• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2007.tde-01032013-184306
Document
Author
Full name
Nubia Esteban Duarte
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
Committee
Soler, Julia Maria Pavan (President)
Barroso, Lucia Pereira
Garcia, Antonio Augusto Franco
Title in Portuguese
Análise multivariada no mapeamento genético de traços quantitativos
Keywords in Portuguese
Análise multivariada
Efeitos de pleiotropia.
Mapeamento genético
Modelos de regressão
Abstract in Portuguese
Em pesquisa Genômica é de grande interesse o mapeamento de genes que controlam traços ou fenótipos quantitativos. Metodologias estatsticas para identicar genes que tenham efeitos sobre um unico traço são bem conhecidas na literatura e têm sido exaustivamente aplicadas no mapeamento genético de muitas doenças. Porem, na pratica, diferentes traços são correlacionados, como é o caso de hipertensão e obesidade, possivelmente, devido a aço de genes comuns envolvidos na sua regulação. Nestes casos, por meio de tecnicas estatísticas multivariadas, que exploram a estrutura de covariância entre os traços, é possvel identificar genes não detectados por analises univariadas, ganhar precisão nas estimativas dos efeitos e conhecer a posicão desses genes, alem de testar efeitos de pleiotropia (um mesmo gene controlando varios traços) e interacções gene-ambiente (os genes que controlam a pressão antes e depois de dieta com sal). Neste trabalho diferentes alternativas de analise estatstica são consideradas para explorar a informacão de vários tracos conjuntamente: modelo de regressão intervalar multivariado (Jiang & Zeng, 1995), mapeamento multivariado via a teoria espectral (Mangin et al.,1998), via medidas resumo relevantes (como a diferenca entre respostas antes e depois de uma exposição) e via ajustes por covariaveis. Também são introduzidas algumas abordagens graficas para o estudo do efeito de pleiotropia e interação geneambiente. As metodologias supracitadas são aplicadas a dados reais fornecidos pelo Laboratorio de Cardiologia e Genética Molecular do InCor/USP, que consideram várias medidas de pressão arterial em ratos provenientes de uma população F2.
Title in English
Multivariate analysis in genetic mapping of quantitative traits
Keywords in English
effects of pleiotropy.
Genetic Mapping
Multivariate analysis
Regression models
Abstract in English
In Genomic research, the mapping of genes which control quantitative traits has been of great interest. Statistical methods for detection of genes, in uencing a single trait, are well known in the literature and they have been exhaustive used in the genetic mapping of many diseases. However, in real situations, dierent kind of traits are correlated, such as hypertention and obesity, that would be due to the action of a set of commom genes involved in the regulation of these traits. In these cases, through of multivariate statistical techniques, which explore the covariance structure between the traits, it is possible to identify genes that are not detected by univariated analysis. In addition multivariate analysis are useful to obtain accurate estimates and to know the position of these genes, besides testing eects of pleiotropic (a gene controlling several traits) and geneenvironmental interations (genes that control the pressure before and after salt diet). In this work dierent alternatives from statistical analysis are considered to explore information of several traits jointly: Interval multivariate regression models (Jiang and Zeng, 1995); multivariate mapping through the espectral theory (Mangin et al. 1998), summary measures (for example, models formulated in terms of the dierence between two traits) and adjustments including covariates. Also, graphics procedures are introduced in order to study eects of pleiotropy and geneenvironmental interactions . The methodologies mentioned above are applied to real data set, supplied by the Cardiology and Molecular Genetic Laboratory of Heart institute (InCor-USP), that consider several measurements of blood pressure in rats that come from a F2 population.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-03-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.