution. We thus sample from Qz in order to estimate the

integral
∫
Z g(z)pz(z)dz =

∫
Z

pz(z)
qz(z)

g(z)qz(z)dz, with g : Z → R integrable. A key quantity

in this problem is the importance function, which is given by w ∝ pz/qz.

Suppose we have an independent and identically distributed (i.i.d.) sample {zi}ni=1 from

the source distribution Qz and we want to use the (self-normalized3) importance sampling

estimator n−1
∑n

i=1 w̄ig(zi) in order to estimate the integral of interest. The weights are

2In the literature, it is common to present the ESS as n · ÊSSn, while we are concerned only with ÊSSn

(Equation 5.5).
3We show the case of the self-normalized estimator because it returns the most usual definition for the

ESS, which is also used in the context of covariate shift (Reddi et al., 2015). In spite of that, we show
that this definition for the ESS is still useful for the non normalized case while performing covariate shift
adaptation.
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given by w̄i = wi/
∑

j wj, where wi = w(zi) ∝ pz(zi)/qz(zi), i ∈ [n] := {1, ..., n}. Then, the

effective sample size is defined as

ÊSSn(Pz, Qz) :=
1

n
∑n

i=1 w̄2
i

(5.5)

=
(
∑n

i=1 wi)
2

n
∑n

i=1 w2
i

(5.6)

Intuitively, the effective sample size is the percentage of effective samples. For example,

if the effective sample size equals 1/2, then the importance sampling estimator effectiveness

is the same of a monte carlo estimator with n/2 samples. That formulation can be used

to approximate, via Delta Method, the ratio of monte carlo estimators’ variance and the

self-normalized importance sampling estimator’ variance, using the derivation made by

Elvira et al. (2018). While that work motivates the use of the ESS, other approaches can be

derived from Owen (2013) and Martino et al. (2017). The latter presents the relationship

between effective sample size and the euclidean distance between the vector (w̄1, ..., w̄n) and

the “ideal" balanced vector (1/n, ..., 1/n). Furthermore, effective sample size informs about

the importance sampling estimator’s convergence rate (Agapiou et al., 2017). Said that, the

results presented in this section for the covariate shift adaptation case resembles the results

presented by Agapiou et al. (2017) in a different context.

To move forward, we introduce the concept of Rényi Divergence, which plays a central

role in our analysis:

Definition 5.1 (Rényi Divergence (van Erven and Harremoës, 2012)). Consider two probability

distributions Px and Qx over X ⊆ Rd, with probability density functions px and qx such that

support(px) ⊆ support(qx). The Rényi Divergence of order α > 1 of Px from Qx is given by:

Dα(Px||Qx) :=
1

α− 1
log E

x∼Qx

[(
px(x)

qx(x)

)α
]

(5.7)

Consequently, the Rényi Divergence of order 2 of

Px from Qx is given by D2(Px||Qx) = logEx∼Px [
px(x)
qx(x)

].

Despite all previous work, the question of how we should transpose the effective sample

size concept to the covariate shift adaptation framework remains. In the following, we make
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explicit the close relationship between the ESS and generalization bounds under covariate

shift adaptation. As we start talking about covariate shift adaptation, we substitute z by a

vector of features x, the set Z by X or X×Y and the function g by the loss function L. Before

we move on, we must establish that the effective sample size ÊSSn(Px, Qx) converges almost

surely to the quantity ESS∗(Px, Qx), which plays a central role in our analysis. ESS∗(Px, Qx)

can be considered a population version for the effective sample size. From now on, we may call

it by population effective sample size or only effective sample size, when it is not ambiguous.

Theorem 5.2. Consider two probability distributions Px and Qx over X ⊆ Rd, with probability

density functions px and qx such that support(px) ⊆ support(qx). Suppose we have a random

sample {xi}ni=1, identically and independently sampled from the distribution Qx, and we

define wi = w(xi) ∝ px(xi)/qx(xi). Assume that 0 < Ex∼Qx [w(x)
2] <∞. Then

ÊSSn(Px, Qx)
a.s.−−−→

n→∞
ESS∗(Px, Qx) (5.8)

Where

ESS∗(Px, Qx) := exp [−D2(Px||Qx)] (5.9)

The quantity D2(Px||Qx) is the Rényi Divergence of order 2 of Px from Qx (van Erven and Harremoës,

2012).

Proof. Assume the hypothesis stated are valid. Being c ̸= 0 a real constant, see we can

re-wright the ESS as follows:

ÊSSn(Px, Qx) =
(
∑n

i=1 wi)
2

n
∑n

i=1 w2
i

=

[∑n
i=1 c ·

px(xi)
qx(xi)

]2
n
∑n

i=1

[
c · px(xi)

qx(xi)

]2 =

[
1
n

∑n
i=1

px(xi)
qx(xi)

]2
1
n

∑n
i=1

[
px(xi)
qx(xi)

]2

Then, by the Strong Law of Large Numbers and almost-sure convergence properties

(Roussas, 1997), we verify that ÊSSn(Px, Qx)
a.s.−−→

Ex∼Qx [
px(x)
qx(x) ]

2

Ex∼Qx

[
( px(x)
qx(x) )

2] when n→ ∞. To complete
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the proof, we state the following

Ex∼Qx

[
px(x)
qx(x)

]2
Ex∼Qx

[(
px(x)
qx(x)

)2] =
1

Ex∼Px

[
px(x)
qx(x)

] =
1

exp [D2(Px||Qx)]
= ESS∗(Px, Qx)

The last theorem can be seen as a variation of some of the results presented by Agapiou et al.

(2017). While the authors focus on related but different divergences, we choose to present

this result in terms of the Rényi Divergence because, in that way, we can connect it to other

results in the literature.

It is essential to state that similar results hold for other effective sample size definitions

as, for example, the one used by Wang and Rudin (2017) divided by n, to give the percentage

of effective samples considering the non normalized weights for covariate shift adaptation.

It is fascinating how Rényi Divergence naturally emerges when working with the effective

sample size. It is a crucial point to understand that, when calculating the effective sample

size, we are approximating a quantity inversely proportional to the exponential of Rényi

Divergence of order 2 of Px from Qx.

Now we focus on the understanding of how effective sample size relates to generalization

of adapted supervised models. For Theorem 5.3, consider some conditions. Let X denote the

input space, Y the label set, and let L : Y2 → [0, 1] be a bounded loss function. Denote the

target distribution of features by Px and the source distribution of features by Qx, such that

Px is dominated by Qx. Consider H to be the hypothesis class used by the learning algorithm

and f : X → Y to be the labeling function we want to learn about. We denote by Pdim(U)

the pseudo-dimension4 of a real-valued function class U (Vidyasagar, 2002). Pdim is used

here to quantify the complexity of a hypothesis class through the loss function. Finally, R

is the risk assessed in the target distribution Px and R̂w is the weighted empirical error

calculated using the true weighting function (density ratio) and samples {xi}ni=1, identically

and independently sampled from the source distribution Qx.

Theorem 5.3 (Adapted from Cortes et al. (2010)). Define the function Lh(x) := L[h(x), f(x)]

4A pseudo-dimension is an extension of VC Dimension for real-valued classes of functions
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and let H be a hypothesis set such that Pdim({Lh : h ∈ H}) = p < ∞. Assume that

ESS∗(Px, Qx) = exp [−D2(Px||Qx)], D2(Px||Qx) < ∞, and the target/source density ratio

w > 0. Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have that:

sup
h∈H

[R(h)− R̂w(h)] ≤
2

5
4√

ESS∗(Px, Qx)
·

[
p · log2·e·n

p
+ log4

δ

n

] 3
8

(5.10)

See Cortes et al. (2010) for the proof, and replace D2 by ESS∗ to get this version of the

theorem.

It is clear from Theorem 5.3 that ESS∗(Px, Qx) plays a fundamental role when learning

f from data. A larger ESS∗(Px, Qx) leads to a tighter generalization bound. Consequently, if

ÊSSn(Px, Qx) is a good approximation for ESS∗(Px, Qx), the rationale behind using effective

sample size as a heuristic for diagnosis of covariate shift adaptation becomes clearer. To

conclude, we should mention that Cortes et al. (2019) shows a similar result to Theorem

5.3 with less assumptions, namely, assuming the existence of a labeling function f and that

w > 0. However, we chose the form provided by Cortes et al. (2010), as it gives us a more

straightforward expression without losing the property that is key to our approach, to say,

that a larger ESS∗(Px, Qx) leads to a sharper generalization bound.

5.4 The Role of Dimensionality

In Section 5.3, we showed the effective sample size’s role in the context of covariate shift

adaptation exploring its asymptotic relationship with generalization bounds. However, we

still need to understand the role that dimensionality plays during covariate shift adaptation.

In Theorem 5.4, we demonstrate that the Rényi Divergence of source and target distributions

does not decrease with the number of features, and, consequently, the population effective

sample size does not increase with the number of features, which explains potential adaptation

problems for high-dimensional data.

Theorem 5.4. Given two joint probability distributions Px1,x2 (target) and Qx1,x2 (source)

over X ⊆ Rd, D2(Px1,x2||Qx1,x2) < ∞, with joint probability density functions px1,x2 and
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qx1,x2, such that support(px1,x2) ⊆ support(qx1,x2), we have that

D2(Px1,x2 ||Qx1,x2) ≥ D2(Px1||Qx1) (5.11)

And, consequently,

ESS∗(Px1 , Qx1) ≥ ESS∗(Px1,x2 , Qx1,x2) (5.12)

Proof. Assume the hypothesis are valid and let d2(Px1,x2||Qx1,x2) = exp[D2(Px1,x2||Qx1,x2)].

See that:

d2(Px1,x2||Qx1,x2) = EPx1,x2

[
px1,x2(x1,x2)

qx1,x2(x1,x2)

]
= EPx1

[
px1(x1)

qx1(x1)
· EPx2|x1

[
px2|x1(x2|x1)

qx2|x1(x2|x1)

]]
=

= EPx1

[
px1(x1)

qx1(x1)
· d2(Px2|x1||Qx2|x1)

]
≥ EPx1

[
px1(x1)

qx1(x1)

]
= d2(Px1||Qx1)

Where the inequality is obtained by the fact that the exponential of the Rényi Divergence

must be greater or equals one. To complete the proof, see that ESS∗(Px1,x2 , Qx1,x2) =

d2(Px1,x2||Qx1,x2)
−1. Therefore

ESS∗(Px1 , Qx1) ≥ ESS∗(Px1,x2 , Qx1,x2)

This theorem can be seen as a particular case of the Data Processing Inequality

(Van Erven and Harremos, 2014).

Combining the results of Theorem 5.3 and Theorem 5.4, we conclude that performing

covariate shift adaptation with many features may not be feasible, as we would potentially

have loose generalization bounds.

Note that Theorem 5.4 does not necessarily say that by reducing dimensions or selecting

the most relevant features we will have a bigger effective sample size. Reducing dimensions

or selecting features is a random process that depends on data, and we have ignored this
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fact so far. In Section 5.5, we consider the randomness of the dimensionality reduction or

feature selection step to prove that we can increase the effective sample size by following

these procedures before conducting covariate shift adaptation.

5.4.1 A Toy Experiment

In this section, we present a toy experiment in order to illustrate the relationship between

effective sample size, Rényi divergence, dimensionality, and performance of supervised methods.

Assume there are two joint distributions of features and labels Pλ and Q with densities pλ

and q, being the case that Q describes the source/training population and that Pλ describes

the target/test population. Moreover, we assume we are facing the classical covariate shift

problem, that is, pλ(y|x) = q(y|x) = p(y|x) but pλ(x) ̸= q(x), plus the fact that we

cannot sample the labels from the test population. Finally, consider q(x) = N (x|0, Id) and

pλ(x) = N (x|λ · 1, Id), for λ ̸= 0, with d indicating the number of dimensions. Suppose

p(y|x) = N (y|100 · x1, 1), that is, y depends on x only through its first coordinate x1.

Firstly, we calculate D2(Pλ||Q) and ESS∗(Pλ, Q) as functions of d and then simulate how

the predictive power of a decision tree regressor deteriorates as d increases and ESS∗(Pλ, Q)

decreases. We train the trees by minimizing the empirical error weighted by the true weighting

function w in the training set, also imposing a minimum of 10 samples per leaf as a

regularization strategy. We choose to work with decision trees since they are fast to train

and robust against irrelevant features. Thus, it is reasonable to expect that a great part of

performance deterioration is not due to noisy features but because of small ESSs.

The first step to calculate ESS∗(Pλ, Q) and D2(Pλ||Q) is to calculate exp[D2(Pλ||Q)]:

exp[D2(Pλ||Q)] = Ex∼Pλ

[
pλ(x)

q(x)

]
(5.13)

= Ex∼Pλ

{
exp[−1

2
(x− λ1)⊤(x− λ1)]

exp[−1
2
x⊤x]

}
(5.14)

= exp
(
−dλ

2

2

)
· Ex∼Pλ

[
exp

(
λ

d∑
j=1

xj

)]
(5.15)

= exp(dλ2) (5.16)
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The last equality is true since exp(λ
∑d

j=1 xj) ∼ LogNormal(dλ2, dλ2). Then,D2(Pλ||Q) =

dλ2 and

ESS∗(Pλ, Q) = exp(−dλ2).

Figure 5.1 depicts the behavior of Rényi Divergence and ESS∗(Pλ, Q) as functions of d.

We also vary the value for λ. Given that D2(Pλ||Q) only depends on |λ| and not on sign(λ),

we consider the case where λ > 0. When |λ| is bigger, the divergence between the source

and target distributions also increases. Finally, to check how large d affects performance of

a regressor we, for each d, (i) sample 50 training and test sets of size 106, (ii) train the trees

on the training set minimizing the weighted empirical error and (iii) assess the regressors

on the test sets. The third plot of Figure 5.1 represents the average root-mean-square test

error (± standard deviation). Clearly the regressor deteriorates as the divergence between

domains grows and the ESS decreases.

Figure 5.1: (i) We plot the Rényi Divergence of the target distribution Pλ from the source distribution Q
as a function of the number of features. Both distributions are normal with the same covariance matrix but
located

√
dλ2 units apart from each other, i.e. the divergence also depends on |λ|; (ii) We plot the ESS∗(Pλ, Q)

as a function of d and also varying λ. As expected, ESS∗(Pλ, Q) exponentially decays in d as long as the
divergence is linearly related with d; (iii) In 50 simulations for each pair (λ, d), we observe how decision
trees’ performances deteriorate as the divergence between domains grows and the ESS decreases.

5.5 The use of dimensionality reduction/feature selection

to make effective sample size bigger

In this section, we present dimensionality reduction and feature selection as ways to

obtain a bigger effective sample size. The two main results of this section are given by

Theorems 5.6 and 5.7. We show that linear dimensionality reduction and feature selection,

under some conditions, decrease Rényi divergence between the target and source probability



5.5
THE USE OF DIMENSIONALITY REDUCTION/FEATURE SELECTION TO MAKE EFFECTIVE

SAMPLE SIZE BIGGER 47

distributions, leading to a bigger effective sample size. This result accounts for the dimensionality

reduction or feature selection’s randomness; that is, the transformation can depend on data

in some specific ways.

To arrive at our main results, we first show the intermediate result given by Lemma 5.5.

In the following result, A represents a constant dimensionality reduction matrix and the

vector b represents a translation in data before dimensionality reduction, which is common

when performing principal components analysis (PCA) (Hastie et al., 2009), for example.

When there is no need for considering a translation, we just can adopt b = 0. Also, A can

represent a feature selector, as we explain in the coming paragraphs.

Lemma 5.5. Consider (i) two absolutely continuous random vectors x ∼ Qx and x′ ∼ Px

of size d ≥ 2, D2(Px||Qx) < ∞, (ii) a nonrandom constant vector b ∈ Rd, and (iii) a

nonrandom constant matrix A ∈ Rd′×d with rank d′ (and d′ ≤ d). Suppose Qx and Px

measure events in X ⊆ Rd, d ≥ 2, and have probability density functions qx and px, such

that support(px) ⊆ support(qx). Also, assume A(x−b) ∼ QA(x−b) and A(x′−b) ∼ PA(x−b).

Then

D2(Px||Qx) ≥ D2(PA(x−b)||QA(x−b)) (5.17)

And, consequently,

ESS∗(PA(x−b), QA(x−b)) ≥ ESS∗(Px, Qx) (5.18)

Proof. If d = d′, the result is direct, considering the arguments used by Qiao and Minematsu

(2010) to prove5 their Theorem 1, because A represents an invertible linear (and differentiable)

transformation. Otherwise, consider a full rank matrix C =

A
B

 ∈ Rd×d, where B ∈

Rd−d′,d. Given that C is full rank, it represents an invertible linear (and differentiable)

transformation. If C(x − b) =

A(x− b)

B(x− b)

 ∼ QC(x−b) and C(x′ − b) =

A(x′ − b)

B(x′ − b)

 ∼

5Even though D2 is not an f-divergence, the thoughts presented by Qiao and Minematsu (2010) in their
proof can readily be applied in this case. Furthermore, we can write D2(Px||Qx) = log(χ2(Px||Qx) + 1),
where χ2 is a f-divergence (Sason and Verdú, 2016). This is an another reason on why this is valid.
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PC(x′−b), then by the arguments used by Qiao and Minematsu (2010) to prove5 their Theorem

1, we have that D2(Px||Qx) = D2(PC(x−b)||QC(x−b)). Discarding B(x − b) and B(x′ − b)

from random vectors C(x− b) and C(x′ − b), by Theorem 5.4, we have that

D2(Px||Qx) ≥ D2(PA(x−b)||QA(x−b))

Therefore

ESS∗(PA(x−b), QA(x−b)) = exp
[
−D2(PA(x−b)||QA(x−b))

]
≥ exp [−D2(Px||Qx)] = ESS∗(Px, Qx)

Like Theorem 5.4, this result can be seen as a particular case of the Data Processing

Inequality (Van Erven and Harremos, 2014).

Although Lemma 5.5 gives us a way out in cases which the dimensionality reduction is

not random, this case is not realistic. We know that, in practice, A and b are obtained using

data.

In the next results, linear dimensionality reduction and feature selection are represented

by the random matrix A. If we assume in advance that A is absolutely continuous, then it

represents an ordinary dimensionality reduction matrix. On the other hand, if A is composed

of zeros except for a single entry in each of its columns, which is given by one, then it

represents a feature selector. Also, we can consider a random data translator b instead of

the deterministic b.

Theorem 5.6 (Linear dimensionality reduction). Firstly, consider the training random

samples of absolutely continuous vectors {xi}ni=1
iid∼ Qx and an absolutely continuous random

vector from target domain x′ ∼ Px. Assume Qx and Px measure events in X ⊆ Rd, d ≥ 2,

and have probability density functions qx and px, such that support(px) ⊆ support(qx). Also,

assume that D2(Px||Qx) < ∞. Secondly, consider an absolutely continuous random vector

b ∈ Rd and an absolutely continuous random matrix A ∈ Rd′×d, rank(A) = d′, jointly

distributed according to the p.d.f. pb,A, such that (b,A),xi, and x′ are pairwise independent,

for every i ∈ [n]. Assume that d′ ≤ d. Suppose A(xi−b) ∼ QA(x−b) and A(x′−b) ∼ PA(x−b),
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for every i ∈ [n], then

D2(Px||Qx) ≥ D2(PA(x−b)||QA(x−b)) (5.19)

And, consequently,

ESS∗(PA(x−b), QA(x−b)) ≥ ESS∗(Px, Qx) (5.20)

Proof. Firstly, we define v := A(xi − b) ∼ Qv ≡ QA(x−b) and u := A(x′ − b) ∼ Pu ≡

PA(x−b), for an arbitrary i ∈ [n]. Let qv and pu be probability density functions associated

with distributionsQv and Pu. From Lemma 5.5, we know thatD2

(
Pu|b=b,A=A||Qv|b=b,A=A

)
≤

D2 (Px||Qx) ,∀b ∈ Rd, ∀A ∈ Rd′×d such that rank(A) = d′. That statement implies the

following:

D2

(
Pu|b=b,A=A||Qv|b=b,A=A

)
≤ D2 (Px||Qx) ⇒

⇒ expD2

(
Pu|b=b,A=A||Qv|b=b,A=A

)
≤ expD2 (Px||Qx) ⇒

⇒ Epb,A

[
expD2

(
Pu|b,A||Qv|b,A

)]
≤ expD2 (Px||Qx) ⇒

⇒
∫
pb,A(b,A)

∫
pu|b,A(u|b,A)

pu|b,A(u|b,A)

qv|b,A(u|b,A)
dudbdA ≤ expD2 (Px||Qx) ⇒

⇒
∫
pu|b,A(u|b,A)pb,A(b,A)

pu|b,A(u|b,A)

qv|b,A(u|b,A)

pb,A(b,A)

pb,A(b,A)
dudbdA ≤ expD2 (Px||Qx) ⇒

⇒ D2 (Pu,b,A||Qv,b,A) ≤ D2 (Px||Qx) ⇒

⇒ D2

(
PA(x−b)||QA(x−b)

)
= D2 (Pu||Qv) ≤ D2 (Pu,b,A||Qv,b,A) ≤ D2 (Px||Qx)

The last step is due to Theorem 5.4 (extending to random matrices). To complete the
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proof, we state the following:

ESS∗(PA(x−b), QA(x−b)) = exp
[
−D2(PA(x−b)||QA(x−b))

]
≥ exp [−D2(Px||Qx)] = ESS∗(Px, Qx)

Theorem 5.6 tells us that a dimensionality reduction procedure before performing covariate

shift adaptation increases the population effective sample size. It is important to state that

Theorem 5.6 also holds when disconsidering b and the proof’s adaptation is straightforward.

In that case, we would have that D2(Px||Qx) ≥ D2(PAx||QAx) and ESS∗(PAx, QAx) ≥

ESS∗(Px, Qx).

Next, in Theorem 5.7, we state a result regarding feature selection.

Theorem 5.7 (Feature selection). Firstly, consider the training random samples of absolutely

continuous vectors {xi}ni=1
iid∼ Qx and an absolutely continuous random vector from target

domain x′ ∼ Px. Assume Qx and Px measure events in X ⊆ Rd, d ≥ 2, and have

probability density functions qx and px, such that support(px) ⊆ support(qx). Also, assume

that D2(Px||Qx) <∞. Secondly, consider a discrete random matrix A ∈ Rd′×d, that represents

a feature selector with rank(A) = d′, distributed according to the probability mass function

(p.m.f.) pA, such that A,xi, and x′ are pairwise independent, for every i ∈ [n]. Assume that

d′ ≤ d. Suppose Axi ∼ QAx and Ax′ ∼ PAx, for every i ∈ [n], then

D2(Px||Qx) ≥ D2(PAx||QAx) (5.21)

And, consequently,

ESS∗(PAx, QAx) ≥ ESS∗(Px, Qx) (5.22)

Proof. Firstly, we define v := Axi ∼ Qv ≡ QAx and u := Ax′ ∼ Pu ≡ PAx, for an arbitrary

i ∈ [n]. Let qv and pu be probability density functions associated with distributions Qv and

Pu. From Lemma 5.5, we know that D2

(
Pu|A=A||Qv|A=A

)
≤ D2 (Px||Qx), ∀A ∈ Rd′×d such
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that rank(A) = d′. That statement implies the following:

D2

(
Pu|A=A||Qv|A=A

)
≤ D2 (Px||Qx) ⇒ expD2

(
Pu|A=A||Qv|A=A

)
≤ expD2 (Px||Qx) ⇒

⇒ EpA

[
expD2

(
Pu|A||Qv|A

)]
≤ expD2 (Px||Qx) ⇒

⇒
∑
A

pA(A)

∫
pu|A(u|A)

pu|A(u|A)

qv|A(u|A)
du ≤ expD2 (Px||Qx) ⇒

⇒
∑
A

∫
pu|A(u|A)pA(A)

pu|A(u|A)

qv|A(u|A)

pA(A)

pA(A)
du ≤ expD2 (Px||Qx) ⇒

⇒ D2 (Pu,A||Qv,A) ≤ D2 (Px||Qx) ⇒

⇒ D2 (PAx||QAx) = D2 (Pu||Qv) ≤ D2 (Pu,A||Qv,A) ≤ D2 (Px||Qx)

Given the matrix A represents a feature selector, it can only assume a finite number of

values. Thus, the sum is given over a finite number of values of A. The last step is due to the

Theorem 5.4 (extending to random matrices). To complete the proof, we state the following:

ESS∗(PAx, QAx) = exp [−D2(PAx||QAx)] ≥ exp [−D2(Px||Qx)] = ESS∗(Px, Qx)

Theorems 5.6 and 5.7 hold when the data used to obtain A and b do not depend on

training data that will be used to train the supervised models or data points that represent

the target domain we want to make generalizations for. That does not mean we cannot use

some portion of the dataset to obtain A and b, but it only means the results are not valid

for those specific used data points, being from source or target domains.

Before closing this section, it is worth mentioning three points. Firstly, at the same time

dimensionality reduction/feature selection solve the problem of low effective sample sizes, it

might impose other problems. For example, when performing principal components analysis

(PCA) (Hastie et al., 2009) for dimensionality reduction, it is not guaranteed the method
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will not discard useful information for the supervised task. Also, it is not even possible to

ensure the covariate shift main assumption, that the conditional distribution of the labels are

the same in source and target domains, still holds. In this direction, Stojanov et al. (2019)

offers a clever solution to overcome these specific problems, applying sufficient dimension

reduction (SDR), which is a supervised method, to reduce dimensions. Secondly, given that

A and b are random quantities6, {A(xi − b)}ni=1 or {Axi}ni=1 may not form independent

samples, even when xi ⊥⊥ (A,b),∀i ∈ [n], and {xi}ni=1
iid∼ Qx. If samples are not independent,

then the results presented in Section 5.3 might not hold. Finally, it is true that the results

presented in this section can be extended to include more general dimensionality reduction

transformations, i.e. non-linear transformations, and the validity of other transformations

might be proven using the Data Processing Inequality (Van Erven and Harremos, 2014).

Unfortunately, exploring the two last points is beyond the scope of the present chapter and

might be treated in future work.

5.6 Numerical experiments with real data

In this section, we present regression and classification experiments in which we perform

feature selection before covariate shift adaptation. When designing the experiments, we

choose to work with the least possible number of assumptions, searching for evidence that

the theoretical results presented so far can be extended to more general cases, which will

be treated in future work. Namely, we did not assume (i) the true importance function is

always known, (ii) that training data is independent of the feature selector, and (iii) that

training data are formed with independent data points after the feature selection procedure.

For the following experiments, 10 regression datasets with no missing values were selected7.

Each experiment consisted of (i) introducing covariate shift8, (ii) estimating the weights,

(iii) correcting the shift by the importance weighting method, and finally (iv) assessing the

performance of the predictors and the effective sample size. We also studied the classification
6This is not true when A and b are fixed.
7From www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html and https://archive.ics.uci.edu/ml/datasets.

php.
8Similarly to previous research, e.g., (Huang et al., 2007; Reddi et al., 2015; Stojanov et al., 2019;

Wang and Rudin, 2017).

www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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case by binarizing the target variables using their medians as a threshold. We use the same

datasets for both regression and classification experiments to make comparisons easier.

For each one of the 10 datasets, we repeated the following preprocessing steps: (i) we

kept up to 8,000 data points per dataset9, (ii) generated new features using independent

standard gaussian noise and (iii) standardized each column in every dataset. By augmenting

the dataset to 32 features using noise, we can explore a scenario in which performance

deterioration is mainly due to small effective sample sizes. We give more details on this

point in the next paragraph.

The following procedure is used to create divergent training and test sets after the

preprocessing steps. For each of the datasets, we sampled a sequence of vectors uniformly

from [−1, 1]d. We projected the data points onto the subspace generated by each vector,

resulting in only one feature x
(j)
i per sample i for each subspace/simulation j. For each x

(j)
i ,

we calculated the score sij = Φ
(
[x

(j)
i − median(x(j))]/σj

)
, which is the probability that the

data point i from simulation j is in the training set. According to that score, we randomly

allocated each data point in either the training or test set in simulation j. The constant

σj was adjusted until the empirical effective sample size, as defined in Section 5.3, is less

than 0.01. Following this procedure, the training and test sets are approximately of the same

sizes in each simulation j. Then, we fit two decision trees for each of the training/test sets:

one in the training set and one in a subset of the test set. Then, we tested both decision

trees in the unused portion of the test set and compared their performance according to the

mean squared error for regression and classification error (1 - accuracy) for classification.

We selected the 75 simulations10 in which decision trees trained in the test sets did best,

relatively to the training set trees. We chose decision trees because they are fast to train

and robust against irrelevant features. Thus, the noisy features added in the datasets are

not likely to directly affect predictive power but only by making the effective sample size

smaller. It is important to state that, during the whole experimenting phase, decisions trees

were 2-fold cross-validated in order to choose the minimum number of samples per leaf11.
9The datasets “Abalone,” “Delta Ailerons,” and “Wine Quality” had 4177, 7129, and 6497 data points,

respectively. All the others were undersampled to have 8,000 data points.
10From the total of 7,200 simulations.
11More details on hyperparameter tuning can be found in Section 5.6.1
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For the feature selection step, we were inspired by Stojanov et al. (2019) and the idea of

Sufficient Dimension Reduction (Suzuki and Sugiyama, 2010), which is a supervised approach

to dimensionality reduction and feature selection, contrasting to Principal Component Analysis,

for example. Supervised approaches to dimensionality reduction and feature selection are

preferable since we are able to keep important information for a supervised task performed

afterwards. Using training data, we apply a combination of the methods described by

Eirola et al. (2014); Lan et al. (2006) and the Forward Selection algorithm (Guyon and Elisseeff,

2003). The approach uses gaussian mixture models (GMMs) to estimate, using the whole

training set, the mutual information between a subset of features and the target variable.

In this case, the number of GMMs’ components are chosen evenly splitting the training

data and performing a simple holdout set hyperparameter tuning phase12. After training

the GMMs, the procedure follows these steps: we start by choosing the feature that has the

largest estimated mutual information with the target variable, and, at each subsequent step,

we select the feature that marginally maximizes the estimated mutual information of target

variable and selected features. We repeat the process until we reach a stop criteria. Our

stopping criteria is that we should stop selecting features when the marginal improvement

in the empirical mutual information is less than 1% relative to the last level or when we

select the first 15 features. An implementation of the feature selection method is available

in the Python package InfoSelect13.

To estimate the weighting function for covariate shift adaptation, we use the probabilistic

classification approach (Sugiyama and Kawanabe, 2012; Sugiyama et al., 2012b) with a logistic

regression model combined with a quadratic polynomial expansion of the original features.

We choose to work with this approach since it is simple and fast to implement, besides being

promising for high-dimensional settings. Others approaches are possible though

(Sugiyama and Kawanabe, 2012). In order to prepare the data for training the logistic

regression model, we first append the whole training set and randomly select rows (80%)

from the test set, and create the artificial labels for both groups. Then, we randomly/evenly

split that dataset in order to choose the best value for the l1 regularization hyperparameter
12More details on hyperparameter tuning can be found in Section 5.6.1
13See https://github.com/felipemaiapolo/infoselect or https://pypi.org/project/infoselect/

https://github.com/felipemaiapolo/infoselect
https://pypi.org/project/infoselect/
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of the logistic regression, using the simple holdout validation approach14. After getting the

optimal values for the hyperparameter, we train a final model using the whole appended

dataset.

In the experiments, we work with four training scenarios. In the first one, we use the

whole set of features and no weighting method. In the second one, we use the entire set

of features and importance weighting combined with the “true” weights (1 − sij)/sij. In

the third, we use the whole set of features and estimated weights using the probabilistic

classification approach. In the fourth scenario, we use only selected features and estimated

weights using the probabilistic classification approach. Comparing the four scenarios enables

us to see how importance weighting may fail in high-dimensional settings due to low ESS,

even when we know the “true” weighting function.

Table 5.1 shows, for each one of the employed datasets, (i) the original number of features,

(ii) the augmented number of features, (iii) the average number (± standard deviation) of

selected features for the regression and (iv) classification experiments.

Dataset Original Augmented Selected (Reg.) Selected (Class.)
abalone 7 32 4.19± 1.26 9.87± 5.64
ailerons 40 40 5.16± 0.54 3.79± 0.64

bank32nh 32 32 10.00± 1.82 13.91± 0.61
cal housing 8 32 5.29± 1.29 7.45± 4.92

cpu act 21 32 9.88± 1.20 2.56± 0.72
delta ailerons 5 32 3.16± 0.49 3.75± 0.63

elevators 18 32 7.97± 1.11 13.08± 2.16
fried delve 10 32 4.45± 0.50 5.00± 0.00
puma32H 32 32 1.88± 0.32 14.00± 0.00

winequality 11 32 9.60± 1.02 14.00± 0.00

Table 5.1: Average Numbers of features (± standard deviation) - in this table we compare the
numbers of original, augmented and selected features for regression (reg.) and classification (class.)
tasks. It is possible to note that, on average, we select small subsets of features, even smaller than
the original sets.

In Figure 5.2, one can see the distribution of effective sample sizes in all the weighted

approaches, calculated in the entire set of experiments. It is possible to notice how small

the ESSs can be by adopting the pure weighting strategy. The feature selection step allows

bigger ESSs.

In Table 5.2, we see the average test errors (± standard deviation). To compute the errors,
14More details on hyperparameter tuning can be found in Section 5.6.1
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Figure 5.2: Effective Sample Size distributions across all experiments. Notice higher ESSs can be
achieved by a prior feature selection stage.

we use the test set portion (20%) not used to train the importance function. The errors

reported are the mean squared error and classification error relative to the first scenario.

From Table 5.2, it is noticeable that our feature selection approach and posterior weighting

systematically outperforms all the other benchmarks, especially the pure weighting method

when the whole set of features is used. Even the benchmarks that used true weights are often

beaten by large margins. That suggests that the degradation in the model performances is

mainly due to small effective sample sizes instead of difficulties estimating the weighting

function.

Through our experiments, we were able to verify that the feature selection stage tends

to increase the effective sample size, consequently allowing better performance of supervised

methods.

5.6.1 Some details of the experiments

In the experiments section, we tune three hyperparameters: (i) l1 regularization parameter

used to train the logistic regression model when estimating w, (ii) the minimum number of

samples per leaf in each regression/classification tree, and (iii) number of GMM components.

We use the Scikit-Learn (Pedregosa et al., 2011) implementations to train the logistic regressions,

regression/classification trees and GMMs. Firstly, we choose the l1 logistic regression regularization

parameter C from values in [10−4, 5], in order to minimize the log loss in a holdout dataset.
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All features Selected features
Dataset Unweighted True weights Estimated weights Estimated weights

R
eg

re
ss

io
n

abalone 1.00 1.42± 0.24 1.25± 0.19 0.92± 0.07
ailerons 1.00 1.01± 0.13 0.99± 0.11 0.87± 0.11

bank32nh 1.00 1.29± 0.14 1.20± 0.11 0.98± 0.06
cal housing 1.00 1.50± 0.24 1.35± 0.20 0.84± 0.09

cpu act 1.00 0.52± 0.55 0.55± 0.59 0.15± 0.21
delta ailerons 1.00 1.39± 0.18 1.25± 0.12 0.92± 0.06

elevators 1.00 1.10± 0.15 1.05± 0.13 0.85± 0.15
fried delve 1.00 1.60± 0.22 1.40± 0.15 0.90± 0.11
puma32H 1.00 2.24± 1.18 1.45± 0.22 1.77± 2.42

winequality 1.00 1.31± 0.12 1.24± 0.11 0.97± 0.04

C
la

ss
ifi

ca
ti

on

abalone 1.00 1.29± 0.19 1.22± 0.16 1.05± 0.15
ailerons 1.00 1.03± 0.27 1.01± 0.20 0.86± 0.13

bank32nh 1.00 1.25± 0.13 1.20± 0.13 1.00± 0.09
cal housing 1.00 1.43± 0.23 1.36± 0.19 0.87± 0.14

cpu act 1.00 1.09± 0.16 1.06± 0.16 0.99± 0.15
delta ailerons 1.00 1.38± 0.40 1.25± 0.31 0.84± 0.12

elevators 1.00 1.07± 0.15 1.04± 0.14 0.89± 0.13
fried delve 1.00 1.34± 0.22 1.22± 0.18 0.85± 0.09
puma32H 1.00 1.73± 0.59 1.22± 0.18 1.10± 0.42

winequality 1.00 1.20± 0.13 1.13± 0.10 1.07± 0.10

Table 5.2: Average Test Errors (± std. deviation) - here we compared the predictive performance
of decision trees in the test set of 75 different simulations for each dataset. We have four basic
scenarios: (i) whole set of features and no weighting method; (ii) whole set of features and use of
“true" weights; (iii) whole set of features and estimated weights; (iv) selected features and estimated
weights. The numbers reported are the mean squared error and classification error averages and
their std. deviations. All the results were normalized w.r.t. the first scenario.

Secondly, we choose the minimum number of samples per leaf in each regression/classification

tree from values in [5, 15, 25, 40, 50], in order to minimize the mean squared error or classification

error within a 2-fold cross-validation procedure. Finally, we maximize the log-likelihood in

a holdout dataset to choose the number of GMM components, varying the possible number

of components within the list [1, 3, 5, 7, 9, 11, 13, 15].

5.7 Conclusion

In this chapter, we have made two main contributions. The first is that we explicitly

and formally connected three key concepts in the context of covariate shift adaptation: (i)

effective sample size, (ii) dimensionality of data, and (iii) generalization of a supervised

model. Since, to the best of our knowledge, there is no unified and rigorous view on how the
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three key concepts connect to each other, we consider this to be the first contribution of the

chapter. The second contribution of the chapter is that we show dimensionality reduction

or feature selection, even considering data dependent mappings, corrects small effective

sample sizes by making the source and target distributions less divergent. This suggests

that it is a good practice to perform dimensionality reduction or feature selection before

covariate adaptation. We also present numerical experiments using real and artificial data

to complement our theoretical results.

Regarding possible future research paths and improvements, we point to Sections 5.3

and 5.5. Concerning Section 5.3, perhaps the three most relevant points to be considered for

future research relate to the following assumptions: the first one is assuming the importance

function is known up to a constant, the second is assuming the sample ESS is close to its

population version, and the third is assuming independent samples. While the first hardly

applies in practice, the second may hold in many situations, and the third could be relaxed

to include dependent samples, thus solving one of the problems discussed in Section 5.5.

Considering Section 5.5, we think there is one main point to be explored in future work,

which is extending the theorems to include more general transformations, i.e., non-linear or

training data dependent transformations. Said that, future work and improvements of this

chapter could focus on relaxing assumptions or exploring cases in which they are valid.

5.8 Code and data

All the datasets used are open datasets and are downloaded while running the code.

The code and material used can be found on https://github.com/felipemaiapolo/ess_

dimensionality_covariate_shift. Also, we have made our feature selection implementation

available as a Python package called InfoSelect https://github.com/felipemaiapolo/infoselect.

https://github.com/felipemaiapolo/ess_dimensionality_covariate_shift
https://github.com/felipemaiapolo/ess_dimensionality_covariate_shift
https://github.com/felipemaiapolo/infoselect


Chapter 6

Decomposing Dataset Shift into

Covariate and Concept Shifts

6.1 Introduction

In this chapter, we propose a way to characterize Dataset Shifts in supervised learning

tasks. Our proposal is to decompose the Kullback-Leibler (KL) divergence (Polyanskiy and Wu,

2019) between the joint distributions of features and labels, which represents the total dataset

shift, into a part that depends only on the divergence of the marginal distributions of the

features (covariate shift) and another that only depends on the average divergence of the

conditional distributions of the labels (average concept shift1). In addition, we want to

estimate these quantities from data.

The decomposition of the total dataset shift into covariate shift and average concept

shift allows, among other things, the machine learning practitioner to better understand the

data he/she is working with. For example, using dataset shift decomposition, it is possible

to better understand how a certain population evolves over time and answer questions such

as "what percentage of the total shift is due to the covariate shift?", "is it possible to detect

relevant concept shift comparing population A with population B?", or "during an economic

and health crisis, such as COVID-19’s, how is the financial profile of Brazilians affected? How

can this change in profile be decomposed into covariate shift and concept shift?".
1In the domain adaptation literature, it is more common to use the expression "concept drift", however,

we chose to use the word "shift" in order to make the language more uniform.

59
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This chapter is organized as follows. First, in Section 6.2 we briefly review the concepts of

dataset and covariate shifts, seen in more depth in Chapter 3, and introduce the concept of

concept shift/drift. Secondly, in Section 6.3 we present how an idea known in the Information

Theory literature can be used to characterize the dataset shift, through the decomposition

of KL divergences. In this same section, we present a toy experiment in order to consolidate

an intuition behind the concepts presented. Finally, in Section 6.5 we present an application

of the ideas presented in a real problem involving credit data for the Brazilian population.

6.2 Dataset Shift, Covariate Shift, and Concept Shift

Dataset shift is the situation in which the joint distribution of features and labels from

which we can sample (source/train distribution) is different from the one we are interested

in (target/test distribution). In this chapter, we name the source distribution as Qx,y and

the target distribution as Px,y. If there is a dataset shift, then Qx,y ̸= Px,y.

Covariate shift is a type of dataset shift in which the training/source joint distribution

Qx,y differs from the test/target distribution Px,y only by their features’ marginals. That is,

features and labels are sampled according to the same conditional distribution Qy|x = Py|x

but different marginals Qx ̸= Px (Sugiyama and Kawanabe, 2012). On the other hand,

concept shift is another type of dataset shift often characterized by the situation in which

training/source joint distribution Qx,y differs from the test/target distribution Px,y only by

their labels’ conditional distributions (Kull and Flach, 2014; Moreno-Torres et al., 2012).

That is, features are sampled from the same marginal distribution Qx = Px but labels are

sampled from different conditional distributions Qy|x ̸= Py|x.

6.3 Decomposing Dataset Shift

In this section, we will explore a possible way to decompose dataset shift into covariate

shift and average concept shift. We will use the Kullback-Leibler divergence to express each

of these quantities concretely and quantitatively. In this way, depending on the context,

we can refer to the quantities DKL(Px,y||Qx,y), Ex∼Px

[
DKL(Py|x||Qy|x)

]
, and DKL(Px||Qx) as
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(total) dataset shift, expected/average concept shift, and covariate shift, respectively. The

greater those quantities, the greater the shifts.

Below we present a theoretical result of the Information Theory (Polyanskiy and Wu,

2019) central to our approach. For this theorem, we present a proof for the case where

labels and features are discrete or absolutely continuous with respect to the Lebesgue

measure. Polyanskiy and Wu (2019) discussions in the section "How to avoid measurability

problems?" how can this idea be expanded to more general cases.

Theorem 6.1 (Extracted from Polyanskiy and Wu (2019)). Being Px,y the target joint

distribution of features and labels and Qx,y the source joint distribution of features and labels,

we have that

DKL(Px,y||Qx,y) = Ex∼Px

[
DKL(Py|x||Qy|x)

]
+ DKL(Px||Qx) (6.1)

Proof. If py|x, qy|x, px, and qx are p.d.f.s or p.m.f.s, then

DKL(Px,y||Qx,y) = E(x,y)∼Px,y

[
log

py|x(y|x)px(x)

qy|x(y|x)qx(x)

]
(6.2)

= E(x,y)∼Px,y

[
log

py|x(y|x)
qy|x(y|x)

]
+ Ex∼Px

[
log

px(x)

qx(x)

]
(6.3)

= Ex∼Px

[
DKL(Py|x||Qy|x)

]
+ DKL(Px||Qx) (6.4)

This result shows that the concept shift is only relevant in regions of the feature space

where we can sample points with positive probability considering the distribution Px; that

is, if the region R of the input space X has null measure, i.e., Px(R) = 0, then the average

DKL(Py|x||Qy|x) in R is negligible and do not contribute to DKL(Px,y||Qx,y).

6.4 Estimating the shifts

Our main objective in this section is to describe the procedure for estimating the following

quantities of interest DKL(Px,y||Qx,y), Ex∼Px

[
DKL(Py|x||Qy|x)

]
, and DKL(Px||Qx). The quantities
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of interest are difficult to estimate as we do not know the distributions that generated

the data and, besides that x and y can be multidimensional and composed of continuous,

discrete, or mixed random variables. An approach that potentially handles these challenges

well is outlined below. First, we use the (Sugiyama et al., 2012b) probabilistic classification

method to estimate density ratios px,y
qx,y

and px
qx

, described in Section 4.2. Second, as suggested

by Sønderby et al. (2016) and Tiao (2018) in the generative models literature, we obtain

estimates of DKL(Px,y||Qx,y) and DKL(Px||Qx) using empirical averages. Finally, we get

an estimate for Ex∼Px

[
DKL(Py|x||Qy|x)

]
subtracting the two quantities already estimated.

Below, we explain in more detail the ideas presented in this paragraph.

Suppose our goal is to estimate DKL(Pz||Qz), given that z = x or z = (x, y) in our

case. We will use the probabilistic classification method (Sugiyama et al., 2012b) for this

purpose, so we describe it below. Consider a binary random variable t that indicates if a

random data point z is sampled from the target distribution Pz and not from the source

distribution Qz. Thus, we can write pz(z) = fz|t(z|t = 1), qz(z) = fz|t(z|t = 0), if fz(z) =

P(t = 0)qz(z) + P(t = 1)pz(z). Using Bayes’ Theorem, it is possible to write w as follows:

w(z) =
pz(z)

qz(z)
(6.5)

=
fz|t(z|t = 1)

fz|t(z|t = 0)
(6.6)

=
P(t = 0)

P(t = 1)

P(t = 1|z = z)

[1− P(t = 1|z = z)]
(6.7)

Suppose we have the data points {z′
i}mi=1 sampled from Pz, and {zi}ni=1 sampled from

Qz. We can append the datasets {(z′
i, 1)}mi=1 and {(zi, 0)}ni=1, and then train a probabilistic

classifier, e.g., XGBoost (Chen and Guestrin, 2016), to discriminate samples according to

labels 1 and 0. The probabilistic classifier returns the function P̂(t = 1|z = z) that

approximates P(t = 1|z = z). On the other hand, the quantity P(t = 0)/P(t = 1) is

estimated by n/m. Our estimator for w is given by

ŵ(z) =
n

m

P̂(t = 1|z = z)

[1− P̂(t = 1|z = z)]
(6.8)
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Finally, if we have extra samples {z̃′
i}m̃i=1 sampled independently from Pz, our estimator

for DKL(Pz||Qz) is given by

D̂KL(Pz||Qz) =
1

m̃

m̃∑
i=1

log ŵ(z̃′
i) (6.9)

Following the steps described in this section, we can directly obtain D̂KL(Px,y||Qx,y)

and D̂KL(Px||Qx). Consequently, if γ := Ex∼Px

[
DKL(Py|x||Qy|x)

]
, we use the estimator γ̂ =

D̂KL(Px,y||Qx,y)− D̂KL(Px||Qx) to estimate γ.

It is worth mentioning that, given {z̃′
i}m̃i=1 forms an i.i.d. sample from Pz, D̂KL(Pz||Qz)’s

standard errors and asymptotic confidence intervals, from Central Limit Theorem (Roussas,

1997), are straightforward.

6.4.1 A Toy Experiment

In this experiment, (i) we use training and test sets with 100K data points each and (ii)

we employ the approach presented in Section 6.4 in conjunction with a XGBoost classifier

(Chen and Guestrin, 2016) for estimating the quantities

DKL(Px,y||Qx,y), Ex∼Px

[
DKL(Py|x||Qy|x)

]
, and DKL(Px||Qx).

Consider the source probability density functions:

qx(x) = N (x|0, 1) qy|x(y|x) = N (y|x, 1) (6.10)

And then consider the target probability density functions:

px(x;λ) = N (x|λ, 1) py|x(y|x; θ) = N (y|θ + x, 1) (6.11)

We can now decompose the joint distributions KL divergence (total dataset shift) as

DKL(Px,y||Qx,y) = Ex∼Px

[
DKL(Py|x||Qy|x)

]
+ DKL(Px||Qx) (6.12)

=
θ2

2
+
λ2

2
(6.13)
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Given that we are dealing with gaussian distributions, DKL(Py|x||Qy|x) and DKL(Px||Qx)

are promptly obtained.

In order to present a first idea about the problem, we will adopt λ = θ = 1 and plot

below, in Figure 6.1, the empirical joint distributions obtained from the data:

Figure 6.1: Source and target distributions when adopting λ = θ = 1. In this specific case, we have
that Ex∼Px

[
DKL(Py|x||Qy|x)

]
= DKL(Px||Qx) = 1/2.

In this specific case, we have that Ex∼Px

[
DKL(Py|x||Qy|x)

]
= DKL(Px||Qx) = 1/2, and

consequently DKL(Px,y||Qx,y) = 1. Even though this example gives an initial idea of the

problem we want to tackle, it is very restrictive as it assumes fixed values for λ and θ. To

get a more general idea about the problem, we use the equation 6.13 and plot in Figure 6.2

the values that our quantities of interest assume for values of λ and θ in a 15 × 15 grid of

[0.3]2.

Figure 6.2: Theoretical values of DKL(Px,y||Qx,y), DKL(Px||Qx), and Ex∼Px

[
DKL(Py|x||Qy|x)

]
varying λ and θ in a 15× 15 grid of [0, 3]2.

In addition to the result presented in Figure 6.2, we present in Figure 6.3 the empirical
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results obtained using the solution proposed in Section 6.4.

Figure 6.3: Empirical values (XGBoost) of DKL(Px,y||Qx,y), DKL(Px||Qx), and
Ex∼Px

[
DKL(Py|x||Qy|x)

]
varying λ and θ in a 15× 15 grid of [0, 3]2.

We can see from Figure 6.3 that the empirical solution is, in general, very accurate.

However, it is possible to notice that this solution can start to fail when the divergences

reach their greatest values. Figure 6.4 compares the theoretical and empirical values for the

quantities of interest and makes this observation more apparent.

Figure 6.4: Comparing theoretical and empirical values of DKL(Px,y||Qx,y), DKL(Px||Qx), and
Ex∼Px

[
DKL(Py|x||Qy|x)

]
varying λ and θ in a 15× 15 grid of [0, 3]2.

In the next section, we apply the ideas presented here to real data used in credit analysis.

6.5 Application with real Credit Data

6.5.1 Objective and its practical importance

The objective of this application is to better understand the dynamics of some characteristics

of the Brazilian population frequently used in credit analysis. It is expected that the characteristics
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and behaviors of the population will change over time, but it is necessary to quantify these

changes to better understand, for example, how and why credit models can have their

performance degraded over time. To accomplish this goal, we will use the concepts presented

in the previous sections in order to decompose the total dataset shift into covariate shift and

expected concept shift.

6.5.2 Data

The dataset used in the experiments of this section was provided by the Serasa Experian

Datalab, the Latin American Experian Datalab2 based in São Paulo, Brazil. The dataset

contains longitudinal data for one million Brazilians over a ten-month period, which runs

from August/2019 to May/2020. Each of the ten time slices contains 1788 features and a

label variable, often used for training credit models. In this work, we randomly partition

the sample into ten mutually exclusive parts, thus keeping 100,000 Brazilians in each of the

months.

Features and label variable

First, in all time slices we had access to the same set of 1789 variables, being 1788 features

and 1 label variable. Second, the variables that we will use in these experiments are often

used to train credit models, that is, to predict which people are more likely not to pay their

debts in the near future. That said, our label variable is an indicator variable that assumes 1

if the person has been at least 30 days late in paying any debt in a future 3 month period. In

turn, the features are composed of variables that may have statistical dependence with the

variable of interest, and these may, for example, relate to the amount of loans and financing

made in the last year or the amount of credit card bills not paid on time in the last few

months.

Many of the features provided are redundant and many are simply poor predictors. Also,

the dataset contains too many missing values. Because of this, we filter rows and columns

in each of the datasets, in order to make our analysis computationally less expensive. In

the next subsection, we explain in more detail how the row filtering and feature selection
2See https://www.experian.com/big-data/datalabs

https://www.experian.com/big-data/datalabs
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procedure was done.

Feature selection and row filtering

In order to make our tasks computationally less expensive, we will work with a subset of

the data in our analyses. Column selection and row filtering are done in the following order:

1. Firstly, we trained a XGBoost algorithm for classifying people in August/2019, with

no hyperparameter tuning phase but using early stopping. Then, we kept in all the

data slices only the d = 75 features with the greatest feature importance, which is "the

average gain across all splits the feature is used in"3, according to the August/2019

dataset;

2. Secondly, we kept in each of the time slices only those people who had at most 75% of

missing values in their d features. In order to simplify the experiments, we randomly

undersampled each of the data slices in order to maintain all of them with the same

sample size, which is roughly 54K;

Following the two steps above, we arrive at our final datasets, each of which is made up

of approximately 54K rows and exactly 75 columns. One last detail is that missing values

were encoded as -1, while all the features can naturally admit only non-negative values.

6.5.3 Methodology

In this section, we describe how we achieve the objective described in Section 6.5.1 with

the knowledge built in Sections 6.3 and 6.4.

First, it is necessary to introduce some new definitions and notations:

• F
(t)
xk,y: joint distribution, in month t, of the label variable y and the most important k

features according to the metric commented on in Section 6.5.2 represented by xk;

• F
(t)
xk : marginal distribution, in month t, of the most important k features according to

the metric commented on in Section 6.5.2 represented by xk;
3See https://xgboost.readthedocs.io/en/latest/python/python_api.html - Accessed in 24/06/2021

https://xgboost.readthedocs.io/en/latest/python/python_api.html


68 DECOMPOSING DATASET SHIFT INTO COVARIATE AND CONCEPT SHIFTS 6.5

• F
(t)
y|xk

: conditional distribution, in month t, of the label variable y given the most

important k features according to the metric commented on in Section 6.5.2 represented

by xk;

In this work, we have that t ∈ {0, ..., 9} and we choose to work with

k ∈ {1, 2, 3, 5, 10, 15, 25, 50, 75}.

Our objective, described in Section 6.5.1, can be summarized in the estimation of the

following quantities: (i) DKL(F
(t)
xk,y||F

(0)
xk,y) (total dataset shift), (ii) DKL(F

(t))
xk ||F (0)

xk ) (covariate

shift), and (iii) E
xk∼F

(t)
xk

[
DKL(F

(t)
y|xk

||F (0)
y|xk

)
]

(expected concept shift) for all possible combinations

of t and k. After the estimations, if we fix k, it is possible to draw curves that represent

the temporal evolution of the quantities of interest from August/2019 to May/2020. By

observing the temporal evolution of the quantities of interest, we can better understand (i)

whether there is a temporal dataset shift, (ii) what the intensity of the shift is, and (iii)

how much of the total dataset shift is due to the covariate shift and how much is due to the

concept shift.

To estimate the quantities of interest, we use the approach suggested in Sections 6.3 and

6.4. As the estimation process has a direct dependence on the training and test sets4, in

addition to also depending on the random seed of our probabilistic classifier, we performed

the same experiment 75 times. Each time, we set a different seed for both the dataset splitting

procedure and the probabilistic classifier training. As a probabilistic classifier, we use the

XGBoost binary classifier (Chen and Guestrin, 2016) without hyperparameter tuning, but

using early-stopping in order to minimize the log loss in a validation set5. In each of the

75 simulations, we train the XGBoost classifier in the training set and use the test set to

estimate the divergences, as described in Section 6.4. At the end, we worked with the average

of the 75 estimates in addition to using their standard deviation as a measure of uncertainty.

6.5.4 Results

In Figure 6.5, we can see the results of this application with real credit data. The solid

and dashed lines were obtained by taking the experiments average and the error bars are
4Training and test sets are composed by 90% and 10% portions of the original dataset. We use the training

set to train the probabilistic classifier and the test set to estimate the KL divergence.
5Randomly formed by 10% of the training set.
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the size of one standard deviation from the 75 different experiments.

Figure 6.5: Temporal total dataset, covariate, and expected concept shifts considering August/2019
as baseline. As intuition suggests, shifts increase with time and the number of variables. The sharp
increase in expected concept shift might reflect people’s behavior change due to COVID-19 pandemic.

The first observation we can make with respect to Figure 6.5 is that the dataset shift

tends to increase over time, regardless of the number of variables we are analyzing. A second

point, which was already expected, is that the greater the number of variables considered,

the greater the total dataset shift and covariate shift. This is due to the monotonicity of the

KL divergence, analogous to what we saw for the Rényi divergence in Section 5.4. Thirdly,

and which is related to the previous observation, is that as we consider more features,

the total dataset shift becomes almost entirely explained by the covariate shift. This is

because the conditional distribution represents a univariate variable. Lastly, and perhaps
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most interestingly: it is clear that the expected concept shift, at least in the first six plots,

becomes more relevant from February/2020 onwards. Since the label variable y tells whether

people had payment delay problems in the next three months, we have information until

mid-May/2020. One possible explanation for the sudden change in Brazilians’ behavior,

represented by the conditional distribution of labels, is the economic crisis triggered by the

COVID-19 pandemic6. If this hypothesis could be verified in practice, it would enable us

to conjecture important theories for understanding the behavior of Brazilian borrowers, as

it seems that the conditional distribution of y given xk is stable in time, relative to the

distribution of xk, until an extraordinary event occurs. Unfortunately, with the analyzes we

have so far, we could not assert causal relationships, however, this observation opens a gap

for future research.

In the following, we try to better understand what happens to the conditional distribution

of labels after January/2020.

Better understanding concept shift after January/2020

To better understand what happens with the conditional distribution of labels given

the features after January/2020, we performed the following analysis. Firstly, we split the

data of each month (54K rows) in a training (81%), validation (9%), and test sets (10%).

Secondly, for each month, we trained a XGBoost classifier in order to predict problems with

payment (label=1) given a set of features. We used the training set portion to train the

classifiers and the validation part for early-stopping purposes. Thirdly, we built two time

series called (i) factual and (ii) counterfactual. The factual one is given by the average

predicted probability of payment delay problems in the next three months calculated in the

test set, when using classifiers and features from the same month. For example, in order

to calculate the average predicted probability for December/2019, we used the XGBoost

classifier trained in that month to predict probabilities using test samples from that same

month, and then we calculate the average predicted probability for that sample. On the other
6On March 22, 2020, the governor of the State of São Paulo (Brazil) decreed state quarantine (See https:

//www.saopaulo.sp.gov.br/wp-content/uploads/2020/03/decreto-quarentena.pdf - Accessed in 06/26/2021)
closing many commercial establishments for a few months, which also ended up happening in other Brazilian
regions a few days later.

https://www.saopaulo.sp.gov.br/wp-content/uploads/2020/03/decreto-quarentena.pdf
https://www.saopaulo.sp.gov.br/wp-content/uploads/2020/03/decreto-quarentena.pdf
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hand, the counterfactual one is given by the average predicted probability of payment delay

problems in the next three months calculated in the test set, when using the classifier trained

in August/2019 and features from the month of interest. For example, in order to calculate

the average predicted probability for December/2019, we used the XGBoost classifier trained

in August/2019 to predict probabilities using test samples from December/2019, and then we

calculate the average predicted probability for that sample. Given that we fix the predicted

conditional distribution of labels in the counterfactual scenario, the different between curves

in Figure 6.6 can be interpreted as an isolated effect of concept shift.

As done before, we performed the experiment 75 times, given that in each one, we change

the random seed related to the classifiers training and dataset splitting. In Figure 6.6, we

report the average across experiments while the error bars are the size of one standard

deviation from the 75 different experiments.

As it can be seen in Figure 6.6, after January/2020, there is a sharp decrease in the average

predicted probabilities of payment delay problems. We can infer that the sharp decrease

when looking at the black line is mainly due to concept shift given that the gap between

the factual and counterfactual time series also dramatically increases after January/2020.

Another observation is that the blue line is more or less constant over time, and that means

covariate shift by itself cannot cause big changes in the payment observed behavior.

Regarding the possible connection between rapid changes in the conditional distribution

of the label variable and the economic crisis triggered by the COVID-19 pandemic, one

explanation for the sharp decreasing behavior of the black line after the arrival of the

pandemic COVID-19 in Brazil could be that many measures taken by banks and credit

bureaus help consumers during the pandemic. Some of the measures include, but are not

limited to, lower interest rates and longer payment intervals7.
7See https://www.serasa.com.br/ensina/seu-credito/credito-pessoal/ - Accessed in 27/07/2021.

https://www.serasa.com.br/ensina/seu-credito/credito-pessoal/
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Figure 6.6: The role of concept shift. The factual time series is given by the average predicted
probability of payment delay problems in the next three months calculated in the test set, when using
classifiers and features from the same month. On the other hand, the counterfactual one is given by
the average predicted probability of payment delay problems in the next three months calculated in the
test set, when using the classifier trained in August/2019 and features from the month of interest.
Given that we fix the predicted conditional distribution of labels in the counterfactual scenario, the
different between curves can be interpreted as an isolated effect of concept shift. The sharp increase in
the gap of the two lines after January/2020 might reflect concept shift due to COVID-19 pandemic.

6.6 Conclusion

In this chapter, we proposed a new way to characterize dataset shift in supervised learning

tasks. Our approach permits the researcher to quantify and decompose the Kullback-Leibler

(KL) divergence between the joint distributions of features and labels, which represents the

total dataset shift, into a part that represents the covariate shift and another that represents
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the concept shift. With that, we can quantify each term separately and better understand

the nature shifting data. Future directions of research could be studying how to predict

dataset shift and model degradation, or using the results presented by Rhodes et al. (2020)

to obtain better divergences’ estimates.

6.7 Code

The codes used to generate the results of this chapter can be found in https://github.

com/felipemaiapolo/decomposing_dataset_shift. The datasets are private and could not be

shared.
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Chapter 7

Conclusion

During this work, we went from an extensive covariate shift adaptation review to our

own original contributions to dataset shift literature. In Chapters 2 3 and 4, we reviewed the

fundamental concepts of statistical learning theory, covariate shift problem and its solution,

and density ratio/importance estimation. In Chapter 5, we proposed a new unifying theory

that connects effective sample size (ESS), features dimensionality and generalization, which

are concepts present in the modern literature of covariate shift adaptation. We show that (i)

bigger ESSs lead to sharper generalization bounds, (ii) data dimensionality is directly linked

to the ESS, and (iii) dimensionality reduction can make the ESS bigger. Finally, in Chapter

6, we proposed and applied a new approach to better understand data under dataset shift,

decomposing it into covariate shift and expected concept drift/shift. With that, one can

quantify each term separately and better understand the nature shifting data.

Possible future research directions regarding the work presented in Chapters 5 and

6 of this dissertation are the following. With respect to the Chapter 5, loosening some

assumptions made in Sections 5.3 and 5.5 are the most direct ones, as pointed out in the

end of that chapter. Concerning Chapter 6, work could be done in studying how to predict

dataset shift and model degradation, or using the results presented by Rhodes et al. (2020)

to obtain better divergences’ estimates.
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Appendix A

Some proofs

A.1 Proof of Theorem 2.8

Proof. First we prove that, when n gets large, there is only a little probability that exists a

hypothesis in H which the empirical error is far away from the statistical risk. Mathematically,

we first prove that for a given ϵ′ > 0, there is a constant C > 0 that satisfies:

FS

{
S : ∃h ∈ H that

∣∣∣R̂L(h,S)−RL(h)
∣∣∣ ≥ ϵ′

}
≤ C exp(−2nϵ′2) (A.1)

Consider H =
{
h1, ..., h|H|

}
, and note that

FS

{
S : ∃h ∈ H that

∣∣∣R̂L(h,S)−RL(h)
∣∣∣ ≥ ϵ′

}
(A.2)

= FS

|H|⋃
i=1

{
S :
∣∣∣R̂L(hi,S)−RL(hi)

∣∣∣ ≥ ϵ′
}

(A.3)

≤
|H|∑
i=1

FS

[
S :
∣∣∣R̂L(hi,S)−RL(hi)

∣∣∣ ≥ ϵ′
]

(A.4)

≤ 2|H| exp(−2nϵ′2) (A.5)

Then, in our case C = 2|H|. The inequality A.4 is obtained by the subadditivity property

of the probability measure and the inequality A.5 is obtained by the result presented in

the Example 2.5. Now, note that the event
{
S : ∃h ∈ H that

∣∣∣R̂L(h,S)−RL(h)
∣∣∣ ≥ ϵ′

}c

={
S : ∀h ∈ H we have

∣∣∣R̂L(h,S)−RL(h)
∣∣∣ < ϵ′

}
= E has a probability of at least
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1− 2|H| exp(−2nϵ′2). Moreover, note that

E ⊆
{
S :
∣∣∣R̂L(h

ERM
S ,S)−RL(h

ERM
S )

∣∣∣ < ϵ′
}⋂{

S :
∣∣∣R̂L(h

∗,S)−RL(h
∗)
∣∣∣ < ϵ′

}
(A.6)

Where h∗ ∈ argminh∈H RL(h). Then with probability of at least 1− 2|H| exp(−2nϵ′2), it

is true that:

RL(h
ERM
S ) ≤ R̂L(h

ERM
S ,S) + ϵ′ ≤ R̂L(h

∗,S) + ϵ′ ≤ RL(h
∗) + 2ϵ′ = min

h∈H
RL(h) + 2ϵ′ (A.7)

Where the first and third inequalities are due to the fact stated above and the second

one is due to the definition of hERM
S . Adopting ϵ = 2ϵ′,

FS

[
RL(h

ERM
S )−min

h∈H
RL(h) < ϵ

]
> 1− 2|H| exp

(
−nϵ

2

2

)
(A.8)

Rewriting,

FS

[
RL(h

ERM
S )−min

h∈H
RL(h) ≥ ϵ

]
≤ 2|H| exp

(
−nϵ

2

2

)
(A.9)

Setting δ ≥ 2|H| exp
(
−nϵ2

2

)
and solving for n, we can see that

n ≥ 2

ϵ2
log

(
2|H|
δ

)
(A.10)

We then conclude the proof affirming that, in this case, the minimal sample complexity

is bounded from above by 2
ϵ2
log
(

2|H|
δ

)
.



Appendix B

Other Methods for Importance

Estimation

We refer to the source/training distribution of features asQx and the target/test distribution

of features as Px. Also, for the sake of simplicity, we assume both distributions are absolutely

continuous with probability density functions qx and px, such that support(px) ⊆ support(qx).

Furthermore, we always consider x and {xi}ni=1 to be data points independently sampled

fromQx, and x and {x′
i}n

′
i=1 to be data points independently sampled from Px, i.e., realizations

of x ∼ Qx and x′ ∼ Px, respectively.

B.1 Kernel Mean Matching (KMM)

The weighting strategy that we present in this section is known as "Kernel Mean Matching"

(Huang et al., 2007). It proposes estimating the weighting function w applied to the training

by matching the means of the two groups (training/test or source/target) in the feature space

associated with a universal kernel (Steinwart, 2001). First, we need to understand better the

Reproducing Kernel Hilbert Space (RKHS)1.

Definition B.1. (Positive Semidefinite (PSD) Kernel): a kernel K : X × X → R is

positive semidefinite if for n ∈ N and a sequence of data points {xi}ni=1 ∈ X , the matrix

K = {Ki,j}ni,j=1 defined as Ki,j = K(xi,xj) is positive semidefinite.

1See (Wainwright, 2019) for more details.
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Consider the following map x 7→ K(.,x) ∈ H, where H is a Hilbert Space2 of real

functions with domain in X . If K is a positive semidefinite kernel, there is only one set H

where K satisfies the reproducing property.

Theorem B.2. (Reproducing Kernel Hilbert Space (RKHS)): Given a positive semidefinite

kernel K : X × X → R, there exists a unique Hilbert Space H of functions with domain X

in which the kernel K satisfies the reproducing property:

⟨f,K(.,x)⟩H = f(x), ∀f ∈ H (B.1)

H is the Reproducing Kernel Hilbert Space associated with kernel K.

Proof. See Theorem 12.11 from Wainwright (2019).

In this way, we can calculate inner products ⟨K(.,xi), K(.,xj)⟩H in H, which is a higher

dimensional space relative to X , simply by evaluating K(xi,xj). To move forward, we will

say that f : X → R is induced by the K kernel if there is g ∈ H such that f(x) =

⟨g,K(.,x)⟩H , ∀x ∈ X . From Theorem B.2, it is straightforward that if K is a positive

semidefinite kernel and H its RKHS, then every f ∈ H function is induced by K. Now that

we understand what a RKHS is, let us discuss the universal kernel (Micchelli et al., 2006;

Steinwart, 2001)3.

Definition B.3. (Universal Kernel): (X , d) is a metric space. The continuous kernel

K defined in the compact set (Z, d), Z ⊆ X , is called universal kernel if the space of all

functions induced by K is dense in C(Z), that is, in the space of all continuous functions

with domain Z. In other words, for all ϵ > 0 and f ∈ C(Z), there exists g induced by K

that satisfies

supz∈Z |f(z)− g(z)| ≤ ϵ (B.2)
2A Hilbert space is a complete inner product space, i.e., a vector space with an inner product in which

every Cauchy sequence converges to an element of the set.
3Definition 4 in the original article.
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From now on, we will discuss the method of our interest, presented by Huang et al. (2006,

2007). Let ϕ : X → H be a feature map, with H being a Hilbert Space representing the

"Feature Space". In addition, we define µ(F ) = Ex∼F [ϕ(x)] as the expected value operator.

The Theorem B.4 is fundamental to understand why the method works.

Theorem B.4. (Bijection of the Operator µ): the operator µ is a bijection if H is a

RKHS induced by an universal kernel K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H.

Proof. See Theorem 1 from Huang et al. (2006).

In practice, it is common to define our feature map being given by the Gaussian kernel,

that is, ϕ(x) = Kσ(.,x). Given that, we will adopt this choice from now on. This choice is

based on the fact that kernels invariant to translation, i.e., K(x,y) = k(x− y), x,y ∈ Rd

for a continuous function k, are universal kernels (Micchelli et al., 2006). The Theorem B.4

implies that, if we adopt ϕ(x) = Kσ(.,x), we have µ(F ) = µ(F ′) ⇒ F = F ′, F and F ′

being distributions over X ⊆ Rd. Given that, the problem of choosing a weighting function

w : X → R+ is given by the following minimization problem:

min
w

∥∥∥∥ E
x′∼Px

[
Kσ

(
.,x′)]− E

x∼Qx

[
w
(
x
)
Kσ

(
.,x
)]∥∥∥∥2

H
(B.3)

s.t. E
x∼Qx

[
w
(
x
)]

= 1 and w ≥ 0 (B.4)

Where ||.||H denotes the norm induced by the inner product. If we have the samples
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{x′
i}n

′
i=1 and {xi}ni=1, we will rewrite the objective function in its empirical version as follows:

∥∥∥∥∥ 1n′

n′∑
i=1

Kσ

(
.,x′

i

)
− 1

n

n∑
j=1

w(xk)Kσ

(
.,xk

)∥∥∥∥∥
2

H

= (B.5)

=

〈
1

n′

n′∑
i=1

Kσ

(
.,x′

i

)
− 1

n

n∑
j=1

w(xk)Kσ

(
.,xk

)
,

1

n′

n′∑
i=1

Kσ

(
.,x′

i

)
− 1

n

n∑
j=1

w(xk)Kσ

(
.,xk

)〉
H

(B.6)

=
1

n′2

n′∑
i,j=1

Kσ

(
x′
i,x

′
j

)
− 2

nn′

n′∑
i=1

n∑
j=1

w(xk)Kσ

(
x′
i,xk

)
+

1

n2

n∑
i,j=1

w(xi)w(xk)Kσ

(
xi,xk

)
(B.7)

=
1

n2

n∑
i,j=1

w(xi)w(xk)Kσ

(
xi,xk

)
− 2

nn′

n∑
j=1

w(xk)
n′∑
i=1

Kσ

(
x′
i,xk

)
+ C (B.8)

=
1

n2
w⊤Kw − 2

nn′w
⊤k+ C (B.9)

Where the vector w has entries wi = w(xi), the matrix K has entries Ki,j = Kσ

(
xi,xj

)
,

the vector k has entries kj =
∑n′

i=1Kσ

(
x′
i,xj

)
, and C is a constant which does not depend

on w. Thus, we present an empirical version of our minimization problem (Huang et al.,

2006, 2007). We end up with a problem of quadratic programming problem:

min
w

1

n2
w⊤Kw − 2

nn′w
⊤k (B.10)

s.t
∣∣w⊤1/n− 1

∣∣ ≤ ϵ and w ∈ [0, B]n (B.11)

The problem can be solved using standard techniques. Here 1 is a vector of ones and the

hyperparameters ϵ > 0 and B > 0 work as regularization terms (Sugiyama and Kawanabe,

2012). To conclude this section, we present another interesting result (Huang et al., 2006,

2007):

Theorem B.5. (Relationship between B and sample size): Admit Var[w(x)] > 0 if

x ∼ Qx, {xi}ni=1
iid∼ Qx, {x′

i}n
′

i=1
iid∼ Px, Kσ(x,x) ≤ R2 e w(x) ∈ [0, B] for ∀x ∈ X . Then,
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with probability of at least 1− δ, we have:

∥∥∥∥∥ 1n′

n′∑
i=1

Kσ

(
.,x′

i

)
− 1

n

n∑
j=1

w(xj)Kσ

(
.,xj

)∥∥∥∥∥
2

H

≤ R2
[
1 +

√
−2 log(δ/2)

]2[
B2/n+ 1/n′

]
(B.12)

Proof. See Lemma 4 from Huang et al. (2006).

Where w is the "correct" weighting function in the population sense. Theorem B.5 tells

us that given B, if we have a big enough sample, KMM is theoretically feasible.

The hyperparameters ϵ > 0 and B > 0 are not optimizable by cross validation as we

calculate the weights only for the examples in the training set. Despite that, a good choice of ϵ

is a function of order O(B/
√
n) (Huang et al., 2006, 2007). The Gaussian kernel bandwidth

σ can be fixed as the average distance between sample points (Song et al., 2007). In the

literature, one can find another version of the KMM algorithm in which the hyperparameters

can be tuned by cross validation (Kanamori et al., 2009b).

B.2 Density Matching methods

The following methods are extensions or modifications of KLIEP, presented in Section

4.4.

B.2.1 Gaussian Mixture Kullback-Leibler Importance Estimation

Procedure (GM-KLIEP)

This method is a particular case of the KLIEP method in which non-spherical Gaussian

kernels are adopted (Sugiyama et al., 2012a; Yamada and Sugiyama, 2009). Despite being

a particular case of KLIEP, GM-KLIEP is still more general than the case in which we use
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spherical kernels. In this case, we model the weighting function as

wβ(x) =
T∑
t=1

βtK(x;µt, σt) (B.13)

=
T∑
t=1

βt exp

[
−1

2
(x− µt)

⊤Σ−1
t (x− µt)

]
(B.14)

Where the parameters {(βt,µt,Σt)}Tt=1 are empirically learnt. Given the fact that we

could write px(x;β) = wβ(x)qx(x), we admit βt ≥ 0 for t = 1, ..., T . We can transpose the

optimization problem presented in Section 4.4 to this case and obtain:

max
{(βt,µt,Σt)}Tt=1

n′∑
i=1

log

[
T∑
t=1

βtKσ (x
′
i;µt,Σt)

]
(B.15)

s.t.
n∑

i=1

T∑
t=1

βtKσ [xi;µt,Σt] = n and β ≥ 0 (B.16)

The maximization is made using the EM Algorithm (Bishop, 2006; Yamada and Sugiyama,

2009) or even a fixed point method (Sugiyama et al., 2012a). As the optimization problem

is non-convex, these procedures may yield local optima (Sugiyama et al., 2012a).

The model selection is straightforward since this is a hyperparameter tuning phase. As

our objective is to maximize an objective function, Yamada and Sugiyama (2009) suggests

researchers use an ordinary K-fold cross validation procedure to tune regularization parameters

or the number of kernels.

B.2.2 Principal Mixture Kullback-Leibler Importance Estimation

Procedure (PM-KLIEP)

Even though GM-KLIEP works well in the experiments presented by Yamada and Sugiyama

(2009), the authors state that the method may be unstable in some regions of space,

where the data can induce ill-conditioned covariance matrices. Thus, it would be hard

to invert such matrices with precision (Yamada et al., 2010). To correct this point, the

authors make an adaptation that reduces the dimensions using the Probabilistic Principal
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Component Analysis (Tipping and Bishop, 1999; Yamada et al., 2010). In this case, we

model the weighting function as follows:

wβ(x) =
T∑
t=1

βtK(x;σ2
t ,µt,Wt) (B.17)

Given

K(x;σ2
t ,µt,Wt) = (2πσ2

t )
− d

2 det(Ct)
− 1

2 exp

[
−1

2
(x− µt)

⊤C−1
t (x− µt)

]
(B.18)

Ct = WtW
⊤
t + σ2

t Id (B.19)

Where d is the original number of variables and Wt is a projection matrix with dimensions

d×m, with m ≤ d. If d = m, we have GM-KLIEP. The parameters {(βt, σt,µt,Wt)}Tt=1 are

empirically learnt. Given the fact we could write px(x;β) = wβ(x)qx(x), we admit βt ≥ 0

para t = 1, ..., T . Translating the optimization problems presented in Sections 4.4 and B.2.1

to this case, we get:

max
{(βt,σt,µt,Wt)}Tt=1

n′∑
i=1

log

[
T∑
t=1

βtK(x′
i;σ

2
t , µt,Wt)

]
(B.20)

s.t.
n∑

i=1

T∑
t=1

βtK
(
xi;σ

2
t ,µt,Wt

)
= n and β ≥ 0 (B.21)

The maximization is made using the EM Algorithm (Bishop, 2006; Yamada et al., 2010).

Unfortunately, there is no unique solution and then we could get stuck in a local optima

(Sugiyama et al., 2012a).

As our objective is to maximize an objective function, Yamada et al. (2010) suggests

researchers use an ordinary K-fold cross validation procedure to tune regularization parameters

or the number of kernels.
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B.2.3 Log-Linear Kullback-Leibler Importance Estimation Procedure

(LL-KLIEP)

This approach is an adaptation of KLIEP to large scale applications (Tsuboi et al., 2009).

The importance function w is modelled as follows:

wβ(x) =
exp

[∑T
t=1 βtφt(x)

]
E

x∼Qx

{
exp

[∑T
t=1 βtφt(x)

]} (B.22)

=
exp

[
β⊤φ(x)

]
E

x∼Qx

{exp [β⊤φ(x)]}
(B.23)

Where the basis functions φ(x) = (φ1(x), ...φt(x)) are hyperparameters and the vector

β = (β1, ..., βT ) is learnt empirically. Note that wβ ≥ 0 and there is no need to constrain

φ or β as in KLIEP (Sugiyama et al., 2008). Furthermore, because LL-KLIEP is modelled

like in Equation B.22, there is no need to reinforce the condition 4.34. In practice, we do

not have access to the expected value in the denominator of wβ, then we use the empirical

mean. If we have the samples {xi}ni=1 and {x′
i}n

′
i=1, we can rewrite the function above as

follows:

wβ(x) =
exp

[
β⊤φ(x)

]
1
n

∑n
j=1 exp [β

⊤φ(xj)]
(B.24)

Adapting the optimization problem of KLIEP (4.35) to this case, we get:

max
β∈RT

n′∑
i=1

log

{
exp

[
β⊤φ(x′

i)
]

1
n

∑n
j=1 exp [β

⊤φ(xj)]

}
(B.25)

We could also rewrite it as follows:

max
β∈RT

n′∑
i=1

β⊤φ(x′
i)− log

n∑
j=1

exp
[
β⊤φ(xj)

]
(B.26)

The objective function can be maximized using the gradient ascent algorithm (Tsuboi et al.,

2009). According to the authors, we can still add a regularization term that constrains the

norm of β. We have two main computational advantages of LL-KLIEP over KLIEP: (i) the
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optimization problem is unconstrained and (ii) once we calculate the gradient for the first

time, we no longer need to use the samples {x′
i}n

′
i=1 for later iterations. To check this fact,

we write the gradient:

∇β

{
n′∑
i=1

β⊤φ(x′
i)− log

n∑
j=1

exp
[
β⊤φ(xj)

]}
(B.27)

= ∇β

n′∑
i=1

β⊤φ(x′
i)−∇β log

n∑
j=1

exp
[
β⊤φ(xj)

]
(B.28)

=
n′∑
i=1

φ(x′
i)
⊤ −∇β log

n∑
j=1

exp
[
β⊤φ(xj)

]
(B.29)

= ϕ−∇β log
n∑

j=1

exp
[
β⊤φ(xj)

]
(B.30)

Note that once we calculate ϕ, there is no need to use {x′
i}n

′
i=1 anymore.

As our objective is to maximize an objective function, Tsuboi et al. (2009) suggests

researchers use an ordinary K-fold cross validation procedure to tune parameters like the

number of kernels, kernels’ hyperparameters or regularization strength. Tsuboi et al. (2009)

also present alternatives for the objective function B.25 in order to obtain a more efficient

model selection procedure.

B.2.4 Trimmed Density Ratio Estimator

This approach was introduced by Liu et al. (2017), with the objective of having a robust

method for estimating the weighting functions w, using density matching methods in the

presence of some "pathological" data points, that is, those data points x ∈ {x′
i}n

′
i=1 such

that w(x) assume large values. The presence of few outliers is capable to undermine the

performance of the estimators of w, as shown in some experiments (Liu et al., 2017). Then,

the authors propose a method that, when estimating w, we automatically disconsider potentially

problematic data points, obtaining a more robust estimator. Having the samples {xi}ni=1

and {x′
i}n

′
i=1, Liu et al. (2017) models w in the same way it was made for the LL-KLIEP



88 APPENDIX B

(Sugiyama et al., 2008) method:

wβ(x) =
exp

[
β⊤φ(x)

]
1
n

∑n
j=1 exp [β

⊤φ(xj)]
(B.31)

Where the basis functions φ(x) = (φ1(x), ...φt(x)) are hyperparameters and the vector

β = (β1, ..., βT ) is learnt empirically. As shown in Section B.2.3, there is no need to constrain

φ or β. Adpating the objective function B.25, we get the following optimizations problem:

max
β∈RT

n′∑
i=1

min {0, log [wβ(x
′
i)]− t0} ⇔ min

β∈RT

n′∑
i=1

max {0, t0 − log [wβ(x
′
i)]} (B.32)

Where t0 is threshold for the log of the importance functions. That is, if a data point

has a weight that exceeds the threshold, we discard/trim that data point in the estimation

procedure and then we are able to get rid of problems caused by outliers. We will now handle

the above problem as follows:

min
β∈RT

n′∑
i=1

max {0, t0 − log [wβ(x
′
i)]} ⇔ min

β∈RT , ξ∈Rn′

n′∑
i=1

ξi (B.33)

s.t. ξi ≥ t0 − log [wβ(x
′
i)] , ∀i ∈ [n′]

(B.34)

ξi ≥ 0, ∀i ∈ [n′] (B.35)

Liu et al. (2017) reformulates the problem in the following way:

min
β∈RT , ξ∈Rn′ , t≥0

1

n′

n′∑
i=1

ξi − νt+ λΩ(β) (B.36)

s.t. ξi ≥ t− log [wβ(x
′
i)] , ∀i ∈ [n′] (B.37)

ξi ≥ 0, ∀i ∈ [n′] (B.38)

Where Ω(β) is a regularization term and λ ≥ e ν ∈ (0, 1] are hyperparameters. Rewriting
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the problem in this way is interesting because it allows the researcher to control the proportion

of trimmed points. Intuitively, 1− ν is the proportion of trimmed points, i.e., if ν = 1, then

we do not trim any point. To solve the optimization problem, Liu et al. (2017) suggests a

version of the Gradient Ascent algorithm, the "Gradient Ascent and Trimming."

Liu et al. (2017) does not comment about model selection and how to choose λ, for

example.

B.3 Least-Squares Importance Fitting methods

The following methods are extensions or modifications of LSIF, presented in Section 4.5.

B.3.1 Unconstrained Least-Squares Importance Fitting (uLSIF)

The method presented in this section is an approximated method for LSIF, presented

in Section 4.5. Using this approach can be useful because it returns similar results to the

original method but being much more computationally efficient (Kanamori et al., 2009a).

The main change in the previous method’s configuration is that, in this case, we remove

the non-negativity condition from β during the optimization. In this way, we model the

weighting function as follows:

wβ(x) =
T∑
t=1

βtφt(x) (B.39)

= β⊤φ(x) (B.40)

Then we solve the following problem imposing no constraints on β:

min
β∈RT

[
1

2
β⊤Ĥβ − β⊤ĥ+

λ

2
||β||22

]
(B.41)

s.t. φ ≥ 0 (B.42)

It is possible to prove that the optimization problem is strictly convex, and therefore its

solution returns the global minimum. It can be seen that in this case, we have adopted the
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regularization of the type l2, which precisely will make it possible to obtain an analytical

solution to the problem. Assuming φ ≥ 0 by the nature of the basis functions (e.g., Gaussian

kernels) and replacing ||β||22 with β⊤β, we can obtain the solution if we equals the gradient

of the objective function to the null vector and solve for β:

∇β

[
1

2
β⊤Ĥβ − β⊤ĥ+

λ

2
β⊤β

]
= 0 (B.43)

⇒ 1

2
∇β β⊤Ĥβ −∇β β⊤ĥ+

λ

2
∇ββ

⊤β (B.44)

= Ĥβ − ĥ+ λβ = 0 (B.45)

⇒ β̃ =
(
Ĥ + λIT

)−1

ĥ (B.46)

Where β̃ is an intermediate approximation for β. In order to obtain its final approximation,

we truncate β̃ as follows:

β̂ = max(0, β̃) (B.47)

In practice, the uLSIF method gives solutions close to those when using the LSIF method,

especially when λ and σ ( Gaussian kernel bandwidth) are big (Kanamori et al., 2009a). The

reasoning behind the basis functions is the same as presented in Section 4.4.

The advantage of uLSIF over LSIF resides on statistical risk estimation. For this evaluation

regarding the use of uLSIF, the most used method is the Leave-One-Out-cross validation

(LOOCV). That is because using the Sherman-Woodbury-Morrison Formula (Golub and Van Loan,

2012), it is possible to get the LOOCV score in closed form (Kanamori et al., 2009a). That is,

using the LOOCV approach is as cheap as the computation of one solution for the problem

B.41. Kanamori et al. (2009a) also presents an algorithm that could be used to tune λ and

σ (Gaussian kernel bandwidth) efficiently.
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B.3.2 Relative Unconstrained Least-Squares Importance Fitting

(RuLSIF)

The RuLSIF method is a generalization of uLSIF and was introduced by Yamada et al.

(2013). If we fix α ∈ [0, 1], our objective would be to estimate:

w̃α(x) =
px(x)

αpx(x) + (1− α)qx(x)
(B.48)

Note that the denominator is given by a mixture of distributions, and if α = 0 we return

to uLSIF’s case. An interesting property that this function has is that w̃α ≤ 1/α, while the

importance function we have seen so far, w, is not bounded from above. As usual, we model

w̃α(x) as a linear combination of basis functions:

w̃α,β(x) =
T∑
t=1

βtφt(x) (B.49)

= β⊤φ(x) (B.50)

Defining the distribution function Aα = αPx+(1−α)Qx, we introduce and manipulates

the objective function Jα(β), which we want to minimize w.r.t. β:

Jα(β) =
1

2
E

x∼Aα

{
[w̃α,β (x)− w̃α (x)]

2} (B.51)

=
α

2
E

x′∼Px

[
w̃2

α,β (x′)
]
+

1− α

2
E

x∼Qx

[
w̃2

α,β (x)
]
− E

x′∼Px

[w̃α,β (x′)] + C (B.52)

=
α

2
E

x′∼Px

{[
β⊤φ (x′)

]2}
+

1− α

2
E

x∼Qx

{[
β⊤φ (x)

]2}− E
x′∼Px

[
β⊤φ (x′)

]
+ C (B.53)

= J ′
α(β) + C (B.54)

Where C is constant term which does not depend on w̃α,β and we can simply ignore it if

our objective is to minimize Jα(β) w.r.t. β. If there are samples {xi}ni=1 and {x′
i}n

′
i=1 sampled

from Qx (source) and Px (target), and going through the computation of the objective’s
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function empirical form, we arrive at

min
β∈RT

[
1

2
β⊤Ĥβ − β⊤ĥ+

λ

2
||β||22

]
(B.55)

s.t. φ ≥ 0 (B.56)

Where Ĥ is a T × T matrix and ĥ is a vector of size T . The entry (t, t′) of Ĥ is given

by:

Ĥt,t′ =
α

n′

n′∑
i=1

φt (x
′
i)φt′ (x

′
i) +

1− α

n

n∑
i=1

φt (xi)φt′ (xi) (B.57)

The entry t of ĥ is given by:

ĥt =
1

n′

n′∑
i=1

φt

(
x′
j

)
(B.58)

Like in the uLSIF’s case, we can obtain the solution for β given analytically by:

β̂ = max

[
0,
(
Ĥ + λIT

)−1

ĥ

]
(B.59)

In the RuLSIF’s case, the reasoning behind the choice of the basis functions is the

same as presented in Section 4.4. One advantage of RuLSIF (α > 0) over uLSIF is that the

convergence of its algorithm is faster - that is, the sample size needed is smaller. On the other

hand, it is not clear how to choose α, since the higher this value, the greater the bias we will

have when estimating the statistical risk in the covariate shift framework, despite decreasing

the variance of the weighted empirical risk estimator. Once again, the bias-variance trade-off

comes into play.

The evaluation of the model and choice of hyperparameters is done in the same way as

mentioned in Section B.3.1.
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B.3.3 Kernel Unconstrained Least-Squares Importance Fitting

(KuLSIF)

Another method that minimizes the mean squared error of a model w.r.t. the true

importance function w is a kernel version of uLSIF (Kanamori et al., 2012). This method’s

main idea is to assume that our function of interest w can be approximated by elements of a

Reproducing Kernel Hilbert Space (RKHS) H associated with a positive semidefinite kernel

K. Assuming that our model wH is an element of H, then we would like to minimize the

following quadratic error function w.r.t. wH:

J(wH) =
1

2
E

x∼Qx

{
[wH (x)− w (x)]2

}
(B.60)

=
1

2
E

x∼Qx

[
w2

H (x)
]
− E

x∼Qx

[wH (x)w (x)] +
1

2
E

x∼Qx

[
w2 (x)

]
(B.61)

=
1

2
E

x∼Qx

[
w2

H (x)
]
− E

x′∼Px

[wH (x′)] + C (B.62)

= J ′(wH) + C (B.63)

Where C is a constant term that does not depende on wH and we can simply ignore it.

Therefore, the main objetive here is to solve the following theoretical problem:

min
wH∈H

1

2
E

x∼Qx

[
w2

H (x)
]
− E

x′∼Px

[wH (x′)] (B.64)

s.t. wH ≥ 0 (B.65)

If there are samples {xi}ni=1 and {x′
i}n

′
i=1 sampled from Qx (source) and Px (target), we

write the empirical form of the previous problem:

min
wH∈H

1

2n

n∑
i=1

[wH (xi)]
2 − 1

n′

n′∑
j=1

wH
(
x′
j

)
+
λ

2
||wH||2H (B.66)

Note that as we did with uLSIF in Section B.3.1, we removed the constraint on the

"variable" that minimizes the objective function of interest and put a regularization term
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on it. Using the Representer Theorem (Kimeldorf and Wahba, 1971; Schölkopf et al., 2002),

a classical result of Statistics and Functional Analysis, we present the following theorem,

stated by Kanamori et al. (2012), in order to solve the above optimization problem:

Theorem B.6. (Analytic solution of KuLSIF): Suppose λ > 0. Then, the KuLSIF

estimator - the solution for problem B.66 - is given by:

w̃H(.) =
n∑

i=1

β̂iK(.,xi) +
1

n′λ

n′∑
j=1

K(.,xj) (B.67)

Where the solution vector β̂ = (β̂1 s β̂n) is given as one solves the following linear system

of equations:

(
1

n
K11 + λIn

)
β̂ = − 1

λn′n
K121n′ (B.68)

Where K11 is a matrix with entries (K11)i,j = K(xi,xj) and K12 is a matrix with entries

(K12)i,j = K(xi,x
′
j). Furthermore, In is an identity matrix and 1n′ is a vector of 1s of size

n′. The linear system above can be solved by the matrix inversion method as well as by other

methods - the best method may depend on the sample size.

Proof. Check Kanamori et al. (2012).

The final approximation for w is given by:

ŵH = max(0, w̃H) (B.69)

Kanamori et al. (2012) also shows there is another way to obtain the solution for KuLSIF,

which is given by a non-analytic form as the one presented in Theorem B.6 - the alternative

path would use a numerical optimization algorithm to obtain the solution.

As in the previous cases, when choosing the hyperparameters linked to kernels and

regularization, one can efficiently use a Leave-One-Out-cross validation (LOOCV) approach,

as presented in Section B.3.1 (Kanamori et al., 2012).
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