• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2008.tde-02092008-214645
Document
Author
Full name
Katia Antunes Marques
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2008
Supervisor
Committee
Branco, Marcia D'Elia (President)
Andrade, Dalton Francisco de
Rodrigues, Josemar
Title in Portuguese
Análise bayesiana em modelos TRI de três parâmetros.
Keywords in Portuguese
bayesiana
Kendal
MCMC
MCMCordfactanal
respostas binárias
respostas dicotômicas
respostas dissertativas
sensibilidade
Teoria da Resposta ao Item
WinBUGS
Abstract in Portuguese
Neste trabalho discutimos a análise bayesiana em modelos TRI (Teoria da Resposta ao Item) de três parâmetros com respostas binárias e ordinais, considerando a ligação probito. Em ambos os casos usamos técnicas baseadas em MCCM (método de Monte Carlo baseado em Cadeias de Markov) para estimação dos parâmetros dos itens. No modelo com respostas binárias, consideramos dois conjuntos de dados resultantes de provas com itens de múltipla-escolha. Para esses dados, foi feito um estudo da sensibilidade à escolha de distribuições a priori, além de uma análise das estimativas a posteriori para os parâmetros dos itens: discriminação, dificuldade e probabilidade de acerto ao acaso. Um terceiro conjunto de dados foi utilizado no estudo do modelo com respostas ordinais. Estes dados são provenientes de uma disciplina básica de estatística, onde a prova contêm itens dissertativos. As respostas foram classificadas nas categorias: certa, errada ou parcialmente certa. Utilizamos o programa WinBugs para a estimação dos parâmetros do modelo binário e a função MCMCordfactanal do programa R para estimar os parâmetros do modelo ordinal. Ambos os softwares são não proprietários e gratuitos (livres).
Title in English
Bayesian analysis for three parameters IRT models
Keywords in English
bayesian
binary response
Item Response Theory) models
Kendal
MCMC
MCMCordfactanal
ordinal response
probit model
sensibility
WinBUGS
Abstract in English
In this dissertation the bayesian analysis for three parameters IRT (Item Response Theory) models with binaries and ordinals responses, considering the probit model, was discussed. For both cases, binary and ordinal, techniques based on MCCM (Monte Carlo Markov Chain) were used to estimate the items parameters. For binary response model, was considered two data sets from tests with multipla choices items. For these two data sets, a sensibility study of the priori distributions choice was considered, and also, an analyses of a posteriori estimates of the items parameters: discrimination, difficulties and guessing. A third data set is used to ilustrate the ordinal response model. This come from an elementar statistical course, where a test with open items is considered. The responses are classified in the following categories: correct, wrong or partial correct. The WinBugs software was used to estimate the parameters for the binary model and, for the ordinal model was considered the function MCMCordfactanal from R program.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2008-11-17
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.