• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2015.tde-31072015-170047
Document
Auteur
Nom complet
Alexandre Garcia de Oliveira
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Roma, Alexandre Megiorin (Président)
Calegari, Priscila Cardoso
Vedovoto, João Marcelo
Titre en portugais
Resolução numérica de equações de advecção-difusão empregando malhas adaptativas
Mots-clés en portugais
Equação de advecção-difusão
Método dos Volumes Finitos
Refinamento adaptativo de malhas
Resumé en portugais
Este trabalho apresenta um estudo sobre a solução numérica da equação geral de advecção-difusão usando uma metodologia numérica conservativa. Para a discretização espacial, é usado o Método de Volumes Finitos devido à natureza conservativa da equação em questão. O método é configurado de modo a ter suas variáveis centradas em centro de célula e, para as variáveis, como a velocidade, centradas nas faces um método de interpolação de segunda ordem é utilizado para um ajuste numérico ao centro. Embora a implementação computacional tenha sido feita de forma paramétrica de maneira a acomodar outros esquemas numéricos, a discretização temporal dá ênfase ao Método de Crank-Nicolson. Tal método numérico, sendo ele implícito, dá origem a um sistema linear de equações que, aqui, é resolvido empregando-se o Método Multigrid-Multinível. A corretude do código implementado é verificada a partir de testes por soluções manufaturadas, de modo a checar se a ordem de convergência prevista em teoria é alcançada pelos métodos numéricos. Um jato laminar é simulado, com o acoplamento entre a equação de Navier-Stokes e a equação geral de advecção-difusão, em um domínio computacional tridimensional. O jato é uma forma de vericar se o algoritmo de geração de malhas adaptativas funciona corretamente. O módulo produzido neste trabalho é baseado no código computacional AMR3D-P desenvolvido pelos grupos de pesquisa do IME-USP e o MFLab/FEMEC-UFU (Laboratório de Dinâmica de Fluidos da Universidade Federal de Uberlândia). A linguagem FORTRAN é utilizada para o desenvolvimento da metodologia numérica e as simulações foram executadas nos computadores do LabMAP(Laboratório da Matemática Aplicada do IME-USP) e do MFLab/FEMEC-UFU.
Titre en anglais
Numerical solution of advection-diusion equations using adaptative mesh renement
Mots-clés en anglais
Adaptative mesh refinement
Advection-diusion equation
Finite volume method
Resumé en anglais
This work presents a study about the numerical solution of variable coecients advectiondi usion equation, or simply, general advection-diusion equation using a conservative numerical methodology. The Finite Volume Method is choosen as discretisation of the spatial domain because the conservative nature of the focused equation. This method is set up to have the scalar variable in a cell centered scheme and the vector quantities, such velocity, are face centered and they need a second order interpolation to get adjusted to the cell center. The computational code is parametric, in which, any implicit temporal discretisation can be choosen, but the emphasis relies on Crank-Nicolson method, a well-known second order method. The implicit nature of aforementioned method gives a linear system of equations which is solved here by the Multilevel-Multigrid method. The correctness of the computational code is checked by manufactured solution method used to inspect if the theoretical order of convergence is attained by the numerical methods. A laminar jet is simulated, coupling the Navier-Stokes equation and the general advection-diusion equation in a 3D computational domain. The jet is a good way to check the corectness of adaptative mesh renement algorithm. The module designed here is based in a previous implemented code AMR3D-P designed by IME-USP and MFLab/FEMEC-UFU (Fluid Dynamics Laboratory, Federal University of Uberlândia). The programming language used is FORTRAN and the simulations were run in LabMAP(Applied Mathematics Laboratoy at IME-USP) and MFLab/FEMEC-UFU computers.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
dissertAGO.pdf (3.03 Mbytes)
Date de Publication
2015-08-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2023. Tous droits réservés.