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Abstract

SILVEIRA, T. P. Constant rank-type constraint qualifications and second-order opti-
mality conditions. Ph.D. thesis. Institute of Mathematics and Statistics of the University of São
Paulo. Brazil, 2023.

The constant rank constraint qualification, introduced by Janin in [Math. Program. Study
21:110-126, 1984], has been shown very robust in diverse applications, such as global convergence of
algorithms, second-order optimality conditions, computing the derivative of the value function, and
stability analysis, but always in the nonlinear programming context. In this thesis, we propose differ-
ent approaches to defining a constant rank-type constraint qualification for nonlinear second-order
cone programming problems, that may be based either on the sequential optimality condition and
then provide global convergence of an augmented Lagrangian algorithm, or a sequential approach
based on the eigenvectors structure of the second-order cone and then get global convergence of
algorithms based on an external penalty method, or a classical approach based on a constant rank
theorem and then guarantees second-order necessary optimality condition based on the critical cone
and holds for any Lagrange multiplier.

Keywords: second-order cone programming, constant rank, constraint qualification, second-order
optimality conditions.
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Resumo

SILVEIRA, T. P. Condições de qualificações do tipo posto constante e condições de
otimalidade de segunda ordem. Tese (Doutorado) - Instituto de Matemática e Estatística, Uni-
versidade de São Paulo. Brasil, 2010.

A condição de qualificação de posto constante, introduzida por Janin em [Math. Program. Study
21:110-126, 1984], tem se mostrado muito robusta em diversas aplicações, tais como convergência
global de algoritmos, condições de otimalidade de segunda ordem, cálculo da derivada da função
valor, e análise de estabilidade, mas sempre no contexto de programação não linear. Nesta tese, nós
propomos diferentes abordagens para definir uma condição de qualificação do tipo posto constante,
que podem ser baseadas ou em condições sequenciais de otimalidade e então obter convergência
global de um algoritmo tipo Lagrangiano aumentado, ou uma abordagem sequencial baseada na
estrutura dos autovetores do cone de segunda ordem e então obter convergência global de algoritmos
baseados em um método de penalidade externa, ou uma abordagem clássica baseada em um teorema
de posto constante e então garantir condições necessárias de otimalidade de segunda ordem baseadas
no cone crítico e que valem para qualquer multiplicador de Lagrange.

Palavras-chave: programação sob o cone de segunda ordem, posto constante, condição de quali-
ficação, condições de otimalidade de segunda ordem.
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Chapter 1

Introduction

The study of optimization is present throughout history even if implicitly. To solve problems
in the best way possible walks side by side with human history. However, in the last century, the
studies of optimization grew as fast as its importance, and it can be seen when we analyze the
volume of research, publications, and applications of optimization nowadays.

One of the most studied classes of problems is Nonlinear Programming (NLP) with several
applications. In addition, along with the development of computers with a bigger capacity for pro-
cessing data, it was necessary the develop algorithms to solve more complex problems. But since the
solution of an optimization problem is topological and to rewrite this to a computational language
is not a trivial task, new optimality conditions are necessary. One of the most important optimality
conditions are the so-called Karush-Kuhn-Tucker (KKT) conditions, that take into account a linear
combination among the gradient of the objective function and the gradients of the constraints. How-
ever, in order to have the fulfillment of the KKT conditions, an additional requirement is necessary
for a minimizer: the constraint qualifications (CQ).

In NLP the studies of constraint qualifications are well developed in different ways, among
which we highlight the Linear Independence Constraint Qualification (LICQ) [NW99], Constant
Rank Constraint Qualification (CRCQ) [Jan84], Mangasarian-Fromovitz Constraint Qualification
(MFCQ) [MF67], Relaxed-CRCQ (RCRCQ) [MS11a], Constant Positive Linear Dependence (CPLD)
[QW00], Relaxed-CPLD (RCPLD) [AHSS12a], Constant Rank of the Subspace Component (CRSC)
[AHSS12b], Abadie’s Constraint Qualification [Aba65] and Guignard’s Constraint Qualification
[Gui69].

It is important to notice that many of the constraint qualifications mentioned above are related
to a constant rank condition, such as CRCQ, RCRCQ, and CRSC. The CRCQ was proposed by
Janin in [Jan84] where he showed that under this condition it is possible to guarantee the existence
of a Lagrange multiplier for a local minimizer, i.e., CRCQ is enough the fulfill the KKT conditions.
In addition, Janin showed that under CRCQ is possible to compute the derivative of the value
function, showed in a simple way that if the constraints are affine then every local minimizer of an
NLP problem has a Lagrange multiplier, and, that CRCQ is independent of MFCQ and strictly
weaker than LICQ. The CRCQ condition was used in many applications such as the study of stability
[GM15, GO16] and global convergence of algorithm [BHR18]. Later, in [AES10] the authors showed
that CRCQ also has second-order information, even if the set of Lagrange multipliers is neither
unique (LICQ case) nor compact (MFCQ case).

When we pass to other classes of problems, the field of study of constraint qualifications was
not as developed as it is in NLP. For example, we mention Nonlinear Second-Order Cone Program-
ming (NSOCP), Nonlinear Semidefinite Programming (NSDP), and Nonlinear Cone Programming
(NCP). The most known constraint qualifications in these classes of problems are the Nondegeneracy
Condition (see [AG03] for NSOCP context, for example) and the Robinson’s Constraint Qualifica-
tion [Rob76], that can be seen as the generalizations of the LICQ and MFCQ, respectively. Under
the nondegeneracy condition, the set of Lagrange multipliers is singleton and it makes all the anal-
ysis easier. When we consider Robinson’s CQ, the set of Lagrange multipliers is nonempty and
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2 INTRODUCTION 1.0

compact. However, when we analyze second-order conditions, that are desirable because they work
as necessary and sufficient conditions for a local minimizer, Robinson’s CQ is not so robust. See the
discussion in Chapter 2 for more details. Thus, the development of constant rank-type constraint
qualifications for NSOCP becomes more important.

To the best of our knowledge, just recently the first proposals of CRCQ, RCRCQ, and CRSC
were made for NSOCP in [ZZ19]. However, analyzing their conditions we noticed that it was incor-
rect. Thus, these facts led us to the research that will be presented in this thesis and were published
in some papers: [AFH+21, AHM+22a, AHM+22b, AHM+23].

In Chapter 2, we present the initial definitions and properties of an NSOCP problem. Later, we
present the main constraint qualifications known in the NLP context, in order to show how well
structured the field of constraint qualifications is in NLP. We also present the proposals made by
Zhang and Zhang in [ZZ19] and our counterexample published in [AFH+21]. Such counterexample
showed that defining a constant rank-type constraint qualification for NSOCP would not be an
easy task, once such a condition would have to take into account that only vanish all the possible
subsets of gradients and requires constant rank is not enough to guarantee the existence of Lagrange
multipliers. See also the case when the constraints are linear in [ART02]. After that, we presented
our first approaches in order to extend constant rank-type constraint qualifications for NSCOP.
For such, the main idea was to “reduce” some second-order constraints to inequality constraints
whenever it was possible and to use Robinson’s CQ for the remaining constraints. In addition, we
applied a powerful tool that is the sequential optimality conditions developed in [AFH+19]. These
constraint qualifications were called Naive-CRSC and Naive-RCPLD. This approach was called
“naive” because we could not deal with the pure second-order constraints, i.e., the ones that we
could not reduce to NLP constraints and we used our expertise in constraint qualifications in NLP
and we showed that we could mix both types of constraints and define a CQ. These results are
based on [AHM+22a].

In Chapter 3, we continue our research in defining constant rank-type constraint qualifications,
but now without avoiding taking into account the second-order structure. Actually, based on the
ideas given by sequential optimality conditions, we analyzed the eigenvector structure of NSOCP and
noticed that we could propose weaker versions of the nondegeneracy condition and Robinson’s CQ
called weak-nondegeneracy and weak-Robinson, respectively, where we showed that we do not have
to analyze all the eigenvectors of the second-order cone in order to have a constraint qualification,
just the ones that are limits of the eigenvectors of the constraints. With these weaker versions at
hand, we could propose constraint qualifications called weak-CRCQ and weak-CPLD. This proposal
has a “sequential” approach and it is enough to guarantee the global convergence of algorithms based
on an external penalty method even if the set of Lagrange multipliers is not compact. The results
of this chapter are based on [AHM+22b].

In Chapter 4, we finally proposed a constant rank-type constraint qualification in a similar vein
that Janin did for NLP in [Jan84], that is, using a constant rank theorem. At first, we had to
build a relation between the nondegeneracy condition and Abadie’s CQ. However, the definition of
Abadie’s CQ was not so clear in the NSOCP context and it can be verified when we analyze the
definition of Abadie’s in [ZZ19, Theorem 3.1] and, in addition, recently Börgens et al. in [BKMW20,
Definition 5.5] proposed Abadie’s CQ for optimization problems in Banach spaces. In order to make
everything clear, we recalled even the original Guignard’s CQ [Gui69], and then we got the bridge
between the nondegeneracy condition and the correct version of Abadie’s CQ. After that, using
the constant rank theorem used by Janin that was based on [Mal72], we introduced Constant
Rank Constraint Qualification (CRCQ) for NSOCP. This proposal of CRCQ is strictly weaker than
the nondegeneracy condition and independent of Robinson’s CQ, as expected. It explains in a
simple way the linear case and shows when we might have Lagrange multipliers for this class of
problems. Moreover, under CRCQ we could also obtain second-order information in a similar way
that Andreani et al. obtained in [AES10] for NLP, that is, a second-order condition based on the
critical cone and holds for any Lagrange multiplier. This result is stronger than the one that can be
obtained under Robison’s CQ, even if the set of Lagrange multipliers is not compact. These results
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are based on [AHM+23]. Later in this chapter, we proposed a constraint qualification based on
curves for NSOCP called Ref-McCormick inspired by the one made in [FSS22] in the NLP context.
We showed that Ref-McCormick is weaker than CRCQ and stronger than Abadie’s CQ, and keeps
the second-order information that CRCQ has. Moreover, we showed that under Ref-McCormick
the Hessian of the Lagrangian does not depend on the Lagrange multiplier, and this result is new
even in NLP. Inspired by this discussion, we also proposed new constraint qualifications in the
NLP context that imply the NLP-Ref-McCormick, and then are enough to guarantee second-order
conditions based on the critical cone.

In the Appendices, we have the papers [AFH+21, AHM+22a, AHM+22b, AHM+23] and, more-
over, an additional one in Appendix 5.1 (Appendix E), that was recently submitted where we show
the difficulties on obtaining a practical algorithm that guarantees strong second-order conditions in
NLP.
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Chapter 2

Initial results of NSOCP

In this chapter, we will introduce the Nonlinear Second-Order Cone Programming (NSOCP)
problem and the first approaches in trying to define a constant rank-type constraint qualification
for this class of problems. The main results of this chapter are based on [AFH+21, AHM+22a].

2.1 Nonlinear Second-Order Cone Programming Problem

Let us consider the following problem

Minimize f(x),
s.t. gj(x) ∈ Lmj , j = 1, . . . , q,

(NSOCP)

where f : Rn → R and Lmj is a second-order cone (or Lorentz cone), which is given by Lmj :=
{(z0, ẑ) ∈ R × Rmj−1 | z0 ≥ ∥ẑ∥} when mj > 1 and L1 := {x ∈ R | x ≥ 0}. We will denote by
Dgj(x) the first-order derivative of the function gj : Rn → Rmj at a given point x ∈ Rn, and by
Dgj(x)

T the transpose of Dgj(x). In addition, D2gj(x) is the second-order derivative of gj at x
and D2gj(x)[d1, d2] denotes the operation of D2gj(x) on d1, d2 ∈ Rn. We will assume that f, gj ,
j = 1, . . . , q are at least twice continuously differentiable.

The interior part of Lmj is int(Lmj ) := {(z0, ẑ) ∈ R × Rmj−1 | z0 > ∥ẑ∥} and the nonzero
boundary is bd+(Lmj ) := {(z0, ẑ) ∈ R × Rmj−1 | z0 = ∥ẑ∥ > 0}. Let us denote the feasible set of
(NSOCP) by Ω. Given a point x ∈ Ω, let us define the following index sets:

Iint(x) := {j ∈ {1, . . . , q} | gj(x) ∈ int(Lmj )},
IB(x) := {j ∈ {1, . . . , q} | gj(x) ∈ bd+(Lmj )},
I0(x) := {j ∈ {1, . . . , q} | gj(x) = 0},

which consist of the indices j ∈ {1, . . . , q} of the constraints that hit the interior, the nonzero
boundary, and the vertex of their respective cones.

Two important cones in order to study optimality conditions at a feasible point x are the
(Bouligand) tangent cone TΩ(x) and the linearized cone LΩ(x), which are given by

TΩ(x) := {d ∈ Rn | ∃ tk → 0+, ∃ dk → d such that x+ tkd
k ∈ Ω}, (2.1)

and

LΩ(x) := {d ∈ Rn | Dgj(x)d ∈ TLmj
(gj(x)), j = 1, . . . , q} (2.2)

=

{
d ∈ Rn Dgj(x)d ∈ Lmj , j ∈ I0(x);

⟨Dgj(x)d,Γjgj(x)⟩ ≥ 0, j ∈ IB(x)

}
, (2.3)

where Γj is an mj × mj diagonal matrix with 1 at its first entry and −1 at the others, and ⟨·, ·⟩
denotes the usual inner product, and the equality was obtained in [BR05, Lemma 25]. It is known
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6 INITIAL RESULTS OF NSOCP 2.1

that TΩ(x) ⊆ LΩ(x), but the reverse it is not always satisfied.
Given a cone K ⊆ Rn, the cone K◦ is called polar cone of K and it is defined as follows

K◦ := {y ∈ Rn | ∀x ∈ K, ⟨y, x⟩ ≤ 0}.

The polar cone is convex and closed. In addition, we have that (K◦)◦ = cl(K), that is, the closure
of K. These relationships will be important when we analyze constraint qualifications.

One of the most well-known optimality conditions is called first-order geometric necessary con-
dition. If x is a local minimizer of (NSOCP), then

−∇f(x) ∈ TΩ(x)◦. (2.4)

Since the cone TΩ(x) is a geometrical object, computing its polar might not be an easy task.
One could ask about the relationship between −∇f(x) and LΩ(x)

◦, once we have an analytical
description of LΩ(x), and then we could try to compute its polar. However, since the inclusion
TΩ(x) ⊂ LΩ(x) might be strict, then we can obtain LΩ(x)

◦ ⊊ TΩ(x)◦ and thus might there is a gap
between the information obtained and the true optimality information of x analyzing only the polar
of LΩ(x). These facts lead us to analyze other conditions in order to characterize local minimizers.

We say that the Karush-Kuhn-Tucker (KKT) conditions hold for problem (NSOCP) at a feasible
point x if there exists µj ∈ Lmj , j = 1, . . . , q such that

∇xL(x, µ) = ∇f(x)−
q∑

j=1

Dgj(x)
Tµj = 0, (2.5)

⟨µj , gj(x)⟩ = 0, j = 1, . . . , q, (2.6)

where L(x, µ) := f(x)−∑q
j=1⟨µj , gj(x)⟩ is the Lagrangian function for problem (NSOCP), ∇xL(x, µ)

is the gradient of L at the point (x, µ) with respect to the variable x. The vectors µj that satisfy
(2.5) and (2.6) are called Lagrange multipliers. The set of all Lagrange multipliers associated to a
feasible point x will be denoted by Λ(x).

Let us analyze with more detail the condition (2.6). Notice that if j ∈ Iint(x), then we must
have µj = 0. If j ∈ I0(x), then µj can be any vector in Lmj . In the last case, if j ∈ IB(x), then

µj = αjΓjgj(x), (2.7)

for some αj ∈ R+. See [AG03, Lemma 15] for more details. Substituting (2.7) in (2.5), we obtain
that x is a KKT point if there are µj ∈ Lmj , j ∈ I0(x) and αj ≥ 0, j ∈ IB(x) such that

∇f(x)−
∑

j∈I0(x)
Dgj(x)

Tµj −
∑

j∈IB(x)

αj∇ϕj(x) = 0, (2.8)

where
ϕj(x) = [gj(x)]0 − ∥ĝj(x)∥ (2.9)

and
∇ϕj(x) =

1

∥ĝj(x)∥
Dgj(x)

TΓjgj(x), (2.10)

j ∈ IB(x) and it is called reduction mapping. See more details about this in [BR05]. Notice that
the conditions above are precisely the KKT conditions for the following reformulated problem

Minimize f(x),
s.t. gj(x) ∈ Lmj , j ∈ I0(x),

ϕj(x) ≥ 0, j ∈ IB(x),

where the original constraints gj(x) ∈ Lmj such that j ∈ IB(x) are replaced by the nonlinear
constraints ϕj(x) ≥ 0 and the remaining ones, that is, j ∈ Iint(x), are omitted. These facts give us
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a powerful tool in order to study constraint qualifications for (NSOCP) problems, once constraint
qualifications are well developed for nonlinear programming problems.

Despite describing a simple relationship between the gradient of the objective function and the
first-order derivatives of the constraints, KKT conditions are not an optimality condition in the
sense that it is satisfied by all local minimizers. In order to guarantee the existence of the Lagrange
multipliers, it is necessary a constraint qualification.

One of the most studied constraint qualifications is the so-called Nondegeneracy condition. Using
the ideas given by the reduction mapping, let us recall its definition. See [BS00, Equation 4.172] for
more details.

Definition 2.1.1. (Nondegeneracy condition) Let x be a feasible point of (NSOCP). Consider
all the row vectors of the matrices Dgj(x)

T , j ∈ I0(x), together with the row vectors ∇ϕj(x)
T , j ∈

IB(x). We say that Nondegeneracy condition holds at x when these vectors are linearly independent.

The nondegeneracy condition is very similar to the Linear Independence Constraint Qualification
for nonlinear programming problems [NW99]. Indeed, under nondegeneracy, it is possible to show
that the set Λ(x) is singleton. The reader can find more properties related to this condition in
[BR05, Section 4].

Another well-known constraint qualification for (NSOCP) is the Robinson’s constraint quali-
fication. This condition was proposed in [Rob76] for a general conic context. However, since we
are interested in second-order cone problems, let us restrict ourselves to this case and explore its
properties in a deeper way. Following the ideas given in [BS00, Proposition 2.97, Corollary 2.98 and
Lemma 2.99], we have the following:

Definition 2.1.2. (Robinson’s CQ) Let x be a feasible point of (NSOCP). We say that Robinson’s
CQ holds at x if

q∑
j=1

Dgj(x)
Tµj = 0 and µj ∈ Lmj , ⟨µj , gj(x)⟩ = 0 =⇒ µj = 0, j = 1, . . . , q. (2.11)

With the reduction mapping in mind, we can rewrite the condition (2.11) in the following way∑
j∈I0(x)

Dgj(x)
Tµj +

∑
j∈IB(x)

αj∇ϕj(x) = 0,

where µj ∈ Lmj , j ∈ I0(x); αj ≥ 0, j ∈ IB(x) implies that µj = 0, j ∈ I0(x) and αj = 0,
j ∈ IB(x). Under Robinson’s CQ it is possible to show that the set of Lagrange multipliers is
compact and non-empty [BS00, Propositions 3.9 and 3.17]. Thus, Robinson’s CQ can be seen
as a natural generalization of the Mangasarian-Fromovitz Constraint Qualification for nonlinear
programming problems [Rob82]. We will present the definition of LICQ and MFCQ properly in the
following section.

Although these conditions are well established and have a counterpart in nonlinear programming
problems, the field of study of constraint qualifications for (NSOCP) is not as well developed. To
be more specific, to the best of our knowledge the first extension approach of constant rank-type
constraint qualifications was in [ZZ19]. However, in [AFH+21] we showed that their proposals were
incorrect. In order to have a better comprehension of the difficulties of extending constant rank-type
constraint qualifications for (NSOCP), let us introduce them properly for nonlinear programming
problems and, after that, we will analyze the proposals of [ZZ19].

2.2 Revisiting Nonlinear Programming Problem

Let us consider the standard nonlinear programming problem



8 INITIAL RESULTS OF NSOCP 2.2

Minimize f(x),
s.t. gj(x) ≥ 0, j = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,
(NLP)

where f, gj , hi : Rn → R, j = 1, . . . ,m, i = 1, . . . , p are twice continuously differentiable. Given
a feasible point x of (NLP), we define the set of active inequality constraints as A(x) := {j ∈
{1, . . . ,m} | gj(x) = 0}.

Given a solution x of (NLP), we are interested in using first-order conditions in order to char-
acterize this point. In a nonlinear programming context, we say that the KKT conditions hold at a
feasible point x, if there exist λ ∈ Rp and µ ∈ Rm

+ such that

∇f(x) +

p∑
i=1

λi∇hi(x)−
∑

j∈A(x)

µj∇gj(x) = 0. (2.12)

The tangent cone and the linearized cone are defined in a similar way to (NSOCP). We just
have to keep in mind that the feasible set Ω is given by (NLP). Thus,

TΩ(x)NLP := {d ∈ Rn | ∃ tk → 0+, ∃dk → d such that x+ tkd
k ∈ Ω}

and

LΩ(x)NLP :=

{
d ∈ Rn ∇hi(x)

Td = 0, i = 1, 2, . . . , p
∇gj(x)

Td ≥ 0, j ∈ A(x)

}
.

In a nonlinear programming context, it is simple to compute the polar cone of LΩ(x)NLP. It is
given by

LΩ(x)
◦
NLP =

v ∈ Rn | v =

p∑
i=1

λi∇hi(x)−
∑

j∈A(x)

µj∇gj(x), µj ≥ 0

 .

Note that the KKT conditions can be written as −∇f(x) ∈ LΩ(x)
◦
NLP. Thus, since the geometric

condition also holds in a nonlinear programming context, that is, if x is a local minimizer of
(NLP), then −∇f(x) ∈ TΩ(x)◦NLP, any condition which implies LΩ(x)

◦
NLP ⊆ TΩ(x)◦NLP must be a

constraint qualification in nonlinear programming context. Now, let us analyze the counterpart of
the nondegeneracy condition and Robinson’s CQ for (NLP):

Let x be a feasible point of (NLP). Then:

i) the Linear Independence Constraint Qualification (LICQ) holds at x if the set{
{∇hi(x)}pi=1, {∇gj(x)}j∈A(x)

}
is linearly independent;

ii) the Mangasarian-Fromovitz Constraint Qualification [MF67] (MFCQ) holds at x if

m∑
i=1

λi∇hi(x)−
∑

j∈A(x)

µj∇gj(x) = 0, µj ≥ 0

implies that λi = 0, i = 1, 2, . . . , p and µj = 0, j ∈ A(x).

The Linear Independence CQ has some important properties. For example, under LICQ we have
the existence and uniqueness of the Lagrange multiplier, that is, if x is a local minimizer of (NLP)
and satisfies LICQ, then there is a unique Lagrange multiplier (λ, µ) ∈ Rp ×Rm

+ such that (x, λ, µ)
satisfies the KKT conditions for (NLP). See [NW99] for more details. The MFCQ condition can be
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seen as a positive linearly independence of the gradients of the active constraints, where the scalars
associated with the gradients of the inequality constraints must be non-negative. In this way, it
is possible to see that MFCQ is weaker than LICQ. The MFCQ condition implies that the set of
Lagrange multipliers is a non-empty and compact set.

Despite having good properties as a constraint qualification, the MFCQ condition may fail
in simple cases. For example, if we consider a nonlinear programming problem with two linear
inequality constraints g1(x), g2(x) ≥ 0 where g2(x) = −g1(x), then MFCQ (and, consequently,
LICQ) does not hold at any feasible point. A good way of dealing with linear constraints was
presented by Janin in [Jan84] through the Constant Rank Constraint Qualification (CRCQ). Let
us recall the definition.

Definition 2.2.1. (CRCQ for NLP) Let x be a feasible point of (NLP). We say that the Constant
Rank Constraint Qualification (CRCQ) holds at x of (NLP), if there exists a neighborhood V of x,
such that for every subsets I ⊆ {1, . . . , p} and J ⊆ A(x), the rank of {∇hi(x)}i∈I ∪ {∇gj(x)}j∈J
remains constant for all x ∈ V .

In [Jan84], the author showed that CRCQ is strictly weaker than LICQ and independent of
MFCQ. The CRCQ also explains in a simple way what happens at (NLP) where all the constraints
are linear. In order to show that CRCQ is indeed a constraint qualification, Janin used a con-
stant rank theorem to obtain the equality TΩ(x) = LΩ(x), which is known as Abadie’s Constraint
Qualification in nonlinear programming problems.

At first, CRCQ seems no relation with LICQ, as CRCQ requires a piece of information in a
neighborhood of x and is described for every subset of constraints. However, by requiring LICQ, we
are requiring linear independence for all subsets of active constraints in a whole neighborhood of
the point, in other words, LICQ can be equivalently described as for every subset I ⊆ {1, 2, . . . , p},
J ⊆ A(x), the set {∇hi(x),∇gj(x) | i ∈ I, j ∈ J} is linearly independent. From this point of view,
we can see that CRCQ is weaker than LICQ.

In addition to describing in a very simple way the existence of Lagrange multipliers in a problem
with linear constraints, the CRCQ also has other important properties related to second-order
optimality conditions. In order to have a better comprehension of this topic, let us define the
following sets.

Let x be a feasible point of (NLP). The the critical cone C(x)NLP, is defined as

C(x)NLP := LΩ(x)NLP ∩ {∇f(x)}⊥,
where {∇f(x)}⊥ denotes the set of vectors that are orthogonal to ∇f(x). In addition, when x admits
a Lagrange multiplier pair (λ, µ) associated respectively with equalities and active inequalities, the
critical cone can be written as

C(x)NLP =


∇hi(x)

Td = 0, i = 1, 2, . . . , p
d ∈ Rn ∇gj(x)

Td ≥ 0, j ∈ A(x), µj = 0
∇gj(x)

Td = 0, j ∈ A(x), µj > 0

 .

The critical cone represents true second-order information since sufficient optimality conditions are
also based on the same critical cone, thus the necessary second-order conditions based on the critical
cone are more desirable.

We say that the Strong Second-Order Condition (SSOC) holds at a KKT point x of (NLP)
associated to the Lagrange multipliers λ ∈ Rp, µ ∈ Rm

+ , if for every d in the critical cone C(x)NLP
we have that

dT

∇2f(x) +

p∑
i=1

λi∇2hi(x)−
∑

j∈A(x)

µj∇2gj(x)

 d ≥ 0. (2.13)

If the inequality above is strict, that is, if the quadratic form in (2.13) is positive definite in the
critical cone, then we have a sufficient condition for strict local optimality.



10 INITIAL RESULTS OF NSOCP 2.2

In contrast to theoretical optimality conditions, any known second-order practical algorithm is
only guaranteed to satisfy a weaker necessary second-order condition, where the critical directions
considered are those of the following critical subspace:

S(x)NLP :=

{
d ∈ Rn ∇hi(x)

Td = 0, i = 1, 2, . . . , p
∇gj(x)

Td = 0, j ∈ A(x)

}
, (2.14)

which is the lineality space of C(x)NLP. If in (2.13) we consider directions d in the critical subspace
S(x) instead of considering the direction in the critical cone, then we say that x satisfies the Weak
Second-Order Condition (WSOC) for (NLP). At a first-order stationary point x satisfying strict
complementarity, the critical cone is reduced to the critical subspace, but in general, these sets may
be different. Note that even for linear constraints, at the vertices of a polytope, the critical subspace
is empty, which causes the required second-order condition to be automatically satisfied regardless
of the objective function, which indicates that this condition is too weak to attest optimality.

The study that makes the relation between constraint qualification and second-order optimality
conditions is not so easy. For example, since LICQ implies the uniqueness of the Lagrange multipliers
it is possible to show that a local minimizer x of (NLP) associated with (λ, µ) satisfies SSOC. On
the other hand, even if MFCQ implies compactness of the Lagrange multiplier set, an example
given by Arutyunov in [Aru98] shows that “min + MFCQ” does not imply even WSOC. Such a
counter-example was rediscovered by Anitescu in [Ani00, Section 3]. This also implies that constraint
qualifications that were proposed later that are weaker than MFCQ, also do not satisfy such second-
order optimality conditions. With this in mind and recalling that CRCQ is independent of MFCQ,
one can ask about the relationship between CRCQ and SSOC. This question is fully explained by
Andreani et al. in [AES10].

Theorem 2.2.1. ([AES10, Theorem 3.1]) Suppose that x ∈ Ω is a local minimizer of (NLP) such
that CRCQ holds. Then, for any Lagrange multiplier (λ, µ) ∈ Λ(x), (x, λ, µ) verifies the strong
second-order condition.

The theorem above has important implications. One of the most important is the fact that under
CRCQ we may not have that the set of Lagrange multipliers is bounded. However, the Hessian of
Lagrangian is positive semidefinite for all Lagrange multipliers. Again, since the condition based on
the critical cone has the “non-gap” property, it is more desirable.

Later, some weaker versions of CRCQ were proposed. Let x be a feasible point of (NLP). Then:

i) the Relaxed-CRCQ (RCRCQ) [MS11a] holds at x if there exists a neighborhood V of x such
that for any subset J ⊆ A(x), the rank of the family {∇hi(x),∇gj(x) | i ∈ {1, 2, . . . , p}, j ∈ J}
remains constant for all x ∈ V .

ii) consider the following set

J−
NLP(x) := {j ∈ A(x) | −∇gj(x) ∈ LΩ(x)

◦
NLP}. (2.15)

The Constant Rank of the Subspace Component (CRSC) [AHSS12b] holds at x, if there exists
a neighborhood V of x such that the rank of {∇hi(x)}pi=1 ∪{∇gj(x)}j∈J−

NLP
remains constant

for all x ∈ V .

iii) the Weak Constant Rank (WCR) [AMS07] holds at x if there exists a neighborhood V of x
such that the rank of the family {∇hi(x) | i ∈ {1, 2, . . . , p}} ∪ {∇gj(x) | j ∈ A(x)} remains
constant for all x ∈ V .

Under RCRCQ it is possible to show that every local minimizer is a SSOC point for any Lagrange
multiplier [MS11b, Theorem 6]. In [AHSS12b], the authors showed that CRSC is weaker than
MFCQ. Thus, we have that SSOC does not hold under this condition. The difference between
RCRCQ and CRSC is the subsets where constant rank is required around the feasible point. Under
RCRCQ, we vary all the subsets of indexes of the inequality constraints that are active at x. On the
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other hand, CRSC captures exactly the set in which constant rank is necessary in order to define a
constraint qualification. In addition, even though WCR condition seems to have similar properties
as CRSC, only WCR is not enough to guarantee even the existence of Lagrange multipliers, that
is, it is not a constraint qualification. See [AMS07, Counterexample 5.1] for more details. This fact
shows us the importance of identifying correctly the sets of gradients such that constant rank is
required. Proceeding in the correct way can give us not only the existence of Lagrange multipliers
but some second-order information as well.

2.3 First Approaches for CRCQ in NSOCP

In this section, we will show some approaches to defining a constant rank-type constraint qualifi-
cation in nonlinear second-order cone programming. To the best of our knowledge, the first tentative
was made by Zhang and Zhang in [ZZ19]. In that paper, the authors proposed not only an extension
of CRCQ but also RCRCQ and CRSC. Let us rewrite the proposal given in [ZZ19]

Definition 2.3.1. The Constant Rank Constraint Qualification (CRCQ) as defined in [ZZ19] holds
at a feasible point x of (NSOCP) if there exists a neighborhood V of x such that for any index sets
J1 ⊆ I0(x) and J2 ⊆ IB(x), the family of matrices whose rows are the union of Dgj(x), j ∈ J1 and
the vector rows (Dgj(x)Γjgj(x))

T , j ∈ J2 has the same rank for all x ∈ V .

Let us have a first look at this definition. Given a feasible point x of (NSOCP), notice that
the vectors (Dgj(x)Γjgj(x))

T can be seen as the gradients of the functions ϕ̃j(x) :=
1
2([gj(x)]

2
0 −

∥ĝj(x)∥2) where j ∈ IB(x), which is a different reduction mapping for (NSOCP). We will see more
properties about this topic later. Since we already know that the constraints at the boundary of a
second-order cone have a behavior similar to inequality constraints in nonlinear programming prob-
lems, it is expected to require constant rank for all subsets of IB(x). However, the main difference
relies on the constraints in which j ∈ I0(x).

In order to make the analysis simpler, let us consider only one single SOCP constraint in
(NSOCP), that is, q = 1 and m1 > 1 with g(x) = 0. We have a “multi-dimensionally active”
constraint and, in this case, the CRCQ proposal given in [ZZ19] consists on requiring constant rank
of Dg(x)T for all x around x, i.e., constant rank of the set {∇g0(x), . . . ,∇gm1−1(x)} for x ∈ V ,
where V is a neighborhood of x. This condition is similar to WCR mentioned previously, which
is not a constraint qualification. In fact, the following example given in [AFH+21] shows that the
proposals given by Zhang and Zhang in [ZZ19] were incorrect.

Minimize f(x) := −x,

s.t. g(x) ∈ L2, (2.16)

with

g(x) =

(
g0(x)
g1(x)

)
:=

(
x

x+ x2

)
.

The point x = 0 is the unique feasible point of the problem. Since g(x) = 0, the KKT conditions
for this problem are given by the existence of µ = (µ0, µ1) ∈ L2 such that ∇f(x) −Dg(x)Tµ = 0,
that is,

−1− µ0 − µ1 = 0. (2.17)

Once µ ∈ L2, we have that µ0 ≥ |µ1|. Thus, (2.17) does not have a solution. In addition, if
we look deeper at this example, we notice more important facts. We have that ∇g0(x) = 1 and
∇g1(x) = 1 + 2x for all x. It means that all subsets of gradients

{∇g0(x)}, {∇g1(x)}, {∇g0(x),∇g1(x)}
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have constant rank equal to 1 for all x near x. Therefore, requiring constant rank of all subsets is
not enough for being a constraint qualification in (NSOCP).

The proposal made by Zhang and Zhang in [ZZ19] was based on an implicit function theo-
rem [Zor82] (which is similar to the approach used by Minchenko and Stakhovski in [MS11a] with
the Lyusternik’s Theorem [IT74]) in order to prove the existence of a feasible curve satisfying some
properties for each direction in the linearized cone. The difficulty with this approach is the fact
that there are “more types” of direction in the linearized cone. Indeed, let us consider the problem
(NSOCP) with q = 1 and a feasible point x such that g(x) = 0. Given a direction d ∈ LΩ(x), we
have that Dg(x)d ∈ Lm. If Dg(x)d ∈ int(Lm), then this direction does not interfere locally with
the feasibility of g(x + td), with t > 0 small enough. If Dg(x)d = 0, then we have a similar case
to the nonlinear programming problem, and an implicit function theorem can handle this situation
(see [AES10] for more details). However, if Dg(x)d ∈ bd+(Lm), we do not have known tools for
handling with this case. With this information in mind, we need to try another approach to solving
this issue.

A different approach to defining constraint qualifications is through the so-called sequential
optimality conditions [AHM11]. The Approximate-KKT (AKKT) condition was proposed initially
for (NLP) problems.

Theorem 2.3.1. Let x be a local minimizer of (NLP). Then, there exist sequences {xk} ⊂ Rn,
{λk} ⊂ Rp, {µk} ⊂ Rm

+ such that xk → x and

∇f(xk) +

p∑
i=1

λk
i∇hi(x

k)−
m∑
j=1

µk
j∇gj(x

k) → 0 (2.18)

The point x is called an AKKT-point. It is important to emphasize that the AKKT condition is
a pure optimality condition, that is, it is satisfied by every local minimizer even when any constraint
qualification is not. In addition, it is a powerful tool for proving algorithm convergence (see [BHR18]
and references therein). For the sake of defining CRCQ through the AKKT condition, we will need
the Carathéodory’s Lemma. Let us recall it as stated in [AHSS12a].

Lemma 2.3.1. (Carathéodory’s Lemma) Let v1, . . . , vp+q ∈ Rn be such that {vi}pi=1 are linearly
independent. Let αi, i = 1, . . . , p+ q be real numbers and consider the vector v :=

∑p+q
i=1 αivi. Then,

there exist J ⊆ {p + 1, . . . , p + q} and scalars α̃i, i ∈ {1, . . . , p} ∪ J , such that {vi}i∈{1,...,p}∪J are
linearly independent, αi > 0 implies α̃i > 0, for all i ∈ J , and

v =
∑

i∈{i=1,...,p}∪J
α̃ivi.

This lemma plays an important role once it says that we can rewrite a linear combination using
a subset of linear independent vectors and keeping the signal of some of the scalars. Remember
that in (2.12) the multipliers associated with the gradients of the inequalities must be non-negative.
In (NSOCP) context, the multipliers associated must be in their respective second-order cones.
Unfortunately, it may not be possible as illustrated in the following example given in [AFH+21,
Example 1].

Example 2.3.1. Consider the vector v := α0v0 + α1v1 + α2v2 with (α0, α1, α2) := (
√
2, 1, 1) ∈ L3,

v0 := (1, 1)T , v1 := (1, 0)T and v2 := (1, 0)T . If we put any scalar α̃0, α̃1, α̃2 equal to zero and
considering (α̃0, α̃1, α̃2) ∈ L3, then we can not rewrite the vector v as a linear combination of these
new scalars.

In the first moment, it looks like we can not apply any constant-rank approach for (NSOCP) in
order to get a constraint qualification. However, since we already have some constraint qualifications
well-defined for this context (nondegeneracy condition and Robinson’s CQ), we will combine these
results with the ideas given by the nonlinear programming problems. For such, let us consider the
following class of problems
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Minimize f(x),
s.t. gj(x) ∈ Lmj , j = 1, . . . , q,

hi(x) = 0, i = 1, . . . , p,
(2.19)

where f, hi : Rn → R, i = 1, . . . , p and gj : Rn → Rmj , j = 1, . . . , q are twice continuously
differentiable functions. Notice that this problem is essentially the problem (NSOCP) with equality
constraints, once we will use some ideas from (NLP). This addition is not necessary, because given
a feasible point x of (NSOCP) we could consider just the second-order constraints at the positive
boundary and deal with them as nonlinear inequality constraints, through reduction mapping as
presented previously. If on the one hand, we will use nonlinear programming ideas, on the other
hand, we will use the results coming from Robinson’s CQ. But in order to develop a formulation
for constraint qualification for the problem (2.19) and, in particular, for (NSOCP), we will need an
extension of AKKT condition for this context. It was developed by Andreani et al. in [AFH+19].

Theorem 2.3.2. Let x be a local minimizer of (2.19). Then, there exist sequences {xk} ⊂ Rn,
{λk} ⊂ Rp, {µk

j } ⊂ Lmj with j ∈ I0(x) and {αk
j } ⊂ R+ with j ∈ IB(x), such that

∇f(xk) +

p∑
i=1

λk
i∇hi(x

k)−
∑

j∈I0(x)
Dgj(x

k)Tµj −
∑

j∈IB(x)

αj∇ϕj(x
k) → 0 (2.20)

Now we have all the tools necessary to define our first proposal of constant rank-type condition
for a second-order cone programming problem. This proposal is called naive in the sense that we use
ideas coming from nonlinear programming problems in order to give some support for the studies
of constraint qualifications in second-order cone programming problems. It was proposed by us
in [AHM+22a].

Definition 2.3.2. (Naive-RCPLD) Let x be a feasible point of (2.19) and let I ⊆ {1, . . . , p} be
such that {∇hi(x)}i∈I is a basis of the linear space generated by vectors {∇hi(x)}pi=1. We say that
the Relaxed Constant Positive Linear Dependence (Naive - RCPLD) condition holds at x when, for
all J ⊆ IB(x), there exists a neighborhood V of x such that:

• {∇hi(x)}pi=1 has constant rank for all x ∈ V ;

• if the system ∑
i∈I

λi∇hi(x)−
∑

j∈I0(x)
Dgj(x)

Tµj −
∑

j∈IB(x)

αj∇ϕj(x) = 0

where λi ∈ R, i ∈ I; µj ∈ Lmj , j ∈ I0(x); αj ≥ 0, j ∈ IB(x), has a not all zero solution (λi)i∈I ,
(µj)j∈I0(x), (αj)j∈IB(x), then the vectors {∇hi(x)}i∈I∪{∇ϕj(x)}j∈J are linearly dependent for
all x ∈ V .

Here is important to notice something. In [AHM+22a] we proposed initially the condition above
using the reduction mapping ϕ̃j(x) := 1

2([gj(x)]
2
0 − ∥ĝj(x)∥2) where j ∈ IB(x), and now we are

presenting according to (2.9), that is, ϕj(x) = [gj(x)]0 − ∥ĝj(x)∥. However, the conditions are
equivalent because we have that

∇ϕj(x) =
1

[gj(x)]0
Dgj(x)

TΓjgj(x) =
1

[gj(x)]0
∇ϕ̃j(x). (2.21)

Furthermore, note that if IB(x) = ∅ and there is no equality constraints, the condition above is
Robinson’s CQ. In particular, we have that naive-RCPLD is weaker than Robinson’s CQ. The word
naive comes from the fact that we employ Robinson’s CQ (which is well-defined) for the second-
order constraints in which we can not reduce them to nonlinear inequality constraints in order to
apply the knowledge that we already have from (NLP). The condition presented in Definition 2.3.2
also shows that we can combine different types of constraints in one constraint qualification, which
can be very useful for more classes of problems.



14 INITIAL RESULTS OF NSOCP 2.3

Before we prove that Naive-RCPLD is a constraint qualification, we will present a naive extension
of the Constant Rank of the Subspace Component (CRSC). This condition plays an important role
in the studies of constraint qualifications in nonlinear programming problems, especially because
CRSC unifies MFCQ and CRCQ conditions, in the sense that it is implied by both of them.

Definition 2.3.3. (Naive-CRSC) Let x be a feasible point of (2.19). Define P (x) := {j ∈ I0(x) |
mj = 1} and Ĩ0(x) := I0(x) \ P (x) and consider J−(x) ⊂ IB(x) ∪ P (x) as

J−(x) :=

j0 ∈ IB(x) ∪ P (x)

∣∣∣∣∣∣−∇ϕj0(x) =

p∑
i=1

λi∇hi(x)−
∑

j∈IB(x)∪P (x)

αj∇ϕj(x); λi ∈ R, αj ≥ 0

 .

Set J+(x) := IB(x) ∪ P (x) \ J−(x). Let I ⊂ {1, . . . , p} and J ⊂ {J−(x)} be subsets such that
{∇hi(x)}i∈I∪{∇ϕj(x)}j∈J is a basis of the linear space generated by {∇hi(x)}pi=1∪{∇ϕj(x)}j∈J−(x).
We say that the Constant Rank of the Subspace Component (Naive - CRSC) condition holds at x
when there exists a neighborhood V of x such that:

• {∇hi(x)}pi=1 ∪ {∇ϕj(x)}j∈J−(x) has constant rank for all x ∈ V ;

• if the system ∑
i∈I

λi∇hi(x)−
∑

j∈Ĩ0(x)
Dgj(x)

Tµj −
∑

j∈J∪J+(x)

αj∇ϕj(x) = 0

where λi ∈ R, i ∈ I; µj ∈ Lmj , j ∈ Ĩ0(x); αj ≥ 0, j ∈ J+(x); αj ∈ R, j ∈ J has only the
trivial solution.

The following theorem shows that Naive-CRSC (and, consequently, Naive-RCPLD) are con-
straint qualifications. The proof is similar to the one given in [AHM+22a, Theorem 5.1], where we
proved the result for Naive-RCPLD. The difference between the proofs relies on the fact that when
we take a vector in spam{∇hi(x)}i∈I ∪ {∇ϕj(x)}j∈J instead of spam{∇hi(x)}i∈I , we have to take
care of the signals of the scalars of the vectors {∇ϕj(x)}j∈J , because they must be non-negative.
To prove the result, we will use AKKT condition as mentioned before.

Theorem 2.3.3. Let x be a feasible point of (2.19) satisfying the AKKT condition 2.20 and Naive-
CRSC. Then, the KKT conditions hold at x. In particular, the conditions Naive-CRSC and Naive-
RCPLD are constraint qualifications.

Proof. Consider the sets J−(x), J+(x), J and I according to Definition 2.3.3. Due to the fact
that x is an AKKT point, from 2.20 we know that there exist sequences {xk} ⊂ Rn, {λk} ⊂ Rp,
{µk

j } ⊂ Lmj with j ∈ I0(x) and {αk
j } ⊂ R+ with j ∈ IB(x), such that

∇f(xk) +

p∑
i=1

λk
i∇hi(x

k)−
∑

j∈Ĩ0(x)
Dgj(x)

Tµj −
∑

j∈J+(x)∪J−(x)

αj∇ϕj(x
k) → 0.

Since the set {∇hi(x)}pi=1∪{∇ϕj(x)}j∈J−(x) has constant rank for all x close enough to x and, in
addition, the set {∇hi(x)}i∈I∪{∇ϕj(x)}j∈J is a basis of the linear space generated by {∇hi(x)}pi=1∪
{∇ϕj(x)}j∈J−(x), then we have that {∇hi(x

k)}i∈I∪{∇ϕj(x
k)}j∈J is linearly independent for k large

enough. Furthermore, for each k large enough, by Carathéodory’s Lemma we can rewrite

p∑
i=1

λk
i∇hi(x

k)−
∑

j∈J−(x)

αj∇ϕj(x
k) =

∑
i∈I

λ̃k
i∇hi(x

k)−
∑
j∈Jk

α̃j∇ϕj(x
k),

where Jk is the set J at iteration k and α̃k ≥ 0. We obtain new scalars λ̃i, i ∈ I and α̃j , with j ∈ Jk

such that
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∇f(xk) +
∑
i∈I

λ̃k
i∇hi(x

k)−
∑

j∈Ĩ0(x)
Dgj(x)

Tµj −
∑

j∈J+(x)

αj∇ϕj(x
k)−

∑
j∈Jk

α̃j∇ϕj(x
k) → 0, (2.22)

where the vectors {∇hi(x
k)}i∈I ∪ {∇ϕj(x

k)}j∈Jk are linearly independent for k large enough. One
may ask about the signals of α̃k. If there exists an j0 ∈ J−(x) such that αj0 < 0, then we have that

p∑
i=1

λk
i∇hi(x

k)−
∑

j∈J+(x)∪J−(x)

αj∇ϕj(x
k) =

∑
i∈I

λ̃k
i∇hi(x

k)−
∑

j∈Jk\{j0}
α̃j∇ϕj(x

k)− α̃j0∇ϕj0(x
k).

(2.23)
Since j0 ∈ J−(x), from the definition of J−(x) we have that

−∇ϕj0(x) =

p∑
i=1

λi∇hi(x) +
∑

j∈IB(x)∪P (x)

αj∇ϕj(x); λi ∈ R, αj ≥ 0

which implies

α̃j0∇ϕj0(x
k) = |αj0 |

 p∑
i=1

λi∇hi(x)−
∑

j∈IB(x)∪P (x)

αj∇ϕj(x)


with correct signals of αj for j ∈ IB(x)∪P (x) = J+(x)∪ J−(x). Substituting the expression above
in the right side of the equation 2.23, we can apply Carathéodory’s Lemma for this new linear
combination and get the result in 2.22.

The set Jk may not be the same for all k. However, by the pigeonhole principle, we can consider
subsequences where the sets Jki are the same for all ki. In order to simplify notation, let us call
J := Jki . From this point, the proof follows exactly the same steps of [AHM+22a, Theorem 5.1]

Notice that in Definition 2.3.3 we could consider all the subsets of E ⊆ {1, . . . , p} and F ⊆
IB(x) ∪ P (x) and request constant rank of {∇hi(x)}i∈E ∪ {∇ϕj(x)}j∈F for all x around x and
then define Naive-CRCQ, or consider {∇hi(x)}pi=1 ∪ {∇ϕj(x)}j∈F and then get a Naive-RCRCQ
definition, but this is not the goal of this work. Later, we will define a constant rank-type condition
without using the help provided by Robinson’s CQ.

The following example given in [AHM+22a, Example 5.1] shows that Naive-RCPLD is strictly
weaker than Robinson’s CQ. Here, we just consider a minor modification in the reduction mapping.

Example 2.3.2. Consider the second-order constraint g : R→ R2 given by g(x) := (g0(x), g(x)) =
(x, x) ∈ L2 and the feasible point x = 1. We have that I0(x) = ∅ and IB(x) = J−(x) ̸= ∅. In
addition, considering the reduction mapping ϕ(x) = g0(x) − |g(x)| we get that ∇ϕ(x) = 0. Thus,
Robinson’s CQ does not hold at x while Naive-RCPLD holds. Last, if we consider the space generated
by ∇ϕ(x), we have that J = ∅ is a basis for it. Therefore, Naive-CRSC also holds at x.

The naive CQ’s, in addition to being shown to be a constraint qualification using AKKT con-
dition, also show that it is possible to deal with two types of constraints at the same optimization
problem, namely, second-order constraints and nonlinear constraints. This approach was made based
on the fact that we could not deal with the constraints “purely conic", that is, Ĩ0(x) ̸= ∅. Somehow,
we are avoiding to deal with them. In the following chapters, we will face such constraints directly
and propose new constraint qualifications without this skip.
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We finish this chapter with the following figure that shows the relation among the well-known
constraint qualifications for the second-order cone programming problem and the naive proposals.

Nondegeneracy

Robinson’s CQ

Naive-RCPLD

Naive-CRSC

Figure 2.1: Relation among the CQ’s for (NSOCP). The boxes in blue are the well-known CQ’s in nonlinear
second-order cone programming and the green boxes are the naive proposals.



Chapter 3

Sequential constraint qualifications for
NSOCP

In this chapter, we will introduce new constraint qualifications for Nonlinear Second-Order Cone
Programming (NSOCP). For such, we will revisit the nondegeneracy condition and propose a new
point of view on it. With this in hand, we will be able to introduce weaker versions of Nondegeneracy
and Robinson’s CQ and, in addition, new constant rank-type constraint qualifications. The main
results of this chapter are based on [AHM+22b].

3.1 Revisiting nondegeneracy condition

Let us consider the problem (NSOCP) presented in the previous chapter

Minimize f(x),
s.t. gj(x) ∈ Lmj , j = 1, . . . , q,

and consider a feasible point x. Also, let us consider for a while that q = 1 just to make some quick
analysis. According to Definition 2.1.1, the nondegeneracy condition holds at x if the gradients of
the coordinates of g at x are linearly independent, which is very similar to the LICQ for nonlinear
programming problems and it is reasonable in order to define a regularity condition. However, the
natural extension of a linearly independence condition is a constant rank condition. This leads one
to think in a constant rank-type condition like Zhang and Zhang in [ZZ19], that is, the constant rank
of the set which contains all the gradients of the coordinates of g around the point x. Furthermore,
even requiring a stronger condition (considering all possible subsets) we may not get a constraint
qualification, which was shown in [AFH+21] and explained in the previous chapter. The situation
is even harder when we take into account that Carathéodory’s Lemma does not work in the second-
order context (see [AFH+21, Example 1]).

All of the points mentioned in the previous paragraph rely on the fact that dealing with the
second-order cone structure is not an easy task, especially if we try doing this just based on ideas
that come from a nonlinear programming context. Thus, in order to avoid this issue, let us analyze
the second-order cone structure in a deeper way.

Consider the m-dimensional second-order cone and let y := (y0, ŷ) ∈ R×Rm−1 be any arbitrary
vector. By definition, we have that y0 ≥ ∥ŷ∥. According to [AG03, Section 4], consider the following
identity

y =
1

2
(y0 − ∥ŷ∥)

(
1

− ŷ
∥ŷ∥

)
+

1

2
(y0 + ∥ŷ∥)

(
1
ŷ

∥ŷ∥

)
,

17
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and define

λ1(y) := y0 − ∥ŷ∥, λ2(y) := y0 + ∥ŷ∥ and u1(y) :=
1

2

(
1

− ŷ
∥ŷ∥

)
, u2(y) :=

1

2

(
1
ŷ

∥ŷ∥

)
(3.1)

if ∥ŷ∥ > 0, and

u1(y) :=
1

2

(
1

−ŵ

)
, u2(y) :=

1

2

(
1
ŵ

)
,

if ∥ŷ∥ = 0, where ŵ ∈ Rm−1 can be any arbitrary vector such that ∥ŵ∥ = 1. The scalars λ1(y)
and λ2(y) are called eigenvalues of y associated to the eigenvectors u1(y) and u2(y), respectively.
Notice that we can analyze the belongingness to the second-order cone of a vector y through its
eigenvalues. Indeed, we have that y ∈ Lm if, and only if, λ1(y), λ2(y) ≥ 0. In addition, if both
eigenvalues are strictly positive then we have that y ∈ int(Lm), if λ1(y) = 0 and λ2 > 0, then we
have that y ∈ bd+(Lm) and, lastly, if λ1(y) = λ2(y) = 0, then y is the vertex of the second-order
cone. Based on this, we also can define the orthogonal projection of y onto Lm, which is given by

PLm(y) := [λ1(y)]+u1(y) + [λ2(y)]+u2(y),

where [·]+ := max{·, 0}. The following figure shows the vector y and its eigenvectors related to the
second-order cone.

Figure 3.1: An arbitrary vector y and its eigenvectors.
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With these ideas in mind, the goal now is rewriting the nondegeneracy condition in terms of the
eigenvectors. Just to avoid overwriting, from now on we will assume that mj > 1 for j = 1, . . . , q.

Definition 3.1.1. Let K ⊆ Rn be a nonempty closed convex cone and consider a matrix M ∈ Rn×m.
We say that M is K-linearly independent if given any v ∈ K \ {0}, we have that Mv ̸= 0.

The definition above is related to the concept of injectivity over K. We can rewrite the definition
above in the following way: the matrix M is K-linearly independent, if Mv = 0 with v ∈ K, then
v = 0. Notice that if we consider K = Rn, then we get that M is injective.

The following lemma is a particular case of [AHM+22b, Lemma 2.1], which provides an equiv-
alence in order to define Lm-linearly independence. We will omit the proof.

Lemma 3.1.1. Let Lm be the m-dimensional second-order cone. Consider the set S := {ŵ ∈
Rm−1 | ∥ŵ∥ = 1} and, for each ŵ ∈ S, consider the vectors Kŵ := {(1,−ŵ), (1, ŵ)}. We have that

Lm =
⋃
w∈S

cone(Kŵ), (3.2)

where cone(Kŵ) denotes the conic hull of Kŵ. We have that a matrix M ∈ Rn×m is Lm-linearly
independent if, and only if, the vectors {(1,−ŵ), (1, ŵ)} are positively linearly independent, for every
fixed ŵ ∈ S. In addition, notice that

Rm =
⋃

ŵ∈Rm−1

∥ŵ∥=1

span({(1,−ŵ), (1, ŵ)}), (3.3)

where span({(1,−ŵ), (1, ŵ)}) denotes the linear span of the vectors (1,−ŵ) and (1, ŵ). We have
that the matrix M is injective if, and only if, the vectors {(1,−ŵ), (1, ŵ)} are linearly independent,
for every fixed ŵ ∈ S.

The lemma above explains Lm-linear independence (and the usual concept of injectivity) from a
different point of view. Despite being initially defined only for one cone, we can consider the product
of closed convex cones {Lmj}qj=1 and the family of matrices related to them {Mj}qj=1. For such, we
just need to consider the cone L :=

∏q
j=1 Lmj and the matrix M whose lines are the matrices Mj .

This will be pivotal for what we will do in the second-order cone programming context. With this
new tool at hand, we can rewrite nondegeneracy (and, consequently, Robinson’s CQ) in terms of
L-linear independence. The reader can find more details in [BR05].

Definition 3.1.2. Let x be a feasible point of (NSOCP). We say that

• Nondegeneracy condition holds at x if the family{
Dgj(x)

TΓjgj(x)
}
j∈IB(x)

⋃{
Dgj(x)

T
}
j∈I0(x) (3.4)

is R|IB(x)| ×
∏

j∈I0(x)
Rmj -linearly independent;

• Robinson’s CQ holds at x if the family 3.4 is R|IB(x)|
+ ×

∏
j∈I0(x)

Lmj -linearly independent.

Finally, we are able to write the nondegeneracy condition and Robinson’s CQ in a way that
takes into account the eigenvectors of the second-order cone. Here, we will present a different proof
from [AHM+22b, Corollary 3.1] because we will be able to get a “hint” related to the eigenstructure
of (NSOCP). For such, let us consider the following result that follows directly from Lemma 3.1.1
and Definition 3.1.2.
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Proposition 3.1.1. Let x be a feasible point of (NSOCP). We say that

• Nondegeneracy condition holds at x if, and only if,{
Dgj(x)

Tu1(gj(x))
}
j∈IB(x)

⋃{
Dgj(x)

T (1,−ŵj), Dgj(x)
T (1, ŵj)

}
j∈I0(x) (3.5)

is linearly independent for every ŵj ∈ Rmj−1 such that ∥ŵj∥ = 1, j ∈ I0(x);

• Robinson’s CQ holds at x if, and only if, the family (3.5) is positively linearly independent
for every ŵj ∈ Rmj−1 such that ∥ŵj∥ = 1, j ∈ I0(x).

Proof. Since the proof of nondegeneracy condition and Robinson’s CQ are quite similar in this
approach and the first one is easier, we will prove nondegeneracy and give more details for better
comprehension. Let x be a feasible point of (NSOCP) such that{

Dgj(x)
TΓjgj(x)

}
j∈IB(x)

⋃{
Dgj(x)

T
}
j∈I0(x)

is R|IB(x)| ×
∏

j∈I0(x)
Rmj -linearly independent. For each j ∈ I0(x) take a vector ŵj ∈ Rmj−1 such

that ∥ŵj∥ = 1. Assume that there are scalars αj , βj , j ∈ I0(x) and γj , j ∈ IB(x), not all of them
simultaneously zero such that∑

j∈I0(x)
αjDgj(x)

⊤(1, ŵj) + βjDgj(x)
⊤(1,−ŵj) +

∑
j∈IB(x)

γjDgj(x)
⊤u1(gj(x)) = 0.

Rearranging the terms above and recalling the expression given in (3.1) to compute u1(gj(x)) we
get∑
j∈I0(x)

(αj + βj)∇gj,0(x) +
∑

j∈I0(x)
(βj − αj)Dĝj(x)

⊤ŵj +
1

2

∑
j∈IB(x)

γjDgj(x)
T

(
1,− ĝj(x)

∥ĝj(x)∥

)
= 0.

In addition, since gj,0(x) = ∥ĝj(x)∥ for j ∈ IB(x) and
1

2

(
1,− ĝj(x)

∥ĝj(x)∥

)
=

1

2∥ĝj(x)∥
Γjgj(x), it

follows that∑
j∈I0(x)

(αj + βj)∇gj,0(x) +
∑

j∈I0(x)
(βj − αj)Dĝj(x)

⊤ŵj +
1

2

∑
j∈IB(x)

γj
∥ĝj(x)∥

Dgj(x)
TΓjgj(x) = 0.

Due to the fact that ∥ŵj∥ = 1 and we have that (3.4) is linearly independent, we obtain αj = βj =
γj = 0 for all j.

Now assume that x is such that{
Dgj(x)

Tu1(gj(x))
}
j∈IB(x)

⋃{
Dgj(x)

T (1,−ŵj), Dgj(x)
T (1, ŵj)

}
j∈I0(x) (3.6)

is linearly independent for every ŵj ∈ Rmj−1 such that ∥ŵj∥ = 1, j ∈ I0(x). Suppose, by absurd,
that there are vectors vj ∈ Rmj , j ∈ I0(x) and θj ∈ R, j ∈ IB(x) not all of them simultaneously
zero such that ∑

j∈I0(x)
Dgj(x)

T vj +
∑

j∈IB(x)

θjDgj(x)
TΓjgj(x) = 0.

Again, using the fact that

θjDgj(x)
TΓjgj(x) = θjDgj(x)

T (gj,0(x),−ĝj(x)) = ∥ĝj(x)∥θjDgj(x)
T

(
1,− ĝj(x)

∥ĝj(x)∥

)
= 2∥ĝj(x)∥θjDgj(x)

Tu1(gj(x))
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where gj,l the l-th coordinate of gj , we obtain∑
j∈I0(x)

Dgj(x)
T vj +

∑
j∈IB(x)

2∥ĝj(x)∥θjDgj(x)
Tu1(gj(x)) = 0.

Using the fact that ∥ĝj(x)∥ ̸= 0 for all j ∈ IB(x) and (3.6) is linearly independent, then we obtain
that there is at least one vector vj ̸= 0. Defining ηj = 1

2(vj,0 − ∥v̂j∥), ϑ = 1
2(vj,0 + ∥v̂j∥) and

ŵj =
v̂j

∥v̂j∥ if ∥v̂j∥ ≠ 0 or ŵj as being any unitary vector otherwise, we get∑
j∈I0(x)

Dgj(x)
T vj =

∑
j∈I0(x)

ηjDgj(x)
T (1,−ŵj) +

∑
j∈I0(x)

ϑjDgj(x)
T (1, ŵj).

Finally, we obtain∑
j∈I0(x)

ηjDgj(x)
T (1,−ŵj) +

∑
j∈I0(x)

ϑjDgj(x)
T (1, ŵj) +

∑
j∈IB(x)

2∥ĝj(x)∥θjDgj(x)
Tu1(gj(x)) = 0.

Since (3.6) is linearly independent, we must have ηj = ϑj = θj = 0 for every j, which implies that
vj must be equal to zero for every j due to the definition of ηj and ϑj , which is a contradiction.

3.2 Eigenvectors and constraint qualifications

Based on the previous section, we will introduce new constraint qualifications using the results
given in Proposition 3.1.1. In order to build these new constraint qualifications under the light of
Proposition 3.1.1, consider the problem (NSOCP when q = 1 and g(x) = 0 in. Assume that x
is nondegenerate. According to Definition 2.1.1, we have that the columns of Dg(x)T are linearly
independent, that is, given scalars αi ∈ R, i = 0, . . . ,m− 1, the equation

m−1∑
i=0

αi∇gi(x) = 0

implies that α0 = . . . = αm−1 = 0, where g = (g0, . . . , gm−1). In this case, we are analyzing the
linear independence of m vectors, as usual. Under the light of Proposition 3.1.1, the point x is
nondegenerate if, and only if, given α, β ∈ R such that

αDg(x)T (1,−ŵ) + βDg(x)T (1, ŵ) = 0, (3.7)

we have that α = β = 0 for every ŵ ∈ Rm−1 such that ∥ŵ∥ = 1. In this second case, we are
analyzing the linear independence of two vectors for each fixed unitary vector ŵ ∈ Rm−1. If we
analyze the equation (3.7) in a deeper way, we obtain the following equation

(α+ β)∇g0(x) + (β − α)Dĝ(x)T ŵ = 0, (3.8)

where ĝ = (g1, . . . , gm−1). Taking a look at equation (3.8), we can observe that the nondegeneracy
condition relates the “linear independence between ∇g0(x) and Dĝ(x)T ”, which is expected once
we know that all the gradients are linearly independent. However, the information about the linear
independence of the coordinates of ĝ is kind of hidden if we analyze the nondegeneracy condition
only under the light of Proposition 3.1.1. Indeed, just when we vanish the vectors ŵ ∈ Rm−1 such
that ∥ŵ∥ = 1 we may obtain some information about the linear independence of the columns of
Dĝ(x)T . For example, if for every unitary vector ŵ ∈ Rm−1 we have that Dĝ(x)T ŵ ̸= 0, it means
that the columns of Dĝ(x)T are linearly independent. On the other hand, if there exists a unitary
vector ŵ ∈ Rm−1 such that Dĝ(x)T ŵ = 0, then we can obtain a non-trivial solution of (3.8) and
nondegeneracy fails at x but it does not necessarily impossibility the fullness of weak-nondegeneracy
(see Example 3.2.1 for more details).



22 SEQUENTIAL CONSTRAINT QUALIFICATIONS FOR NSOCP 3.2

In order to finish this little discussion, we would like to point out that the second part of the proof
of Proposition 3.1.1 showed us that despite choosing all unitary vectors wj ∈ Rmj−1, there are some
vectors that are more important than others. Indeed, following similar ideas given in [AHMR23b],
we can propose new constraint qualifications where only the limit points of sequences consisting of
eigenvectors of g(xk) are already enough.

Definition 3.2.1 (Weak-nondegeneracy and weak-Robinson’s CQ [AHM+22b]). Let x be a feasible
point of (NSOCP). We say that:

• Weak-nondegeneracy holds at x if, for each sequence {xk}k∈N → x, there is an infinite
subset I ⊆ N and convergent eigenvectors sequences {u1(gj(xk))}k∈I → 1

2(1,−ŵj) and
{u2(gj(xk))}k∈I → 1

2(1, ŵj), with ŵj ∈ Rmj−1 and ∥ŵj∥ = 1, for every j ∈ I0(x), such
that {

Dgj(x)
Tu1(gj(x))

}
j∈IB(x)

⋃{
Dgj(x)

T (1,−ŵj), Dgj(x)
T (1, ŵj)

}
j∈I0(x) (3.9)

is linearly independent;

• Weak-Robinson’s CQ holds at x if, for each sequence {xk}k∈N → x, there is an infinite
subset I ⊆ N and convergent eigenvectors sequences {u1(gj(xk))}k∈I → 1

2(1,−ŵj) and
{u2(gj(xk))}k∈I → 1

2(1, ŵj), for every j ∈ I0(x), such that (3.9) is positively linearly in-
dependent.

These conditions are proved to be constraint qualifications in [AHM+22b]. By definition we
have that weak-nondegeneracy and weak-Robinson are weaker than nondegeneracy and Robinson‘s
CQ, respectively. In order to establish more details among their relation, let us remember the
brief discussion of some paragraphs above where we explored the problem (NSOCP) with only one
second-order cone constraint at a feasible point x such that g(x) = 0. As mentioned previously, in
order to make nondegeneracy fail and keep the fullness of weak-nondegeneracy, we need to have
a situation where (at least) ∇g0(x) does not belong the the space generated by the columns of
Dĝ(x)T and require that Dĝ(x)T does not have full rank.

Example 3.2.1. Consider the following feasible set Ω = {x = (x1, x2) ∈ R2 | g(x) ∈ L3} where
g(x) := (expx1 −1, 3 sin(x2), 4 sin(x2)) at the point x = (0, 0). We have that g(x) = (0, 0, 0). Take
any sequence {xk}k∈N → x. Since x2 converges to 0, for all k large enough we have that ĝ(x2) = (0, 0)
if, and only if, x2 = 0.

If there exists a subsequence {xk}k∈S where S is an infinite subset of N such that xk2 ̸= 0, then
the eigenvectors of g(xk) are uniquely determined. It follows that ∥ĝ(xk)∥ = 5 sin(xk2) and

u1(g(x
k)) =

1

2

(
1,−3

5
,−4

5

)
and u2(g(x

k)) =
1

2

(
1,

3

5
,
4

5

)
,

for all k ∈ S (remember that sin(xk2) ̸= 0 if xk2 ̸= 0 and xk2 is close enough to zero). Defining

ŵ :=

(
3

5
,
4

5

)
we get that

lim
k∈S

u1(g(x
k)) =

1

2
(1,−ŵ) and lim

k∈S
u2(g(x

k)) =
1

2
(1, ŵ),

and, moreover, since

Dg(x)T =

[
expx1 0 0
0 3 cos(x2) 4 cos(x2)

]
⇒ Dg(x)T =

[
1 0 0
0 3 4

]
we obtain that

Dg(x)⊤(1,−ŵ) =
1

2

(
1
−5

)
and Dg(x)⊤(1, ŵ) =

1

2

(
1
5

)
are linearly independent.
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On the other hand, if there exists a subsequence {xk}k∈S such that xk2 = 0 the eigenvectors of
g(xk) are not uniquely determined. From the computation of Dg(x)T we obtain that nondegeneracy
does not hold at x. From the proof of Proposition 3.1.1 we know that must exists a vector ŵ ∈ R2

with ∥ŵ∥ = 1 such that Dg(x)T (1,−ŵ) and Dg(x)T (1, ŵ) are not linearly independent. Indeed, it
is enough to take any unitary vector ŵ ∈ ker(Dĝ(x)T ), which exists due to the fact that Dĝ(x)T

does not have full rank. Thus, avoiding the eigenvectors that belong to the kernel of Dĝ(x)T we will
obtain limit points such that Dg(x)T (1,−ŵ) and Dg(x)T (1, ŵ) are linearly independent and then
weak-nondegeneracy holds at x.

The next point is to find “the difference” between nondegeneracy and weak-nondegeneracy,
that is, what must be required additionally to weak-nondegeneracy in order to get nondegeneracy
condition. From the previous discussion, we already know the answer for the case with only one
second-order constraint: the surjectivity of Dĝ(x)T . Indeed, this follows directly from the relation
established in 3.8 and the definition of the nondegeneracy condition. The remaining issue now is
the multifold case, which is answered in the following proposition and the proof can be found
in [AHM+22b, Proposition 3.1].

Proposition 3.2.1. Let x be a feasible point of (NSOCP). The nondegeneracy condition holds at
x if, and only if, weak-nondegeneracy holds at x and, moreover, the matrix

M :=


...

Dĝj(x)
...


j∈I0(x)

is surjective.

In order to establish the relation between weak-nondegeneracy and Robinson’s CQ (and weak-
Robinson as well), we will analyze Proposition 3.1.1 when Robinson’s CQ holds at a feasible point x
in a second-order cone programming problem with only one constraint g(x) ∈ Lm where g(x) = 0,
in a similar vein that we did for nondegeneracy condition.

If Robinson’s CQ holds at x, given non-negative scalars α and β, we have that the vectors
Dg(x)T (1,−ŵ) and Dg(x)T (1, ŵ) are positively linearly independent, that is, the following equation

αDg(x)T (1,−ŵ) + βDg(x)T (1, ŵ) = 0,

which can be rewritten as

(α+ β)∇g0(x) + (β − α)Dĝ(x)T ŵ = 0,

only admits the solution α = β = 0. In the first moment one could expect a similar behavior
between ∇g0(x) and Dĝ(x)T ŵ for a fixed unitary vector ŵ ∈ Rm−1, as we obtained in the weak-
nondegeneracy case (the linear independence between them). The more natural result would be to
get the positive linear independence between these vectors. However, the following example shows
that it may not hold.

Example 3.2.2. Consider the following constraint g : R → R2 given by g(x) = (2x,−x) at the
point x = 0. The eigenvectors are ŵ = ±1. Let us consider ŵ = 1 and take scalars α, β ≥ 0. It
follows that

αDg(x)T (1,−ŵ) + βDg(x)T (1, ŵ) = 0

give us

α(2,−1)

(
1
−1

)
+ β(2,−1)

(
1
1

)
= 0

3α+ β = 0,
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which only admits the solution α = β = 0. Thus, we obtain that the vectors Dg(x)T (1,−ŵ) and
Dg(x)T (1, ŵ) are positively linearly independent. On the other hand,

α∇g0(x) + βDĝ(x)T ŵ = 0,

give us 2α−β = 0, that is, the vectors ∇g0(x) and Dĝ(x)T ŵ are not positively linearly independent.

With this in mind, in order to find the relation between weak-nondegeneracy and Robinson’s CQ
(and weak-Robinson) we can explore the fact that ∇g0(x) and Dĝ(x)T ŵ may be linearly dependent.
Moreover, we will use another characterization of Robinson’s CQ for this purpose. Consider the
problem (NSOCP) and a feasible point x. The Robinson’s CQ holds at x if there exists d ∈ Rn

such that gj(x) + Dgj(x)d ∈ int(Lmj ) for every j. When we have only one constraint g(x) ∈ Lm

at a feasible point x such that g(x) = 0, the fulfillness of Robinson’s CQ means the existence of a
direction d ∈ Rn in which Dg(x)d ∈ intLm, that is,

⟨∇g0(x), d⟩ > ∥Dĝ(x)d∥.

Somehow the inequality above shows that the achievement of Robinson’s CQ is due to the fact
the “magnitude” of ∇g0(x) is strictly greater than the “magnitude” of Dĝ(x). With this information
and hints at hand, we can finally show the relation between weak-nondegeneracy and Robinson’s
CQ (and consequently weak-Robinson).

Example 3.2.3. Consider the constraint g : R → R3 given by g(x) = (tan(x), sin
(
x
4

)
, sin

(
x
4

)
) at

the point x = 0. We have that g(x) = (0, 0, 0) and

∇g0(x) = sec2(x), Dĝ(x) =

(
1

4
cos
(x
4

)
,
1

4
cos
(x
4

))
.

In particular, when we consider the point x we get ∇g0(x) = 1 and Dĝ(x) =
(
1
4 ,

1
4

)
. If we consider

d = 1 we obtain ∇g0(x)d > ∥Dĝ(x)d∥ and then Robinson’s CQ (and consequently weak-Robinson)
holds at x.

Now take any sequence {xk}k∈N → x in which xk ̸= 0 for all k large enough. Thus, we get that
ĝ(xk) ̸= (0, 0) and then the eigenvectors of g(xk) are uniquely determined and they are given by

u1(g(x
k)) =

1

2

(
1,−

√
2

2
,−

√
2

2

)
and u2(g(x

k)) =
1

2

(
1,

√
2

2
,

√
2

2

)
.

Define ŵ :=
(√

2
2 ,

√
2
2

)
. It follows that

lim
k→∞

u1(g(x
k)) =

1

2
(1,−ŵ) and lim

k→∞
u2(g(x

k)) =
1

2
(1, ŵ),

and, in addition,

Dg(x)⊤(1,−ŵ) =
4−

√
2

4
> 0 and Dg(x)⊤(1, ŵ) =

4 +
√
2

4
> 0

are linearly dependent. Therefore, weak-nondegeneracy does not hold at x.

To finish this discussion about the relation among the CQ’s, we need to establish what happens
between Robinson’s CQ and weak-Robinson. Before presenting the result that we have at hand,
let us remember some points that differ from the nondegeneracy case from Robinson’s CQ. To
fix the ideas, consider the programming problem with only one second-order constraint g(x) ∈
Lm at a feasible point x ∈ Rn such that g(x) = 0. When we take nondegeneracy condition, we
know that ∇g0(x) does not belong to the image of Dĝ(x)T , which can also be provided by weak-
nondegeneracy condition as discussed previously. Furthermore, from the nondegeneracy condition,
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we know that Dĝ(x)T has full column rank, and this is pivotal in order to build the difference with
weak-nondegeneracy, once we can have the fulfillness of weak-nondegeneracy without this condition
as we showed in Example 3.2.1.

On the other hand, even if we have the positive linear independence between Dg(x)T (1,−ŵ) and
Dg(x)T (1, ŵ), which is part of the condition of weak-Robinson, we may not have similar information
about ∇g0(x) and Dĝ(x)T ŵ as we showed in Example 3.2.2. Moreover, if Robinson’s CQ holds at
x, we do not have any information about the rank of Dĝ(x). Indeed, we can have a case where
Dĝ(x)T has full column-rank like g(x) = x, or a case where Dĝ(x)T is null as g(x) = (x1, 0, . . . , 0).
In both cases, Robinson’s CQ holds at x = 0 and the rank varies from zero to complete. With this
information in mind, the best result that we could get is the following one and the proof can be
found in [AHM+22b, Theorem 3.1].

Theorem 3.2.1. Consider the problem (NSOCP). If q = 1, that is, if we have only one second-order
constraint g(x) ∈ Lm, then weak-Robinson CQ holds at x if, and only if, Robinson’s CQ also holds.
Moreover, if q > 1 and weak-Robinson CQ holds at x, then for each constraint gj , j ∈ {1, . . . , q} we
have that Robinson’s CQ holds at x separately.

Since we already have a new formulation for the nondegeneracy condition based on the eigenvec-
tors of the second-order cone, we can now introduce a constant rank-type constraint qualification
for problem (NSOCP). For such, consider the following notation

JJB ,J−
0 ,J+

0
(x, ŵ) :=

{
Dgj(x)

⊤u1(gj(x))
}
j∈JB

⋃{
Dgj(x)

⊤(1,−ŵj)
}
j∈J−

0⋃{
Dgj(x)

⊤(1, ŵj)
}
j∈J+

0

(3.10)

with ŵ = [ŵj ]j∈J−
0 ∪J+

0
, JB ⊆ IB(x), and J+, J− ⊆ I0(x), where J+ is related to (1, ŵ) and J− to

(1,−ŵ).

Definition 3.2.2 (weak-CRCQ and weak-CPLD). We say that a feasible point x of (NSOCP)
satisfies:

• Weak constant rank constraint qualification (weak-CRCQ) if for every sequence {xk}k∈N → x,
there exists some I ⊆∞ N, and convergent eigenvector sequences

{u1(gj(xk))}k∈I → 1

2
(1,−ŵj) and {u2(gj(xk))}k∈I → 1

2
(1, ŵj),

with ∥ŵj∥ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and J−, J+ ⊆ I0(x), we
have that: if the family of vectors JJB ,J−,J+(x, ŵ) is linearly dependent, then JJB ,J−,J+(x

k, ŵk)
remains linearly dependent for all k ∈ I large enough, where ŵ = [ŵj ]j∈J−∪J+ and ŵk =
[ŵk

j ]j∈J−∪J+ satisfies

u1(gj(x
k)) =

1

2
(1,−ŵk

j ) and u2(gj(x
k)) =

1

2
(1, ŵk

j ) (3.11)

for every j ∈ J− ∪ J+.

• Weak constant positive linear dependence (weak-CPLD) condition if for every sequence
{xk}k∈N → x, there is some I ⊆∞ N, and convergent eigenvector sequences

{u1(gj(xk))}k∈I → 1

2
(1,−ŵj) and {u2(gj(xk))}k∈I → 1

2
(1, ŵj),

with ∥ŵj∥ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and J−, J+ ⊆ I0(x), we
have that: if JJB ,J−,J+(x, ŵ) is positively linearly dependent, then JJB ,J−,J+(x

k, ŵk) is linearly
dependent for all k ∈ I large enough, where ŵ and ŵk are as above.
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First of all, notice that by definition we have that weak-CPLD is weaker than weak-CRCQ.
Also, we have the impression that the definition above seems too demanding, once we require a
statement related to all possible combinations of subsets of IB(x) and I0(x). However, when we
look at weak-nondegeneracy condition (weak-Robinson), keep in mind that even if we not require
explicitly any information about every subset JJB ,J−

0 ,J+
0
(x, ŵ), we require (positive) linear inde-

pendence for the set that contains all index and all vectors of (3.9). This means that we have
(positive) linear independence for every subset JJB ,J−

0 ,J+
0
(x, ŵ), that is, we have by definition that

weak-nondegeneracy is stronger than weak-CRCQ and, consequently, than weak-CPLD, and also
that weak-Robinson is stronger than weak-CPLD. Now let us establish the relation among weak-
nondegeneracy, weak-Robinson, and the CQ’s proposed above:

Example 3.2.4. Consider the constraint g : R→ R3 given by g(x) := (sin(x)−1, 6 sin(x), 8 sin(x))
at the feasible point x := 0. It follows that g0(x) = cos(x)− 1, ĝ(x) = (6 sin(x), 8 sin(x)), ∇g0(x) =
−1 and Dĝ(x)T = (6, 8)

We already know from previous discussions how to quickly identify if a single constraint at the
vertex of the second-order cone satisfies or not weak-nondegeneracy and weak-Robinson. In this case,
we have that ∇g0(x) belongs to the image of Dĝ(x)T , and then weak-nondegeneracy does not hold
at x. Moreover, the “magnitude” of Dĝ(x)T it is bigger than the “magnitude” of ∇g0(x) when we
look at the norms of their respective derivatives, and than weak-Robinson also does not hold at x.
However, let us prove this affirmation properly.

Take any sequence {xk}k∈N → x and assume without loss of generality that there exists a subse-
quence {xk}k∈S in which xk ̸= 0 for all k ∈ S. It follows that the eigenvectors of ĝ(xk) are uniquely
determined and they are given by:

u1(g(x
k)) =

1

2

(
1,−3

5
,−4

5

)
and u2(g(x

k)) =
1

2

(
1,

3

5
,
4

5

)
.

Now, defining ŵk = ŵ =
(
3
5 ,

4
5

)
, it give us

Dg(x)⊤(1,−ŵ) = ⟨(−1, 6, 8), (1,−3
5 ,−4

5)⟩ = −11 < 0,
Dg(x)⊤(1, ŵ) = ⟨(−1, 6, 8), (1, 35 ,

4
5)⟩ = 9 > 0.

Since these vectors have different signals, then they are positively linearly dependent. Thus, neither
weak-Robinson nor weak-nondegeneracy holds at x, as expected. Moreover, when we consider any
subset of {Dg(xk)⊤(1,−ŵk), Dg(xk)⊤(1, ŵk)} we have that the rank remains the same, once we are
considering ŵk = ŵ for all k ∈ S. Therefore, weak-CRCQ (and, consequently, weak-CPLD) holds
at x.

In order to build an example such that Robinson’s CQ does not imply weak-CRCQ, let us con-
sider a case where Dg(x)T (1,−ŵ) and Dg(x)T (1, ŵ) are LD but they are limits of PLI eigenvectors.

Figure 3.2: Two LI eigenvectors converging to two LD eigenvectors.

Moreover, such an example must have at least two variables. Indeed, otherwise, we would get
that Dg(x)T (1,−ŵ) ± 0 and, by the Theorem of the permanence of the signal we would have
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that Dg(xk)⊤(1,−ŵk) has the same signal for k large enough, and the same result for the other
eigenvector.

With these ideas in mind, we need to find a function g : R2 → Rm, m ≥ 2 in which ĝ(x) = 0,
Dĝ(x) = 0 but Dĝ(x) ̸= 0 for every x close to x (ĝ(x) := ∥x∥2, for example). Also, remember that
in order to make Robinson’s CQ holds at the point x, we need to consider a function g0(x) such
that the norm of its derivative at x be greater than the norm of Dĝ(x). Finally, we can present the
following example.

Example 3.2.5. Consider the constraint g : R2 → R2 given by

g(x) :=
(
5 exp(x1)− 5, x21 + x22

)
,

and the point x = (0, 0). It follows that

Dg(x) =

[
5 exp(x1) 0

2x1 2x2

]
and Dg(x) =

[
5 0
0 0

]
.

Considering the vector d = (1, 0)T we get that Dg(x)d = (5, 0)T ∈ int(L2), that is, Robinson’s CQ
holds at x.

Now, take any sequence {xk}k∈N → x. Without loss of generality, assume that ∥xk∥2 ̸= 0 for all
k. We get that the eigenvectors of g(xk) are uniquely determined and given by

u1(g(x
k)) =

1

2

(
1,− ĝ(xk)

∥ĝ(xk)∥

)
=

1

2
(1,−1) and u2(g(x

k)) =
1

2

(
1,

ĝ(xk)

∥ĝ(xk)∥

)
=

1

2
(1, 1) ,

that is associated to the vector ŵk = 1 and, in addition, ŵ = wk. On the one hand, we have that

Dg(xk)T (1,−ŵk) =

(
5 exp(xk1)− 2xk1

−2xk2

)
and Dg(xk)T (1, ŵk) =

(
5 exp(xk1) + 2xk1

2xk2

)
,

and then they are linearly independent. On the other hand, we have that Dg(x)T (1,−ŵ) =
Dg(x)T (1, ŵ) = (5, 0)T , that is, they are linearly dependent and it means that weak-CRCQ does
not hold at x.

Below we have a figure showing the relation among the constraint qualifications nondegeneracy
and Robinson with the proposed ones in the two chapters until the moment.

Nondegeneracy

Robinson’s CQ

Naive-RCPLD

Naive-CRSC

weak-Robinson

weak-nondegeneracy

weak-CRCQ

weak-CPLD

Figure 3.3: Relation among the CQ’s for (NSOCP). The boxes in blue are the well-known CQ’s in nonlinear
second-order cone programming and the green boxes are the new proposals including the weak versions.

To finish this chapter and prove that the conditions proposed are indeed constraint qualifications,
the strategy adopted was to use the external penalty method [AHM+22b, Theorem 4.1]. With this
result at hand, given a local minimizer x of (NSOCP) we can build a sequence {xk}k∈N → x where
each xk is a local minimizer of a regularized problem where the constraints are penalized. One
implication of this result relies on the fact that we can give a formula for the Lagrange multipliers
based on the penalty parameter and the unfeasibility of xk. After that, with this tool, we are able to
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prove not only that weak-CPLD is a constraint qualification, but also that it is enough to guarantee
convergence of an external penalty method. We will not show the proof of this result, but the reader
can find it in detail in [AHM+22b, Theorem 4.2].

Theorem 3.2.2. Consider the problem (NSOCP) and let x be a feasible point. Let {ρk}k∈N → ∞
be a sequence of penalty parameters and take a sequence {xk}k∈N → x in which

∇xL
(
x, ρkPLm1

(−g1(x
k)), . . . , ρkPLmq

(−gq(x
k))
)
→ 0.

If weak-CPLD holds at x, then x is a KKT point. In particular, weak-CPLD is a constraint quali-
fication.



Chapter 4

Constant Rank-type Constraint
Qualifications

In this chapter, we will present a new approach to defining constant rank-type constraint qualifi-
cation for the problem (NSOCP). In Chapter 2, we showed the difficulty of such proposals, some au-
thors tried before in [ZZ19] but made some mistakes as we showed in a counter-example in [AFH+21].
Also, we made a first proposal in [AHM+22a] where we used as much nonlinear programming struc-
ture as we could, once that in NLP the topic of constraint qualification is well-developed and we have
the help of a powerful tool: the sequential optimality condition. In Chapter 3, we used the eigenvec-
tors of the second-order cone in order to build new definitions of the nondegeneracy condition and
Robinson’s CQ, and then propose weaker constraint qualifications [AHM+22b]. However, we kind of
avoided the pure conical structure of the problem through Proposition 3.1.1. In this chapter we will
understand in a deeper way the essence of a constraint qualification of a constrained optimization
problem in order to define CRCQ in a similar vein as Janin did in [Jan84] and, moreover, some
second-order properties are held as proved in [AES10]. The results of this chapter are based on
[AHM+23].

4.1 Revisiting Abadie’s and Guignard’s constraint qualifications

In nonlinear programming problems, it is known that if the constraints are linear, then every
local minimizer has a Lagrange multiplier. A direct proof can be done using the constant rank
condition presented by Janin in [Jan84]. In that paper, Janin showed that given a feasible point x
of (NLP) for every direction d ∈ LΩ(x)NLP, there exists a curve ξ : [0, ε) → Rn such that ξ(0) = x,
ξ(t) ∈ Ω for all t ≥ 0 small enough and ξ′(0) = d. In other words, Janin proved that

TΩ(x)NLP = LΩ(x)NLP, (4.1)

which is called Abadie’s Constraint Qualification in a nonlinear programming context. The equality
between the tangent and linear cones implies that their polar are also equal, that is,

TΩ(x)◦NLP = LΩ(x)
◦
NLP, (4.2)

which is called Guignard’s Constraint Qualification in a nonlinear programming context. However,
when we pass to second-order cone programming problems, these conditions are not enough to
define a constraint qualification, as illustrated in the following example given by Andersen, Roos
and Terlaky in [ART02, Subsection 2.1].

Example 4.1.1. Consider the following problem

Minimize f(x) := −x2,
s.t. g(x) := (x1, x1, x2) ∈ L3.

(4.3)

29
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The feasible set is given by (x1, x2) ∈ R2 such that x1 ≥
√
x21 + x22. It implies that x2 = 0 and

that x := (0, 0) is a local minimizer of (4.3). Take any direction d ∈ LΩ(x), that is, d = (d1, d2) ∈ R2

such that Dg(x)d ∈ L3. It follows that Dg(x)d = (d1, d1, d2) = g(d) and Dg(x)d ∈ L3. Define
dk := d and tk := 1

k . Since g is linear, we get that

g(x+ tkd
k) = g(x) + tkg(d) ∈ L3,

because g(x), g(d) ∈ L3 and tk ≥ 0. Thus, TΩ(x) = LΩ(x) and, in addition, TΩ(x)◦ = LΩ(x)
◦.

However, as showed in [ART02, Subsection 2.1] there is no Lagrange multiplier for x.

The example above shows us some important points. The first one is the fact that the linearity
of the constraints is not enough to guarantee the existence of Lagrange multipliers in (NSOCP).
The second one, if there exists an Abadie-type constraint qualification for (NSOCP), then it is
not equal to the one that we know in nonlinear programming problems. Moreover, notice that
even a Guignard-type constraint qualification must be different from (NLP) case. The third one,
Abadie’s Constraint Qualification proposed by Zhang and Zhang in [ZZ19, Theorem 3.2] is also
incorrect (besides the constant rank-type constraint qualifications proposed by them, as we showed
in [AFH+21]).

With this information in mind, let us make a parallel path between nonlinear programming and
second-order cone programming problems in order to find the moment when the two theories start to
have different results. We know, for example, that the first-order geometric necessary condition (2.4)
still holds for both classes of problems. Thus, the next step will be to analyze Guignard’s constraint
qualification for both problems, which we already know contains some differences between NLP and
NSCOP. This is important because at least in the NLP context, Guignard’s constraint qualification
is the weakest CQ that we can request for a local minimizer in order to guarantee the existence of
Lagrange multipliers [GT71]. Moreover, the proposition of Guinard’s constraint qualification was
made for a more general class of problems, namely, in Banach spaces [Gui69].

4.1.1 Guignard’s Theorem

To fix the ideas, let B be a Banach Space (a vector space with a norm defined, namely, ∥ · ∥B,
that is complete when we consider the metric induced by its norm, i.e., d(x, y) := ∥x−y∥B). For the
sake of completeness, let us consider that B also has an inner product defined ⟨·, ·⟩B. In addition,
let K ⊆ B be a nonempty closed convex pointed cone (we will not go deep in the details about
Banach Spaces because it is not the goal of this subsection. The reader can find more details in
[Lim83, Bea11]). Consider the following problem

Minimize f(x),
s.t. g(x) ∈ K, (4.4)

where f : Rn → R and g : Rn → B are twice continuously differentiable. The tangent and linear
cones for (4.4) are defined in a similar way as (2.1) and (2.2), respectively, just adapting their
respective feasible sets. Now, consider the following pivotal set

H(x) := Dg(x)TNK(g(x)) (4.5)
=

{
Dg(x)T y | y ∈ NK(g(x))

}
,

where

NK(g(x)) := TK(g(x))◦ (4.6)
= {y ∈ K◦ | ⟨g(x), y⟩B = 0}

is the normal cone to K at g(x). With this information at hand, we can present the main result of
this subsection that was proved by Guignard in [Gui69].
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Theorem 4.1.1. (Theorem 2 of [Gui69]) Let x be feasible point of (4.4). Then

i) LΩ(x)
◦ = cl(H(x)) or, equivalently, LΩ(x) = H(x)◦;

ii) if x is a local minimizer and, in addition, TΩ(x)◦ = LΩ(x)
◦ and H(x) is closed, than there

exists some µ ∈ K◦ such that

∇f(x) +Dg(x)Tµ = 0 and ⟨g(x), µ⟩ = 0. (4.7)

In the first moment, the theorem above seems too similar to what is known in the classical
literature of nonlinear programming problems. Actually, the unique difference is the requesting of
closedness of H(x), which seems to be a little detail when we consider its structure: H(x) is the
linear image of a closed convex cone. The issue is that despite the first thought that H(x) is always
closed, this is not true. To be more specific, this is not a trivial problem and Pataki wrote a whole
paper only about this question in [Pat07]. Moreover, when we take into account the structure of
a nonlinear programming problem, we have that NRm

+
(g(x)) is polyhedral and then its image by

a linear application is always closed. In other words, in nonlinear programming problems the set
H(x) is automatically closed and this is the reason why Guignard’s constraint qualification reduces
to the equality TΩ(x)◦ = LΩ(x)

◦. However, when we pass to the second-order cone programming
context, this issue comes back and needs to be dealt with in a proper way.

When we look at Example 4.3, it is proved that TΩ(x) = LΩ(x). Thus, since we know that
there is no Lagrange multiplier due to the proof of Andersen in [ART02, Subsection 2.1], the only
explanation for this fact lies in the closedness of H(x). Indeed, Pataki showed in [Pat07, Example
4.3] that the set H(x) for the problem (4.3) is not closed and in [AHM+23, Example 2.1] we showed
in another way that H(x) is not closed. Actually, if the constraints of (NSOCP) are linear, we always
have TΩ(x) = LΩ(x) and the existence of Lagrange multipliers only depends on the closedness of
H(x).

Corollary 4.1.1. (Linear SOCP) Consider the following problem

Minimize f(x),
s.t. gj(x) ∈ Lmj , j = 1, . . . , q,

where f : Rn → R, gj : Rn → Rmj are continuously differentiable and the constraints gj, j = 1, . . . , q
are linear. Define K := Lm1×. . .×Lmq and g(x) := (g1(x), . . . , gq(x)) and let x be a local minimizer.
If the set H(x) defined in (4.5) is closed, then KKT conditions hold at x.

Proof. The inclusion TΩ(x) ⊆ LΩ(x) is always satisfied. Conversely, assume without loss of gen-
erality that gj(x) = 0 for j = 1, . . . , q. Take a direction d ∈ LΩ(x), consider any sequence of
non-negative scalars tk → 0, and define dk = d for all k. Also, due to the linearity of gj ’s we have
that

gj(x+ tkd
k) = gj(x) + tkDgj(x)d.

Since d ∈ LΩ(x), we have that Dgj(x)d ∈ Lmj for all j = 1, . . . , q, and then x+ tkd
k is feasible for

all k.

To finish this little discussion about Guignard’s Constraint Qualification, we take this oppor-
tunity to present below the correct definition for Abadie’s Constraint Qualification. Unfortunately,
we did not have access to the original publication of Abadie [Aba65] where it was presented his
constraint qualification. However, recently Börgens et al. also recalled this definition for optimiza-
tion problems in Banach Spaces in [BKMW20, Definition 5.5]. Just to make the future expla-
nation about the closedness of H(x) for the problem (NSOCP), from this point let us consider
K := Lm1 × . . .× Lmq , where g(x) := (g1(x), . . . , gq(x)). We will need this for the following defini-
tion.
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Definition 4.1.1. Let x be a feasible point of (NSOCP). We say that Abadie’s Constraint Quali-
fication holds at x if TΩ(x) = LΩ(x) and H(x) is closed.

Before we pass to the next session, let us just standardize our notation with the last results
related to Guignard’s CQ. Given an m-dimensional second-order cone Lm, we have that it is a self-
dual cone, that is, L◦

m = −Lm. The vectors in (4.6) will play the role of Lagrange multipliers, so in
order to keep the consistency with the KKT conditions presented in Chapter 1, we will consider the
Lagrange multipliers as being elements of Lm but with the negative signal in the equation as defined
in (2.5). In order to define the set H(x) as presented in (4.5) for the general problem (NSOCP), we
will consider the cone K := Lm1 × . . .× Lmq .

4.2 Nondegeneracy and Abadie’s CQ via Implicit Function Theo-
rem

In [Jan84], Janin proposed a constant rank-type constraint qualification showing that his pro-
posal implies Abadie’s CQ in a nonlinear programming problem. For such, he used an adapta-
tion [Jan84, Proposition 2.2] of a constant rank theorem given by Malliavin in [Mal72, Subsection
5.3]. We know that the constant rank theorem is a generalization of the well-known implicit function
theorem, which can be used to show that nondegeneracy implies Abadie’s CQ, for example. This
is the goal of this section, once we are interested in building CRCQ for (NSOCP), and the natural
path for that is to build the bridge between nondegeneracy and Abadie’s conditions.

In order to use the implicit function theorem, we will define some concepts that will be useful
for us. The reader can find more details in [IT74]. Let X and Y be Banach spaces and let U be a
neighborhood of a point x ∈ X.

Definition 4.2.1. Let F : U ⊆ X → Y . We say that F is Frechet differentiable at the point x, if
there exists a continuous linear operator Λ : X → Y such that

F (x+ h) = F (x) + Λh+ r(h),

where
lim

∥h∥X→0

∥r(h)∥Y
∥h∥X

= 0.

In addition, we say that F is regular at the point x ∈ X if it is Frechet differentiable at this
point and

ImDF (x) = Y,

where DF (x) denotes the Frechet differential of F at x.

The definition above is the natural generalization of the derivatives in Rn. With this concept
at hand, let us introduce the idea of tangent set and then we will be able to introduce the implicit
function theorem.

Definition 4.2.2. Let M be a subspace of X. We say that a vector v ∈ X is tangent to the set M
at the point x, if there exist an ε > 0 and a function r : [0, ε) → X such that

x+ tv + r(t) ∈ M, ∀t ∈ [0, ε),

where
lim
t→0

∥r(t)∥X
t

= 0.

The set of all of these tangent vectors is called tangent set to M at x and will be denoted by TM (x).

Theorem 4.2.1. (Liusternik’s Theorem [IT74]) Let X,Y be Banach spaces and consider a neigh-
borhood U of a point x ∈ X. Consider a function F : U → Y that is Frechet differentiable and
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suppose that F is regular at x. Also, assume that its derivative is continuous at x. Then, the tan-
gent space to the set

M := {x ∈ U | F (x) = F (x)}
at the point x is equal to the kernel of the operator F

′
(x), i.e.,

TM (x) = ker(DF (x)).

In addition, there exists a neighborhood Ux ⊂ U and a function ϕ : Ux → X such that

F (x+ ϕ(x)) = F (x)

for all x ∈ Ux.

Now we will prove that the nondegeneracy condition implies Abadie’s CQ. But before proving the
multifold case, we will do this for the case with only one single second-order constraint g : Rn → Rm

at the vertex of the second-order cone and after that at the boundary of the second-order cone, in
order to understand the concepts of the proofs.

Theorem 4.2.2. Consider the problem (NSOCP) with q = 1. Let x be a feasible point. Assume
that g(x) = 0. If nondegeneracy holds at x, then Abadie’s CQ also holds at x.

Proof. First, let us prove that if x is nondegenerate, then H(x) is closed and then we will prove that
LΩ(x) ⊆ TΩ(x). Take a convergent sequence {yk}k∈N in which yk → y. For each k ∈ N, there exists
only one vector vk ∈ −Lm such that yk = Dg(x)T vk, due to the fact that Dg(x)T has full column
rank. In addition, since Dg(x)T is a continuous application, we get that the sequence {vk}k∈N is
convergent and it converges to an element v ∈ −Lm, because it is a closed set. Thus.

y = lim
k→∞

yk = lim
k→∞

Dg(x)T vk = Dg(x)T lim
k→∞

vk = Dg(x)T v,

and then H(x) is closed.
Now, let us prove that LΩ(x) ⊆ TΩ(x). Take a direction d ∈ LΩ(x). Since we are assuming that

g(x) = 0, then we have three possibilities for d:

i) Dg(x)d ∈ int(Lm);

ii) Dg(x)d = 0;

iii) Dg(x)d ∈ bd+(Lm).

Let us consider each case separately. Assume that Dg(x)d ∈ int(Lm). Then

g(x+ td) = g(x) + tDg(x)d+ r(t), where lim
t→0

∥r(t)∥
t

= 0,

= tDg(x)d+ r(t) ∈ int(Lm)

for all t ≥ 0 small enough. Thus, defining tk → 0 and dk = d for all k, we have that g(x+tkd
k) ∈ Lm

for k large enough and then d ∈ TΩ(x).
Now, assume that Dg(x)d = 0, that is, d ∈ ker(Dg(x)). Consider the set

M := {x ∈ Rn | g(x) = g(x) = 0}.

Since x is nondegenerate, by Theorem 4.2.1 we have that TM (x) = ker(Dg(x)). Thus, there exists
an ε > 0 and a function r : [0, ε) → Rn such that

x+ td+ r(t) ∈ M, t ∈ [0, ε),
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where
lim
t→0

∥r(t)∥
t

= 0.

In other words, we have that g(x + td + r(t)) = 0 where t ∈ [0, ε). Defining tk := ε
k+1 and

dk := d+ r(tk)
tk

, we get that g(x+ tkd
k) ∈ Lm for all k.

In the last case, let us assume that Dg(x)d ∈ bd+(Lm). Before, we just like to emphasize that
this is the hardest case and this is the reason why we left it as being the last one. The main difficulty
relies on the fact that the direction d neither is orthogonal to all gradients of the constraints at the
same time nor points to the interior of the second-order cone. Let us deal with this case carefully.

Notice that since Dg(x)d ∈ bd+(Lm), we have that ∇g0(x)
Td = ∥Dĝ(x)d∥ > 0. Moreover, the

vector ΓDg(x)d is orthogonal to Dg(x)d and both belong to the second-order cone. If m > 2, let
{b1, . . . , bm−2} be an orthonormal basis of the linear subspace

span{Dg(x)d,ΓDg(x)d}⊥,

where ⊥ denotes the orthogonal complement. Now, define the matrix B = [bi]i=1,...,m−2 whose i-th
column is the vector bi. Now, define the following matrix A = ΓDg(x)d if m = 2, otherwise

A := [ΓDg(x)d,B] (4.8)

and consider the function F : Rn → Rm given by F (x) := AT g(x). We have that

DF (x) = ATDg(x).

It follows that F is regular at x because Dg(x) has full rank and A has orthonormal columns. Define
the set

M := {x ∈ Rn | F (x) = F (x) = 0}.
Since we are assuming that Dg(x)d ∈ bd+(Lm), by definition of A we have that d ∈ ker(DF (x)).
By Theorem 4.2.1, we have that TM (x) = ker(DF (x)). Thus, there exists an ε > 0 and a function
r : [0, ε) → Rn such that

x+ td+ r(t) ∈ M, t ∈ [0, ε),

where
lim
t→0

∥r(t)∥
t

= 0.

In other words, we obtain F (x+ td+ r(t)) = 0. By definition of F and of the matrix A, we get that

⟨g(x+ td+ r(t)), bi⟩ = 0, i = 1, . . . ,m− 2,

⟨g(x+ td+ r(t)),ΓDg(x)d⟩ = 0, t ∈ [0, ε).

Thus, since we have eliminated m − 1 dimensions, we obtain g(x + td + r(t)) ∈ span{Dg(x)d}.
However, this is not enough to guarantee the feasibility of x + td + r(t). In order to get the
feasibility, remember that ∥Dg(x)d∥ > 0. Also, consider the following computing

⟨g(x+ td+ r(t)), Dg(x)d⟩ = ⟨g(x) + tDg(x)d,Dg(x)d⟩+ r(t)

= t∥Dg(x)d∥+ r(t) > 0,

for t > 0 small enough. In other words, we have that the cosine between the vectors g(x+ td+ r(t))
and Dg(x)d is positive. In addition, since g(x+ td+ r(t)) ∈ span{Dg(x)d} we get that for all t > 0
small enough, there exists an αt > 0 such that

g(x+ td+ r(t)) = αtDg(x)d ∈ bd+(Lm). (4.9)

Defining tk := ε
k+1 and dk := d+ r(tk)

tk
, we get that g(x+tkd

k) ∈ Lm for all k and, i.e., d ∈ TΩ(x).
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Before we deal with the case g(x) ∈ bd+(Lm), let us analyze some details of the proof above
in order to have a better comprehension. The first point is that the proof that H(x) is closed is
easily extensible for the multifold case. It is possible to see that the nondegeneracy assumption
plays an important role in obtaining this result. The second point is that when we consider the
cases when Dg(x)d ∈ int(Lm) and Dg(x)d = 0, the proof follows the same ideas as presented
in [Jan84, AES10]. The main point then relies on the case Dg(x)d ∈ bd+(Lm), because we can
not apply the ideas used previously in order to solve this case, and this is the main contribution of
this proof. It is not easy to understand how to get the feasibility of the points in the curve given
by the Theorem 4.2.1. Let us understand it step by step. For example, when m = 2 it is easier to
understand the feasibility because the two pieces of information that we have, namely,

⟨g(x+ td+ r(t)),ΓDg(x)d⟩ = 0 and ⟨g(x+ td+ r(t)), Dg(x)d⟩ > 0.

are enough to guarantee the feasibility of g(x+ td+r(t)) = αtDg(x)d, as illustrated in the following
figure.

Figure 4.1: Details about the proof of the Theorem 4.2.2 when m = 2.

However, when we consider the case when m > 2, only these two inner products are not enough
to guarantee feasibility. This is why we need to build the matrix A with the columns constructed
by the columns of B. The following figure illustrates the feasibility of g(x+ td+ r(t)) when m > 2
and Dg(x)d ∈ bd+(Lm).
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Figure 4.2: Details about the proof of the Theorem 4.2.2 when m > 2.

Now let us analyze the case g(x) ∈ bd+(Lm) but still with only one single second-order con-
straint.

Theorem 4.2.3. Consider the problem (NSOCP) with q = 1. Let x be a feasible point. Assume
that g(x) ∈ bd+(Lm). If nondegeneracy holds at x, then Abadie’s CQ also holds at x.

Proof. First, let us prove that H(x) is closed. Remember that we are considering that g(x) ∈
bd+(Lm) and then the normal cone is unitary and given by NL(g(x)) = {−Γg(x)}. Thus, the set
H(x) is also closed because it is unitary.

Now, let us prove that TΩ(x) = LΩ(x). Take any direction d ∈ LΩ(x). From (2.2) we have that

⟨Dg(x)d,Γg(x)⟩ ≥ 0.

This is equivalent to ⟨∇ϕ̃(x), d⟩ ≥ 0, where

ϕ̃(x) :=
1

2
((g0(x))

2 − ∥ĝ(x)∥2)

is a reduction mapping as presented in Chapter 1, whose gradient is

∇ϕ̃(x) = Dg(x)TΓg(x).

See equation (2.21) for more details. This situation is equivalent to a nonlinear programming prob-
lem with the constraint ϕ̃(x) ≥ 0.
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Consider the case ⟨∇ϕ̃(x), d⟩ > 0. It follows that

ϕ̃(x+ td) = ϕ̃(x) + t∇ϕ̃(x)Td+ o(t), where lim
t→0

o(t)

t
= 0,

= t∇ϕ̃(x)Td+ o(t) ≥ 0,

for all t > 0 small enough. It implies that g0(x+ td) ≥ ∥ĝ(x+ td)∥ and then d ∈ LΩ(x).
Now let us consider the case ⟨∇ϕ̃(x), d⟩ = 0, that is, d ∈ ker(∇ϕ̃(x)). Remember that ∇ϕ̃(x) ̸= 0,

because g(x) ̸= 0 and x is nondegenerate. It means that ϕ̃ is regular at x. Consider the following
set

M := {x ∈ Rn | ϕ̃(x) = ϕ̃(x) = 0}.
By Theorem 4.2.1, we have that TM (x) = ker(∇ϕ̃(x)). Then there exists an ε > 0 and a function

r(t) : [0, ε) → Rn such that

x+ td+ r(t) ∈ M, where lim
t→0+

r(t)

t
= 0,

that is, ϕ̃(x + td + r(t)) = ϕ̃(x) = 0. It means that |g0(x + td + r(t))| = ∥ĝ(x + td + r(t))∥. In
addition,

lim
t→0+

g0(x+ td+ r(t)) = g0(x) > 0.

Therefore, g0(x + td + r(t)) ≥ 0 for all t ≥ 0 small enough and g(x + td + r(t)) ∈ bd+(Lm), i.e.,
d ∈ TΩ(x).

The Theorems 4.2.2 and 4.2.3 show the relation between the nondegeneracy condition and
Abadie’s CQ for (NSOCP) when we have only one second-order constraint. The case g(x) ∈
bd+(Lm) is similar to a nonlinear programming problem with inequality constraint, and it is easier
to see this equivalence when we consider a reduction mapping. The main difference between the
nondegeneracy condition in (NSOCP) and LICQ in (NLP) relies on in the case g(x) = 0, when we
have that all coordinates of g are active at x and, in addition, we have one more case to analyze
when we take a direction d ∈ LΩ(x), namely, Dg(x)d ∈ bd+(Lm).

We finish this section by presenting the result for the multifold case. We will not present the
whole proof because it is similar to the ones presented previously, but we will present the main
parts of the proof.

Theorem 4.2.4. Consider the problem (NSOCP). Let x be a feasible point. If x is nondegenerate,
then Abadie’s CQ holds at x.

Proof. The fact that H(x) is closed is similar to the proof of the Theorems 4.2.2 and 4.2.3. Now,
take a direction d ∈ LΩ(x) and consider the following sets:

Dint
B (x) := {j ∈ {1, 2, . . . , q} | gj(x) ∈ bd+(Lmj ),∇ϕ̃j(x)

Td > 0}
D0

B(x) := {j ∈ {1, 2, . . . , q} | gj(x) ∈ bd+(Lmj ),∇ϕ̃j(x)
Td = 0}

Dint
0 (x) := {j ∈ {1, 2, . . . , q} | gj(x) = 0, Dgj(x)d ∈ int(Lmj )} (4.10)

D0
0(x) := {j ∈ {1, 2, . . . , q} | gj(x) = 0, Dgj(x)d = 0}

DB
0 (x) := {j ∈ {1, 2, . . . , q} | gj(x) = 0, Dgj(x)d ∈ bd+(Lmj )},

The constraints gj where we have Dgj(x)d ∈ int(L(mj)) and ∇ϕ̃j(x)
Td > 0 are not relevant

for the proof, since d is a feasible direction for such constraints. For each index j ∈ DB
0 (x), let

{bj1, . . . ,mj
mj−2} be an orthonormal basis for the linear subspace

span{Dgj(x)d, ΓjDgj(x)d}⊥,
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and define the matrix Aj :=
[
ΓjDgj(x)d, bj1, . . . , bjmj−2

]
. Now, consider the function

F (x) :=


AT

j gj(x), if j ∈ DB
0 (x),

gj(x), if j ∈ D0
0(x),

ϕ̃j(x), if j ∈ D0
B(x),

and the following set
M := {x ∈ Rn | F (x) = F (x) = 0}.

By construction, we have that d ∈ ker(DF (x)) and, in addition, since x is nondegenerate we have
that F is regular at x. Thus, by Theorem 4.2.1 we have that TM (x) = ker(DF (x)), i.e., there exists
an ε > 0 and a function r(t) : [0, ε) → Rn, such that

x+ td+ r(t) ∈ M, where lim
t→0+

r(t)

t
= 0,

that is, F (x+ td+r(t)) = 0. Using similar arguments to the proofs of the Theorems 4.2.2 and 4.2.3,
we obtain that d ∈ TΩ(x).

4.3 Constant Rank Constraint Qualification for NSOCP

In this section, we will present a constant rank-type constraint qualification for (NSOCP) based
on the approach presented in the previous section. Once we have already built a bridge between the
nondegeneracy condition and Abadie’s CQ through an implicit function theorem, namely, Theorem
4.2.1, the next natural step is to replace the Theorem 4.2.1 by a constant rank-type theorem, which
is the natural generalization of an implicit function theorem. For such, we will now revisit the
results used by Janin in [Jan84, Proposition 2.2], and Andreani, Echagüe and Schuverdt in [AES10,
Proposition 3.1]. The version presented by Janin [Jan84] was based on [Mal72, Subsection 5.3],
where Janin considered nonlinear programming problems in a parametric form. Later, Andreani,
Echagüe and Schuverdt [AES10] presented a reread of Janin’s version in a simpler way, also in a
nonlinear programming context.

Despite the following theorem being presented in a context similar to the nonlinear programming
problems, we can apply it for second-order cone programming problems, due to the fact that the
constraints in (NSOCP) are functions from Rn to Rm, and the original proposal made by Malliavin
in [Mal72] was made in a more general context, namely topological varieties.

Theorem 4.3.1. Let F be a function of class Ck, that is, k times continuously differentiable, where
F : Rn → Rp. Let x ∈ Rn be a point such that there exists a neighborhood V of x, where the matrix
DF (x) has constant rank for all x ∈ V . Let v ∈ ker(DF (x)) be an arbitrary vector. Then, there are
neighborhoods V1 and V2 of x and a diffeomorphism Φ : V1 → V2 of class Ck in which:

i) Φ(x) = x;

ii) the Jacobian matrix of Φ at x is the identity matrix, that is, DΦ(x) = In;

iii) the function F (Φ−1(x+ v)) has constant value for all v ∈ ker(DF (x)) ∩ (V2 − x), that is,

F (Φ−1(x+ v)) = F (Φ−1(x)).

Notice that there are some similarities between the Theorem 4.2.1 and Theorem 4.3.1. Indeed,
we rewrote the theorem presented by Janin in [Jan84, Proposition 2.2], and Andreani, Echagüe and
Schuverdt in [AES10, Proposition 3.1] in order to keep a consistency with the results that were
obtained in the previous section and show that these theorems are similar. Now, let us present our
constant rank condition for (NSOCP).
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Definition 4.3.1. Consider the problem (NSOCP) and let x be a feasible point. We say that the
facial constant rank property holds at x, if there is a neighborhood V of x such that for all subsets
J1, J2 ⊆ I0(x), J3 ⊆ IB(x), with J1 ∩ J2 = ∅, and all matrices Aj ∈ Rmj×mj−1 of full column rank
with j ∈ J1, the rank of ⋃

j∈J1

{
Dgj(x)

TAj

} ⋃
j∈J2

{Dgj(x)}
⋃
j∈J3

{∇ϕ̃j(x)}.

remains constant for all x ∈ V .

First of all, notice that if j ∈ IB(x) for all j = 1, . . . , q, we recover exactly the definition
of CRCQ for nonlinear programming problems. This result also can be obtained if we have that
m1 = . . . = mq = 1. Second, we did not call this condition as a constraint qualification, because it is
not a CQ due to the fact that only the facial constant rank property is not enough to imply directly
that H(x) is closed. To see this, we can consider the Example 4.1.1 where the constraint is linear
and satisfies the facial constant rank property, but there is no Lagrange multiplier for that problem
as we already know. Third, the division of the indexes j ∈ I0(x) in two subsets is because given
a direction d ∈ LΩ(x), we do not know in advance what constraints belong to either D0

0 or DB
0 .

Moreover, the requiring of matrices Aj is motivated by (4.8) in the proof that nondegeneracy implies
Abadie’s CQ. Moreover, it is possible to see that nondegeneracy implies the facial constant rank
condition due to the fact that the matrices Aj have full column rank. Lastly, the condition presented
in Definition 4.3.1 is equivalent to the condition that we presented in [AHM+23, Definition 4.1],
but here we built it in a different way without using directly the concept of faces. The approach
proposed here follows the ideas presented at the beginning of this chapter.

With the Definition 4.3.1 at hand, we can show that the facial constant rank property implies
TΩ(x) = LΩ(x).

Theorem 4.3.2. Consider the problem (NSOCP) and let x be a feasible point. If the facial constant
rank property holds at x, then TΩ(x) = LΩ(x).

Proof. Take a direction d ∈ LΩ(x) and consider the sets defined in (4.10). For each index j ∈ DB
0 (x),

let {bj1, . . . ,mj
mj−2} be an orthonormal basis for the linear subspace

span{Dgj(x)d, ΓjDgj(x)d}⊥,

and define the matrix Aj :=
[
ΓjDgj(x)d, bj1, . . . , bjmj−2

]
. Notice that Aj has full column rank and

define J1 := DB
0 (x), J2 := D0

0(x) and J3 := D0
B(x).

Now, consider the function

F (x) :=


AT

j gj(x), if j ∈ DB
0 (x),

gj(x), if j ∈ D0
0(x),

ϕ̃j(x), if j ∈ D0
B(x).

(4.11)

Since the facial constant rank property holds at x, then there exists a neighborhood V of x
such that the rank of DF (x) is constant for all x ∈ V . Also, by the definition of F , we have that
d ∈ ker(DF (x)). Thus, by Theorem 4.3.1 there is a diffeomorphism Φ : V1 → V2 and an ε > 0 such
that x+ td ∈ V2, t ∈ [0, ε) and, moreover,

F (Φ−1(x+ td)) = F (Φ−1(x)) = 0. (4.12)

It means that 
AT

j gj(Φ
−1(x+ td)) = 0, if j ∈ DB

0 (x),

gj(Φ
−1(x+ td)) = 0, if j ∈ D0

0(x),

ϕ̃j(Φ
−1(x+ td)) = 0, if j ∈ D0

B(x),
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and gj(Φ
−1(x+ td)) ∈ Lmj , if Dint

0 (x) and ϕ̃j(Φ
−1(x+ td)) ≥ 0, if Dint

B (x). Last, defining tk → 0+

and

dk :=
Φ−1(x+ tkd)− x

tk
,

give us that dk → d (using i) and ii) from Theorem 4.3.1) and we obtain that gj(x + tkd
k) =

gj(Φ
−1(x+ tkd)) ∈ Lmj for all j = 1, . . . , q, i.e., d ∈ TΩ(x) as we wanted to show.

The theorem above is a different way to show that a linear second-order cone programming
problem always satisfies the equality TΩ(x) = LΩ(x), because if the constraints are linear then the
facial constant rank property holds automatically. However, as we already explained previously the
facial constant rank property is not a constraint qualification, because it is not enough to imply that
H(x) is closed. Moreover, the unique sufficient condition based on rank that implies the closedness
of H(x) is the fulfillment of the nondegeneracy condition. Also, remember that from Definition
4.1.1, Abadie’s constraint qualification requires the closedness of H(x) separately from the equality
TΩ(x) = LΩ(x). With these ideas in mind, we introduce the following definition.

Definition 4.3.2. Consider the problem (NSOCP) and let x be a feasible point. We say that the
constant rank constraint qualification (CRCQ) holds at x if the facial constant rank property holds
at x and, in addition, if the set H(x) is closed.

With this new proposal of constant rank condition at hand together with the Theorem 4.3.2,
we obtain the following result:

Theorem 4.3.3. The CRCQ condition according to the Definition 4.3.2 implies Abadie’s CQ. In
particular, the CRCQ condition is a constraint qualification for the problem (NSOCP).

Once we have a constant rank-type constraint qualification at hand, let us establish the relation
between CRCQ and the other constraint qualifications mentioned previously. Since we know some
short paths in order to make an example where Robinson’s CQ and weak-nondegeneracy hold, let
us solve both relations with only one example. Keep in mind the following three hints:

• in order to make an example where Robinson’s CQ does not hold at a feasible point x, we
need a constraint g(x) = (g0(x), ĝ(x)) be such that ∥∇g0(x)∥ ≤ ∥Dĝ(x)∥;

• in order to make weak-nondegeneracy does not hold at a feasible point x, it is enough to show
that ∇g0(x) ∈ ImDĝ(x);

• linear constraints satisfy CRCQ if H(x) is closed. Moreover, according to Pataki in [Pat07],
if g : Rn → R2 then we have that H(x) is closed because L2 is polyhedral.

Example 4.3.1. Consider the following constraint g(x) := (x, 2x) and the feasible point x = 0. We
have that g(x) = 0 and Dg(x) = (1, 2)T . Given any direction d ∈ R, we have that Dg(x)d = (d, 2d)T

and, in addition, Dg(x)d /∈ int(L2), that is, Robinson’s CQ does not hold at x. In particular, notice
that nondegeneracy does not hold at x.

Take any sequence {xk}k∈N → x. Without loss of generality, assume that xk ̸= 0 for all k (the
other case is analogous). Then we have that the eigenvectors of g(xk) are uniquely determined,
namely, u1(g(xk)) = 1

2(1,−1) and u1(g(x
k)) = 1

2(1, 1). Define ŵ := 1. It follows that

lim
k→∞

u1(g(x
k)) =

1

2
(1,−ŵ) and lim

k→∞
u2(g(x

k)) =
1

2
(1, ŵ),

and, in addition,
Dg(x)⊤(1,−ŵ) = −1 and Dg(x)⊤(1, ŵ) = 3

are linearly dependent. Thus, weak-nondegeneracy does not hold at x.
Lastly, CRCQ holds at x because the constraint is linear, and, in addition, H(x) is closed because

L2 is polyhedral.
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If the interested reader wants to build an example where CRCQ holds without using the fact that
L2 is polyhedral, it is possible to consider any constraint in the following form: g(x) = (ax, bx, 0),
where a, b ∈ R are such that b > a > 0. The example above shows that CRCQ neither implies
Robinson’s CQ nor weak-nondegeneracy. Next, we will show the other implications among these
constraint qualifications. For such, we will take the “opposite” hints from the ones considered before,
that is, we need a constraint g(x) = (g0(x), ĝ(x)) ∈ Lm such that

• ∥∇g0(x)∥ > ∥Dĝ(x)∥;

• ∇g0(x) /∈ ImDĝ(x);

Example 4.3.2. Consider the constraint g : R3 → R3 defined by g(x) := (5x1, x2, x
2
3). Let

{xk}k∈N → x be any sequence such that x ̸= 0 for all k (the other case is analogous). Thus,
the eigenvectors of (g(xk) are uniquely determined and they are given by

ui(g(x
k)) =

1

2

1, (−1)i
xk2√

(xk2)
2 + (xk3)

4
, (−1)i

(xk3)
2√

(xk2)
2 + (xk3)

4

 , with i = 1, 2.

It follows that

lim
k→∞

ui(g(x
k)) =

1

2

(
1, (−1)iŵ

)
,

where ŵ = (ŵ1, ŵ2) ∈ R2 is any vector such that ∥ŵ∥ = 1 and ŵ1 ̸= 0, because (xk3)
4 goes to zero

faster than (xk2)
2. We have that

Dg(x)T =

 5 0 0
0 1 0
0 0 2x3

 (4.13)

and then we get that the vectors

Dg(x)⊤(1,−ŵ) =

 5
−ŵ1

0

 and Dg(x)⊤(1, ŵ) =

 5
ŵ1

0


are linearly dependent, that is, weak-nondegeneracy holds at x.

In order to see that Robinson’s CQ holds at x, take the direction d = (1, 0, 0). We get that
Dg(x)d = (5, 0, 0) ∈ int(L3).

Lastly, let us show that CRCQ does not hold at x. Consider the set J1 = I0(x) and the matrix

A =

 0 0
1 0
0 1


which has full column rank. Using (4.13), we obtain

Dg(x)TA =

 0 0
1 0
0 2x3


and it has rank equals to 1 at x and rank equals to 2 for x in a neighborhood of x in which x3 ̸= 0.

In the examples above we showed that CRCQ is strictly weaker than the nondegeneracy condi-
tion it is independent of Robinson’s CQ (in a similar way to what happens in nonlinear programming
problems) and of weak-nondegeneracy. Moreover, it explains the gap that exists when we consider
linear constraints and we showed that it implies the equality between the tangent and linear cones,
as Janin did in [Jan84] when it was presented the CRCQ for nonlinear programming problems.
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4.4 A Constraint Qualification based on Curves and Second-Order
Optimality Conditions

In this section, we will present a new constraint qualification based on curves for (NSOCP) that
is related to the CRCQ presented in the previous section. The main motivation for this comes from
[AES10, Proposition 3.2], [FSS22, Definition 2.1] and [McC67]. In [McC67], McCormick proposed
some constraint qualifications based on curves for (NLP). Such proposals considered: i) the existence
of a feasible curve whose tangent is a direction in the linearized cone LΩ(x)NLP (McCormick First-
Order Constraint Qualification); ii) the existence of a feasible curve that is twice differentiable
and whose tangent is a vector in the critical subspace (2.14) (McCormick Second-Order Constraint
Qualification).

More recently, Fazzion, Sánchez and Schuverdt in [FSS22] proposed a reformulation of the
constraints given by McCormick in order to get second-order optimality conditions that are related
to the critical cone, instead of the critical subspace. We recall their reformulation in the following
definition:

Definition 4.4.1. ([FSS22, Definition 2.1]) Consider the problem (NLP) and let x be a feasible
point. Given a nonzero direction d ∈ LΩ(x)NLP, we say that the Reformulation of the McCormick for
(NLP) (NLP-Ref-McCormick) holds at x if there exists a twice differentiable curve ξ : [0, ε] → Rn

such that ξ(0) = x and ξ′(0) = d, and, in addition, for all t ∈ (0, ε] we have that

hi(ξ(t)) = 0, i = 1, . . . , p,

gj(ξ(t)) = 0, j ∈ A(x) such that ∇gj(x)
Td = 0, (4.14)

gj(ξ(t)) > 0, j ∈ A(x) such that ∇gj(x)
Td > 0.

In [FSS22, Theorem 2.1] the authors showed that NLP-Ref-McCormick is a constraint qual-
ification and also that it satisfies the Strong Second-Order Condition for nonlinear programming
problems (2.13). Nevertheless, this condition was implicitly mentioned previously in [AES10, Propo-
sition 3.2]. The thesis of the proposition is precisely the NLP-Ref-McCormick condition, but with-
out using the result as a constraint qualification itself, but as a natural result of the constant
rank constraint qualification for nonlinear programming problems. In order to obtain the NLP-Ref-
McCormick condition, the authors in [AES10] used the constant rank theorem (Theorem 4.3.1) in
a nonlinear programming problem context. With these ideas in mind, we will propose an extension
of Ref-McCormick for (NSOCP) and get some second-order optimality conditions, in a similar vein
of [AES10, FSS22].

Definition 4.4.2. Consider the problem (NSOCP) and let x be a feasible point. Given a direction
d ∈ LΩ(x), consider the sets defined in (4.10). We say that the Reformulation of the McCormick
(Ref-McCormick) for (NSOCP) holds at x if the set H(x) is closed and if there exists a twice
differentiable curve ξ : [0, ε] → Rn such that ξ(0) = x and ξ′(0) = d, and, in addition, for all
t ∈ (0, ε] we have that

gj(ξ(t)) ∈


bd+(Lmj ), j ∈ DB

0 (x) ∪D0
B(x),

int(Lmj ), j ∈ Dint
0 (x) ∪Dint

B (x),
{0}, j ∈ D0

0(x)
(4.15)

Notice that this definition coincides with the definition proposed by the authors in [FSS22]
when the problem (NLP) just has inequality constraints. The case when the problem (NSOCP) has
equality constraints can be done in the same way and we will omit it here because it is not the
goal of this section. Before we prove that the condition above is indeed a constraint qualification
for (NSOCP), let us establish the relation with the constant rank constraint qualification proposed
in the previous section. For such, we will use the Theorem 4.3.1.

Theorem 4.4.1. Consider the problem (NSOCP) and let x be a feasible point. If CRCQ holds at
x, then Ref-McCormick also holds.
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Proof. Since we are assuming that CRCQ holds at x, then given a direction d ∈ LΩ(x) we can build
a function F as (4.11) and get a C2 diffeomorphism Φ : [0, ε] → Rn such that (4.12) holds. Thus,
define the curve

ξ(t) := Φ−1(x+ td). (4.16)

By items i) and ii) of Theorem 4.3.1, we obtain that

lim
t→0+

ξ(t) = x and lim
t→0+

ξ(t)− x

t
= d. (4.17)

From (4.12), we get that gj(ξ(t)) ∈ bd+(Lmj ) if j ∈ DB
0 (x) ∪D0

B(x) and gj(ξ(t)) = 0 if j ∈ D0
0(x).

If d ∈ Dint
0 (x), then

gj(ξ(t)) = gj(ξ(0)) + tDgj(ξ(0))ξ
′(0) + r(t), where lim

t→0+

r(t)

t
= 0

= tDgj(x)d+ r(t) ∈ int(Lmj ),

for all t > 0 small enough. Lastly, if d ∈ Dint
B (x), we have that

ϕ̃j(ξ(t)) = ϕ̃j(ξ(0)) + t∇ϕ̃j(ξ(0))ξ
′(0) + r(t), where lim

t→0+

r(t)

t
= 0

= t∇ϕ̃j(x)d+ r(t) > 0,

for all t > 0 small enough, that is, we obtain that gj(ξ(t)) ∈ int(Lmj ). Therefore, Ref-McCormick
holds at x as we wanted to show.

Now, let us prove that Ref-McCormick is a constraint qualification.

Theorem 4.4.2. Consider the problem (NSOCP) and let x be a feasible point such that Ref-
McCormick holds. Then, Abadie’s CQ holds at x.

Proof. It is enough to show that LΩ(x) ⊆ TΩ(x). Take a direction d ∈ LΩ(x) and a sequence
{tk} → 0+. Define

dk :=
ξ(tk)− x

tk
,

where ξ is given by (4.16). We have that gj(x + tkd
k) = gj(ξ(tk)) ∈ Lmj for all k large enough,

j = 1, . . . , q. Therefore, we have that d ∈ TΩ(x).

Next, we present a figure summarizing the relation among the CQ’s introduced in this chapter.

Nondegeneracy

Robinson’s CQ

Naive-RCPLD

Naive-CRSC

weak-Robinson

weak-nondegeneracy

weak-CRCQ

weak-CPLD

CRCQ

Ref-McCormick

Linear SOCP

Abadie’s CQ

Guignard’s CQ

Figure 4.3: Relation among the CQ’s for (NSOCP). The boxes in blue are the well-known CQ’s in nonlinear
second-order cone programming and the green boxes are all the new proposals.
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To finish this section, let us analyze the second-order optimality conditions at a feasible point
x of (NSOCP) such that Ref-McCormick holds. In Section 2.2 we presented some second-order
optimality conditions for (NLP), among which we highlight the so-called Strong Second-Order
Condition (SSOC) (2.13) that is based on the critical cone C(x)NLP and it is more desirable because
under SSOC it is possible to define a sufficient condition in order to have a local minimizer.

In the nonlinear programming context, it is known that a local minimizer x of (NLP) implies
SSOC under LICQ [NW99, Theorem 12.5], under CRCQ [AES10, Theorem 3.1] and under RCRCQ
[MS11b, Theorem 6]. Moreover, in [RS23] the authors reiterated that RCRCQ is the weakest con-
straint qualification that ensures the fulfillment of SSOC.

In order to analyze second-order optimality conditions as SSOC for (NSOCP), let us remember
some important concepts of second-order information in a conic context. Let us start with the
critical cone in the second-order cone programming context. Given a feasible point x of (NSOCP),
the critical cone C(x) as defined as

C(x) := LΩ(x) ∩ {∇f(x)}⊥, (4.18)

in a similar vein as we presented in the nonlinear programming context. In addition, if x is a KKT
point of (NSOCP), that is, there exists µj ∈ Lmj , j = 1, . . . , q, such that (2.5) and (2.6) hold, from
[BR05, Corollary 26] we can rewrite the critical cone in terms of the Lagrange multipliers. For such,
consider the following indices sets

M0
int := {j | gj(x) ∈ int(Lmj ), µj = 0}

M0
B := {j | gj(x) ∈ bd+(Lmj ), µj = 0}

MB
B := {j | gj(x) ∈ bd+(Lmj ), µj ∈ bd+(Lmj )}

M0
0 := {j | gj(x) = 0, µj = 0}

M int
0 := {j | gj(x) = 0, µj ∈ int(Lmj )}

MB
0 := {j | gj(x) = 0, µj ∈ bd+(Lmj )}.

With these sets at hand, from [BR05, Corollary 26] we obtain

C(x) =

 d ∈ Rn

Dgj(x)d ∈ TLmj
(gj(x)), if µj = 0

Dgj(x)d = 0, if µj ∈ int(Lmj )
⟨Dgj(x)d, µj⟩ = 0, if µj ∈ bd+(Lmj ), j ∈ JB(x)
Dgj(x)d ∈ cone(Γjµj), if µj ∈ bd+(Lmj ), j ∈ J0(x)



=

 d ∈ Rn

⟨Dgj(x)d,Γjgj(x)⟩ ≥ 0, j ∈ M0
B

⟨Dgj(x)d, µj⟩ = 0, j ∈ MB
B

Dgj(x)d ∈ Lmj , j ∈ M0
0

Dgj(x)d = 0, j ∈ M int
0

Dgj(x)d ∈ cone(Γjµj), j ∈ MB
0

 .

Since we have an explicit form for the critical cone in the second-order cone programming
context, let us analyze the quadratic form that will be evaluated on C(x) to get SSOC. The natural
answer for this topic would be the Hessian of the Lagrangian function

L(x, µ1, . . . , µq) := f(x)−
q∑

j=1

⟨µj , gj(x)⟩

with respect to variable x. However, when we consider a second-order cone programming context,
there is a difference when we compare to SSOC for (NLP), as we presented in (2.13). Based on this
little discussion, let us introduce SSOC for (NSOCP). See [BR05] for more details.



4.4
A CONSTRAINT QUALIFICATION BASED ON CURVES AND SECOND-ORDER OPTIMALITY

CONDITIONS 45

Definition 4.4.3. Consider the problem (NSOCP) and let x be a KKT point associated to a La-
grange multiplier (µ1, . . . , µq). We say that the Strong Second-Order Condition (SSOC) holds at
(x, µ1, . . . , µq) if

dT∇2
xxL(x, µ1, . . . , µq)d+ dTH(x, µ1, . . . , µq)d ≥ 0,

for all d ∈ C(x), where H(x, µ1, . . . , µq) =

q∑
j=1

Hj(x, µj) with

Hj(x, µj) :=

− [µj ]0
[gj(x)]0

Dgj(x)
TΓjDgj(x), if gj(x) ∈ bd+(Lmj ),

0, otherwise.

Notice that we have m1 = . . . = mq = 1, the condition above reduces to SSOC as (2.13). The
difference in the definition above relies on the fact that we have to take into account the term

dTH(x, µ1, . . . , µq)d = dT

 ∑
j∈IB(x)

− [µj ]0
[gj(x)]0

Dgj(x)
TΓjDgj(x)

 d

=
∑

j∈MB
B

− [µj ]0
[gj(x)]0

(Dgj(x)d)
T ΓjDgj(x)d (4.19)

=
∑

j∈MB
B

− [µj ]0
[gj(x)]0

⟨Dgj(x)d,ΓjDgj(x)d⟩,

that is known as the “sigma term”. It represents the curvature of the second-order cone Lmj along
Dgj(x)d where d ∈ C(x).

In order to prove that Ref-McCormick is a second-order constraint qualification that ensures
the fulfillment of SSOC according to the Definition 4.4.3, we will need the following auxiliary result,
which is kind of a “complementarity function”.

Lemma 4.4.1. Let x be a local minimizer of (NSOCP) such that Ref-McCormick holds associated to
the Lagrange multiplier (µ1, . . . , µq). Take a direction d ∈ LΩ(x). Consider the function R : R+ → R
given by

R(t) :=
∑

j∈M int
0 ∪MB

0

⟨gj(ξ(t)), µj⟩+
∑

j∈MB
B

[µj ]0
2[gj(x)]0

gj(ξ(t))
TΓjgj(ξ(t)), (4.20)

where ξ comes from Definition 4.4.2 is such that ξ(0) = x and ξ′(0) = d. Then, there exists an
ε > 0 such that R(t) = 0 for all t ∈ [0, ε) and, in particular, R′(0) = R′′(0) = 0.

Proof. Take an index j such that j ∈ MB
B . If µj = 0 we obtain that

[µj ]0
2[gj(x)]0

gj(ξ(t))
TΓjgj(ξ(t)) = 0. (4.21)

Otherwise, if µj ̸= 0 we obtain that µj = ΓjDgj(x)d. In addition, using the complementarity
condition (2.6), we have that ⟨gj(x), µj⟩ = 0 and then we obtain that Dgj(x)d ∈ bd+(Lmj ). From
Theorem 4.4.1, it follows that for all t ≥ 0 small enough,

gj(ξ(t)) ∈ bd+(Lmj ),

that is, (4.21) holds.
Now, take any index j such that j ∈ M int

0 . From Theorem 4.4.1, we have that gj(ξ(t)) = 0 for
all t ≥ 0 small enough.

Last, take an index j ∈ MB
0 . It follows from the definition of MB

0 that Dgj(x)d ∈ bd+(Lmj ).
Thus, from Theorem 4.4.1 we have that for each t ≥ 0 small enough there exists an αj

t ≥ 0 such
that gj(ξ(t)) = αj

tDgj(x)d, which means that
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⟨gj(ξ(t)), µj⟩ = ⟨αj
tDgj(x)d, µj⟩ = 0,

because Dgj(x)d ∈ cone(Γjµj). Therefore, exists an ε > 0 such that R(t) = 0 for all t ∈ [0, ε). For
the sake of completeness, let us compute R′(0) and R′′(0).

Differentiating R(t) once and taking t = 0, give us

R′(t) =
∑

j∈M int
0 ∪MB

0

⟨Dgj(ξ(t))ξ
′(t), µj⟩+

∑
j∈MB

B

[µj ]0
[gj(x)]0

⟨Dgj(ξ(t))
TΓjgj(ξ(t)), ξ

′(t)⟩

and then

R′(0) =
∑

j∈M int
0 ∪MB

0

⟨Dgj(x))d, µj⟩+
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨Dgj(x)
TΓjgj(x), d⟩

=
∑

j∈M int
0 ∪MB

0

⟨Dgj(x))d, µj⟩+
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨∇ϕ̃j(x), d⟩ = 0.

Now, differentiating R(t) twice and taking t = 0, we obtain

R′′(0) =
∑

j∈M int
0 ∪MB

0

⟨D2gj(x)[d, d], µj⟩+
∑

j∈M int
0 ∪MB

0

⟨Dgj(x)
Tµj , ξ

′′(0)⟩

+
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨D2gj(x)[d, d],Γjgj(x)⟩+
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨Dgj(x)d,ΓjDgj(x)d⟩

+
∑

j∈MB
B

[µj ]0
[gj(x)]0

(
Dgj(x)

TΓjgj(x)
)T

ξ′′(0) = 0.

Rearranging the terms and recalling that ∇ϕ̃j(x) = Dgj(x)
TΓjgj(x) when j ∈ MB

B , and

µj =
[µj ]0

[gj(x)]0
Γjgj(x), j ∈ MB

B ,

give us

R′′(0) =
∑

j∈MB
B∪M int

0 ∪MB
0

⟨D2gj(x)[d, d], µj⟩+
∑

j∈MB
B∪M int

0 ∪IB0

⟨Dgj(x)
Tµj , ξ

′′(0)⟩

+
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨Dgj(x)d,ΓjDgj(x)d⟩ = 0. (4.22)

With this result at hand, we will be able to prove that under Ref-McCormick, a local minimizer
x of (NSOCP) satisfies SSOC according to Definition 4.4.3 for any Lagrange multiplier associated.

Theorem 4.4.3. Let x be a local minimizer of the problem (NSOCP) such that Ref-McCormick
holds. Then, for any Lagrange multiplier (µ1, . . . , µq), we have that (x, µ1, . . . , µq) satisfies SSOC.

Proof. Just for commodity, define the set of indices M := MB
B ∪M int

0 ∪MB
0 . Since x satisfies the

KKT conditions, from (2.5) we have that

∇f(x)−
q∑

j=1

Dgj(x)
Tµj = 0
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that can be rewritten as
∇f(x)−

∑
j∈M

Dgj(x)
Tµj = 0

Let d ∈ C(x) be any direction. We have that〈
∇f(x)−

∑
j∈M

Dgj(x)
Tµj , d

〉
= 0,

which implies that ∇f(x)Td = 0. In fact, we have that

⟨Dgj(x)d, µj⟩ = 0, j ∈ MB
B ; Dgj(x)d = 0, j ∈ M int

0

and, in addition,
Dgj(x)d = αjΓjµj , for some αj ≥ 0 and j ∈ MB

0

that implies
⟨Dgj(x)

Tµj , d⟩ = ⟨µj , Dgj(x)d⟩ = 0.

Since Ref-McCormick holds at x, there exists ξ : [0, ε) → Rn twice continuously differentiable
such that ξ(0) = x and ξ′(0) = d. Let φ(t) := f(ξ(t)). Since x is a local minimizer f in Ω, then
t = 0 is a local minimizer of φ, that is,

φ′(0) = ∇f(x)Td = 0,

and, moreover

φ′′(0) = dT∇2f(x)d+∇f(x)T ξ′′(0) ≥ 0. (4.23)

In order to compute ∇f(x)T ξ′′(0), consider the function R as defined in (4.20). By Lemma 4.4.1,
we have that R′(0) = R′′(0) = 0. Subtracting (4.22) from (4.23), we obtain

dT∇2f(x)d −
∑
j∈M

⟨D2gj(x)[d, d], µj⟩ −
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨Dgj(x)d,ΓjDgj(x)d⟩

+

〈
∇f(x)−

∑
j∈M

Dgj(x)
Tµj , ξ

′′(0)

〉
≥ 0.

and, from (4.19), we obtain

dT∇2
xxL(x, µ1, . . . , µq)d+ dTH(x, µ1, . . . , µq)d ≥ 0,

for all d ∈ C(x). Therefore, SSOC holds at x as we wanted to prove.

The importance of the result above relies on some facts. First, to the best of our knowledge,
this is the weakest constraint qualification in second-order cone programming context that ensures
SSOC, once it is known that under Robinson’s CQ SSOC does not hold and, in addition, Ref-
McCormick is strictly weaker than the nondegeneracy condition. Second, under Ref-McCormick we
do not necessarily have that the set of Lagrange multipliers is compact, but SSOC still holds for
any Lagrange multiplier.

Next, we will present a result that is new even in the nonlinear programming context, which
explains why SSOC holds under Ref-McCormick for any Lagrange multiplier.

Theorem 4.4.4. Let x be a local minimizer of (NSOCP) such that Ref-McCormick holds. The
quadratic form

dT∇2
xxL(x, µ1, . . . , µq)d+ dTH(x, µ1, . . . , µq)d (4.24)

for d ∈ C(x), does not depend on (µ1, . . . , µq) ∈ Λ(x).
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Proof. Let (µ1, . . . , µq) be any Lagrange multiplier associated to x. It is enough to show that

−
∑
j∈M

⟨D2gj(x)[d, d], µj⟩ −
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨Dgj(x)d,ΓjDgj(x)d⟩

does not depend on (µ1, . . . , µq) ∈ Λ(x). From (4.22), we have that

∑
j∈M

⟨Dgj(x)
Tµj , ξ

′′(0)⟩ = −
∑
j∈M

⟨D2gj(x)[d, d], µj⟩ −
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨Dgj(x)d,ΓjDgj(x)d⟩, (4.25)

where M := MB
B ∪M int

0 ∪MB
0 . Since x is a KKT point, we have that (2.5) holds, that is,

∇f(x) =
∑
j∈M

Dgj(x)
Tµj . (4.26)

Substituting (4.26) in (4.25), we get that

−
∑
j∈M

⟨D2gj(x)[d, d], µj⟩ −
∑

j∈MB
B

[µj ]0
[gj(x)]0

⟨Dgj(x)d,ΓjDgj(x)d⟩ = ⟨∇f(x), ξ′′(0)⟩,

whose the right part of the equation above does not depend on the Lagrange multiplier.

The theorem above shows that the quadratic form (4.24) is constant when we vanish all the
Lagrange multipliers associated to a local minimizer in which Ref-McCormick holds. This result is
stronger than the result obtained in [BHRV18, Theorem 3.3] for nonlinear programming problems,
where the authors showed that under WCR the Hessian of the Lagrangian does not depend on the
Lagrange multiplier when we consider the direction on the critical subspace.

It is important to mention that in the proofs of the Lemma 4.4.1, Theorem 4.4.3 and Theorem
4.4.4, we did not use in an explicit way the fact that H(x) is closed, just for guarantee the existence
of a Lagrange multiplier. It means that the second-order results obtained are related to the form of
how we define the facial constant rank property (Definition 4.3.1) and the properties of the curve
required by the Ref-McCormick condition in (4.15).

4.5 New proposals for second-order constraint qualifications for
NLP

In this section we will consider the problem (NLP) and explore more the fact that the Ref-
McCormick proposed in [FSS22] for nonlinear programming problems is a strong second-order con-
straint qualification, that is, it is enough to guarantee SSOC for any Lagrange multiplier associated
to a local minimizer x of (NLP). First of all, let us recall some results obtained in the second-order
cone programming problem for nonlinear programming problem.

Proposition 4.5.1. ([AES10, Theorem 3.1]) Let x be a local minimizer of (NLP) that satisfies
NLP-Ref-McCormick. Take a direction d ∈ LΩ(x)NLP and consider the function

R(t) =

p∑
i=1

λihi(ξ(t)) +
∑

j∈A(x)

µjgj(ξ(t)), (4.27)

where ξ comes from Definition 4.4.1 is such that ξ(0) = x and ξ′(0) = d. Then, there exists an
ε > 0 such that R(t) = 0 for all t ∈ [0, ε) and, in particular, R′(0) = R′′(0) = 0.

The proof of the proposition above is contained in the proof of the [AES10, Theorem 3.1], where
the authors showed that CRCQ is enough to guarantee SSOC for any Lagrange multiplier in a
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nonlinear programming context. They also obtained the following expression for R′′(0)

R′′(0) = dT

 p∑
i=1

λi∇2hi(x))−
∑

j∈A(x)

µj∇2gj(x)

 d+ (4.28)

+

 p∑
i=1

λi∇hi(x)−
∑

j∈A(x)

µj∇gj(x)

T

ξ′′(0) = 0.

With this result at hand, we can reproduce the result obtained in Theorem 4.4.4 for (NLP).

Theorem 4.5.1. Let x be a KKT point of (NLP) such that NLP-Ref-McCormick holds at x. The
quadratic form

dT

∇2f(x) +

p∑
i=1

λi∇2hi(x)−
∑

j∈A(x)

µj∇2gj(x)

 d, d ∈ C(x)NLP (4.29)

does not depend on (λ, µ) ∈ Λ(x).

Proof. Let (λ̃, µ̃), (λ, µ) ∈ Λ(x) be different Lagrange multipliers and take any direction d ∈
C(x)NLP. Computing dT

(
∇2

xxL(x, λ̃, µ̃)−∇2
xxL(x, λ, µ)

)
d, give to us

dT

 p∑
i=1

λ̃i∇2hi(x)−
∑

j∈A(x)

µ̃j∇2gj(x)−

 p∑
i=1

λi∇2hi(x)−
∑

j∈A(x)

µj∇2gj(x)

 d.

Since x is a KKT point, we have that

∇f(x)T ξ′′(0) = −

 p∑
i=1

λ̃i∇hi(x)−
∑

j∈A(x)

µ̃j∇gj(x)

T

ξ′′(0)

= −

 p∑
i=1

λi∇hi(x)−
∑

j∈A(x)

µj∇gj(x)

T

ξ′′(0)

Using the relation above and the equation (4.28), we obtain

dT

 p∑
i=1

λ̃i∇2hi(x))−
∑

j∈A(x)

µ̃j∇2gj(x)

 d = dT

 p∑
i=1

λi∇2hi(x))−
∑

j∈A(x)

µj∇2gj(x)

 d.

Therefore dT
(
∇2

xxL(x, λ̃, µ̃)−∇2
xxL(x, λ, µ)

)
d = 0, as we wanted to show.

Notice that when we take a direction d ∈ LΩ(x)NLP and we build the curve ξ according to
Definition 4.4.1, there are some constraints j ∈ A(x) that are not so relevant in order to evaluate
feasibility of gj(ξ(t)) for t ≥ 0 small enough. Indeed, remember that from Definition 4.4.1, we may
have cases where ∇gj(x)

Td > 0 and then we get

gj(ξ(t)) > 0,

that is, at least for this constraint we get feasibility “for free”. Moreover, if there exists a nonzero
direction d ∈ LΩ(x)NLP such that ∇gj(x)

Td > 0 for all j ∈ A(x), this direction is not worrisome
for any active constraint when we analyze feasibility through this direction. On the other hand, the
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existence of such direction is pivotal when we take into account the fulfillment of MFCQ, which can
be rewritten as

i) the set {∇hi(x)}pi=1 is linearly independent;

ii) there exists d such that ∇gj(x)
Td > 0 for all j ∈ A(x) and ∇hi(x)

Td = 0 for all i = 1, . . . , p.

It is known that only MFCQ is not enough to guarantee even WSOC, that is, the quadratic form
(4.29) is not necessarily positive semidefinite when we vanish all directions in the critical subspace
S(x)NLP defined in (2.14). In [AMS07], the authors showed that MFCQ+WCR implies WSOC. In
addition, another condition can be added to MFCQ in order to guarantee WSOC.

Proposition 4.5.2. [AMS07, Hae17, Mas19] Let x be a local minimizer of (NLP) such that MFCQ
holds. Define the matrix M(x) whose columns are (∇hi(x),∇gj(x))i=1,...,p; j∈A(x). If there exists a
neighborhood V of x such that

rank(M(x)) ≤ rank(M(x)) + 1 (4.30)

for all x ∈ V , then there exists (λ, µ) ∈ Λ(x) such that WSOC holds.

The condition above was called in [ABHS17, Definition 4.1] as Modified Mangasarian-Fromovitz
(MMF). With these results at hand, let us resume the discussion about the nonzero directions d ∈
LΩ(x)NLP such that there exists j ∈ A(x) satisfying ∇gj(x)

Td = 0. Given a direction d ∈ LΩ(x)NLP

such that d ̸= 0, let us define the following set:

Jd(x) := {j ∈ A(x) | ∇gj(x)
Td = 0}. (4.31)

This set leads us to define the following

J0(x) :=
⋃

d∈LΩ(x)NLP
d ̸=0

Jd(x) = {j ∈ A(x) | ∃ d ∈ LΩ(x)NLP, d ̸= 0 : ∇gj(x)
Td = 0}. (4.32)

Notice that J0(x) ⊆ A(x) and this inclusion might be strict and that this set captures exactly
which constraints can be violated when walking towards direction d. This means that we do not
need to consider all the indexes j ∈ A(x). Indeed, if there exists j0 ∈ A(x) such that ∇gj0(x)

Td > 0
for all d ∈ LΩ(x)NLP such that d ̸= 0, then we have that gj0(x+ td) ≥ 0 for all t ≥ 0 small enough.
With this set in mind, let us define the following assumption:

Assumption 1. Consider the problem (NLP) and let x be a feasible point. We say that Assumption
1 (A1) holds at x ∈ Ω, if for every index j ∈ J0(x), we have that there exists a neighborhood V of
x such that

∇gj(x) ∈ span ({∇hi(x)}pi=1) (4.33)

for all x ∈ V .

Notice that A1 is strictly stronger than (4.30). On the one hand, by definition we have that A1
implies (4.30). On the other hand, if the set {∇hi(x)}pi=1 ∪ {∇gj(x)}j∈A(x) is linearly independent,
then we have that the hypothesis of Proposition 4.5.2 is satisfied while A1 does not. Later we will
show that MFCQ+A1 implies NLP-Ref-McCormick. For such, we will need the following result
from [AMS05].

Lemma 4.5.1. ([AMS05, Lemma 2]) Let the functions f, f1, . . . , fq : D → Rn be twice continuously
differentiable; let x ∈ D, with D an open set. Assume that the gradients ∇f1(x), . . . ,∇fq(x) are
linearly independent and that ∇f(y) is a linear combination of ∇f1(y), . . . ,∇fq(y) for all y ∈ D.
In particular,

∇f(x) =

q∑
i=1

αi∇fi(x). (4.34)
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Then, there exists D2 ⊂ Rq, an open neighborhood of (f1(x), . . . , fq(x)), and a function φ : D2 → R,
φ ∈ C2(D2), such that, for all y ∈ D1, we have that (f1(y), . . . , fq(y)) ∈ D2 and

f(y) = φ(f1(y), . . . , fq(y)).

Moreover, for all i = 1, . . . , q,

αi =
∂φ

∂ui
(f1(x), . . . , fq(x)). (4.35)

In the following theorem we will show that a weaker hypothesis than MFCQ+A1 is enough to
guarantee the fulfillment of NLP-Ref-McCormick.

Theorem 4.5.2. Let x be a feasible point of (NLP). If there exists a neighborhood V of x such
that {∇hi(x)}pi=1 has constant rank for all x ∈ V and, in addition, A1 holds at x, then NLP-Ref-
McCormick also holds at x.

Proof. Take a nonzero direction d ∈ LΩ(x) and consider the set Jd previously defined. Let I ⊂
{1, 2, . . . , p} be a subset such that {∇hi(x)}i∈I is a basis for span{∇hi(x)}pi=1. Define the function
H(x) := (hi(x))i∈I and consider the set

M := {x ∈ Rn | H(x) = H(x) = 0}.

By Lyusternik Theorem (Theorem 4.2.1), it follows that

TM (x) = Ker(H(x)),

where TM (x) is the tangent cone to the set M at the point x. Since d ∈ ker(H(x)) (because we
are taking d ∈ LΩ(x)NLP and H is twice continuously differentiable, then there exists a twice
continuously differentiable arc r(t) such that

x+ td+ r(t) ∈ M, lim
t→0+

r(t)

t
= 0,

that is,
H(x+ td+ r(t)) = H(x) = 0, (4.36)

or, in other words,
hi(x+ td+ r(t)) = hi(x) = 0, i ∈ I.

Now, take any index i0 ∈ {1, 2, . . . , p}\I. Since {∇hi(x)}i∈I is linearly independent, so {∇hi(x)}i∈I
also is for all x close enough to x. Moreover, using the fact that the rank of {∇hi(x)}pi=1 remains
constant for x close to x, then we obtain that ∇hi0(x) ∈ span{∇hi(x)}i∈I . Thus, by Lemma (4.5.1),
there is a C2 function φi0 such that hi0(x) = φi0 ({hi(x)}i∈I), for all x near to x. Thus, we obtain

φi0 ({hi(x)}i∈I) = hi0(x) = 0.

In addition,

hi0(x+ td+ r(t)) = φi0 ({hi(x+ td+ r(t))}i∈I)
= φi0 ({hi(x)}i∈I)
= hi0(x) = 0.

It follows that hi(x+ td+ r(t)) = 0 for all t ≥ 0 small enough and i = 1, 2, . . . , p.
Proceeding in a similar way, now consider the indexes j ∈ Jd. By hypothesis, we have that

∇gj(x) ∈ span{∇hi(x)}i∈I .

Since {∇hi(x)}i∈I is linearly independent, by Lemma (4.5.1), there is a C2 function φj such that
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gj(x) = φj ({hi(x)}i∈I), for all x near x. Thus, we obtain

φj ({hi(x)}i∈I) = gj(x) = 0.

In addition,

gj(x+ td+ r(t)) = φj ({hi(x+ td+ r(t))}i∈I)
= φj ({hi(x)}i∈I)
= gj(x) = 0.

It follows that gj(x + td + r(t)) = 0 for all t ≥ 0 small enough with j ∈ Jd, that is, for j ∈ A(x)
such that ∇gj(x)

Td = 0.
Lastly, for j ∈ {1, 2, . . . ,m} \ Jd, we obtain that

gj(x+ td+ r(t)) = gj(x) + t∇gj(x)
Td+ o(t) ≥ 0,

for all t ≥ 0 small enough. Therefore, define ξ(t) := x + td + r(t) and it follows that NLP-Ref-
McCormick holds at x.

Corollary 4.5.1. If {∇hi(x)}pi=1 is linearly independent and, moreover, A1 holds at x, then NLP-
Ref-McCormick holds at x.

Corollary 4.5.2. If MFCQ + A1 holds at x, then NLP-Ref-McCormick also holds at x.

The results above explain another point of view on the relation between constant rank-type
conditions and NLP-Ref-McCormick. In addition, Corollary 4.5.2 showed the additional assumption
that can be required to MFCQ in order to have SSOC. Since in the Theorem 4.5.2 we considered
just the constant rank of {∇hi(x)}pi=1 in a neighborhood of a feasible point x, we may consider
then other constant rank-type constraint qualifications weaker than MFCQ such that, when added
to the Assumption A1, guarantees the fulfillment of SSOC for (NLP). This leads us to the following
constraint qualification:

Definition 4.5.1. [AHSS12a] Consider the problem (NLP) and let x be a feasible point. We say
that the Relaxed Constant Positive Linear Dependence constraint qualification (RCPLD) holds at
x if fixed a set B ⊆ {1, . . . , p} such that {∇hi(x)}i∈B is a basis for span{∇hi(x) | i = 1, . . . , p}, the
following statements hold:

i) {∇hi(x)}pi=1 has constant rank around x;

ii) for every J ⊆ A(x), if {∇hi(x),∇gj(x) | i ∈ B, j ∈ J} is positive linearly dependent, then
{∇hi(x),∇gj(x) | i ∈ B, j ∈ J} is positive linearly dependent for all x around x.

Notice that in the definition above, we have the requirement of the constant rank of {∇hi(x)}pi=1

around x. In [AHSS12b, Theorem 4.3] the authors showed that RCPLD implies CRSC and in
[AHSS12a] the authors showed that RCPLD is weaker than MFCQ and than RCRCQ, it means
that RCPLD does not imply WSOC. However, using Assumption A1 and Theorem 4.5.2, give us
the following result:

Corollary 4.5.3. Consider the problem (NLP) and let x be a feasible point. If RCPLD and As-
sumption A1 hold at x, then NLP-Ref-McCormick holds.

In order to summarize the results present in this section, let us introduce the following constraint
qualifications for nonlinear programming problems.

Definition 4.5.2. Let x be a feasible point of (NLP). We say that:

i) the span-regularity CQ holds at x if {∇hi(x)}pi=1 is linearly independent and Assumption A1
also holds at x;
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ii) the span-constant rank CQ holds x if there exists a neighborhood V of x such that the rank
of {∇hi(y)}pi=1 remains constant for all y ∈ V and Assumption A1 also holds at x;

By construction, we have that span-regularity CQ implies span-constant rank CQ. And from
Theorem 4.5.2 both definitions implies Ref-McCormick. Thus, they are second-order constraint
qualifications. Moreover, these constraint qualifications have strong second-order properties, that
is, if x is a local minimizer such that span-constant rank CQ holds, then SSOC holds for any
Lagrange multiplier associated to x. we will establish the relation among these CQ’s and LICQ.

Example 4.5.1. Consider the constraints gj : Rn → R given by gj(x) := xj for j = 1, . . . , n − 1
and the constraint h(x) := xn. It follows that the gradients of the constraints are {ei}ni=1, where
ei denotes the i-th canonical vector of Rn. Thus, we get that LICQ holds and that Span-Regularity
fails at the point x = 0.

On the other hand, consider the constraints gj , hi : Rn → R given by gj(x) = hi(x) := xj for
j = 1, . . . , n at the feasible point x = 0. We have that the set {∇hi(x)}pi=1 is linearly independent
and A1 is trivially satisfied, that is, Span-Regularity holds at x. Moreover, it is possible to see that
LICQ fails at x.

The other constant rank-type constraint qualification that is well-known in nonlinear program-
ming problems is the so called CRSC that was introduced by Andreani et al. in [AHSS12b] and we
recalled in Section 2.2. The authors showed that this condition is implied by RCRCQ and MFCQ.
Due to the second fact, then we get that CRSC does not imply SSOC, even if it has good properties
inherited by RCRCQ. Thus, the natural question that arises is the following: is there any additional
assumption that can be added to CRSC in order to get SSOC and keep it weaker than RCRCQ?
The answer is yes and we will show it now. For such, let us consider two approaches.

The first one was presented by Andreani et al. in [AHMR23a] in a conic context (which en-
compasses the problem (NSOCP)), where the authors noticed that from CRSC some inequality
constraints have the behavior of equality constraints. Thus, it is not necessary to vanish all the
subsets of inequality constraints as it is required in RCRCQ, just the ones that are not in the sub-
space component, that is, in the set J−

NLP defined in (2.15). We present here nonlinear programming
problem version.

Definition 4.5.3. ([AHMR23a, Definition 4.1]) Let x be a feasible point of (NLP). We say that
the Strong-CRSC condition holds at x if there is a neighborhood V of x such that for every subset
J ⊆ A(x) \ J−

NLP, the rank of {∇hi(x)}pi=1 ∪ {∇gj(x)}j∈J−
NLP

∪ {∇gj(x)}j∈J remains constant for
all x ∈ V .

By definition it is possible to notice that Strong-CRSC is weaker than RCRCQ and we will shot
that it implies NLP-Ref-McCormick later. In addition, notice that this condition takes into account
the sets A(x) and J−

NLP, but not consider the analyses of J0(x) defined in (4.32). It motivates the
following definition.

Definition 4.5.4. Let x be a feasible point of (NLP). We say that the constraint qualification 1
(CQ1) holds at x, if there exists a neighborhood V of x such that for every subset J ⊆ J0(x), the
rank of {∇hi(x)}pi=1 ∪ {∇gj(x)}j∈J remains constant for all x ∈ V .

The difference between the definition above and RCRCQ is that we consider all the subsets of
J0(x) instead of A(x). We will show that CQ1 is indeed a constraint qualification later. Despite
this, the definition above does not take into account the good properties of the set J−

NLP. In order
to summarize the discussion about CRSC and what we need to require additionally to CRCS in
order to obtain a second-order constraint qualification, consider the following definition.

Definition 4.5.5. Let x be a feasible point of (NLP). We say that the Constraint Qualification 2
(CQ2) holds at x if there is a neighborhood V of x such that for every subset J ⊆ J0(x) \ J−

NLP, the
rank of {∇hi(x)}pi=1 ∪ {∇gj(x)}j∈J−

NLP
∪ {∇gj(x)}j∈J remains constant for all x ∈ V .
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This condition is weaker than Strong-CRSC and CQ1 (and, consequently, weaker than RCRCQ)
and it is independent of MFCQ. Now, let us prove that the conditions proposed imply NLP-Ref-
McCormick.

Theorem 4.5.3. Let x be a feasible point of (NLP). If CQ2 holds at x, then NLP-Ref-McCormick
also hods at x.

Proof. Take a direction d ∈ LΩ(x) such that d ̸= 0. Define J = Jd(x) \ J−
NLP where Jd(x) ⊂ J0(x)

was defined in (4.31). Consider the function

F (x) :=


hi(x), i = 1, . . . , p,
gj(x), if j ∈ J−

NLP,
gk(x), if k ∈ J.

(4.37)

By construction, we have that d ∈ ker(DF (x)) and, by hypothesis, we have that DF (x) has
constant rank around x. Thus, by Theorem 4.3.1 there exists a diffeomorphism Φ : V1 → V2 of class
C2 and an ε > 0 such that x+ td ∈ V2 and, moreover,

F (Φ−1(x+ td)) = F (Φ−1(x)) = F (x) = 0.

It means that

F (Φ−1(x+ td)) =


hi(Φ

−1(x+ td)) = 0, i = 1, . . . , p,
gj(Φ

−1(x+ td)) = 0, if j ∈ J−
NLP,

gk(Φ
−1(x+ td)) = 0, if k ∈ J.

For the remaining constraints, that is, j /∈ J−
NLP ∪ Jd(x), we have that ∇gj(x)

Td > 0. To finish
this proof, define ξ(t) := Φ−1(x+ td) and then we get that NLP-Ref-McCormick holds at x.

To finish this section, next we present a figure that shows the relationship among the CQ’s
mentioned before.

LICQ

CRCQ

RCRCQ MFCQ+A1 MMF

MFCQStrong-CRSC CQ1 Span-Regularity RCPLD+A1

CQ2 Span-Constant Rank RCPLD

NLP-Ref-McCormick

CRSC

Abadie

Figure 4.4: Relationship among the CQs mentioned for (NLP). CQ’s in blue box are related with SSOC;
CQ’s in green box do not have such property.



Chapter 5

Conclusion

The study of constraint qualifications is well-developed in nonlinear programming (NLP). In
particular, we highlight the constant rank-type constraint qualifications such as CRCQ [Jan84],
CPLD [QW00], RCRCQ [MS11a], RCPLD [AHSS12a] and CRSC [AHSS12b]. However, in the
nonlinear second-order cone programming (NSOCP) context the situation was different. Indeed,
the most well-known constraint qualifications for (NSOCP) are the nondegeneracy condition and
Robinson’s CQ, that are the generalization of LICQ and MFCQ for (NSOCP), respectively.

This difficulty in defining constant rank-type constraint qualifications in (NSOCP) may be
due the following facts: first, the conical structure of the second-order cone. Initially it does not
seems to be an issue, once we also have a cone defining the constraints in nonlinear programming,
namely, the non-negative orthant. But, the second-order cone structure is indeed harder to deal
when we compare to the non-negative orthant (or, maybe, the non-negative orthant has a well
behavior that makes our lives easier), and this difference appeared when we revisited classical
constraint qualifications for constrained optimization, such as Guignard’s CQ [Gui69] and Abadie’s
CQ [Aba65]. The second point that can be seen as a difficult in order to define constant rank-
type constraint qualifications for (NSOCP), may be the fact that only linearity is not enough to
guarantee the existence of Lagrange multiplier, as Andersen showed in [ART02], which is not the
case when we analyze only linear constraints in the non-negative orthant. Actually, this field of
study is so important with good properties and algorithms that there is a line research to study
only linear programming problems (LP). Last, is that in (NLP) we have a powerful tool that is the
so-called Sequential Optimality Conditions. On the one hand, in the nonlinear programming context
the sequential optimality conditions was introduced in [AHM11] and it has several applications, for
both convergence of classes of algorithms and study of new constraint qualifications. See [BHR18]
and references therein. On the other hand, in the second-order cone programming context, the
sequential optimality conditions were developed in [AFH+19] that analyzed the structure given by
the eigenvectors of the second-order cone, which almost coincides with the first proposal of constant
rank-type constraint qualifications for (NSOCP) made in [ZZ19]. In addition, when we analyzed
the conditions proposed in [ZZ19], we noticed that it was incorrect. All of these facts leaded us in
the following timeline: the counter-example to [ZZ19] presented in [AFH+21]; the first approaches
that we presented in [AHM+22a] using the sequential optimality conditions; the consolidation of our
constant rank-type conditions presented in [AHM+22b] using the eigenstructure of the second-order
cone; and, finally, the cherry on the cake, the approach using a constant rank theorem that was
presented in [AHM+23], that followed a similar vein of the original proposal of Janin for (NLP) in
[Jan84] and has a similar second-order properties that was presented by Andreani et al. in [AES10].

In order to overcome the difficulties listed above, the most natural idea was to bring the con-
straints of a second-order cone programming problem to our knowledge in constraint qualifications
in (NLP). The is the reason why our first approach [AHM+22a] was called “naive”, because we could
not deal with all of the pure conic constraints in a proper way and then we dealt with such con-
straints using the requirements of Robinson’s CQ. By “pure conic constraints”, we mean constraints
that we could not apply a reduction mapping in order to get an inequality constraint. For the re-
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maining constraints, that is, the ones that we could apply a reduction mapping, we brought them to
a nonlinear programming context through a reduction mapping and then we applied the expertise
of constraint qualifications for (NLP) that was already developed, such as RCPLD and CRSC, for
example. However, in some cases, the naive CQ’s coincided with Robinson’s CQ justly our approach
was to use it when we could not reduce to a (NLP) context. In this approach we could prove that
Naive-RCPLD and Naive-CRSC are indeed constraint qualifications for (NSOCP), weaker than
Robinson’s CQ and we also provided that these conditions are enough to prove global convergence
to a KKT point for algorithms that generates AKKT sequences.

In [AHM+22b] the approach was more solid, in the sense that we did not avoid the pure conic
structure of the second-order cone. On the contrary, we explored the structure of the eigenvectors of
the second-order cone developed in [AG03] following similar ideas to the ones that were developed
in [AHMR23b] for nonlinear semidefinite programming (NSDP). With this tool at hand, we noticed
that we could establish weaker versions of nondegeneracy and Robinson’s CQ just avoiding vectors
in the second-order cone that somehow are not related to the eigenvectors of the constraints. With
these new CQ’s that we called by weak-nondegeneracy and weak-Robinson, we could then establish
proposals of CRCQ and CPLD, that were called weak-CRCQ and weak-CPLD, respectively, that
coincides with their counterpart in (NLP) and, in addition, are enough to show global convergence
of algorithms related to an external penalty method, using the results provided in [AFH+19]. In
this thesis, we presented an approach a little bit different of our paper but keeping the same essence
of the results and, in addition, we showed a way to build examples to establish relation among the
CQ’s proposed and the classical ones, that is, the nondegeneracy condition and Robinson’s CQ.

Later, in [AHM+23] we encompassed the pure conic structure of the problem and the attached
the constant rank historical approach, that is, to apply the constant rank theorem initially used by
Janin in [Jan84] to show that CRCQ implies Abadie’s CQ, as a natural generalization of an Implicit
Function Theorem, like as [IT74]. But, before we apply this approach, we needed before to build a
relation between the nondegeneracy condition and Abadie’s CQ in (NSOCP). In this middle time,
we faced some difficulties once the Abadie’s CQ that we were considering was incorrect, namely,
only the equality between the tangent cone and linearized cone (this condition was also presented
in [ZZ19]), which was probably caused by a bias of (NLP) researches and, in addition, due to the
fact that we do not have access to the physical publication of Abadie [Aba65]. Thus, revisiting
Guignard’s CQ [Gui69] we could rebuild Abadie’s CQ for (NSOCP). In order to understand this
issue, just in [BKMW20] we found the correct definition of Abadie’s CQ, almost at the same time
that we were developing our research. Finally, with all the tools and experience at hand, we could
introduce our definition of CRCQ for (NSOCP) using a constant rank theorem in a similar way
that Janin did and, moreover, with second-order optimality conditions as was made in [AES10].

Last, in this thesis we added a constraint qualification based on curves for (NSOCP), that is
weaker than CRCQ and stronger than Abadie’s CQ. This condition was inspired by a recent research
[FSS22] for (NLP). In our proposal, we showed not only that Ref-McCormick was a constraint
qualification, but we could also show that this condition also implies SSOC for (NSOCP) for any
Lagrange multiplier and, in addition, we showed that this result is related to the fact the the Hessian
of the Lagragian does not depend on the Lagrange multiplier when we vanish all the directions in
the critical cone. To the best of our knowledge, this is new even for (NLP) and it is the weakest
condition that ensures this result. Inspired by Ref-McCormick for (NLP) and this second-order
results, in the last section of this thesis we proposed new constraint qualifications in (NLP) based
on constant rank property, that implies NLP-Ref-McCormick and then inherit all the properties
mentioned before. Moreover, in the Appendix E of this thesis, contains a preprint showing the
difficulty of obtaining points that satisfies SSOC in (NLP) by a practical algorithm when do not
have hypothesis based on constant rank.
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5.1 Suggestion for future research

In Figure 4.3 we showed our contribution for the developing of the study of constant rank-type
constraint qualifications for (NSOCP). Since a new “bridge” was built using techniques such as
sequential optimality conditions and also the constant rank theorem, the most natural step are

i) to find the natural generalizations of the CQ’s that are already well established in (NLP) for
the (NSOCP) context;

ii) to get results related to the CQ’s proposed by us that are not proved yet, such as the study
of stability analysis;

iii) the computing of the derivative of the value function using CRCQ;

iv) convergence of algorithms under CRCQ.

In addition, another possibility is to study in a deeper way the constant rank theorem in [Mal72]
that was used by Janin. It is important to notice that the constant rank theorem was proved as
being an equivalence, as it has been being used just as an implication, in the sense of: if a family
of functions has constant rank, then some properties hold. However, the original theorem has the
structure of: a family of functions has constant rank if, and only if, some properties hold. It means
that there exists a family of functions that captures exactly the requirement in order to have
an implication to Abadie’s CQ but keeping second-order properties. For example, the difference
between CRCQ and RCRCQ relies on what set of constraints we require constant rank. While in
the CRCQ proposed by Janin we vanish all the subsets of the equality constraints, in RCRCQ we
just consider the subsets that contains all the equality constraints. In CRSC, it is required just
one set to have constant rank, but since it is weaker than MFCQ then we lost SSOC. Recently, in
[AHMR23a] the authors proposed a CQ between RCRCQ and CRSC that has such properties and
it can be a candidate of being the weakest constant rank-type CQ that ensures SSOC.



58 CONCLUSION



Bibliography

[Aba65] J Abadie. Problèmes d’optimisation. Institut Blaise Pascal, 1965. 1, 31, 55, 56

[ABHS17] R. Andreani, R. Behling, G. Haeser e P. J. S. Silva. On second-order optimality
conditions in nonlinear optimization. Optimization Methods and Software, 32(1):22–
38, 2017. 50

[AES10] R. Andreani, C. E. Echagüe e M. L. Schuverdt. Constant-rank condition and second-
order constraint qualification. Journal of Optimization theory and Applications,
146(2):255–266, 2010. 1, 2, 10, 12, 29, 35, 38, 42, 44, 48, 55, 56

[AFH+19] R. Andreani, E. H. Fukuda, G. Haeser, D. O. Santos e L. D. Secchin. Optimality condi-
tions for nonlinear second-order cone programming and symmetric cone programming.
Optimization online, 2019. 2, 13, 55, 56

[AFH+21] R. Andreani, E. H. Fukuda, G. Haeser, H. Ramírez, D. O. Santos, P. J. S. Silva e
T. P. Silveira. Erratum to: New constraint qualifications and optimality conditions for
second order cone programs. Set-Valued and Variational Analysis, páginas 1–5, 2021.
2, 3, 5, 7, 11, 12, 17, 29, 30, 55

[AG03] F. Alizadeh e D. Goldfarb. Second-order cone programming. Mathematical Program-
ming Series B, 95:3–51, 2003. 1, 6, 17, 56

[AHM11] R. Andreani, G. Haeser e J. M. Martínez. On sequential optimality conditions for
smooth constrained optimization. Optimization, 60(5):627–641, 2011. 12, 55

[AHM+22a] R. Andreani, G. Haeser, L. M. Mito, H. Ramírez, D. O. Santos e T. P. Silveira. Naive
constant rank-type constraint qualifications for multifold second-order cone program-
ming and semidefinite programming. Optimization Letters, páginas 1–22, 2022. 2, 3,
5, 13, 14, 15, 29, 55

[AHM+22b] R. Andreani, G. Haeser, L. M. Mito, H. Ramírez e T. P. Silveira. Global convergence
of algorithms under constant rank conditions for nonlinear second-order cone program-
ming. Journal of Optimization Theory and Applications, 195(1):42–78, 2022. 2, 3, 17,
19, 22, 23, 25, 27, 28, 29, 55, 56

[AHM+23] R. Andreani, G. Haeser, L. M. Mito, H. Ramírez e T. P. Silveira. First-and second-
order optimality conditions for second-order cone and semidefinite programming under
a constant rank condition. Mathematical Programming, páginas 1–41, 2023. 2, 3, 29,
31, 39, 55, 56

[AHMR23a] R. Andreani, G. Haeser, L. M. Mito e H. Ramírez. A minimal face constant
rank constraint qualification for reducible conic programming. arXiv preprint
arXiv:2304.13881, 2023. 53, 57

[AHMR23b] R. Andreani, G. Haeser, L. M. Mito e H. Ramírez. Weak notions of nondegeneracy in
nonlinear semidefinite programming. Mathematical Programming, páginas 1–32, 2023.
22, 56

59



60 BIBLIOGRAPHY

[AHSS12a] R. Andreani, G. Haeser, M. L. Schuverdt e P. J. S. Silva. A relaxed constant positive
linear dependence constraint qualification and applications. Mathematical Program-
ming, 135(1-2):255–273, 2012. 1, 12, 52, 55

[AHSS12b] R. Andreani, G. Haeser, M. L. Schuverdt e P. J. S. Silva. Two new weak constraint
qualifications and applications. SIAM Journal on Optimization, 22(3):1109–1135, 2012.
1, 10, 52, 53, 55

[AMS05] R. Andreani, J. M. Martínez e M. L. Schuverdt. On the relation between constant pos-
itive linear dependence condition and quasinormality constraint qualification. Journal
of optimization theory and applications, 125(2):473–483, 2005. 50

[AMS07] R. Andreani, J. M. Martínez e M. L. Schuverdt. On second-order optimality conditions
for nonlinear programming. Optimization, 56(5-6):529–542, 2007. 10, 11, 50

[Ani00] M. Anitescu. Degenerate nonlinear programming with a quadratic growth condition.
SIAM Journal on Optimization, 10(4):1116–1135, 2000. 10

[ART02] E. D. Andersen, C. Roos e T. Terlaky. Notes on duality in second order and p-order
cone optimization. 2002. 2, 29, 30, 31, 55

[Aru98] A. Arutyunov. Second-order conditions in extremal problems. the abnormal points.
Transactions of the American Mathematical Society, 350(11):4341–4365, 1998. 10

[Bea11] B. Beauzamy. Introduction to Banach spaces and their geometry. Elsevier, 2011. 30

[BHR18] E. Birgin, G. Haeser e A. Ramos. Augmented lagrangians with constrained subprob-
lems and convergence to second-order stationary points. Computational Optimization
and Applications, 69(1):51–75, 2018. 1, 12, 55

[BHRV18] R. Behling, G. Haeser, A. Ramos e D. S. Viana. On a conjecture in second-order
optimality conditions. Journal of Optimization Theory and Applications, 176:625–633,
2018. 48

[BKMW20] E. Börgens, C. Kanzow, P. Mehlitz e G. Wachsmuth. New constraint qualifications for
optimization problems in banach spaces based on asymptotic kkt conditions. SIAM
Journal on Optimization, 30(4):2956–2982, 2020. 2, 31, 56

[BR05] J. F. Bonnans e H. Ramírez. Perturbation analysis of second-order cone programming
problems. Mathematical Programming, Series B, 104:205–227, 2005. 5, 6, 7, 19, 44

[BS00] J. F. Bonnans e A. Shapiro. Perturbation Analysis of Optimization Problems. Springer
Science & Business Media, 2000. 7

[FSS22] N. S. Fazzion, M.D. Sánchez e M. L. Schuverdt. A note on the mccormick second-
order constraint qualification. Trends in Computational and Applied Mathematics,
23:769–781, 2022. 3, 42, 48, 56

[GM15] H. Gfrerer e B. S. Mordukhovich. Complete characterizations of tilt stability in non-
linear programming under weakest qualification conditions. SIAM Journal on Opti-
mization, 25(4):2081–2119, 2015. 1

[GO16] H. Gfrerer e J. V. Outrata. On computation of generalized derivatives of the normal-
cone mapping and their applications. Mathematics of Operations Research, 41(4):1535–
1556, 2016. 1

[GT71] F. J. Gould e J. W. Tolle. A necessary and sufficient qualification for constrained
optimization. SIAM Journal on Applied Mathematics, 20(2):164–172, 1971. 30



BIBLIOGRAPHY 61

[Gui69] M. Guignard. Generalized kuhn–tucker conditions for mathematical programming
problems in a banach space. SIAM Journal on Control, 7(2):232–241, 1969. 1, 2, 30,
31, 55, 56

[Hae17] G. Haeser. An extension of yuanâs lemma and its applications in optimization. Journal
of Optimization Theory and Applications, 174(3):641–649, 2017. 50

[IT74] A. D. Ioffe e V. M. Tihomirov. Theory of extremal problems. North-Holland, Amster-
dam, 1974. 12, 32, 56

[Jan84] R. Janin. Directional derivative of the marginal function in nonlinear programming.
Mathematical Programming Study, 21:110–126, 1984. 1, 2, 9, 29, 32, 35, 38, 41, 55, 56

[Lim83] E. L. Lima. Espaços métricos, volume 4. Instituto de Matemática Pura e Aplicada,
Rio de Janeiro, 1983. 30

[Mal72] M. P. Malliavin. Géométrie différentielle intrinseque. Herman, Paris, 1972. 2, 32, 38,
57

[Mas19] W. F. Mascarenhas. A simple canonical form for nonlinear programming problems
and its use. Journal of Optimization Theory and Applications, 181(2):456–469, 2019.
50

[McC67] G. P. McCormick. Second order conditions for constrained minima. SIAM Journal on
Applied Mathematics, 15:641–652, 1967. 42

[MF67] O. L. Mangasarian e S. Fromovitz. The fritz-john necessary conditions in presence of
equality and inequality constraints. J. Math. Anal. Appl, 17:37–47, 1967. 1, 8

[MS11a] L. Minchenko e S. Stakhovski. On relaxed constant rank regularity condition in math-
ematical programming. Optimization, 60(4):429–440, 2011. 1, 10, 12, 55

[MS11b] L. Minchenko e S. Stakhovski. Parametric nonlinear programming problems under the
relaxed constant rank condition. SIAM Journal on Optimization, 21(1):314–332, 2011.
10, 44

[NW99] J. Nocedal e S. J. Wright. Numerical optimization. Springer, 1999. 1, 7, 8, 44

[Pat07] G. Pataki. On the closedness of the linear image of a closed convex cone. Mathematics
of Operations Research, 32(2):395–412, 2007. 31, 40

[QW00] L. Qi e Z. Wei. On the constant positive linear dependence condition and its application
to sqp methods. SIAM Journal on Optimization, 10(4):963–981, 2000. 1, 55

[Rob76] S. M. Robinson. Stability theory for systems of inequalities, part ii: Differentiable
nonlinear systems. SIAM Journal on Numerical Analysis, 13(4):497–513, 1976. 1, 7

[Rob82] S. M. Robinson. Generalized equations and their solutions, Part II: Applications to
nonlinear programming. Springer, 1982. 7

[RS23] A. A. Ribeiro e M. Sachine. On strong second-order necessary optimality conditions
under relaxed constant rank constraint qualification. Optimization, páginas 1–13, 2023.
44

[Zor82] V. A. Zorich. Mathematical Analysis. Moscow, Nauka, 1982. 12

[ZZ19] Y. Zhang e L. Zhang. New constraint qualifications and optimality conditions for
second order cone programs. Set-Valued and Variational Analysis, 27:693–712, 2019.
2, 7, 11, 12, 17, 29, 30, 55, 56





Appendix A

Article: Erratum to: New Constraint Qualifications and Optimality Conditions for Second
Order Cone Programs. doi.org/10.1007/s11228-021-00573-5.

63

https://doi.org/10.1007/s11228-021-00573-5


https://doi.org/10.1007/s11228-021-00573-5

Erratum to: New Constraint Qualifications and
Optimality Conditions for SecondOrder Cone Programs

R. Andreani1 · E. H. Fukuda2 ·G. Haeser3 ·H. Ramı́rez4 ·D. O. Santos5 ·P. J. S. Silva1 ·
T. P. Silveira3

Received: 8 September 2020 / Accepted: 13 January 2021 /
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
In this note we show with a counter-example that all conditions proposed in Zhang and
Zhang (Set-Valued Var. Anal 27:693–712 2019) are not constraint qualifications for second-
order cone programming.

Keywords Constraint qualifications · Optimality conditions · Second-order cone
programming

This comment refers to the article available online at https://doi.org/10.1007/s11228-018-0487-2.

� G. Haeser
ghaeser@ime.usp.br

R. Andreani
andreani@ime.unicamp.br

E. H. Fukuda
ellen@i.kyoto-u.ac.jp

H. Ramı́rez
hramirez@dim.uchile.cl

D. O. Santos
daiana@ime.usp.br

P. J. S. Silva
pjssilva@ime.unicamp.br

T. P. Silveira
thiagops@ime.usp.br

1 Department of Applied Mathematics, University of Campinas, Campinas-SP, Brazil
2 Graduate School of Informatics, Kyoto University, Kyoto, Japan
3 Department of Applied Mathematics, University of São Paulo, São Paulo-SP, Brazil
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We consider the (nonlinear) second-order cone programming problem

Minimize f (x),

s.t. gj (x) ∈ Kmj
, j = 1, . . . , �, (1)

where f : Rn → R and gj : Rn → Rmj , j = 1, . . . , � are continuously differentiable and
the second-order cone Km is defined as Km := {z := (z0, z) ∈ R × Rm−1 | z0 ≥ ‖z‖} if
m > 1 and K1 := {z ∈ R | z ≥ 0}. Here ‖ · ‖ is the Euclidean norm.

Given a feasible point x∗, we denote by I0(x
∗) := {j ∈ {1, . . . , �} | gj (x

∗) = 0}
the index set of constraints at the vertex of the corresponding second-order cone and by
IB(x∗) := {j ∈ {1, . . . , �} | [gj (x

∗)]0 = ‖gj (x∗)‖ > 0} the index set of constraints at
the non-zero boundary of the corresponding second-order cone. For j ∈ IB(x∗) we define
φj (x) := 1

2 ([gj (x)]2
0 −‖gj (x)‖2), with ∇φj (x) = Jgj

(x)T Rmj
gj (x), where Jgj

(x)T is the
n × mj transposed Jacobian of gj and Rm is the m × m diagonal matriz with 1 at the first
position and −1 at the remaining positions.

In [11], the authors present an extension of the classical constant rank constraint qual-
ification (CRCQ, [9]) for the second-order cone programming problem (1). It reads as
follows:

Definition 1 The Constant Rank Constraint Qualification (CRCQ) as defined in [11] holds
at a feasible point x∗ of (1) if there exists a neighborhood V of x∗ such that for any index
sets J1 ⊆ I0(x

∗) and J2 ⊆ IB(x∗), the family of matrices whose rows are the union of
Jgj

(x), j ∈ J1 and the vector rows ∇φj (x)T , j ∈ J2 has the same rank for all x ∈ V .

When j ∈ IB(x∗), the conic constraint gj (x) ∈ Kmj
can be locally replaced by the

nonlinear constraint φj (x) ≥ 0, which is active at x∗ (see e.g. [7, Section 4] for more
details). Note also that for j ∈ I0(x

∗) such that Kmj
is one-dimensional, the constraint

gj (x) ∈ Kmj
is also a standard nonlinear constraint. Hence, the particularity of a second-

order cone lies on the fact that one may have a “multi-dimensionally active” constraint
gj (x

∗) = 0, which must be treated accordingly since these are tipically the constraints
that are hard to tackle. The first impression one has when reading Definition 1 is that there
is no special treatment for these active constraints. In particular, one would expect some
regularity to be assumed for each constraint gj (x) ∈ Kmj

when j ∈ I0(x
∗). To emphasize

this last point, let us consider problem (1) with a single second-order cone, that is, � = 1,
with constraint g(x) ∈ Km1 . Let x∗ be a feasible point such that g(x∗) = 0. According to
Definition (1), CRCQ holds at x∗ when the set of vectors given by all rows of Jg(x) has
constant rank, i.e., the full set of gradients {∇g0(x), . . . , ∇gm1−1(x)} has constant rank,
and no subset of these vectors is considered. However, it is well known that the classical
CRCQ for nonlinear programming requires that all subsets of active constraints possesses
the constant rank property.

Despite these considerations, the example given below shows that even a strengthen def-
inition of CRCQ, that takes all these subsets into account, is not a constraint qualification.
This thus invalidates all the results proved in [11]. Therein, the authors also propose a def-
inition for the relaxed-CRCQ (RCRCQ, [10]) and for the Constant Rank of the Subspace
Component (CRSC, [6]), which, being weaker than their definition of CRCQ, are not con-
straint qualifications either. In particular, the definition of RCRCQ is done in such a way
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that only the full set of all gradients in I0(x
∗) is considered, while every subset J2 ⊆ IB(x∗)

is considered (namely, J1 is taken to be fixed and equal to I0(x
∗) in Definition 1). However,

it is easy to see that this is not a constraint qualification, since when one considers only
one-dimensional cones, and consequently (1) reduces to a nonlinear programming problem,
RCRCQ reads identical to the so-called Weak Constant Rank property from [1], which is
not a constraint qualification. Our counter-example is discussed in the sequel.

Consider the following problem of one-dimensional variable:

Minimize f (x) := −x,

s.t. g(x) ∈ K2, (2)

with

g(x) =
(

g0(x)

g1(x)

)
:=

(
x

x + x2

)
.

The unique feasible point is x∗ = 0, thus, it is a global solution. Since g(x∗) = 0, the
Karush-Kuhn-Tucker conditions for this problem are given by the existence of μ ∈ K2 such
that ∇f (x∗) − Jg(x

∗)T μ = 0, that is

− 1 − μ0 − μ1 = 0, (3)

with μ = (μ0, μ1)
T ∈ K2, or, equivalently, μ0 ≥ |μ1|. Thus, (3) can not hold and the

Karush-Kuhn-Tucker conditions fail. On the other hand Jg(x) =
(

1
1 + 2x

)
for all x. In

particular, ∇g0(x) = 1 and ∇g1(x) = 1 + 2x for all x. Thus, all subsets of gradients

{∇g0(x)}, {∇g1(x)}, {∇g0(x),∇g1(x)}
have constant rank equal to 1 for all x near x∗. This shows that the definition of CRCQ
from [11] is not a constraint qualification, as this property is characterized by the fact that
the Karush-Kuhn-Tucker conditions hold at any local minimizer.

We next briefly point out the possible mistake in the approach followed in [11]. It is
based on the proof of RCRCQ from [10], which is also similar to [1]. It is shown therein that
L (x∗) ⊆ T (x∗), for apropriate definitions of the linearized cone L (x∗) and tangent cone
T (x∗) for second-order cone programming, by means of applying an implicit function-type
theorem (Lyusternik’s theorem [8]). This theorem allows constructing a suitable tangent
curve and can be applied provided the constant rank assumption holds true. However, in
the nonlinear programming context, when constraint gj (x

∗) = 0 is analyzed, direction
d ∈ L (x∗) must be orthogonal to the gradient ∇gj (x

∗) in order to ensure the existence of
a tangent curve to {x | gj (x) = 0} along the direction d. This seems to be ignored in [11].

Instead of applying the implicit function approach, constant rank constraint qualifications
may be defined using the approach of sequential optimality conditions [2]. See, for instance,
[4–6]. For this, one would need a proper extension of the so-called Carathéodory Lemma
(see, e.g., [5]), which permits rewriting a linear combination y := ∑m

i=1 λivi with λi ∈ R
and vi ∈ Rn for all i in the following way: y = ∑

i∈I λ̃ivi with I ⊆ {1, . . . , m}, {vi}i∈I

linearly independent, and λ̃i with the same sign of λi for each i. In the case of second-
order cones, for which the vector of scalars (αi)

m
i=1 belongs to the second-order cone Km,

one would want to rewrite the same vector y by only using a linearly independent subset of
{vi}mi=1 and such that the new scalars still belong to the cone. However, this is not possible
in general as the following examples show.
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Example 1 Take y := β0v0 + β1v1 + β2v2, with (β0, β1, β2) := (
√

2, 1, 1) ∈ K3,

v0 :=
(

1
1

)
, v1 :=

(
1
0

)
, v2 :=

(
1
0

)
. There is no way of rewriting y using new scalars

(β̂0, β̂1, β̂2) ∈ K3 such that β̂i = 0 for some i = 0, 1, 2.

In the case of more than one block of constraints (� > 1), even assuming more regularity
for each block, a conic variant of Carathéodory’s Lemma seems not possible to obtain.

Example 2 Take y := β0v0+β1v1+γ0w0+γ1w1 with (β0, β1) := (1, 1) ∈ K2, (γ0, γ1) :=
(1, 1) ∈ K2, and vectors

v0 :=
⎛
⎝ 1

1
−1

⎞
⎠, v1 :=

⎛
⎝ 1

0
0

⎞
⎠, w0 :=

⎛
⎝ 0

1
0

⎞
⎠, and w1 :=

⎛
⎝ 0

0
1

⎞
⎠.

It is not possible to rewrite y with new scalars (β̂0, β̂1) ∈ K2, (γ̂0, γ̂1) ∈ K2 in such a
way that at least one component vanishes. Note that both {v0, v1} and {w0, w1} are linearly
independent sets, but the necessity of dealing with the product of two second-order cones
makes it impossible to fulfill the desired property.

We end this erratum with the following observation. Since it is well-known that lin-
ear second-order cone programs may possess duality gap, a definition of CRCQ could not
be automatically satisfied by linear problems at the vertex. In [3], a naive proposition of
CRCQ is presented where the “multi-dimensionally” active constraints are treated simi-
larly to Robinson’s CQ while the remaining constraints are treated similarly to CRCQ for
nonlinear programming.
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Abstract
The constant rank constraint qualification, introduced by Janin in 1984 for nonlinear
programming, has been extensively used for sensitivity analysis, global convergence
of first- and second-order algorithms, and for computing the directional derivative
of the value function. In this paper we discuss naive extensions of constant rank-
type constraint qualifications to second-order cone programming and semidefinite
programming, which are based on the Approximate-Karush–Kuhn–Tucker necessary
optimality condition and on the application of the reduction approach. Our definitions
are strictly weaker than Robinson’s constraint qualification, and an application to the
global convergence of an augmented Lagrangian algorithm is obtained.

Keywords Constraint qualifications · Optimality conditions · Second-order cone
programming · Semidefinite programming · Global convergence

1 Introduction

In this paper we investigate constraint qualifications (CQs) for second-order cone pro-
gramming and semidefinite programming. In particular, we are interested in constant
rank CQs as defined first in [15] and later extended in [7,8,19,21] in the context of
nonlinear programming. In particular, the definition in [15] gained some notoriety for
its ability to compute the directional derivative of the value function, a result known
to hold at the time only under Mangasarian-Fromovitz CQ [24]. Also, the definition
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from [15] includes naturally the case of linear constraints, which does not follow under
Mangasarian-Fromovitz CQ. The ability to handle redundant constraints (in particular,
linear ones) in the case of nonlinear programming is a powerful modeling tool that
frees the model builder from the apprehension of including them without preprocess-
ing. Actually, the effort of finding which constraints are redundant may be equivalent
to the effort of solving the problem.

For conic programming, it is well known that linearity of the constraints is not a
CQ [2,22] and this somehow stresses the difficulties in extending these ideas to the
conic context. In particular, a previous tentative extension to second-order cones [28]
has been shown to be incorrect [3].

In this paper, we make use of the reduction approach in order to propose new
constant rank-type CQs for second-order cone programming and semidefinite pro-
gramming that are strictly weaker than Robinson’s CQ. In our approach, we separate
the constraints into two sets: one consisting of the constraints that can be completely
characterized by standard equality and inequality nonlinear programming constraints,
and other with the irreducible conic constraints. For second-order cone programming,
the second block consists of constraints that are active at the vertex of a multi-
dimensional second-order cone, while for semidefinite programming these correspond
to semidefinite blocks where the zero eigenvalue is non-simple.

We consider our conditions to be naive extensions of the corresponding nonlinear
programming CQ in the sense that if the problem only has irreducible constraints then
all our conditions coincide with Robinson’s CQ; however we show some interesting
examples where our condition holds while Robinson’s CQ fails. Extending these ideas
to consider also the irreducible constraints is an ongoing topic of research.

Despite our inability of dealing with the irreducible conic constraints, the
Approximate-Karush–Kuhn–Tucker (AKKT) [5] necessary optimality condition,
recently extended to second-order cones [4] and semidefinite programming [9], can
easily be used to handle the remaining constraints bymeans of the reduction approach.
This allows obtaining CQs analogous to those defined in [7,8,15,19,21]. Analogous
definitions of [15,19] are independent of Robinson’s CQ, while analogues of [7,8,21]
are strictly weaker than Robinson’s CQ.

Since several algorithms are expected to generate AKKT sequences (this is the case,
for instance, of the augmented Lagrangian algorithms of [4,9]), a relevant corollary
of our analysis is that all CQs introduced in this paper can be used for proving global
convergence of these algorithms to a KKT point.

This paper is organized as follows. In Sect. 2, we briefly introduce constant rank
CQs for nonlinear programming. In Sect. 3, we revisit constraint qualifications for
second-order cone programming. Section 4 is devoted to the AKKT approach, while
in Sect. 5 we introduce and explain our new CQs for second-order cones. In Sect. 6 we
extend these ideas to semidefinite programming. Finally, our conclusions are presented
in Sect. 7.

Notation: For a continuously differentiable function g : Rn → Rm , we denote
Jg(x) the m × n Jacobian matrix of g at x , for which the j-th row is given by the
transposed gradient ∇g j (x)T of the j-th component function g j : Rn → R, j =
1, . . . , m. Any finite-dimensional space Rm is equipped with its standard Euclidean
inner product 〈x, y〉 := xT y = ∑m

j=1 x j y j . Then, given a closed convex cone K ⊆
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Rm , we denote its polar by K ◦ := {v ∈ Rm | 〈v, y〉 ≤ 0,∀y ∈ K }. Finally, we adopt
the following standard conventions on the empty set ∅: the sum over an empty index
set is null (i.e.,

∑
∅ = 0) and ∅ is linearly independent (considered as the basis of the

trivial linear space {0}).

2 Constant rank-type CQ conditions in nonlinear programming

Consider the following nonlinear programming problem (NLP):

Minimize f (x),

s.t. hi (x) = 0, i = 1, . . . , p,

g j (x) ≤ 0, j = 1, . . . , q, (1)

where f , hi , g j : Rn → R are continuously differentiable functions. We denote by
A(x∗) := { j ∈ {1, . . . , q} | g j (x∗) = 0}, the set of indices of active inequality
constraints at a feasible point x∗.

It is well known that at a local minimizer x∗, it holds that −∇ f (x∗) ∈ T (x∗)◦,
where T (x∗) denotes the (Bouligand) tangent cone to the feasible set at x∗ (see,
e.g., [20, Theorem 12.8]). However, since the tangent cone is a geometric object, this
necessary optimality condition is not always easy to manipulate. For this reason, one
considers the linearized cone, which is defined as follows:

L (x∗) :=
{

d ∈ Rn | ∇hi (x∗)T d = 0, i = 1, . . . , p; ∇g j (x∗)T d ≤ 0, j ∈ A(x∗)
}

.

Its polar may be computed via Farkas’ Lemma, obtaining:

L (x∗)◦ =
⎧
⎨

⎩
v ∈ Rn

∣
∣
∣
∣
∣
∣
v =

p∑

i=1

λi∇hi (x∗) +
∑

j∈A(x∗)

μ j ∇g j (x∗), μ j ≥ 0, j ∈ A(x∗)

⎫
⎬

⎭
.

Hence, when T (x∗)◦ = L (x∗)◦, this geometric optimality condition takes the form
of the usual, much more tractable, Karush–Kuhn–Tucker conditions. Vectors (λi , μ j )

above are called Lagrange multipliers associated with x∗, and the set of all these
vectors is denoted by Λ(x∗) in this manuscript.

A constraint qualification (CQ) is a condition that ensures the equality T (x∗)◦ =
L (x∗)◦. One of the most used CQ in the NLP literature is the well-known Linear
Independence Constraint Qualification (LICQ), which states the linear independence
of the set of gradients {∇hi (x∗)}p

i=1 ∪ {∇g j (x∗)} j∈A(x∗). LICQ ensures not only the
existence, but also the uniqueness of the Lagrange multiplier (see, e.g., [20, Section
12.3]). Several weaker CQs have been defined for NLP. In this paper, we are interested
in constant rank-type ones as first introduced by Janin in [15]. Recall that in the NLP
setting, we say that the Constant Rank Constraint Qualification (CRCQ) holds at a
feasible point x∗ if there exists a neighborhood V of x∗, such that for every subsets
I ⊆ {1, . . . , p} and J ⊆ A(x∗), the rank of {∇hi (x),∇g j (x); i ∈ I, j ∈ J} remains
constant for all x ∈ V . CRCQ is clearly weaker than LICQ.
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Note that requiring only constant rank of the full set of gradients {∇hi (x)}p
i=1 ∪

{∇g j (x)} j∈A(x∗) (which is known as the Weak Constant Rank (WCR) property) is
not a CQ, as shown in [10]. The necessity of considering every subset of this set
of gradients may be seen from the definition of the linearized cone. Indeed, given
d ∈ L (x∗), the relevant index set of inequality constraints gradients is given by
J = Jd := { j ∈ A(x∗) | ∇g j (x∗)T d = 0}, which cannot be chosen in advance
if one only considers the point x∗. However, this suggests that there is no need to
consider subsets of indices for the equality constraints, that is, it is enough to fix
I = {1, . . . , p}. This condition, called Relaxed-CRCQ (RCRCQ), has been shown to
be a CQ in [18]. This condition reads as follows: RCRCQ holds at a feasible point x∗
if there exists a neighborhood V of x∗, such that for every subset J ⊆ A(x∗), the rank
of {∇hi (x),∇g j (x); i ∈ {1, . . . , p}, j ∈ J} remains constant for all x ∈ V .

These conditions can be seen as constant linear dependence conditions and thus
it is natural to weaken these definitions by considering only constant positive linear
dependence, providing conditions CPLD [21] and its relaxed variant RCPLD [7],
both strictly weaker than Mangasarian-Formovitz CQ. This will be the most natural
formulation for the CQs we propose in this paper. We refer the reader to [7].

It turns out that the idea behind the construction of RCRCQ can be also extended
to inequality constraints, providing an even weaker CQ. One seeks at characteriz-
ing a single index set J which is relevant of having the constant rank property. This
set consists of the indices of gradients defining the subspace component of L (x∗)◦,
which is given by its lineality space. More precisely, the lineality space of L (x∗)◦,
defined as the largest linear space contained in L (x∗)◦, is in this case given by
L (x∗)◦ ∩ −L (x∗)◦. So, a gradient ∇g j (x∗) belongs to L (x∗)◦ ∩ −L (x∗)◦ if, and
only if, −∇g j (x∗) ∈ L (x∗)◦. Thus, for J = J−(x∗) := { j ∈ A(x∗) | −∇g j (x∗) ∈
L (x∗)◦}, we say that the Constant Rank of the Subspace Component (CRSC) CQ
holds at a feasible point x∗ if there exists a neighborhood V of x∗, such that the rank
of {∇hi (x),∇g j (x); i ∈ {1, . . . , p}, j ∈ J−(x∗)} remains constant for all x ∈ V . It
was proved in [8] that CRSC is sufficient for the existence of Lagrange multipliers at
a local minimizer, and this is the weakest of the CQs we have discussed.

CQ conditions discussed above in the NLP context have multiple applications. For
instance, RCRCQwas used to compute the directional derivative of the value function
in [19], as well as to prove the convergence of a second-order augmented Lagrangian
algorithm to second-order stationary points in [6]. RCPLD and CRSC were shown to
be sufficient for proving first-order global convergence of several algorithmswhile also
implying the validity of an error bound property (cf. [8]). Noteworthy, under CRSC,
all inequality constraints in the set J−(x∗) behave locally as equality constraints, in
the sense that they are active at any feasible point in a neighborhood of x∗. Therefore,
we strongly believe that the extension of these notions to a conic framework may have
a major impact in stability and algorithmic theory for conic programming.
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3 Constraint qualifications conditions in second-order cone
programming

Let us consider the second-order cone programming (SOCP) problem as follows:

Minimize f (x),

s.t. hi (x) = 0, i = 1, . . . , p,

g j (x) ∈ Km j , j = 1, . . . , �, (2)

where the functions are continuously differentiable and the second-order cones are
denoted by Km j := {(z0, z) ∈ R×Rm j −1 | z0 ≥ ‖z‖}when m j > 1, and Km j := R+
(non-negative reals) otherwise.

We say that the Karush–Kuhn–Tucker (KKT) conditions hold for problem (2) at a
feasible point x∗ if there exists λ ∈ Rp, μ j ∈ Km j , j = 1, . . . , �, such that

∇x L(x∗, λ, μ) = ∇ f (x∗) + Jh(x∗)T λ −
�∑

j=1

Jg j (x∗)T μ j = 0, (3)

〈μ j , g j (x∗)〉 = 0, j = 1, . . . , �. (4)

Here, L(x, λ, μ) := f (x)+〈λ, h(x)〉−∑�
j=1〈μ j , g j (x)〉 is the standard Lagrangian

function for problem (2), and∇x L(x, λ, μ) denotes the gradient of L at (x, λ, μ)with
respect to x . As usual, the set of all Lagrange multipliers (λ, μ) associated with the
feasible point x∗, such that (3)–(4) are fulfilled, is denoted by Λ(x∗).

As in NLP, one needs to assume a suitable CQ in order to ensure the existence of
Lagrange multipliers associated with a local minimizer. In what follows, we recall the
elements needed to define these CQs in the SOCP context.

The topological interior of Km j , denoted by int(Km j ), and the non-zero boundary,
denoted by bd+(Km j ), are respectively defined by

int(Km j ) := {(z0, z) ∈ R × Rm j −1 | z0 > ‖z‖},
bd+(Km j ) := {(z0, z) ∈ R × Rm j −1 | z0 = ‖z‖ > 0}.

Thus, given a feasible point x∗, we introduce the index sets:

Iint (x∗) := { j ∈ {1, . . . , �} | g j (x∗) ∈ int(Km j )},
IB(x∗) := { j ∈ {1, . . . , �} | g j (x∗) ∈ bd+(Km j )},
I0(x∗) := { j ∈ {1, . . . , �} | g j (x∗) = 0}.

Moreover, the complementarity condition (4) can be equivalently written as

μ j ◦ g j (x∗) = 0, j = 1, . . . , �, (5)
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where the operation ◦ is defined for any couple of vectors y := (y0, ȳ) and s := (s0, s̄),
with the same dimension, as follows:

y ◦ s :=
( 〈y, s〉

y0s̄ + s0 ȳ

)

.

For more details about this operation, its algebraic properties and its relation with
Jordan algebras, see [1, Section 4] and references therein.

From (5), it is easy to check that complementarity condition is equivalently written
in terms of the above-mentioned index sets as follows:

μ j = 0 if j ∈ Iint (x∗), μ j = α j Rm j g j (x∗), for some α j ≥ 0, if j ∈ IB(x∗),
(6)

and no condition on μ j can be inferred when j ∈ I0(x∗). Here, Rm is an m × m
diagonal matrix whose first entry is 1 and the remaining ones are −1. Consequently,
KKT conditions at x∗ can be characterized as the existence of λ ∈ Rp, μ j ∈ Km j ,
j ∈ I0(x∗), and α j ≥ 0, j ∈ IB(x∗), such that

∇ f (x∗) + Jh(x∗)T λ −
∑

j∈I0(x∗)
Jg j (x∗)T μ j −

∑

j∈IB (x∗)
α j∇φ j (x∗) = 0, (7)

where

φ j (x) := 1

2
([g j (x)]20 − ‖g j (x)‖2) for all j ∈ IB(x∗).

Indeed, it is straightforward to check that∇φ j (x) = Jg j (x)T Rm j g j (x) andmultipliers
μ j for all j /∈ I0(x∗) are recovered from (6).

The use of mappings φ j is a consequence of applying the reduction approach to
problem (2). Actually, condition (7) is simply KKT conditions at point x∗ for a locally
equivalent version of problem (2) for which constraints g j (x) ∈ Km j are replaced
by φ j (x) ≥ 0 when j ∈ IB(x∗), and are omitted when j ∈ Iint (x∗). For the sake of
completeness, this reduced equivalent problem is explicitly stated here below:

Minimize f (x),

s.t. hi (x) = 0, i = 1, . . . , p,

g j (x) ∈ Km j , j ∈ I0(x∗),
φ j (x) ≥ 0, j ∈ IB(x∗). (8)

Despite its apparent simplicity in the SOCP setting, the reduction approach is a
key tool in conic programming. It permits obtaining first- and second-order optimality
conditions, to simplify some well-known CQs, among other crucial properties. See
[13, Section 3.4.4] and [12, Section 4] for more details. Throughout this article we
will use KKT condition (7) and problem (8) to adapt CQ conditions from NLP to the
SOCP setting (2).

123



Naive constant rank-type constraint qualifications for… 595

One of the most used (and strong) conditions to guarantee the existence of a
Lagrange multiplier at a local minimizer x∗ is the nondegeneracy condition. Thanks
to the reduction approach (cf. [13, Equation 4.172]), this condition can be equivalently
defined as follows:

Definition 1 Let x∗ be a feasible point of (2). Consider all the row vectors of the
matrices Jh(x∗) and Jg j (x∗), j ∈ I0(x∗) together with the row vectors∇φ j (x∗)T , j ∈
IB(x∗). We say that nondegeneracy holds at x∗ when these vectors are linearly inde-
pendent.

The nondegeneracy condition implies the existence and uniqueness of a Lagrange
multiplier at a local minimizer x∗, and the reciprocal is true provided that (x∗, λ, μ)

(with (λ, μ) ∈ Λ(x∗)) is strictly complementary, that is, g j (x∗) + μ j ∈ int(Km j ) for
all j = 1, . . . , �; see [13, Proposition 4.75]. Thus, nondegeneracy is the analogue of
LICQ from nonlinear programming. Note that there are other definitions of nonde-
generacy e.g. [1, Definition 18] and [12, Definition 16]. However, all these definitions
coincide in the case of SOCP problem (2). We address the reader to [12, Section 4]
for more details about nondegeneracy in the context of SOCP.

As LICQ in NLP, nondegeneracy condition is often considered too strong. For this
reason, one typically assumes a weaker condition, called Robinson’s CQ, which was
originally defined in [23] for a general conic setting. In our SOCP setting, we can use
characterizations given in [13, Proposition 2.97, Corollary 2.98 and Lemma 2.99] to
obtain the following equivalent definition:

Definition 2 Let x∗ be a feasible point of (2).We say that Robinson’s CQ holds at x∗ if

Jh(x∗)T λ +
�∑

j=1

Jg j (x∗)T μ j = 0 and λ ∈ Rm , μ j ∈ Km j , 〈μ j , g j (x∗)〉 = 0, j = 1, . . . , �

⇒ λ = 0 and μ j = 0, j = 1, . . . , �.

(9)

As in NLP, when x∗ is assumed to be a local solution of (2), Robinson’s CQ (9)
is equivalent to saying that the set of Lagrange multipliers Λ(x∗) is nonempty and
compact (cf. [13, Props. 3.9 and 3.17]). In this sense, condition (9) can be seen as an
extension of Mangasarian-Fromovitz CQ in NLP to the SOCP setting (2), written in
a dual form.

Thanks to (6), condition (9) can be rewritten as follows:

Jh(x∗)T λ +
∑

j∈I0(x∗)
Jg j (x∗)T μ j +

∑

j∈IB (x∗)
α j∇φ j (x∗) = 0,

λ ∈ Rm, μ j ∈ Km j , j ∈ I0(x∗); α j ≥ 0, j ∈ IB(x∗)
⇒ λ = 0, μ j = 0, j ∈ I0(x∗); α j = 0, j ∈ IB(x∗).

(10)

As we will see in the forthcoming sections, condition (10) best fits our analysis.
Note that (10) can be interpreted as a conic linear independence of the (transposed)

Jacobians and gradients involved in its definition. Indeed, given some finite number
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of convex and closed cones C j and denoting by
∏

j C j the cartesian product of these
sets, we say that a correspondent set of matrices Vj of appropriate dimensions is∏

j C j -linearly independent if

∑

j

V j s j = 0 and − s j ∈ C◦
j for all j ⇒ s j = 0 for all j .

Then, (10) coincides with the {0p} × ∏
j∈I0(x∗) Km j × R|IB (x∗)|

+ -linear independence

of matrices: Jh(x∗)T , Jgi (x∗)T with j ∈ I0(x∗), and ∇φ j (x∗)with j ∈ IB(x∗). Here,
0p denotes the null vector in Rp. Moreover, when C j = R+ for all j in the definition
above (and consequently, each matrix Vj is simply a column vector),

∏
j C j -linear

independence coincides with the well-known positive linear independence. Then,
condition (10) reminds the characterization of Mangasarian-Fromovitz CQ condi-
tion given by the positive linear independence of the gradients of active constraints
(after replacing each equality constraint hi (x) = 0 by two inequalities hi (x) ≥ 0
and hi (x) ≤ 0). It is also interesting to note that {0p} × ∏

j=1,...,� Km j -linear inde-

pendence of matrices Jh(x∗)T and Jgi (x∗)T with j = 1, . . . , �, is strictly stronger
than Robinson’s CQ (9). This again shows how useful is the reduction approach for
our analysis. Given the analyzed above, when Robinson’s CQ fails, we say that the
corresponding matrices in (10) are conic linearly dependent.

4 The Approximate-KKT approach

For the nonlinear programmingproblem (1), the followingApproximate-KKT (AKKT)
necessary optimality condition [5] is well known:

Theorem 1 Let x∗ be a local minimizer of (1). Then, there exist sequences {xk} ⊂ Rn,
{λk} ⊂ Rp, {μk} ⊂ Rq

+ such that xk → x∗ and

∇ f (xk) +
p∑

i=1

λk
i ∇hi (xk) +

∑

j∈A(x∗)
μk

j∇g j (xk) → 0. (11)

We define μk
j → 0 (or, equivalently, μk

j = 0) for j /∈ A(x∗). Note that this
does not require any constraint qualification at all and the sequence of approximate
Lagrange multipliers {(λk, μk)} may be unbounded. If the sequence has a bounded
subsequence, one may take a convergent subsequence such that the KKT conditions
hold. In the unbounded case, one may define Mk := max{|λk

i |, i = 1, . . . , p;μk
j , j ∈

A(x∗)} → +∞ and divide the expression in (11) by Mk . Thus, one may take an
appropriate subsequence such that

λk

Mk
→ λ ∈ Rp and

μk
j

Mk
→ μ j ≥ 0, j ∈ A(x∗),
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obtaining the existence of scalars λi , i = 1, . . . , p;μ j ≥ 0, j ∈ A(x∗), not all equal
to zero, satisfying

p∑

i=1

λi∇hi (x∗) +
∑

j∈A(x∗)
μ j∇g j (x∗) = 0.

That is, the gradients of equality constraints and active inequality constraints are
positive linearly dependent. This provides a simple proof for the existence of Lagrange
multipliers under the Mangasarian-Fromovitz CQ (MFCQ). A very similar argument
shows that the set of Lagrange multipliers at x∗ is bounded if, and only if, MFCQ
holds.

In order to go beyond MFCQ in nonlinear programming, one relies on the well-
known Carathéodory’s Lemma, as stated in [7]:

Lemma 1 Let v1, . . . , vp+q ∈ Rn be such that {vi }p
i=1 are linearly independent. Con-

sider scalars βi , i = 1, . . . , p + q, and denote y := ∑p+q
i=1 βivi . Then, there exist

J ⊆ {p+1, . . . , p+q} and scalars β̂i , i ∈ {1, . . . , p}∪J , such that {vi }i∈{1,...,p}∪J are
linearly independent, βi > 0 implies β̂i > 0, for all i ∈ J , and y = ∑

i∈{1,...,p}∪J β̂ivi .

Thus, in order to prove that CRCQ (and its weaker variants) is a CQ for the nonlinear
programming problem (1), we apply Carathéodory’s Lemma to (11). This yields

∇ f (xk) +
∑

i∈I k

λ̃k
i ∇hi (xk) +

∑

j∈J k

μ̃k
j∇g j (xk) → 0,

with I k ⊆ {1, . . . , p}, J k ⊆ A(x∗), μ̃k
j ≥ 0, j ∈ J k , and such that the vectors of the

set {∇hi (xk)}i∈I k ∪ {∇g j (xk)} j∈J k are linearly independent for all k. Here, by the
infinite pigeonhole principle and passing to a subsequence if necessary, index subsets
I k and J k can be taken as fixed and not depending on k. Then, the AKKT approach
described above is similarly followed. It is worth to emphasize here that the application
of Carathéodory’s Lemma preserves the sign of the candidate to multipliers, that is,
μ̃k

j has the same sign than μk
j . This is a crucial step which is not clearly extended to

the conic case (see [3]). Note that if {∇hi (xk)}p
i=1 is linearly independent for all k, we

may take Ik = {1, . . . , p}, which will be relevant in our analysis.
In the sequel, wewill use the extension of theAKKTnecessary optimality condition

for second-order cone programming (2), as presented in [4]:

Theorem 2 Let x∗ be a local minimizer of (2). Then, there exist sequences {xk} ⊂ Rn,
{λk} ⊂ Rp, {μk

j } ⊂ Km j , j ∈ I0(x∗), {αk
j } ⊂ R+, j ∈ IB(x∗) such that xk → x∗

and

∇ f (xk) + Jh(xk)T λk −
∑

j∈I0(x∗)
Jg j (xk)T μk

j −
∑

j∈IB (x∗)
αk

j ∇φ j (xk) → 0. (12)
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5 A proposal of constraint qualifications for second-order cones

Following the previous discussion, we present a “naive” formulation of constant rank
constraint qualifications for the second-order cone programming problem (2).

Definition 3 Let x∗ be a feasible point of problem (2) and I ⊆ {1, . . . , p} be such
that {∇hi (x∗)}i∈I is a basis of the linear space generated by vectors {∇hi (x∗)}p

i=1.
We say that the Relaxed Constant Positive Linear Dependence (RCPLD) condition
holds at x∗ when, for all J ⊆ IB(x∗), there exists a neighborhood V of x∗ such that:

– {∇hi (x)}p
i=1 has constant rank for all x in V ;

– if the system

∑

i∈I

λi∇hi (x∗) +
∑

j∈I0(x∗)
Jg j (x∗)T μ j +

∑

j∈J

α j∇φ j (x∗) = 0,

λi ∈ R, i ∈ I ; μ j ∈ Km j , j ∈ I0(x∗); α j ≥ 0, j ∈ J ,

has a not all zero solution (λi )i∈I , (μ j ) j∈I0(x∗), (α j ) j∈IB (x∗), then vectors
{∇hi (x)}i∈I ∪ {∇φ j (x)} j∈J are linearly dependent for all x in V .

Note that Robinson’s CQ implies RCPLD since it states the conic linear indepen-
dence of the corresponding sets (and thus, for all its subsets) while RCPLD allows
its conic linear dependence, as long as the linearly dependence is maintained for a
reduced subset in a neighborhood.

The definition above takes into account our inability to relax Robinson’s CQ for
cones Km j with j ∈ I0(x∗), as the linear dependence for x near x∗ is required only
for equalities and for constraints at the boundary. Indeed, note that in the case when
IB(x∗) = ∅ and no equalities are considered (i.e., p = 0), RCPLD coincides with
Robinson’s CQ (9). This is an immediate consequence of the adopted convention
that states that the empty set is always a linear independent set. On the other hand,
we are aware that Definition 3 is unnecessarily strong when m j = 1 for an index
j ∈ I0(x∗). Indeed, in such case, the associated inequality g j (x) ∈ Km j corresponds
to an inequality constraint of the form g j (x) ≥ 0, which is active at x∗. Hence, RCPLD
definition can be slightly modified to take this situation into account as follows: define
A(x∗) := { j ∈ I0(x∗) | m j = 1}, and remove those indices from I0(x∗), that is, define
Ĩ0(x∗) := I0(x∗)\A(x∗). Indices in A(x∗) can thus be treated similarly to those in
IB(x∗). So, by defining φ j (x) := g j (x) when j ∈ A(x∗), a slightly weaker version of
RCPLD can be obtained by replacing I0(x∗) by Ĩ0(x∗) and IB(x∗) by IB(x∗)∪ A(x∗)
in Definition 3. Since this modification has no consequence in the proof of Theorem 3,
we do not include it in its statement.

The point raised in the last paragraph explains why Definition 3 is considered a
“naive” extension of a constant rank-type condition. Before proving that RCPLD is a
CQ for problem (2), we make further observations related to this point.
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Remark 1 (a) When we choose J = ∅ in Definition 3, we necessarily obtain that there
is no non-zero solution (λi , μ j ), with i ∈ I and j ∈ I0(x∗), to the system:

∑

i∈I

λi ∇hi (x∗) +
∑

j∈I0(x∗)
Jg j (x∗)T μ j = 0 and λi ∈ R, i ∈ I ; μ j ∈ Km j , j ∈ I0(x∗).

This is equivalent to saying that Robinson’s CQ holds at x∗ for the constrained set
Γ0 := {x | hi (x) = 0, i ∈ I , g j (x) ∈ Km j , j ∈ I0(x∗)}. So, RCPLD ensures that
Robinson’s CQ is fulfilled at x∗ for the active set Γ0. Actually, by using the slight
modification discussed above, we can exclude standard nonlinear constraints from
I0(x∗), and conclude that it only implies the weaker condition: Robinson’s CQ holds
at x∗ for the constrained set Γ̃0 := {x | hi (x) = 0, i ∈ I , g j (x) ∈ Km j , j ∈
I0(x∗), m j > 1}.

(b) Consider the case when problem (2) reduces to NLP (1), that is, Ĩ0(x∗) = ∅
and IB(x∗) = ∅. Then, RCPLD in Definition 3 reduces to the respective definition
for nonlinear programming [7]. In particular, by enlarging the system to include α j ∈
R, j ∈ J , instead of only considering α j ≥ 0, j ∈ J , the definition reduces to an
equivalent characterization (see [7]) of RCRCQ: {∇hi (x)}p

i=1 has constant rank for x
around x∗ and for all J ⊆ A(x∗), if the set {∇hi (x∗)}i∈I ∪ {∇φ j (x∗)} j∈J is linearly
dependent, then {∇hi (x)}i∈I ∪ {∇φ j (x)} j∈J must remain linearly dependent for all
x in a neighborhood of x∗ (here, the set I is fixed as in Definition 3). The latter
also explains why RCPLD, given in Definition 3, is considered a constant rank-type
condition for problem (2).

(c) Differently from the definition of nondegeneracy and Robinson’s CQ, the choice
of the reduction function φ(·) gives rise to different constant rank conditions. For
instance, one could formulate a similar, but different, condition by considering the
alternative reduction function φ̃ j (x) := [g j (x)]0 − ‖g j (x)‖ for j ∈ IB(x∗). This is a
well-known fact for nonlinear programming, which establishes that when a constraint
set satisfies CRCQ, it can be rewritten in such a way that it fulfills Robinson’s CQ
[16]. See also [17] where the result is proved under a weaker CQ.

Theorem 3 Let x∗ be a feasible point of problem (2) satisfying the AKKT condition (12)
and RCPLD. Then, the KKT conditions hold at x∗. In particular, RCPLD is a constraint
qualification.

Proof AKKT condition (12) ensures the existence of sequences {xk} ⊂ Rn , {λk} ⊂
Rp, {μk

j } ⊂ Km j , j ∈ I0(x∗), {αk
j } ⊂ R+, j ∈ IB(x∗), such that xk → x∗ and

∇ f (xk) +
p∑

i=1

λk
i ∇hi (xk) −

∑

j∈I0(x∗)
Jg j (xk)T μk

j −
∑

j∈IB (x∗)
αk

j ∇φ j (xk) → 0.

By the constant rank assumption on the equality constraints, and the definition of I , we
may rewrite

∑p
i=1 λk

i ∇hi (xk) = ∑
i∈I λ̃k

i ∇hi (xk) for new scalars λ̃k
i ∈ R, i ∈ I , such

that vectors {∇hi (xk)}i∈I are linearly independent. Applying Carathéodory’s Lemma,
for each k, we get J k ⊆ IB(x∗) and new scalars λ̂k

i ∈ R, i ∈ I , α̂k
j ≥ 0, j ∈ J k , such

that
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∇ f (xk) +
∑

i∈I

λ̂k
i ∇hi (xk) −

∑

j∈I0(x∗)
Jg j (xk)T μk

j −
∑

j∈J k

α̂k
j ∇φ j (xk) → 0, (13)

and vectors {∇hi (xk)}i∈I ∪ {∇φ j (xk)} j∈J k are linearly independent. By the infinite
pigeonhole principle, without loss of generality we can consider subsequences, which
are renamed as the original ones, for which sets J k are the same for all k. This set is
denoted by J .

Define Mk := max{|λ̂k
i |, i ∈ I ; ‖μk

i ‖, i ∈ I0(x∗); α̂ j , j ∈ J }. If {Mk} is bounded,
any accumulation point of {λ̂k

i , i ∈ I ;μk
i , i ∈ I0(x∗); α̂ j , j ∈ J } (after replacing by 0

the values for indices that are neither in I , nor in J ) satisfies (7). Hence, x∗ is a KKT
point of (2). Otherwise, we may take a subsequence such that Mk → +∞, and divide
the expression in (13) by Mk , considering convergent subsequences such that

− λ̂k
i

Mk
→ λi ∈ R, i ∈ I ; μk

j

Mk
→ μ j ∈ Km j , j ∈ I0(x∗);

α̂k
j

Mk
→ α j ≥ 0, j ∈ J , with (λi , μ j , α j ) �= 0,

and obtaining
∑

i∈I

λi∇hi (x∗) +
∑

j∈I0(x∗)
Jg j (x∗)T μ j +

∑

j∈J

α j∇φ j (x∗) = 0.

Then, since vectors {∇hi (xk)}i∈I ∪ {∇φ j (xk)} j∈J are linearly independent, this con-
tradicts the definition of RCPLD. ��

Exact definition of RCPLD in nonlinear programming can be consulted in [7]. The
definition of CRCQ [15], RCRCQ [19], and CPLD [21] may be analogously extended.
They are omitted. We only introduce the extension of CRSC [8] for this SOCP setting,
since its definition is more involving and differs from its nonlinear programming
counterpart. For the sake of completeness, the definition ofCRSCconsiders sets Ĩ0(x∗)
and A(x∗). To prove that CRSC is a CQ is enough to follow the proof of Theorem 3,
so it is omitted.

Definition 4 Let x∗ be a feasible point of (2) and J−(x∗) ⊆ IB(x∗) ∪ A(x∗) be
defined as

J−(x∗) :=
{

j0 ∈ IB(x∗) ∪ A(x∗)
∣
∣
∣ − ∇φ j0 (x∗) =

p∑

i=1

λi ∇hi (x∗) +
∑

j∈IB (x∗)∪A(x∗)

α j ∇φ j (x∗),

for some λi ∈ R, α j ≥ 0

}

.

Set J+(x∗) := IB(x∗) ∪ A(x∗)\J−(x∗). We also define I ⊆ {1, . . . , p} and J ⊆
J−(x∗) such that {∇hi (x∗)}i∈I ∪{∇φ j (x∗)} j∈J is a basis of the linear space generated
by {∇hi (x∗)}p

i=1∪{∇φ j (x∗)} j∈J−(x∗). We say that the Constant Rank of the Subspace
Component (CRSC) condition holds at x∗ when there exists a neighborhood V of x∗
such that:
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– {∇hi (x)}p
i=1 ∪ {∇φ j (x)} j∈J−(x∗) has constant rank for all x in V ;

– the system

∑

i∈I

∇hi (x∗)λi +
∑

j∈ Ĩ0(x∗)

Jg j (x∗)μ j +
∑

j∈J∪J+(x∗)
∇φ j (x∗)α j = 0,

λi ∈ R, i ∈ I ; μ j ∈ Km j , j ∈ Ĩ0(x∗); α j ∈ R, j ∈ J ; α j ≥ 0, j ∈ J+(x∗),

has only the trivial solution.

Note that when Ĩ0(x∗) = ∅, the second requirement in the definition of CRSC
always holds [8].

As said above, both definitions, RCPLD and CRSC, are “naive” in the sense that
they do not improve on Robinson’s CQ regarding multi-dimensional cones at zero.
That is, when all constraint indices belong to Ĩ0(x∗), both definitions coincide with
Robinson’s CQ (9). However, the example below shows that RCPLD and CRSC are
strictly weaker than Robinson’s CQ:

Example 1 Consider the constraint set defined by

g(x) := (g0(x), g1(x)) := (x, x) ∈ K2,

where x is one-dimensional. Clearly, x∗ = 1 is feasible and the single constraint is in
the boundary, i.e. IB(x∗) is the only nonempty index set. Reduced constraint is such
that φ(x) := 1

2 (g0(x)2 − g1(x)2) = 0 for all x . Then, it follows that ∇φ(x∗) = 0
and consequently, Robinson’s CQ fails. However, ∇φ(x) = 0 for all x , which implies
that RCPLD holds. CRSC also holds by noting that the reduced constraint belongs
to the index set J−(x∗), whose gradient has constant rank, and Ĩ0(x∗) = ∅, which is
sufficient for ensuring the second condition. Indeed, J = ∅ is a basis for the linear
space generated by the constraint gradient in J−(x∗) and the result follows by the
linear independence of the empty set.

6 Extension to semidefinite programming

Consider the semidefinite programming (SDP) problem with multiple constraints:

Minimize f (x),

s.t. h(x) = 0,

g j (x) ∈ Sm j
+ , j = 1, . . . , �, (14)

where f : Rn → R, h : Rn → Rp, and g j : Rn → Sm j are continuously differen-
tiable functions, Sm j is the linear space of m j ×m j real symmetric matrices equipped
with the inner product A · B := trace(AB), where trace(AB) denotes the sum of the
elements of the diagonal of AB for all matrices A, B ∈ Sm j , and

Sm j
+ := {M ∈ Sm j | zT Mz ≥ 0,∀z ∈ Rm j }
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is the closed convex cone of all positive semidefinite elements of Sm j , for all j =
1, . . . , �. We denote by � j the partial order relation induced by Sm j

+ , that is, A � j B

if, and only if, B− A ∈ Sm j
+ . For the sake of notation, the index j is omitted throughout

the paper and this relation order is simply denoted by �. The order relations �, �,
and ≺ are similarly defined.

We end this subsection by recalling the Karush–Kuhn–Tucker conditions in the
SDP framework. We say that KKT conditions hold at a feasible point x∗ of problem
(14) when there exist Lagrange multipliers λ ∈ Rp and μ j ∈ Sm j , j = 1, . . . , � such
that

∇ f (x∗) + Jh(x∗)T λ −
�∑

j=1

Jg j (x∗)T μ j , (15a)

g j (x∗) · μ j = 0, j = 1, . . . , �, (15b)

with

Jg j (x∗)T z := (∂1g j (x∗) · z, . . . , ∂ng j (x∗) · z)T , ∀z ∈ Sm j ,

where ∂i g j (x∗) is the partial derivative of g j with respect to the variable xi , at x∗,
for each i = 1, . . . , n. In fact, Jg j (x∗)T is the adjoint of the linear mapping Jg j (x∗),
defined by

Jg j (x∗)d :=
n∑

i=1

di∂i g j (x∗),

for all d = (d1, ..., dn)T ∈ Rn , j = 1, . . . , �.

6.1 Revisiting constraint qualifications for multifold SDP

Constraint qualification conditions recalled in Sect. 3 for SOCP have been also well
established for SDP problem (14). In this section, we start by quickly recalling Robin-
son’s CQ, before proceeding with the study of nondegeneracy condition, which needs
more attention for our purposes.

As in the SOCP setting, Robinson’s CQ [23] can be equivalently characterized via
the properties established in [13, Proposition 2.97, Corollary 2.98 and Lemma 2.99]
in its dual form:

Definition 5 We say that Robinson’s CQ holds at a feasible point x∗ of problem (14)
when

Jh(x∗)T λ +
�∑

j=1

Jg j (x∗)T μ j = 0,

g j (x∗) · μ j = 0, ∀ j = 1, . . . , �,

μ j ∈ Sm j
+ , ∀ j = 1, . . . , �,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇒ μ j = 0, ∀ j = 1, . . . , �. (16)
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As in SOCP, Robinson’s CQ is considered as the natural extension of Mangasarian-
Fromovitz CQ fromNLP to the SDP setting. Actually, when x∗ is assumed to be a local
solution of (2), Robinson’s CQ (16) is equivalent to saying that the set of Lagrange
multipliers Λ(x∗) is nonempty and compact (cf. [13, Props. 3.9 and 3.17]).

Let us now recall nondegeneracy condition in the SDP context. The notion of
nondegeneracy (called transversality therein) was introduced by Shapiro and Fan in
[26, Section 2] by means of tangent spaces in the context of eigenvalue optimization.
An equivalent form is proven in [13, Equation (4.172)] for reducible cones. This is
adopted as a formal definition in our multifold SDP setting:

Definition 6 We say that a feasible point x∗ of problem (14) is nondegenerate when
the following relation is satisfied

ImA (x∗) + {0} ×
�∏

j=1

lin(TS
m j
+

(g j (x∗))) = Rp ×
�∏

j=1

Sm j , (17)

where

A (x∗) :=
(

Jh(x∗)
Jg j (x∗); j = 1, ..., �

)

is a linear mapping from Rn to Rp × ∏�
j=1 Sm j .

As it happens in SOCP, the nondegeneracy condition is considered to be a natural
analogue of LICQ from NLP to SDP. Actually, nondegeneracy condition (17) implies
the existence and uniqueness of a Lagrange multiplier at a local minimizer x∗, and
the reciprocal is true provided that (x∗, λ, μ) (with (λ, μ) ∈ Λ(x∗)) is strictly com-
plementary, that is, g j (x∗) + μ j � 0 for all j = 1, . . . , �; see [13, Proposition 4.75].
However, this analogy only makes sense when matrix blocks g j (x∗) are chosen in a
“minimal” way, in the sense of avoiding zeros in the off diagonal entries. In particular,
an NLP problem with � inequality constraints should be modeled as an instance of
(14) with m1 = . . . = m� = 1. Only in that case, nondegeneracy coincides LICQ. To
stress the point above, we recall here below some results from [11, Section 5].

Consider the NLP problem of minimizing f (x) under two constraints: g1(x) ≥ 0
and g2(x) ≥ 0, where f , g1, and g2 are smooth real-valued functions. Let x∗ be
a local mimimun for which g1(x∗) = g2(x∗) = 0 and LICQ holds (i.e., vectors
∇g1(x∗) and ∇g2(x∗) are linearly independent). Denote by μ̄1 and μ̄2 the unique
associatedLagrangemultipliers, and assume that strict complementarity holds: μ̄i > 0
for i = 1, 2. If this NLP problem is written as the following SDP problem

Minimize f (x),

s.t.

[
g1(x) 0
0 g2(x)

]

∈ S2+, (18)

then nondegeneracy condition (17) never holds. Indeed, the Lagrange multiplier asso-
ciated with x∗ for the reformulated problem (18) is never unique. It is enough to note
that the matrix
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μ̄ :=
[
μ̄1 0
0 μ̄2

]

is an associated Lagrange multiplier as well as

μ̄ + t

(
0 1
1 0

)

,

for any t ∈ R such that t2 ≤ μ̄1μ̄2. Of course, this apparent inconsistency occurs not
only for diagonal matrices but also for any SDP problemwith a diagonal structure (see
e.g. [11, Lemma 5.1]), and it is due to an inappropriate modeling decision regarding
the sparse structure of the studied SDP problem.

On the other hand, this phenomenon does not occur with Robinson’s CQ, which
is always preserved independently of the block structure of the SDP constraint set.
This may be one of the reasons why multifold SDP is not often taken into consider-
ation in the literature, along with the fact that interior-point methods are knowingly
capable of exploiting block-diagonal structure (see Gondzio’s review [14] and refer-
ences therein for details). It is not expected, though, that every constraint qualification
will be preserved between multifold and block-diagonal representations. In particular,
the constraint qualifications we define in the next section are defined by means of
exploiting the multifold structure. In this context, they are strictly weaker than Robin-
son’s CQ, while if one considers a single block-diagonal representation our condition
would resume to Robinson’s CQ. Furthermore, since our analysis is related to AKKT
sequences, which describe the output of many practical algorithms, our results pro-
vide a stronger convergence theory for them when applied to SDP problems under
multifold representation.

For more details about the nondegeneracy condition in the semidefinite program-
ming context, see e.g. [11,25]. In particular, Nondegeneracy condition for multifold
SDP given in Definition 6 and the discussion above are inspired from [11, Section 5].

In the next section we propose a naive RCPLD condition similar to Definition 3 for
multifold SDP, as in (14). We note that CPLD has already been used in the context
of SDP problems in [27], however, they consider the application of an augmented
Lagrangian method for a mixed problem with SDP constraints and NLP constraints,
where the NLP constraints are not penalized and are carried out to the subproblems.
Hence, the usual CPLD is assumed for the NLP constrained subproblems, in the
context of feasibility results, while Robinson’s CQ is assumed for the full problem in
the context of optimality results. In particular, no CPLD-type CQ is introduced for the
full problem.

6.2 A constant rank condition for SDP

Denote the smallest eigenvalue of a matrix A by σmin(A) and its associated unitary
eigenvectors by νmin(A) and −νmin(A). It is known that σmin is continuously differ-
entiable at A when σmin(A) is simple, i.e., when it has algebraic multiplicity equal to
one, and that Jσmin(A) = νmin(A)νmin(A)T in this case (see, e.g., [26]). So, given a
local minimizer x∗, the composition σmin ◦ g j is a reduction mapping for the block j
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when σmin(g j (x∗)) is simple, playing a similar role to φ j (x) for problem (8). Also, in
this scenario,

∇(σmin(g j (x)) = Jg j (x)T Jσmin(g j (x)) (19)

when x is close enough to x∗. This motivates us to define an analogue of problem (8)
for SDP as follows:

Minimize f (x),

s.t. h(x) = 0,

g j (x) ∈ Sm j
+ , j ∈ IN (x∗),

σmin(g j (x)) ≥ 0, j ∈ IR(x∗), (20)

where

IR(x∗) := { j ∈ {1, . . . , �} | 0 = σmin(g j (x∗)) is simple}

and

IN (x∗) := { j ∈ {1, . . . , �} | 0 = σmin(g j (x∗)) is not simple}.

Note that (20) is locally equivalent to (14) and that we have removed for simplicity
all the constraints such that g j (x∗) � 0, i.e., the “inactive” ones, in the reformulated
problem. However, in problem (20), we have not applied the reduction approach to
blocks j ∈ IN (x∗). Roughly speaking, our approach consists of defining a constraint
qualification that relaxes Robinson’s CQ to a constant rank-type condition, but only at
the constraints indexed by IR(x∗), which are the ones that are well-behaved enough
to be fully replaceable by a single real-valued constraint. As in the SOCP case, our
strategy for proving that this is indeed a constraint qualification is based on sequential
optimality conditions.

In [9], the AKKT condition was extended for SDP. Next, we present an adapted
version of it for problems with mixed NLP and SDP constraints, like (20):

Theorem 4 Let x∗ be a local minimizer of (20). Then, there exist AKKT sequences
{xk} ⊂ Rn, {λk} ⊂ Rp, {αk

j } ⊂ R+, and {μk
j } ⊂ Sm j

+ such that xk → x∗ and

∇ f (xk) + Jh(xk)T λk −
∑

j∈IN (x∗)
Jg j (xk)T μk

j

−
∑

j∈IR(x∗)
αk

j ∇σmin(g j (xk)) → 0, (21)

σi (g j (x∗)) > 0 ⇒ σi (μ
k
j ) → 0, i = 1, . . . , m j , ∀ j ∈ IN (x∗), (22)
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where σi (μ
k
j ) and σi (g j (x∗)) denote corresponding eigenvalues of μk

j and g j (x∗),
respectively, regarding ordered orthonormal eigenbasis {νi (μ

k
j )}

m j
i=1 and {νi (g j (x∗))}m j

i=1

such that νi (μ
k
j ) → νi (g j (x∗)) for all i = 1, . . . , m j and all j ∈ IN (x∗).

With this result at hand, we proceed in a similar manner to Definition 3 in order to
extend the Relaxed Constant Positive Linear Dependence (RCPLD) condition to SDP
via problem (20).

Definition 7 Let x∗ be feasible for problem (14) and let I ⊆ {1, . . . , p} be such that
{∇hi (x∗)}i∈I is a basis for the space spanned by {∇hi (x∗)}p

i=1. We say that Relaxed
Constant Positive Linear Dependence holds at x∗ when, for every J ⊆ IR(x∗), there
exists a neighborhood V of x∗ such that:

– {∇hi (x)}p
i=1 has constant rank for all x ∈ V ;

– If the system

Jh(x∗)T λ +
∑

j∈IN (x∗)
Jg j (x∗)T μ j +

∑

j∈J

α j∇σmin(g j (x∗)) = 0,

λ ∈ Rp, μ j � 0, ∀ j ∈ IN (x∗), α j ≥ 0, ∀ j ∈ J

has a nontrivial solution, then {∇hi (x)}i∈I ∪{∇σmin(g j (x))} j∈J is linearly depen-
dent for every x ∈ V .

Next, we show that RCPLD is a constraint qualification using AKKT sequences
(Theorem 4).

Theorem 5 Let x∗ be a feasible point of problem (14) satisfying the AKKT condi-
tion (21) and RCPLD stated in Definition 7. Then, the KKT conditions (15) hold at
x∗. In particular, RCPLD is a constraint qualification.

Proof Let {xk} → x∗, {λk} ⊂ Rp, {αk
j } ⊂ R+, and {μk

j } ⊂ Sm j
+ be sequences such

that (21) and (22) hold. By the constant rank assumption and the definition of I , the
set {∇hi (xk)}i∈I is a basis for the space spanned by {∇hi (xk)}p

i=1 when k is large
enough. Hence, for all such k, there are new scalars λ̃k ∈ R|I | such that

p∑

i=1

λk
i ∇hi (xk) =

∑

i∈I

λ̃k
i ∇hi (xk),

for all k. Set λ̃k
i = 0 for all i /∈ I . So, Jh(xk)T λk = Jh(xk)T λ̃k for all k.

Also, thanks to Carathéodory’s Lemma (Lemma 1) in (21), for every fixed k there
is a nonempty subset J k ⊂ IR(x∗) such that {∇hi (xk)}i∈I

⋃{∇σmin(g j (xk))} j∈J k is
linearly independent and, consequently, (21) can be rewritten as follows

∇ f (xk) + Jh(xk)T λ̃k −
∑

j∈IN (x∗)
Jg j (xk)T μk

j −
∑

j∈J k

α̃k
j ∇σmin(g j (xk)) → 0,

(23)
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for some α̃k
j ≥ 0, where j ∈ J k . Note that in this process the scalars λ̃k

i , i ∈ I , also

changes, but we abuse the notation by still denoting them by λ̃k
i . Now, by the infinite

pigeonhole principle, we can assume, without loss of generality, that J k = J , for all
k ∈ N. That is, we can take a subsequence if necessary such that J k does not vary
with k.

Now, we claim that the sequences {λ̃k}, {μk
j }, j ∈ IN (x∗), and {α̃k

j }, j ∈ J are
bounded. Indeed, set

Mk := max{α̃k
j , j ∈ J ; ‖μk

j‖, j ∈ IN (x∗); ‖λ̃k‖}

and suppose that {Mk} is unbounded. This implies, by passing to a subsequence if
necessary, that

− λ̃k
i

Mk
→ λi ∈ R, i ∈ I ; μk

j

Mk
→ μ j ∈ Km j , j ∈ IN (x∗);

α̃k
j

Mk
→ α j ≥ 0, j ∈ J , with (λi , μ j , α j ) �= 0.

Then, by dividing (21) by Mk and passing to the limit, we contradict RCPLD.
Finally, let μ̄ j ∈ Sm j

+ ( j ∈ IN (x∗)), ᾱ j ≥ 0 ( j ∈ IR(x∗)), and λ̄, be limit points of
the sequences {μk

j } ( j ∈ IN (x∗)), {α̃k
j } ( j ∈ IR(x∗)), and {λ̃k}, respectively. Note that

these limit points are Lagrange multipliers associated with x∗. Indeed, by definition
of IR(x∗), we always have σmin(g j (x∗))ᾱ j = 0, for all j ∈ IR(x∗). So, for each
j ∈ IR(x∗) the matrix μ̄ j := ᾱ jνmin(g j (x∗))νmin(g j (x∗))T is positive semidefinite
and satisfies that Jg j (x∗)T μ̄ j = ᾱk

j ∇σmin(g j (xk)) (cf. (19)). Additionally, set μ̄ j := 0
when j is such that g j (x∗) � 0. Then, it follows from (21) that

∇ f (x∗) + Jh(x∗)T λ̄ −
�∑

j=1

Jg j (x∗)T μ̄ j = 0,

which together with (22) implies that g j (x∗) · μ̄ j = 0 for every j . The desired
result follows.

��
The CRSC condition can also be extended in a very similar manner. That is, we

treat the conic constraints that “look like equality constraints” near the feasible point
x∗, as equality constraints, which means it is not necessary to consider the rank-type
structure of every subset of their gradients, but only of one fixed set. To formalize our
analyses, we define the set

J−(x∗) :=
{

j0 ∈ IR(x∗)
∣
∣
∣ − ∇σmin(g j0 (x∗)) =

p∑

i=1

λi ∇hi (x∗) +
∑

j∈IR (x∗)

α j ∇σmin(g j (x∗)),

for some λi ∈ R, α j ≥ 0

}

,

(24)
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and the set J+(x∗) := IR(x∗)\J−(x∗). Now, the Constant Rank of the Subspace
Component (CRSC) constraint qualification for SDP is defined as follows:

Definition 8 Let x∗ be a feasible point of (2) and J−(x∗) ⊆ IR(x∗) be defined as
in (24). We also take I ⊆ {1, . . . , p} and J ⊆ J−(x∗) such that {∇hi (x∗)}i∈I ∪
{∇σmin(g j (x∗))} j∈J is a basis of the space spanned by the set {∇hi (x∗)}p

i=1 ∪
{∇σmin(g j (x∗))} j∈J−(x∗). We say that Constant Rank of the Subspace Component
(CRSC) condition holds at x∗ when there exists a neighborhood V of x∗ such that:

– {∇hi (x)}p
i=1 ∪ {∇σmin(g j (x))} j∈J−(x∗) has constant rank for all x in V ;

– the system

∑

i∈I

λi∇hi (x∗) +
∑

j∈IN (x∗)
Jg j (x∗)T μ j +

∑

j∈J∪J+(x∗)
α j∇σmin(g j (x∗)) = 0,

λi ∈ R, i ∈ I ; μ j ∈ Sm j
+ , j ∈ IN (x∗); α j ∈ R, j ∈ J ; α j ≥ 0, j ∈ J+(x∗),

has only the trivial solution.

It is possible to prove that CRSC is indeed a constraint qualification, but since
the proof follows from the same arguments provided in the proof of Theorem 5, it is
omitted. The next counterexample, analogous to Example 1, shows that CRSC and
RCPLD are strictly weaker than Robinson’s CQ.

Example 2 Consider the following pair of constraints:

g1(x) := 1

2

[
x + 1 x − 1
x − 1 x + 1

]

∈ S2+, g2(x) := 1

2

[
1 − x −x − 1

−x − 1 1 − x

]

∈ S2+

and the point x∗ = 0, which is the unique feasible point. The eigenvalues of
g1(x) are σmin(g1(x)) = x and σmax(g1(x)) = 1, with corresponding eigenvectors
νmin(g1(x)) = (1, 1)T and νmax(g1(x)) = (1,−1)T , respectively, for all x close to
x∗. With the same eigenvectors, the eigenvalues of g2(x) are σmin(g2(x)) = −x and
σmax(g2(x)) = 1, when x is close to x∗.

Also, note that σmin(g1(x∗)) and σmin(g2(x∗)) are both simple, which means the
reformulation of the problem as in (20) is simply an NLP problem.Moreover, we have
that ∇σmin(g1(x)) = 1, ∇σmin(g2(x)) = −1, for all x close enough to x∗ = 0. Then,
RCPLD and CRSC (with J−(x∗) = {1, 2} and, consequently, J+(x∗) = ∅ and J
equals either {1} or {2}) hold. However, Robinson’s CQ does not hold. Thus, RCPLD
and CRSC are strictly implied by Robinson’s CQ.

7 Conclusion

We have presented naive definitions of constant rank-type CQs for second-order cone
programming and semidefinite programming. The definition is naive in the sense that
no improvement is made with respect to irreducible constraints, where our definitions
resume to Robinson’s CQ. However, in general, our definitions are strictly weaker
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than Robinson’s CQ. In order to present a definition that takes into account the true
conic constraints, we expect that a much more involving implicit function approach or
Approximate-KKT approach would be needed, which is a subject of current research.
Note that, since augmented Lagrangian algorithms described in [4] and [9] generate an
AKKT sequence for SOCP (2) and SDP (14) problems, respectively, CQs introduced
in these notes are sufficient for showing global convergence to a KKT point without
assuming Robinson’s CQ.
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Abstract
In Andreani et al. (Weak notions of nondegeneracy in nonlinear semidefinite program-
ming, 2020), the classical notion of nondegeneracy (or transversality) and Robinson’s
constraint qualification have been revisited in the context of nonlinear semidefinite
programming exploiting the structure of the problem, namely its eigendecomposition.
This allows formulating the conditions equivalently in terms of (positive) linear inde-
pendence of significantly smaller sets of vectors. In this paper, we extend these ideas
to the context of nonlinear second-order cone programming. For instance, for an m-
dimensional second-order cone, instead of stating nondegeneracy at the vertex as the
linear independence of m derivative vectors, we do it in terms of several statements
of linear independence of 2 derivative vectors. This allows embedding the structure
of the second-order cone into the formulation of nondegeneracy and, by extension,
Robinson’s constraint qualification as well. This point of view is shown to be crucial
in defining significantly weaker constraint qualifications such as the constant rank
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constraint qualification and the constant positive linear dependence condition. Also,
these conditions are shown to be sufficient for guaranteeing global convergence of
several algorithms, while still implying metric subregularity and without requiring
boundedness of the set of Lagrange multipliers.

Keywords Second-order cone programming · Constraint qualifications ·
Algorithms · Global convergence · Constant rank.

Mathematics Subject Classification 90C46 · 90C30

1 Introduction

The well-known constant rank constraint qualification (CRCQ) was introduced by
Janin [29], for nonlinear programming (NLP), with the purpose of obtaining a for-
mula for the Hadamard directional derivative of the value function. Prior to his work,
similar results were known under theMangasarian–Fromovitz constraint qualification
(MFCQ) and the linear independence constraint qualification (LICQ).

Janin also showed that CRCQ neither implies nor is implied by MFCQ and, more-
over, that CRCQ is strictly weaker than LICQ. After that, CRCQ has been widely
employed in the NLP literature for instance in the study of stability , strong second-
order necessary optimality conditions [5], global convergence of algorithms , among
other applications. We remark that CRCQ explains in a very simple way the existence
of Lagrange multipliers associated with affine constraints, such as in linear program-
ming.

More recently, Qi and Wei [42] presented a condition called constant positive lin-
ear dependence (CPLD), which is strictly weaker than both MFCQ and CRCQ, and
showed its application on the convergence of a general sequential quadratic program-
ming (SQP) method for NLP. However, they did not prove that CPLDwas a constraint
qualification at the time. This issue was settled in a later article by Andreani et al. [16],
where they proved that CPLD implies the quasinormality constraint qualification con-
dition. Later, in [4], the convergence of an augmented Lagrangian method was also
proved under CPLD. Other uses of constant rank-type constraint qualifications in NLP
are discussed, for instance, in [14, 15, 29, 34, 35] and their references. In particular,
the appropriate way of incorporating equality constraints in the definitions of CRCQ
and CPLD is discussed, respectively, in [34] and [14].

Although constraint qualifications with applications toward convergence of algo-
rithms are largely studied in NLP, the situation is quite different in nonlinear second-
order cone programming (NSOCP), despite its many relevant applications—for
example, in structural optimization and machine learning , hydroacoustic classifi-
cation of fishes , and others . In NSOCP, this role is almost always covered by the
so-called nondegeneracy condition (c.f. [18, Equation 25]) and Robinson’s constraint
qualification (Robinson’s CQ) (c.f. [18, Equation 29]), which can be seen as natu-
ral generalizations of LICQ and MFCQ, respectively. The first work that attempted to
extendCRCQand its variants to the context ofNSOCP is due to Zhang andZhang [47],
but their condition was invalidated by a counterexample given byAndreani et al. in [6].
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Later, a “naive approach” to extend some constant rank-type constraint qualifications
for NSOCP was presented by Andreani et al. in [11]; the adjective “naive” refers to
the fact that some of the conic constraints were locally rewritten as NLP constraints
whenever possible, yielding a new reformulated problem with mixed constraints, and
then a hybrid condition between the NLP versions of CRCQ/CPLD and nondegen-
eracy/Robinson’s CQ was presented. The major contribution of [11] is to show an
effective way of dealing with those two distinct types of constraints via sequences of
approximate stationary points.

Recently, we proposed in [12] a newgeometrical characterization ofCRCQ forNLP
using the faces of the nonnegative orthant, which was naturally extended to the context
of NSOCP as well as nonlinear semidefinite programming (NSDP). This has led us
to an alternative constant rank-type constraint qualification that allowed us to derive
strong second-order optimality conditions for NSDP and NSOCP without assuming
compactness of the Lagrange multiplier set, similarly to what is known in NLP .
However, no application toward algorithms was provided or suggested in [12]. Since
the sequential approach from [11] seemsmore suitable for algorithms, we developed it
even further for NSDP problems [9, 10] by directly exploiting the eigenvector structure
of the problem, overcoming the limitations of the naive approach.

This paper introduces new constraint qualifications for NSOCP problems follow-
ing similar ideas to those used in [9] and [10], but taking into account the structure
of the second-order cone. For such, we will first introduce weak variants of the
nondegeneracy condition and Robinson’s CQ—here called weak-nondegeneracy and
weak-Robinson’s CQ—which are weaker than their original versions but that still
reduce to LICQ and MFCQ, respectively, when an NLP problem is modeled as an
NSOCP problem with several one-dimensional constraints. Moreover, we show that
weak-nondegeneracy is strictly weaker than nondegeneracy, and we also clarify some
relations between weak-nondegeneracy (weak-Robinson’s CQ) and standard nonde-
generacy (Robinson’s CQ), which were only partially addressed in [9]. In particular,
we show a new characterization of nondegeneracy in terms of the validity of weak-
nondegeneracy plus the linear independence of a partial Jacobian of the constraints.
The relationship of weak-Robinson’s CQ and Robinson’s CQ is also partially settled
in our Theorem 3.1, which was left as an open problem for NSDP in [10]. With these
new constraint qualifications at hand, we introduce new extensions of CRCQ and
CPLD for NSOCP, which also recover their counterparts in NLP. We also discuss a
mild adaptation of these new conditions that can be adopted with the purpose of prov-
ing global convergence results for algorithms that keep track of Lagrange multiplier
estimates.

The structure of this paper is as follows: In Sect. 2, we present some notation and
technical results. Sections 3 and 4 present weak constraint qualifications for NSOCP:
weak-nondegeneracy condition, weak-Robinson’s CQ, and two weak constant rank
conditions. Also, we present some of their properties and a detailed comparison with
other constraint qualifications from the literature, and among themselves. In Sect. 5,we
introduce perturbed versions of the constant rank conditions of Sect. 4, and we present
some algorithms related to them. We state the relationship between these perturbed
variants and the so-called metric subregularity CQ. Finally, in Sect. 6, we summarize
our results and discuss some ideas for future research.
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2 Preliminaries

In this section, we will present our notation and some linear algebra and convex
analysis tools needed for deriving the results of this paper.

2.1 Basic Results and Some Notation

For a given differentiable function F : Rn → Rm , we denote the Jacobian matrix
of F at a point x ∈ Rn by DF(x); and the j th column of its transpose, DF(x)�,
will be denoted by ∇Fj (x). We also adopt the usual inner product in Rm , given by
〈y, z〉 := ∑m

j=1 y j z j , along with the Euclidean norm ‖y‖ := √〈y, y〉, for every
y, z ∈ Rm . The open ball (respective to the Euclidean norm) that has center at y and
radius δ ≥ 0 will be denoted by B(y, δ), and its closure, by cl(B(y, δ)).

The orthogonal projection of a given y ∈ Rm onto a nonempty closed convex set
C ⊆ Rm with respect to the Euclidean norm is defined as

PC (y) := argmin
z∈C

‖z − y‖.

It is valid to mention that PC (y) is well defined as a continuous function of y, since
C is closed and convex. Also, when C is given by the Cartesian product of other
nonempty closed convex sets C1, . . . ,Cq , where C j ⊆ Rm j for every j ∈ {1, . . . , q},
then for any y := (y1, . . . , yq) ∈ Rm1+···+mq , we have

PC (y) = (PC1(y1), . . . ,PCq (yq)
)
.

To relate our results to the classical ones from the literature, we will make use of a
notion of conic linear independence, defined as follows:

Definition 2.1 Let C ⊆ Rm be a nonempty closed convex cone. A matrix M ∈ Rn×m

is said to be C-linearly independent if there is no nonzero v ∈ C such that Mv = 0.

Roughly speaking, Definition 2.1 describes “injectivity over C .” In particular, if C
is the nonnegative orthant

Rm+ := {y ∈ Rm : ∀i ∈ {1, . . . ,m}, yi ≥ 0},

thenDefinition 2.1 reduces to a concept known inNLP as positive linear independence
of the columns of M . Now, let us show a simple characterization of conic linear
independence in terms of all finitely generated conical slices of the cone.

Lemma 2.1 Let C ⊆ Rm be a closed convex cone such that there exists a (possibly
infinite) index set S and, for each w ∈ S, a finite subset Ew ⊆ C whose elements are
linearly independent, such that

C =
⋃

w∈S
cone(Ew), (1)
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where cone(Ew) denotes the conic hull of Ew. Then, a matrix M ∈ Rn×m is C-linearly
independent if, and only if, the family {Mv}v∈Ew

is positively linearly independent,
for every fixed w ∈ S.

Proof Suppose that M is C-linearly independent, let w ∈ S be arbitrary, and let
av ∈ R+, v ∈ Ew, be scalars such that

∑

v∈Ew

avMv = M

⎡

⎣
∑

v∈Ew

avv

⎤

⎦ = 0. (2)

Since C is a convex cone, it follows that ṽ := ∑v∈Ew
avv belongs to C , so ṽ = 0 by

hypothesis; and from the linear independence of Ew we have that av = 0 for every
v ∈ Ew. Thus, {Mv}v∈Ew

is positively linearly independent.
Conversely, assume that {Mv}v∈Ew

is positively linearly independent, and let ṽ ∈ C
be such that M ṽ = 0. Then, there is somew ∈ S such that ṽ ∈ cone(Ew); that is, there
exist some scalars av ≥ 0, v ∈ Ew, such that ṽ = ∑

v∈Ew
avv and hence (2) holds,

implying that av = 0 for all v ∈ Ew; thus, ṽ = 0. �
Remark 2.1 Considering C = Rm in the statement of the Lemma and replacing the
conic hull by the linear span in (1), we arrive similarly at a characterization of the
linear independence of the columns of M in terms of the linear independence of the
family {Mv}v∈Ew

, for every fixed w ∈ S.

A simple example to fix ideas on how to use Lemma 2.1 is to take the parametric
representation of R2:

R2 = {(r cos(w), r sin(w)) : w ∈ [0, 2π ], r ≥ 0}
=

⋃

w∈[0,2π ]
cone((cos(w), sin(w))) (3)

so we have C = R2, S = [0, 2π ], and Ew = {(cos(w), sin(w))}, w ∈ S. In this case,
Lemma 2.1 simply states the trivial fact that a matrix M ∈ Rn×2 is injective if, and
only if, M(cos(w), sin(w)) �= 0 for every w ∈ [0, 2π ]. Moreover, the main object of
our study, the second-order cone (or Lorentz cone):

Lm :=
{ {y := (y0, ŷ) ∈ R × Rm−1 : y0 ≥ ‖ŷ‖}, if m > 1,

R+, if m = 1,

may benefit from Lemma 2.1 as well, since it can be written as

Lm =
⋃

w∈Rm−1

‖w‖=1

cone({(1,−w), (1, w)}),

which corresponds to S = {w ∈ Rm−1 : ‖w‖ = 1} and Ew = {(1,−w), (1, w)}. In
this case Lemma 2.1 states that a matrix M ∈ Rn×m is Lm-linearly independent if,
and only if, the vectors
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M(1,−w) and M(1, w) (4)

are positively linearly independent for every w ∈ Rm−1 such that ‖w‖ = 1. Further-
more, the standard notion of linear independence in Rm can also be stated in terms of
the conical slices of Lm , since it is a full-dimensional cone; indeed, observe that

Rm =
⋃

w∈Rm−1

‖w‖=1

span({(1,−w), (1, w)}),

where span({(1,−w), (1, w)}) denotes the linear span of the vectors (1,−w) and
(1, w); then, the matrix M is Rm-linearly independent (i.e., injective) if, and only if,
the vectors (4) are linearly independent for everyw ∈ Rm−1 such that ‖w‖ = 1. Thus,
we have replaced the linear independence of the m columns of M by a series of linear
independence requirements of only two parameterized vectors in (4), independently
of the size of m. With this point of view, we will be able to exploit the structure of the
second-order cone, which will turn out to be essential in our analysis.

Furthermore, observe that Lemma 2.1 can be applied to products of closed convex
cones C = ∏ j∈J C j , where J is an index set, in order to describe C-linear indepen-
dence of a family of matrices {Mj } j∈J mounted into a conveniently indexed block
matrix

M :=

⎡

⎢
⎢
⎣

...

Mj
...

⎤

⎥
⎥
⎦

j∈J

(5)

therefore, we will abuse the terminology to define the C-linear independence of the
family {Mj } j∈J in terms of the above M throughout the paper.

To close this subsection, let us briefly recall the celebrated Carathéodory’s Lemma
[17, Exercise B.1.7] from convex analysis:

Lemma 2.2 (Carathéodory’s Lemma) Let y1, . . . , yp ∈ Rn, and let α1, . . . , αp ∈ R
be arbitrary. Then, there exist some J ⊆ {1, . . . , p} and some scalars α̃ j with j ∈ J ,
such that {y j } j∈J is linearly independent,

p∑

j=1

α j y j =
∑

j∈J

α̃ j y j ,

and α j α̃ j > 0, for all j ∈ J .

2.2 The Nonlinear Second-Order Cone Programming Problem

A (multifold) nonlinear second-order cone programming problem is usually stated in
the form:
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Minimize
x∈Rn

f (x), (NSOCP)

subject to g j (x) ∈ Lm j , ∀ j ∈ {1, . . . , q},

where f : Rn → R and g j : Rn → Rm j are continuously differentiable functions, for
all j ∈ {1, . . . , q}, andLm j is a second-order cone inRm j . As usual, for a point x ∈ Rn

we denote g j (x) = (g j,0(x), ĝ j (x)) ∈ R × Rm j−1. The feasible set of (NSOCP) will
be denoted by F . Also, we denote the interior and the boundary excluding the origin
of Lm j by intLm j and bd+Lm j , respectively; and as usual in the study of NSOCP, for
any x ∈ F we partition {1, . . . , q} as follows:

I0(x) := { j ∈ {1, . . . , q} : g j (x) = 0},
IB(x) := { j ∈ {1, . . . , q} : g j (x) ∈ bd+Lm j },
Iint (x) := { j ∈ {1, . . . , q} : g j (x) ∈ intLm j }.

(6)

Following [2, Section 4], we recall that if m j > 1, then every y ∈ Rm j has a
spectral decomposition with respect to Lm j , in the form

y = λ1(y)u1(y) + λ2(y)u2(y),

where

λi (y) := y0 + (−1)i‖ŷ‖ and ui (y) :=

⎧
⎪⎪⎨

⎪⎪⎩

1

2

(

1, (−1)i
ŷ

‖ŷ‖
)

, if ŷ �= 0,

1

2

(
1, (−1)iw

)
, otherwise,

(7)

and w ∈ Rm j−1 can be any unitary vector, with i ∈ {1, 2}. In this setting, λi (y) is
said to be an eigenvalue of y associated with the eigenvector ui (y), i ∈ {1, 2}. By
definition, we see that y ∈ Lm j if, and only if, λ1(y) ≥ 0, λ2(y) ≥ 0, whence follows
that the orthogonal projection of y onto Lm j can be characterized as

PLm j
(y) = [λ1(y)]+u1(y) + [λ2(y)]+u2(y), (8)

where [ · ]+ := max{ · , 0}.
Remark 2.2 From this point onwards, we will assume that m j > 1 for every j ∈
{1, . . . , q}. The reason to do this is that if m j = 1, then g j ∈ Lm j is a standard NLP
constraint, which should be treated separately in our approach, together with equality
constraints; we should remark that our approach is very friendly to this kind of mixed
constraints, since it is based on [11]. In particular, inclusion of equality constraints
can be done in the way suggested in [34] and [14]. Therefore, to avoid cumbersome
notation, we will omit both types of NLP constraints in this paper. Alternatively, the
spectral decomposition of y ∈ L1 could be interpreted as y = λ1(y)u1(y), with
u1(y) = 1 and λ1(y) = y. From this point of view, the definitions and theorems of
this paper can be adjusted to fit the casem j = 1 by simply disregarding all expressions
involving λ2(y) and u2(y).
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Let x ∈ F . The well-known Karush–Kuhn–Tucker (KKT) conditions for x consist
of the existence of Lagrange multipliers μ j ∈ Lm j , j ∈ {1, . . . , q}, such that

∇x L(x, μ1, . . . , μq) = 0,

〈μ j , g j (x)〉 = 0, ∀ j ∈ {1, . . . , q}, (9)

where

L(x, μ1, . . . , μq) := f (x) −
q∑

j=1

〈μ j , g j (x)〉.

It is known that not every local minimizer satisfies the KKT conditions, unless
a constraint qualification is present. The most prominent constraint qualifications in
the literature are the nondegeneracy CQ and Robinson’s CQ, which we recall next as
characterized1 in the work of Bonnans and Ramírez [18].

Definition 2.2 A point x ∈ F satisfies

– Nondegeneracy if the family

{
Dg j (x)

�Γ j g j (x)
}

j∈IB (x)

⋃{
Dg j (x)

�}

j∈I0(x)
(10)

is R|IB (x)| ×∏ j∈I0(x) Rm j -linearly independent;

– Robinson’s CQ if the family (10) is R|IB (x)|
+ ×∏ j∈I0(x) Lm j -linearly independent;

where

Γ j :=
[
1 0
0 −Im j−1

]

(11)

and Im j−1 is the identity matrix of dimension m j − 1.

As mentioned in the Introduction, the nondegeneracy condition reduces to LICQ
from NLP when it is seen as an instance of (NSOCP) withm1 = · · · = mq = 1, while
Robinson’s CQ reduces to MFCQ in the same process.

3 Weak Constraint Qualifications for NSOCP

From the practical point of view, one of the standard strategies for proving first-order
global convergence of iterative algorithms is proving that every feasible limit point x
of the sequence {xk}k∈N of its iterates fulfills the KKT conditions whenever a given

1 See [18, Proposition 19] for the characterization of nondegeneracy. The characterization of Robinson’s
CQ follows from [19, Proposition 2.97 and Corollary 2.98] using the fact 〈y j , g j (x)〉 = 0 with j ∈ IB (x)
if, and only if, y j = αΓ j g j (x) for some α ≥ 0; and similarly, 〈y j , g j (x)〉 = 0 with j ∈ Iint (x) if, and
only if, y j = 0 [2, Lemma 15].
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CQ holds. Roughly speaking, this means that the algorithm surely avoids all non-
optimal points that satisfy the CQ but violate KKT; hence, building this reasoning
under a more general (weaker) CQmeans to narrow down the range of convergence of
the method without removing optimal candidates from it. Moreover, it is well known
that the existence of Lagrange multipliers is a relevant issue beyond algorithms—for
example, in situations where they have some practical interpretation, such as in the
electricity pricing context—meaning that there is also a theory-driven motivation for
pursuing weaker constraint qualifications.

In this section, we will present weaker variants of nondegeneracy and Robinson’s
CQ, discuss someof their properties, and exemplify their usagewith an external penalty
method. Besides, these conditions shall pave the way for a more radical relaxation in
terms of local constant rank, which will be discussed in the next section. A similar
approach has been conducted in [9, 10] for NSDP problems, but although NSOCP can
be seen as a particular case of NSDP via an arrowhead matrix transformation

(y0, ŷ) �→ Arw(y0, ŷ) :=

⎡

⎢
⎢
⎢
⎣

y0
. . . ŷ

y0
ŷ� y0

⎤

⎥
⎥
⎥
⎦

,

it should be noted that constraint qualifications are not necessarily carried over with the
transformation; that is,when dealingwithweak constraint qualifications, one generally
loses information when the problem is equivalently rewritten differently (a noticeable
exception is Robinson’s CQ, which turns out the be quite robust in this sense). For
instance, the nondegeneracy condition for NSDP is never satisfied by a constraint in
the form

Arw(g0(x), ĝ(x)) ∈ Sm+ := {M ∈ Rm×m : M = M�; ∀d ∈ Rm, d�Md ≥ 0}

when m > 2, regardless of the fulfillment of nondegeneracy for NSOCP applied to
the constraint (g0(x), ĝ(x)) ∈ Lm . As it can be easily verified, the same conclusion
holds for the constraint qualification called “weak-nondegeneracy” for NSDP that was
introduced in [10]. Thus, a specialized analysis is required to obtain results similar to
[9, 10], for NSOCP. In fact, the analysis we present in this section regarding thoseweak
conditions is, in a sense, more refined than the one presented in [10] since there are
some important questions that were left open in [10], whichwe are able to answer here.

3.1 Parametric Bases andWeak-Nondegeneracy for NSOCP

We open our studies by characterizing nondegeneracy and Robinson’s CQ in terms
of the eigenvectors of the constraint functions (as in (7)). To motivate it, let g(x) :=
(g0(x), ĝ(x)) and x ∈ Rn be such that g(x) = 0. Using Bonnans and Ramírez’
characterization (Definition 2.2), we see that x is nondegenerate (that is, it satisfies
nondegeneracy CQ) when the matrix Dg(x) is surjective. This is clearly a represen-
tation of nondegeneracy in the canonical basis e1, . . . , em of Rm , where ei has 1 in
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its i th position and zeros elsewhere. Other representations of Rm may lead to differ-
ent characterizations of these constraint qualifications; and this simple fact leads us a
natural way of imbuing the structure of the cone into the conditions.

For instance, the discussion after Lemma 2.1 allows us to represent nondegeneracy
and Robinson’s CQ in terms of each slice of Lm , as long as we consider all of them.
More precisely:

Corollary 3.1 Let x be a feasible point of (NSOCP). Then:

1. Nondegeneracy holds at x if, and only if, the family of vectors

{
Dg j (x)

�u1(g j (x))
}

j∈IB (x)

⋃{
Dg j (x)

�(1,−w j ), Dg j (x)
�(1, w j )

}

j∈I0(x)
(12)

is linearly independent for every w j ∈ Rm j−1 such that ‖w j‖ = 1, j ∈ I0(x);
2. Robinson’s CQ holds at x if, and only if, the family (12) is positively linearly

independent for every w j such that ‖w j‖ = 1, j ∈ I0(x).

Proof For item 2, it suffices to apply Lemma 2.1 considering the product C =∏
j∈J C j , J := IB(x) ∪ I0(x), where

C j :=
{

R+, if j ∈ IB(x),
Lm j , if j ∈ I0(x),

to the matrix M = [Mj ] j∈J arranged as in (5), whose blocks are given by

Mj :=
{
Dg j (x)�u1(g j (x)), if j ∈ IB(x),
Dg j (x)�, if j ∈ I0(x).

To see why C fits the description of Lemma 2.1, define S j := {1} for every j ∈ IB(x),
S j := {w j ∈ Rm j−1 : ‖w j‖ = 1} for every j ∈ I0(x); then, let S :=∏ j∈J S j and for
each w := (w j ) j∈J ∈ S, with w j ∈ S j for j ∈ J , define Ew :=∏ j∈J Ew j , where

Ew j :=
{
1, if j ∈ IB(x),
{(1,−w j ), (1, w j )}, if j ∈ I0(x),

for every j ∈ J . Observe that C = ⋃
w∈S cone (Ew) and the proof of item 2 is over.

The proof for item 1 is similar, considering Remark 2.1. �
For a better understanding of the meaning of Corollary 3.1, let us resume the short
discussion after Lemma 2.1. Note that LICQ for a pair of constraints g1(x) ≥ 0 and
g2(x) ≥ 0 at a point x such that g1(x) = g2(x) = 0, when seen through Corollary 3.1,

becomes equivalent to Dg(x)�
(
cos(w)

sin(w)

)

being nonzero, for every w ∈ [0, 2π ],
where g := (g1, g2). On the one hand, this is obvious; but on the other hand, note that
the process of checking linear independence of a couple of n-dimensional vectors is
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reduced to checking whether one n-dimensional vector is zero or not, for each fixed
real parameter w. Of course, this reasoning can be extended to arbitrary dimensions
and arbitrary parameterizations, and Corollary 3.1 is simply one of these extensions
where the parametrization is given in terms of the second-order cone. This will turn
out to be relevant in our analysis as we will be able to identify that some of the linear
independence requirements will be superfluous for a constraint qualification to be
defined. This kind of reasoning can also be applied to the cone of symmetric positive
semidefinite matrices, leading to a different, in fact simpler, proof of [10, Proposition
3.2], which is the analog of Corollary 3.1 in the context of NSDP, hence providing
some intuition for a result that was originally presented as a mere technical tool in
[10].

With the characterization of Corollary 3.1 at hand, we can take a close look at a
simple example that shall motivate our next steps:

Example 3.1 Let g0, g1 : Rn → R be continuously differentiable functions, define
g := (g0, g1), and let x be a point such that:

– g(x) = 0;
– ∇g0(x) and ∇g1(x) are linearly independent.

Observe that nondegeneracy holds for the constraint g(x) ∈ L2 at x since Dg(x)� is
R2-linearly independent. Now consider the equivalent NSOCP constraint

g̃(x) := (g0(x), g1(x), 0, . . . , 0) ∈ Lm

and observe that the KKT conditions for it are the same as for the constraint g(x) ∈ L2.
However, by Corollary 3.1, nondegeneracy for the reformulated problem is equivalent
to the linear independence of the vectors

Dg̃(x)�(1,−w) = ∇g0(x) − w1∇g1(x)

and

Dg̃(x)�(1, w) = ∇g0(x) + w1∇g1(x)

for every w = (w1, . . . , wm−1) such that ‖w‖ = 1, which is violated when w1 = 0.
On the other hand, note that for every x such that g1(x) �= 0 the eigenvectors of

g̃(x) are uniquely determined by

u1(g̃(x)) = 1

2

(

1,− g1(x)

|g1(x)| , 0, . . . , 0
)

and

u2(g̃(x)) = 1

2

(

1,
g1(x)

|g1(x)| , 0, . . . , 0
)

.

123



Journal of Optimization Theory and Applications (2022) 195:42–78 53

This suggests that although g̃(x) admits multiple eigenvector decompositions
1
2 (1,−w) and 1

2 (1, w) with ‖w‖ = 1, the only relevant ones arew = (±1, 0, . . . , 0).
That is, in light of our previous work in NSDP , we can infer that the problematic
choices of 1

2 (1,−w) and 1
2 (1, w) such that w1 = 0 may be disregarded when defin-

ing a constraint qualification. In fact, we may consider all sequences {xk}k∈N → x
and we have that when g1(xk) �= 0 for every k ∈ N, the sequences {u1(g̃(xk))}k∈N
and {u2(g̃(xk))}k∈N of eigenvectors of g̃(xk) are uniquely defined and 1

2 (1,−w) and
1
2 (1, w) with w1 = 0 are not among their limit points. Similarly, when g1(xk) = 0
for some indexes k ∈ N one may also choose the eigendecompositions of g̃(xk) that
avoids having 1

2 (1,−w) and 1
2 (1, w) with w1 = 0 as limit points.

Conversely, note that for any sequence {xk}k∈N → x , the choice w =
(±1, 0, . . . , 0) does not present the same issue, and in this case we get that the vectors

Dg̃(x)�(1,−w) = ∇g0(x) ∓ ∇g1(x) and Dg̃(x)�(1, w) = ∇g0(x) ± ∇g1(x)

are linearly independent.

Example 3.1 suggests that demanding linear independence of (12) for allw j may be
unnecessarily strong for a constraint qualification. In fact, it also suggests that only the
limit points of sequences consisting of eigenvectors of g(xk), for each {xk}k∈N → x ,
are needed. This observation leads to two new constraint qualifications for NSOCP:

Definition 3.1 (Weak-nondegeneracy and weak-Robinson’s CQ) Let x ∈ F . We say
that x satisfies:

– Weak-nondegeneracy if, for each sequence {xk}k∈N → x , there exists some I ⊆∞
N and convergent eigenvectors sequences {u1(g j (xk))}k∈I → 1

2 (1,−w j ) and
{u2(g j (xk))}k∈I → 1

2 (1, w j ), with ‖w j‖ = 1, for every j ∈ I0(x), such that (12)
is linearly independent;

– Weak-Robinson’s CQ if, for each sequence {xk}k∈N → x , there exists some I ⊆∞
N and convergent eigenvectors sequences {u1(g j (xk))}k∈I → 1

2 (1,−w j ) and
{u2(g j (xk))}k∈I → 1

2 (1, w j ), for every j ∈ I0(x), such that (12) is positively
linearly independent;

where the notation I ⊆∞ N means that I is an infinite subset of N.

Both conditions presented in Definition 3.1 will be proved to be CQs later on; let
us first discuss their properties and relations with other CQs. From Definition 3.1, it
is clear that weak-nondegeneracy is implied by nondegeneracy, but the converse is
not necessarily true, as illustrated by Example 3.1. Notice also that both conditions
from Definition 3.1 are maintained under the addition of structural zeros as in Exam-
ple 3.1, which somehow shows the robustness of the conditions we define. Similarly,
for NSDPs, in [10], it is shown that the analogous conditions from Definition 3.1 are
maintained when stacking several semidefinite constraints into a single block diagonal
semidefinite constraint. The next example shows, however, that weak-nondegeneracy
may hold when nondegeneracy fails even when the problem does not have structural
zeros:
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Example 3.2 (Weak-nondegeneracy is weaker than nondegeneracy) Consider the con-
straint

g(x) := (x1, x2, x2) ∈ L3

at the point x := (0, 0), which does not satisfy nondegeneracy. Now, take any sequence
{xk}k∈N → x . There are three possible cases to consider:

1. There exists some infinite subset I ⊆∞ N such that xk2 > 0 for all k ∈ I ;
2. Case 1 fails to hold, but there exists some infinite subset I ⊆∞ N such that xk2 < 0

for all k ∈ I ;
3. Cases 1 and 2 both fail, implying x2 = 0 for all k large enough;

In Case 1, the eigenvectors u1(g(xk)) and u2(g(xk)) are uniquely determined by

u1(g(x
k)) = 1

2

(

1,− 1√
2
,− 1√

2

)

and u2(g(x
k)) = 1

2

(

1,
1√
2
,

1√
2

)

,

for all k ∈ I . Define w :=
(

1√
2
, 1√

2

)
and note that

lim
k∈I u1(g(x

k)) = 1

2
(1,−w) and lim

k∈I u2(g(x
k)) = 1

2
(1, w).

In addition,

Dg(x)�(1,−w) = 1

2

(
1

−√
2

)

and Dg(x)�(1, w) = 1

2

(
1√
2

)

are linearly independent. Case 2 is analogous. In Case 3, we have that the eigen-
vectors of g(xk) are not uniquely defined in (7); thus, in checking Definition 3.1
we may choose an appropriate eigendecomposition of each g(xk). In particular,
we may pick the same decomposition analyzed previously to conclude that weak-
nondegeneracy holds at x . Notice that since nondegeneracy fails, by Corollary 3.1
there must exist some w, ‖w‖ = 1, such that Dg(x)�(1,−w) and Dg(x)�(1, w) are

linearly dependent. This is the case of w :=
(

1√
2
, −1√

2

)
or w :=

(−1√
2
, 1√

2

)
; however,

since weak-nondegeneracy holds, these limit points can be avoided considering the
eigendecompositions of {g(xk)}k∈N for any sequence xk → x .

At this point, we acknowledge that weak-nondegeneracy may be hard to check.
However, besides its robustness in terms of structural zeros as discussed in
Example 3.1, let us prove that there is a deeper connection between nondegeneracy
and weak-nondegeneracy, in the sense that we may characterize nondegeneracy by the
validity of weak-nondegeneracy plus a simple linear independence requirement of a
partial family of derivative vectors in I0(x), namely, by removing fromconsideration in
the family (10) that defines nondegeneracy all gradients of first component entries, that
is, ∇g j,0(x), j ∈ I0(x) together with the vectors indexed by IB(x). In fact, in Exam-
ple 3.2, this family of vectors reduces to the rows of Dĝ(x), where ĝ(x) := (x2, x2),
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which are linearly dependent. Loosely speaking, weak-nondegeneracymay be thought
as an appropriate form of nondegeneracy but without requiring linear independence
of this partial family of vectors.

(Difference between weak-nondegeneracy and Nondegeneracy) Let x be a feasible
point of (NSOCP). We have that nondegeneracy holds at x if, and only if, weak-
nondegeneracy holds at x and, in addition, the matrix

M :=

⎡

⎢
⎢
⎣

...

Dĝ j (x)
...

⎤

⎥
⎥
⎦

j∈I0(x)

is surjective.

Proof From Definition 3.1, it is clear that if nondegeneracy holds at x , then weak-
nondegeneracy also holds at x . Moreover, from (10) we obtain that M is surjective.
Conversely, suppose that nondegeneracy does not hold at x . By Corollary 3.1, there
are unitary vectors w j ∈ Rm j−1, j ∈ I0(x), such that (12) is linearly dependent.

Let us define w = (w j ) j∈I0(x). By the surjectivity of M , there exists a nonzero
vector d ∈ Rn such that w = Md. That is, we have that Dĝ j (x)d = w j for all
j ∈ I0(x). Now, take any positive sequence {tk}k∈N → 0+ and let

xk := x + tkd, ∀k ∈ N.

We have that {xk}k∈N → x and when we consider j ∈ I0(x) and the Taylor expansion
of ĝ j (xk) around x , we obtain that

ĝ j (x
k) = tkw j + o(tk) �= 0

for all k ∈ N large enough, since w j �= 0. Moreover, for the indices j ∈ IB(x) we
also have that ĝ j (xk) �= 0 for all k large enough, because ĝ j (x) �= 0. This means that
the eigenvectors of ĝ j (xk) are uniquely determined from (7) for all j ∈ I0(x)∪ IB(x)
and all k ∈ N. In particular, for j ∈ I0(x) we have that

ĝ j (xk)

‖ĝ j (xk)‖ = Dĝ j (x)d + o(tk)/tk
‖Dĝ j (x)d + o(tk)/tk‖ → w j .

As a consequence, since w j ∈ Rm j−1, j ∈ I0(x), is such that (12) is linearly depen-
dent, we conclude that weak-nondegeneracy does not hold at x . �

The following example shows that although weak-nondegeneracy implies weak-
Robinson’s CQ, the converse is not true:

Example 3.3 (Weak-Robinson is weaker thanweak-nondegeneracy) Consider the con-
straint

g(x) := (4x, 2x, x) ∈ L3
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and the point x := 0. Clearly, it satisfies Robinson’s CQ, hence it also satisfies weak-
Robinson’s CQ. However, observe that taking any sequence {xk}k∈N → x such that
xk > 0 for all k ∈ N, we have

u1(g(x
k)) = 1

2

(

1,− 2√
5
,− 1√

5

)

and u2(g(x
k)) = 1

2

(

1,
2√
5
,

1√
5

)

,

hence we have u1(g(xk)) → 1
2 (1,−w) and u2(g(xk)) → 1

2 (1, w) where w =
(

2√
5
, 1√

5

)
. Then,

Dg(x)�(1,−w) = 4
√
5 − 5

2
√
5

> 0 and Dg(x)�(1, w) = 4
√
5 + 5

2
√
5

> 0

are linearly dependent, although positively linearly independent, implying that weak-
nondegeneracy does not hold at x .

To discuss in detail the relation between weak-Robinson’s CQ and Robinson’s CQ
for (NSOCP), we rely on a simple lemma:

Lemma 3.1 Let x be a feasible point of (NSOCP). If (weak-Robinson’s CQ) weak-
nondegeneracy holds at x, then the family of vectors

{∇g j,0(x)
}
j∈I0(x)

⋃{
Dg j (x)

�u1(g j (x))
}

j∈IB (x)
(13)

is (positively) linearly independent.

Proof Assume that weak-Robinson’s CQ holds at x , so there exists some vectors
w j ∈ Rm j−1, ‖w j‖ = 1, j ∈ I0(x), such that (12) is positively linearly independent;
and, by contradiction, suppose that (13) is positively linearly dependent. Then, there
are some η j ≥ 0, j ∈ IB(x) ∪ I0(x), not all zero, such that

∑

j∈I0(x)
η j∇g j,0(x) +

∑

j∈IB (x)

η j Dg j (x)
�u1(g j (x)) = 0. (14)

Now set

α j = β j = η j

2

for every j ∈ I0(x) and (14) can be rewritten as

∑

j∈I0(x)
α j Dg j (x)

�(1,−w j ) +
∑

j∈I0(x)
β j Dg j (x)

�(1, w j )+
∑

j∈IB (x)

η j Dg j (x)
�u1(g j (x)) = 0,
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which implies (12) is positively linearly dependent, contradicting weak-Robinson’s
CQ. The statement regarding weak-nondegeneracy follows analogously. �

Recall that Robinson’s CQ can be evaluated separately for each of the constraints
g j (x) ∈ Lm j , j ∈ {1, . . . , q}, and that this is weaker than Robinson’s CQ when
such system is regarded as a whole (however, not being a CQ). In fact, for any given
x ∈ F , the former can be characterized by the existence of some vectors d j ∈ Rn ,
j ∈ {1, . . . , q}, such that g j (x) + Dg j (x)d j ∈ intLm j , whereas the latter requires
in addition d1 = d2 = · · · = dq to hold. With this in mind, we prove next that
weak-Robinson’s CQ is somewhat in-between these two forms of Robinson’s CQ.

Theorem 3.1 Consider Problem (NSOCP) and let x ∈ F . If weak-Robinson’s CQ
holds at x, then for each index j ∈ {1, . . . , q} the point x satisfies Robinson’s CQ for
the isolated constraint g j (x) ∈ Lm j .

Proof Let x ∈ F be a point such that weak-Robinson’s CQ holds and assume that
there exists an index 	 ∈ {1, . . . , q} such that Robinson’s CQ does not hold. Then,
it follows by Lemma 3.1 that g	(x) = 0. So there exists some w	 ∈ Rm	−1 such
that ‖w	‖ = 1 and the vectors Dg	(x)�(1,−w	) and Dg	(x)�(1, w	) are positively
linearly dependent, that is, there exist scalars α ≥ 0, β ≥ 0, at least one of them
nonzero, such that

αDg	(x)
�(1,−w	) + βDg	(x)

�(1, w	) = 0.

Defining w̃ :=
(

β−α
α+β

)
w	, it follows that

∇g	,0(x) = −Dĝ	(x)
�w̃. (15)

Note that ‖w̃‖ ≤ 1, and that w̃ /∈ KerDĝ	(x)�; otherwise, ∇g	,0(x) = 0 and accord-
ing to Lemma 3.1 weak-Robinson’s CQ fails.

Since KerDĝ	(x)�+ ImDĝ	(x) = Rm	−1, there exist some v ∈ KerDĝ	(x)� and
some d ∈ Rn such that w̃ = v + Dĝ	(x)d. Note that Dĝ	(x)d �= 0, otherwise we
would have that w̃ ∈ KerDĝ	(x)�. In addition, 0 �= w̃ − v = PImDĝ	(x)(w̃) and by
the non-expansiveness of the projection, we obtain 0 < ‖w̃ − v‖ ≤ ‖w̃‖ ≤ 1.

Now, proceeding similarly to the proof of Proposition 3.1, consider the sequence
{xk}k∈N given by xk := x + tkd, for any positive scalars sequence {tk}k∈N → 0+, and
consider the Taylor expansion of ĝ	(xk) around x :

ĝ	(x
k) = tk Dĝ	(x)d + o(tk).

Since Dĝ	(x)d �= 0, it follows that there exists some k0 ∈ N such that ĝ	(xk) �= 0
for every k > k0, which implies that its eigenvectors, and u2(g	(xk)) u1(g	(xk)) and
u2(g	(xk)), are uniquely determined from (7) for every k > k0. Then, we obtain that

ĝ	(xk)

‖ĝ	(xk)‖ = Dĝ	(x)d + o(tk)/tk
‖Dĝ	(x)d + o(tk)/tk‖ → w̃ − v

‖w̃ − v‖ .
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It follows that

lim
k→∞ u1(g	(x

k)) = 1

2

(

1,− w̃ − v

‖w̃ − v‖
)

and

lim
k→∞ u2(g	(x

k)) = 1

2

(

1,
w̃ − v

‖w̃ − v‖
)

and, by weak-Robinson’s CQ, the vectors and Dg	(x)�
(
1, w̃−v

‖w̃−v‖
)

Dg	(x)�
(
1,− w̃−v

‖w̃−v‖
)
and Dg	(x)�

(
1, w̃−v

‖w̃−v‖
)
are positively linearly independent. However,

the following system in the variables a and b:

0 = aDg	(x)
�
(

1,
w̃ − v

‖w̃ − v‖
)

+ bDg	(x)
�
(

1,− w̃ − v

‖w̃ − v‖
)

= a∇g	,0(x) + a

‖w̃ − v‖Dĝ	(x)
�w̃ + b∇g	,0(x) − b

‖w̃ − v‖Dĝ	(x)
�w̃

=
[

a

(
1

‖w̃ − v‖ − 1

)

− b

(
1

‖w̃ − v‖ + 1

)]

Dĝ	(x)
�w̃

has a nontrivial solution a = 1/‖w̃ − v‖+ 1 > 0 and b = 1/‖w̃ − v‖− 1 ≥ 0, which
is a contradiction. In the second equality of the above chain, we used Dĝ	(x)�v = 0;
and in the last equality, we used (15). �
Remark 3.1 The same strategy of the previous proof actually allows proving a slightly
stronger result: If a feasible point x satisfies weak-Robinson’s CQ, then for each index
j ∈ I0(x) the constraint

g	(x) ∈ Lm	
, ∀	 ∈ IB(x) ∪ { j}

satisfiesRobinson’sCQat x . In particular, if I0(x) is a singleton, thenweak-Robinson’s
CQ and Robinson’s CQ are equivalent, which is somewhat remarkable and highlights
the “robustness” of Robinson’s CQ. The situation where I0(x) is a singleton has been
previously considered, for instance, in [36, 40]. In the general case, we were not able
to prove nor provide a counterexample for the equivalence between Robinson’s CQ
and weak-Robinson’s CQ.

4 Constant Rank Conditions for NSOCP

Let us consider an NLP problem for a moment; that is, (NSOCP) with m1 = · · · =
mq = 1, whose constraints take the form g1(x) ≥ 0, . . . , gq(x) ≥ 0, and let x ∈ F .
We recall that the nondegeneracy condition in this case is equivalent to LICQ, which
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holds when the family of vectors

{∇g j (x)
}
j∈I0(x) (16)

has full rank. The constant rank constraint qualification (CRCQ) condition can be
considered a relaxation of LICQ, since it allows the rank of (16) to be incomplete, as
long as the rank of the family

{∇g j (x)
}
j∈J0

(17)

remains constant in a neighborhood of x , for every subset J0 ⊆ I0(x). Qi andWei [42]
described CRCQ in a slightly different but equivalent way: CRCQ holds at x if, for
every J0 ⊆ I0(x), if (17) is linearly dependent at x , then it must also remain linearly
dependent for every x in a neighborhood of x . Similarly, Robinson’s CQ is equivalent
to the positive linear independence of (16), and the relaxation of it in the same style
as CRCQ characterizes the constraint qualification known as constant positive linear
dependence (CPLD) [16]. That is, CPLD holds at x if, for every subset J0 ⊆ I0(x), if
(17) is positively linearly dependent at x , then it must remain linearly dependent for
every x in a neighborhood of x .

Extending such constant rank-type constraint qualifications to the context of
NSOCP with an arbitrary dimension is not trivial. For instance, it is known that linear
second-order cone programming problems may present a positive or infinite duality
gap evenwhen the primal problem is bounded, feasible and its solution is attained. This
means that “constraint linearity” is not a constraint qualification in NSOCP, contrary
to NLP. However, note that any kind of constant rank condition that depends solely
on the derivatives of the constraint functions will always be satisfied for every linear
problem, implying it cannot be a constraint qualification—see, for instance, [6]. See
also [12, Section 2.1] for a detailed discussion on this issue regarding linear problems.

In a previous work, we noticed that weak-nondegeneracy imbues the cone structure
into the constraint functions, allowing us to properly define a constant rank-type con-
dition that is not retained by the linearity bottleneck. In this section, we shall follow a
similar approach, making the necessary adaptations to overcome the difficulties that
arise from the particularities of the second-order cone along the way.

4.1 Weak Constant Rank Conditions

With the definitions of weak-nondegeneracy and weak-Robinson’s CQ for NSOCP
at hand, we can present new extensions of CRCQ and CPLD for NSOCP by means of
a simple relaxation of Definition 3.1, in the same lines as in NLP. Basically, the idea
is to demand every subfamily of (12) to locally retain its (positive) linear dependence.
So let us define, for any sets JB, J−, J+ ⊆ {1, . . . , q} such that ĝ j (x) �= 0 for every
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j ∈ JB , the family of vectors

DJB ,J−,J+ (x, w) :=
{
Dg j (x)

�u1(g j (x))
}

j∈JB

⋃{
Dg j (x)

�(1,−w j )
}

j∈J−
⋃{

Dg j (x)
�(1, w j )

}

j∈J+
(18)

where w = [w j ] j∈J−∪J+ . Above, the index set JB refers to an arbitrary subset of
IB(x), and the indices J− and J+ both refer to I0(x), but with distinct eigenvectors;
see (12).

Definition 4.1 (weak-CRCQ and weak-CPLD) We say that a feasible point x
of (NSOCP) satisfies the:

– Weak constant rank constraint qualification (weak-CRCQ) if the following holds:
For every sequence {xk}k∈N → x , there exists some I ⊆∞ N, and convergent
eigenvector sequences

{u1(g j (x
k))}k∈I → 1

2
(1,−w j ) and {u2(g j (x

k))}k∈I → 1

2
(1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that if the family of vectors DJB ,J−,J+(x, w) is linearly
dependent, then DJB ,J−,J+(xk, wk) remains linearly dependent for all k ∈ I large
enough, where w = [w j ] j∈J−∪J+ and wk = [wk

j ] j∈J−∪J+ satisfies

u1(g j (x
k)) = 1

2
(1,−wk

j ) and u2(g j (x
k)) = 1

2
(1, wk

j ) (19)

for each j ∈ J− ∪ J+.
– Weak constant positive linear dependence (weak-CPLD) condition if the following
holds: For every sequence {xk}k∈N → x , there is some I ⊆∞ N, and convergent
eigenvector sequences

{u1(g j (x
k))}k∈I → 1

2
(1,−w j ) and {u2(g j (x

k))}k∈I → 1

2
(1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that, ifDJB ,J−,J+(x, w) is positively linearly dependent,
then DJB ,J−,J+(xk, wk) is linearly dependent for all k ∈ I large enough, where w

and wk are as in the previous item.

There are some features about Definition 4.1 that should be highlighted for a better
understanding of it. First, weak-CRCQ fully recovers CRCQ when we set m j = 1 for
every j ∈ {1, . . . , q}—see also Remark 2.2 for a clarification about the case m j = 1.
Similarly, note that weak-CPLD recovers CPLD in the same setting. Second, in view
of Corollary 3.1, we see that weak-CRCQ is implied by (weak-)nondegeneracy as in
Definition 3.1, and weak-CPLD is implied by both (weak-)Robinson’s CQ and weak-
CRCQ. However, due to such equivalence in NLP, those implications in the conic
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setting are strict (see Example 4.2 and [16, Counterexample 4.2], respectively). Third,
we point out that weak-CRCQ is not comparable with (weak-)Robinson’s CQ (see,
for instance, [29, Examples 2.1 and 2.2]).

Remark 4.1 To fix ideas, let us consider a single conic constraint g(x) ∈ Lm at the
point x ∈ F . First, suppose that g(x) = 0 and take any sequence {xk}k∈N → x . We
consider a partition of N as follows:

– N0 := {k ∈ N : ĝ(xk) = 0}. For k ∈ N0, we can choose

u1(g(x
k)) = 1

2

(
1,−wk

)
and u2(g(x

k)) = 1

2

(
1, wk

)
,

for anywk such that ‖wk‖ = 1.WhenN0 is infinite, weak-CRCQdemands, in par-
ticular, the existence of a choice of {wk}k∈N0 with some convergent subsequence
{wk}k∈I → w, I ⊆∞ N0, such that

Dg(x)�(1, (−1)iw) = 0

only if

Dg(xk)�
(
1, (−1)iwk

)
= 0

for all large k ∈ I , i ∈ {1, 2}; and, in addition, if Dg(x)�(1,−w) and
Dg(x)�(1, w) are linearly dependent, then Dg(xk)�

(
1,−wk

)
and Dg(xk)�

(
1, wk

)
must also be linearly dependent, for every sufficiently large k ∈ I .

– N1 := {k ∈ N : ĝ(xk) �= 0}. This case is similar to the previous one, except
that there is no freedom in the choice of wk , as it is uniquely determined by
wk = ĝ(xk)/‖ĝ(xk)‖, for every k ∈ N1.

The reason why both eigenvectors are taken into consideration is that both eigen-
values of g(x) are zero, in this case. Naturally, in case g(x) ∈ bd+Lm , we have only
one zero eigenvalue, which is λ1(g(x)), then weak-CRCQ simply demands the vector

Dg(x)�u1(g(x)) = 1

2
Dg(x)�

(

1,− ĝ(x)

‖ĝ(x)‖
)

to be either nonzero at x or equal to zero in a whole neighborhood of x . Note that this
coincides with the naive approach [11], obtained by reducing the problem to an NLP.
This observation remains true for more than one conic constraint as long as I0(x) = ∅.
See also Remark 4.2.

Now, let us check how Definition 4.1 behaves when it is applied to example [6,
Equation 2], which was used to refute the CRCQ proposal of [47].

Example 4.1 (Equation 2 from [6]) Consider the problem

Minimize
x∈R

− x,

subject to g(x) := (x, x + x2) ∈ L2.
(20)
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and its unique feasible point x := 0, which does not satisfy the KKT conditions. Our
aim is to show that Definition 4.1 is not satisfied at x . To do so, it suffices to take any
sequence {xk}k∈N → 0 such that xk > 0 for all k ∈ N. In this case, for each k ∈ N,
the eigenvectors of g(xk) are uniquely determined by

u1(g(x
k)) = 1

2

(

1,− xk + (xk)2

|xk + (xk)2|
)

= 1

2
(1,−1)

and

u2(g(x
k)) = 1

2

(

1,
xk + (xk)2

|xk + (xk)2|
)

= 1

2
(1, 1),

so there is only one trivial limit point for each eigenvector sequence; also,wk = w = 1
for every k ∈ N. However, note that

Dg(x)�(1,−w) = 0 but Dg(xk)�(1,−wk) = −2xk,

so for JB := IB(x) = ∅, J− := {1}, and J+ := ∅, we have DJB ,J−,J+(xk, wk) =
{−2xk} is linearly independent for every k ∈ N whereas DJB ,J−,J+(x, w) = {0} is
(positively) linearly dependent. Thus, neitherweak-CRCQnorweak-CPLD is satisfied
at x .

As mentioned before, weak-nondegeneracy and weak-Robinson’s CQ are strictly
stronger than weak-CRCQ and weak-CPLD, respectively. It is clear that the former
implies the latter, so let us prove the “strict” statement:

Example 4.2 (Weak-CRCQ is weaker than weak-nondegeneracy and does not imply
weak-Robinson) Consider the constraint

g(x) := (−x, x, x) ∈ L3,

and its unique feasible point x := 0. To prove that weak-CPLD holds at x , let
{xk}k∈N → x be any sequence. Just as in Example 3.2, there are three cases to be
considered, but it suffices to analyze one of them, since the other cases follow analo-
gously. Then, for simplicity, we assume that there is some I ⊆∞ N such that xk > 0
for every k ∈ I , and in this case the eigenvectors of g(xk) are uniquely determined
by

u1(g(x
k)) = 1

2

(

1,− 1√
2
,− 1√

2

)

and u2(g(x
k)) = 1

2

(

1,
1√
2
,

1√
2

)

,

leading to wk = w =
(

1√
2
, 1√

2

)
. Then,

Dg(xk)�(1, (−1)iwk) = Dg(x)�(1,−w) =
(

−1 + (−1)i
2√
2

)
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for each i ∈ {1, 2}. Then, the family (12) will have opposite signs, making it positively
linearly dependent, so weak-Robinson’s CQ and weak-nondegeneracy both fail at x ,
without violating theweak-CRCQandweak-CPLDrequirements since in this example

DJB ,J−,J+(xk, wk) = DJB ,J−,J+(x, w)

for every k ∈ I regardless of JB, J−, and J+.
Example 4.2 can also be used to verify that weak-CRCQ does not imply Robin-

son’s CQ. In fact, Robinson’s CQ does not imply weak-CRCQ either, making them
independent. Let us show this with another example:

Example 4.3 (Weak-Robinson does not imply weak-CRCQ) Consider the constraint

g(x) := (2x1, x
2
2 ) ∈ L2

at x := 0. To see that x violates weak-CRCQ, it is enough to take any sequence
{xk}k∈N → x such that xk2 �= 0 for every k ∈ N. Then, the eigenvectors of g(xk) must
be

u1(g(x
k)) = 1

2
(1,−1) and u2(g(x

k)) = 1

2
(1, 1),

which are defined by wk = w = 1 for all k ∈ N. This implies that the vectors
Dg(xk)�(1,−wk) = (1,−2xk2 ) and Dg(xk)�(1, wk) = (1, 2xk2 ) are linearly inde-
pendent for all k, whereas the vectors Dg(x)�(1,−w) = (1, 0) and Dg(x)�(1, w) =
(1, 0) are linearly dependent, violating weak-CRCQ.

On the other hand, in view of Corollary 3.1, it is easy to check that Robinson’s CQ
holds at x , since Dg(x)�(1,−w) = (1, 0) and Dg(x)�(1, w) = (1, 0) are positively
linearly independent for every w ∈ R with |w| = 1.

Finally, we shall prove that weak-CPLD (and by consequence weak-CRCQ, weak-
nondegeneracy, and weak-Robinson’s CQ) is a constraint qualification for (NSOCP)
employing a result from [7], regarding the output sequences of an external penalty
method:

Theorem 4.1 Let x be a local minimizer of (NSOCP), and let {ρk}k∈N → +∞. Then,
there exists some sequence {xk}k∈N → x, such that for each k ∈ N, xk is a local
minimizer of the regularized penalized function

f (x) + 1

2
‖x − x‖22 + ρk

2

⎛

⎝
q∑

j=1

‖PLm j
(−g j (x))‖2

⎞

⎠ . (21)

Proof The proof of this theorem is contained in the proof of [7, Theorem 3.1]. �
Observe that the gradient of (21) can be computed as

∇x L
(
x, ρkPLm1

(−g1(x)), . . . , ρkPLmq
(−gq(x))

)
+ (x − x),
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for each k ∈ N, which vanish at x := xk . So definingμk
j := ρkPLm j

(−g j (xk)), for all
j ∈ {1, . . . , q}, induces approximate Lagrange multiplier sequences associated with
{xk}k∈N—see also [7]. Then, to prove that weak-CPLD is a CQ, it suffices to construct
bounded approximate multiplier sequences out of {μk

j }k∈N. For convenience, we will
prove a slightly more general result that also encompasses the convergence theory of
an external penalty method under weak-CPLD; see [7] for details.

Theorem 4.2 (Weak-Robinson, weak-CRCQ and weak-CPLD are constraint qualifi-
cations) Let {ρk}k∈N → ∞ and {xk}k∈N → x ∈ F be such that

∇x L
(
xk, ρkPLm1

(−g1(x
k)), . . . , ρkPLmq

(−gq(x
k))
)

→ 0,

and suppose that weak-CPLD holds at x. Then, x satisfies the KKT conditions. More-
over, any local minimizer of (NSOCP) that satisfies weak-CPLD is a KKT point.

Proof For each k ∈ N and j ∈ {1, . . . , q}, define μk
j := ρkPLm j

(−g j (xk)). Then, we
have

∇ f (xk) −
q∑

j=1

Dg j (x
k)�μk

j → 0. (22)

Let us consider an arbitrary spectral decomposition of μk
j :

μk
j = αk

j u1(g j (x
k)) + βk

j u2(g j (x
k)),

where αk
j = [−ρkλ1(g j (xk))]+ ≥ 0 and βk

j = [−ρkλ2(g j (xk))]+ ≥ 0. See (8).
Define

Ψ k :=
∑

j∈IB (x)∪I0(x)

αk
j Dg j (x

k)�u1(g j (x
k))+

+
∑

j∈I0(x)
βk
j Dg j (x

k)�u2(g j (x
k))

(23)

and note that (22) can be equivalently stated as ∇ f (xk) − Ψ k → 0.
By Carathéodory’s Lemma 2.2, for each k ∈ N, there exists some J kB ⊆ IB(x) and

J k−, J k+ ⊆ I0(x) such that

{
Dg j (x

k)�u1(g j (x
k))
}

j∈J kB∪J k−

⋃{
Dg j (x

k)�u2(g j (x
k))
}

j∈J k+
(24)

is linearly independent and

Ψ k =
∑

j∈J kB∪J k−

α̃k
j Dg j (x

k)�u1(g j (x
k)) +

∑

j∈J k+

β̃k
j Dg j (x

k)�u2(g j (x
k)),
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for some new scalars α̃k
j ≥ 0, j ∈ J kB ∪ J k−, and β̃k

j ≥ 0, j ∈ J k+. By the infinite

pigeonhole principle, we can take a subsequence if necessary such that J kB , J
k−, and J k+

do not depend on k; that is, we can assume, without loss of generality, that J kB = JB ,
J k− = J−, and J k+ = J+, for every k ∈ N.

We claim that the sequences {α̃k
j }k∈N are bounded for every j ∈ JB ∪ J−, as well

as {β̃k
j }k∈N for every j ∈ J+. Indeed, by contradiction, suppose that the sequence

{mk}k∈N, given by

mk := max{max{α̃k
j : j ∈ JB ∪ J−}, max{β̃k

j : j ∈ J+}},

diverges. Dividing (22) by mk , we obtain

∑

j∈JB∪J−

α̃k
j

mk
Dg j (x

k)�u1(g j (x
k)) +

∑

j∈J+

β̃k
j

mk
Dg j (x

k)�u2(g j (x
k)) → 0

and since the sequences {α̃k
j/m

k}k∈N are bounded, we can assume, without loss of
generality, that they converge to, say, α j ≥ 0, for all j ∈ JB ∪ J−; and, similarly,
we can also assume that the sequences {β̃k

j /m
k}k∈N converge to some β j ≥ 0, for all

j ∈ J+. Note that at least one element of {α j } j∈JB∪J− ∪ {β j } j∈J+ is nonzero, which
makes the correspondent set DJB ,J−,J+(x, w) as in Definition 4.1 linearly dependent
for any limit pointw of any subsequence of {wk}k∈N, contradicting weak-CPLD since
DJB ,J−,J+(xk, wk), which coincides with (24) with wk defined as in (19), is linearly
independent for every k ∈ N.

Since {α̃k
j }k∈N and {β̃k

j }k∈N are bounded, the sequence {(μ̃k
1, . . . , μ̃

k
q)}k∈N ⊆ Lm1×

· · · × Lmq defined by

μ̃k
j :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α̃k
j u1(g j (xk)) + β̃k

j u2(g j (xk)), if j ∈ J− ∩ J+,

α̃k
j u1(g j (xk)), if j ∈ JB ∪ (J− \ J+),

α̃k
j u2(g j (xk)), if j ∈ J+ \ J−,

0, if j ∈ Iint (x) or j /∈ (JB ∪ J− ∪ J+)

is also bounded. Finally, note that all limit points of {(μ̃k
1, . . . , μ̃

k
q)}k∈N are Lagrange

multipliers associated with x , which completes the first part of the proof. The second
part follows directly from Theorem 4.1. �
Remark 4.2 In [11, Section 5], we proposed the so-called naive extensions of CRCQ
(and CPLD) to NSOCP, which were obtained by replacing the conic constraints
of (NSOCP) that satisfy g j (x) ∈ bd+Lm j with standard NLP constraints, via a reduc-
tion function

Φ j (x) := g j,0(x)
2 − ‖ĝ j (x)‖2,
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and then applying the NLP definition of CRCQ (respectively, CPLD) to those reduced
constraints. However, in order to compare it with the conditions we presented, we use
another reduction function,

Φ̃ j (x) := g j,0(x) − ‖ĝ j (x)‖,

instead of Φ j (x), since ∇Φ̃ j (x) = 2Dg j (x)�u1(g j (x)) for all x close enough to
x and j ∈ IB(x). As mentioned in [11, Remark 5.1-c], using Φ j or Φ̃ j char-
acterizes different approaches. Assuming the second type of naive approach, we
recall that naive-CRCQ (respectively, naive-CPLD) is satisfied at x ∈ F when
there exists a neighborhood V of x such that, for every JB ⊆ IB(x), the following
holds: If the family (10) is R|IB (x)| ×∏ j∈I0(x) Rm j -linearly dependent (respectively,

R|IB (x)|
+ ×∏ j∈I0(x) Lm j -linearly dependent), then the family {Dg j (x)�u1(g j (x))} j∈JB

remains linearly dependent for all x in V . Note that this definition coincides with non-
degeneracy (respectively, Robinson’s CQ) when no constraints are reducible—that is,
when IB(x) = ∅—because ∅ is linearly independent. On the other hand, when all
constraints are reducible, Definition 4.1 coincides with naive-CRCQ/CPLD. Thus, in
the general case, both CQs of Definition 4.1 are strictly weaker than their “naive”
counterparts.

5 Stronger Constant Rank ConditionsWith Applications

Aswe alreadymentioned, our study of constraint qualifications is driven toward global
convergence of algorithms for solving (NSOCP). In particular, we presented in the
previous section a global convergence proof for the external penalty method under
weak-CPLD; to extend this result for a broader class of iterative methods, we now
introduce more robust adaptations of weak-CPLD and weak-CRCQ. This is similar
to what we did in [9] for NSDP problems. We start this section with an analog of [9,
Definition 4.2] in NSOCP, which characterizes a perturbed version of weak-CRCQ
and weak-CPLD.

Definition 5.1 (seq-CRCQ and seq-CPLD) We say that x ∈ F satisfies the:

– Sequential CRCQ condition for NSOCP (seq-CRCQ) if for all sequences
{xk}k∈N → x and {Δk

j }k∈N ⊆ Rm j , j ∈ I0(x) ∪ IB(x), such that Δk
j → 0

for every j , there exists some I ⊆∞ N, and convergent eigenvector sequences
{u1(g j (xk) + Δk

j )}k∈I → 1
2 (1,−w j ) and {u2(g j (xk) + Δk

j )}k∈I → 1
2 (1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that, if the family of vectors DJB ,J−,J+(x, w) is linearly
dependent, then DJB ,J−,J+(xk, wk) remains linearly dependent for all k ∈ I large
enough, where w = [w j ] j∈J−∪J+ and wk = [wk

j ] j∈J−∪J+ with

u1(g j (x
k) + Δk

j ) = 1

2
(1,−wk

j ) and u2(g j (x
k) + Δk

j ) = 1

2
(1, wk

j ) (25)

for each j ∈ J− ∪ J+. Recall that DJB ,J−,J+(x, w) was defined in (18).
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– Sequential CPLD condition for NSOCP (seq-CPLD) if for all sequences
{xk}k∈N → x and {Δk

j }k∈N ⊆ Rm j , j ∈ I0(x) ∪ IB(x), such that Δk
j → 0

for every j , there exists some I ⊆∞ N, and convergent eigenvector sequences
{u1(g j (xk) + Δk

j )}k∈I → 1
2 (1,−w j ) and {u2(g j (xk) + Δk

j )}k∈I → 1
2 (1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that, ifDJB ,J−,J+(x, w) is positively linearly dependent,
then DJB ,J−,J+(xk, wk) remains linearly dependent for all k ∈ I large enough,
where w and wk are as the previous item.

Note that the nondegeneracy condition (as in Proposition 2.1) implies seq-CRCQ,
whereas Robinson’s CQ implies seq-CPLD. Moreover, these implications are strict,
as it is shown in the next counterexample:

Example 5.1 (Nondegeneracy andRobinson’s CQ are strictly stronger than seq-CRCQ
and seq-CPLD, respectively) Consider the constraint

g(x) := (−x, x) ∈ L2

at the point x := 0,which is the only feasible point of the problem. In order to verify that
x satisfies seq-CPLD and seq-CRCQ, let {xk}k∈N → x and {Δk}k∈N → 0 be arbitrary
sequences. We will assume that there is some I ⊆∞ N such that ĝ(xk) + Δ̂k > 0 for
all k ∈ I , where Δk := (Δk

0, Δ̂
k) ∈ R2, since the other cases (as in Example 3.2)

follow analogously. Then, we have

u1(g(x
k) + Δk) = 1

2
(1,−1) and u2(g(x

k) + Δk) = 1

2
(1, 1),

which implies that wk = w = 1 for all k ∈ I . Hence, the vectors Dg(x)�(1,−w) =
−2 and Dg(xk)�(1, wk) = 0 are (positively) linearly dependent, but since
Dg(xk)�(1,−wk) = −2 and Dg(xk)�(1, wk) = 0 are also linearly dependent for
every k ∈ I , we see that seq-CPLD and seq-CRCQ both hold, while Robinson’s CQ
and nondegeneracy do not.

Example 5.1 shows that seq-CRCQ does not imply Robinson’s CQ, and the con-
verse is also false; otherwise, Robinson’s CQwould imply weak-CRCQ, contradicting
Example 4.3. Further, note that Definition 5.1 is basically Definition 4.1 with the
addition of some perturbation sequences {Δk

j }k∈N. Then, seq-CPLD implies weak-
CPLD and seq-CRCQ implies weak-CRCQ, implying a fortiori that seq-CPLD and
seq-CRCQ are constraint qualifications. However, the next example shows that these
implications are both strict.

Example 5.2 (Seq-CRCQ and seq-CPLD are stronger than weak-CRCQ and weak-
CPLD, respectively) Consider the constraint

g(x) := (x2, x, 0) ∈ L3

at x := 0. Let us begin by showing that x satisfies both weak-CRCQ and weak-CPLD,
so let {xk}k∈N → x be an arbitrary sequence. Again, as in Example 3.2, we will
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assume, without loss of generality, that there exists some I ⊆∞ N such that xk > 0
for every k ∈ I . In this case, we must have

u1(g(x
k)) = 1

2
(1,−1, 0) and u2(g(x)) = 1

2
(1, 1, 0) ,

which yields wk = w = (1, 0) for every k ∈ I . Then, Dg(x)�(1,−w) = −1 and
Dg(x)�(1, w) = 1 are (positively) linearly dependent, but since Dg(xk)�(1,−wk) =
2xk − 1 and Dg(x)�u2(g(x)) = 2xk + 1 are also linearly dependent for all k ∈ I
large enough so that xk ∈ (− 1

2 ,
1
2 ), it means that weak-CRCQ and weak-CPLD both

hold at x .
However, taking any sequence {xk}k∈N → x such that xk > 0 for every k ∈ N, and

the perturbation vector

Δk := (−(xk)2,−xk, xk) → 0,

we have that g(xk) + Δk := (0, 0, xk), so its eigenvectors are uniquely determined
by

u1(g(x
k) + Δk) = 1

2
(1, 0,−1) and u2(g(x

k) + Δk) = 1

2
(1, 0, 1) ,

implying Dg(xk)�u1(g(xk)+Δk) = 2xk > 0 and Dg(xk)�u2(g(xk)+Δk) = 2xk >

0 are positively linearly independent for every k ∈ N. But since Dg(x)�(1, 0,−1) =
Dg(x)�(1, 0, 1) = 0 we conclude that seq-CPLD and, by extension, seq-CRCQ, both
fail at x .

Furthermore, conditions seq-CRCQ and seq-CPLD can also be characterized in
terms of a neighborhood, without sequences, just as the original CRCQ and CPLD
conditions from NLP. Let us prove this:

Proposition 5.1 Let x ∈ F . Condition seq-CRCQ (respectively, seq-CPLD) holds at
x if, and only if, for every w := [w j ] j∈I0(x) with ‖w j‖ = 1, j ∈ I0(x), there exists
a neighborhood V of (x, w) such that for every JB ⊆ IB(x) and J−, J+ ⊆ I0(x),
if DJB ,J−,J+(x, w) is (positively) linearly dependent, then DJB ,J−,J+(x, w) remains
linearly dependent for every (x, w) ∈ V with w := [w j ] j∈I0(x) and ‖w j‖ = 1 for
every j ∈ J− ∪ J+. Here, DJB ,J−,J+(x, w) is as defined in (18).

Proof Suppose that there exist some subsets JB ⊆ IB(x) and J−, J+ ⊆ I0(x), and
some w = [w j ] j∈J−∪J+ such that DJB ,J−,J+(x, w) is (positively) linearly dependent,
but there is a sequence {(xk, wk)}k∈N → (x, w)withwk := [wk

j ] j∈J−∪J+ and ‖wk
j‖ =

1, such that DJB ,J−,J+(xk, wk) is linearly independent for all k ∈ N. Define, for each
k ∈ N and j ∈ JB ∪ I− ∪ I+, the perturbation vector

Δk
j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

k

(
1, wk

j

)
− g j (x

k), if j ∈ J− ∪ J+

g j,0(x)

(

1,
ĝ j (xk)

‖ĝ j (xk)‖

)

− g j (x
k), if j ∈ JB,

(26)
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which implies that g j (xk) + Δk
j ∈ bd+Lm j and hence its eigenvectors are uniquely

determined for every such j and k. This contradicts Definition 5.1.
Conversely, pick any sequences {xk}k∈N → x and {Δk

j }k∈N → 0, j ∈ I0(x) ∪
IB(x), and any subsets JB ⊆ IB(x) and J−, J+ ⊆ I0(x). Then, define {wk}k∈N as in
Definition 5.1 and letw = [w j ] j∈J−∪J+ be such that ‖w j‖ = 1 for every j ∈ J− ∪ J+
and limk∈I u1(g j (xk) + Δk

j ) = 1
2 (1,−w j ) and limk∈I u2(g j (xk) + Δk

j ) = 1
2 (1, w j ),

for some I ⊆∞ N. Note that limk∈I wk = w, so if DJB ,J−,J+(x, w) is (positively)
linearly dependent, then DJB ,J−,J+(xk, wk) remains linearly dependent for every k
large enough. �

Remark 5.1 Note that Proposition 5.1 reveals that Definition 5.1 characterizes a “con-
stant rank condition, or constant (positive) linear dependence, by conical slices.” For
example, consider a single constraint g(x) ∈ Lm at a point x such that g(x) ∈ Lm ;
then, seq-CRCQ holds at x if, and only if, for each conical slice of Lm , which can be
of two types:

1. C1
w = cone({(1, w)}), for some w ∈ Rm−1 such that ‖w‖ = 1;

2. C2
w = cone({(1,−w), (1, w)}), for some w ∈ Rm−1 such that ‖w‖ = 1;

the dimension of

Dg(x)�span(Ci
w) =

{
span({Dg(x)�(1, w)}), if i = 1,
span({Dg(x)�(1,−w), Dg(x)�(1, w)}), if i = 2,

remains constant for every (x, w) close enough to (x, w). The seq-CPLD condition
admits a similar phrasing. That is, the local constant rank property must hold for every
perturbation of x and every perturbation of the slice as well, roughly speaking, and the
existence of two types of conical slices describes, intuitively, why should one consider
every subset of {Dg(x)�(1,−w), Dg(x)�(1, w)}.

5.1 Global Convergence of AlgorithmsWith Some Examples

Here, we show that the condition seq-CPLD can be used to prove global convergence
of an abstract class of iterative algorithms, namely the ones that generate sequences
of approximate solutions {xk}k∈N, which we will assume to be convergent to some x ,
and approximate Lagrange multipliers {μk

j }k∈N ⊆ Lm j , j ∈ {1, . . . , q}, in the sense
that
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∇x L(xk, μk
1, . . . , μ

k
q) → 0 (27)

and for every k ∈ N,

g j (x
k) + Δk

j ∈ Lm j and 〈g j (x
k) + Δk

j , μ
k
j 〉 = 0 (28)

for some sequences Δk
j → 0, j ∈ {1, . . . , q}. Later in this section, we will discuss

some details about some popular algorithms that generate this kind of sequence. But
first, let us prove our unified global convergence result:

Theorem 5.1 (Global convergence under seq-CPLD) Let {xk}k∈N and {μk
j }k∈N ⊆

Lm j , j ∈ {1, . . . , q} satisfy (27) and (28), and let x be a feasible limit point of {xk}k∈N
that satisfies seq-CPLD. Then, x satisfies the KKT conditions.

Proof For simplicity, let us assume that {xk}k∈N → x . From (27), we obtain that

∇ f (xk) −
q∑

j=1

Dg j (x
k)�μk

j → 0. (29)

Now, by (28) we obtain

μk
j =

⎧
⎨

⎩

0, if g j (xk) + Δk
j ∈ intLm j ,

μk
j,0

g j,0(xk )+Δk
j,0

Γ j (g j (xk) + Δk
j ), if g j (xk) + Δk

j ∈ bd+Lm j ,

where Γ j is defined in (11), and μk
j can be any point of Lm j if g j (xk) + Δk

j = 0.
Thus, there exists a spectral decomposition of

μk
j := αk

j u1(μ
k
j ) + βk

j u2(μ
k
j ),

such that u1(μk
j ) and u2(μk

j ) are also eigenvectors of g j (xk) + Δk
j for every k ∈ N.

Moreover, note that (28) implies that αk
jλ1(g j (xkj ) + Δk

j ) = 0 and βk
j λ2(g j (xkj ) +

Δk
j ) = 0 for every k ∈ N and every j ∈ {1, . . . , q}. Then, βk

j = 0 for all k large

enough and for every j ∈ IB(x) ∪ Iint (x), because λ2(g j (xkj ) + Δk
j ) > 0 for all large

k in these cases. Therefore, we can rewrite (29) as

∇ f (xk) −
∑

j∈I0(x)

(
αk
j Dg j (x

k)�u1(μk
j ) + βk

j Dg j (x
k)�u2(μk

j )
)

−
∑

j∈IB (x)

αk
j Dg j (x

k)�u1(μk
j ) → 0.

The rest of the proof is similar to the proof of Theorem 4.2, which consists of
using Carathéodory’s lemma in the above relation, assuming that the new scalars
are unbounded, and then directly applying Definition 5.1 to reach a contradiction,
hence it shall be omitted. �
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The sequences satisfying (27) and (28) are known as Approximate-KKT (AKKT)
sequences,which define a sequential optimality condition introducedbyAndreani et al.
in [7] for NSOCP problems. Also, we must mention that several algorithms generate
AKKT sequences; one recurrent example (see [7, Algorithm 5.1]) is the classical
Hestenes–Powell–Rockafellar augmented Lagrangian method, which is based on the
perturbed penalty function

Lρ,μ̃1,...,μ̃q (x) := f (x) + ρ

2

⎡

⎣
q∑

j=1

∥
∥
∥
∥PLm j

(

−g j (x) − μ̃ j

ρ

)∥
∥
∥
∥

2

−
∥
∥
∥
∥
μ̃ j

ρ

∥
∥
∥
∥

2
⎤

⎦ ,

where ρ ∈ R+ and μ̃ j ∈ Lm j , j ∈ {1, . . . , q}, are given parameters. The sequence
{xk}k∈N is computed as approximate stationary points of Lρk ,μ̃

k
1,...,μ̃

k
q
(x) and their

associate approximate Lagrange multipliers are given by

μk
j := PLm j

(
−ρkg j (x

k) − μ̃k
j

)
,

where {ρk}k∈N is the penalty parameter and {μ̃k
j }k∈N ⊆ Lm j are given sequences and

Δk
j := μk

j−μ̃k
j

ρk
for every j ∈ {1, . . . , q}. In particular, note that ∇Lρk ,μ̃

k
1,...,μ̃

k
q
(xk) =

∇x L(xk, μk
1, . . . , μ

k
q) for every k ∈ N. See also [8] for a more detailed discussion on

this topic.
Besides the augmented Lagrangian and its variants, the sequential quadratic pro-

gramming (SQP) algorithm of Kato and Fukushima [30, Algorithm 1] can also be
proved to generate output sequences that satisfy (27) and (28). For completeness, we
state their algorithm below:

In [30], Kato and Fukushima proved the global convergence of Algorithm 1 under
the following assumptions:

A1. Step 1 is well defined for every k ∈ N;
A2. The output sequence {xk}k∈N of Algorithm 1 is bounded;
A3. The multiplier sequences {μk

j }k∈N, j ∈ {1, . . . , q} computed by the method are
all bounded.

Observe that these assumptions, although somewhat standard, are demands over the
behavior of the algorithm itself instead of the problem, and a convergence theory that
makes strong assumptions over the behavior of the method is, to say the best, fragile.
Even so, A1 and A2 can be considered a “necessary evil” since their violation means
that the execution of the method has terminated in failure. Assumption A3, on the
other hand, is not plausible since it basically guides the method toward convergence.
Instead of A3, an assumption over the problem (and not the method), for instance the
fulfillment of a constraint qualification at every limit point of {xk}k∈N, would be more
reasonable for illustrating its strength. Of course, Robinson’s CQ is well suited for this
role since it implies A3, but an improvement can be made with the weaker constraint
qualification seq-CPLD; that is, under the following assumption:

A4. All limit points of {xk}k∈N satisfy seq-CPLD.
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Algorithm 1 Sequential quadratic programming algorithm of [30].

Input: An initial point x0 ∈ Rn and some parameters α0 > 0, σ ∈ (0, 1), γ1 > 0, γ2 > 0, and τ > 0.

Set k := 0. Then:

Step 1: Choose a symmetric positive definite matrix Mk ∈ Rn×n such that γ1‖z‖2 ≤ z�Mkz ≤ γ2‖z‖2
for every z ∈ Rn , and find a solution dk if possible of the problem:

Minimize
d∈Rn

∇ f (xk )�d + 1

2
d�Mkd, (QP)

subject to g j (x
k ) + Dg j (x

k )d ∈ Lm j , ∀ j ∈ {1, . . . , q}

together with its Lagrange multipliers μk
j ∈ Lm j , j ∈ {1, . . . , q}; if dk = 0, then stop;

Step 2: Set the penalty parameter as follows: If αk ≥ max{|μk
j,0| : j ∈ {1, . . . , q}}, then αk+1 := αk ;

otherwise, αk+1 := max{αk , |μk
j ,0| : j ∈ {1, . . . , q}} + τ ;

Step 3: Compute some scalar tk ∈ (0, 1] satisfying

Φ
αk+1 (xk ) − Φ

αk+1 (xk + tkdk ) ≤ σ tk (dk )�Mkdk ; (30)

where

Φα(x) := f (x) + α

q∑

j=1

max{0, −g j,0(x) − ‖ĝ j (x)‖}

is a penalty function;

Step 4: Set xk+1 := xk + tkdk and k := k + 1, and go to Step 1.

Then, we can easily rephrase an excerpt from the proof of [30, Theorem 1] and
apply Theorem 5.1 to obtain the same convergence result of [30] under A1, A2, and
A4, instead of A3 or Robinson’s CQ. However, it should be noticed that A4 may hold
even when the approximate Lagrange multiplier sequences are unbounded.

Proposition 5.2 UnderA1, the output sequences {xk}k∈N and {μk
j }k∈N, j ∈ {1, . . . , q},

of Algorithm 1 satisfy (27) and (28).

Proof For each k ∈ N, assumption A1 tells us that xk and μk
j ∈ Lm j , j ∈ {1, . . . , q}

satisfy the following:

∇ f (xk) + Mkdk −∑q
j=1 Dg j (xk)�μk

j = 0,

〈μk
j , g j (xk) + Dg j (xk)dk〉 = 0,∀ j ∈ {1, . . . , q},
g j (xk) + Dg j (xk)dk ∈ Lm j ,∀ j ∈ {1, . . . , q}.

Since by construction {Mk}k∈N is bounded andby [30,Theorem1]wehave {dk}k∈N →
0, the conclusion follows by taking Δk

j := Dg j (xk)dk for every k ∈ N and every
j ∈ {1, . . . , q}. �
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For the sake of completeness, we present a formal statement of the convergence
result of Algorithm 1 under seq-CPLD, which follows immediately from the previous
proposition.

Corollary 5.1 Assume A1, A2 and A4. Every limit point of the sequence {xk}k∈N gen-
erated by Algorithm 1 satisfies the KKT conditions.

5.2 On Error Bounds and Robustness

Another interesting implication of CRCQ and CPLD from the literature concerns error
bounds. To address it to NSOCP, let us recall the definition of the so-called metric
subregularity CQ for (NSOCP) problems.

Definition 5.2 (MSCQ) Let x be a feasible point of (NSOCP) and let g(x) :=
(g1(x), . . . , gq(x)). We say that x satisfies the metric subregularity CQ (MSCQ)when
there exists some γ > 0 and a neighborhood V of x such that

dist(x,F) ≤ γ dist(g(x),Πq
j=1Lm j )

for every x ∈ V , where F is the feasible set of (NSOCP).

The following result shows a sufficient condition in order to obtain MSCQ. This
result is an adaptation fromMinchenko and Stakhovski [34, Theorem 2] for nonlinear
programming problems. Also, an extension for semidefinite programming was made
in [9, Proposition 5.1] and hence its proof will be omitted.

Proposition 5.3 Let x ∈ F and assume that g j are twice differentiable around x,
with j ∈ {1, . . . , q}. Given x ∈ Rn, let Λx (y) denote the set of Lagrange multipliers
associated with any given solution y of the problem of minimizing ‖z − x‖ subject to
g j (z) ∈ Lm j , j ∈ {1, . . . , q}, z ∈ Rn. If there exist numbers τ > 0 and δ > 0 such
that Λx (y) ∩ cl(B(0, τ )) �= ∅ for every x ∈ B(x, δ), then x satisfies MSCQ.

Then, we shall prove that seq-CPLD and seq-CRCQ are robust, and this, together with
Proposition 5.3, is enough to show that they imply MSCQ.

Theorem 5.2 (Robustness of seq-CPLD (and seq-CRCQ)) If x ∈ F satisfies seq-
CPLD (or seq-CRCQ), then:

1. There is a neighborhoodV of x, such that every x ∈ V∩F also satisfies seq-CPLD
(respectively, seq-CRCQ);

2. MSCQ holds at x.

Proof We will only exhibit the proof for seq-CPLD, since the proof for seq-CRCQ
is analogous. Suppose that item 1 is false, then there is a sequence {xk}k∈N → x
such that seq-CPLD fails at xk , for all k ∈ N. That is, for each k ∈ N there is
some wk := [wk

j ] j∈I0(xk ) with ‖wk
k‖ = 1 for every j ∈ I0(xk), some sequences

{xk	 }	∈N → xk and {wk
	}	∈N → wk , and subsets J kB ⊆ IB(xk) and J k−, J k+ ⊆ I0(xk)

such that DJ kB ,J k−,J k+(xk, wk) is positively linearly dependent, but DJ kB ,J k−,J k+(xk	 , wk
	)
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is linearly independent for every 	 ∈ N. By the infinite pigeonhole principle, we
can assume that I0 = I0(xk) and IB = IB(xk) are the same for every k ∈ N,
and also that JB = J kB , J− = J k−, and J+ = J k+ for every k ∈ N, passing to a
subsequence if necessary. Moreover, note that we can also assume that I0 ⊆ I0(x) and
IB ⊆ I0(x) ∪ IB(x). Now consider the following sets:

J̃B := JB ∩ IB(x), J̃− := J− ∪ (JB ∩ I0(x)), and J̃+ := J+.

By construction, note that D J̃B , J̃−, J̃+(xk	 , wk
	) is linearly independent for every k, 	 ∈

N. For each k, let 	(k) be such that ‖wk − wk
	(k)‖ < 1

k , and let w be any limit point of

{wk}k∈N. Without loss of generality, we will assume thatwk → w, which also implies
that wk

	(k) → w.

Analogously to (26), we can construct someΔk
j ∈ Rm j for every j ∈ I0(x)∪ IB(x),

such that g j (xk	(k))+Δk
j ∈ bd+Lm j andhence its eigenvectors are uniquely determined

by

u1(g j (x
k
	(k)) + Δk

j ) = 1

2

(

1,
ĝ j (xk	(k))

‖ĝ j (xk	(k))‖

)

, ∀ j ∈ J̃B,

and

u1(g j (x
k
	(k)) + Δk

j ) = 1

2

(
1,−wk

	(k)

)

and

u2(g j (x
k
	(k)) + Δk

j ) = 1

2

(
1, wk

	(k)

)
, ∀ j ∈ J̃− ∪ J̃+.

With this inmind, on the one hand, we have thatD J̃B , J̃−, J̃+(x, w) is linearly dependent,

because the family D J̃B , J̃−, J̃+(xk, wk) is linearly dependent for every k ∈ N. But

on the other hand, D J̃B , J̃−, J̃+(xk	(k), w
k
	(k)) is linearly independent for every k ∈ N,

and the fact that the eigenvectors of g j (xk	(k)) + Δk
j are uniquely determined for all

j ∈ J̃B ∪ J̃− ∪ J̃+, together with wk
	(k) → w, contradicts seq-CPLD at x .

The proof of item 2 follows analogously to the proof of [9, Theorem 5.1], which is
essentially a corollary of item 1 and Proposition 5.3; hence it will be omitted. �

For a better exposition, what follows is a diagram that represents the relationship
of some existing constraint qualifications and the ones that we present in this paper
(Fig. 1).

6 Conclusion

In our previous work, we studied two ways of incorporating some structural features
of the semidefinite cone into the nondegeneracy condition of Shapiro and Fan [45];
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Nondegeneracy Robinson’s CQ

Seq-CRCQ

Seq-CPLD MSCQ

Weak-CRCQ

Weak-CPLDWeak-nondegeneracy

Weak-Robinson’s CQ

Fig. 1 Constraint qualifications for NSOCP. Strict implications are represented by solid arrows. Possibly
two-sided implications are represented by dashed arrows

among them was the eigendecomposition, which has always been widely exploited
in the design of algorithms for NSDP—for instance, see [31]. Quite surprisingly,
after incorporating eigendecompositions into the nondegeneracy condition (and also
Robinson’s CQ) we obtained a strictly weaker constraint qualification by means of
considering only converging sequences of eigenvectors associated with a given point
of interest, which was called weak-nondegeneracy (respectively, weak-Robinson’s
CQ). Moreover, this “sequential approach” allowed us to bypass the main difficulty
in generalizing the celebrated constant rank constraint qualification of NLP, to NSDP
[9], which is the presence of a potentially nonzero duality gap even in feasible linear
problems (see also [12] for a more detailed discussion on this topic). In this paper
we bring those concepts to the context of NSOCP where several improvements with
respect to the NSDP approach were made.

It is well known (see, for instance, the seminal work of Alizadeh and Goldfarb [2])
that although NSOCP problems can be reformulated as particular instances of NSDP
problems, solving them via such a reformulation is generally not a good practice for
a handful of reasons. Likewise, extensions of the sequential-type constraint qualifica-
tions of [9, 10] to NSOCP demand a specialized analysis to be properly conducted.
In fact, the second-order cone induces a distinguished eigendecomposition that is
easily computable, contrary to NSDP, which allows a deeper analysis to be made.
For instance, besides extending the weak variants of the nondegeneracy condition
and Robinson’s CQ from NSDP to NSOCP, this paper also presents a full comparison
between these weak conditions and their standard versions, which is an issue we could
not properly address in [10]. Some technical results from [10] could also be explained
in a somewhat natural way in this paper. Moreover, besides extending the constant
rank conditions from [9], we also gave them a geometrical interpretation in terms of
the conical slices of the second-order cone (Remark 5.1).

Very recently, we have been extending the notions of constant rank-type constraint
qualifications to the contexts of NSDP and NSOCP. While [12] follows an implicit
function approach pioneered by Janin [29] and giving rise to a definition of CRCQ that
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enjoys strong second-order properties, in this paper we exploit a sequential approach
[7], which allows even weaker conditions to be defined, such as the CPLD condition,
while enjoying global convergence properties of several algorithms without assuming
boundedness of the set of Lagrange multipliers but still allowing computation of error
bounds. Not surprisingly, when extending NLP concepts to the conic context, different
points of view may give rise to different possible extensions, each one extending
different applications of the concept. Some relevant topics in conic programming that
we expect the conditions we define in this paper will be particularly relevant are: in
the global convergence analysis of other classes of algorithms, including second-order
algorithms; the study of the boundedness of Lagrange multipliers estimates and the
use of scaled stopping criteria ; stability analysis of parametric optimization problems ;
and necessary optimality conditions for some extended classes of bilevel optimization
problems with conic constraints .
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to a conic context by exploiting the eigenvector structure of the problem. In this paper
we propose amore general and geometric approach for defining a new extension of this
condition to the conic context. The main advantage of our approach is that we are able
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1 Introduction

In the classical nonlinear programming (NLP) context, the so-called constant rank
constraint qualification (CRCQ) [36] was first presented as a tool for stability analysis,
which stood out for being independent of the usualMangasarian-Fromovitz constraint
qualification (MFCQ) and strictly weaker than the linear independence constraint
qualification (LICQ). For instance, it has been applied with this purpose in NLP [29,
36, 46, 47, 49], mathematical programs with equilibrium constraints (MPEC) [33],
generalized equations [34], and bilevel optimization [44, 59]. Also, it is the origin
of several other constant rank-type conditions, such as the constant positive linear
dependence [10, 12, 51] and the constant rank of the subspace component [11], which
have been successfully applied in the convergence analysis of iterative algorithms. To
name a few algorithms whose convergence theory relies on CRCQ and its variants,
we point out: an augmented Lagrangian method [3, 13], a regularized interior point
method [52], sequential quadratic programming methods for NLP [41, 51, 58] and
MPEC [38], and some relaxation schemes for MPEC [35, 57]. In fact, a particularly
interesting aspect of CRCQ that makes it suitable for supporting practical algorithms
is the fact it can be roughly interpreted as a relaxation of LICQ that is able to separate
the core information of the problem, ignoring redundant constraints. Moreover, all
linear programming problems satisfy CRCQ, in contrast with LICQ and MFCQ.

Besides convergence of algorithms and stability analysis, CRCQ was used in sev-
eral contexts, such as NLP [4, 13, 45], MPEC [32], vector optimization [43], and
continuous-time NLP [48], for studying second-order necessary optimality condi-
tions. One of the main goals of this paper is to bring such results to more general conic
programming contexts, namely nonlinear second-order cone programming (NSOCP)
and nonlinear semidefinite programming (NSDP). In the seminal paper by Bonnans,
Cominetti, and Shapiro [21], the authors derived no-gap second-order optimality con-
ditions for problems over second-order regular cones [21, Definition 3], such as NSDP
and NSOCP, under the well-known Robinson’s CQ (see (7) on page 8, or [53]), which
is the natural extension of MFCQ to conic programming. In particular, their second-
order necessary condition states that every local solution that satisfies Robinson’s CQ
must also satisfy the following: for every critical direction, there exists a Lagrange
multiplier (possibly depending on this direction), such that a certain quadratic form is
nonnegative with respect to such direction and multiplier. However, the second-order
condition that is obtained under CRCQ in NLP replaces “there exists a Lagrange
multiplier” with “for every Lagrange multiplier,” which is stronger than the one of
[21]. Although this stronger condition can be obtained from [21] after assuming that
the Lagrange multiplier is unique, which is ensured by stronger constraint qualifi-
cations such as the nondegeneracy condition (see (8) on page 8), this assumption is
often regarded as too stringent. To the best of our knowledge, no second-order result
concerning every Lagrange multiplier, without assuming its uniqueness, has been pre-
sented so far in the literature of nonlinear conic programming. Moreover, no extension
of CRCQ has been proposed for nonlinear conic programming until very recently.
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In 2019, Zhang and Zhang [60] proposed an extension of CRCQ and its relaxed
version [46] for NSOCP, but it was later discovered that their results were incorrect
[5]. This event has motivated us to investigate other possible extensions of CRCQ
to conic problems, and their properties. The first step in this direction was made
in [6], for NSOCP and NSDP problems with multiple constraints. The idea of [6]
is to rewrite some of the conic constraints as locally equivalent NLP constraints,
whenever possible, and then jointly applying nondegeneracy and the NLP version
of CRCQ to the resulting problem. Later, in [8], based on the ideas from [7], we
improved this strategy by exploiting the eigenvector structure of the semidefinite cone
to deal with the conic constraints that could not be rewritten as NLP constraints.
This approach was also extended to NSOCP problems in [9]. In simple terms, the
condition of [8, 9] demands the rank of some families of functions to remain constant
along every sequence converging to the point of interest – roughly speaking, a constant
rank “by paths” – therefore, this extension is highly specialized to deal with sequences
generated by iterative algorithms, but since this rankmayvary betweenpaths, it is likely
unsuitable for other purposes. Indeed, the focus of [8, 9] was the global convergence
of a large class of algorithms to first-order stationary points, and no second-order
results were provided in it. Nevertheless, it is reasonable to expect that CRCQ may
have multiple independent and correct extensions, each one of them generalizing at
least one important aspect of it, but perhaps not all of them.

A common feature of all previous attempts of extending CRCQ to a conic context
is an approach based on re-characterizing the conic program and the nondegeneracy
condition, trying tomake themas similar toNLPandLICQas possible, so the extension
ofCRCQwould comeout straightforwardly. This is somehowunderstandable because,
even in NLP, the CRCQ condition has never received a geometrical interpretation
before. In this paper, we present a new geometrical characterization of CRCQ for NLP
in terms of the faces of the nonnegative orthant, which suggests a natural extension of
it to NSOCP and NSDP. A point that we should stress is that contrary to our previously
mentionedworks, the definition ofCRCQ thatwe present here is very simple.Weprove
that this extension is a constraint qualification strictly weaker than nondegeneracy and
independent of Robinson’s CQ, as it should be, and we also compare it with the
condition of [8, 9]. Then, as an application, we show that every local solution of the
problem satisfies the strong second order optimality condition, provided our extension
of CRCQ holds. Moreover, just as it happens in NLP, our result does not demand a
priori any specific condition over the Lagrange multiplier set, besides nonemptiness.

The structure of this paper is as follows: Sect. 2 consists of a nonlinear conic pro-
gramming review emphasizing some aspects of the theory that are not commonly
discussed in the literature; in Sect. 3, we analyze CRCQ for NLP and we show how it
can be interpreted in terms of the faces of the nonnegative orthant. In Sects. 4 and 5, we
propose extensions of CRCQ for NSOCP and NSDP, respectively, and we prove some
of its properties. Finally, in Sect. 6, we conclude this paper with a short discussion and
some ideas of prospective work.

We end this section by introducing some of our basic notation: throughout this
paper, E will denote a finite-dimensional linear space equipped with the inner product
〈·, ·〉; and for a given set S ⊆ E, we will denote the polar of S by
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S◦ := {z ∈ E | 〈z, y〉 ≤ 0, ∀y ∈ S}

and the orthogonal complement of Swill be denoted by S⊥. The notations cl(S), int(S),
bd(S), and bd+(S) stand for the topological closure, interior, boundary, and boundary
excluding the origin of S in E, respectively. The smallest cone that contains S will
be denoted by cone(S), and the smallest linear space that contains S will be denoted
by span(S). Finally, for a twice continuously differentiable function g : Rn → E and
a given point x ∈ Rn , we denote by Dg(x) and D2g(x) the first- and second-order
derivative of g at x , respectively. As usual, Dg(x)T stands for the adjoint of Dg(x),
which by definition satisfies 〈Dg(x)d, z〉 = 〈d, Dg(x)T z〉 for all d ∈ Rn and z ∈ E,
and the action of D2g(x) over d1, d2 ∈ Rn will be denoted by D2g(x)[d1, d2].

2 Common framework: nonlinear conic programming

In this section, we will review some classical results of convex analysis, and first-
and second-order optimality conditions and constraint qualifications for NSOCP and
NSDP. These problems are the cornerstones of two independent research fields, but
they can also be seen as particular cases of a nonlinear conic programming (NCP)
problem, given by

Minimize f (x),
s.t. g(x) ∈ K,

(NCP)

where f : Rn → R and g : Rn → E are twice continuously differentiable, andK ⊆ E
is a closed convex pointed cone that is assumed to be nonempty.Wewill use (NCP) as a
framework to discuss the common traits of NSOCP and NSDP simultaneously, before
moving to specific traits. Throughout the whole paper, we will denote the feasible set
of (NCP) by Ω := {x ∈ Rn | g(x) ∈ K}.

Let us beginwith two key ideas that underlie all the results of this paper: reducibility
and faces. Recall from [24, Definition 3.135] that for any given linear spaces E and F,
a cone K ⊆ E is said to be reducible (more precisely, C2-reducible) at a point y ∈ K,
to a closed convex pointed cone C ⊆ F, if there exists a neighborhood N of y and a
twice continuously differentiable reduction functionΞ : N → F (possibly depending
on y) such that Ξ(y) = 0, DΞ(y) is surjective, and

K ∩ N = {z ∈ N | Ξ(z) ∈ C}.

In general, reductions are meant to be used as a simplification tool that allows one
to interpret any point of K as a vertex of some other cone C, and then extend the
results obtained at C to K in a smooth way. In this work, we are also interested in the
geometrical properties of the reduced cone C as well; in particular, in its faces.

To make a brief revision, we recall that F is a face of C if every open line segment
that contains a point of F also has its extrema in F ; that is, if for every y ∈ F and every
z, w ∈ C such that y = αz + (1 − α)w for some α ∈ (0, 1), we have that z, w ∈ F .
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Further, when there exists some η ∈ C◦ such that

F = C ∩ {η}⊥,

that is, when F is the intersection between C and one of its supporting hyperplanes,
we say that F is an exposed face of C. Some cones, like the nonnegative orthant, the
semidefinite cone, and the second-order cone, are facially exposed, meaning all of
their faces are exposed. We use the notation F � C to say that F is a face of C.

Now, to contextualize our results, we will revisit the classical theory of NCP in
the next section, with a special emphasis in the work of Guignard [31], and Bonnans,
Cominetti, and Shapiro [21]. In particular, we stress some aspects of the NCP theory
that are often disregarded in the literature.

2.1 Review of first-order optimality conditions

For any set S ⊆ E and any z ∈ S, recall the (Bouligand) tangent cone to S at z, defined
as

TS(z) :=
{
y ∈ E

∣∣∣∣ ∃{tk}k∈N → 0+, ∃{yk}k∈N → y such that
z + tk yk ∈ S for all k ∈ N

}
.

Our review of first-order constraint qualifications for (NCP) revolves around two
particular cones: the tangent cone TΩ(x̄) to Ω at a feasible point x̄ ∈ Ω , and the
linearized tangent cone

LΩ(x̄) := {d ∈ Rn | Dg(x̄)d ∈ TK(g(x̄))
}
,

where TK(g(x̄)) is the tangent cone to K at g(x̄). The importance of these cones for
our analyses lies on the necessary optimality conditions for (NCP) associated with
them. Namely, given any local minimizer x̄ ∈ Ω of (NCP), it is easy to see that
〈∇ f (x̄), d〉 ≥ 0 for all d ∈ TΩ(x̄); that is,

− ∇ f (x̄) ∈ TΩ(x̄)◦. (1)

This is one of the simplest necessary optimality conditions, sometimes called the
first-order geometric necessary condition for the optimality of x̄ . However, it may be
difficult to use (1) whenΩ does not admit an explicit characterization because TΩ(x̄)◦
may not be easily computable in this case. The polar of LΩ(x̄), on the other hand,
admits a practical description, as it is shown in the following lemma, extracted from
the proof of [31, Theorem 2] by Guignard:

Lemma 1 Let x̄ ∈ Ω . Then, LΩ(x̄)◦ = cl(H(x̄)), where

H(x̄) := Dg(x̄)TNK(g(x̄)) =
{
Dg(x̄)T z | z ∈ NK(g(x̄))

}
, (2)

and NK(g(x̄)) := TK(g(x̄))◦ is the normal cone to K at g(x̄).
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Proof By the bipolar theorem (see e.g. [24, Proposition 2.40]), it suffices to prove that
LΩ(x̄) = H(x̄)◦. Take any direction d ∈ LΩ(x̄) and let z ∈ TK(g(x̄))◦. By definition,
Dg(x̄)d ∈ TK(g(x̄)) and then

0 ≥ 〈Dg(x̄)d, z〉 = 〈d, Dg(x̄)T z〉.

Thus, since z is arbitrary, we obtain that d ∈ H(x̄)◦; and since d is also arbitrary,
it follows that LΩ(x̄) ⊆ (H(x̄))◦. Conversely, assume that there exists a vector v ∈
H(x̄)◦ such that v /∈ LΩ(x̄), that is, Dg(x̄)v /∈ TK(g(x̄)). By the strong separation
theorem (see e.g. [24, Theorem 2.14]), there exists a vector y such that 〈y, Dg(x̄)v〉 >

0 and 〈y, z〉 < 0, for all z ∈ TK(g(x̄)), that is, y ∈ NK(g(x̄)). Therefore, Dg(x̄)T y ∈
H(x̄), which is a contradiction with 〈Dg(x̄)T y, v〉 > 0, because v ∈ H(x̄)◦. ��

Recall that because K is a closed convex cone, we have

NK(g(x̄)) = {z ∈ K◦ | 〈g(x̄), z〉 = 0
}
.

Then, combining the first-order geometric necessary condition and Lemma 1 yields
the following theorem, also by Guignard:

Theorem 1 (Theorem2 of [31])Let x̄ ∈ Ω be a localminimizer of (NCP). IfTΩ(x̄)◦ =
LΩ(x̄)◦ and H(x̄) is closed, then there exists some λ̄ ∈ K◦ such that

∇ f (x̄) + Dg(x̄)T λ̄ = 0 and 〈g(x̄), λ̄〉 = 0. (3)

Theorem 1 can be seen as the “dual form” of the first-order geometric condition (1),
and any vector λ̄ ∈ K◦ that satisfies the Karush-Kuhn-Tucker conditions (3) is called
a Lagrange multiplier associated with x̄ . Moreover, the collection of all Lagrange
multipliers associated with x̄ will be denoted by Λ(x̄), and when Λ(x̄) �= ∅ we say
that x̄ is a KKT point of (NCP).

The hypothesis of Theorem 1,

TΩ(x̄)◦ = LΩ(x̄)◦ and H(x̄) is closed, (4)

is known in the literature as Guignard’s CQ, and it is the weakest assumption that
makes the KKT conditions necessary for the local optimality of x̄ , in the sense of: if
Λ(x̄) �= ∅ for every continuously differentiable function f that has a local minimizer
constrained to Ω at x̄ , then Guignard’s CQ must also hold at x̄ [30, Corollary 3.4].
Börgens et al. [25, Definition 5.11] defined Guignard’s CQ for optimization problems
in Banach spaces as a single equality

TΩ(x̄)◦ = H(x̄),

which is equivalent to (4) due to Lemma 1. In NLP, Guignard’s CQ is usually stated
in the form TΩ(x̄)◦ = LΩ(x̄)◦, because the closedness of H(x̄) follows from the
polyhedricity of Rm+. However, as it can be seen in the following example, the equality
TΩ(x̄)◦ = LΩ(x̄)◦ on its ownmay not ensure thatΛ(x̄) �= ∅when H(x̄) is not closed.
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Example 1 Consider the following problem, presented in [2, Subsection 2.1]:

Minimize f (x) := −x2,
s.t. g(x) := (x1, x1, x2) ∈ K3,

where K3 is the three-dimensional second-order cone, given by

K3 =
{
(x1, x2, x3) ∈ R3 | x1 ≥

√
x22 + x23

}
.

Note that its feasible set is given by Ω = {x ∈ R2 | x1 ≥ 0 and x2 = 0}, and
that the point x̄ = (0, 0) ∈ R2 is a local minimizer of it. Any Lagrange multiplier
λ := (λ1, λ2, λ3) ∈ K ◦

3 associated with x̄ must satisfy

(
0

−1

)
+ λ1

(
1
0

)
+ λ2

(
1
0

)
+ λ3

(
0
1

)
=
(
0
0

)
, (5)

which implies that λ3 = 1 and λ1 = −λ2. But because λ ∈ K ◦
3 = −K3 this vector

must also satisfy −λ1 ≥
√

λ21 + 1, which does not have a solution with λ3 = 1 and
λ1 = −λ2. Therefore, x̄ does not satisfy the KKT conditions. However, note that
TΩ(x̄) = Ω = LΩ(x̄) and consequently, TΩ(x̄)◦ = LΩ(x̄)◦. Additionally, note that

H(x̄) = {(y1 + y2, y3) ∈ R2 | (y1, y2, y3) ∈ K ◦
3 }

is not closed, because the sequence
{(− 1

k ,−1
)}

k∈N is contained in H(x̄) since(− 1
k − k, k,−1

) ∈ K ◦
3 , ∀k ∈ N, but its limit point (0,−1) does not belong to

H(x̄).

The condition

TΩ(x̄) = LΩ(x̄) and H(x̄) is closed, (6)

which implies Guignard’s CQ, is known as Abadie’s CQ (see also Börgens et al. [25,
Definition 5.5]), and Example 1 tells us that the closedness of H(x̄) cannot be omitted
in this case, either. The reason why we emphasize this point is that, as far as we know,
it appears that Abadie’s CQ and Guignard’s CQ are rarely seen in the literature of
finite-dimensional conic programming problems other than NLP, and the closedness
of H(x̄) is rarely regarded in the study of constraint qualifications. In contrast, H(x̄)
plays an important role in our results.

In finite-dimensional conic contexts, the focus is usually on constraint qualifications
that already imply H(x̄) is closed without requiring it explicitly, such as Robinson’s
CQ, that holds at a given point x̄ ∈ Ω when

0 ∈ int(Im(Dg(x̄)) − K + g(x̄)). (7)
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In particular, if K has nonempty interior, then Robinson’s CQ holds at x̄ if, and only
if, there exists some d ∈ Rn such that

g(x̄) + Dg(x̄)d ∈ int(K).

Robinson’s CQ is stronger than Abadie’s CQ, and it implies that Λ(x̄), besides being
closed and convex, is also nonempty and bounded [24, Theorem 3.9] when x̄ is a
local minimizer of (NCP). Actually, in this finite-dimensional context, nonempty and
boundedness are also sufficient conditions to ensure Robinson’s CQ [24, Proposition
3.17]. For this reason, Robinson’s CQ is considered the natural analogue of MFCQ in
NCP. Moreover, when K is reducible at the point g(x̄) to a cone C by the reduction
functionΞ , Robinson’s CQ holds at x̄ for the original constraint if, and only if, it holds
at the same point for the reduced equivalent constraint G(x) ∈ C, with G := Ξ ◦ g.

Another well-known constraint qualification in the context of conic programming
is the nondegeneracy condition, which holds at x̄ when

Im(Dg(x̄)) + lin(TK(g(x̄))) = E, (8)

where lin(TK(g(x̄))) = TK(g(x̄)) ∩ −TK(g(x̄)) denotes the largest linear space con-
tained in TK(g(x̄)); that is, its lineality space. This CQ has first appeared in Shapiro
and Fan’s article [56] for NSDP, by the name transversality, and then it was general-
ized to NCP by Shapiro, in [55]. Nondegeneracy is strictly stronger than Robinson’s
CQ and it is known that if x̄ is a local minimizer of (NCP) that satisfies nondegeneracy,
then Λ(x̄) is a singleton (see, for instance, [24, Proposition 4.75]). Moreover, if K is
reducible, nondegeneracy is equivalent to the surjectivity of DG(x̄), as it can be easily
deduced from the equality lin(TK(g(x̄))) = Ker(DΞ(g(x̄))); see [24, Section 4.6.1].

Due to their implications over the Lagrange multiplier set, nondegeneracy and
Robinson’s CQ are currently the most important CQs in the study of second-order
optimality conditions for (NCP), which will be reviewed in the next subsection.

2.2 Second-order optimality conditions

Before starting, recall that the (inner) second-order tangent set to a nonempty set
S ⊆ E, at a point z ∈ S, in a direction y ∈ TS(z), is defined by

T 2
S (z, y) :=

{
w ∈ E

∣∣∣∣ z + t y + t2

2
w + o(t2) ∈ S, ∀t > 0

}
, (9)

which is closed for all such z, y, and S. In addition, if S is convex, then T 2
S (z, y) is

also convex [24, Page 163]; and if S is second-order regular, as it is the case of the
semidefinite cone and the second-order cone, then T 2

S (z, y) is nonempty [24, Page
202].

The role of second-order necessary optimality conditions is to provide additional
information when first-order conditions are not meaningful enough; that is, along the
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directions in the cone

C(x̄) := {d ∈ Rn | d ∈ TΩ(x̄), 〈∇ f (x̄), d〉 = 0
}
,

which is often called the coneof critical directions, or simply, the critical coneof (NCP)
at x̄ . Ben-Tal and Zowe [19] presented a geometric second-order necessary optimality
condition for (NCP), stating that if x̄ is a local minimizer of the problem, then

〈∇ f (x̄), s〉 + 〈∇2 f (x̄)d, d〉 ≥ 0 (10)

for every d ∈ C(x̄) and every s ∈ T 2
Ω(x̄, d). Then, Kawasaki [40, Theorem 5.1] made

the first advances to derive a “dual form” of (10) under Robinson’s CQ assuming that
K is a closed convex conewith nonempty interior. This result was later generalized and
refined by Cominetti [26, Theorem 4.2] to the case where K is assumed to be a closed
convex set. An important improvement was made afterwards by Bonnans, Cominetti,
and Shapiro [21], who clarified several key points of the previous works, and obtained
no-gap1 second-order conditions, in particular, for second-order regular cones [21,
Section 4]. Let us recall Bonnans, Cominetti, and Shapiro’s necessary condition in the
context of second-order regular cones:

Theorem 2 (Theorem 3.1 of [21]) Let x̄ ∈ Ω be a local minimizer of (NCP) that
satisfies Robinson’s CQ. Then, for every direction d ∈ C(x̄), there exists some λ̄d ∈
Λ(x̄), such that

dT∇2 f (x̄)d + 〈D2g(x̄)[d, d], λ̄d〉 − σ(d, x̄, λ̄d) ≥ 0, (11)

where

σ(d, x̄, λ̄d) := sup
{
〈w, λ̄d〉 | w ∈ T 2

K(g(x̄), Dg(x̄)d)
}

(12)

is the support function of T 2
K(g(x̄), Dg(x̄)d) with respect to λ̄d .

The term σ(d, x̄, λ̄d) characterizes a possible curvature of the set K at g(x̄) along
Dg(x̄)d, and it is often called the “sigma-term” in the classical literature (for instance,
in the book [24]). Because λ̄d ∈ Λ(x̄) and K is convex, σ(d, x̄, λ̄d) is always non-
negative; and if K is polyhedral, as in NLP, then the sigma-term is zero everywhere.
See also the discussion on polyhedricity and extended polyhedricity in [24, Section
3.2.3]. It is also worth mentioning that the second-order optimality condition of Theo-
rem 2 can be derived without constraint qualifications, using Fritz John (generalized)
multipliers [24, Theorem 3.50].

1 The term “zero gap,” or “no gap,” is often used in NLP to refer to a second-order condition that does not
require constraint qualifications to be necessary (using Fritz John/generalized Lagrange multipliers), and
that becomes sufficient after replacing an inequality by a strict inequality. However, in this paper, we say
that a condition has zero gap when it satisfies the latter, possibly subject to a constraint qualification, in the
same way as [21].
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Although the condition of Theorem 2 is generally considered very natural and
useful in the conic programming context and in NLP, a stronger condition where the
Lagrange multiplier λ̄ does not depend on d has several potential uses, in view of the
NLP literature. This motivates the following definition:

Definition 1 Let x̄ ∈ Ω be a KKT point and let λ̄ ∈ Λ(x̄) be given. We say that the
pair (x̄, λ̄) satisfies the second-order condition (SOC) when

dT∇2 f (x̄)d + 〈D2g(x̄)[d, d], λ̄〉 − σ(d, x̄, λ̄) ≥ 0, (13)

for every d ∈ C(x̄).

In NLP, the existence of some λ̄ ∈ Λ(x̄) such that SOC holds for the pair (x̄, λ̄) is
knownas the semi-strong second-order necessary optimality condition [20].Moreover,
when SOC holds for every λ̄ ∈ Λ(x̄), then we obtain what is known as the strong
second-order necessary optimality condition [4]. However, while the condition of
Theorem 2 is necessary for optimality under Robinson’s CQ, this is not true, in general,
for the strong and semi-strong conditions. In fact, there is a counterexample published
by Baccari [17, Section 3] (see also Anitescu [14] and Arutyunov [15]), that shows
that Robinson’s CQ does not guarantee the existence of a λ̄ ∈ Λ(x̄) such that the
pair (x̄, λ̄) satisfies SOC (see also the extended version of [18] for details). Under
nondegeneracy, the set Λ(x̄) is a singleton and, in this case, the semi-strong and the
strong second-order conditions both coincide with the condition of Theorem 2.

As far as we know, there is no result concerning the semi-strong and strong second-
order conditions without assuming uniqueness of Lagrangemultipliers in the literature
of conic programming, except for NLP. In NLP, this has been addressed by means of
constant rank-type constraint qualifications, which is also the path we will follow in
this paper.

3 Revisiting constant rank CQs in NLP

In this section we will revisit some constant rank-type conditions for NLP from a
geometrical point of view, in order to extend it to a more general conic context later
on. Consider the standard NLP problem

Minimize f (x),
s.t. g j (x) ≥ 0, j = 1, . . . ,m,

g j (x) = 0, j = m + 1, . . . ,m + p,
(NLP)

which is a particular case of (NCP) with E = Rm+p, K = Rm+ × {0}p, and g(x) :=
(g1(x), . . . , gm+p(x)). As usual in NLP, given a feasible point x̄ of (NLP), we will
denote the set of active inequality constraints at x̄ as A(x̄) := { j ∈ {1, . . . ,m} |
g j (x̄) = 0}.

Now, let us recall Janin’s constant rank constraint qualification as it was first pre-
sented in [36].
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Definition 2 (CRCQ [36]) Let x̄ be a feasible point of (NLP). We say that the constant
rank constraint qualification for NLP (CRCQ) holds at x̄ if there exists a neighborhood
V of x̄ such that, for every subset J ⊆ A(x̄) ∪ {m + 1, . . . ,m + p}, the rank of the
family {∇g j (x)} j∈J remains constant for all x ∈ V .

To prove that CRCQ is a constraint qualification, Janin proved that it implies
LΩ(x̄) ⊆ TΩ(x̄), which in turn implies Abadie’s CQ in NLP. His proof is what
motivates the requirement to consider every subset J of A(x̄) ∪ {m + 1, . . . ,m + p}
in Definition 2; indeed, after picking a direction

d ∈ LΩ(x̄) =
{
d ∈ Rn

∣∣∣∣∇g j (x̄)T d ≥ 0, j ∈ A(x̄),
∇g j (x̄)T d = 0, j ∈ {m + 1, . . . ,m + p}

}
,

in order to prove that d ∈ TΩ(x̄), it is sufficient to have the constant rank assumption
for the constraints that correspond to the indices j ∈ A(x̄) such that ∇g j (x̄)T d = 0.
Since those indices depend on d, and they are not determined a priori, one considers
all possibilities. However, as it was noted years later by Minchenko and Stakhovski
[46], taking subsets of the equality constraints is quite superfluous. This enhanced
definition of CRCQ that ignores proper subsets of indices of equality constraints was
presented in [46] as follows:

Definition 3 (RCRCQ [46]) Let x̄ be a feasible point of (NLP). We say that relaxed
constant rank constraint qualification for NLP (RCRCQ) holds at x̄ if there exists a
neighborhood V of x̄ such that, for every subset J ⊆ A(x̄), the rank of the family
{∇g j (x)} j∈J∪{m+1,...,m+p} remains constant for all x ∈ V .

In order to bring these CQs to the conic setting, our approach in this manuscript
consists first in generalizing two key ideas of NLP: the notion of “active constraints”
and the notion of “subsets of indices of active constraints.” The former can be inter-
preted in the general context as a consequence of reducibility. Indeed, for any given
x̄ ∈ Ω , let s := |A(x̄)| and note that Rm+ × {0}p is reducible at g(x̄) to the cone

C := Rs+ × {0}p

in a neighborhood N of g(x̄) by the mapping Ξ : N → Rs+p such that

Ξ(y) := (y j ) j∈A(x̄)∪{m+1,...,m+p}

for every y ∈ N , and in this case the reduced constraint function of (NLP) at x̄ takes
the form

G(x) := Ξ(g(x)) = (g j (x)) j∈A(x̄)∪{m+1,...,m+p}. (14)

Therefore, in NLP, reducing the problem is essentially the same as simply disregarding
inactive constraints around the point x̄ . The notion of “subsets of indices of the active
constraints,” on the other hand, can be interpreted in terms of faces.
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c1

c3

Fig. 1 Faces of R3+

It is easy to see that every face of Rs+ can be written in terms of a unique subset of
the canonical vectors of Rs , which we will denote by c1, . . . , cs . That is, F � Rs+ if,
and only if, there exists some J ⊆ {1, . . . , s} such that

F = Rs+
⋂
j∈J

{ci }⊥, (15)

where F and J are clearly in a one-to-one correspondence.
For example, in Fig. 1, the vertex of R3+ corresponds to J = {1, 2, 3}; the one-

dimensional faces cone(c1), cone(c2), and cone(c3) correspond to J = {2, 3}, J =
{1, 3}, and J = {1, 2}, respectively; the left, front, and bottom two-dimensional faces
correspond to J = {1}, J = {2}, and J = {3}, respectively; and R3+ itself corresponds
to J = ∅.

Thus, considering all subsets of active constraints at x̄ is the same as considering
all faces of the reduced cone C = Rs+ × {0}p. This discussion suggests a natural
characterization of RCRCQ in terms of the faces of the reduced cone, as follows:

Proposition 1 Let x̄ be a feasible point of (NLP). Then, RCRCQ holds at x̄ if, and
only if, there exists a neighborhood V of x̄ such that, for each F � R|A(x̄)|

+ × {0}p,
the dimension of

DG(x)T [F⊥]

remains constant for every x ∈ V , where G is as defined in (14).

Proof Let s := |A(x̄)| and, without loss of generality, let us assume that A(x̄) =
{1, . . . , s}. Moreover, let c1, . . . , cs+p be the canonical basis of Rs+p, and let F �
Rs+ × {0}p. Note that F = R × {0}p, where R � Rs+. Then, there exists some
J ⊆ {1, . . . , s} such that

F =
⎛
⎝Rs+

⋂
j∈J

{ci }⊥
⎞
⎠× {0}p,

which implies

F⊥ = R⊥ × Rp = span
({c j | j ∈ J ∪ {s + 1, . . . , s + p}}) ,
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so

DG(x)T [F⊥] = span({DG(x)T c j } j∈J∪{s+1,...,s+p})
= span({∇g j (x)} j∈J∪{m+1,...,m+p}).

(16)

Consequently,

dim(Dg(x)T [F⊥]) = rank({∇g j (x)} j∈J∪{m+1,...,m+p}).

The conclusion follows from the one-to-one correspondence between F and J . ��
The equivalent form of RCRCQ presented in Proposition 1 allows us to visualize what
it actually describes, geometrically. Indeed, recall that Rn = DG(x)−1(span(F)) +
(DG(x)−1(span(F)))⊥ and it is elementary to see that

(DG(x)−1(span(F)))⊥ = DG(x)T [F⊥].

This implies the following relation:

dim(DG(x)−1(span(F))) + dim(DG(x)T [F⊥]) = n.

Thus, RCRCQ can be equivalently stated as the constant dimension of DG(x)−1

(span(F)) for every x ∈ V at each F � C = R|A(x̄)|
+ × {0}p. The set

DG(x)−1(span(F)), on the other hand, can be regarded as a “linear approximation” of
G−1(C) around x̄ . Indeed, DG(x) is the best linear approximation of G at x ∈ V and,
similarly, the faces of C can also be seen as “linear approximations” of it at G(x̄). In
fact, each face induces a potentially different linear approximation of G−1(C), which
in turn coincides with Ω around x̄ . So roughly speaking: RCRCQ holds at x̄ when
the dimension of every linear approximation of the feasible set Ω at x̄ is invariant
to small perturbations. In particular, defining gJ (x) := (g j (x)) j∈J∪{m+1,...,m+p} for
every J ⊆ A(x̄), this characterization is equivalent to the constant dimension of
Ker(DgJ (x)) for all x in a neighborhood of x̄ at every J ⊆ A(x̄), which can also be
trivially seen from the original definition of RCRCQ.

Note that the characterization of RCRCQ from Proposition 1 and the discussion
above do not appear to be limited to the context of NLP, contrary to its original
definition. In the next two sections, we will prove that the same idea can be applied to
NSOCP and NSDP, respectively, giving rise to new constraint qualifications.

Remark 1 It is possible to obtain a characterization of CRCQ in the same style
of Proposition 1. To do this, it suffices to reformulate the equality constraints
g j (x) = 0 as a pair of inequality constraints g j (x) ≥ 0 and −g j (x) ≥ 0, for
j ∈ {m + 1, . . . ,m + p}. That is, consider K := Rm+ × Rp

+ × Rp
+ and g(x) :=

(g1(x), . . . , gm+p(x),−gm+1(x), . . . ,−gm+p(x)) in Proposition 1.

In view of Remark 1, we see that there are multiple ways of dealing with equality
constraints in our approach, and they are not all equivalent. The suitability of each
approach may depend on the application, but we highlight that our approach is able
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to deal with equality constraints regardless of how they are modelled. For simplicity,
equality constraints are omitted in our exposition. See also Remarks 3 and 7. In the
following two sections, we extend the ideas of this section to NSOCP and NSDP.

4 Nonlinear second-order cone programming

In this section, we consider the following problem:

Minimize f (x),
s.t. g j (x) ∈ Km j , j = 1, . . . , q,

(NSOCP)

where Km j := {(z0, ẑ) ∈ R × Rm j−1 | z0 ≥ ‖̂z‖} when m j > 1 and K1 = {x ∈ R |
x ≥ 0}. Since Km j is self-dual, we have that z ∈ K ◦

m j
if, and only if, −z ∈ Km j , for

any j = 1, . . . , q. Also, note that (NSOCP) can be seen as a particular case of (NCP)
with

K := Km1 × . . . × Kmq and g(x) := (g1(x), . . . , gq(x)).

Given a feasible point x̄ ∈ Ω , let us define the following index sets:

Iint(x̄) := { j ∈ {1, . . . , q} | g j (x̄) ∈ int(Km j )},
IB(x̄) := { j ∈ {1, . . . , q} | g j (x̄) ∈ bd+(Km j )},
I0(x̄) := { j ∈ {1, . . . , q} | g j (x̄) = 0},

which consist of the indices of the constraints that hit the interior, the boundary exclud-
ing zero, and the vertex of their respective cones. For simplicity, we will omit equality
constraints; we should mention, nevertheless, that our results can be easily adapted to
deal with equality constraints— see Remark 3 for details. As another measure to avoid
cumbersome notation, we will assume that IB(x̄) = {1, . . . , |IB(x̄)|}; this assumption
will often be recalled throughout this section.

Following Bonnans and Ramírez [22], for any given x̄ ∈ Ω , we see that K is
reducible to

C :=
∏

j∈I0(x̄)
Km j × R|IB (x̄)|

+ (17)

in a neighborhood N1 × . . . × Nq of g(x̄) by the function Ξ := (Ξ j ) j∈I0(x̄)∪IB (x̄),
whereΞ j : N j → Rm j is the identity function for every j ∈ I0(x̄), andΞ j : N j → R
is given by

Ξ j (y) := y0 − ‖ŷ‖ (18)

for every j ∈ IB(x̄), and every y ∈ Rm j . This leaves us with the reduced constraint

G(x) ∈ C,
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where G(x) := Ξ(g(x)) = (G j (x)) j∈I0(x̄)∪IB (x̄),

G j (x) := Ξ j (g j (x)) =
{
g j (x), if j ∈ I0(x̄),
φ j (x), if j ∈ IB(x̄),

(19)

and φ : Rn → R|IB (x̄)| has its j-th component given by

φ j (x̄) := [g j (x)]0 − ‖ĝ j (x̄)‖. (20)

Note that g(x) ∈ K if, and only if, G(x) ∈ C for every x sufficiently close to x̄ .
By [22, Lemma 25], we see that the linearized cone of the original constraints

of (NSOCP) at a given x̄ ∈ Ω can be computed as

LΩ(x̄) =
{

d ∈ Rn Dg j (x)d ∈ Km j , j ∈ I0(x̄)

Dφ(x)d ∈ R|IB (x̄)|
+

}
, (21)

and that it coincideswith the linearized cone of the reduced constraint at x̄ .Moreover, it
follows from [1,Lemma15] that for each j = Iint(x̄)∪IB(x̄),we have 〈λ̄ j , g j (x̄)〉 = 0,
if, and only if,

λ̄ j =
{
0, if j ∈ Iint(x̄),

[λ̄ j ]0
[g j (x̄)]0 Rm j g j (x̄), if j ∈ IB(x̄),

(22)

where Rm j is a matrix defined as

Rm j :=
[
1 0
0 −Im j−1

]
, (23)

and Im j−1 is the (m j − 1) × (m j − 1) identity matrix. Therefore, still following [22],
the point x̄ satisfies the KKT conditions with respect to the constraint g(x) ∈ K if,
and only if, there exist some vectors λ̄ j ∈ K ◦

m j
, j ∈ I0(x̄) ∪ IB(x̄), such that:

∇ f (x̄) +
∑

j∈I0(x̄)
Dg j (x̄)

T λ̄ j +
∑

j∈IB (x̄)

[λ̄ j ]0
[g j (x̄)]0 Dg j (x̄)

T Rm j g j (x̄) = 0, (24)

which also coincides with the KKT conditions with respect to the reduced constraint
G(x) ∈ C. In fact, note that for each j ∈ IB(x̄), the reduced Lagrange multiplier with
respect to the reduced constraint φ j (x) ≥ 0 is simply [λ̄ j ]0.

With this in mind, we are ready to present our extension of CRCQ (and RCRCQ)
to NSOCP inspired by the characterization of Proposition 1.
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4.1 A facial constant rank constraint qualification for NSOCP

Recall that, for each j = 1, . . . , q, the cone Km j is facially exposed, meaning every
F � Km j can be written as the intersection of one of its supporting hyperplanes, say
{η}⊥ with η ∈ Km j . In fact, although Km j has infinitely many faces when m j > 2,
they are limited to only three types:

– The vertex, {0}, which can be characterized by any η ∈ int(Km j );
– The cone Km j itself, which is characterized by η = 0;
– A ray at the boundary of Km j , starting at the vertex and passing through a point

z ∈ bd+(Km j ), which can be written in terms of any vector η ∈ cone(Rm j z)\ {0}.
Moreover, every F � C has the form

F =
⎛
⎝ ∏

j∈I0(x̄)
Fj

⎞
⎠× R,

where Fj � Km j for every j ∈ I0(x̄), and R � R|IB (x̄)|
+ . Then, for every x ∈ Rn ,

sufficiently close to x̄ , we have

DG(x)T [F⊥] =
∑

j∈I0(x̄)
Dg j (x)

T [F⊥
j ] + Dφ(x)T [R⊥],

where φ(x) := (φ j (x)) j∈IB (x̄). This motivates the following definition:

Definition 4 Let x̄ be a feasible point of (NSOCP). We say that the facial constant
rank (FCR) property holds at x̄ if there exists a neighborhood V of x̄ such that for
each F � C, the dimension of DG(x)T [F⊥] remains constant for all x ∈ V , where G
is given by (19) and C is given by (17).

Recall the discussion after Proposition 1 and note that Definition 4 can be equiva-
lently stated in terms of the constant dimension of DG(x)−1(span(F)) for all x ∈ V
and every F � C. That is, the FCR property holds at x̄ when the dimension of every
linear approximation of the feasible set remains locally invariant around x̄ . Although
this characterization is somewhat more intuitive than Definition 5, the latter is easier
to use.

The FCR property is sufficient for the equality TΩ(x̄) = LΩ(x̄) to hold. To prove
this, we employ the main result of Janin’s paper [36], but the version we use is a
slightly different characterization found in [4, Proposition 3.1]. Despite the fact we
work in a context more general than NLP, we use the same result that was used in
NLP.

Proposition 2 ([4, Proposition 3.1]) Let {ζi (x)}i∈I be a finite family of twice continu-
ously differentiable functions ζi : Rn → R, i ∈ I, such that the family of its gradients
{∇ζi (x)}i∈I remains with constant rank in a neighborhood of x̄ , and consider the
linear subspace

S := {y ∈ Rn | 〈∇ζi (x̄), y〉 = 0, i ∈ I
}
.
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Then, there exists some neighborhoods V1 and V2 of x̄ , and a diffeomorphism ψ :
V1 → V2, such that:

(i) ψ(x̄) = x̄ ;
(ii) Dψ(x̄) = In;
(iii) ζi (ψ

−1(x̄ + y)) = ζi (ψ
−1(x̄)) for every y ∈ S ∩ (V2 − x̄) and every i ∈ I.

Moreover, the degree of differentiability of ψ is the same as of ζi , for all i ∈ I.

For the last part of the above proposition, about the degree of differentiability of
ψ , we refer to Minchenko and Stakhovski [47, Page 328]. Now, we are able to prove
the main result of this section:

Theorem 3 Let x̄ be a feasible point of (NSOCP). If the FCR property holds at x̄ , then
TΩ(x̄) = LΩ(x̄).

Proof It suffices to show that LΩ(x̄) ⊆ TΩ(x̄). Let d ∈ LΩ(x̄) and suppose that x̄
satisfies the FCR property. Let

F :=
⎛
⎝ ∏

j∈I0(x̄)
Fj

⎞
⎠× R, (25)

where Fj � Km j , j ∈ I0(x̄), are defined as

Fj :=
⎧⎨
⎩

Km j if Dg j (x̄)d ∈ int(Km j ),

cone(Dg j (x̄)d), if Dg j (x̄)d ∈ bd+(Km j ),

{0}, if Dg j (x̄)d = 0.
(26)

and R � R|IB (x̄)| is given by

R := R|IB (x̄)|
+

⋂
j∈J

{c j }⊥, (27)

where c j is the j-th vector of the canonical basis of R|IB (x̄)|, and J := { j ∈
IB(x̄) | ∇φ j (x̄)T d = 0}. Recall that we are assuming for simplicity that IB(x̄) =
{1, . . . , |IB(x̄)|}, and note that DG(x̄)d ∈ F .

Now, for every j ∈ I0(x̄) such that Dg j (x̄)d ∈ bd+(Km j ), let A j ∈ Rm j×m j−1 be
any matrix with full column rank such that Im(A j ) = {Dg j (x̄)d}⊥, and observe that

Dg j (x)
T [F⊥

j ] = span

({
Dg j (x)

T Ai
j

}
i=1,...,m j−1

)

for every such j , where Ai
j denotes the i-th column of A j . Similarly, for every j ∈

I0(x̄) such that Dg j (x̄)d = 0, we have

Dg j (x)
T [F⊥

j ] = span(
{∇g j,i (x)

}
i=0,...,m j−1),
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where ∇g j,i (x) denotes the i-th column of Dg j (x)T . And for every j such that
Dg j (x̄)d ∈ int(Km j ), we have Dg j (x)T [F⊥

j ] = {0}. Finally, observe that R⊥ =
span({c j } j∈J ) and then

Dφ(x)T [R⊥] = span
({∇φ j (x)

}
j∈J

)
.

Therefore, for every x ∈ V , where V is the neighborhood of x̄ given by Definition 4,
the linear space

DG(x)T [F⊥] =
∑

j∈I0(x̄)
Dg j (x)

T [F⊥
j ] + Dφ(x)T [R⊥] (28)

is generated by the family of vectors:

⋃
j∈I0(x̄)

Dg j (x̄)d∈bd+(Km j )

i=1,...,m j−1

{
Dg j (x)

T Ai
j

} ⋃
j∈I0(x̄)

Dg j (x̄)d=0
i=0,...,m j−1

{∇g j,i (x)}
⋃
j∈J

{∇φ j (x)}, (29)

which implies that the dimension of (28) equals the rank of (29), for every x ∈ V .
Since this dimension remains constant in V , so does the rank of (29). This means we
can apply Proposition 2 to the family of functions

ζi, j (x) :=
⎧⎨
⎩

〈Ai
j , g j (x)〉, if j ∈ I0(x̄), Dg j (x̄)d ∈ bd+(Km j ), i = 1, . . . ,m j − 1,

g j,i (x), if j ∈ I0(x̄), Dg j (x̄)d = 0, i = 0, . . . ,m j − 1,
φ j (x), if j ∈ J ,

(30)

where g j,i (x) denotes the i-th entry of g j (x) for j ∈ J . Then, consider the following
subspace:

S :=
⎧⎨
⎩ y ∈ Rn

AT
j Dg j (x̄)y = 0, if j ∈ I0(x̄), Dg j (x̄)d ∈ bd+(Km j )

Dg j (x̄)y = 0, if j ∈ I0(x̄), Dg j (x̄)d = 0
∇φ j (x̄)T y = 0, if j ∈ J ,

⎫⎬
⎭ ,

and note that d ∈ S, so it follows that there exists a local diffeomorphism ψ for which
items (i), (i i) and (i i i) of Proposition 2 are satisfied. Now, define the arc ξ(t) by

ξ(t) := ψ−1(x̄ + td),

for t ∈ R small enough so that x̄ + td ∈ V2, where V2 is given by Proposition 2. Then,
we obtain that

lim
t→0+ ξ(t) = x̄, lim

t→0+
ξ(t) − x̄

t
= d.

To complete the proof, it suffices to show that ξ(t) remains feasible for every suffi-
ciently small t ≥ 0, so this is our goal from this point onwards. Proposition 2 tells us
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that there exists some ε > 0 such that ζi, j (ξ(t)) = ζi, j (x̄) = 0 for every t ∈ (−ε, ε).
In terms of F , this means that

G(ξ(t)) ∈ span(F)

for every such t , which follows directly from (30). Now, let us analyse each case
separately:

1. For each index j ∈ I0(x̄), consider the Taylor expansion of g j (ξ(t)) around t = 0,
given by

g j (ξ(t)) = g j (ξ(0)) + t Dg j (ξ(0))ξ ′(0) + o(t)

= g j (x̄) + t Dg j (x̄)Dψ−1(x̄)d + o(t)

= t Dg j (x̄)d + o(t)

(31)

Then, we split in three sub-cases:

– If Dg j (x̄)d ∈ int(Km j ), then it follows from (31) that g j (ξ(t)) ∈ Km j for
every t ∈ [0, ε), shrinking ε if necessary;

– If Dg j (x̄)d ∈ bd+(Km j ), then g j (ξ(t)) ∈ span(Dg j (x̄)d) due to (26), and it
follows from (31) that g j (ξ(t)) ∈ cone(Dg j (x̄)d) for every t ∈ [0, ε), taking
a smaller ε if needed;

– If Dg j (x̄)d = 0, then g j (ξ(t)) = 0 for every t ∈ [0, ε), due to (26).
2. Becauseφ(ξ(t)) ∈ R for every t ∈ [0, ε), for each index j ∈ J , we haveφ j (ξ(t)) =

0. On the other hand, for each j /∈ J , consider the Taylor expansion of φ j (ξ(t))
around t = 0:

φ j (ξ(t)) = φ j (ξ(0)) + t∇φ j (ξ(0))T ξ ′(0) + o(t) = t∇φ j (x̄)
T d + o(t),

and since ∇φ j (x̄)T d > 0 for every j /∈ J , it also follows that φ j (ξ(t)) > 0 for
every t ∈ (0, ε), taking a smaller ε if necessary.

Thus, G(ξ(t)) ∈ F for every t ∈ [0, ε), which also implies that g(ξ(t)) ∈ K for every
such t , completing the proof. ��

A useful information that can be extracted from the proof above is an equivalent
characterization of the FCR property (Definition 4) without faces:

Corollary 1 Let x̄ ∈ Ω . Then, the FCR property holds at x̄ if, and only if, there exists
a neighborhood V of x̄ such that: for all subsets J1, J2 ⊆ I0(x̄), J3 ⊆ IB(x̄), such
that m j > 1 for all j ∈ J1, and for all η j ∈ bd+(Km j ), j ∈ J1, the rank of the family

⋃
j∈J1

i=1,...,m j

{
Dg j (x)

T Ai
j

} ⋃
j∈J2

i=0,...,m j−1

{∇g j,i (x)}
⋃
j∈J3

{∇φ j (x)}.
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remains the same for all x ∈ V , where A j ∈ Rm j×m j−1 can be any matrix with full
column rank such that Im(A j ) = {η j }⊥, for each j ∈ J1, and Ai

j denotes the i-th
column of A j .

Notice that if J1 is fixed as the empty set, then the characterization of Corollary 1
recovers the CRCQ proposal of [60]. This clarifies that the matrices A j , j ∈ J1, were
the missing ingredients for the proposal of [60] to be a CQ. Before proceeding, we
will make a short discussion about Theorem 3 and its implications:

Remark 2 Note that if all constraints are affine, then every feasible point satisfies the
FCR property. Then, it follows from Theorem 4 that TΩ(x̄) = LΩ(x̄) in this case,
for every x̄ ∈ Ω . We highlight this fact because when it is paired with Example 1,
two things can be concluded: first, the FCR property alone is not a CQ for (NSOCP);
second, the only reason why constraint linearity is not a CQ for NSOCP is that H(x̄)
may not be closed.When H(x̄) is closed, FCR is a CQ, and so is constraint linearity. In
other words, the above discussion, in view of the minimality of Guignard’s CQ, allows
us to conclude that the closedness of H(x̄) is the weakest CQ for linear second-order
cone programming problems.

The discussion of Remark 2, together with Theorem 4, motivates our extension of
CRCQ (and RCRCQ) to NSOCP:

Definition 5 Let x̄ be a feasible point of (NSOCP) and let H(x̄) be the set defined in
(2). We say that the constant rank constraint qualification for NSOCP (CRCQ) holds
at x̄ , if it satisfies the FCR property and, in addition, the set H(x̄) is closed.

When m1 = m2 = . . . = mq = 1, problem (NSOCP) reduces to a NLP problem.
Moreover, since the faces of K1 are {0} and R+, the FCR property (Definition 4)
reduces to CRCQ in this case, and so does Definition 5. Moreover, as mentioned
before, it follows directly from Theorem 3, that:

Theorem 4 The CRCQ condition of Definition 5 implies Abadie’s CQ.

Since the nondegeneracy condition for (NSOCP) holds at a given x̄ ∈ Ω if, and
only if, DG(x̄)T is injective, then by continuity of DG, nondegeneracy implies that
DG(x)T remains injective for every x close enough to x̄ . Therefore, it follows that the
nondegeneracy condition implies CRCQ as in Definition 5. However, the converse is
not true, as it can be seen in the following example:

Example 2 Consider the following constraint

g(x) := (x, x) ∈ K2,

at the feasible point x̄ = 0. The cone K2 is polyhedral and g is linear, then CRCQ as
in Definition 5 holds at x̄ . However, Robinson’s CQ is not satisfied at x̄ = 0, since

Dg(x̄)d = d(1, 1) /∈ int(K2)

for every d ∈ R. Consequently, nondegeneracy is not satisfied, either.
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Observe that Example 2 also shows that CRCQ does not imply Robinson’s CQ.
Conversely, Robinson’s CQdoes not implyCRCQeither, meaning they are not related,
just as it happens with CRCQ and MFCQ in NLP. Let us show this with an example:

Example 3 Consider the constraint:

g(x) := (x2, x
2
1 ) ∈ K2

at the point x̄ = (0, 0). Robinson’s CQ holds at x̄ , since d = (0, 1) satisfies

g(x̄) + Dg(x̄)d = (1, 0) ∈ int(K2).

On the other hand, take the face F = {0} and note that

Dg(x)T [F⊥] = span

({[
0
1

]
,

[
2x1
0

]})

has dimension 2 for every x such that x1 �= 0, and dimension 1 at x̄ .

Remark 3 To consider (NSOCP) with an equality constraint in the form h(x) = 0,
where h : Rn → Rp, one should proceed as in Proposition 1. That is, consider

g(x) := (g1(x), . . . , gq(x), h(x))

and the cone

K := Km1 × . . . × Kmq × {0}p.

Thiswill lead to an extension ofRCRCQ.An extension of the originalCRCQcondition
can be obtained by writing the equality constraint as a pair of inequality constraints
in the form h(x) ∈ Rp

+ and −h(x) ∈ Rp
+, just as in Remark 1, then reducing, and

applying Definition 5 to the new reduced cone.

4.2 Strong second-order optimality conditions for NSOCP

In this subsection wewill investigate second-order optimality conditions for (NSOCP)
under the FCR property; and, consequently, under CRCQ as well. Recall that the
second-order condition of Definition 1 can be further specialized to the context of
NSOCP by characterizing the sigma-term explicitly. Following Bonnans and Ramírez
[22], we have for any x̄ ∈ Ω and any of its associate Lagrange multipliers λ̄ :=
(λ̄1, . . . , λ̄q) ∈ Λ(x̄), that

σ(d, x̄, λ̄) =
q∑
j=1

dTH j (x̄, λ̄ j )d
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for every d ∈ C(x̄), where

H j (x̄, λ̄ j ) :=

⎧⎪⎪⎨
⎪⎪⎩

− [λ̄ j ]0
[g j (x̄)]0 Dg j (x̄)T Rm j Dg j (x̄), if j ∈ IB(x̄),

0, Otherwise.

(32)

With this in mind, we can prove that SOC holds at (x̄, λ̄) under the FCR property
by means of analysing the problem along the curve ξ(t) from the proof of Theorem 3.

Theorem 5 Let x̄ be a local minimizer of problem (NSOCP) that satisfies the FCR
property. Then, for any given Lagrange multiplier λ̄ ∈ Λ(x̄), the pair (x̄, λ̄) satisfies
SOC as in Definition 1; that is,

dT∇2 f (x̄)d +
q∑
j=1

〈
D2g j (x̄)[d, d], λ̄ j

〉
− σ(d, x̄, λ̄) ≥ 0, (33)

for every d ∈ C(x̄) = LΩ(x̄) ∩ {∇ f (x̄)}⊥.

Proof IfΛ(x̄) = ∅, the result holds trivially. Otherwise, let λ̄ := (λ̄1, . . . , λ̄q) ∈ Λ(x̄)
be arbitrary and fixed. Our aim is to prove that inequality (13) holds for the pair (x̄, λ̄),
for every d ∈ C(x̄). So let d ∈ C(x̄) be also arbitrary, and let F be as in (25).
Recall that, for the sake of simplicity and without loss of generality, we are assuming
IB(x̄) = {1, . . . , |IB(x̄)|}.

Proceeding in the same way as in the proof of Theorem 3, since the FCR property
holds at x̄ and d ∈ LΩ(x̄), we can construct a twice continuously differentiable
diffeomorphism ξ : (−ε, ε) → Rn , for some ε > 0, such that: ξ(0) = x̄ , ξ ′(0) = d,
and

G(ξ(t)) ∈ span(F) (34)

for every t ∈ (−ε, ε). In addition, G(ξ(t)) ∈ F for every t ∈ [0, ε), meaning ξ(t) is
feasible for all such t . Since x̄ is a local minimizer of (NSOCP), then t = 0 is a local
minimizer of the function ϕ(t) := f (ξ(t)) subject to the constraint t ≥ 0. Then, it is
easy to see that

ϕ′′(0) = dT∇2 f (x̄)d + ∇ f (x̄)T ξ ′′(0) ≥ 0. (35)

The rest of this proof consists of computing ∇ f (x̄)T ξ ′′(0). To do this, we will use
an auxiliary complementarity function defined as

R(t) :=
∑

j∈I0(x̄)
〈g j (ξ(t)), λ̄ j 〉 +

∑
j∈IB (x̄)

[λ̄ j ]0φ j (ξ(t)).
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First, we claim that R(t) = 0 for every t ∈ (−ε, ε). To prove this, let us use the KKT
conditions to obtain

∑
j∈I0(x̄)

〈Dg j (x̄)d, λ̄ j 〉 +
∑

j∈IB (x̄)

[λ̄ j ]0∇φ j (x̄)
T d = 〈d,−∇ f (x̄)〉 = 0, (36)

where the last equality follows from the fact d ∈ C(x̄). By the way, recall from (21)
that Dg j (x̄)d ∈ Km j for every j ∈ I0(x̄), and ∇φ j (x̄)T d ≥ 0 for every j ∈ IB(x̄).
On the other hand, λ̄ j ∈ K ◦

m j
and hence 〈Dg j (x̄)d, λ̄ j 〉 ≤ 0 for every j ∈ I0(x̄), and

[λ̄ j ]0 ≤ 0 for every j ∈ IB(x̄). Thus,

〈Dg j (x̄)d, λ̄ j 〉 = 0, ∀ j ∈ I0(x̄), and [λ̄ j ]0∇φ j (x̄)
T d = 0, ∀ j ∈ IB(x̄).

(37)

With this in mind, let us analyse each term of R(t) separately.

1. For each j ∈ I0(x̄), it follows directly from (37) that:

– If Dg j (x̄)d ∈ int(Km j ), then λ̄ j = 0, since λ̄ j ∈ K ◦
m j

;

– If Dg j (x̄)d ∈ bd+(Km j )we have g j (ξ(t)) ∈ span(Dg j (x̄)d) by (34) and (25),
and consequently, 〈g j (ξ(t)), λ̄ j 〉 = 0 for every t ∈ (−ε, ε) due to (37);

– If Dg j (x̄)d = 0, then g j (ξ(t)) = 0 also for every t ∈ (−ε, ε), due to (26).

The above reasoning implies that 〈g j (ξ(t)), λ̄ j 〉 = 0 for every t ∈ (−ε, ε) and
every j ∈ I0(x̄).

2. For each j ∈ IB(x̄), consider J as in (27) and it follows that if ∇φ j (x̄)T d = 0,
then φ j (ξ(t)) = 0 for every t ∈ (−ε, ε). On the other hand, in (37) we see that if
∇φ j (x̄)T d > 0, then [λ̄ j ]0 = 0.

Knowing that R(t) = 0 for every t ∈ (−ε, ε), we obtain that the derivatives of R(t)
are also zero for all such t . Let us compute them: the first derivative of R(t) is given
by

R′(t) =
∑

j∈I0(x̄)

〈
Dg j (ξ(t))ξ ′(t), λ̄ j

〉+ ∑
j∈IB (x̄)

[λ̄ j ]0
〈∇φ j (ξ(t)), ξ ′(t)

〉
,

and the derivative of R′(t) is

R′′(t) =
∑

j∈I0(x̄)

〈
D2g j (ξ(t))[ξ ′(t), ξ ′(t)], λ̄ j

〉
+
∑

j∈I0(x̄)

〈
Dg j (ξ(t))T λ̄ j , ξ

′′(t)
〉

+
∑

j∈IB (x̄)

[λ̄ j ]0
(〈
D2φ j (ξ(t))ξ ′(t), ξ ′(t)

〉
+ 〈∇φ j (ξ(t)), ξ ′′(t)

〉)
.

Due to the fact R′′(t) is continuous, taking the limit t → 0, we obtain

R′′(0) =
∑

j∈I0(x̄)

〈
D2g j (x̄)[d, d], λ̄ j

〉
+
∑

j∈I0(x̄)

〈
Dg j (x̄)

T λ̄ j , ξ
′′(0)

〉
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+
∑

j∈IB (x̄)

[λ̄ j ]0
(〈

D2φ j (x̄)d, d
〉
+ 1

[g j (x̄)]0
〈
Dg j (x̄)

T Rm j g j (x̄), ξ
′′(0)

〉)
.

The above expression can be simplified using the relation

〈
D2φ j (x̄)d, d

〉
= 〈D̂g j (x̄)d, ĝ j (x̄)〉2

‖ĝ j (x̄)‖3
− ‖D̂g j (x̄)d‖2

‖ĝ j (x̄)‖
+

+
〈
D2g j (x̄)[d, d], Rm j g j (x̄)

‖ĝ j (x̄)‖

〉

= 1

[g j (x̄)]0
〈
Rm j Dg j (x̄)d, Dg j (x̄)d

〉+
+ 1

[g j (x̄)]0
〈
D2g j (x̄)[d, d], Rm j g j (x̄)

〉
,

that holds true for every j ∈ IB(x̄) such that ∇φ j (x̄)T d = 0, which can be directly

computed from the definition of φ j , since in this case [g j (x̄)]0 = ‖ĝ j (x̄)‖ and, more-
over,

〈Dg j (x̄)d, Rm j g j (x̄)〉 = 〈d, Dg j (x̄)
T Rm j g j (x̄)〉 = [g j (x̄)]0∇φ j (x̄)

T d = 0.

Further, equation (37) tells us that if ∇φ j (x̄)T d > 0, then [λ̄ j ]0 = 0. Then, we get

R′′(0) =
∑

j∈I0(x̄)∪IB (x̄)

〈
D2g j (x̄)[d, d], λ̄ j

〉
+

∑
j∈I0(x̄)∪IB (x̄)

〈
Dg j (x̄)

T λ̄ j , ξ
′′(0)

〉

+
∑

j∈IB (x̄)

[λ̄ j ]0
[g j (x̄)]0

〈
Rm j Dg j (x̄)d, Dg j (x̄)d

〉 = 0. (38)

Moreover, by the KKT conditions, we have

∇ f (x̄)T ξ ′′(0) = −
∑

j∈I0(x̄)∪IB (x̄)

〈
Dg j (x̄)

T λ̄ j , ξ
′′(0)

〉
,

which yields together with equation (38), the following:

∇ f (x̄)T ξ ′′(0) =
∑

j∈I0(x̄)∪IB (x̄)

〈
D2g j (x̄)[d, d], λ̄ j

〉
+

+
∑

j∈IB (x̄)

[λ̄ j ]0
[g j (x̄)]0 d

T Dg j (x̄)
T Rm j Dg j (x̄)d.

(39)
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Therefore, since λ̄ j = 0 for every j ∈ Iint(x̄), plugging (39) into (35) yields

dT∇2 f (x̄)d +
q∑
j=1

〈
D2g j (x̄)[d, d], λ̄ j

〉
− σ(d, x̄, λ̄) ≥ 0.

Since d ∈ C(x̄) is arbitrary, we conclude that x̄ satisfies SOC with respect to λ̄, which
was also chosen arbitrarily and remained fixed from the very beginning. Thus, the
proof is complete. ��

Observe that Theorem 5 implies that the FCR property ensures the fulfilment of
the strong second-order necessary condition at a given point x̄ , in the sense that for
every λ̄ ∈ Λ(x̄), and every d ∈ C(x̄), inequality (13) holds true. If, in addition,
H(x̄) is closed (CRCQ), then Λ(x̄) �= ∅, and as consequence, we obtain that the
strong second-order condition is satisfied in the presence of CRCQ. It is also worth
mentioning that since the strong necessary condition of Theorem 5 implies the clas-
sical condition of Theorem 2, then it also induces a sufficient (no-gap) second-order
optimality condition after replacing ≥ by > in inequality (33).

Remark 4 In contrast with the FCR property, the condition presented in [60, Definition
2.1] fails to be a CQ evenwhen H(x̄) is closed. In fact, let us recall the counterexample
presented in [5]:

Minimize f (x) := −x,
s.t. g(x) := (x, x + x2) ∈ K2,

The unique solution of this problem is x̄ = 0. For this particular example, [60, Def-
inition 2.1] holds if, and only if, {1, 1 + 2x} remain with constant rank in some
neighborhood of x̄ (one may consider also all of its subfamilies, see [5]). Of course,
this is verified, and since K2 is polyhedral, the set H(x̄) is closed. However, x̄ does
not satisfy the KKT conditions.

On the other hand, to see that CRCQ as in Definition 5 does not hold at x̄ , take
F := cone((1, 1)) � K2 and note that

Dg(x)T [F⊥] = span(−2x)

has dimension 1 for every x �= 0, but has dimension zero at x̄ . In particular, this
example shows that CRCQ as in Definition 5 is not a mere correction of the condition
presented in [60], and that the condition of [60] cannot be corrected by simply adding
the closedness of H(x̄) to its definition.

4.3 About the sequential constant rank CQ

In [9], we introduced an alternative extension of CRCQ for (NSOCP) that was based
on a special re-characterization of the nondegeneracy condition [7] in terms of the
eigenvectors of some perturbations of g(x̄). Let us recall an equivalent characterization
of it, which will be used here as a definition for simplicity.
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Definition 6 (Seq-CRCQ for NSOCP) Let x̄ ∈ Ω . We say that the Sequential-CRCQ
(Seq-CRCQ) condition holds at x̄ if for every vector w̄ j ∈ Rm j−1 with ‖w̄ j‖ = 1,
j ∈ I0(x̄), there is a neighborhood V of (x̄, w̄), w̄ := (w̄ j ) j∈I0(x̄), such that: for all
subsets J1, J2 ⊆ I0(x̄) and J3 ⊆ IB(x̄), if the family

D(x, w) :=
{
Dg j (x)

T (1,−w j
)}

j∈J1

⋃{
Dg j (x)

T (1, w j
)}

j∈J2

⋃

⋃{
Dg j (x)

T

(
1,− ĝ j (x)

‖ĝ j (x)‖

)}

j∈J3

is linearly dependent at (x, w) := (x̄, w̄), then D(x, w) remains linearly dependent
for all (x, w) ∈ V such that ‖w j‖ = 1, j ∈ J1 ∪ J2, where w := (w j ) j∈I0(x̄).

This constraint qualificationwas used in [9] to achieve global convergence of a class
of algorithms to KKT points, and some interesting properties were shown together
with a weaker variant of Seq-CRCQ. Namely, it is also independent of Robinson’s
CQ, strictly weaker than nondegeneracy, and it implies the metric subregularity CQ
(also known as error bound CQ). Moreover, note that if I0(x̄) = ∅, then Seq-CRCQ
coincides with the FCR property, which in turn coincides with CRCQ. However, this
is not necessarily true otherwise. In the following example, we show that CRCQ
according to Definition 5 does not imply Seq-CRCQ.

Example 4 Consider the constraint:

g(x) = (x,−x, 0) ∈ K3,

and let x̄ = 0, a feasible point. The constraint function g is affine, then the FCR
property holds at x̄ (see Remark 2). Now, let us show that H(x̄) is closed: since
g(x̄) = 0, it holds that

H(x̄) = Dg(x̄)T K3 = {v1 − v2 | (v1, v2, v3) ∈ K3} = R+.

Therefore, H(x̄) is a closed set, and CRCQ according to Definition 5 holds at x̄ .
On the other hand, Seq-CRCQ does not hold at x̄ , because for any w = (w1, w2) ∈

R2,

Dg(x̄)T (1, w) = 1 − w1 and Dg(x̄)T (1,−w) = 1 + w1;

then, take w̄ = (1, 0) and any sequence {wk}k∈N → w̄ such thatwk
1 �= 1 for all k ∈ N,

to see that Dg(x̄)T (1, wk
1) �= 0 for every k ∈ N, but Dg(x̄)T (1, w̄) = 0. ��

We were not able to prove nor find a counterexample for the converse statement.
However, with only Example 4 at hand, we already know that CRCQ is in the worst
case independent of Seq-CRCQ, and in the best case, strictly weaker than it, meaning
the results of this paper either improve or are parallel to the results of [9].
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5 Nonlinear semidefinite programming

In this section, we will study constant rank conditions for nonlinear semidefinite
programming problems, which can be stated in standard form as follows:

Minimize f (x),
s.t. G(x) � 0.

(NSDP)

This problem can be seen as a particular case of (NCP), letting E = Sm be the space
of m × m symmetric matrices with real entries, and

K = Sm+ := {A ∈ Sm | zT Az ≥ 0, ∀z ∈ Rm}

be the cone of all m × m symmetric positive semidefinite matrices, with G : Rn →
E being twice continuously differentiable. The symbol � denotes the partial order
induced by Sm+, meaning that A � B if, and only if, A − B ∈ Sm+. In this section,
for any given A ∈ Sm we will denote by μi (A) the i-th eigenvalue of A arranged in
non-increasing order, and ui (A) will denote an associated unitary eigenvector.

Recall from Sect. 3 that the constant rank constraint qualification can be obtained
in two steps: first, reduce the problem to consider only the locally relevant part of the
constraint; then, analyse the image of the faces of the reduced cone by the derivative of
the reduced constraint function. For the first step, wewill employ a reduction approach
based on Bonnans and Shapiro [24, Example 3.98], which can also be found in [16,
Section 2.3].

Let Ȳ � 0, denote r := rank(Ȳ ), and let Ē ∈ Rm×m−r be a matrix whose columns
form an orthonormal basis of Ker(Ȳ ). Then, in a sufficiently small neighborhood N
of Ȳ , we consider the function EĒ : N → Rm×m−r given by

EĒ (Y ) := gramschmidt
(
Π(Y )Ē

)
, (40)

where Π(Y ) denotes the orthogonal projection matrix onto the space spanned by
ur+1(Y ), . . . , um(Y ) and gramschmidt(Π(Y )Ē) denotes the output of the Gram-
Schmidt orthonormalization procedure after being applied to the
columns of Π(Y )Ē .

Lemma 2 For any given Ȳ � 0 and any matrix Ē ∈ Rm×m−r with orthonormal
columns that span Ker(Ȳ ), where r := rank(Ȳ ), it holds that:

1. EĒ is well-defined and analytic provided N is small enough;
2. EĒ (Y )T EĒ (Y ) = Im−r and Im(EĒ (Y )) = span({ur+1(Y ), . . . , um(Y )}), for every

Y ∈ N ;
3. EĒ (Ȳ ) = Ē .

Proof For item 1, observe that Y �→ Π(Y ) is an analytic function of Y in a sufficiently
small neighborhood, say N , of Ȳ (see, for example, [39, Theorem 1.8]), then Y �→
Π(Y )Ē is also analytic in N and, moreover, Π(Ȳ )Ē = Ē . Shrinking N if necessary,
we have that for all Y ∈ N , the rank of Π(Y )Ē is equal to the rank of Π(Ȳ )Ē = Ē ,
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Abstract: Second-order necessary or sufficient optimality conditions for nonlinear programming are usually
defined by means of the positive (semi-)definiteness of a quadratic form, or a maximum of quadratic forms,
over the critical cone. However, algorithms for finding such second-order stationary points are currently
unknown. Typically, an algorithm with a second-order property approximates a primal-dual point such
that the Hessian of the Lagrangian evaluated at the limit point is, under a constraint qualification, positive
semidefinite over the lineality space of the critical cone. This is in general a proper subset of the critical
cone, unless one assumes strict complementarity, which gives a weaker necessary optimality condition. In this
paper, a new strong sequential optimality condition is suggested and analyzed. Based on this, we propose a
penalty algorithm which, under certain conditions, is able to achieve second-order stationarity with positive
semidefiniteness over the whole critical cone, which corresponds to a strong necessary optimality condition.
Although the algorithm we propose is somewhat of a theoretical nature, our analysis provides a general
framework for obtaining strong second-order stationarity.

Keywords: nonlinear optimization, second-order optimality conditions, constraint qualifications, global
convergence
Mathematics Subject Classification: 49K05, 65K10, 90C26, 90C30

1 Introduction
When proposing a derivative-based algorithm for smooth constrained optimization problems, one must have
in mind efficiency and robustness. In terms of robustness, it is clear that one does not expect that a local
minimizer will always be found. Thus, algorithms typically aim at finding points satisfying some first- or
second-order necessary optimality condition. The Karush-Kuhn-Tucker conditions are usually the standard
first-order stationarity notion employed. However, there are different notions of second-order stationarity.

Most notions of second-order stationarity are somewhat of a theoretical nature, since it is very difficult to
incorporate them in a practical algorithm, at least not without impairing efficiency. Thus, most algorithms
possessing a second-order global convergence theory only consider the simplest of these conditions, namely,
one that does not make use of the full second-order information. More specifically, instead of ensuring
positive semidefiniteness of the Hessian of the Lagrangian over the whole critical cone, this property is
assured only in a subspace contained in the critical cone. This is done essentially because dealing with the
whole critical cone is a computationally challenging task, see [17].

In this paper we consider nonlinear optimization problems in finite dimensions with equality and inequal-
ity constraints, where the problem functions are twice continuously differentiable and we aim at designing
a general framework that is able to find a point satisfying a strong second-order necessary optimality con-
dition, that is, considering the whole critical cone, under reasonable assumptions. This is done by means of
a penalty algorithm that keeps the inequality constraints within the subproblems. However, our approach
is somewhat theoretical as we do not propose an algorithm for solving the subproblems. This task remains
a challenging open problem. Nevertheless, the analysis we conduct is non-standard and it consists of a first
step towards the more general goal.

The paper starts in Section 2 with a review of different second-order necessary optimality conditions; we
focus in particular on the results relying on assumptions on the rank of the gradients of constraints nearby
the local minimizer, in particular, we consider the well known constant rank constraint qualification (CRCQ
[15]).

∗The research of the first author is supported by the Volkswagen Foundation under grant No. 97 775.
The second author is funded by CNPq and the São Paulo Research Foundation grant 2018/24293-0, while
the third author is funded by the São Paulo Research Foundation grants 2017/12187-9 and 2020/00130-5.
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In Section 3 we present a gentle introduction to the topic of sequential optimality conditions [3], which
is the main tool we employ to achieve our results. Based on this discussion, we introduce new strong second-
order necessary approximate KKT conditions that consider the whole critical cone. Under a constant rank
condition, we prove that all local minimizers of the optimization problem satisfy one of these approximate
KKT conditions while the other condition is satisfied by all strict local minimizers.

In Section 4, we recall from [7, 12] that a standard barrier method and a second-order augmented La-
grangian method are not able to guarantee the strong second-order condition, even if a strict local minimizer
of the subproblems is found at each iteration. Then, we show that this phenomenon will not occur (under a
constant rank condition) if only equality constraints are penalized. That is, we propose our framework for
designing an algorithm that will achieve the strong second-order condition under reasonable assumptions.
The assumptions we employ rely on the constant rank of sets of gradients of constraints and the objective
function, together with the extended Mangasarian-Fromovitz constraint qualification (MFCQ).

Our notation is rather standard. We just mention that ‖ · ‖ always denotes the Euclidean norm.

2 On Second-Order Conditions
Let us consider the nonlinear programming problem

Minimize f(x),
subject to hi(x) = 0, i = 1, . . . ,m,

gj(x) ≤ 0, j = 1, . . . , p,
(NLP)

where the functions f, hi, gj : Rn → R are twice continuously differentiable. By Ω, we denote the feasible
set of (NLP). Moreover, for any x ∈ Rn, the set

A(x) := {j ∈ {1, . . . , p} | gj(x) = 0}
contains the indices of inequality constraints that are active at x.

To formulate second-order conditions, let us first introduce the generalized Lagrangian L0 : Rn × R+ ×
Rm × Rp+ → R by

L0(x, r, λ, µ) := rf(x) + h(x)>λ+ g(x)>µ,
whereas the Lagrangian L : Rn × Rm × Rp+ → R is given by

L(x, λ, µ) := f(x) + h(x)>λ+ g(x)>µ.

Now, for any x ∈ Ω, the set Λ0(x) of Fritz John multipliers and the set Λ(x) of Lagrange multipliers are
defined as

Λ0(x) :=
{

0 6= (r, λ, µ) ∈ R+ × Rm × Rp+ | ∇xL0(x, r, λ, µ) = 0, g(x)>µ = 0
}

and
Λ(x) := {(λ, µ) ∈ Rm × Rp+ | ∇xL(x, λ, µ) = 0, g(x)>µ = 0},

respectively. For any x ∈ Ω, we further need the critical cone

C(x) := {d ∈ Rn | ∇f(x)>d ≤ 0, ∇h(x)>d = 0,∇gj(x)>d ≤ 0 for all j ∈ A(x)}. (2.1)

The next theorem provides a pair of no-gap second-order optimality conditions. It can be derived from [10].

Theorem 2.1. Let x̄ ∈ Ω be given. Then the following assertions are valid:

a) If Λ0(x̄) 6= ∅ and

sup
(r,λ,µ)∈Λ0(x̄)

d>∇2
xxL0(x̄, r, λ, µ)d > 0 for all d ∈ C(x̄) \ {0},

then x̄ is a strict local minimizer of (NLP).

b) If x̄ is a local minimizer of (NLP), then Λ0(x̄) 6= ∅ and

sup
(r,λ,µ)∈Λ0(x̄)

d>∇2
xxL(x̄, r, λ, µ)d ≥ 0 for all d ∈ C(x̄).

Although several research is based on Fritz John multipliers, in this paper we are interested in Lagrange
multipliers. As usual, any (x, λ, µ) is called a Karush-Kuhn-Tucker (KKT) point of (NLP) if x ∈ Ω and
(λ, µ) ∈ Λ(x).

To avoid the distinction between Fritz John and Lagrange multipliers, one may assume the well-known
Mangasarian-Fromovitz constraint qualification (MFCQ), which can be stated at x̄ ∈ Ω as saying that there
is no Fritz John multiplier (r, λ, µ) ∈ Λ0(x̄) with r = 0. Notice also that a Fritz John multiplier (r, λ, µ) with
r 6= 0 provides a Lagrange multiplier (λ/r, µ/r). That is, when r 6= 0, one may without loss of generality
consider r = 1. In this sense, under MFCQ, the notions of Fritz John and Lagrange multipliers coincide and
Theorem 2.1 gives rise to the following standard second-order necessary optimality condition:
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Proposition 2.2. Let x̄ be a local minimizer of (NLP) that satisfies MFCQ. Then Λ(x̄) 6= ∅ and

sup
(λ,µ)∈Λ(x̄)

d>∇2
xxL(x̄, λ, µ)d ≥ 0 for all d ∈ C(x̄). (2.2)

Instead of MFCQ, we may use the constant rank constraint qualification (CRCQ) from [15]. This leads
to the following second-order necessary optimality condition, which is the basis for our main focus in this
paper.

Proposition 2.3 ([2]). Let x̄ be a local minimizer of (NLP) that satisfies CRCQ. Then Λ(x̄) 6= ∅ and, for
any (λ, µ) ∈ Λ(x̄), it holds that

d>∇2
xxL(x̄, λ, µ)d ≥ 0 for all d ∈ C(x̄). (2.3)

Notice that under the stronger assumption that the linear independence constraint qualification (LICQ)
holds at x̄, Proposition 2.3 follows trivially from Proposition 2.2 since LICQ implies MFCQ and that Λ(x̄) is
a singleton. Obviously, condition (2.3) is a stronger necessary optimality condition than (2.2). Under CRCQ,
this stronger condition (2.3) holds basically because CRCQ implies that the value of the second-order form
〈d,∇2

xxL(x̄, λ, µ)d〉 in (2.2) is, for any d ∈ C(x̄), invariant to the choice of (λ, µ) ∈ Λ(x̄), see [11] and the
extended version of [9].

Under CRCQ the necessary optimality condition (2.3) would be rather suitable for the algorithmic
practice than condition (2.2). This means, given an algorithm that generates a primal-dual sequence
{(xk, λk, µk)} ⊂ Rn × Rm × Rp+, one is interested in proving that a limit point (x̄, λ, µ) ∈ Ω× Rm × Rp+ of
this sequence is such that (λ, µ) ∈ Λ(x̄) and the second-order condition (2.3) is satisfied. However, no such
algorithm has yet been presented. Algorithms with convergence to some kind of second-order point usually
find limit points that satisfy a weaker version of (2.3) (see [12] and the references therein), where the critical
cone C(x̄) is replaced by its lineality space

S(x̄) := {d ∈ Rn | ∇f(x̄)>d = 0,∇h(x̄)>d = 0,∇gj(x̄)>d = 0 for all j ∈ A(x̄)}. (2.4)

Clearly, this necessary optimality condition is less interesting than the one presented in Proposition 2.3,
since no associated sufficient optimality condition is known and S(x̄) ⊆ C(x̄). Also, one is essentially not
able to exploit the structure of S(x̄) in order to prove the result of Proposition 2.3 with C(x̄) replaced by
S(x̄) under a condition weaker than CRCQ. An exception (but assuming MFCQ) is the following result. Its
formulation makes use of the matrix M(x) ∈ Rn×(m+|A(x̄)|) with M(x) :=

(
∇h(x),∇gA(x̄)(x)

)
.

Proposition 2.4 ([9, 13, 16]). Let x̄ be a local minimizer of (NLP) which satisfies MFCQ. If

rank(M(x)) ≤ rank(M(x̄)) + 1

for all x sufficiently close to x̄, then there exists (λ, µ) ∈ Λ(x̄) with

d>∇2
xxL(x̄, λ, µ)d ≥ 0 for all d ∈ S(x̄). (2.5)

Of course, the less theoretical value of the second-order condition given by (2.5) is somehow compensated
by its numerical tractability, see the discussion in the extended version of [9]. That is, many practical
algorithms are able to exploit the linear space structure of S(x̄) in order to achieve (2.5) in a reasonable
manner. Our goal in this paper is to develop an algorithm whose limit points guarantee the stronger
second-order necessary optimality condition (2.3).

3 A Strong Sequential Optimality Condition
The study of global convergence of algorithms under weak assumptions can be done with the aid of sequential
optimality conditions [3]. Let us say that one is first able to show that an algorithm generates a sequence
{xk} satisfying some mathematical proposition P({xk}). Typically, this proposition is associated with a
perturbation of a necessary optimality condition. The second step would be to prove that whenever x̄ is a
local minimizer, there exists a sequence {zk} with zk → x̄ so that the proposition P({zk}) is valid. When
defining P(·), of course, one is interested in as strong as possible necessary optimality conditions, however,
one must consider the additional requirement that the mathematical proposition must also be satisfied by the
sequence generated by the algorithm of interest. Both of these steps can usually be done without assuming
that the problem satisfies a constraint qualification and may serve as an adequate enough global convergence
theory. This strategy has been applied in several contexts, in particular when the problem has no clear
standard optimality condition, or when one needs a consistent way of perturbing the standard optimality
conditions, say, in order to conduct a complexity analysis [14, 18]. This avoids constraint qualifications at
all; however, a final step of the analysis may be done using a constraint qualification for measuring the
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strength of the optimality condition: one should prove that when a feasible point x̄ satisfies a constraint
qualification and it can be approximated by some sequence zk → x̄ so that the mathematical proposition
P({zk}) holds, then x̄ satisfies a standard first- or second-order stationarity condition (say, that there exists
some (λ, µ) ∈ Λ(x̄) that satisfies (2.5)).

For instance, when the problem has only equality constraints, an algorithm may generate a sequence
{xk} that satisfies the mathematical proposition

P({xk}) :=

[
h(xk)→ 0 and ∇f(xk) +

m∑

i=1

∇hi(xk)λki → 0 for some sequence {λk} ⊂ Rm
]

and one can prove that a local minimizer x̄ may be approximated by a sequence zk → x̄ of this type, that is,
such that P({zk}) is satisfied. Notice that this necessary optimality condition is strictly stronger than the
usual Fritz John condition, which opens the path to considering constraint qualifications strictly weaker than
LICQ (more generally, without assuming MFCQ, if inequality constraints are considered in this example).

The final step measuring the strength of the sequential optimality condition may consist of proving
that when x̄ satisfies some constraint qualification and there exists at least one sequence zk → x̄ such that
P({zk}) holds, then Λ(x̄) 6= ∅. This shows that any limit point x̄ of the sequence generated by the algorithm,
that satisfies the constraint qualification, is a KKT point. Not all constraint qualifications may be used for
this purpose, but this separated analysis has helped in identifying new weak constraint qualifications suitable
for global convergence analysis. See, for instance, [4, 5, 6]. Also, this greatly simplifies the analysis of an
algorithm, which resorts to proving some property of the sequence it generates, instead of its limit.

In summary the global convergence of an algorithm using a sequential optimality condition may be done
as follows:

a) Characterize the type of sequences {xk} that the algorithm generates with a mathematical proposition
P({xk}).

b) Prove that at a local minimizer x̄ of the problem, there exists a sequence zk → x̄ such that P({zk})
holds.

c) Measure the strength of P(·) by showing that a point x̄, that can be approximated by zk → x̄ such
that P({zk}) holds, has the property that whenever x̄ satisfies some constraint qualification, then a
standard first- or second-order necessary optimality condition is satisfied at x̄.

In the remainder of this section we proceed with item b), while in the next section we continue with
the analysis of items a) and c). This means, we first develop a strong sequential optimality condition and
secondly prove that for a local minimizer x̄ of (NLP) there exists a sequence {zk} converging to x̄ so that
{zk} satisfies this optimality condition. Items a) and c) will be dealt with in Section 4 and are related to
our main goal of building an algorithm whose limit points satisfy a strong second-order necessary optimality
condition, based on the critical cone (2.1), as used in Proposition 2.3, instead of its lineality space (2.4) in
Proposition 2.4.

At this point, we do not assume a constraint qualification to hold with respect to the whole feasible set
Ω. However, the following constant rank condition with respect to the set of inequality constraints will be
used.

Assumption 3.1. It is said that a point x̄ ∈ Rn satisfies this assumption if there is a neighborhood of x̄ so
that, for any subset J ⊆ A(x̄), the rank of the family {∇gj(y)}j∈J is constant for all y in this neighborhood.

Assumption 3.1 can be seen as CRCQ for a feasible point of a constraint set defined by the inequality
constraints of (NLP) only. This is clearly not a constraint qualification for (NLP). Notice that Assumption
3.1 holds trivially if the functions gj are affine. In order to present our definition of a strong second-order
sequential optimality condition for problems such that Assumption 3.1 holds, let us consider the perturbed
critical cones

C1(y, x, µ) :=





∇hi(y)>d = 0 for i = 1, . . . ,m,
d ∈ Rn ∇gj(y)>d ≤ 0 for j ∈ A(x) with µj = 0,

∇gj(y)>d = 0 for j ∈ A(x) with µj > 0.





and

C2(y, x) :=





∇f(y)>d = 0,
d ∈ Rn ∇hi(y)>d = 0 for i = 1, . . . ,m,

∇gj(y)>d ≤ 0 for j ∈ A(x).



 ,

for x, y ∈ Rn and µ ∈ Rp+. Notice that when (x̄, λ, µ) is a KKT point of (NLP), it holds that

C1(x̄, x̄, µ) = C(x̄) = C2(x̄, x̄)

with C(x) defined in (2.1).
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Definition 3.1. (Strong-AKKT2) A point x̄ satisfies the C1-Strong Approximate-KKT2 (C1-SAKKT2)
condition for (NLP) if there exists a sequence (xk, λk, µk, εk) ∈ Rn × Rm × Rp+ × (0,∞) with xk → x̄ and
εk ↘ 0 such that ∥∥∥∥∥∥

∇f(xk) +

m∑

i=1

λki∇hi(xk) +

p∑

j=1

µkj∇gj(xk)

∥∥∥∥∥∥
≤ εk (3.1)

‖h(xk)‖ ≤ εk, ‖max{0, g(xk)}‖ ≤ εk, ‖min{µk,−g(xk)}‖ ≤ εk, (3.2)

and

d>


∇2f(xk) +

m∑

i=1

λki∇2hi(x
k) +

p∑

j=1

µkj∇2gj(x
k)


 d ≥ −εk‖d‖2 for all d ∈ C1(xk, x̄, µk). (3.3)

If one replaces C1(xk, x̄, µk) by C2(xk, x̄) in the previous definition we say that x̄ satisfies the C2-SAKKT2
condition.

We now prove that C1-SAKKT2 is a necessary optimality condition for problems which fulfill Assump-
tion 3.1 while C2-SAKKT2 is a necessary condition for strict optimality under Assumption 3.1.

Theorem 3.2. Let x̄ be a local minimizer of (NLP) and suppose that Assumption 3.1 holds at x̄. Then x̄
satisfies the C1-SAKKT2 condition. If, in addition, x̄ is a strict local minimizer of (NLP), then x̄ satisfies
the C2-SAKKT2 condition.

Proof. Let δ > 0 be chosen such that f(x̄) ≤ f(x) holds for all x ∈ Ω with ‖x − x̄‖ ≤ δ. Given a sequence
{ρk} ⊂ R+ with ρk → +∞, we consider the regularized penalty subproblem, where only the equality
constraints are penalized, that is,

Minimize φk(x) := f(x) +
ρk

2

m∑

i=1

hi(x)2 +
1

4
‖x− x̄‖4,

subject to gj(x) ≤ 0, j = 1, . . . , p,

‖x− x̄‖ ≤ δ.

(3.4)

Let xk be a global solution of the optimization problem (3.4), which exists because its feasible set is non-
empty and compact and the objective function is continuous. Therefore, for any k ∈ N, we have

f(xk) +
1

4
‖xk − x̄‖4 ≤ φk(xk) ≤ φk(x̄) = f(x̄). (3.5)

Moreover, because ‖xk − x̄‖ ≤ δ is valid for all k ∈ N, there is x∗ and an infinite subset K ⊆ N so that
lim
k∈K

xk = x∗. Notice that g(x∗) ≤ 0 and ‖x∗ − x̄‖ ≤ δ. Further, since ρk → +∞ and {φk(xk)}k∈K is

bounded, we have
lim
k∈K

h(xk) = 0 (3.6)

so that h(x∗) = 0 follows. From (3.5) taken for k ∈ K, we also conclude that

f(x∗) +
1

4
‖x∗ − x̄‖4 ≤ f(x̄).

This, g(x∗) ≤ 0, h(x∗) = 0, ‖x∗− x̄‖ ≤ δ, and the definition of δ imply f(x̄) ≤ f(x∗) so that x∗ = x̄ follows.
Then, for k ∈ K large enough, we have that ‖xk − x̄‖ < δ, i.e., the constraint ‖x − x̄‖ ≤ δ in (3.4) is not
active at x = xk for these k ∈ K. Hence, applying Proposition 2.3 (with (NLP) replaced by problem (3.4))
for each of these large enough k ∈ K, it follows by Assumption 3.1 that there exists a Lagrange multiplier
µk ∈ Rp+ such that (xk, µk) is a KKT point of (3.4) that satisfies a strong second-order necessary optimality
condition. More in detail, we have that

g(xk) ≤ 0, µk ≥ 0, g(xk)>µk = 0, (3.7)

∇xL(3.4)(x
k, µk) := ∇φk(xk) +

p∑
j=1

µkj∇gj(xk)

= ∇f(xk) +
m∑
i=1

ρkhi(x
k)∇hi(xk) + ‖xk − x̄‖2(xk − x̄)

+
p∑
j=1

µkj∇gj(xk)

= 0,

(3.8)
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and, because of

∇2
xxL(3.4)(x

k, µk) = ∇2f(xk) + ρk
m∑
i=1

hi(x
k)∇2hi(x

k) +∇hi(xk)∇hi(xk)>

+
p∑
j=1

µkj∇2gj(x
k) + 2(xk − x̄)(xk − x̄)> + ‖xk − x̄‖2I,

we further have that
d>∇2

xxL(3.4)(x
k, µk)d ≥ 0 for all d ∈ C(3.4)(x

k) (3.9)

with
C(3.4)(x

k) :=
{
d ∈ Rn | ∇φk(xk)>d ≤ 0,∇gj(xk)>d ≤ 0 for all j ∈ A(xk)

}
.

Since (xk, µk) satisfies (3.7) and (3.8), this yields

C(3.4)(x
k) =



d ∈ R

n

∣∣∣∣∣∣

p∑

j=1

µkj∇gj(xk)>d = 0,∇gj(xk)>d ≤ 0 for j ∈ A(xk)





=

{
d ∈ Rn

∣∣∣∣∣
∇gj(xk)>d ≤ 0 for j ∈ A(xk) with µkj = 0,

∇gj(xk)>d = 0 for j ∈ A(xk) with µkj > 0

}
.

Defining
λk := ρkh(xk), εk := max{‖xk − x̄‖, ‖h(xk)‖} for k ∈ K,

we first obtain that εk ↘ 0 for k ∈ K. Without loss of generality, we assume that k ∈ K is large enough
so that, due to (3.7), µkj = 0 for j /∈ A(x̄). Thus, it follows from (3.8) and (3.7) that, for k ∈ K sufficiently
large, ∥∥∥∥∥∥

∇f(xk) +

m∑

i=1

λki∇hi(xk) +

p∑

j=1

µkj∇gj(xk)

∥∥∥∥∥∥
≤ ‖xk − x̄‖3 ≤ εk,

‖h(xk)‖ ≤ εk, ‖max{0, g(xk)}‖ = 0

by gj(x
k) ≤ 0 according to (3.4), and

min{µk,−g(xk)} = 0.

Therefore, the requirements (3.1) and (3.2) in Definition 3.1 are satisfied. Furthermore, since A(xk) ⊆ A(x̄)
for k ∈ K sufficiently large, we have

C1(xk, x̄, µk) ⊆ C(3.4)(x
k) ∩ {d ∈ Rn | ∇h(xk)>d = 0}.

Taking any d ∈ C1(xk, x̄, µk), we further get from (3.9) with the definitions of λk and εk that, for k ∈ K
sufficiently large,

d>∇2
xxL(xk, λk, µk)d = d>

(
∇2f(xk) +

m∑
i=1

λki∇2hi(x
k) +

∑
i∈A(x̄)

µki∇2gi(x
k)

)
d

≥ −d>
(
2(xk − x̄)(xk − x̄)> − ‖xk − x̄‖2I

)
d

≥ −εk‖d‖2.

Hence, also (3.3) in Definition 3.1 holds and, altogether, x̄ satisfies the C1-SAKKT2 condition.
Assume now that x̄ is a strict local minimizer of (NLP). Thus, we can follow exactly the same proof

with φk(x) replaced by φ̃k(x) := f(x) +
ρk

2

m∑

i=1

hi(x)2. Note that the expression for C(3.4)(x
k) ∩ {d ∈ Rn |

∇h(xk)>d = 0}, again with φk replaced by φ̃k, contains C2(xk, x̄), which concludes the proof.

4 Generating KKT Points with Strong Second-Order
Conditions

Typically, second-order algorithms are only shown to generate a sequence that converges to a point that
satisfies the weak second-order necessary optimality condition from Proposition 2.4. In [12], it is shown that
limit points of a standard barrier method need not satisfy the stronger second-order necessary optimality
condition from Proposition 2.3, even if strict local minimizers for the subproblems are found at each iteration.
In detail, the authors from [12] considered the counterexample
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Minimize 1
2
x>Hx,

subject to x ≥ 0,

where x ∈ Rn with n ≥ 4 and H = I − 3
2n(n−1)

zz> with z = e− ne1, where e1 is the first canonical vector

and e is the vector with 1 in all entries. For any sequence rk ↘ 0, let xk =
√
rke→ x̄ = 0 be defined. Notice

that µ = 0 is the unique Lagrange multiplier associated with x̄, that is, ∇xL(x̄, µ) = 0. However, one has

e>1 ∇2
xxL(x̄, µ)e1 = e>1 He1 = 1− 3(n− 1)

2n
< 0 with e1 ∈ C(x̄) = Rn+.

Thus, the sequence {xk} converges to a point that fails to satisfy the strong second-order necessary optimality
condition. Note however that xk is a strict local minimizer of the barrier function subproblem

Minimize b(x, rk) := 1
2
x>Hx− rk

n∑
i=1

log(xi)

subject to x > 0.

Indeed, one has

∇xb(xk, rk) = Hxk − rk(xk)−1 = 0 and ∇2
xxb(x

k, rk) = H + rk(xk)−2 =
1

2
I +

3

2

(
I − zz>

z>z

)
,

where the latter is clearly positive definite. Here, (xk)−1 and (xk)−2 were used to denote, respectively, the
componentwise inverse vector and the diagonal matrix with inverse-squared diagonal entries of xk as defined
above. The same example from [12] was analyzed in [7]. There, it was shown that a second-order augmented
Lagrangian method may also generate the same sequence xk as above in such a way that xk is a strict local
minimizer of the corresponding augmented Lagrangian subproblems

Minimize
1

2
x>Hx+ ρk

n∑

i=1

max

{
0,−xi +

µki
ρk

}2

for standard approximate Lagrange multipliers µk and penalty parameters ρk.
These results suggest that in order to generate points satisfying a stronger second-order necessary con-

dition for (NLP), one should not penalize inequality constraints. Therefore, we consider the simple penalty
algorithm below whose subproblems penalize only equality constraints, while the inequality constraints are
kept within the subproblems.

To define the subproblems later on, let ρ > 0 be given and consider the problem

Minimize Fρ(x) := f(x) + 1
2
ρ‖h(x)‖2,

subject to g(x) ≤ 0.
(4.1)

Proposition 4.1. Suppose that a local minimizer xρ of (4.1) is strict and satisfies Assumption 3.1. Then,
for any ε > 0, there exist x = x(ρ, ε) ∈ Rn and µ = µ(ρ, ε) ∈ Rp+ which solve the KKT (ρ, ε) system given
by ∥∥∥∥∥∥

∇Fρ(x) +

p∑

j=1

µj∇gj(x)

∥∥∥∥∥∥
≤ ε, (4.2)

‖max{0, g(x)}‖ ≤ ε, ‖min{µ,−g(x)}‖ ≤ ε,

d>
(
∇2Fρ(x) +

p∑
j=1

µj∇2gj(x)

)
d ≥ −ε‖d‖2 for all d ∈ Cρ(x),

where
Cρ(x) :=

{
d ∈ Rn | ∇Fρ(x)>d = 0, ∇gj(x)>d ≤ 0 for all j ∈ A(x)

}
.

Proof. The proposition follows immediately by applying Theorem 3.2 to problem (4.1) because Assumption
3.1 is requested to hold at the strict local minimizer xρ of problem (4.1).

Based on the KKT(ρ, ε) system above, we consider the following simple algorithm.

Algorithm 1
Let sequences {εk}, {ρk} ⊂ (0,∞) with εk ↘ 0 and ρk →∞ be given. Set k := 0.

Step 1: Compute (xk, µk) ∈ Rn × Rp+ as a solution of KKT (ρk, εk).

Step 2: Set k := k + 1 and go back to Step 1.
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Our global convergence result will partly rely on the following assumption, which is related to Assumption 3.1.

Assumption 4.1. It is said that a point x̄ ∈ Rn satisfies this assumption if there is a neighborhood of x̄
so that, for any subset J ⊆ A(x̄), the rank of the family {∇f(y)} ∪ {∇hi(y)}mi=1 ∪ {∇gj(y)}j∈J is constant
for all y in this neighborhood.

Moreover, in part b) of Theorem (4.2), we will employ the extended MFCQ, which is satisfied at a point
x̄ ∈ Rn, if

– the column rank of ∇h(x̄) ∈ Rn×m is equal to m and

– there is d ∈ Rn such that ∇h(x̄)>d = 0 and ∇gj(x̄)>d < 0 for all j ∈ A(x̄).

Note that the extended MFCQ does not require that x̄ belongs to the feasible set Ω. However, in the theorem
below, g(x̄) ≤ 0 holds by construction.

Theorem 4.2. Let {(xk, µk)} be an infinite sequence generated by Algorithm 1. Further assume that the
sequence {xk} has an accumulation point x̄. Then, the following assertions hold:

a) If h(x̄) = 0, then x̄ satisfies the C2-SAKKT2 condition.

b) If the extended MFCQ and Assumption 4.1 are satisfied at x̄, then there are λ ∈ Rm and µ ∈ Rp+ so

that (x̄, λ, µ) fulfills the KKT conditions of (NLP) and the second-order condition 〈d,∇2
xxL(x̄, λ, µ)d〉 ≥

0 for all d ∈ C(x̄).

Proof. a) Let us assume without loss of generality that xk → x̄. Note that

∇Fρk (xk) = ∇f(xk) +
m∑
i=1

λki∇hi(xk),

∇2Fρk (xk) = ∇2f(xk) +
m∑
i=1

λki∇2hi(x
k) + ρk

m∑
i=1
∇hi(xk)∇hi(xk)>

(4.3)

with λki := ρkhi(x
k) for i = 1, . . . ,m. Thus, by Step 1 in Algorithm 1, it follows that

∥∥∥∥∥∇Fρk (xk) +

p∑

i=1

µkj∇gj(xk)

∥∥∥∥∥ =

∥∥∥∥∥∇f(xk) +

m∑

i=1

λki∇hi(xk) +

p∑

i=1

µkj∇gj(xk)

∥∥∥∥∥ ≤ εk, (4.4)

‖max{0, g(xk)}‖ ≤ εk, ‖min{µk,−g(xk)}‖ ≤ εk, (4.5)

and, having (4.3) in mind,

d>


∇2f(xk) +

m∑

i=1

λki∇2hi(x
k) +

p∑

j=1

µkj∇2gj(x
k)


 d ≥ −εk‖d‖2 − ρkd>

m∑

i=1

∇hi(xk)∇hi(xk)>d, (4.6)

for all d ∈ Cρk (xk). Since h(x̄) = 0 is assumed in assertion a), we have

lim
k→∞

‖h(xk)‖ = 0. (4.7)

To complete the proof that x̄ satisfies the C2-SAKKT2 condition, we observe that A(xk) ⊆ A(x̄) for k
sufficiently large and, as a consequence,

C2(xk, x̄) =
{
d ∈ Rn | ∇f(xk)>d = 0,∇hi(xk)>d = 0 for i = 1, . . . ,m,∇gj(xk)>d ≤ 0 for j ∈ A(x̄)

}

⊆
{
d ∈ Rn | ∇f(xk)>d+

m∑
i=1

λki∇hi(xk)>d = 0,∇gj(xk)>d ≤ 0 for j ∈ A(xk)

}

= Cρk (xk)

is valid for k sufficiently large. According to this and (4.3), (4.6) yields

d>


∇2f(xk) +

m∑

i=1

λkj∇2hi(x
k) +

p∑

j=1

µkj∇2gj(x
k)


 d ≥ −εk‖d‖2 for all d ∈ C2(xk, x̄)

for all sufficiently large k. This, (4.4), (4.5), and (4.7) show that x̄ satisfies the C2-SAKKT2 condition.
b) Since the extended MFCQ is assumed to hold at x̄, it is well known that {(λk, µk)} is bounded.

Indeed, if this would be not the case, we can divide formula (4.4) by ‖(λk, µk)‖. Then an infinite index set
K ⊆ N exists with

lim
k∈K

(λk, µk)

‖(λk, µk)‖ = (α, β) 6= 0 and β ≥ 0.
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Taking the limit in (4.4) and (4.5), we obtain

m∑

i=1

αi∇hi(x̄) +

p∑

j=1

βj∇gj(x̄) = 0, g(x̄) ≤ 0, and min{β,−g(x̄)} = 0, (4.8)

which leads to (α, β) = 0 due to the extended MFCQ. This contradicts ‖(α, β)‖ = 1. Hence, for an infinite
index set K1 ⊆ K, we have that

lim
k∈K1

(λk, µk) = (λ, µ) ∈ Λ(x̄).

Therefore, λki = ρkhi(x
k) for i = 1, . . . ,m and ρk →∞ imply

lim
k∈K1

‖h(xk)‖ = 0,

i.e., by the continuity of h, it follows that h(x̄) = 0. Moreover, according to (4.8), we also have g(x̄) ≤ 0.
Thus, x̄ ∈ Ω so that (x̄, λ, µ) is a KKT point of (NLP).

To complete the proof of part b), take any

d ∈ C(x̄) = {d ∈ Rn | ∇f(x̄)>d ≤ 0, ∇h(x̄)>d = 0,∇gj(x̄)>d ≤ 0 for all j ∈ A(x̄)}
with C(x) defined in (2.1). Since (x̄, λ, µ) is a KKT point, we easily see that ∇f(x̄)>d = 0. Now, let
J ⊆ A(x̄) denote the set of all indexes such that ∇gj(x̄)>d = 0. By Assumption 4.1 and using the proof
technique in [1, Lemma 3.1], we get that there exists a sequence dk → d such that

∇f(xk)>dk = 0, ∇hi(xk)>dk = 0 for i = 1, . . . ,m, and ∇gj(xk)>dk = 0 for j ∈ J.
Since ∇gj(x̄)>d < 0 for j 6∈ J , we have for k large enough that dk ∈ C2(xk, x̄). Using direction dk in (3.3)
with C1(xk, x̄, µk) replaced by C2(xk, x̄), we may take the limit for k →∞ and get 〈d,∇2

xxL(x̄, λ, µ)d〉 ≥ 0.
As this can be done for all d ∈ C(x̄), the proof is complete.

We end by noting that Assumption 4.1 cannot be removed in the previous result. Indeed, let us consider
a modification of the example given by Baccari in [8] and let us apply Algorithm 1.

Example 4.3. For the problem

Minimize x3,

subject to x3 ≥ 2
√

3x1x2,
x3 ≥ x2

2 − 3x2
1,

x3 ≥ −2
√

3x1x2 − 2x2
2,

x3 = 0,

the point x̄ = (0, 0, 0) is a global minimizer that satisfies MFCQ. Take a sequence ρk → ∞ and consider
the sequence of subproblems as associated to {ρk} by Algorithm 1, i.e., just the equality constraint x3 = 0
is penalized and the inequality constraints are kept within the subproblems.Thus, the subproblems read as
follows:

Minimize x3 + ρk
2
x2

3,

subject to x3 ≥ 2
√

3x1x2,
x3 ≥ x2

2 − 3x2
1,

x3 ≥ −2
√

3x1x2 − 2x2
2.

(4.9)

We take the constant sequence xk = x̄ for all k, since x̄ is the global solution for every k. However, it
can easily be calculated that the point x̄ does not satisfy the strong second-order necessary optimality
condition (2.3).
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