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Abstract

NUNES, P. V. Topological Horseshoe for transitive 2-torus homeomorphism.

2021. 81 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de

São Paulo, São Paulo, 2021.

Based on rotation theory and forcing theory for transverse trajectories of surface

homeomorphisms, in this work we study the relation between trasitive homeomorphism

of 2-torus, f : T2 → T2, and the existence of a topological horseshoe.

In the case where f is isotopic to identity, we prove that f has a topological horseshoe,

if f has a �xed point and a non-�xed periodic point.

In the case where a power fk, k > 1, is isotopic to identity but f itself is not, we show

that if f has at least one �xed point and has no topological horseshoe then the rotation

set of some lift f̌ : R2 → R2 of f , denoted by ρ(f̌), is only the origin.

We also study the case where a power fk, k ≥ 1, of f is isotopic to Dehn twist. In this

case we prove that f has a topological horseshoe, if f has at least a �xed point.

Keywords: topological horseshoe, homeomorphism, torus, isotopic to identity, Dehn

twist.
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Resumo

NUNES, P. V. Ferradura topológica para homeomor�smo transitivo do 2-toro.

2021. 81 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2021.

Usando teoria de rotação e teoria de forcing para trajetórias transversas de homeo-

mor�smos de superfície, neste trabalho nós estudamos a relação entre homeomor�smo

transitivo do 2-toro, f : T2 → T2, e a existência de ferradura topológica.

No caso em que f é isotópico à identidade, nós mostramos que f tem ferradura topológ-

ica, se f tem um ponto �xo e um ponto periódico não-�xo.

No caso em que uma potência fk, k > 1, é isotópica a identidade mas a própria f não

é, nós mostramos que se f tem pelo menos um ponto �xo e não tem ferradura topológica

então o conjunto de rotação de algum levantamento f̌ : R2 → R2 de f , denotado por

ρ(f̌), é somente a origem.

Estudamos também o caso em que uma potência fk, k ≥ 1, de f é isotópico à Dehn

twist. Nesse caso nós mostramos que f tem ferradura topológica, se f tem pelo menos

um ponto �xo.

Palavras-chave: ferradura topológica, homeomor�smo, toro, isotópico à identidade, Dehn

twist.

v



vi



Contents

List of Figures ix

1 Introduction 1

1.1 Motivation and Statement of the Problem . . . . . . . . . . . . . . . . . . 4

1.2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Basic Concepts 9

2.1 Covering Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Homeomorphisms Isotopic to Identity . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Isotopy Class of 2-torus homeomorphisms . . . . . . . . . . . . . . 16

3 Rotation Set Theory 19

3.1 2-Torus Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Annulus Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Forcing Theory 27

4.1 Singular Oriented Foliations . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 F -Transverse paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 F -transverse intersection . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Brouwer � Le Calvez Foliation . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Maximal Isotopy and Transverse Foliations . . . . . . . . . . . . . . 36

4.4 Transverse Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Proofs of Theorem A and Proposition C 41

5.1 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Loop homotopic to zero on T2 . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Essential loop on T2 . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Proof of Proposition C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Proof of Theorem B 57
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Chapter 1

Introduction

In Dynamical Systems, an interesting question is understanding ways to measure how

�complicated� or �rich� a dynamical system can be, in the sense of how many di�erent

behaviors we can observe.

Given X a Hausdor� locally compact topological space and f a homeomorphism of X

into itself, Le Calvez and Tal in [LCT18b] de�ne the dynamical system (X, f) as being

topologically chaotic if its topological entropy1 is positive and if the number of periodic

points of period n, for some iterate of f , grows exponentially in n.

An example of such system is the Smale horseshoe, due to the great work of Smale

[Sma67]. Basically, it is considered a di�eomorphism f of the plane and a rectangle ∆

that it is linearly contracted vertically, stretched horizontally and then folded so that its

image forms a �gure similar to a �horseshoe� and such that ∆ ∩ f(∆) consists of two

disjoint �horizontal� rectangles ∆0 and ∆1 (see Figure 1.1).

∆

∆0

∆1

f(∆)

Figure 1.1: Smale Horseshoe.

Smale shows that there exists a compact and f -invariant subset ∆I ⊂ ∆ such that

f |∆I
is topologically conjugate to the Bernoulli shift σ2 of two symbols.

As topological conjugacy preserves topological properties and the Bernoulli shift is

a well-known model with a `rich' dynamics, we have that f |∆I
inherits such properties.

1The topological entropy of a homeomorphism f , namely h(f), of a Hausdor� locally compact topo-
logical space X will be de�ned as the topological entropy of the extension of f to the Alexandrov one
point compacti�cation of X, that �xes the point at in�nity.
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2 INTRODUCTION

Examples of such properties are topological transitivity, dense periodic orbits, correspond-

ingly the number of periodic points of period n for f |∆I
is 2n, and positive topological

entropy h(f) ≥ h(f |∆I
) = log(2). And, therefore such dynamic is topologically chaotic.

Since the work of Smale, �nding a horseshoe for the dynamics has been a reference

feature for saying how rich a dynamical system is. However, most typical constructions of

similar objects are based on di�eomorphisms of the plane. To deal with homeomorphisms,

or even just continuous map, Kennedy and Yorke in [KY01] formulate an idea for what

they called a topological horseshoe, and which we will call here a KY�topological horseshoe.

Their idea of a KY�topological horseshoe for a continuous map f is a compact and

connected set ∆ that contains an invariant set ∆I such the restriction f |∆I
is semiconju-

gate to a Bernoulli shift σM ofM symbols. To construct this semiconjugation, the authors

de�ne what they called the �crossing number� M of the set ∆. Let us explain better.

Let X be a separable metric space, ∆ ⊂ X be a locally connected and compact subset

and f : ∆ → X be a continuous map. Let end0, end1 ⊂ ∆ be compact disjoint sets such

each component of ∆ intersect both of them. A connection Γ is a compact connected

subset of ∆ that intersects both end0 and end1. And, a preconnection γ is a compact

connected subet of ∆ for which f(γ) is a connection. In Figure 1.2, we see that the

connection Γ has two disjoint preconnection γ0 and γ1, in pink and blue, respectively.

The crossing number M is de�ned as been the largest number such that every con-

nection contains at least M mutually disjoint preconnections.

Γ

end0

f(end1)

end1

f(end0)

γ0
γ1

f(Γ)

Figure 1.2: Smale Horseshoe with crossing number M = 2.

Then, Kennedy and Yorke show the following:

Theorem 1.1 (Theorem 1 in [KY01]). Let X and ∆ ⊂ X be as before. If f : ∆ → X

is a continuous map and ∆ has crossing number M ≥ 2 then there is a closed invariant

set ∆I ⊂ ∆ for which f |∆I
is semiconjugate to a one-sided M-shift. In addition, if f is a

homeomorphism then f |∆I
is semiconjugate to a two-sided M-shift.

Unlike the Smale horseshoe, the semiconjugacy at Theorem 1.1 does not guarantee

that the invariant set ∆I contains periodic points, see the Example 10 in [KY01]. But

the dynamics remains `rich', its topological entropy is at least log(M), indeed h(f) ≥
h(f |∆I

) ≥ h(σM) = log(M).
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In this work we will de�ne topological horseshoe as it was de�ned by Le Calvez and Tal

in [LCT18b]. Indeed, the de�nition of Le Calvez and Tal follows the one due to Kennedy

and Yorke, but with a few more speci�cations.

De�nition 1.2 (Topological Horseshoe). Let X be a Hausdor� locally compact topo-

logical space and f : X → X be a homeomorphism. A topological horseshoe for f is a

compact subset ∆ of X that is invariant by a positive power fk of f and fk|∆ admits a

�nite extension2 g : Y → Y where Y is a Hausdor� compact space and there is an integer

q ≥ 2 such that

1. g is semi-conjugate to the Bernoulli shift of q symbols, σq : Σ → Σ, where Σ =

{0, · · · , q − 1}Z

2. The pre-image of every n-periodic sequence of Σ, by the factor map Π2 : Y → Σ,

contains an n-periodic point of g.

So, we have that the following diagram commutes:

Σ Σ

Y Y

∆ ∆

σ

Π2

g

Π1 Π1

Π2

fk

De�nition 1.2 tell us that a topological horseshoe for f is a compact subset ∆ fk-

invariant for which fk|∆ is semiconjugate to g : Y → Y with a uniform bound in the

cardinality of the �bers of the factor map. And moreover, Y is a KY�topological horseshoe

for g with the property that the preimage of every n-periodic sequence of Σ, contains an

n-periodic point of g.

Consequently, if f has a topological horseshoe then f is topologically chaotic. Indeed,

we have that f has positive topological entropy:

kh(f) = h(fk) ≥ h(fk|∆) ≥ h(g) ≥ h(σ) = log(q) > 0.

And, as the cardinality of the �bers of the factor map Π1 is uniformly bounded, saying

by a constant L > 0, we have that fkn has at least qn/L �xed points for every n ≥ 1.

In the case of surfaces, a classical result involving existence of a horseshoe is due to

Katok (see [Kat80]). The author shows that for any C1+ε di�eomorphism of a surface,

strictly positive topological entropy implies in the existence of a topological horseshoe.

However, this is not true for the case of surfaces homeomorphisms, as we explain in the

following.

2By a �nite extension we mean an extension such the �bers of the factor map Π1 are all �nite with a
uniform bound in their cardinality.



4 INTRODUCTION

Given a homeomorphism f : S → S de�ned on a surface S, we say that f is topologi-

cally transitive if there exists a dense orbit for the map f . And if all orbits for f are dense,

then the map is called minimal. So, a minimal homeomorphism does not have periodic

points, consequently, it does not have topological horseshoe.

Consider the n-dimensional torus Tn as the quotient space Rn/Zn. Rees in [Ree81]

constructed an example of a minimal homeomorphism f : Tn → Tn with positive topo-

logical entropy. So this example tell us that positive topological entropy does not imply

topological horseshoe, for the case of surfaces homeomorphism.

1.1 Motivation and Statement of the Problem

From this point on, and until the end of the introduction, we will establish, in general,

our problem and our research approach. Consequently, we will omit the de�nitions of some

concepts and terms that we will use here. But they will be de�ned precisely throughout

the text.

The motivation for this work was Theorem K in [LCT18a]. It is as follows:

Theorem 1.3. Let f : S2 → S2 be an orientation preserving homeomorphism of the 2-

dimensional sphere such that the complement of the �xed point set is not an annulus. If f

is topologically transitive then the number of periodic points of period n for some iterate

of f grows exponentially in n. Moreover, the entropy of f is positive.

Indeed, from the proof of this theorem and the techniques later developed in [LCT18b],

we can conclude, under those assumptions, that f has a topological horseshoe.

Theorem 1.3 is an improvement of a theorem due to Handel in [Han92]. Indeed, Handel

proved that an orientation preserving homeomorphism f of S2 with a dense orbit and

whose �xed point set is a �nite set containing at least three points, then the number of

periodic points of period n for some iterate of f grows exponentially with n.

Handel's assumptions are in agreement with Theorem 1.3 because if fix(f) is a �nite set

containing at least three points then S2\ fix(f) is not an annulus. So, Handel's assumptions

also implies that f has a topological horseshoe.

Motivated by Theorem 1.3, our �rst question is the following:

Question 1. What are the su�cient conditions so that a topologically transitive home-

omorphism of the 2-torus T2 has a topological horseshoe?

The existence of at least one �xed point is necessary to prevent examples like in

[Ree81]. But is it su�cient? The answer is no.

Let Homeo(T2) be the space of homeomorphism de�ned on T2, furnished with the

C0 topology and Homeo0(T2) its subspace of the homeomorphisms isotopic to identity. In

[TAZ07] Tal and Addas-Zanata construct an example, inspired by one which is attributed

to Katok (see [FM90]), of an area preserving homeomorphism h ∈ Homeo0(T2) whose
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rotation set3 is a segment with irrational slope, with only one �xed point and no invariant

disks.

As h ∈ Homeo0(T2) is a non-wandering homeomorphism4 (because it is area preserv-

ing) and its rotation set is a non-degenerate line segment with irrational slope we have, by

a result due to Koropecki and Tal (Corollary E in [KT14]), that the absence of invariant

disks implies in topological transitivity. However h has no topological horseshoe because

by its construction, there is only one periodic point, that is �xed.

Exploring this example, we see that it is possible to build a topologically transitive

area preserving homeomorphism of T2 isotopic to identity with �nitely many periodic

points (with the same period) without a topological horseshoe.

Our �rst theorem shows that in some sense, a dynamical system in the 2-torus without

topological horseshoes cannot be much more complicated than this example, at least in

the isotopy class of identity.

Theorem A. Let f ∈ Homeo0(T2) be topologically transitive. If f has a �xed point and

a non-�xed periodic point then f has a topological horseshoe.

Theorem A is established for homeomorphisms in the isotopy class of identity. But it

is already known that to classify f ∈ Homeo(T2) up to isotopy amounts to classifying the

linear automorphisms of T2. Indeed, given f ∈ Homeo(T2) then f is isotopic to a linear

automorphism fA ∈ Homeo(T2) that, in turn, it is one of the following types (for more

details, see Chapter 2):

I. Linear Anosov;

II. Periodic and, in this case, there exist some integer k ≥ 1 such that fk is isotopic to

identity;

III. Reducible, but not periodic. So, in this case, there exist some integer k ≥ 1 such

that fk is isotopic to a Dehn Twist.

Given this classi�cation and Theorem A, we can ask ourselves:

Question 2. If f ∈ Homeo(T2) is topologically transitive, with a non-empty �xed point

set and no topological horseshoe then what can we say about the homeomorphism f?

Does f have to be isotopic to identity?

To answer this question we must to analyze the isotopy class that f belongs.

We start by analyzing when f is isotopic to a linear Anosov automorphism. It is

already known that the dynamics of a linear Anosov automorphism of T2 is very `rich'

(see [KH97], for example). Moreover, if f is isotopic to a linear Anosov automorphism,

then the dynamics of f is �at least as rich as� fA:

3See Chapter 3.
4For a de�nition see page 10.
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Theorem 1.4 (Theorem 2.6.1 in [KH97]). Let fA : T2 → T2 be a linear Anosov auto-

morphism of T2 and let f ∈ Homeo(T2) be isotopic to fA. Then there exists a continuous

surjective application Π : T2 → T2 such that Π ◦ f = fA ◦ Π.

In addition, a linear Anosov automorphism has the minimum number of periodic

points for any given period among all homeomorphisms of its isotopy class (see [BLR20]).

Proposition 1.5. Let f ∈ Homeo(T2) be isotopic to a linear Anosov fA ∈ Homeo(T2).

Then for each n ∈ N the homeomorphism f has at least as many periodic orbit of period

n as fA.

Thus, if f ∈ Homeo(T2) is isotopic to a linear Anosov, then f is topologically chaotic.

And, therefore, answering Question 2, if f ∈ Homeo(T2) has no topological horseshoe, we

have that f cannot be isotopic to a linear Anosov.

For the case when some power fk of f is isotopic to a Dehn twist the answer of

Question 2 follows from our next theorem:

Theorem B. Let f ∈ Homeo(T2) be a topologically transitive homeomorphism with a

non-empty �xed point set and such that a power fk of f , where k ≥ 1, is isotopic to a

Dehn Twist. Then f has a topological horseshoe.

So, Theorem B give an answer to Question 2 saying that, under those assumptions,

there is no power fk of f that is isotopic to a Dehn twist.

We still do not have a conclusion for the case where some power fk of f , where k > 1,

is isotopic to identity, but f itself is not. In this direction, we get the following proposition:

Proposition C. Let f ∈ Homeo(T2) be a topologically transitive homeomorphism with a

non-empty �xed point set and such that some power g = fk of f , where k > 1, is isotopic

to identity, but f itself is not. If f does not have a topological horseshoe, then for some

lift ǧ ∈ Homeo(R2) of g, the rotation set of ǧ is equal to {(0, 0)}.

And we conjecture the following:

Conjecture D. If f ∈ Homeo(T2) is a topologically transitive homeomorphism with

non-empty �xed point set such that some power fk of f , where k > 1, is isotopic to

identity, but f itself is not, then f has topological horseshoe.

If the above conjecture is true, then we can give an a�rmative answer to the second

question of Question 2, that is:

Conjecture E. Let f ∈ Homeo(T2) be topologically transitive and such that fix(f) 6= ∅.
If f does not have a topological horseshoe then f is isotopic to identity.

Another question, which we believe that is a natural continuation of this work is:
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Question 3. If instead of asking that the 2-torus homeomorphism is topologically tran-

sitive, we ask that it is non-wandering? What would the absence of topological horseshoe

imply about the dynamics?

We do not have an answer to the above question. But, in addition to the ideas pre-

sented in this text, another motivation for it is a main decomposition result for a structure

theorem for area preserving di�eomorphisms of S2 with zero entropy due to Franks and

Handel (see Theorem 1.2 in [FH13]), which was extended to non-wandering homeomor-

phism case by Le Calvez and Tal (see Theorem M in [LCT18a]).

1.2 Research Approach

Our proofs to the above statements are based mainly on forcing theory for transverse

trajectories of surface homeomorphisms developed by Le Calvez and Tal in [LCT18a] and

[LCT18b], and also on rotation set theory.

Rotation set theory started with Poincaré (see [Poi52]), who introduced the concept of

rotation number of a homeomorphism of the circle, T1 = R/Z that preserves orientation.

Poincaré showed that all orbits have the same rotation number and, moreover, that this

number is a topological invariant.

Indeed, if it is a rational number then there always exist periodic orbits and all of

them have the same period. Besides, all non-periodic orbits are asymptotic to periodic

orbits. If the rotation number is an irrational number, then there are no periodic orbits:

either all orbits are dense or all orbits are asymptotic to a Cantor set (Denjoy's Example).

The concept of rotation number was generalized to the case of 2-torus homeomor-

phisms that are isotopic to identity by Misiurewicz and Ziemian as a rotation set, and no

longer as a rotation number, see [MZ89].

In rotation theory, an important area of interest is the study of the relation between

the rotation set and the behavior of the orbits. Although not as simple as for circle home-

omorphisms, several authors, following Misiurewicz and Ziemian, have shown interesting

results in this regard: [Fra88], [Fra89], [LM91], [KK08], [Dáv18], [LCT18a], [LCT18b], and

several others. We will review some of those works in Chapter 3.

Misiurewicz and Ziemian in [MZ89] showed that the rotation set of a 2-torus homeo-

morphism isotopic to identity is non-empty, compact and convex set of R2.

The case in which the rotation set has non-empty interior is well understood. Llibre and

MacKay [LM91] showed that in this case the dynamics has positive topological entropy, in

fact it has a topological horseshoe. Regarding periodic points, Franks in [Fra89] showed

that if the rotation set has a non-empty interior, every vector of rational coordinates

in the interior of the rotation set is realized by periodic points. This means that given

f ∈ Homeo0(T2) and a lift f̌ ∈ Homeo(R2) of f , for every (p1

q
, p2

q
) ∈ Q2 in the interior of

the rotation set, there is a point ž ∈ R2 such that f̌ q(ž) = ž + (p1, p2).
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But when the rotation set has an empty interior, the scenario is di�erent. There

are simple examples showing that we can have homeomorphisms whose rotation set is a

segment with in�nitely many rational points, but with no periodic points. However, Franks

in [Fra95] and, later, Kocsard and Koropecki in [KK08] presented su�cient conditions

under which, if the rotation set is a line segment, every rational vector is realized by a

periodic orbit.

Dávalos in [Dáv18] characterized the homeomorphisms of the 2-torus isotopic to iden-

tity under which the rotation set is a line segment with rational slope. The author showed

that, in this situation, there exist uniformly bounded deviation in the direction perpen-

dicular to the rotation set of some lift for some power of f .

Together with rotation theory, forcing theory for transverse trajectories of surface

homeomorphisms underlies and supports this work. The basis of this theory is contained

in both articles [LCT18a] and [LCT18b] due to Le Calvez and Tal.

Forcing Theory is an improvement of Brouwer's Theory and is a purely topological

technique that has been shown a great tool in the study of surface homeomorphisms.

For its development, a self-homeomorphism f isotopic to identity de�ned on an oriented

surface is considered.

The idea is to explore the Equivariant Foliation Theorem, due to Le Calvez (see

[LC05], Theorem 1.2) that together with a recent result due to Béguin, Crovisier and Le

Roux about the existence of a maximal isotopy (see [BCLR20]) allow us to build a singular

oriented foliation F on the surface that is topologically transverse to this maximal isotopy,

see Subsection 4.3.1. And studying the dynamics of the foliation that is transverse to the

maximal isotopy we can obtain new properties of f , for example, deduce the existence of

new orbits and even if it is possible to have a topological horseshoe for the dynamics, see

Proposition 4.26 and Theorem 4.28.

1.3 Structure of the Thesis

In Chapter 2 we will present a collection of introductory de�nitions and basic concepts

that will be useful in the whole text.

In Chapters 3 and 4 we will present and give more details about Rotation Set Theory

and Forcing Theory for transverse trajectories of surface homeomorphisms, respectively.

Chapters 5 and 6 are reserved for the proofs of the previously proposed statements.

Theorem A and Proposition C are in Chapter 5, while Theorem B is in Chapter 6.



Chapter 2

Basic Concepts

In this chapter we will give some introductory de�nitions and basic concepts about

topological dynamics of surfaces that will be useful in the whole text. In Subsection 2.2.1

we will present the isotopy classes and linear automorphisms of 2-torus homeomorphisms.

For more details the reader can see [KH97], [Hat02] and [BLR20].

We will endow R2 with its usual orientation and with the Euclidean scalar product

〈· , ·〉. We will write || · || and d(· , ·) for the associated norm and metric. We will consider

the n-dimensional torus Tn as the quotient space Rn/Zn and we will denote by A = T1×R
the (vertical) annulus. Also, we will denote the 2-dimensional sphere by S2.

Let S be an oriented surface, that is a Hausdor� topological space locally homeomor-

phic to R2. A subset X of a surface S is called an open disk if it is homeomorphic to

D = {z ∈ R2, ||z|| < 1|}, a closed disk if it is homeomorphic to D = {z ∈ R2, ||z|| ≤ 1},
and it is called an annulus if it is homeomorphic to T1×J , where J is a non-trivial interval

of R. If J = [0, 1] or J = (0, 1) we have a closed and an open annulus, respectively.

Let Homeo(S) be the space of homeomorphism de�ned on S, furnished with the

C0 topology. Given f ∈ Homeo(S) and z ∈ S, the α-limit and ω-limit sets of z are,

respectively,

αf (z) = {w ∈ S | ∃(ni)i∈N ⊂ N such that ni ↗ +∞ and f−ni(z)
i→+∞−−−−→ w}

ωf (z) = {w ∈ S | ∃(ni)i∈N ⊂ N such that ni ↗ +∞ and fni(z)
i→+∞−−−−→ w}.

We say that a point z ∈ S is positively or negatively recurrent if z ∈ ωf (z) or z ∈ αf (z),

respectively, and bi-recurrent if it is both positively and negatively recurrent.

Lemma 2.1. Let f ∈ Homeo(S). Take any integer k ≥ 1 and let g = fk. If there is a

point z ∈ T2 such that ωf (z) = S then

k−1⋃
r=0

ωg(f
r(z)) = S.

Proof. Let w ∈ S be any point. As ωf (z) = S then w ∈ ωf (z), and by the de�nition of

9



10 BASIC CONCEPTS

ω-limit set, there is an increasing sequence (ni)i∈N of positive integers such that ni → +∞
and

lim
i→+∞

fni(z) = w.

Now, as ni ∈ N for all i ∈ N, there exist mi ∈ N and ri ∈ {0, 1, · · · , k − 1} such that

ni = mik + ri. Then, we have

fni(z) = fmik+ri(z) = gmi(f ri(z)), for each i ∈ N.

But, as (ri)i∈N can only assume �nite values, we have, by the Pigeonhole Principle, that

there is a subsequence (rij)j∈N of (ri)i∈N and r ∈ {0, 1, · · · , k − 1} such that rij = r for

all j ∈ N. Therefore, if we consider the subsequence

(gmij (f rij (z)))j∈N = (gmij (f r(z)))j∈N ⊂ (gmi(f ri(z)))i∈N ,

we have

lim
j→+∞

gmij (f r(z)) = lim
i→+∞

gmi(f ri(z)) = lim
i→+∞

fni(z) = w,

because a subsequence of a convergent sequence also converges to the same limit of it.

This implies that there exists some r ∈ {0, 1, · · · , k − 1} such that w ∈ ωg(f r(z)), or

equivalently, w ∈
⋃k−1
r=0 ωg(f

r(z)) as we wanted. �

We can also establish an analogous result for the α-limit set.

Lemma 2.2. Let f ∈ Homeo(S). Take any integer k ≥ 1 and let g = fk. If there is a

point z ∈ T2 such that αf (z) = S then

k−1⋃
r=0

αg(f
−r(z)) = S.

Proof. Analogous to the proof of Lemma 2.1. �

Remember that at the introduction we de�ned a topologically transitive map as being

the one that has a dense orbit. In particular, it is possible to show that if the surface S is

compact, then f ∈ Homeo(S) is topologically transitive if and only if there is some z ∈ S
such that ωf (z) = αf (z) = S.

Given f ∈ Homeo(S), we say that a point z ∈ S is non-wandering for f if any

neighborhood U ⊂ S of z is such that fn(U) ∩ U 6= ∅ for some n ∈ N. Otherwise, the
point z is said wandering for f . We will represent the set of the non-wandering points for

f by Ω(f). Moreover, we say that f ∈ Homeo(S) is a non-wandering homeomorphism if

every point z ∈ S is non-wandering for f , that is Ω(f) = S.

The following de�nition is about Birkho� recurrence classes.

De�nition 2.3. Let X be a metric space, f ∈ Homeo(X), and z1, z2 two points of X.
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1. We say that there exists a Birkho� connection from z1 to z2 if for every neighborhood

W1 of z1 and every neighborhoodW2 of z2, there is n > 1 such thatW1∩f−n(W2) 6=
∅.

2. A Birkho� cycle is a �nite sequence (zi)i∈Z/pZ for every i ∈ Z/pZ there is a Birkho�

connection from zi to zi+1.

3. A point z is said to be Birkho� recurrent for f if there is a Birkho� cycle containing

z.

4. We can de�ne an equivalence relation in the set of Birkho� recurrent points: say

that z1 is Birkho� equivalent to z2 if there exists a Birkho� cycle containing both

points. The equivalence classes will be called Birkho� recurrence classes.

Note that every ω-limit set or α-limit set is contained in a single Birkho� recurrence

class. Indeed, let z1, z2 ∈ ωf (z) and let W1,W2 ⊂ X be neighborhood of z1 and z2

respectively. So, there are an increasing sequences nk,ml ∈ N going to +∞ such that

fnk(z) → z1 and fml(z) → z2. This implies that there is some k > 1 large enough

such that fnk(z) ∈ W1 and there is some l > 1 large enough such that ml > nk and

fml(z) ∈ W2. So, W1 ∩ f−n(W2) 6= ∅, where n = ml − nk. Therefore, there is a Birkho�

connection from z1 and z2. But this is true for any two points in ωf (z), thus there is

a Birkho� connection from z2 and z1. Therefore, any two such points are in the same

Birkho� recurrence class.

2.1 Covering Space

A method to study the dynamics of a surface homeomorphism f is to consider a lift

f̆ of f to the universal covering space of the surface. Let us explain better.

Let S be a surface. A map π̆ : S̆ → S is called covering projection if it satis�es the fol-

lowing property: any point z ∈ S admits a neighborhood U ⊂ S such that π̆−1(U) =
⋃
i Ŭi

is a disjoint union of open sets Ŭi and each restriction π̆|Ŭi
: Ŭi → Ui is a homeomorphism.

The space S̆ is called a covering space of S.

It is possible to show that a surface S admits a covering projection π̆ : S̆ → S where S̆

is simply connected. In particular, if S̆ is a simply connected space the covering projection

π̆ : S̆ → S is called universal covering projection, because S̆ covers any other covering

space S̆ ′ of S.

We have that R2 is the universal covering space of T2 and A, moreover A is also a

covering space of T2. So we will establish the following notations:

Notation 2.4. Let R2, T2 and A as before, then:
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1. A point in R2 will be denoted with a check mark: ž = (x̌, y̌) ∈ R2. A point in A
will be denoted with a hat mark: ẑ = (x̂, ŷ) ∈ A. And, �nally, a point in T2 will be

denoted without any mark: z = (x, y) ∈ T2;

2. p1 : R2 → R and p2 : R2 → R denote the two canonical projections: p1(x̌, y̌) = x̌

and p2(x̌, y̌) = y̌. And we will also use p2 to denote the second coordinate (vertical)

projection in A;

3. π̌ : R2 → T2 denotes the canonical universal covering projection of the 2-torus:

π̌((x̌, y̌)) = (x̌+ Z, y̌ + Z).

4. τ̌ : R2 → A denotes the canonical universal covering projection of the annulus:

τ̌((x̌, y̌)) = (x̌+ Z, y̌).

5. π̂ : A → T2 denotes the covering projection from the annulus to the 2-torus, such

that

π̌ = π̂ ◦ τ̌ .

So, the following diagram commutes:

R

A

T

τ̌

π̌

π̂

6. A self-homeomorphism of R2 will be denoted with a check mark: f̌ ∈ Homeo(R2).

For self-homeomorphisms of A we will denote them with a hat mark: f̂ ∈ Homeo(A).

And in turn, a self-homeomorphism of T2 will be denoted without any mark: f ∈
Homeo(T2).

We will endow T2 and A with the following metric:

dT2(z′, z) = inf{d(ž′, ž) | ž′ ∈ π̌−1(z′), ž ∈ π̌−1(z)}, and

dA(ẑ′, ẑ) = inf{d(ž′, ž) | ž′ ∈ τ̌−1(ẑ′), ž ∈ τ̌−1(ẑ)}, respectively.

Now, we will de�ne a lift f̆ of a homeomorphism f ∈ Homeo(S) to S̆. Let π̆ : S̆ → S

and S̆ be a covering projection and a covering space of the surface S, respectively.
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De�nition 2.5. Given f ∈ Homeo(S) and f̆ ∈ Homeo(S̆) we say that f̆ is a lift of f to

S̆ if

f ◦ π̆ = π̆ ◦ f̆ .

That is, the following diagram commutes:

S̆ S̆

S S

f̆

π̆ π̆

f

Remark 2.6. Note that given f ∈ Homeo(S) and a lift f̆ ∈ Homeo(S̆) of f , if f̆ has

a topological horseshoe, then it imply that f also has a topological horseshoe, as in

De�nition 1.2.

In fact, if f̆ has a topological horseshoe then there is a compact subset ∆̆ ⊂ S̆ invariant

by a power f̆ l of f̆ and f̆ l|∆̆ admits a �nite extension g : Y → Y on a Hausdor� compact

space such that:

1. g is semi-conjugate to the Bernoulli shift of q symbols, σq : Σ → Σ, where Σ =

{0, · · · , q − 1}Z

2. The pre-image of every n-periodic sequence of Σ, by the factor map Π2 : Y → Σ,

contains an n-periodic point of g.

So, the covering projection π̆ : S̆ → S, restrict to ∆̆, induces a semi-conjugacy between

f̆ l|∆̆ and f l|π̆(∆̆). And as the set ∆̆ is compact, its projection is a compact subset ∆ = π̆(∆̆)

on S which is f l-invariant. Furthermore every point in ∆ has �nitely many lifts on ∆̆ with

a uniform upper bound. Then there is the following semi-conjugation

Σ Σ

Y Y

∆̆ ∆̆

∆ ∆

σq

Π2

g

Π1 Π1

Π2

f̆ l

π̆|∆̆ π̆|∆̆

f l|∆

where g is a �nite extension for f l|∆ that is semi-conjugated to the Bernoulli shift and

has the property that the preimage of every n-periodic sequence of {0, · · · , q−1}Z by the

factor map Π2 : Y → {0, · · · , q − 1}Z contains an n-periodic point of f . Therefore ∆ is a

topological horseshoe for f on S.

Now, let S̆ be the universal covering of S, that is the covering space that is simply

connected, and π̆ : S̆ → S be a universal covering projection.



14 BASIC CONCEPTS

A homeomorphism T : S̆ → S̆ such that

π̆ ◦ T = π̆

is called a covering automorphism of S. Note that a covering automorphism is a lift of

the identity of S to its universal covering space S̆.

The set of covering automorphism of the surface S will be denoted by Deck(S). It is

possible to show that Deck(S) forms a discrete group under composition, that acts freely

and properly on S̆, see de�nition below.

De�nition 2.7. Let G be a discrete group of homeomorphisms of S̆ that preserve orien-

tation. We say that

1. G acts freely on S̆ if given any g ∈ G that there exists some z̆ ∈ S̆ such that

g(z̆) = z̆, then g = Id;

2. G acts properly on S̆, if for all compact subsets K̆ ⊂ S̆, we have g(K̆) ∩ K̆ 6= ∅ for
only �nite homeomorphisms g ∈ G.

For more details of covering automorphisms, see Section 1.3 in [Hat02].

In particular, if S = T2, as R2 is the universal covering space of T2 and A, we have, for
the universal covering projections �xed on Notation 2.4, that the covering automorphisms

of T2 are the translations of R2 by an integer vector, that is,

Deck(T2) =
{
T : R2 → R2 | ∃p ∈ Z2 such that T : ž 7→ ž + p

}
and the covering automorphisms of A are the translations of R2 in the �rst coordinate by

an integer number, that is

Deck(A) =
{
T : R2 → R2 | ∃p ∈ Z such that T : (x̌, y̌) 7→ (x̌+ p, y̌)

}
.

2.2 Homeomorphisms Isotopic to Identity

Let S be an oriented surface. Given two homeomorphisms f, g ∈ Homeo(S), we say

that f is homotopic to g if there is a continuous map H : [0, 1]× S → S such that

1. For every t ∈ [0, 1], I(t, ·) := ft : S → S is a continuous map;

2. I(0, z) = g(z), for all z ∈ S;

3. I(1, z) = f(z), for all z ∈ S.

If there is a homotopy H between f and g such that H(t, ·) := ft : S → S is a

homeomorphism, for every t ∈ [0, 1], then we say that f is isotopic to g, and in this case

we denote H by I : [0, 1]× S → S.
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An important result regarding homeomorphisms of the 2-torus that are homotopic is

due to Epstein (see [Eps66]):

Theorem 2.8. Given f, g ∈ Homeo(T2). If f is homotopic to g then f is isotopic to g.

We will denote by Id : S → S the identity map of S and by Homeo0(S) the subspace

of Homeo(S) of the homeomorphisms that are isotopic to identity.

Let If be the space of identity isotopies of f ∈ Homeo0(f), that is the set of continuous

paths de�ned on [0, 1] joining the identity to f in the space Homeo(S), furnished with

the C0 topology.

A path on S is a continuous map γ : J → S de�ned on an interval J ⊂ R. If
I = (ft)t∈[0,1] ∈ If , we de�ne the trajectory of the point z ∈ S along I as the path

I(z) : t 7→ I(z)(t) = ft(z).

Note that the trajectory of z along I is a path joining z to f(z). In general, we can de�ne

by concatenation In(z) =
∏

0≤k<n I(fk(z)) for every integer n ≥ 1. Furthermore, we can

de�ne

IN(z) =
∏
k≥0

I(fk(z)), I−N(z) =
∏
k≤0

I(fk(z)), IZ(x) =
∏
k∈Z

I(fk(z)),

as the future, past and whole trajectory of a point z ∈ S along I, respectively.

Let S̆ be the universal covering space of S and π̆ : S̆ → S be a universal covering

projection.

Given an identity isotopy I = (ft)t∈[0,1] ∈ If of f ∈ Homeo0(S), we can lift I for an

isotopy Ĭ = (f̆t)t∈[0,1] such that f̆0 = Id |S̆ and for all t ∈ [0, 1], f̆t is a lift of ft. This isotopy

is unique and the homeomorphism f̆ := f̆1 is called the lift of f associated to I. For more

details see Section 1.3 in [Hat02]. Moreover, in this case we have that f̆ commutes with

the Deck(S) transformations:

f̆ ◦ T = T ◦ f̆ , ∀T ∈ Deck(S).

In particular, if S = T2, f ∈ Homeo0(T2) and f̌ ∈ Homeo(R2) a lift of f to R2, we have

that f̌ induces a lift f̂ ∈ Homeo(A) of f to A such that the following diagram commutes:

R2 R2

A A

T2 T2

f̌

τ̌

π̌

τ̌

f̂

π̂ π̂
f

(2.1)
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2.2.1 Isotopy Class of 2-torus homeomorphisms

The reference for this subsection is [BLR20].

Let f ∈ Homeo(S) be a homeomorphism of a closed surface S. Then f naturally acts

on the homology classes of closed curves γ of S by

f∗ : [γ] 7→ [f ◦ γ].

It is possible to show that the map f∗, induced by f , is an isomorphism and, moreover,

that it can be represented by an element of GL(2g,Z), where g is the genus of the surface

S and GL(2g,Z) is the group of 2g× 2g invertible matrices with integer coe�cients, thus

their determinant is ±1.

Furthermore, we have that if f is homotopic to g then they induce the same action

on the closed curves, that is f∗ = g∗. And in the case of the 2-torus, we also can show the

reciprocal:

Proposition 2.9. Given f, g ∈ Homeo(T2), if f and g induce the same action in the

closed curves of T2, that is f∗ = g∗, then f and g are homotopic.1

So, in the case of S = T2 that has genus g = 1 we have that a map f ∈ Homeo(T2)

induces an isomorphism f∗ that can be represented by an element of GL(2,Z).

And, conversely, a matrix A ∈ GL(2,Z) induces a linear automorphism of R2 such

that AZ2 = Z2. Thus, given ž ∈ R2 and π̌ : R2 → T2 the canonical universal covering

projection, the map ž 7→ Až projects, by π̌, onto a homeomorphism fA : T2 → T2, that

is said to be a linear automorphism of T2.

Now, if we consider the following equivalence class in Homeo(T2):

given f, g ∈ Homeo(T2) : f ∼ g ⇔ f is isotopic to g

and let Homeo(T2)/ ∼ be the quotient space, the discussion above together with Theorem

2.8 imply that two elements f, g ∈ Homeo(T2) are isotopic if and only if f∗ = g∗.

Therefore, the map f 7→ f∗ induce a bijection

ξ : Homeo(T2)/ ∼ → GL(2,Z),

and the inverse of this bijection is the map which associates an element A of GL(2,Z) to

the isotopy class of the homeomorphism fA (see Proposition 3.1.1 in [BLR20]).

From this, we have that any f ∈ Homeo(T2) is isotopic to a unique linear automor-

phism of T2: the automorphism fA with A = f∗.

Given A ∈ GL(2,Z), there are essentially three kinds of di�erent dynamical behaviors

for the the linear automorphism fA. We say that

1Is important to emphasize that this proposition is false for surfaces of larger genus. For more details
see Chapter 2 of [BLR20].



HOMEOMORPHISMS ISOTOPIC TO IDENTITY 17

1. fA is a linear Anosov automorphism if the associated matrix A has two real eigen-

values: the contracting eigenvalue |λ−| < 1 and the expanding eigenvalue |λ+| > 1;

2. fA is periodic if there is some integer k ≥ 1 such that fkA = Id |T2 ;

3. fA is reducible if fA preserves a simple closed curve on T2.

Indeed, to do this classi�cation we can study the sign of the discriminant of the

characteristic polynomial of A ∈ GL(2,Z), that is ∆ = tr(A)2−4 det(A). As det(A) = ±1

we have the following cases:

a) If det(A) = 1 then ∆ = tr(A)2 − 4 and we have:

1. If | tr(A)| > 2 then A has two distinct real eigenvalues: |λ−| < 1 and |λ+| > 1.

Thus fA is a linear Anosov.

2. If tr(A) ∈ {−1, 0, 1} then A has complexes eigenvalues λ and λ such λk = 1,

for some integer k ≤ 6. Therefore fkA = Id |T2 , so fA is periodic.

3. If tr(A) = ±2 then A has a double eigenvalue, that is either 1 or −1. And in

this case, we have that fA �x a simple closed curve of T2, so fA is reducible.

Moreover, the matrix A is conjugated to a matrix of type(
1 k

0 1

)
or

(
−1 k

0 −1

)
.

For more details, see [BLR20].

Note that if k = 0 then fA = Id |T2 or f 2
A = Id |T2 , respectively, and therefore

fA is periodic. However, if k 6= 0 the automorphism fA for the �rst type is said

to be a Dehn Twist, of order k. The second one is obtained by composing a

Dehn twist with − Id |T2 .

b) If det(A) = −1 then ∆ = tr(A)2 + 4 > 0 which means that A has two real eigenval-

ues, and

1. If tr(A) 6= 0 then their eigenvalues are such that |λ−| < 1 and |λ+| > 1, and

thus fA is a linear Anosov.

2. If tr(A) = 0, the eigenvalues are 1 and −1. Thus, is possible to show, the

matrix A is conjugated to a matrix of type(
1 0

0 −1

)
.

And, therefore f 2
A = Id |T2 , so fA is periodic.
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Therefore, given f ∈ Homeo(T2) we have that f is isotopic to a linear automorphism

fA that is one of the following types:

I. Linear Anosov;

II. Periodic and, in this case, there exist some integer k ≥ 1 such that fk is isotopic to

identity;

III. Reducible, but not periodic. So, in this case, there exist some integer k ≥ 1 such

that fk is isotopic to a Dehn Twist.

The next proposition provides a relation for homeomorphisms of T2 in the same isotopy

class and their lifts to R2.

Proposition 2.10. Let f ∈ Homeo(T2), A ∈ GL(2,Z) and f̌ ∈ Homeo(R2) be a lift of

f . The following statements are equivalent:

1. f is isotopic to fA;

2. there exists a continuous map ϕ : T2 → R2 such that

f̌(ž) = Až + ϕ(π̌(ž)), ∀ž ∈ R2

where π̌ : R2 → T2 is the canonical universal covering projection of T 2.

3. f̌(ž + p) = f̌(ž) + Ap, where p ∈ Z2.



Chapter 3

Rotation Set Theory

3.1 2-Torus Homeomorphism

Let f ∈ Homeo(T2) and π̌ : R2 → T2 the canonical universal covering projection of

T2. Take a lift f̌ ∈ Homeo(R2) of f to R2, that is f̌ satis�es

π̌ ◦ f̌ = f ◦ π̌.

It follows that, if f̌ , f̌ ′ ∈ Homeo(R2) are two lifts of f ∈ Homeo(T2) then f̌(·)− f̌ ′(·)
is a continuous map with values in Z2, thus constant.

Moreover, for the discussion of the previous chapter, we know that if f ∈ Homeo(T2)

is isotopic to identity, then a lift f̌ ∈ Homeo(R2) of f commutes with the integer vector

translations.

From this point on, and until the end of this section, we will assume that f ∈
Homeo(T2) is isotopic to identity. Remember that we denote as Homeo0(T2) the sub-

set of Homeo(T2) of the homeomorphisms that are isotopic to identity.

The purpose of the rotation theory is to measure the average speed of any point in the

lift. In this sense, given an f ∈ Homeo0(T2), Misiurewicz and Ziemian in [MZ89] de�ned

the rotation set of a lift f̌ ∈ Homeo(R2) of f , denoted by ρ(f̌), as the set of all limit

points of the following sequences (
f̌nk(žk)− žk

nk

)
k≥1

, (3.1)

where (nk)k≥1 is an increasing sequence of integers and (žk)k≥1 ⊂ R2.

If a point z ∈ T2 is such that the limit

lim
n→+∞

f̌n(ž)− ž
n

exists,

where ž ∈ π̌−1(z), then we de�ne ρ(z, f̌) as the limit above and we call it the rotation
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vector of z. Since f commutes with integer vector translations the above limit does not

depend on the point ž chosen in π̌−1(z).

Note that the de�nition of rotation set is for some lift f̌ ∈ Homeo(R2) of f ∈
Homeo0(T2). However, we know that given another lift f̌ ′ ∈ Homeo(R2) of f , there is

some p′ ∈ Z2 such that f̌ ′ = f̌ + p′. Moreover, it is not di�cult to verify that the rotation

set satis�es

ρ(f̌ q + p) = qρ(f̌) + p,

for any p ∈ Z2 and any q ∈ N (see [MZ89]). Therefore, ρ(f̌ ′) = ρ(f̌) + p′. Meaning that

given two lifts of f , the rotation set of one is an integer vector translation of the other.

Apart from Misiurewicz and Ziemian classical constructions, there are other ways to

estimate rotation of points for homeomorphisms isotopic to identity of T2. For instance,

instead of averaging the displacement for a single point, we can look at all points at once

and average the spatial displacement. To do that, we use invariant measures.

More speci�cally, let f ∈ Homeo0(T2). Denote byM(f) the set of all f -invariant Borel

probability measures on T2 and ME(f) its subset of ergodic measures. Let µ ∈ M(f),

the rotation number associated to µ is de�ned as

ρµ(f̌) =

∫
T2

ϕ dµ,

where ϕ : T2 → R2 is the continuous map, known as the displacement function, given by

Proposition 2.10, therefore ϕ(z) = f̌(ž) − ž, for some ž ∈ π̌−1(z) (which is independent

of the choice). And we can de�ne the set

ρmes(f̌) =

{∫
T2

ϕ dµ | µ ∈M(f)

}
.

The following proposition collects some results about the rotation set.

Proposition 3.1 (see [MZ89]). Let f ∈ Homeo0(T2) and f̌ ∈ Homeo(R2) be some lift of

f . The following properties hold:

1. ρ(f̌) is a non-empty, closed, compact and convex set of R2;

2. If µ ∈ME(f) is such that ρµ(f̌) = a then for µ-almost every point z ∈ T2 and any

ž ∈ π̌−1(z),

lim
n→∞

f̌n(ž)− ž
n

= a;

3. If a ∈ ρ(f̌) is an extremal point (in the sense of convex set) then there exists

µ ∈ME(f) such that ρµ(f̌) = a;

4. ρ(f̌) = ρmes(f̌).
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We will say that a vector v ∈ R2 is rational, if both coordinates of v are rationals

numbers. Let f ∈ Homeo0(T2) and f̌ a lift of f . We will say that a rational vector in

the rotation set v = (p1

q
, p2

q
) ∈ ρ(f̌), such that p1, p2 and q are integers mutually coprime

(that means gcd(p1, p2, q) = 1), is realized by a periodic orbit if there exists z ∈ T2 such

that

f̌ q(ž) = ž + (p1, p2)

where ž ∈ π̌−1(z) is independent of the choice. Note that this implies that f q(z) = z and

lim
n→+∞

f̌n(ž)− ž
n

= v.

Kocsard and Koropecki in [KK08] showed that under topological conjugacies, the

rotation set has the following behavior:

Lemma 3.2 (Lemma 2.4 in [KK08]). Let f, g ∈ Homeo(T2) and A ∈ GL(2,Z). Suppose

that f ∈ Homeo0(T2) and g is isotopic to fA, the linear automorphism induced by A on

T2. Let f̌ and ǧ be respective lifts of f and g to R2, then

ρ(ǧ ◦ f̌ ◦ ǧ−1) = Aρ(f̌).

In particular, ρ(Af̌A−1) = Aρ(f̌).

Remark 3.3. The map Af̌A−1 is a lift to R2 of a homeomorphism of T2 topologically

conjugated to f , namely fA ◦ f ◦ f−1
A where fA is the automorphism of T2 induced by

A. Therefore, if we wish to prove the existence of a property for f that is invariant by

conjugation, Lemma 3.2 tell us that we can consider some simpler case: where the rotation

set is the image of ρ(f̌) by some element of GL(2,Z).

The direction of a non-degenerate line segment l is given by the diference between two

distinct vectors v1, v2 ∈ l in the following way: if v0 = v2 − v1 then, as v0 6= 0, v = v0

||v0|| is

the direction of l, and it is uniquely de�ned modulo a change of signal. We will say that l

is a non-degenerate line segment with rational slope if there is some λ ∈ R\{0} such that

the direction of l is v = λ(p1, p2) where (p1, p2) ∈ Z\{(0, 0)}.
By a horizontal segment we mean a non-degenerate line segment whose its direction

is given by ±(1, 0). And, by a vertical segment we mean a non-degenerate line segment

whose its direction is given by ±(0, 1). Note that both horizontal and vertical segments

are non-degenerate line segments with rational slope, by de�nition.

The next Corollary will be very useful in the sense of Remark 3.3.

Corollary 3.4. If ρ(f̌) is a non-degenerate line segment of rational slope then there is a

matrix A ∈ GL(2,Z) such that ρ(Af̌A−1) is a horizontal segment.

Proof. Indeed, if ρ(f̌) has a rational slope then there are p1, p2 ∈ Z coprimes and λ ∈
R\{0} such that the direction of ρ(f̌) is given by v = λ (p1, p2).
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Then Bezout's Identity implies that there exist x, y ∈ Z such that p1x+p2y = 1. Thus

the matrix

A =

(
x y

−p2 p1

)

is in GL(2,Z) (in fact, A ∈ SL(2,Z), because det(A) = 1), and Av =

(
λ

0

)
. Therefore

the direction of Aρ(f) is given by
Av

||Av||
= ±(1, 0), which is a horizontal segment, and by

Lemma 3.2, we have that ρ(Af̌A−1) = Aρ(f). �

Let f̌ ∈ Homeo(R2), we say that the deviations in the direction of some nonzero vector

v ∈ R2 are uniformly bounded, if there exists a real number M > 0 such that

∣∣pv(f̌n(w̌)− w̌)
∣∣ ≤M, ∀n ∈ Z and ∀w̌ ∈ R2,

where pv(·) = 〈·, v
||v||〉.

De�nition 3.5. Let f ∈ Homeo0(T2). We say that f is annular if there is an integer

k ≥ 1 and a lift ǧ ∈ Homeo(R2) of g = fk such that the deviations in the direction of

some nonzero integer vector v ∈ Z2 are uniformly bounded.

The next theorem is an important result due to Dávalos, [Dáv18], and it will be very

useful in the proof of Theorem A and Proposition C.

Theorem 3.6 (Theorem A in [Dáv18]). If ρ(f̌) is a non-degenerate line segment with

rational slope containing rational points, then f is annular in the direction perpendicular

to ρ(f̌).

As a consequence of this theorem we have the following:

Corollary 3.7. If ρ(f̌) is a non-degenerate line segment with rational slope containing

the origin and such that (0, 0) ∈ ρ(f̌) is realized then there is a lift f̌ of f which has

uniformly bounded deviations in the direction perpendicular to ρ(f̌).

Proof. Let v = (v1, v2) ∈ Z2\{(0, 0)} be a multiple of the direction of ρ(f̌) and let

v⊥ = (−v2, v1). By Theorem 3.6 as ρ(f̌) is a non-degenerate line segment with rational

slope containing the origin then there is an integer k ≥ 1 and a lift ǧ : R2 → R2 of g = fk

such that the deviations in the direction perpendicular to ρ(f̌) are uniformly bounded,

that is

|pv⊥(ǧn(w̌)− w̌)| ≤M, ∀n ∈ Z and ∀w̌ ∈ R2.

Claim. The lift ǧ ∈ Homeo(R2) of g = fk can be considered as ǧ = f̌k.

Proof of Claim. Otherwise, then there is p ∈ Z2\{(0, 0)} such that ǧ = f̌k + p has uni-

formly bounded deviations in the direction perpendicular to the rotation set. And then,

we have two possibilities:
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a) If p = λv, for some λ ∈ R.

As pv⊥(λv) = 0 we have that

|pv⊥(ǧn(w̌)− w̌)| =
∣∣pv⊥((f̌k)n(w̌)− w̌)

∣∣ ,
which implies that f̌k has uniformly bounded deviations in the direction perpendic-

ular to ρ(f̌). And therefore, there is no loss of generality suppose that ǧ = f̌k.

b) If p ∈ Z2\{λv | λ ∈ R}.

By assumption we have that (0, 0) ∈ ρ(f̌) is realized. So, there is a point z0 ∈ fix(f)

such that f̌(ž0) = ž0, where ž0 ∈ π̌−1(z0) is independent of the choice. This implies

that ǧ(ž0) = ž0 + p and | pv⊥(ǧn(ž0)− ž0)| = n| pv⊥(p)| 6= 0. This means that there

is no uniformly bounded deviations in the direction perpendicular to the rotation

set. Therefore, this case does not occurs. �

End of the proof of Corollary 3.7. So, let ǧ = f̌k such that there is a real number M > 0

such that

|pv⊥(ǧn(w̌)− w̌)| ≤M, ∀n ∈ Z and ∀w̌ ∈ R2.

For all n ∈ N there is m ∈ N and r ∈ {0, 1, · · · , k − 1} such that n = mk + r. As

r ∈ {0, 1, · · · , k − 1} is �nite we have that
∣∣pv⊥(f̌ r(w̌)− w̌)

∣∣ ≤ M0 for some constant

M0 > 0 and for all r ∈ {0, 1 · · · , k − 1}. Therefore,∣∣pv⊥(f̌n(w̌)− w̌)
∣∣ =

∣∣pv⊥(f̌mk(f̌ r(w̌))− w̌)
∣∣

=
∣∣pv⊥(ǧm(f̌ r(w̌))− f̌ r(w̌)) + pv⊥(f̌ r(w̌)− w̌)

∣∣
≤
∣∣pv⊥(ǧm(f̌ r(w̌))− f̌ r(w̌))

∣∣+
∣∣pv⊥(f̌ r(w̌)− w̌)

∣∣
≤ M +M0, ∀n ∈ Z and ∀w̌ ∈ R2.

Which means that f̌ has uniformly bounded deviations in the direction perpendicular

to ρ(f̌). �

3.2 Annulus Homeomorphism

Let us now consider the annulus A = T1 × R, f̂ ∈ Homeo(A) and τ̌ : R2 → A its

canonical universal covering projection. Take a lift f̌ ∈ Homeo(R2) of f̂ to R2, that is f̌

satis�es

f̂ ◦ τ̌ = τ̌ ◦ f̌ .

We have that given two lifts f̌ , f̌ ′ ∈ Homeo(R2) of f̂ ∈ Homeo(A), there is some p1 ∈ Z
such that

f̌ ′(ž)− f̌(ž) = (p1, 0), ∀ž ∈ R2.
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Moreover, there is a unique p̄1 ∈ {−1, 1} such that

f̌(· + (1, 0)) = f̌(·) + (p̄1, 0).

In particular, if f̂ ∈ Homeo(A) is isotopic to identity and if f̌ ∈ Homeo(R2) is a lift

of f̂ then f̌(ž + (1, 0)) = f̌(ž) + (1, 0) for any ž ∈ R2, which implies that

f̌(ž + (p1, 0)) = f̌(ž) + (p1, 0), ∀ž ∈ R2, and ∀p1 ∈ Z

that is, f̌ commutes with the integer horizontal translations.

From this point on, and until the end of this section, we will assume that f̂ ∈
Homeo(A) is isotopic to identity.

Let f̂ ∈ Homeo0(A). We de�ne the set ne+(f̂) as the set of all points ẑ ∈ A such its

ω-limit set is non-empty, ne−(f̂) = ne+(f̂−1) as the set of all points ẑ ∈ A such its α-limit

set is non-empty and, �nally ne(f̂) = ne+(f̂) ∪ ne−(f̂).

Let f̂ ∈ Homeo0(A) and take a lift f̌ ∈ Homeo(R2) of f̂ to R2. As de�ned by Le Roux

[LR13] and Conejeros [Con18] we will say that a point ẑ ∈ ne+(f̂) has a rotation number

rot(ẑ, f̌) if for every compact set K̂ ⊂ A and every increasing sequence of integers (nk)k≥1

such that f̂nk(ẑ) ∈ K̂, we have

lim
k→∞

p1(f̌nk(ž)− ž)

nk
= rot(ẑ, f̌)

where ž ∈ τ̌−1(ẑ) is independent of the choice.

A loop in A will be called essential if it is not homotopic to zero.

Lemma 3.8. Let Î = (f̂t)t∈R be an identity isotopy of f̂ . Let Ǐ = (f̌t)t∈R be the lift of

Î to R2 such that f̌0 = Id and f̌ := f̌1 is the lift of f̂ to R2 given by Î. Let ẑ ∈ A be a

periodic point for f̂ with period q ≥ 1. Then

1. If its trajectory by the isotopy Îq(ẑ) is homotopic to zero in A then its rotation

number rot(ẑ, f̌) is zero;

2. In the other hand, if Îq(ẑ) is an essential loop in A then its rotation number rot(ẑ, f̌)

is a non-zero rational number.

Proof. Let ẑ ∈ A such that f̂ q(ẑ) = ẑ, thus ωf̂ (ẑ) 6= ∅. Let f̌ ∈ Homeo(R2) be the lift of

f̂ to R2 given by the isotopy Î, then there is some p ∈ Z such that

f̌ q(ž) = ž + (p, 0), (3.2)

where ž ∈ τ̌−1(ẑ) is independent of the choice.

For each n ∈ N there exists m ∈ N and r ∈ {0, · · · , q−1} such that n = mq+ r. Thus

f̌n(ž) = f̌ r+mq(ž)) = f̌ r(ž) +m(p, 0). (3.3)
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Now, let K̂ ⊂ A be a compact set and (nk)k≥1 be an increasing sequence such that

f̂nk(ẑ) ∈ K̂. Thus, if nk = mkq + rk, where mk ∈ N and rk ∈ {0, · · · , q − 1}, we have by
equation (3.3) that

p1(f̌nk(ž)− ž)

nk
=
mkp+ p1(f̌ rk(ž)− ž)

mkq + rk
(3.4)

As the sequence (rk)k≥1 is bounded and (mk)k≥1 is an increasing sequence, when k

goes to in�nity we have

limk→∞
1

nk

(
p1(f̌nk(ž)− ž)

)
= limk→∞

mkp+ p1

(
f̌ rk(ž)− ž

)
mkq + rk

= limk→∞

(
mkp

mkq
+
���

���
���: 0p1

(
f̌ rk(ž)− ž

)
mkq

)
· 1

1 +
�
��>

0
rk
mkq

=
p

q
= rot(ẑ, f̌).

1. If the loop Îq(ẑ) is homotopic to zero in A then in 3.2 we have that p = 0 which

implies rot(ẑ, f̌) = 0.

2. In the other hand, if Îq(ẑ) is essential, then in 3.2, we have that p ∈ Z\{0}, and so

rot(ẑ, f̌) ∈ Q\{0}. �

The last two results of this chapter, due to Le Calvez and Tal see [LCT18b], are related

with topological horseshoe for annulus homeomorphism isotopic to identity and rotation

set theory.

The �rst one ensure that if f̂ is a homeomorphism isotopic to identity of A without a

topological horseshoe, then every point ẑ ∈ ne+(f̂) has a well-de�ned rotation number.

Theorem 3.9 (Theorem A in [LCT18b]). Let f̂ be a homeomorphism isotopic to identity

on A and f̌ a lift of f̂ for R2. Suppose that f̂ has no topological horseshoe, then

1. each point ẑ ∈ ne+(f̂) has a well-de�ned rotation number rot(ẑ, f̌);

2. for all points ẑ, ẑ′ such that ωf̂ (ẑ) and ωf̂ (ẑ
′) are non-empty, and such that ẑ′ ∈

ωf̂ (ẑ), we have rot(ẑ′, f̌) = rot(ẑ, f̌).

3. if z ∈ ne+(f̂) ∩ ne+(f̂−1) is non-wandering, then rot(ẑ, f̌−1) = − rot(ẑ, f̌).

4. the map rotf̌± : Ω(f̂) ∩ ne(f̂)→ R is continuous, where

rotf̌±(ẑ) =

{
rot(ẑ, f̌) if ẑ ∈ Ω(f̂) ∩ ne+(f̂)

− rot(ẑ, f̌−1) if ẑ ∈ Ω(f̂) ∩ ne−(f̂).

The second result is expressed in terms of Birkho� recurrence classes, remember Def-

inition 2.3.
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Let f̂ ∈ Homeo(A) be isotopic to the identity, we will denote f̂sphere as the continuous

extension of f̂ to the sphere obtained by adding the two ends N (superior end) and S

(inferior end) of A.

Proposition 3.10 (PropositionD in [LCT18b]). Let f̂ be a homeomorphism of A isotopic

to the identity, f̌ a lift of f̂ to R2. We suppose that:

1. f̌ has at least two rotation numbers well de�ned and distinct;

2. N and S belong to the same Birkho� recurrence class of f̂sphere.

Then f̂ has a topological horseshoe.



Chapter 4

Forcing Theory

Let S be an oriented surface. In Chapter 2 we de�ned a path on S as a continuous

map γ : J → S de�ned on an interval J ⊂ R. From now on, in absence of ambiguity, its

image will also be called a path and denoted by γ. We will denote γ−1 : −J → S the

path de�ned by γ−1(t) = γ(−t). If X and Y are two disjoint subset of S we will say that

a path γ : [a, b] → S joins X to Y if γ(a) ∈ X and γ(b) ∈ Y . Moreover, if γ : [a, b] → S

and γ′ : [a′, b′] → S are two paths such that γ(b) = γ′(a′) then we can concatenate the

two paths and de�ne the path γγ′ : [a, b+ b′ − a′]→ S

γγ′(t) =

γ(t) if t ∈ [a, b];

γ′(t− b+ a′) if t ∈ [b, b+ b′ − a′] .

A path γ : J → S is proper if J is open and the preimage of every compact subset

of S is compact. If S = R2, a line is an injective and proper path φ : J → R2, it

inherits a natural orientation induced by the usual orientation on R. Moreover, for the

Jordan-Schoen�ies Theorem (see [Hat02]) the complement of a line φ has two connected

components, we will denote R(φ) for the one that is on the right of φ and L(φ) for the

other one that is on the left of it.

A path γ : R → S such that γ(t + 1) = γ(t) for every t ∈ R lifts a continuous map

Γ : T1 → S. We will say that Γ is a loop and γ is its natural lift. When the map Γ is also

injective then Γ will be called simple loop. If n ≥ 1, we denote Γn the loop lifted by the

path t 7→ γ(nt), and we will say that Γn is a multiple of the loop Γ.

4.1 Singular Oriented Foliations

By a singular oriented foliation on an oriented surface S we mean a closed set sing(F),

called the set of singularities, together with a topological oriented foliation F ′ on the

complement of sing(F), that we will denote by dom(F) := S\ sing(F) and call it domain

of F .

27
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Namely, F ′ is a partition of dom(F) into connected oriented 1-manifolds (circles or

lines) called (regular) leaves of F , such that for every z ∈ dom(F) there exists a neighbor-

hood W of z and an oriented preserving homeomorphism h mapping W to (0, 1)2 ⊂ R2.

Moreover, h maps the restricted foliation F|W onto the oriented foliation by vertical lines

oriented downwards. We say that W and h are a trivialization neighborhood and a triv-

ialization chart at the point z, respectively. For every z ∈ dom(F) we will write φz for

the leaf that contains z.

If sing(F) is an empty set we will say that F is a non-singular oriented foliation.

By Whitney's Theorem, see [Whi33] and [Whi41], any singular oriented foliation F
can be embedded in a �ow, which means that F is the set of oriented orbits of some

topological �ow Φ : S×R→ S, where the singularities of F coincides with the set of the

�xed points of Φ. Thus we can de�ne the ω-limit and α-limit sets of a leaf φ as follows:

if φ is a leaf of F and z ∈ φ then

α(φ) =
⋂
n≥0

{Φ(z, t); t ≤ n} and ω(φ) =
⋂
n≥0

{Φ(z, t); t ≥ n}.

We will denote by φ−z the negative half-leaf and φ+
z the positive half-leaf from the

point z, which means that if φz = Φ(z, 0) then

φ−z = {Φ(z, t); t < 0} , and φ+
z = {Φ(z, t); t > 0} .

If S̆ is the universal covering space of S and π̆ : S̆ → S a universal covering projection

then F can be naturally lifted to a singular foliation F̆ of S̆ such that

dom(F̆) = π̆−1(dom(F)).

Moreover, let Deck(S) be the set of the covering automorphism of S. If φ̆ ∈ dom(F̆)

then T φ̆ ∈ dom(F̆) and, equivalently, if z̆ ∈ sing(F̆) then T z̆ ∈ sing(F̆), for every

T ∈ Deck(S). In particular, we have for the ω-limit and α-limit sets of a leaf φ̆ ∈ π̆−1(φ)

that

ω(T φ̆) = Tω(φ̆) and α(T φ̆) = Tα(φ̆), for every T ∈ Deck(S).

As dom(F) is an open set on S, it is itself an oriented surface (not necessarily con-

nected). So, in the whole text we will denote d̃om(F) as the universal covering space of

dom(F), π̃ : d̃om(F)→ dom(F) the universal covering projection and F̃ the non-singular

oriented foliation of d̃om(F) lifted from F|dom(F).

4.2 F-Transverse paths

Let F be a singular oriented foliation on an oriented surface S. A path γ : J → S is

positively transverse to F (which we will say just F -transverse) if the image of γ does not
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contain any singularity of F , and each intersection of γ with a leaf of F is topologically

transverse and cross the leaf locally �from right to left�. More precisely,

De�nition 4.1. We will say that a path γ : J → dom(F) is positively transverse to F
(F -transverse) if for every t0 ∈ J and a trivialization chart at γ(t0) the �rst coordinate

of the map t 7→ h(γ(t)) is strictly increasing in a neighborhood of t0.

Figure 4.1: γ is positively transverse to F .

When F is a non-singular oriented foliation on R2 then De�nition 4.1 is equivalent to

saying that for all t0 ∈ J

{γ(t) | t ∈ J and t < t0} ⊂ R(φγ(t0)) and {γ(t) | t ∈ J and t0 < t} ⊂ L(φγ(t0)).

An important de�nition is about an equivalence relation between F -transverse paths.
For this de�nition, suppose �rst that F is a non-singular oriented foliation of R2. We

say that two F -transvese paths γ and γ′ are F -equivalent if there exists an increasing

homeomorphism h : J → J ′ such that φγ′(h(t)) = φγ(t), for every t ∈ J . Observe that this
de�nition is equivalent to say that γ and γ′, meet exactly the same leaves of F .

For the general case, we have the following:

De�nition 4.2. Let γ : J → dom(F) and γ′ : J ′ → dom(F) be two F -transverse paths.
We will say that γ and γ′ are F -equivalent if they can be lifted to d̃om(F) into paths

γ̃ : J → d̃om(F) and γ̃′ : J ′ → d̃om(F), respectively, that are F̃ -equivalents.

A loop Γ : T1 → dom(F) is F -transverse if it is the case for its natural lift γ :

R→ dom(F). And, two F -transverse loops Γ and Γ′ are F -equivalent if there exists two
lifts γ̃ : R → d̃om(F) and γ̃′ : R → d̃om(F) of γ and γ′ the natural lifts of Γ and Γ′

respectively, such that for every [a, b] ⊂ R there exists [a′, b′] ⊂ R we have that γ̃|[a,b] and
γ̃′|[a′,b′] are F̃ -equivalents.

Moreover, we have that Γn and Γ′n are F -equivalent loops, for every n ≥ 1, if it is the

case for Γ and Γ′. An F -transverse loop Γ is called prime if there is no F -transverse loop
Γ′ and an integer n ≥ 2 such that Γ is F -equivalent to Γ

′n. Note that if Γ is a simple loop

then it is prime.
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De�nition 4.3. An F -transverse path γ : R → S will be called F-positively recurrent

if for every interval J ⊂ R and every t ∈ R there exists an interval J0 ⊂ [t,+∞) such

that γ|J0 is equivalent to γ|J . It will be called F-negatively recurrent if for every interval

J ⊂ R and every t ∈ R there exists an interval J0 ⊂ (−∞, t] such that γ|J0 is equivalent

to γ|J . It is F-bi-recurrent if it is both F -positively and F -negatively recurrent.

Moreover, this de�nition is preserved in the equivalence class of a path, that is, if

γ : R → S and γ0 : R → S are F -equivalent and if γ is F -positively recurrent (or

F -negatively recurrent), so is γ0.

As an example of an F -bi-recurrent path is the natural lift of an F -transverse loop.

4.2.1 F-transverse intersection

Until the end of this subsection we will give a precise de�nition of a central tool on

forcing theory for transverse trajectories, which is the F -transverse intersection of two

F -transverse paths.

γ1

γ2

φ

φ(t1) = z1

φ(t2) = z2φ2

φ1

z′1

z′2

Figure 4.2: φ2 is above φ1 relative to φ.

De�nition 4.4. Given three disjoint lines φ, φ1, φ2 : R → R2, we will say that φ2 is

above φ1 relative to φ (and that φ1 is below φ2 relative to φ) if none of the lines separates

the two others and if, for every pair of disjoint paths γ1 and γ2 joining z1 = φ(t1) to

z′1 ∈ φ1 and z2 = φ(t2) to z′2 ∈ φ2, respectively, such that the paths do not meet the lines

but at their endpoints, we have that t1 < t2. See the Figure 4.2.

Note that this de�nition does not depend on the orientation of the lines φ1 and φ2

neither of the orientation of the paths γ1 or γ2. It only depends of the orientation of φ.

Before we give the de�nition of F -transverse intersection in the general case, let us

de�ne it for the case when F is a non-singular oriented foliation on S = R2.

De�nition 4.5. Let F be a non-singular oriented foliation on R2. Let γ1 : J1 → R2 and

γ2 : J2 → R2 be two F -transverse paths such that φγ1(t1) = φγ2(t2) = φ for some t1 ∈ J1
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and t2 ∈ J2. We will say that γ1 and γ2 has a positively F-transverse intersection1 at φ if

there exist a1, b1 ∈ J1 satisfying a1 < t1 < b1 and a2, b2 ∈ J2 satisfying a2 < t2 < b2, such

that:

1. φγ2(a2) is below φγ1(a1) relative to φ;

2. φγ2(b2) is above φγ1(b1) relative to φ.

See Figure 4.3.

φ

φγ2(a2)

φγ1(a1)
φγ2(b2)

φγ1(b1)

γ2

γ1

Figure 4.3: γ1 intersects F-transversally γ2.

As noted in [LCT18a], if γ1 intersects F -transversally γ2 and γ′1, γ
′
2 are equivalent to

γ1 and γ2 respectively, then γ′1 intersects F -transversally γ′2. Furthermore, if γ1 intersects

F -transversally γ2 then they have at least one point of intersection and so we can �nd

two F -transverse path γ′1 and γ′2 equivalent to γ1 and γ2, respectively, such that γ′1 and

γ′2 have a unique intersection point γ′1(t1) = γ′2(t2) at φ. Therefore, up to equivalence, we

can say that γ1 and γ2 has an F -transverse intersection at γ1(t1) = γ2(t2).

Let us return now to the general case of a singular oriented foliation F on an oriented

surface S. Let γ1 : J1 → dom(F) and γ2 : J2 → dom(F) be two F -transverse paths that
meet a common leaf φ. We will say that γ1 and γ2 have an F -transverse intersection in φ

if there exists paths γ̃1 : J1 → d̃om(F) e γ̃2 : J2 → d̃om(F) lifting γ1 and γ2 to d̃om(F),

respectively, with an F̃ -transverse intersection in φ̃ leaf that lifts φ.

When γ1 = γ2 we will say that γ1 has an F-transverse self-intersection. Namely, an F -
transverse path γ has an F -transverse self-intersection if for every lift γ̃ to the universal

covering space d̃om(F) of dom(F), there exists a non trivial covering automorphism

T ∈ Deck(dom(F)) such that γ̃ and T (γ̃) have an F̃ -transverse intersection.
A sketch for a better understanding of an F -transverse self-intersection is given in

Figure 4.4. The surface is S2, the singular oriented foliation F is such that sing(F) =

1As before, in the whole text �F-transverse intersection� will mean �positively F-transverse intersec-

tion�.
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{N,O, S} and some of the leaves of F are represented with the colors gray, green and

blue. And the F -transverse path γ is represented with the color pink. The paths γ̃ and

T γ̃ are lifts of γ to d̃om(F) and they have an F̃ -transverse intersection.

S2

N

O

S

p

d̃om(F)

γ

T γ̃

γ̃

Figure 4.4: γ has an F-transverse self-intersection.

Let Γ be an F -transverse loop and γ its natural lift. If γ intersects F -transversally an

F -transverse path γ′ at a leaf φ we will say that Γ and γ′ has an F -transverse intersection
at φ. If γ′ is a natural lift of an F -transverse loop Γ′ then we will say that Γ and Γ′ has

an F -transverse intersection at φ. Also we can de�ne F -transverse self-intersection for an

F -transverse loop by its natural lift like before.

Before �nishing this section, we will present some results that involve the de�nitions

presented so far and that will be useful in the rest of this text.

The �rst one is Proposition 1 in section 3.4 of [LCT18a] and it will be useful to prove

that the set of leaves that cross a simple loop homotopic to zero in the 2-torus is an

inessential set (see De�nition 5.1).

Proposition 4.6. Let F be a singular oriented foliation on a surface and (Γi)1≤i≤m a

family of prime F-transverse loops that are not pairwise equivalent. We suppose that the

leaves met by the loops Γi are never closed and that there exists an integer N such that

no loop Γi meets a leaf more than N times. Then, for every i ∈ {1, · · · ,m}, there exists

an F-transverse loop Γ′i equivalent to Γi such that:

1. Γ′i and Γ′j do not intersect if Γi and Γj have no F-transverse intersection;

2. Γ′i is simple if Γi has no F-transverse self-intersection.

Remark 4.7. An F -transverse simple loop is prime. And, moreover, if F is a singular

oriented foliation on an oriented surface S that has genus 0 then, by the Jordan Curve

Theorem, an F -transverse simple loop meats a leaf of F just one time and, consequently,

the leaves met by it are never closed.
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The following result is Proposition 2 in [LCT18a] and is an adapted version of the

Poincaré-Bendixson Theorem. It states that an F -bi-recurrent path on S2 has no F -
transverse self-intersection if and only if it is equivalent to the natural lift of a simple

loop. Moreover, the set of the leaves crossed by it is an open annulus.

Proposition 4.8. Let F be a singular oriented foliation on S2 and γ : R → S2 an

F-bi-recurrent transverse path. The following properties are equivalent:

1. γ has no F-transverse self-intersection;

2. There exists an F-transverse simple loop Γ0 such that γ is equivalent to the natural

lift γ0 of Γ0, and

3. The set U =
⋃
t∈R φγ(t) is an open annulus.

As a scholium of the proof of this proposition we have that an F -transverse loop Γ

with no F -transverse self-intersection is equivalent to a multiple of an F -transverse simple

loop Γ0.

De�nition 4.9 (Section 4.1 in [LCT18b]). Let F be a singular oriented foliation on S2.

Let γ : J → dom(F) be an F -transverse path and Γ0 : T1 → dom(F) be an F -transverse
loop. We will say that γ draws Γ0 if there exist a < b in J and t ∈ R such that γ|[a,b] is
F -equivalent to γ0|[t,t+1], where γ0 is a natural lift of Γ0.

Let γ : J → dom(F) be an F -transverse path that draws a simple loop Γ0 and let UΓ0

be the open annulus of leaves that are crossed by Γ0. We have the set

JγΓ0
= {t ∈ J | γ(t) ∈ UΓ0}.

We will say that a connected component J0 ∈ JγΓ0
is a drawing component of γ if

γ|J0 draws Γ0. We will also de�ne a crossing component of γ as a connected component

J1 ∈ JγΓ0
such that both ends a and b of J1 are in J and γ(a) and γ(b) are in di�erent

components of S2\UΓ0 . In this case, we will say that γ|J1 crosses Γ0.

To �nish this section, the last result is Proposition 24 in section 4.2 of [LCT18b]. It

is a good tool for determining when a path on S2 has an F -transverse self-intersection.

Proposition 4.10. Let F be a singular oriented foliation on sphere S2 and suppose that

γ : J → dom(F) is an F-transverse path with no F-transverse self-intersection, then

1. If γ draws an F-transverse simple loop Γ0, there exists a unique drawing component

of JγΓ0
;

2. If γ draws and crosses an F-transverse simple loop Γ0, there exists a unique crossing

component of JγΓ0
and it coincides with the drawing component;
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3. if γ draws and does not crosses an F-transverse simple loop Γ0, the drawing com-

ponent of JγΓ0
coincides with J in a neighborhood of at least one endpoint of J .

In what has been discussed so far, we have not introduced any surface homeomor-

phisms.To make this, we will use Brouwer-Le Calvez Foliation Theory (see [Bro12],

[Fra92], [LC04] and [LC05]) and the concept of Maximal Isotopy whose existence was

proved by Béguin, Crovisier and Le Roux in [BCLR20]. These are the content of the next

sections.

4.3 Brouwer � Le Calvez Foliation

This section is dedicated to presenting Brouwer's Theory and the famous Brouwer

Translation Theorem due to L. E. J. Brouwer, see [Bro12] (or [Fra92]). In addition, at

the end, we will present the Equivariant Foliation Theorem, due to Le Calvez (see [LC04]

and [LC05]), that is the link between Brouwer Theory and surfaces homeomorphisms.

De�nition 4.11. A homeomorphism f̌ : R2 → R2 of the plane that preserves orientation

and is �xed point free is called a Brouwer's homeomorphism.

There is no recurrence in a Brouwer's homeomorphism, indeed we have the following:

Lemma 4.12. If f̌ : R2 → R2 is a Brouwer's homeomorphism then all points ž ∈ R2 are

wandering.

The next result is the Brouwer's Translation Theorem, which is one of the basic results

for what will come next.

Theorem 4.13 (Brouwer's Translation Theorem). Let f̌ : R2 → R2 be a Brouwer home-

omorphism and let ž ∈ R2, then there exists a line φ̌ : R → R2, with φ̌(0) = ž such

that

f̌(φ̌) ⊂ L(φ̌) e f̌−1(φ̌) ⊂ R(φ̌).

The line φ̌ that satis�es the above conclusion is called a Brouwer line for f̌ . Note that

if φ̌ : R→ R2 is a Brouwer line for f̌ then f̌(L(φ̌)) ⊂ L(φ̌) and f̌−1(R(φ̌)) ⊂ R(φ̌).

The Brouwer Translation Theorem asserts that R2 can be covered by Brouwer lines

in case that f̌ is a Brouwer homeomorphism. Le Calvez, in [LC04] and [LC05] extended

this result showing that it is possible to obtain a non-singular oriented foliation on the

plane by Brouwer lines for a Brouwer's homeomorphism f̌ .

Theorem 4.14 (Le-Calvez, see [LC04]). Let f̌ : R2 → R2 be a Brouwer homeomorphism,

then there exist a non-singular oriented foliation F̌ of R2 whose leaves are Brouwer lines

for f̌ .
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Remark 4.15. Note that Theorem 4.14 establishes that the dynamics of the foliation is, in

some sense, transverse to the homeomorphism f̌ , which is a dynamically relevant result.

This means that given ž0 ∈ R2 it is possible to construct a path γ̌ : [a, b] → R2 with

γ̌(a) = ž0 e γ̌(b) = f̌(ž0) and so that the leaves of F̌ crossed by γ̌ are crossed from right

to left, that is γ̌ is positively transverse to F̌ .
In fact, ifW is the set of points ž ∈ R2 that are joined to ž0 by a positively F̌ -transverse

path then W is an open set whose boundary consists of the leaf φ̌ž0 that contains ž0 and,

eventually, some other leaves φ̌ such that W ⊂ L(φ̌), see �gure 4.5. If f̌(ž0) did not

belong to W then there is a leaf φ̌ ∈ ∂W that f̌(ž0) ∈ R(φ̌) and ž0 ∈ L(φ̌), but this is a

contradiction with the fact that φ̌ is a Brouwer line, that is f̌−1(R(φ̌)) ⊂ R(φ̌).

φ̌1

φ̌2

φ̌ž0

ž0

W

Figure 4.5: φ̌ž0 , φ̌1, φ̌2 ∈ ∂W .

The equivariant version of Theorem 4.14 is also due to Le-Calvez (see Theorem 1.2

in [LC05]). The author showed that if a Brouwer's homeomorphism commutes with the

transformations of a group G of homeomorphisms acting freely and properly on the plane

(see De�nition 2.7) then in addition to the foliation being made of Brouwer lines, it is

invariant by the action of G on R2. The statement is the following:

Theorem 4.16 (Equivariant Foliation Theorem). Let f̌ : R2 → R2 be a Brouwer home-

omorphism and G a discrete group of homeomorphisms of the plane that preserve orien-

tation, which acts freely and properly on R2. If f̌ commutes with the elements of G then

there is a foliation F̌ by Brouwer lines for f̌ which is invariant for G.

Now, let S be a oriented surface and let f ∈ Homeo0(S). A point z ∈ fix(f) is said

to be a contractible �xed point for I if its trajectory along I is a loop homotopic to zero

on S. In fact, it is possible to show that a contractible �xed point point for I is a �xed

point for the lift f̆ = f̆1 of f associated to I to the universal covering space S̆ of S.

With this de�nition, we have the following consequence of Theorem 4.16, that follows

immediately from Remark 4.15.

Corollary 4.17. Let S be a surface, I = (ft)t∈[0,1] an identity isotopy on S and let f := f1.

Suppose that I does not have a contractible �xed point, then there exists a non-singular
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oriented foliation F on S such that for all point z ∈ S there is a positively F-transverse
path γ that joins z to f(z) and is homotopic to I(z), with the endpoints �xed.

Proof. Let Ĭ = (f̆t)t∈[0,1] be the identity isotopy that lifts I to the universal covering space

S̆ of S, let f̆ := f̆1. Then, because of the absence of contractible �xed points for I, f̆ has

no �xed point, which implies that each connected component of S̆ is homeomorphic to

the plane.

Therefore, restrict to each connect component Si, f̆ |Si
is a Brouwer homeomorphism

and considering Deck(S) as the discrete group of the covering automorphism, there exists

a non-singular oriented foliation F̆ of S by Brouwer lines that is invariant by Deck(S).

And by Remark 4.15 if we take any point z̆ ∈ π̆−1(z) then there is a positively F̆ -
transverse path γ̆ joining z̆ to f̆(z̆) that must be homotopic to Ĭ(z̆). And �nally, as F̆
is invariant by Deck(S), if we take the projections of F̆ and γ̆, then we conclude the

proof. �

Corollary 4.17 has a very strong hypothesis: the identity isotopy I cannot have con-

tractible �xed points. Some works (see [Jau14] and [BCLR20], for example) have emerged

to provide a solution to this problem.

In [Jau14], Jaulent proved that given an f ∈ Homeo0(S), there exists a closed subset

F ⊂ fix(f) with the following property: in S\F there exists an isotopy from the identity

to the restriction f |S\F of f , such that no trajectory for this isotopy is a contractible loop.

And this result is su�cient for the most applications of Theorem 4.17, and indeed, Le

Calvez and Tal, use this formalism in [LCT18a].

But recently, Beguin, Crovisier and Le Roux (see [BCLR20]) presented a stronger

tool that improves Jaulent's result. The authors �nd a closed subset F with the same

properties as prescribed in the previous paragraph, but they furthermore get an, identity

isotopy I = (ft)t∈[0,1] in S\F that extends continuously to the identity in F . So, it is an

identity isotopy for a homeomorphism f : S → S such that for every point z ∈ F we have

that ft(z) = z.

In the following subsection we will present and discuss how we can apply Corollary

4.17 for the homeomorphism f : S → S using the result due to Beguin, Crovisier and Le

Roux ([BCLR20]).

4.3.1 Maximal Isotopy and Transverse Foliations

De�nition 4.18. Let f ∈ Homeo(S) be isotopic to identity on the oriented surface S

and let I ∈ If be such an isotopy. We de�ne the �xed point set of I as the set

fix(I) =
⋂
t∈[0,1]

fix(ft).

If z ∈ fix(I) then z is called �xed point for the isotopy I.
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The complement set of fix(I) in S, S\ fix(I) will be called domain of I and will be

denoted by dom(I). Note that fix(I) is a closed set of S, so dom(I) is itself an oriented

surface. Furthermore, the restriction f |dom(I) is a homeomorphism isotopic to identity on

dom(I), where I|dom(I) is an identity isotopy from Id |dom(I) to f |dom(I).

We can de�ne a partial order on If as follows: given I ′ and I two identity isotopies of

f , we say that I ′ � I if

1. fix(I ′) ⊂ fix(I) and

2. I is homotopic to I ′ relative to fix(I ′).

Thus, we say that I is a maximal isotopy of f , if it is maximal for the partial order

above.

Lemma 4.19 (see Lemma A.8 in [BCLR20]). Let S be a connected surface, f : S → S

be a homeomorphism isotopic to identity and I ′ ∈ If . If z ∈ fix(f) is a contractible �xed

point for I ′ then there is another isotopy I ∈ If such that z ∈ fix(I).

A consequence of Lemma 4.19 and the partial order above is the following:

Corollary 4.20. If I ∈ I is maximal then f |dom(I) has no contractible �xed point for I.

So, it becomes reasonable to ask: given a homeomorphism f isotopic to identity and

an identity isotopy I ′, is there a maximal isotopy I of f , such that I ′ � I? The answer

for this question was given by Béguin, Crovisier and Le Roux in [BCLR20]:

Theorem 4.21 (Maximal Isotopy, see Corollary 1.3 in [BCLR20]). Let f : S → S be a

homeomorphism isotopic to identity, then for every I ′ ∈ If , there exists I ∈ If such that

I ′ � I and I is maximal for the partial order above.

Let us clarify the use of maximal isotopies to apply Theorem 4.17.

Let f : S → S be a homeomorphism isotopic to identity on a surface S. Let I ′ ∈ If be
an identity isotopy of f . Then by Theorem 4.21 there is a maximal isotopy I ∈ If such

that I ′ � I. Then, by Corollary 4.20, f |dom(I) the restriction of f to the domain of I has

no contractible �xed points. And then by Theorem 4.17 there exist a singular oriented

foliation F on S such that sing(F) = fix(I) (therefore, dom(F) = dom(I)) and for all

point z ∈ dom(I) there is a positively F -transverse path γ that joint z to f(z) and is

homotopic to I(z), with the endpoints �xed.

The foliation F that satisfy the above conclusion is said transverse to the isotopy I.

4.4 Transverse Trajectories

Until the end of this section, we will relate the de�nitions in section 4.1 with the

dynamics.
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Let f ∈ Homeo(S) be isotopic to the identity. Then given an identity isotopy I ′ ∈ If ,
let I ∈ If be such that I ′ � I and I is a maximal isotopy of f . Let F be a transverse

foliation to I. We will �x the following notation:

Notation 4.22. Given a maximal isotopy I of f , let d̃om(I) be the universal covering

of dom(I), π̃ : d̃om(I) → dom(I) be the universal covering projection, f̃ be the lift

of f |dom(I), induced by identity isotopy Ĩ = (f̃t)t∈[0,1] that lifts I|dom(I) to the universal

covering space d̃om(I). We will write F̃ for the lifted foliation on d̃om(I) from F|dom(I).

From the equivalence class on De�nition 4.2, we have the F -transverse path γ given

by Theorem 4.17 is uniquely de�ned up to equivalence.

We will write IF(z) for the class of the paths γ : [a, b]→ dom(I) that is F -transverse
and homotopic to I(z), relative to the endpoints. We will also use de notation IF(z) for

any representative in this class and call it the transverse trajectory of z. As before, we

can de�ne by concatenation InF(z) =
∏

0≤k<n IF(fk(z)) for every integer n ≥ 1. Similarly

we de�ne

INF(z) =
∏
k≥0

IF(fk(z)), I−NF (z) =
∏
k≤0

IF(fk(z)), IZF(x) =
∏
k∈Z

IF(fk(z)),

and the last one will be called the whole transverse trajectory of the point z ∈ S.
Note that if z ∈ dom(I) is a periodic point of period q ≥ 1 then its transverse

trajectory until order q de�ne an F -transverse loop Γ whose the natural lift γ satis�es

the property that γ|[0,1] = IqF(z).

The following lemma is a result that will be very useful in Chapter 5.

Lemma 4.23 (Lemma 17 of [LCT18a]). Let z ∈ dom(I), take any integer n ≥ 1.

1. There exists a neighborhood W of z such that, for every z′, z′′ ∈ W , the path InF(z′)

is F-equivalent to a subpath of In+2
F (f−1(z′′)). See Figure 4.6.

2. For every z′ ∈ ωf (z) (respectively z′ ∈ αf (z)) and every m ≥ 0, the path InF(z′) is

F-equivalent to a subpath of INF(fm(z)) (respectively I−NF (f−m(z))).

Indeed, item (2.) of the above lemma follows from item (1.). Just observe that given

m ≥ 0, as z′ ∈ ωf (z), there is some integer mk > m such that fmk(z) ∈ W , where W is

the neighborhood given by item (1.).

It follows from the above lemma and from Proposition 4.10 the consequence below:

Corollary 4.24 (Proposition 27 in [LCT18b]). Let f be an orientation preserving home-

omorphism of S2 with no topological horseshoe. Let I be a maximal isotopy of f and F a

transverse foliation to I. If z ∈ dom(I) is a non-wandering point of f , then:

1. Either IZF(z) never meets a leaf twice;
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d̃om(I)

ĨnF̃ (z̃′)

Ĩn+2

F̃ (f−1(z̃′′))

W̃

f̃−1(W̃ )

f̃n(W̃ )

f̃n+1(W̃ )

Figure 4.6: ĨnF̃ (z̃′) is F̃-equivalent Ĩn+2
F̃ (f̃−1(z̃′′)) in d̃om(I).

2. Or IZF(z) is equivalent to an F-transverse simple loop Γ0.

As a scholium of the proof of this corollary we have that if f is an orientation preserving

homeomorphism of S2, I a maximal isotopy of f and F a transverse foliation to I and the

whole transverse trajectory of a non-wandering point z ∈ dom(I) of f has no F -transverse
self-intersection then also the conclusion of the corollary is true: either item (1.) or item

(2.) hold.

It is worth noting that the �rst case happens only when α(z) and ω(z) are included

in fix(I), see the remark after Proposition 27 in [LCT18b].

Admissible paths

Note that the transverse trajectory IF(z) of a point z ∈ dom(I) needs to start at the

point z and end at the point f(z). The next de�nition removes this requirement.

De�nition 4.25. An F -transverse path γ : [a, b] → dom(I) is admissible of order n (or

n-admissible) if it is equivalent to a path InF(z) for some z ∈ dom(I).

This de�nition is equivalent to the following property: there exists a lift γ̃ : [a, b] →
d̃om(I) of γ and a point z̃ ∈ d̃om(I) such that z̃ ∈ φ̃γ̃(a) and f̃n(z̃) ∈ φ̃γ̃(b), that is,

f̃n(φ̃γ̃(a)) ∩ φ̃γ̃(b) 6= ∅.

We will say that an F -transverse path γ : [a, b]→ dom(I) is admissible of order ≤ n

if it is a sub-path of an admissible path of order n.

More generally, we will say that an F -transverse path γ : J → dom(I) de�ned on any

real interval is admissible if for every interval [a, b] ⊂ J , there exists n ≥ 1 such that γ|[a,b]
is admissible of order ≤ n.

We will say that an F -transverse loop Γ : T1 → dom(I) is n-admissible if for every

positive integer k the natural lift γ of Γ restricted to the interval [0, k] ∈ R, γ|[0,k] is



40 FORCING THEORY

nk-admissible. Moreover, if it is a sub-path of an admissible path of order nk then it will

be said ≤ n-admissible. To �nish, an F -transverse loop Γ : T1 → dom(I) is admissible if

for every interval [a, b] ⊂ R, there exists n ≥ 1 such that its natural lift γ restrict to [a, b]

is admissible of order ≤ n.

Note that if z ∈ dom(I) is a periodic point of period q ≥ 1 then its whole trans-

verse trajectory is F -equivalent to the natural lift γ of an F -transverse loop Γ that is

q-admissible.

To �nish this section we will present some results that involve transverse trajectories,

admissible paths and F -transverse (self-)intersection.
We will start with the Forcing Proposition that is the central result in forcing theory

for surface homeomorphism. It establishes an operation that allows us to build admissible

paths from a pair of admissible paths with an F -transverse intersection.

Proposition 4.26 (Proposition 20, [LCT18a]). Let S be an oriented surface. Suppose

that γ1 : [a1, b1] → S and γ2 : [a2, b2] → S are F-transverse paths with an F-transverse
intersection at the point γ1(t1) = γ2(t2). If γ1 is n1-admissible and γ2 is n2-admissible,

we have that γ1|[a1,t1]γ2|[t2,b2] and γ2|[a2,t2]γ1|[t1,b1] are (n1 + n2)-admissible.

We already know, by the techniques developed in [LM91] due to Libre and Mackay,

that if the rotation set of f ∈ Homeo0(T2) has a not empty interior then f has a topological

horseshoe. But we can also prove this result using forcing theory for transverse trajectories.

The following result helps us to justify that.

Lemma 4.27 (Lemma 30, [LCT18a]). Let γ1 : R→ dom(I) and γ2 : R→ dom(I) be two

admissible F-transverse recurrent paths (possibly equal) with an F-transverse intersection.
Then there exists an admissible F-transverse loop Γ with a F-transverse self-intersection.

The next and last statement is a fundamental theorem of [LCT18b], which is a purely

topological criterion for the existence of a topological horseshoe stated in terms of trans-

verse trajectories.

Theorem 4.28 (Topological Horseshoe, Theorem N, [LCT18b]). Let S be an oriented

surface, f a homeomorphism isotopic to identiy on S , I a maximal isotopy of f and

F a transverse foliation to I. If there exists a point z in the dom(I) and an integer

r ≥ 1 such that the transverse trajectory IrF(z) has an F-transverse self-intersection at

IrF(z)(s) = IrF(z)(t), where s < t, then f has a topological horseshoe.



Chapter 5

Proofs of Theorem A and Proposition C

The purpose of this chapter is to present the proofs of Theorem A and Proposition C.

We will use the same notations established in the previous chapters.

We will start with the de�nition of inessential, essential and totally essential sets of

T2 and in sequence we will prove that the set of leaves of an F -transverse loop homotopic

to zero in T2 is an inessential set.

De�nition 5.1. An open subset U of T2 is inessential if every loop in U is homotopic

to zero in T2. Otherwise, U is essential. An arbitrary set E of T2 is called inessential if

it has some inessential neighborhood. And, �nally, E ⊂ T2 is fully essential if T2\E is

inessential.

Observe that if U ⊂ T2 is open and connected then U is inessential if and only if, for

every Ǔ ∈ π̌−1(U), Ǔ ∩
(
Ǔ + (p1, p2)

)
= ∅ for any (p1, p2) ∈ Z2\{(0, 0)}. For more details

and properties of this kind of sets see [KT14].

Let F be a singular oriented foliation on T2. We will denote by F̌ its lift to R2. As

observed in the previous chapter, we have that dom(F̌) = π̌−1(dom(F)).

Let Γ̌ : T1 → dom(F̌) be an F̌ -transverse simple loop on dom(F̌), we will denote by

Bc(Γ̌) and UBc(Γ̌) the bounded and unbounded connected componentes of R2\Γ̌ respec-

tively.

Remember that a natural lift of Γ̌ is a continuous map γ̌ : R → dom(F̌) such that

γ̌(t) = γ̌(t + 1) and lifts Γ̌, in the sense that if π : R → T1 is the canonical universal

covering projection of T1 then γ̌ = Γ̌ ◦ π.
Let Ǔ =

⋃
t∈R φγ̌(t) the open topological annulus of the leaves that are crossed by Γ̌

on R2 (see Proposition 4.8). Similarly we will denote Bc(Ǔ) as the bounded connected

component of R2\Ǔ and UBc(Ǔ) as the union of the unbouded connected components of

R2\Ǔ . Notice that Bc(Ǔ) ⊂ Bc(Γ̌) is a closed set because it is a connected component of

the complement of an open set. So, Bc(Ǔ) is a compact subset of R2.

Lemma 5.2. Let Γ̌ be an F-transverse simple loop on R2, γ̌ its natural lift and Ǔ =⋃
t∈R φγ̌(t) the open topological annulus of the leaves that crosses Γ̌ on R2. Then one of

the following properties holds:

41
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1. ω(φ̌) 6= ∅, ω(φ̌) ⊂ Bc(Ǔ) and α(φ̌) 6⊂ Bc(Ǔ), for all φ̌ ⊂ Ǔ ;

2. α(φ̌) 6= ∅, α(φ̌) ⊂ Bc(Ǔ) and ω(φ̌) 6⊂ Bc(Ǔ), for all φ̌ ⊂ Ǔ .

Proof. φ̌ ⊂ Ǔ implies that φ̌ ∩ Γ̌ 6= ∅ and as Γ̌ is an F -transverse simple loop we have

that φ̌ ∩ Γ̌ = {z}. Then we have two possibilities that are excluding:

a) φ̌+
z ⊂ Bc(Γ̌);

b) φ̌−z ⊂ Bc(Γ̌),

If item (a) holds we have ω(φ̌) ⊂ Bc(Γ̌) ∪ Γ̌ and α(φ̌) 6⊂ Bc(Γ̌) ∪ Γ̌. As Bc(Γ̌) ∪ Γ̌ is a

compact set then ω(φ̌) 6= ∅ and, by Poincaré-Bendixson Theorem, ω(φ̌) either contains a

singularity or it is a closed leaf. But as Ǔ is a foliated set without closed leaves, we have

that ω(φ̌) 6⊂ Ǔ . Therefore ω(φ̌) ⊂ Bc(Ǔ) and the case (1.) holds for the leaf φ̌. As Γ̌ is

an F̌ -transverse simple loop on R2, take any other leaf φ̌′ ⊂ Ǔ di�erent from φ̌ such that

φ̌′ ∩ Γ̌ = {z′}.
So, there exist t, t′ ∈ R such that t < t′ < t + 1 and γ̌(t) = z and γ̌(t′) = z′, where

γ̌ : R → R2 is the natural lift of Γ̌. By transversality of the path we note that for every

t ≤ s ≤ t′, if φ+
γ̌(s) is contained in Bc(Γ̌), then the same holds for every s′ su�ciently close

to s. Since [t, t′] is a compact interval, we get that φ̌′+z′ ⊂ Bc(Γ̌). Therefore ω(φ̌′) ⊂ Bc(Ǔ).

And we conclude that the case (1.) holds for all leaves contained in Ǔ .

Similarly, if item (b) holds, we can show that the case (2.) holds for the leaf φ̌, that is

α(φ̌) 6= ∅, α(φ̌) ⊂ Bc(Ǔ) and ω(φ̌) 6⊂ Bc(Ǔ). And, as we did above, we can conclude that

the case (2.) holds for all leaves containde in Ǔ . �

Proposition 5.3. Let Γ : T1 → T2 be an F-transverse loop homotopic to zero on T2

and γ : R → R2 its natural lift. Suppose that Γ has no F-transverse self-intersection. If

Γ̌ : T1 → R2 is a lift of the loop Γ to R2 then it is an F̌-transverse loop on R2 and

1. There exists Γ̌′ an F-transverse simple loop such that the natural lift γ̌ : R→ R2 is

equivalent to the natural lift γ̌′ of Γ̌′;

2. Ǔ =
⋃
t∈R φγ̌(t) is a topological open annulus in R2;

3. Ǔ ∩ Ǔ + (p1, p2) = ∅ for every (p1, p2) ∈ Z2\{(0, 0)}.

Proof. Let Γ : T1 → T2, γ : R→ T2, and Γ̌ : T1 → R2 be the paths given in the statement.

As Γ is an F -transverse loop homotopic to zero on T2 then, lifting such homotopy, we get

that the lift Γ̌ : T1 → R2 of Γ to R2 is an F̌ -transverse loop.
By assumption, we have that Γ has no F -transverse self-intersection then its lift Γ̌

also has no F̌ -transverse self-intersection. Therefore the properties (1 .) and (2 .) follows

from the Proposition 4.8.

(3 .) Suppose, by contradiction, that Ǔ ∩ Ǔ + (p1, p2) 6= ∅ for some (p1, p2) ∈ Z2\(0, 0).

And let Γ̌ ⊂ Ǔ and Γ̌ + (p1, p2) ⊂ Ǔ + (p1, p2)) be loops that lift Γ to R2.
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By assumption, the loop Γ has no F -transverse self-intersection. So, in addition to

any of the loops Γ̌ and Γ̌ + (p1, p2) not having an F̌ -transverse self-intersection, we also

have that Γ̌ and Γ̌ + (p1, p2) have no F̌ -transverse intersection. Because otherwise there

would be s < t in R such that γ̌ and γ̌ + (p1, p2) have an F̌ -transverse intersection in

γ̌(s) = γ̌(t) + (p1, p2) which would imply that

γ(s) = π̌(γ̌(s)) = π̌(γ̌(t) + (p1, p2)) = π̌(γ̌(t)) = γ(t)

and γ would have an F -transverse self-intersection in γ(s) = γ(t), which is a contradiction

with the assumption.

Thus, with the Remark 4.7 and Proposition 4.6, we have that there exist F̌ -transverse
simple loops Γ̌′ and Γ̌′′ that are disjoint and F̌ -equivalent to Γ̌ and Γ̌+(p1, p2), respectively.

Which means that Γ̌′ ⊂ Ǔ and Γ̌′′ ⊂ Ǔ + (p1, p2) and moreover

Bc(Ǔ) ⊂ Bc(Γ̌
′) and Bc(Ǔ + (p1, p2)) ⊂ Bc(Γ̌

′′)

where Bc(Ǔ + (p1, p2)) = Bc(Ǔ) + (p1, p2).

As Ǔ ∩ Ǔ + (p1, p2) 6= ∅ and Ǔ is a foliated set, there exists a leaf φ̌0 ⊂ F̌ satisfying

φ̌0 ⊂ Ǔ ∩ Ǔ + (p1, p2) and, therefore,

φ̌0 ⊂ Ǔ ∩ Ǔ + (p1, p2)⇒ φ̌0 − (p1, p2) ⊂ Ǔ .

By Lemma 5.2 we know that for all φ̌ ∈ Ǔ either ω(φ̌) 6= ∅, ω(φ̌) ⊂ Bc(Ǔ) and

α(φ̌) 6⊂ Bc(Ǔ) or α(φ̌) 6= ∅, α(φ̌) ⊂ Bc(Ǔ) and ω(φ̌) 6⊂ Bc(Ǔ).

Let us suppose that the �rst case holds. The other one is analogous.

So, we have that ω(φ̌0) ⊂ Bc(Ǔ) and ω(φ̌0 − (p1, p2)) ⊂ Bc(Ǔ) and this implies that

ω(φ̌0) ⊂ Bc(Ǔ) + (p1, p2) = Bc(Ǔ + (p1, p2)).

Therefore ω(φ̌0) ⊂ Bc(Γ̌
′) and ω(φ̌0) ⊂ Bc(Γ̌

′′). From this and the assumption that Γ̌′

and Γ̌′′ are disjoint follows that

Γ̌′ ⊂ Bc(Γ̌
′′) or Γ̌′′ ⊂ Bc(Γ̌

′).

If Γ̌′ ⊂ Bc(Γ̌
′′), see Figure 5.1, then Bc(Ǔ) ⊂ Bc(Γ̌

′′) which implies Bc(Ǔ) ⊂ Bc(Ǔ +

(p1, p2)). Let us explain why.

The set Bc(Ǔ) is a saturated set, which means that it is a union of leaves and singu-

larities. Thus, if φ̌′ ∈ Bc(Ǔ) then φ̌′ ∈ Bc(Γ
′′) and φ̌′ ∩ Γ̌′′ = ∅, which imply that φ̌′ does

not belong to Ǔ+(p1, p2), it belongs to Bc(Ǔ+(p1, p2)). And, if w ∈ sing(F̌)∩Bc(Ǔ) then

w ∈ Bc(Ǔ + (p1, p2)), because w ∈ Bc(Γ̌
′′) and w /∈ Ǔ + (p1, p2) since the set Ǔ + (p1, p2)

is a foliated set.

Then we have that Bc(Ǔ) ⊂ Bc(Ǔ + (p1, p2)) = Bc(Ǔ) + (p1, p2) and this is a contra-

diction, because (p1, p2) is a non-zero vector on Z2 and Bc(Ǔ) is a non-empty compact
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Γ̌′Γ̌′′

Figure 5.1: Γ̌′ ⊂ Bc(Γ̌
′′)

subset of R2.

And, if Γ̌′′ ⊂ Bc(Γ̌
′) then, similarly, we can show that Bc(Ǔ) + (p1, p2) ⊂ Bc(Ǔ), which

is a contradiction again.

Therefore, we conclude that we must have Ǔ ∩ Ǔ + (p1, p2) = ∅. �

The next proposition relates homeomorphisms of T2 isotopic to identity whose the

rotation set is a non-degenerate line segment with the existence of topological horseshoes.

Proposition 5.4. Let f ∈ Homeo(T2) be topologically transitive with a non-empty �xed

point set. If there is an integer k ≥ 1 such that the power g = fk of f is isotopic to identity

and the rotation set of a lift ǧ ∈ Homeo(R2) of g is a non-degenerate line segment with a

rational slope then f has a topological horseshoe.

Before proving this proposition, we will prove some useful facts.

Lemma 5.5. Let h ∈ Homeo(T2). Suppose that h admits a lift ĥ ∈ Homeo(A) to the

annulus. Moreover, suppose that

1. The map ĥ commutes with the integer vertical translations, that is,

ĥ(ŵ + (0, p)) = ĥ(ŵ) + (0, p), ∀p ∈ Z and ŵ ∈ A;

2. There is a real number M > 0 such that for all ŵ ∈ A we have∣∣∣p2(ĥn(ŵ)− ŵ)
∣∣∣ ≤M, ∀n ∈ Z. (5.1)

Then, if w,w′ ∈ T2 are such that w ∈ ωh(w
′), then for every ŵ ∈ π̂−1(w) there exists

some ŵ′ ∈ π̂−1(w′) such that ŵ ∈ ωĥ(ŵ′).

Proof. Let w,w′ ∈ T2 be as in the hypothesis. Choose some ŵ ∈ π̂−1(w), then there is a

fundamental domain D̂ = T1 × [d, d+ 1) in A that contains ŵ. So

d ≤ p2(ŵ) < d+ 1. (5.2)

As w ∈ ωh(w
′) then there exist an increasing sequence (mk)k∈N of positive integers

such that mk → +∞ and

lim
k→+∞

hmk(w′) = w,
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And we may assume, possibly by taking a subsequence, that

dT2(hmk(w′), w) < 1/k , for all k ∈ N

By assumption, we have that ĥ commutes with the integer vertical translations. This

assumption and the above property imply that there exist ŵ′ ∈ π̂−1(w′) and a sequence

of integers (pk)k∈N ⊂ Z such that

dA(ĥmk(ŵ′) + (0, pk), ŵ) < 1/k , ∀k > k0. (5.3)

So, (5.2) and (5.3) imply that

d− 1

k
< p2(ĥmk(ŵ′)) + pk < d+ 1 +

1

k
, ∀k > k0. (5.4)

Note that we can assume that ŵ′ ∈ π̂−1(w′) ∩ D̂, because if not then there would be

an integer p such that the integer translation ŵ′p = ŵ′ + (0, p) of ŵ′ would be in D̂ and

therefore, there would be a sequence of integers (p′k)k∈N ⊂ Z, namely p′k = pk− p for each
k ∈ N, which would imply that

dA(ĥnk(ŵ′p + (0, p′k)), ŵ
′) < 1/k, ∀k > k0.

So, from now on, we will assume without loss of generality that ŵ′ ∈ π̂−1 ∩ D̂. Then

d ≤ p2(ŵ′) ≤ d+ 1. (5.5)

By the assumption (5.1) and the inequality (5.5) we have that

d−M < p2(ĥmk(ŵ′)) < d+ 1 +M. (5.6)

So, (5.4) and (5.6) imply that, for all k

−d− 1−M + d− 1

k
< pk < −d+M + d+ 1 +

1

k
⇒ |pk| < M + 1 +

1

k
< M + 2

because we have that k > k0 > 1 and then 1/k < 1.

This means that the discrete set {pk | k > k0} ⊂ Z is �nite. Indeed the cardinality of

{pk | k > k0}, namely #{pk | k > k0} is less than or equal to 2bM + 2c+ 1, where bxc is
the largest integer less than or equal to the positive real number x.

Then, by the Pigeonhole Principle, there is a subsequence (pki)i∈N of (pk)k∈N such that

pki = p0 ∈ Z, for all i ∈ N.
So, what we have is that

dA(ĥmki (ŵ′ + (0, p0)), ŵ) < 1/ki, ∀i ∈ N
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and this imply that ŵ is in the ω-limit of the lift ŵ′ + (0, p0) of w′ by the map ĥ, namely

ŵ ∈ ωh(ŵ′ + (0, p0)). �

As a Corollary of Lemma 2.1 and Lemma 5.5 we have:

Corollary 5.6. Let f ∈ Homeo(T2) be topologically transitive. If there is a power h = fk,

k ≥ 1, of f that admits a lift ĥ ∈ Homeo(A) satisfying the assumptions (1.) and (2.) of

Lemma 5.5 then ĥ is non-wandering.

Proof. Let ŵ ∈ A be any point. Then, by Lemma 2.1, there exist some r ∈ {0, · · · , k−1}
such that

π̂(ŵ) ∈ ωh(f r(z)).

By Lemma 5.5 we know that there is some lift ẑr ∈ π̂−1(f r(z)) such that ŵ ∈ ωĥ(ẑr).
Therefore ŵ ∈ A is non-wandering for ĥ.

As ŵ ∈ A is any point, we conclude that ĥ is non-wandering. �

Remark 5.7. Note that if ẑr ∈ A is a point satisfying π̂(ẑr) = f r(z), where r ∈ {0, · · · , k−
1}, the set of all lifts to A of the set {z, f(z), · · · , fk−1(z)}, namely

Ĝ =
⋃
p∈Z

(
k−1⋃
r=0

{ẑr + (0, p)}

)
,

is an enumerable set.

Proof of Proposition 5.4. Suppose, by contradiction, that f does not have a topological

horseshoe. Then no power of f has a topological horseshoe.

Let k ≥ 1 be an integer such that the power g = fk of f is isotopic to identity and

the rotation set of a lift ǧ ∈ Homeo(R2) of g, is a non-degenerate line segment with a

rational slope.

First of all, we will prove that g = fk is topologically conjugate to a homeomorphism

h ∈ Homeo(T2) that has a lift ȟ ∈ Homeo(R2) such that ρ(ȟ) is a horizontal segment

containing the origin and such that (0, 0) ∈ ρ(ȟ) is realized by periodic orbit.

Let z0 ∈ fix(f), then z0 ∈ fix(g), and as g is isotopic to identity, there is some

(p1, p2) ∈ Z2 such that ǧ(ž0) = ž0 + (p1, p2), where ž0 ∈ π̌−1(z0) is independent of the

choice. There is no loss of generality in supposing that (p1, p2) = (0, 0), because if it is

not, then the lift ǧ′ = ǧ − (p1, p2) is such that ǧ′(ž0) = ž0 and as ρ(ǧ′) = ρ(ǧ) − (p1, p2)

then, we could take the lift ǧ′ of g instead of ǧ. Thus (0, 0) ∈ ρ(ǧ) is realized by z0 ∈ T2.

As, by assumption ρ(ǧ) is a non-degenerate line segment with a rational slope then, by

Corollary 3.4, there is A ∈ GL(2,Z) such that ρ(AǧA−1) = Aρ(ǧ) is a horizontal segment

and if fA is the homeomorphism of T2 induced by A then we have that fA(z0) ∈ T2 is

�xed by fAgf
−1
A and moreover
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ρ(fA(z0), AǧA−1) = limn→+∞
(AǧA−1)n(Až0)− Až0

n

= A

(
limn→+∞

ǧn(ž0)− ž0

n

)
= A

(
0

0

)

=

(
0

0

)
,

where Až0 ∈ π̌−1(fA(z0)) is independent of the choice.

Thus, under a topological conjugacy, we can assume that g = fk is a homeomorphism

of T2 isotopic to identity such the rotation set of some lift ǧ ∈ Homeo(R2) of g is a

horizontal segment containing (0, 0) and such that (0, 0) ∈ ρ(ǧ) is realized by z0 ∈ fix(g).

By Corollary 3.7, ǧ has uniformly bounded deviations in the perpendicular direction

of ρ(ǧ), so there is a real number M > 0 such that

|p2(ǧn(w̌)− w̌)| ≤M, ∀n ∈ Z and ∀w̌ ∈ R2. (5.7)

Furthermore, as ρ(ǧ) is a non-degenerate line segment containing the origin, let a ∈
ρ(ǧ)\{(0, 0)} be an extremal point. Then we know (item (3.) of Proposition 3.1) there is

some point za ∈ T2\{z0} such that ρ(za, ǧ) = a 6= (0, 0).

By assumption, we have that f ∈ Homeo(T2) is topologically transitive. So, there is

a point z ∈ T2 such that ωf (z) = T2. Then, by Lemma 2.1, we have

k−1⋃
r=0

ωg(f
r(z)) = T2. (5.8)

Now, let I0 ∈ Ig be an identity isotopy of g such that z0 ∈ fix(I0), then I0 is lifted to

an identity isotopy Ǐ0 of ǧ. Let I be a maximal isotopy of g such that I0 � I and Ǐ its lift

to R2. We consider a foliation F tranverse to I and its lift F̌ to R2.

The quotient space of R2 by a unit horizontal translation is homeomorphic to the

annulus A. We get an identity isotopy Î = (ĝt)t∈[0,1] on A by projection, as well a home-

omorphism ĝ = ĝ1 and a transverse foliation F̂ . Therefore ĝ is isotopic to identity.

R2 R2

A A

T2 T2

ǧ

τ̌

π̌

τ̌

ĝ

π̂ π̂
g

(5.9)

And as the diagram in (5.9) commutes we have that ĝ(ŵ+ (0, p)) = ĝ(ŵ) + (0, p), for



48 PROOFS OF THEOREM A AND PROPOSITION C

all p ∈ Z.
Moreover, it follows from the equation (5.7) that

|p2(ĝn(ŵ)− ŵ)| ≤M, ∀n ∈ Z and ∀τ̌(w̌) = ŵ ∈ A (5.10)

This means that for all points ŵ ∈ A, the orbit of ŵ is contained in a compact subset

of A. And, consequently, we have that the ωg(ŵ) is not empty, for all ŵ ∈ A. Furthermore,

by Corollary 5.6, we have that ĝ ∈ Homeo(A) is non-wandering.

By assumption g ∈ Homeo(T2) has no topological horseshoe. Thus, by Remark 2.6

we have that ĝ can not have a topological horseshoe. So, ĝ : A → A is a non-wandering

homeomorphism isotopic to identity such that the ω-limit of any point ŵ ∈ A is non-empty

and has no topological horseshoe. Then Theorem 3.9 implies that the map rotǧ : A→ R
that associates to each point ŵ ∈ A its rotation number rot(ŵ′, ǧ) is well de�ned and

continuous. In the following we will prove that it must be constant. Let

Ĝ =
⋃
p∈Z

(
k−1⋃
r=0

{ẑr + (0, p)}

)
,

be the set of all lifts of the set {z, f(z), · · · , fk−1(z)}, where ẑr ∈ π̂−1(f r(z)) for r ∈
{0, 1, · · · , k − 1}.

Given any ŵ ∈ A, Lemma 5.5 implies that there exists some point ŵ′ ∈ Ĝ such that

ŵ ∈ ωĝ(ŵ′). And by item (2) of Theorem 3.9 the rotation number of ŵ must be the same

as the rotation number of ŵ′. But, as observed in Remark 5.7, the set Ĝ is an enumerable

set. Therefore, as the map rotǧ is continuous, it must be constant.

But this is impossible, because if we take ẑ0 ∈ π̂−1(z0) and ẑa ∈ π̂−1(za) then ẑ0, ẑa ∈
ne+(ĝ), as observed. Moreover, rot(ẑ0, ǧ) = p1(ρ(z0, ǧ)) = 0 and rot(ẑa, ǧ) = p1(ρ(za, ǧ)) =

p1(a) 6= 0 because a ∈ ρ(ǧ) is a non-zero vector of a horizontal non-degenerate line segment

of R containing the origin.

Therefore, we have proved by contradiction that f must have a topological horseshoe.

�

5.1 Proof of Theorem A

Let us restate Theorem A:

Theorem A. Let f ∈ Homeo0(T2) be topologically transitive. If f has a �xed point and

a periodic point non-�xed then f has a topological horseshoe.

Proof. Let z0 ∈ T2 be a �xed point, that is z0 ∈ fix(f); q1 > 1 be the minimal period of

a non-�xed periodic point z1 ∈ T2, that is z1 ∈ fix(f q1) \ fix(f), and z ∈ T2 be a point

such that ωf (z) = αf (z) = T2.
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Let If be the set of identity isotopies for f , pick I0 ∈ If such that z0 ∈ fix(I0) and let

I ∈ If be a maximal isotopy for f such that I0 � I and let F be a transverse foliation to

I.

We will suppose that any admissible path have no F -transverse self-intersection, be-
cause if some admissible path has an F -transverse self-intersection then Theorem 4.28

implies that f possesses a topological horseshoe and we �nish the proof.

Let Ǐ = (f̌t)t∈[0,1] be an identity isotopy that lifts I to R2, f̌ := f̌1 be the lift of f to

R2 given by the isotopy I and F̌ be the foliation of R2 that lifts F . Observe that F̌ is

transverse to Ǐ and as fix(I) 6= ∅ we have that fix(Ǐ) = π̌−1(fix(I)) is non-empty and then

F̌ is a singular oriented foliation of R2. Furthermore any lift of any admissible path has

no F̌ -transverse self-intersection.
As z1 ∈ fix(f q1) with q1 > 1 we know that the trajectory of z1 by the isotopy I until

order q1, Iq1(z1), is a loop on T2. Then we have two possibilities for it:

a) Iq1(z1) is homotopic to zero on T2;

b) Or not, which means that Iq1(z1) is an essential loop on T2.

5.1.1 Loop homotopic to zero on T2

Suppose that Iq1(z1) is homotopic to zero on T2. Let Γ1 : T1 → dom(I) be an F -
transverse loop that is homotopic to Iq1(z1) such that Γ1(0) = z1 and let γ1 : R→ dom(I)

be its natural lift. Thus we have the path γ1(0) = z1 and therefore it is a whole transverse

trajectory of the point z1, which means γ1 := IZF(z1).

As Γ1 is homotopic to Iq1(z1) on dom(I), then it is an F -transverse loop that it

is itself homotopic to zero on T2. Moreover it has no F -transverse self-intersection, by

assumption. So, follows from Proposition 5.3 that any lift Γ̌1 of Γ1 to R2 is F̌ -equivalent
to a multiple of an F̌ -transverse simple loop and if γ̌1 : R→ R2 is the natural lift of the

loop Γ̌1, Ǔ1 =
⋃
t∈R φγ̌1(t) is a topological open annulus on R2 which is disjoint from all

integers translates of it.

With those assumptions, we have the following claims:

Claim 5.8. Let z ∈ T2 be the point such that ωf (z) = αf (z) = T2. Given any lift

ž ∈ π̌−1(z) then ž is non-wandering for f̌ .

Proof. As z ∈ ωf (z)∩αf (z), there are increasing sequences of integers (mk)k∈N and (nl)l∈N

such that mk ↗ +∞ and nl ↗ +∞ and fmk(z)→ z and f−nl(z)→ z. That is, we can

assume, eventually by taking subsequences, that

dT2(fmk(z), z) < 1/k, ∀k ∈ N

dT2(f−nl(z), z) < 1/l, ∀l ∈ N
.
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So, there are two sequences of integer vectors (pk)k∈N, (ql)l∈N ∈ Z2 such that

d(f̌mk(ž), ž + pk) < 1/k, ∀k ∈ N

d(f̌−nl(ž), ž + ql) < 1/l, ∀l ∈ N
.

We have two possibilities:

a) Either there is a constant real number K or a constant real number L such that

||pk|| < K or ||ql|| < L.

And then, by the Pigeonhole Principle, either there is a subsequence (pki)i∈N of

(pk)k∈N such that pki = p ∈ Z2 for all i ∈ N or there is a subsequence (qlj)j∈N of

(ql)l∈N such that qlj = q ∈ Z2 for all j ∈ N.

b) There are subsequences (pki)i∈N and (qlj)j∈N of (pk)k>k0 and (ql)l>l0 , respectively,

such that

||pki|| → +∞ and ||qlj || → +∞.

Item (a) implies that

d(f̌mk(ž), ž + p) < 1/k, ∀k > k0 or

d(f̌−nl(ž), ž + q) < 1/l, ∀l > l0

which implies that ž + p ∈ ωf̌ (ž) or ž + q ∈ αf̌ (ž). And therefore, ž ∈ ωf̌ (ž − p) or

ž ∈ αf̌ (ž − q), because f̌ is a homeomorphism that commutes with the integer vector

translations. So, ž is non-wandering for f̌ .

Now we will show, by contradiction, that item (b) does not happen. Indeed, suppose

by contradiction that it does happen. So, we have that

d(f̌mki (ž), ž + pki) < 1/ki, ∀ki > k0

d(f̌−nlj (ž), ž + qlj) < 1/lj, ∀lj > l0,
(5.11)

where (pki)i∈N and (qlj)j∈N are subsequences of (pk)k>k0 and (ql)l>l0 , respectively, such

that

||pki || → +∞ and ||qlj || → +∞. (5.12)

Let γ̌ := ǏZF(ž) and φ̌ ⊂ F̌ such that ž ∈ φ̌. Thus, the properties in (5.12) and

the inequalities in (5.11) together with Lemma 4.23 implies that there are real numbers

ti ↘ −∞ and tj ↗ +∞ such that

γ̌(ti) ∈ φ̌+ pki and γ̌(tj) ∈ φ̌+ qlj .
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That is, the whole F̌ -transverse trajectory of ž γ̌ meets, arbitrarily in the past and in the

future, integers translates of φ̌ more and more distant of φ̌.

Moreover, we have in T2 that z1 ∈ ωf (z) ∩ αf (z) and by Lemma 4.23 there are a < b

and t real numbers that

IZF(z)|[a,b] is F -equivalent to γ1|[t,t+1].

So, there is a lift γ̌1 of γ1 such that

γ̌|[a,b] is F̌ -equivalent to γ̌1|[t,t+1], (5.13)

By the discussion, above this claim, we know that γ̌1 is the natural lift of an F -
transverse simple loop Γ̌1 (up to equivalence) and Ǔ1 =

⋃
t∈R φγ̌1(t) is a topological open

annulus in R2 which is disjoint from all integers translates of it.

As Ǔ1 =
⋃
t∈R φγ̌1(t) is disjoint from all integers translates of it, we have that the union

Ǔ1 ∪ Bc(Ǔ1) contains at most one integer translate of φ̌, the leaf that contains the point

ž.

So, there must be pk, ql ∈ Z2 integer vectors, such that ||pk|| and ||ql|| are large enough
so that φ̌+pk and φ̌+ ql are in UBc(Ǔ1) and there are t1, t2 ∈ R such that t1 < a < b < t2

and

γ̌(t1) ∈ φ̌+ ql and γ̌(t2) ∈ φ̌+ pk. (5.14)

Property (5.13) means that the path γ̌ draws the loop Γ̌1, which means that given

J γ̌
Γ̌1

= {t ∈ R | γ̌(t) ∈ Ǔ1}, there exists a connected component J ⊂ J γ̌
Γ̌1

that contains

[a, b] and such that γ̌|J draws Γ̌1. Moreover, as t1 and t2 are separated by [a, b], they must

be separated by J and J must be a bounded interval.

Remember that by assumption, γ̌ has no F̌ -transverse self-intersection. Thus, we have
the following claim:

Claim. γ̌ does not cross Γ̌1.

Proof of Claim. Suppose, by contradiction, that γ̌ cross Γ̌1. So, by Proposition 4.10 the

crossing component must be unique and coincides with the drawing component. Thus J

is the unique crossing component. Let J = (c, d).

By property 5.14 we know that γ̌(t1) and γ̌(t2) are in UBc(Ǔ1). Moreover, as J = (c, d)

is a crossing component, we have that either γ̌(c) or γ̌(d) is in Bc(Ǔ1) and the other is in

UBc(Ǔ1). We will assume that γ̌(c) is UBc(Ǔ1), the other case is similar.

As t1 and t2 are separated by J , there must exist e, f ∈ R such that d < e < f < t2,

γ̌|(e,f) ⊂ Ǔ1 and γ̌(e) and γ̌(d) are in Bc(Ǔ1)

γ̌(f) and γ̌(t2) are in UBc(Ǔ1).

Meaning that J ′ = (e, f) is another crossing component of J γ̌
Γ̌1

which is a contradiction
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(see Figure 5.2). Therefore γ̌ does not cross Γ̌1. �

γ̌
γ̌(c)

γ̌(e)

γ̌(f)
γ̌(d)

Ǔ1

Figure 5.2: J and J ′ are crossing components of J γ̌
Γ̌1
.

End of the proof of Lemma 5.8. As γ̌ : R → R2 has no F̌ -transverse self-intersection

and does not cross Γ̌1 thus, by item (3) of Proposition 4.10, we have that the drawing

component J coincides with R in a neighborhood of at least one endpoint of R, but the
existence of t1 and t2 prohibits this to happen. Therefore we get a contradiction and we

conclude that item (b) does not happen.

As ž ∈ π̌−1(z) was taken arbitrarily, we conclude that any lift ž of the transitive point

z is non-wandering. �

Let us �x a lift Γ̌1 of Γ1 to R2 and let Ǔ1 be the open annulus that contains Γ̌1.

Claim 5.9. Let U1 = π̌(Ǔ1) be the projection of Ǔ1 to T2 then U1 = dom(F).

Proof. Remember that z ∈ T2 is the point such that ωf (z) = αf (z) = T2. By the proof

of the claim above we know that there is a lift ž ∈ π̌−1(z) of the point z ∈ T2 that draws

Γ̌1, and moreover ž is non-wandering for f̌ . As the whole F̌ -transverse trajectory of ž,

γ̌ := ǏZF(ž), has no F̌ -transverse self intersection then Corollary 4.24 and the remark after

it imply that γ̌ is contained in Ǔ1. So, by projection, we have that the whole F -transverse
trajectory of z, γ := IZF(z) is contained in U1.

But, by Lemma 4.23 we know that a whole F -transverse trajectory of a transitive

point meets all leafs of dom(F).

So, we must have that U1 = dom(F). �

This statement implies that the frontier ∂U1 of U1 is contained in the singularity set

sing(F). But more than that, we have ∂U1 = sing(F) because the whole orbit of z is

contained in U1, and because the orbit of z is dense in T2.

Moreover, by Proposition 5.3 we have that Ǔ1 is disjoint from its integer translations

and so U1 is an inessential set. Therefore, as U1 = dom(F), we have that ∂U1 = sing(F)

is a totally essential set.
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Thus, we have that the frontier of the lift Ǔ1 is such that ∂Ǔ1 ⊂ sing(F̌). Therefore

Ǔ1 is an f̌ -invariant set, which means f̌(Ǔ1) = Ǔ1. So, for every ž′ ∈ Ǔ1 its α-limit and

ω-limit sets are contained in Ǔ1 = Ǔ1 ∪ ∂Ǔ1. Moreover:

Claim 5.10. If ž ∈ π̌−1(z)∩ Ǔ1, where z ∈ T2 is the point such that ωf (z) = αf (z) = T2,

then αf̌ (ž) = ωf̌ (ž) = Ǔ1.

Proof. It remains to prove that the α-limit and ω-limit sets of ž contains Ǔ1.

We will prove for the case of the ω-limit, the case of the α-limit set is analogous.

Suppose, by contradiction, there exists ž′ ∈ Ǔ1 such that ž′ /∈ ωf̌ (ž). Let z′ be the

projection of ž′ to T2, as ωf (z) = T2, we know there exists an increasing sequence of

integers (mk)k∈N such that fmk(z)
k→∞−−−→ z′, this means there exists k0 ≥ 1 large enough

such that for every k > k0

dT2(fmk(z), z′) < 1/k. (5.15)

But we are assuming that ž′ /∈ ωf̌ (ž) then the property (5.15) implies that for every

k > k0 there must exist pk ∈ Z2\{(0, 0)} such that

d(f̌mk(ž), ž′ + pk) < 1/k. (5.16)

But this is impossible. Because Ǔ1 is f̌ -invariant and does not intersect any of its

integer vector translate. Therefore ž′ ∈ ωf̌ (ž).

To conclude, as ω-limit set of ž is a closed set that contains Ǔ1, it must to contain its

closure. Therefore Ǔ1 ⊂ ωf̌ (ž). �

It follows from the proof of Lemma 5.2 that there exists at least one singularity of the

foliation F̌ that is contained in Bc(Ǔ1), we will denote it by ž′.

Let us consider the annulus A = R2\{ž′}. As ž′ ∈ sing(F̌), the restriction f̌ |A is well

de�ned and is a homeomorphism isotopic to identity, where Ǐ|A and F̌ |A are a maximal

identity isotopy for f̌ |A and a transverse foliation to Ǐ|A of A, respectively.

As ž′ ∈ Bc(Ǔ1) ⊂ Bc(Γ̌1), we have that Γ̌1 is an essential loop in A then ž1 ∈ ne+(f̌A)

and rot(ž1, f̌A) is a rational number non-zero.

Furthermore, as sing(F̌) is the lift of a totally essential set of T2 we have that there

exists ž2 ∈ ∂Ǔ1\{ž′} which implies that ž2 ∈ sing(F̌A) = fix(ǏA) and then we have that

ž2 ∈ ne+(f̌A) and rot(ž2, f̌A) = 0.

By Claim 5.10 we have ž ∈ ne+(f̌A) and furthermore ž1, ž2 ∈ ωf̌A(ž). However we

have that rot(ž1, f̌A) 6= rot(ž2, f̌A) then the contrapositive of Theorem 3.9 implies that

f̌A possesses a topological horseshoe ∆̌ as de�ned in the introduction. And, as we have

that f̌ = f̌A on R2\{ž′} and f̌(ž′) = z′ then ∆̌ is also a topological horseshoe for f̌ . And,

therefore, by Remark 2.6, we have that ∆ = π̌(∆̌) is a topological horseshoe for f , as in

De�nition 1.2.
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5.1.2 Essential loop on T2

We have z0 ∈ fix(f), z1 ∈ fix(f q) with q > 1 and z ∈ T2 the point such that

ωf (z) = αf (z) = T2, I a maximal isotopy such that z0 ∈ fix(I) and F is a transverse

foliation to I. And now we will suppose that Iq1(z1) is an essential loop.

As before, let Ǐ = (f̌t)t∈[0,1] be the identity isotopy that lifts I to R2, f̌ := f̌1 the lift

of f to R2 given by the isotopy I and F̌ foliation of R2 that lifts F . And as Iq1(z1) is an

essential loop on T2, there exists (p1, p2) ∈ Z2\{(0, 0)} such that

f̌ q(ž1) = ž1 + (p1, p2), ∀ž1 ∈ π̌−1(z1).

Moreover, z0 ∈ fix(I) implies f̌(ž0) = ž0,∀ž0 ∈ π̌−1(z0).

This implies that ρ(z0, f̌) = (0, 0) and ρ(z1, f̌) = 1
q
(p1, p2). And as (p1, p2) 6= (0, 0)

we must have that ρ(f̌) has non-empty interior or is a non-degenerate line segment of

rational slope.

a) If int(ρ(f̌)) 6= ∅ then, due to the techniques developed by Llibre and Mackay in

[LM91], we already know that f has a topological horseshoe.

Or, by Forcing Theory, Le Calvez and Tal show that (see the Proof of Theorem

64, page 82, in [LCT18a]) in this case there are two F -transverse loops associated

to periodic points that have an F -transverse intersection, and by Lemma 4.27 we

know that this implies the existence of an admissible loop Γ with an F -transverse
self-intersection. And then we can apply Theorem 4.28 and get the result.

b) If ρ(f̌) is a segment of rational slope containing (0, 0) and 1
q
(p1, p2), and moreover

these vectors are realized by z0 and z1, respectively, then Proposition 5.4 implies

that f has a topological horseshoe.

Finishing the proof of Theorem A. �

5.2 Proof of Proposition C

Now we will prove the following:

Proposition C. Let f ∈ Homeo(T2) be a topologically transitive homeomorphism with a

non-empty �xed point set and such that some power g = fk of f , where k > 1, is isotopic

to identity, but f itself is not. If f does not have a topological horseshoe, then for some

lift ǧ ∈ Homeo(R2) of g, the rotation set of ǧ is equal to {(0, 0)}.

Proof. By assumption we have that f has a �xed point and has no topological horseshoe,

and there is k > 1 such that g = fk is isotopic to identity. So g = fk has a �xed point

and has no topological horseshoe. Moreover we can take ǧ as the lift of g that has a �xed

point. Thus ρ(ǧ) contains the origin.
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Suppose, by contradiction, that ρ(ǧ) 6= {(0, 0)}. Then we have 2 possibilities:

a) ρ(ǧ) has non-empty interior, or

b) ρ(ǧ) is a non-degenerate line segment,

both containing the origin.

Well, we already know that item (a) implies that g has a topological horseshoe, which

in turn implies that f also have a topological horseshoe, which is a contradiction to the

hypothesis.

Let us analyze item (b): ρ(ǧ) is a non-degenerate line segment containing the origin.

As explained in Chapter 2 (see Proposition 2.10), given an f ∈ Homeo(T2), there is

some linear automorphism A ∈ GL(2, Z) such that if f̌ ∈ Homeo(R2) is a lift of f then

f̌(ž + (p1, p2)) = f̌(ž) + A

(
p1

p2

)
.

So, as g is isotopic to identity, Lemma 3.2 implies that

ρ(ǧ) = ρ(f̌ ◦ ǧ ◦ f̌−1) = Aρ(ǧ). (5.17)

Let v ∈ ρ(ǧ)\{(0, 0)}. So, by (5.17) we have that Av ∈ ρ(ǧ). As we are assuming that

ρ(ǧ) is a non-degenerate line segment containing the origin and v 6= (0, 0), then there is

some λ ∈ R such that Av = λv. Which means that v is an eigenvector of A associated to

the real eigenvalue λ.

As g = fk is isotopic to identity, thus Ak = Id and therefore λkv = Akv = v. So λ is

a real number such that λk = 1. Consequently, λ = ±1.

Claim. The slope of the rotation set ρ(ǧ) is rational.

Proof of claim. Indeed, write v ∈ ρ(ǧ)\{(0, 0)} as v = (v1, v2).Also write A ∈ GL(2,Z)

as A =

(
p1 p2

q1 q2

)
.

If λ = 1 then Av = v andp1v1 + p2v2 = v1

q1v1 + q2v2 = v2

⇒ either v1 = 0 or
v2

v1

∈ Q.

If λ = −1 then Av = −v andp1v1 + p2v2 = −v1

q1v1 + q2v2 = −v2

⇒ either v1 = 0 or
v2

v1

∈ Q.

As (0, 0) and (v1, v2) are in ρ(ǧ) and either v1 = 0 or v2

v1
∈ Q, we have that the direction

of ρ(ǧ) is a multiple of a rational vector. Therefore the slope of ρ(ǧ) must be rational. �
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End of the proof of Proposition C. By Proposition 5.4 we have that in this situation f

would have a topological horseshoe, which is a contradiction with hypothesis.

Therefore ρ(ǧ) must be equal to {(0, 0)}, proving the proposition. �



Chapter 6

Proof of Theorem B

Our main goal in this chapter is to prove the following result:

Theorem B. Let f ∈ Homeo(T2) be a topologically transitive homeomorphism with a

non-empty �xed point set and such that a power fk of f , where k ≥ 1, is isotopic to a

Dehn Twist. Then f has a topological horseshoe.

Let us �rst introduce some fundamental concepts about homeomorphisms isotopic to

Dehn Twist.

As presented at Chapter 2 if f ∈ Homeo(T2) is isotopic to a Dehn Twist and if

f̌ ∈ Homeo(R2) is a lift of f then there is some A ∈ SL(2,Z) that is conjugate to matrix(
1 m

0 1

)
where m ∈ Z\{0, 0} and such that for all (p1, p2) ∈ Z2

f̌(ž + (p1, p2)) = f̌(ž) + A

(
p1

p2

)
.

As the proofs that we will presented in this chapter are preserved by conjugation, we

will consider only the case where A is in this special format. So

A =

(
1 m

0 1

)
, (6.1)

where m ∈ Z\{0}. And the induced map by A in T2 we will denote it by fA.

If we observe the matrix A ∈ SL(2,Z) we will notice that any lift map f̌ ∈ Homeo(R2)

of f commutes with the horizontal translations, but this is not true for vertical trans-

lations. In fact, if we translate the vector ž ∈ R2 vertically p ∈ Z times, ž + (0, p),

then

f̌(ž + (0, p)) = (f̌(ž) + (0, p)) + (mp, 0).

Which means that if we translate the vector vertically then its image is translated

vertically and horizontally. Moreover the higher the vector, the greater its horizontal

translation (in norm).

57
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Now, suppose that f̌ has a �xed point ž ∈ R2, then there exist ž ∈ R2 such that

f̌(ž) = ž,

but if we translate the vector vertically p ∈ Z times then

f̌(ž + (0, p)) = ž + (0, p) + (mp, 0).

Therefore, the rotation vector of the �xed point π̌(ž) ∈ T2 is not well-de�ned inde-

pendently of the choice of the lift. Thus, it does not make sense to de�ne a bi-dimensional

rotation set for homeomorphism isotopic to a Dehn twist. Instead, it is considered the

vertical annulus A = T1×R and it is de�ned a vertical rotation set in this covering space

of the T2.

As we establish in the Notation 2.4, let π̌ : R2 → T2 be the canonical universal covering

of T2 and τ̌ : R2 → A the canonical universal covering of A and π̂ : A → T2 a covering

map such that π̂ ◦ τ̌ = π̌.

As de�ned in [AZ02] and also in [Doe97], the following de�nition of vertical rotation

set is analogous to de�nition for rotation set for homeomorphism isotopic to identity,

given by to Misiurewicz and Ziemian in [MZ89].

De�nition 6.1. Let f : T2 → T2 be a homeomorphism isotopic to a Dehn twist and �x

a lift f̂ : A→ A of f to A. We de�ne the vertical rotation set of the lift f̂ , namely ρV (f̂),

as the following

ρV (f̂) =
⋂
i≥1

⋃
n≥i

{
p2(f̂n(ẑ)− ẑ)

n
: ẑ ∈ A

}
.

If there is ẑ ∈ A such that the limit

lim
n→∞

p2(f̂n(ẑ)− ẑ)

n
exists

then we will say that ẑ ∈ A has a vertical rotation number and we will denote it by

ρV (ẑ, f̂). Furthermore, observe that the restriction to the second coordinate implies that

for all p ∈ Z,
ρV (ẑ + (0, p), f̂) = ρV (ẑ, f̂),

whenever ẑ ∈ A has a vertical rotation number. Moreover, this implies that it only depends

of the point z = π̂(ẑ) ∈ T2. So, we can use de notation ρV (z, f̂), where z ∈ T2, instead.

Regarding the dependence of the lift, the vertical rotation set preserves some good

properties, as in the uni-dimensional case:

Proposition 6.2. Let f ∈ Homeo(T2) be isotopic to fA and �x a lift f̂ ∈ Homeo(A) of

f . Then, for all p ∈ Z and q ∈ N,

1. ρV (f̂) is a non-empty and compact interval of R;
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2. ρV (f̂ q − (0, p)) = qρV (f̂)− p;

3. ρV (f̂−1) = −ρV (f̂).

For other properties, see [AZ02] and [AZ05].

As before, we can de�ne the vertical rotation number associated to an invariant mea-

sure.

De�nition 6.3. Let f ∈ Homeo(T2) be isotopic to a Dehn twist and �x a lift f̂ ∈
Homeo(A) of f . For an f -invariant Borel probability measure µ, the vertical rotation

number associated to µ is de�ned as

ρV (µ) =

∫
T2

ϕ dµ,

where the vertical displacement function ϕ : T2 → T1×R is given by ϕ(z) = p2(f̂(ẑ)− ẑ),

where ẑ ∈ π̂−1(z). Note that this de�nition does not depend on the choice of ẑ, only of

z ∈ T2.

By Birkho�'s Ergodic Theorem we have that if µ is an f -ergodic Borel probability

measure such that ρV (µ) = a then for µ-almost every point z ∈ T2 and any ẑ ∈ π̂−1(z),

lim
n→∞

f̂n(ẑ)− ẑ
n

= a.

As ρV , in De�nition 6.3, is a continuous linear functional onMT2(f), the set of the f -

invariant Borel probability measure, and asMT2(f) is compact and convex in the weak-?

topology we must have that

ρV (MT2(f)) = [a, b] ⊂ R,

where a = infµ∈MT2 (f) ρV (µ) and b = supµ∈MT2 (f) ρV (µ), and it is possible that a = b.

And moreover, is possible to show that ρV (f̂) = ρV (MT2(f)) = [a, b]. Thus, using the

fact thatMT2(f) is compact and convex and its extremal points are ergodic measures we

get the next proposition:

Proposition 6.4. There exist two f -ergodic Borel probability measure µa and µb on T2

such that ρV (µa) = a and ρV (µb) = b.

And then, by Birkho�'s Ergodic Theorem there are points ẑa, ẑb ∈ A such that

ρV (f̂ , ẑa) = a and ρV (f̂ , ẑb) = b.

Before proving Theorem B, we state a result due to Addas-Zanata, Tal and Garcia

which assure that if ρV (f̂) = {0} then there exists K̂ ⊂ A an essential f̂ -invariant

continuum.
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Theorem 6.5 (Theorem 2 in [AZTG12]). Given f ∈ Homeo(T2) isotopic to an fA and a

lift f̂ ∈ Homeo(A), if ρV (f̂) = {p
q
} for some p ∈ Z and q ∈ N, then there exists a compact

connected set K̂ ⊂ A, invariant under f̂ q− (0, p), which separates the ends of the vertical

annulus.

Now, we are able to show Theorem B.

Proof of Theorem B. Let g = fk, where k ≥ 1, be the positive power of f that is isotopic

to a Dehn twist. So, there is a matrix A ∈ SL(2,Z)

A =

(
1 m

0 1

)
,

where m ∈ Z\{(0, 0)} and such that g is conjugate to a homeomorphisms isotopic to the

Dehn twist map induced by the matrix A, and we will assume for simplicity that g is

itself isotopic to fA. This means that if ǧ ∈ Homeo(R2) is a lift of g to R2 then

ǧ(ž + (p1, p2)) = ǧ(ž) + A

(
p1

p2

)
.

Since f has a �xed point, so does g. Thus, let ǧ ∈ Homeo(R2) be the lift of g that has

a �xed point. We have that ǧ induces a lift ĝ ∈ Homeo(A) of g to A = T1 × R such that

the following diagram commutes:

R2 R2

A A

T2 T2

ǧ

τ̌

π̌

τ̌

ĝ

π̂ π̂
g

(6.2)

Take this homeomorphism ĝ ∈ Homeo(A) induced by ǧ, and let ρV (ĝ) be its vertical

rotation interval. In addition, as ǧ has a �xed point then ĝ also has. Therefore 0 ∈ ρV (ĝ).

So, we have two possibilities:

a) ρV (ĝ) = {0} or,

b) ρV (ĝ) is a non-degenerate interval of R containing {0}.

6.1 If ρV (ĝ) = {0}

In this case, by Theorem 6.5, there exists K̂ ⊂ A an essential ĝ-invariant continuum.

So, there exists an integer M0 > 0 such that K̂ ⊂ T1 × [−M0,M0]. Let K̂− and K̂+

be the connected components of (A)\K̂ that contains −∞ and +∞, respectively. As K̂

is ĝ-invariant, then K̂− and K̂+ are alsoĝ-invariant. Then, there is M > M0 such that
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K̂−∩(K̂+−(0,M)) is an open, connected and ĝ-invariant set that contains a fundamental

domain of T2. See Figure 6.1.

K̂

K̂ + (0,M)

K̂ − (0,M)

Figure 6.1: Existence of a continuum K̂.

Therefore, for all ŵ ∈ A and all integer n > 0 there is some M ′ > M such that

| p2(ĝn(ŵ)− ŵ)| < M ′. (6.3)

As observed in the proof of Proposition 5.4, this means that for all points ŵ ∈ A, the
ωĝ(ŵ) is not empty.

As g ∈ Homeo(T2) is isotopic to Dehn Twist and the diagram in 6.2 commutes, we

have that ĝ(ŵ + (0, p)) = ĝ(ŵ) + (0, p), for all p ∈ Z.
Indeed, we know that ǧ(w̌+(0, p)) = ǧ(w̌)+(m, p), for all w̌ ∈ R2. Thus, if w̌+(0, p) ∈

τ̌−1(ŵ + (0, p)) then

ĝ(ŵ + (0, p)) = ĝ(τ̌(w̌ + (0, p)))

= τ̌(ǧ(w̌ + (0, p)))

= τ̌(ǧ(w̌) + (m, p))

= τ̌(ǧ(w̌)) + (0, p)

= ĝ(ŵ) + (0, p), where ŵ = τ̌(w̌).

Since ǧ ∈ Homeo(R2) commutes with the integer horizontal translations then homo-

topy theory implies that ĝ ∈ Homeo(A) is homotopic to identity. Moreover ĝ preserves

the ends of A. Thus, by [BCLR20] (see propositions 3.3, 3.6 and 8.1), ĝ is isotopic to

identity.
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Moreover, as f is topologically transitive, the Corollary 5.6 implies thatĝ is non-

wandering.

As we did in the proof of Proposition 5.4, if we suppose, by contradiction, that f has

no topological horseshoe, then g and also ĝ have no topological horseshoe. And moreover,

the map rotǧ : A→ R is well-de�ned, continuous and must to be constant by Lemma 5.5

and Remark 5.7. However this is impossible. Let us explain why.

We know that ĝ ∈ Homeo(A) is a lift of the map g ∈ Homeo(T2) that is isotopic to a

Dehn twist map induced by

A =

(
1 m

0 1

)
,

thus if ǧ ∈ Homeo(R2) is a lift of g ∈ Homeo(T2) then ǧ is also a lift of ĝ ∈ Homeo(A)

and

ǧ(ž + (p1, p2)) = ǧ(ž) + (p1 +mp2, p2) where (p1, p2) ∈ Z2. (6.4)

Moreover, we know that there is ẑ0 ∈ A such that

ĝ(ẑ0) = ẑ0,

then we can assume that rot(ẑ0, ǧ) = 0, because if it is not then we can take some

horizontal integer translation of ǧ that satis�es this property. And, because of (6.4), if we

take ẑ1 = ẑ0 + (0, 1) then

ǧ(ž1) = ž1 + (m, 0), ž1 ∈ τ−1(ẑ1)

and then rot(ẑ1, ǧ) = m 6= 0. And this is a contradiction with the fact that rotǧ is a

constant map.

So, for this case, we prove, by contradiction, that f must to have a topological horse-

shoe.

6.2 If ρV (ĝ) is a non-degenerate compact interval of R
containing {0}

The existence of a horseshoe for this case is already known, althought we could not

�nd it explicitly written in the literature. In any case it follows as a scholium of Theorem

3.1 due to Doe� and Misiurewicz in [DM97] together with the techniques developed by

Llibre and Mackay in [LM91]. Furthermore, the case where f is a C1+ε di�eomorphism

has already been proved by Addas-Zanata in [AZ15].

In the following we will give a new proof for the existence of a topological horseshoe

for this case, only using Forcing Theory and Rotation Theory.

A result in rotation theory that we will use here is Theorem 1 in [AZ05] due to
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Addas-Zanata.

De�nition 6.6. Let ĥ ∈ Homeo(A) be isotopic to the identity and let ȟ ∈ Homeo(R2)

be one of its lifts. We say that:

1. ĥ satis�es the in�nity twist condition (ITC) if for any lift ȟ ∈ Homeo(R2) the

following property holds:

p1 ◦ȟ(x̌, y̌)→ ±∞ as y̌ → ±∞.

2. (ĥ, ȟ) has a periodic orbit of rotation number p
q
, if there exists ẑ ∈ A such that

ĥq(ẑ) = ẑ and ȟq(ž) = ž + (p, 0) for all ž ∈ τ̌−1(ẑ).

Note that if ĥ ∈ Homeo(A) is a lift of h ∈ Homeo(T2) homeomorphism isotopic to fA
then ĥ is isotopic to identity (as explained before) and satis�es ITC property. Indeed, if

ȟ ∈ Homeo(R2) is a lift of ĥ, then ȟ is also a lift of h satisfying

ȟ(ž + (p1, p2)) = ȟ(ž) + (p1 +mp2, p2),

where m ≥ 1 is given by the Dehn Twist map.

Theorem 6.7 (Theorem 1 at [AZ05]). Let ĥ ∈ Homeo(A) be isotopic to the identity and

let ȟ ∈ Homeo(R2) be some lift of h. Suppose ĥ satis�es the ITC property and there exist

points ẑ1, ẑ2 ∈ A such that

p2 ◦ĥn(ẑ1)→ ∓∞ as n→ ±∞ and

p2 ◦ĥn(ẑ2)→ ±∞ as n→ ±∞,

then for all rational numbers p
q
, (ĥ, ȟ) has at least two periodic orbits with rotation number

equal to p
q
.

Let g, ǧ and ĝ be as in the beginning of the proof of Theorem B. That is g ∈ Homeo(T2)

is isotopic to fA, ǧ ∈ Homeo(R2) is the lift of g that has a �xed point and ĝ ∈ Homeo(A)

is a lift of g induced by ǧ and the diagram in (6.2) commutes. Then, as explained before,

we know that ĝ ∈ Homeo(A) is isotopic to identity and, moreover, 0 ∈ ρV (ĝ).

Now, we will assume that ρV (ĝ) is a non-degenerate compact interval of R containing

{0}. We can assume, without loss of generality, that ρV (ĝ) = [a, b] where a < 0 < b. Let

us explain why.

If 0 /∈ int(ρV (ĝ)) then 0 ∈ ∂(ρV (ĝ)). Suppose that ρV (ĝ) = [0, c] (the other case,

namely ρV (ĝ) = [c, 0], is analogous). Take any p
q
∈ (0, c), where p ∈ N and q ∈ N. So,

h = gq is a homeomorphism in T2 isotopic to fA and such the lift ĥ := ĝq − (0, p) to A
has the property that 0 ∈ int(ρV (ĥ)), once ρV (ĥ) = qρV (ĝ)− p.
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So, if 0 /∈ int(ρV (ĝ)) then there is a power h = gq of g and a lift ĥ = ĝq − p to A such

that 0 ∈ int(ρV (ĥ)) and for the rest of the proof we would have just used h and ĥ instead

of g and ĝ.

So, let ĝ be such that ρV (ĝ) = [a, b], where a < 0 < b. The Proposition 6.4 implies

that there exist za, zb ∈ T2 such that

ρV (ĝ, za) = a and ρV (ĝ−1, za) = −a
ρV (ĝ, zb) = b and ρV (ĝ−1, zb) = −b

(6.5)

Lemma 6.8. Let za, zb ∈ T2 be the points that satisfy 6.5. If ẑa ∈ π̂−1(za) and ẑb ∈ π̂−1(zb)

then
p2 ◦ĝn(ẑa)→ ∓∞ as n→ ±∞ and

p2 ◦ĝn(ẑb)→ ±∞ as n→ ±∞.

Proof. By de�nition, ρV (ĝ, za) = a is

lim
n→+∞

p2(ĝn(ẑa)− ẑa)
n

= a,

where ẑa ∈ π̂−1(za) is independent of the choice. But, as | p2(ẑa)| < L, where L > 0 is a

real number, the above equation is equivalent to

lim
n→+∞

p2(ĝn(ẑa))

n
= a < 0, ẑa ∈ π̂−1(za).

Then

lim
n→+∞

p2(ĝn(ẑa)) = −∞.

Analogously, if ρV (ĝ−1, za) = −a > 0 then

lim
n→+∞

p̂2(g−n(ẑa)) = lim
n→−∞

p̂2(gn(ẑa)) = +∞.

The proof for p2 ◦ĝn(ẑb)→ ±∞ as n→ ±∞ is analogous. �

Let ǧ ∈ Homeo(R2) be a lift of ĝ. As ĝ is a lift of a homeomorphism isotopic to fA in

T2, we have that ĝ satis�es ITC. And together with the Lemma 6.8 we have, by Theorem

6.7, that for all rationals p
q
∈ [a, b], (ĝ, ǧ) has a periodic orbit with rotation number p

q
.

So, there are ŵ, ŵ′ ∈ A, p, p′ ∈ Z and q, q′ ∈ N such that p
q
6= p′

q′
and

ĝq(ŵ) = ŵ, ǧq(w̌) = w̌ + (p, 0), where w̌ ∈ τ̌−1(w)

ĝq
′
(ŵ′) = ŵ′, ǧq

′
(w̌′) = w̌′ + (p′, 0), where w̌ ∈ τ̌−1(w).

This means that w,w′ ∈ ne+(ĝ), rot(ŵ, ǧ) = p
q
and rot(ŵ′, ǧ) = p′

q′
.

Now, let ĝsphere be the continuous extension of ĝ to S2 = A∪ {N,S}, then Lemma 6.8
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implies that
(ω)ĝsphere

(ẑa) = (α)ĝsphere
(ẑb) = {S}

(α)ĝsphere
(ẑa) = (ω)ĝsphere

(ẑb) = {N}

So, follows that N and S are in the same Birkho� recurrence classes of ĝsphere.

Therefore, Proposition 3.10 implies that ĝ has a topological horseshoe. And, as ex-

plained before, it follows that g, and therefore f , have a topological horseshoe, as we

wanted to prove. �
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