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Resumo

No presente trabalho, dois principais aspectos de sistemas de spin em baixa temper-
atura sao considerados — a expansao em polimeros para modelos tipo Ising longo-alcance
e a construgdo do diagrama de fase quando perturbagdes quanticas estao presentes. Com
respeito ao primeiro assunto, nés apresentamos um resultado novo afirmando que a expan-
sao em polimeros converge para interagoes com decaimento polinomial «, para qualquer
a > d > 2, contanto que os contornos sejam definidos de maneira adequada, como em
[ABEH21| e [ABM23b], inspirados em [FS82]. Quanto ao segundo assunto, nés revisamos
o artigo [BKU96] de Borgs, Kotecky and Ueltschi, que estende a teoria de Pirogov-Sinai
e cujo principal resultado é que, mesmo com perturbagoes quénticas, o diagrama de fase

em baixas temperaturas ¢ homeomorfo aquele em temperatura zero.

Palavras-chave: Expansao em polimeros, Pirogov-Sinai, longo-alcance, Hubbard, mecanica

estatistica quantica .






Abstract

In this work, two main aspects of low-temperature spin systems are considered —
the cluster expansion for long-range Ising-type models and the construction of the phase
diagram when quantum perturbations are present. With respect to the first subject, we
present a new result stating that the cluster expansion does converge for interactions
with polynomial decay «, for any o > d > 2, provided that the contours are defined in a
suitable manner, as in [ABEH21] and [ABM23b], inspired by [F'S82]. As for the second
subject, we review the paper [BKU96] due to Borgs, Kotecky and Ueltschi, which extends
Pirogov-Sinai theory and whose main result is that, even with quantum perturbations,

the low-temperature phase diagram is homeomorphic to the zero-temperature one.

Keywords: Cluster expansion, Pirogov-Sinai, long-range, Hubbard, quantum statistical

mechanics.
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Introduction

Roughly speaking, the ground states of a model are the states which minimizes the
total energy, and usually they are fairly simple to be analytically found. When the temper-
ature is zero, those are the equilibrium states, so it’s not difficult to deduce the behavior
of the system in this case. What happens when we turn on the temperature? Does the
knowledge of the phase diagram in zero temperature help us to tell something about it
in positive temperature? This question was firstly answered for the classical setting by
Sergey Pirogov and Yakov Sinai in a pair of papers in the 70s [PS75], [PS76], culminating
in a theorem which states that the phase portrait for low enough temperature is just a
small perturbation (a homeomorphism) of the zero temperature one. This kind of result,
known as Pirogov-Sinai theory was readily improved — the most proeminent rereading
was given by [Zah84], being widely accepted by the community — and generalized for a

plenty of other scenarios.

The development of the Pirogov-Sinai theory as well as the proof of its main results
is heavily backed by the technology of the cluster expansion. The cluster expansion
is, without doubts, one of the oldest and most powerful tools in statistical mechanics,
providing valuable information about the models in which it is applicable — that is,
when the expansion converges. One of the possible generalizations of Pirogov-Sinai is to
deal with long-range systems, and such an attempt was put forward by Park [Par88b],
[Par88al]. Unfortunately, his results are only applicable when the interactions decay too
fast, and much of those restrictions are due to difficulties in the convergence of the cluster
expansion. In this work we prove, as a new result, the convergence of the cluster expansion
for the Ising model with polynomial decay whenever the interaction is regular, that is, for
any « > d. This is accomplished by a re-definition of the contours, more suitable for our
purposes.

Furthermore, we discuss in this work the application of the Pirogov-Sinai theory for
quantum systems, spin and fermionic ones. There are two known ways to do this. The
first way is due to Christian Borgs, Roman Kotecky and Daniel Ueltschi [BKU96] for the

spin case and Borgs and Kotecky [BKO00] for the fermionic one. The second way is due
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to Nilanjana Datta, Roberto Fernandez and Jirg Frohlich [DFF96]. In both ways, a d-
dimensional quantum system is mapped into a d41-dimensional classical one, in which the
usual Pirogov-Sinai theory is applied. The main difference between the two approaches
is that in the latter, the classical system has one coorditinate being continuous, while in
the former the classical system is in a real lattice of dimension d + 1.

Having those things in mind, we chose to divide the work in two parts — a classical
one and a quantum one. The first chapter is devoted to the exposition of the classical
Pirogov-Sinay theory. For such, we assume that the reader has a solid background in
the modern mathematical formalism of classical statistical mechanics in the lattice (a
good understanding of [FV17] is more than enough). The second chapter contains the
mentioned results about the cluster expansion for the long range model. For the second
part, it is desirable to have familiarity with the principles of quantum mechanics and
the basics of finite dimension Hilbert spaces, although we briefly recall everything needed
from these subjects in the third chapter. The two-volumes [BR87] and [BR81| are the
indisputable textbook par excellence, both for C*-algebras in general as well as their
applications to quantum statistical mechanics. Another reference, more modern and
concise is [Naal7]. Finally, the fourth chapter contains the development of the main

results of the Pirogov-Sinai for spin systems.
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Part 1

Classical Statistical Mechanics






17

CHAPTER

Pirogov-Sinai Theory

In statistical mechanics, we are often interested in the properties of Gz(H), the set of
DLR measures for the Hamiltonian H at inverse temperature 5. It is well known (see
[RAS15] or [FV17], section 6.8) that this set is always a weakly compact, convex set of
probability measures, given some mild hypothesis!, so it is meaningful to talk about its

extremal points — which, in turn, determines the whole set.

By a classical result due to Dobrushin ([FV17], section 6.5 or the original [Dob70]), we
know that #Gz(H,) = 1 if § is sufficiently small. It is also clear that, exactly at 8 = 0,
the DLR measure is nothing more than the product of the a priori measure. At the other
end, we can ask ourselves what happens for § large enough (5 — oc), which is the main

theme of the present work.

The most powerful tool to deal with this problem is the Pirogov-Sinai theory, which
will be presented in this chapter. In order to apply it, we are going to restrict ourselves,
between the extremal measures, to those that are periodic, which will be, henceforth,
called the phases® of the model. It is important to remark that all the results that will

be presented in the whole work are concerned with such measures.

In the first three sections of this chapter, we will present the notions that are essential
when dealing with systems in low-temperature, namely: ground states, contours and
cluster expansion, laying the groundwork for the Pirogov-Sinai theory itself. Among
other things, we try to acquaint the reader with phase diagrams provoding some concrete
examples. I emphasize that some themes treated here, as ground states, are very rich and
could be the subject of a whole thesis. Instead of providing a complete exposition, we will
restrict our focus to the necessary. Also, the proofs may be skipped in a first reading and
those first sections may be used by the readers already introduced to the subject only as

a reference, when needed.

This is true whenever the state space is compact and the a priori measure is a probability one, for
example.

It is common in the literature outside Pirogov-Sinai theory to call any extremal measure as a phase,
so caution must be taken to avoid confusion.
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1.1 Ground States

Ground-state configurations are configurations that, in some sense, minimize the en-
ergy and they naturally appear in the study of large 5 (low-temperature). To see that,
let’s briefly consider what happens in the limit § — oo within the formalism of DLR
measures and specifications. Denoting by N?\,ﬂ the finite-volume Gibbs measure and by
e"(A) = e the minimum energy e" := min{H} (wy), wa € 2}, we have, dividing and

multiplying by e %¢",

o~ BH (o))

n —
His(on) = S, € AT

Now, when 3 — oo, the terms such that H"(wy) —e" = 0 will remain equal to 1, while

the others will go to 0:

1 i n — on
lim ] y(on) = | Fonemmay=ey 1T H o) =
oo 0 otherwise.

This phenomenon leads us to the following

Definition 1.1 (Ground States). Let n € Q be a configuration and A C Z? finite. A

configuration o, € €1, is called a A-ground state for 7 if:

H{(oa) = min Hj(ws)

The set of A-ground states for n will be denoted by G'{. The configuration 7 is said
to be a ground state if n € G} for every finite subset A. Moreover, if each G} is unitary,

that is, G} = {na} for every A, then 7 is called a rigid ground state.

With this language, we conclude that p} 4(oa) tends to the uniform measure® on G7,
when § — oco. We can then define, for each finite A, the finite-volume Gibbs measures
for 5 = oo as such uniform measure, yielding a (non-gibbsian) specification. A deeper
analysis of such specifications is presented in Appendix B of [EFS91]. In particular, such
analysis tells us that the DLR measures compatible with it always give total weight to
the set of ground states.

It is important to point out that ground states can be very non-intuitive, even in

simpler cases. Let’s look at an example.

Example 1.1. (Ising Model) As usual, the Ising model is defined by the single spin
space Qg = {—1,1} and the neareast-neighbors interactions: ®g(0) = —ho, if B = {x};
Op(0) = —Jo,o, if B ={z,y} with d(z,y) =1 and ®p(0) = 0 otherwise, where J > 0

(ferromagnetic case).

3 Clearly, we are implicitly assuming that the a priori measure in the state space is uniform, an as-

sumption that will always be made.
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Let’s consider the case h = 0. The first guess is that the constant configurations
ot = +1 and 0~ = —1 are rigid ground states, which is true. However, those are not the
unique ground states! Notice that the Dobrushin state, defined by o, = +1 if 1 > 0 and
—1if z; < 0 is not only a ground state, but also a rigid one. Thanks to variations of this
configuration, we conclude that the set of ground states is infinite.

The restriction to periodic (see below) ground states makes life much easier. In the case
of the Ising model, this restriction shrinks the set of ground states to GP* = {o*, 0~ }. We
can also ask ourselves what happens when h # 0 and the result can be put schematically

in the figure 1, known as a “phase diagram”. &

Coexistence of Phases
|\ J

-\
o ‘ o
@

0

h <0

< >

h >0

Figure 1 — Zero-temperature phase diagram of the Ising Model

More rigorously, the phases are actually infinite volume measures that are deltas sup-
ported on the respective configurations and by a phase diagram, we mean (a graphical
representation of) the correspondence between the value of parameters u = (p, ..., i) o0
which our hamiltonian depends and the respective pure phases of Gg(H,,) for some fixed
B.

As we saw, periodic configurations are important and easier to handle, so let’s define
them precisely. First off, notice that each subgroup S of Z¢, acts on the space of configura-
tions € in the obvious way: (gw); = (w);—,. Formally, a configuration w is periodic if there
exists a subgroup S of finite index such that gw = w for every g € S. The next proposition
clarifies that this abstract definition simply means that periodic configurations are those

that are periodic in each direction.

Proposition 1.1. A configuration w is periodic if, and only if, there are d positive num-

bers r1,...,rq such that w;y, e, = w; for everyi and 1 < j < d.

Proof. 1f the configuration satisfies the property stated, then it is invariant under the
group generated S by {riei,...,rqeq}, that is, by G = {(c1rey, ..., cqarqeq); (c1, ..., cq) €
Z4}. Tt is easy to see that, for every o € Z%, there exists an element y of {0,1,2...,r1} X
. x{0,...,7q} such that x —y € S (it can be done by the division algorithm in each
dimension, for example), so S has, in fact, finite index. Moreover, it is also easy to show
that the configuration is invariant under the action of S.

Reciprocally, suppose that the configuration is periodic and let S; be the set of positive

integers k£ such that ke; € s. By the hypothesis that S has finite index, we will be able
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to show that each S; is non-empty. Then, we will define r; by min S; and check that it
works. Indeed, let m be the index of S. By the pigeonhole principle, there must be two
distinct elements of {e;,2e;, ..., (m + 1)e;} that are in the same coset. This means that
the subtraction between the two is in .S, but it clearly is also of the form ze;, and z # 0
because the two elements are distinct. Once we know that each \S; is non-empty, we can
define the periods r; in the way already mentioned. Now, since rje; € S for every j by
construction, we have: (rje;)w = w, that is: ((rje;)w); := wi_r,e; = w; for every i € Z%,

which is the same as w;y,,e; = w; for every i € Z% and j € {1,...,d}. O

For periodic configurations, there is another way to characterize the ground states, by

means of the quantity defined by the following limit.

Proposition 1.2. Denoting by A,, the cube centered in O and size 2n + 1, the limit

e(w) = lim |A1 (). (1.1)

is well-defined for every periodic configuration w and every translation-invariant in-

teraction .

Proof. In first place, notice that

:ZCI)B ZZ|7B ZZ|B| Z Z |B|

BCA z€EA B3z z€EA B3z zeA B>z
BCA BNA#£D
BNAS#£(D

We will start showing that

22 g

n €A, B>z
BNA, 7&@
BNAL#0

Since the interaction has short-range, only = with d(z,A,) < R contributes to this

sum. Let’s call this set dgA,,. Using again that interaction has short-range together with

the fact that it is translation-invariant and the configuration is periodic, the set

{> Pweez]

B>z

has a maximum and a minimum. Call them respectively by M and m. Then,

1
LY omsly v S
’ n|I68RA n r€A, B>z ’ ‘ ’ n TEIR AR
BNA,#D
BNAS#£0

Each side is bounded by a constant times |0grA,|, which is bounded by |0A,| and
|Br(0)|||OA,|. The claim follows by noticing that lim, |0A,|/|A,|= 0
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Now, let p = (p1, ..., pa) € Z¢ be the period of w and F = {z € Z%;0 < x; < p;}. For
each n, define ¢;(n) and 7;(n) by the Euclid’s algorithm such that n = ¢;(n)p; + 7;(n).
Then

5

0<k<q(n) ze(k-p)+F B>z xEAn\{m 0<z<(q-p)} B>z

where we denote by a < b when a; < b; for every i € {1,...,d} and (a-b) € Z¢ the
vector such that (a-b); = a;b;. Denote by p* := maxj<;<qp;. Using in the second term of
the sum above a similar argument as before by noticing that |A,\{z;0 <z < (q-p)}H<
O\, we have that this term clearly goes to zero when divided by |A,| (a consequence
of the fact that all remainders are bounded). As for the first term, using the periodicity

of the configuration, we have

1 o Qd

‘A"’ 0<k<q(n) ze(k-p)+F B>z z€F B3z
The fraction clearly goes to 1/|F|, since |Ay|= q1 ... qa|F|+|A\{7;0 <z < (q - p)}|
The product ¢ ... qq is the number of periods and goes to infinity, while the second term

is bounded, as we saw. O

The quantity e(w) is called the specific energy of w. A periodic configuration n will be a
ground state if, and only if e(n) = inf{e(w); w is a periodic configuration} (see lemma 7.4
of [FV17] and [GT14] for an ergodic interpretation of ground states). A standard way to
find the periodic ground states of a Hamiltonian is using the concept of m-potential, first
introduced in [HS78]. Informally, an interaction is a m-potential is when all interactions
can be simultaneously minimized. Below we present the precise definition and a result

that will be very useful for us.

Definition 1.2. (m-potential) An interaction ® is called a m-potential if the set G,,(P) =
{0 € Q;®p(0) = min, Pp(w),VB € Z%} is not empty. We also let GP(®) be the subset

of G, (P) consisting of periodic configurations.
Proposition 1.3. If GE(®) # 0, then G2 (D) = GP*"(P).

Proof. See, for example, lemma 7.13 of [FV17]. The concept of specific energy is used in
the proof. O

With this result, the proof that the phase diagram of the Ising model is the one
presented in figure 1 is trivial. More than that, it makes the task of constructing the
phase diagrams of the following examples less laborious. The last example, a kind of

antiferromagnetic Ising model with spin-1, will be particularly important for us when we
study the Hubbard model.
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ho

Figure 2 — Zero-temperature phase diagram for the 3-Potts model

Example 1.2. (Anisotropic 3-Potts model) The next simplest example, however not so
trivial, is the anisotropic Potts model with three spins, 2y = {1,2,3}. We will restrict

ourselves to the nearest-neighbour case. The interactions can, then, be written as:

(I){:r,y} (U) = Jaz,aya

where (J,.,7)r1=123 are constants. We will focus on the ferromagnetic case, that is,
close sites will tend to have equal spins, and it will be done by assigning a lower energy
for those configurations. Since an overall constant does not change the physics, we choose
to assign zero energy for the interaction of equal spins: J,., = 0 and J,,» > 0 in general.
It is clear that GP(®) = {c' 0% 06%}. Now, we can add some perturbation to the

Hamiltonian depending on parameters ho, hs:

(I)z(O') = —h2(50172 - h3501’3-

Notice that hy > 0 favors spins 2, he < 0 disfavors them and a similar thing occurs
for hy and spin 3. Joining these observations with proposition 1.3, it is not hard to see
that the zero-temperature phase diagram will be qualitatively like figure 2. Notice there
is coexistence of two phases in the red dashed lines and coexistence of the three phases
at the origin.

We can recover the Blume-Capel model, for instance, by choosing J; 2 = J1 3 = 1 and
Joz = 4. %

Remark. An interesting feature of the diagrams of the examples so far is that, if n is
the total number of ground states, then the regions associated with only one of them
are (n — 1)-dimensional, the regions associated with the coexistence of two are (n — 2)-

dimensional and so on. Phase diagrams that possess this feature are called regular phase
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diagrams. This can always be accomplished by adding external fields (see exercise 7.9 of

[FV17] or section B.3.2 of [EFS91]). In a regular phase diagram, there is one point where

all the r phases w',...,w" coexist and (Tik) submanifolds of dimension k& where r — k
phases coexist. For this to happen, the hamiltonian must have at least r — 1 parameters
M1, - - ir—1. In this case, a sufficient condition is the matrix of derivatives
0
(5 telem) = ete)
Opi 1<m,i<r—1

to be invertible [BI89].

Indeed, consider the function E(u) = (e (w') — e (w"), ..., e (w™1) — ey (w”)). The
hypothesis tells us that this function is a local diffeomorphism. If iy # r, it’s easy to see
that the set of 1 such that the minimum eg(yu) is attained by e;,, . .. e;, is the preimage by
E of the submanifold {(x1,...,z1); x;y = ... =z, <0; z;, < xj,j ¢ {i1,...,5}} C
R, Otherwise, it is the preimage of the submanifold {(xy,..., 2, 1); x; = ... =
T, , =0; 0<uwxz;,7¢ {ir,...,ir}} C R The conclusion follows by the fact that the
preimage of a local diffeomorphism is a submanifold. We could also have more than r — 1
parameters, in which case we should ask the rank of the matrix to be r — 1, so £ would

be a submersion and the conclusion the same.

Once we have an idea of how are the phase diagrams for 7' = 0, we may wonder
how much they change for small positive temperatures. The Pirogov-Sinai theory was
developed precisely to answer this question, and it is: for sufficiently small temperatures,
the phase diagram is a little perturbation of the phase diagram in zero temperature and,
more than that, each phase is a little perturbation of the corresponding phases in zero
temperature. This will be made more precise later.

Informally speaking, the idea behind this theory (which is an extension of the Peierls
argument) is that a nonzero temperature adds disorder to the system, so there may be
small regions in the configuration that deviate from the ground state. Although the
existence of such regions costs energy, there is a big number of possibilities for them to
exist, so the probability of seeing such a region is determined by a conflict between these
two opposite “forces”. As in Peierls argument, this deviations from the ground states are
represented by means of geometrical objects called contours, that are the building blocks

of the Pirogov-Sinai theory.

1.2 Contours

In this section we are going to present the concept of a contour. This concept is,
perhaps, the most important of the entire field of statistical mechanics and was first
introduced by the seminal paper of Peierls, [Pei36]. Indeed, the idea of defining suitable

contours for model in order to show their phase transitions has been proven to be one
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of the most fruitful in mathematical physics. On this master’s thesis we revisit this
construction using the point of view of the Pirogov-Sinai theory [PS75, PS76, Zah84],
and the subsequent papers after the breakthrough by J. Frohlich and T. Spencer [FS81,
FS82|, which introduced new ideas to deal with models with long-range interactions.
Many progresses were done using their ideas, such as in [CFMP05, CMPR14, Par88b,
Par88a] and, more recently, our group at USP introduced a proposal which covers all
regular interactions for long-range Ising models [ABEH21, ABM23b, ABM*23a]. These
last definitions, introduced in two PhD thesis at USP [Aff23, Mai24| are called Multi-Scale
Contours and is presented in subsection 1.2.1. One of the main contributions of this thesis
is to prove the convergence of the cluster expansion for ferromagnetic Ising systems with
long-range regular interactions, see chapter 2. In chapter 4 we present some results in
quantum statistical mechanics using Pirogov-Sinai theory and contours.

As indicated, contours may be seen as objects representing the regions such that the
configuration deviates from the ground states. To put this idea in precise terms, we fix
some set of reference configurations (usually a subset of the set of periodic ground states)

and a sufficiently large R > 0.

Notation. We denote by S & () the set of reference configurations mentioned above.

To fix ideas, one may think that it coincides with the set of ground states.

Definition 1.3. Given a configuration w we say that a point x € Z% is g—correct for w if
WBR(z) = w%R(x), where w? € S and Bg(z) is the closed ball in the supremum norm with
radius R. A point is called incorrect if it is not g—correct for any w? € S. The set of

incorrect points of w is called the boundary of the configuration and denoted by Ow.

Intuitively, a point is incorrect if the configurations near this point deviates from
every ground state. Clearly, the boundary of some configuration can be infinite, but we
will restrict ourselves to the case where it is not (which is equivalent of saying that the
configuration must be equal to some w? € S, with exception of finitely many points).

The set of contours of some configuration is always defined as a partition of dw.
The usual way to do that (and the simpler) is presented in the next definition, using
connected components. For that, we recall that the relation x ~ y if there is a path
(x = x1,...,2, = y) with d(z;, x;11) = 1 is an equivalence relation and the equivalence
classes are the connected components of the subset in question. A subset is said to be
connected if there is only one connected component. It is said to be simply connected
if its complement is connected. This definition of contour is suitable for short-range
interactions, but we have to abandon the connectedness for long-range interactions, as we

will see in the next subsection.

Definition 1.4. Given a configuration w, a pair v = (7, ws) is called a contour of w if 7 is

some connected component of dw. A pair v = (7, ws) is simply called a countour if it is a
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contour of some configuration. The subset 7 C Z is called the support of the contour and
denoted by sp (), while we denote |sp (7) | by |y|. The set of contours of a configuration
is denoted by I'(w) := {71, ..., 7n}. A family of contours I' is called compatible if there is
w such that I' = I'(w). The set of families of compatible contours in A with boundary
condition w? is denoted by €(A).

As a general rule, a contour is defined as something more than a subset of Z¢. Here,
we chose to define it together with the configuration on the support, but it can also be
defined only with its label (see below). Because of our choice, the map w — I'(w) becomes
one-to-one, with image being €?(A). If a contour were defined only as a pair of support
and label, this map would not be one-to-one.

Given a finite subset A € Z?, consider the connected components of its complement,
A°. Only one of them will be unbounded. We define ext(A) as this unbounded component
of A® and I(A) as the union of the bounded components of A°. Notice that, for any A,
{I(A), A, ext(A)} defines a partition of Z¢. Also, we define the volume of A, denoted by
V(A), as I(A) U A. This is the smallest simply connected subset containing A. When
dealing with contours, if f is a function defined in the subsets of Z4, we put f(y) to mean
f(sp (7)), for simplicity. Thus, V(v) means V(sp (7)), for example.

The next proposition illustrates the kind of result that uses R explicitly.

Proposition 1.4. Let S be some set of periodic configurations. Then, if R is sufficiently

large, each connected component of (Ow) is the restriction of exactly one w? € S.

Proof. Just notice that, if r* is the least common multiple of all the periods of all con-
figurations in S, then, if A contains a cube of size r*, w% = qul — w? = w?, for any
w?,w? € S. Now, if z,y are two correct points, WBR(z) = w%R(w) and wp, () = ng(y), SO,
in particular, letting B := Bpr(z) N Bg(y), we have that w% = w%, as long as B contains
a cube of size r*. Choosing the appropriate R, we have that x,y are correct for the same

ground state if |z — y|= 1. O]

Remark. The radius R used to define an incorrect point generally depends on the range
of the interactions and the period of the ground states, as seen in the last proposition.
However, any periodic configuration can be turned into a constant one by procedures such
as decimation. See subsection 7.2.5 of [FV17]. Furthermore, since in chapter 2 we will
be dealing with interactions that inevitably have infinite range, there is no harm to take

R =1 once and for all.

Although the last proposition is concerned with the connected components of (Ow)€,
we might imagine that the connected components {A;, ..., Ax} of the complement of a
unique contour, (sp (7)), also have constant configurations, at least in the portions far
enough from another contours. This expectation turns out to be true, and it holds that

the configuration is constant across the boundaries of the A;.
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Since the topology of Z¢ is discrete, the usual way to define boundary of a set is
meaningless, but there are some alternatives. Firstly, we define the edge boundary, O.qA =
Hz,y} € Z%|z —y|= 1,2 € A,y € A°}. Trying to simulate the usual definition of
boundary, we can also define OA := {z € Z% B, (x)NA # @ and By (z)NA® # @}. Finally,
we can define the inner and outer boundaries as d;,A := 0A N A and 0, A := OA N A°.

Back to the generalization of proposition 1.4, we claim that the configuration is con-
stant across each 0A; (notice that these boundaries also include points in the contour).
For a proof, see lemma 7.19 from [FV17].

The attribution of a configuration w? € S to each connected component of (sp (7))°
that come by this result is a kind of label of them. Then, we define I,,(y) as the union of
the bounded connected components with label m, providing us the following partition of

the interior:

I(v)= U In(v)

wmes
Also, the label of a contour v is defined as the label of the unbounded component of
its complement. A contour of label g is then called a g—contour.
The following definition will be of uttermost importance when we talk about cluster

expansion and Pirogov-Sinai theory.

Definition 1.5. [External Contours] A contour 7 is external with respect to a family T’
if sp (7)) NV (v') =0 for every v/ € T\{v}. We will denote by I'® the family of all external
contours from a given family of contours I' and by I'*(w) the set of external contours of
['(w). When a family I" € €9(A) is such that each v € I" is external with respect to I', we
say that I' is an external family of contours. The collection of all such families is denoted
by &(A).

1.2.1 Mulstiscale Contours

In this section we are going to present a variation of the definition of contour that is
more suitable to the case of long-range interactions and will be used in chapter 2. It is
broadly known that the usual contours from Pirogov-Sinai theory tend to not give sharp
results for systems with long-range interactions. An illustrative example is the attempt to
extend the Pirogov-Sinai to this setting by Park [Par88b|, [Par88a]. The results obtained
by him only work if the interactions decay quickly enough.

This variation was presented in [ABEH21] and [ABM23b], and was inspired by the one-
dimensional contours defined by Frohlich and Spencer in [FS82]. The key change in the
definition of a contour is the replacement of the partition of dw in connected components

by a partition that takes into account the size and distance of the contours.
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Definition 1.6. Let M > 0 and a > d. For each A @ Z%, a set I'(A) == {F : 7 C A} is
called a (M, a)-partition if they form a partition of A and for all 7,7 € I'(A),

dist(7,7) > M min {|[V ), [VF)|} 7, (1.2)

Of course, there may be more than one (M, a)-partition of the same set, notice for
example that the trivial partition always work. From now on, whenever we talk about the
(M, a)-partition of a set, we will mean the finest one, which always exist, see [ABM23b].
The support of the contours of a configuration w will, then, be the elements of the (M, a)-
partition of dw. The most remarkable feature of this definition is that a contour may be
disconnected.

This possibility offers some difficulties. For example, the label no longer is a function
from a contour to the set of reference configurations, but rather a function defined in the
connected components of (sp (7))¢. A proof that it is a well-defined function is given in
lemma 3.8 of [ABEH21] and uses the fact that each 7 of the (M, a)-partition is contained
in only one connected component of (%)¢;

Likewise, the entropy bounds, which counts the number of contours within a certain
class, is much more intricate, but is done in [ABM23b]. The rest of the definitions

concerning contours remain unchanged.

1.3 Cluster Expansion

The cluster expansion is the expansion of the pressure (or free energy) as a series in
terms of the so-called “activities”As such, it was historically designed for high-temperature
systems, although its usefulness to more general contexts was soon recognized. The
usage of contours to develop the expansion in low-temperature allowed the derivation of
strong results since the onset, when Gallavotti, Martin-Lof and Miracle-Sole [GMLMS73]
managed to prove deep results about coexisting phases, like those in the seminal work
[MS67], but in a much easier and accessible way. For a recent and modern reference, see
[Pro23].

The idea behind the cluster expansion is that we can often write our partition function

as

Z = XF: (H K(v)) ( IT (v, 7’)) (1.3)

ver {v'}
This will be indeed our case if we write our partition function in terms of the con-

tours v and put 6(v,7') = L{yny—p}, a fact that will be better discussed in section 1.5.
Nonetheless, v can refer to anything in principle and can be dealt with abstractly. In this
case, the elements ~ are called polymers. The set of polymers will be denoted here by Z.

Once we have a partition function in the format of equation (1.3), the cluster expansion

is a consequence of the following
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Lemma 1.5. Let & be a countable set and a complex function g : Pi(Z?) — C such that
> lg(D)|< oo,
ez

we have that
exp (Z g(F)) =1+ > GT)
rez rez
where G : Pp(P) — C is defined as

Il k
1
Gr=Y 5 Y Tl
k>1 7 Tl =l
FmF]-:(B,UFZ-:F
Proof. See lemma 3.1 of [Pfi91]. O

The challenge now is to find an appropriate g such that 1 + > rc» G(I') becomes the

partition function. This is accomplished via the so-called Ursell functions:

1 if |T|= 1,
T —_—
o ()= Z H 0(vi,v)—1 ifn>2. (1.4)
Geg” {V,VI}GG
The sum is over connected graphs of n vertices. Indeed, we have the next result, which

is a consequence of the Mayer trick.

Lemma 1.6. Let I' C &. If we define

() = ¢"(1) I] K(v),

veX

we get

GO)=TIK(Mm I 00w v)-

v€er {y'}cr
Thus, lemma 1.5 gives us

n

logZ =), i,aﬁT(%, ) [T E (), (1.5)
n=1(y1,07m) =1

as long as the series converges. The query for good criteria for this convergence is an
important and prolific area of statistical mechanics and combinatorics. A good exposition
of the subject of cluster expansion, as well as a detailed account of up to date criteria of the
convergence is [Pro23]. For our purposes, since we will not focus on the best estimates for
the radius of convergence, a simple criterion to be applied is convenient. The next theorem
states the so-called Kotecky-Preiss criterion. Other criteria, by order of increasing power
is due to Dobrushin [Dob96] and Fernandez-Procacci [FP07]. Recently, more powerful
criteria has been claimed. See [Tem14] and [JK22].
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Theorem 1.7. A sufficient condition for the series in (1.5) to be absolutely convergent

is the existence of a function a : & — (0,+00) such that, for each v € &,

Z!K(v’)lea”')l5(’y’,v) —1|< a(v) (1.6)

Proof. See [KP86], [Uel04] or theorem 5.4 of [FV17] O

A model that can be formulated in terms of a polymer model with a convergent
cluster expansion has a lot of advantages, because some useful results follow immediately.
For example, the existence of free-energy density, existence of Gibbs distributions and
exponential mixing properties.

In our case, where the polymers are contours, we have that

SIE ()] 0N5(y,y) — 1] < #{i € Z%d(i,sp (7)) < 1} sup Y |K(y')]e?0",
g z€Ld yee
zesp(v')
Thus, if we take a(v) to be #{i € Z%;d(i,sp (v)) < 1}, having in mind that a(y) will,

then, be less or equal to 3%|y|, the cluster expansion is convergent as long as

> IK@E)E <1 (1.7)

~v'eC
zesp(y')

We conclude that a sufficient condition to accomplish the convergence is that the
contours must have weights with (quickly enough) exponential decay with respect to

their supports. This fact will be explored in section 1.5.

1.4 Heuristics

We will begin our exposition of the Pirogov-Sinai theory with a heuristic discussion,
that will serve, among other things, to illustrate what Pirogov-Sinai theory is and what
it is capable to do. To accomplish this, let’s use as example a model with state space

{—1,0, 1} and formal Hamiltonian given by:

Ho)= Y Jo@ow

(2); |lz—yl=1
Assuming that we are in the ferromagnetic context, let’s fix J,, > 0 for any ¢,¢' €
{-1,0,1} and J,, as zero. Also, let’s suppose that J, , = J . This hamiltonian is very
general and contains the 3—Potts and the Blume-Capel model, discussed in section 1.1,
as particular cases.
Throughout this subsection, we will think about the equilibrium measures by means

of the variational principle, that is, the equilibrium states should be those that minimizes
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the free energy, F' = U — T'S. Notice that, for T' = 0, the free energy is just U, which is
in agreement with what was discussed in section 1.1 about ground states. Anyway, our

(periodic) ground states are precisely the three constant configurations.

However, when we turn the temperature on, the entropy will start to play a decisive
role and it is expected that the typical configurations will have perturbations with respect
to the ground states. However, assuming that such perturbations cost energy, that is
Jo.q > 0 for ¢ # ¢, it is reasonable to guess that such configurations will consist of a
large ocean in some state ¢ and small islands of locally deviated configurations. This is
exactly what happens for low enough temperature. Such configuration are usually called
g—diluted configuration and, in accordance with the discussion of the previous chapter,
the boundary of each island is called a contour. Furthermore, the energy cost mentioned

is crucial and it is called Peierls condition, as soon as it is stated in a precise manner.

Now, if the Hamiltonian posses the biggest symmetry possible between the states,
for example J_19 = Jo1 = J_1,1, then it is obvious that the ocean-with-islands picture
above will be valid whatever state constitutes the ocean. Each corresponding phase will
possess the same free energy, but the typical configurations will be obviously different. We
conclude that there are precisely three distinct ones, and they will coexist for every T" small
enough such that the energy of the contours overcome their entropy. What we discussed
so far may be seen as the core of the Peierls argument generalized for a (symmetric) Potts
model. Pirogov-Sinai theory get into the play exactly when we don’t have such strong
symmetry. For example, let’s assume that J = J_10 = Jo1 < J_11 = J'. In this case,
by the arguments below, we will see that we will not have three distinct phases — fixing
some energy, there are more possible 0—diluted configuration, by the symmetry between
—1 and 1, then —1 or 1—diluted configurations.

Indeed, let’s calculate an approximation for the free energy of each phase. The ap-
proximation that will be made is that each island only consists of a single point. In other
words, if the ocean is made of state ¢, then there are no points x,y with |z — y|= 1 such
that both o, and o, are different from ¢. Let’s start by the —1 phase. If there are Ny
particles with spin 0, N; with spin 1 and N particles at all, the entropy is:

| N

T B NINI (N — Ny — V)

~ NlOgN—N—N[)IOgNO —N[)—NllOgNl —N1
—(N—No—Nl)lOg(N—NO—Nl)—(N—NO—Nl)

S_1(N, No, N1)

= NlOgN—N()lOgNO —NllogNl — (N—NO—N1>IOg(N—N0—N1)

= Nlog N — Nylog pgp — Nglog N — Ny log p1 — Ny log N
— (N = Ny — Ny)log(p—po—p1) — (N — No — Nqp)log N
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= —N() logpo — N1 lngl — (N — No — Nl) 10g<]. — Po — pl),

where we used the Stirling approximation logn!= nlogn — n and the densities p; =

N;/N. The entropy density becomes:

S<NO7N1aN)

N ~ —polog po — prlog p1 — (1 — po — p1)log(1l — po — p1)

571(p07 pl) =

By the approximation made above, the energy of a configuration E_;(Ny, N1, N) is
simply 2dJ Ny + 2d.J’ Ny, so the free energy density is:

1
f-1(po, p1) = 2d T po + 2dJ' py — Bs—l(Pm p1)

Now, we want to find densities that minimize the free energy. In order to so, it is
convenient to perform one more approximation in the formula of the entropy. Recall
that, for small z, log(1 + z) ~ =z, so the last term in the entropy is approximately

(1 —po— p1)(—po — p1). Getting rid of the second order terms:

s_1(po, p1) = —polog po — p1log pr + po + p1
= —po(log po — 1) — p1(log p1 — 1)

Now, searching for points in which the partials derivatives of the free energy are equal

to zero, we end up with the system of equations:

2d.J + B~ log py = 0
2dJ + B tlogp, =0

!
p—243J — 2487

Which gives us py = and p; Returning these values to the free

energy, we finally obtain:

f—l,min - _;<

e—2dﬁj+€—2dﬁj’>

This gives us fi min also, by the symmetry betweem 1 and —1. We can calculate fj min

analogously. Roughly, it amounts to replace py by p_; and J' by J. We have:
Lo saps | 2487 2 _2ass
Jomin = —— (e +e ) = ——e

g

Now, since J < J' and —e™* is increasing, we obviously have that:

fO,min < ffl,rnin = fl,min
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That is, the free energy of the phase 0 will be lower than the others, so this phase will
be favored. It is possible to show that there will be no infinite volume phase corresponding
to oceans with states —1 or 1.

But what happens when we try to force such phases by means of a boundary condi-
tion? Will the interior of the box be still an ocean (or better, a lake) of the phase 07
Notice that, in such configurations, the energy density at the boundary, in the region
of transitions between the outside 1—ocean and the inside 0—lake will be very big, but
the free energy inside the lake will be very small. To see that such configurations are
energetically advantageous than the usual 1—diluted configurations, notice that the free
energy density of the former configurations are roughly fomm + er|OA|/|A|, where er is
the average energy density in the transition region. Since the ratio |OA|/|A| goes to zero
with the size of the box*, there will be some size such that er|OA|/|A|< fimin — fo.min,
and the free energy of this configurations with a big bubble in the “wrong” phase becomes
smaller than the 1—diluted configurations. Note that, even in the rigorous formulation
of the theory, that will be seen later, the difference between free energies will be very
important.

Notice that, more than concluding that there is no infinite volume 1—phase, we con-
cluded that such phases does exist in finite volume, although not surviving the thermo-
dynamic limit. Because of such characteristic, they may be seen as metastable phases.

In order to restore the “stability” of the 1 and —1 phases, we may apply external
fields favoring such states. Let’s continue the analysis with the phase —1. The formal

hamiltonian becomes:

Ho)= Y Jowow) — 2 Plio.=—1),

(,y); lz—yl=1
with A > 0. Clearly, values of h which are very low will not be sufficient to restore this
stability. Let’s try and estimate the value of h that do the job. The free energy density

becomes:

™|

f-1(po, pr) = 2dJpo +2dJ'py — h(1 — po — p1) + = (po(log po — 1) + p1(log p1 — 1))

Trying to minimize, we are led to the equations:

2d.J 4+ h+ B log py = 0
2d.J +h+ B tlogp, =0

—2dBJ+h —2dBJ'+h

:>p0:6 plze

4 for any reasonable box. This holds for balls and, more generally, it is always possible to find a sequence

of boxes with this property when the graph is amenable.
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1 !
= f—l,min = —h— f(@_Qd/BJ_Bh + e—?dﬁj _Bh)

B

Carrying this analyses to the quantities corresponding to the 0 phase:

folp1, p—1) = 2dBpy + (2dBJ — h)p_1 + ;S(m, p-1)

L= e—QdﬂJ pq = 6—2dﬂh+5h
1 —2dBJ —2dBJ+Bh
fO,min: _E(e +e )

In order to have a coexistence of phase between 0 and —1, we must have f_; i, =

fo.min, which implies that:

1 y
h— 7(6—2%} | o 2dBIh _ —2dB]—Ph _ ,~2dp] —ﬁh)

B

Performing a first order expansion on the terms e’" and e=#", we have the approxi-
mation:
1 o248 _ ,—2dBJ'
h & B 1— e 2487

Extrapolating what we have done, it is natural to ask if, given a set of phases, it is

possible to tune the external fields in such a way to have exactly this set as stable phases,
being the others unstable. The answer turns out to be true, and more than that, one
of the most important outcomes of Pirogov-Sinai theory — which is also what we will
focus in this work — is the construction of the phase diagram in low-temperature and the
proof that it is homeomorphic to the zero-temperature one. In particular, it is regular

(see remark on page 22).

1.5 Main Steps

Warning: Instead of giving full and detailed proofs, that can be easily found, we
decided to present in this section only the main steps of the Pirogov-Sinai theory as for-
mulated in [Zah84]. We believe that, in this way, we can highlight the essential insights

without overshadowing them with technical arguments.

The first idea we need to have in mind is that, in order to obtain nice results about
the phases of a model, it is desirable to formulate it as a polymer model with a convergent
cluster expansion. As argued, contours are the obvious candidates to be the polymers in

low temperature, and it is possible to write the partition function as
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Zy= Y 1, (1.8)

re@a(A) el
Nonetheless, they come with a manufacturing defect — the sum is over compatible
families of contours, but the compatibility of a family does not depend pairwise on the

contours of this family. See figure 3.

Ta N

00 O 3
O o,

Figure 3 — The support of contours are represented and gray and each different color
in the boundary of the support represents a different label. Notice that the
family composed by these three contour is compatible. However, this can only

be achieved by means of 7. The contours v; and 3 are not compatible with
each other.

!

It is, however, possible to overcome this problem. As already known by Sinai [Sin82], it
is possible to rewrite (1.8) using a recursion in such a way that the compatibility condition
of a family of contours reduces to the simple geometric condition of them being pairwise
disjoint. The price we have to pay is that it leads to different weights, which are defined

recursively and somewhat non-intuitive. Precisely, we have

z8= 3 [ w), (19)

reqd ver
where Q2 is the collection of families of pairwise disjoint g-contours and the weights

are defined by

() — e BEM) o ZM(La(v))
) I Ziw, o) (110
B(y) = B g ) (00 (1.11)

5 B
A byproduct of this redefinition is that we no longer have a fine control of the size of

the weights so, although we were able to write the partition function as a genuine polymer

model, it is no longer clear whether the cluster expansion converges.
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The great idea in [Zah84] is to create artificial polymer models derived from the
model (1.9)—(1.11) whose cluster expansion converges by literal imposition — we simply
truncate the weights of the contours to a maximum harmless value. As seen in section
1.3, a sufficient condition for a convergent cluster expansion is to have w(y) < e~ "Ml for

sufficiently large 7. The new weights are then defined by

Definition 1.7. The truncated weight of a contour is defined by

w;(v) := min{w,(7), e_TM} (1.12)

Also, we say that a contour v is stable if wy(7y) = w; (7).

Having defined, for each ¢, a polymer model, their partition functions, are called
truncated partition functions and denoted by Z;. Analogously we can define truncated

: .
free energies, f.:

1
AT !
fo = 0 a7 108 Za

At this point, it is not clear how those artificial models can help us. Their utility is

established, among other things by the following proposition, which is one of the main

breakthroughs in [Zah84]. In order to state it, we define a, := f; — min,, f;,.

Proposition 1.8. If v is a nonstable q— contour, then

a1z g (1.13)

One of the most important results is actually a corollary of the proposition: if a, = 0,
then all g—contours are stable, so the truncated model is equal to the original one. Phases
such that a, = 0 are usually called stable phases and, since they are the ones that really
lead to convergent cluster expansion, an easy application of the Borel-Cantelli lemma tells
us that, almost surely, the configurations will have finitely many contours. In this way we
can rigorously establish the “sea-with-islands” picture. Another interesting consequence
is the agreement with our heuristic discussion — it is indeed the presence of contours
with interior much bigger than the support that prevents a phase of being stable.

Finally, we need to stress that, for some applications, it is convenient to define the
truncated weights in a different, smoother way. The truncation defined in 1.12 is abrupt
and imposes difficulties to prove results concerning differentiability of the free energies
and the phase diagram. See [BK90].

The proof of the last proposition is not trivial at all. It is done by an induction in
the size of contour and boxes A, and is heavily supported by expansions and estimates of

partition functions.
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Remark. Although we do not need to suppose that the reference configurations are ground
states, we are assuming it here for simplicity. See the needed modifications for the general
case in [Zah84].
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CHAPTER

The Long-Range Ising Model

The results in this chapter, which are new and were obtained in a joint work [ABM*23a]
with Rodrigo Bissacot, Lucas Affonso, Joao Maia and Joao Rodrigues, concerns the long-
range Ising model. Asusual in any Ising model, the state space is {—1,1}. The interaction,

{Jey}eyeza, is defined with polynomial decay a,

. TT#Y

0 otherwise,

oy = (2.1)
where J > 0 and the distance || is given by the ¢;-norm so that each spin interacts with
all others, not only its nearest neighbors. The local Hamiltonian of the long-range Ising

model in A € Z? with n-boundary condition is given by

Hi(o) == > Juyou0y — > Juyoun,. (2.2)

T,yeA zeNyeA®

During this chapter we will fix n = +1, the plus boundary condition.

Remark. In order for the interaction to be regular, we need to ask v > d. This is the
unique restriction in « that will be made for the results presented here. Our result, then,

improves the previous one by Park [Par88a

2.1 Contours

One of our main goals is to obtain the cluster expansion of this model, in term of
contours, for every v > d. In order for the expansion to converge, we will need to make

two modifications from the usual notions associated to contours:

1. Since it is a long-range model, disconnected contours are more suitable (see [FS82]),
so we are going to use the contours defined in subsection 1.2.1, following [ABEH21]
and [ABM23b].
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2. We will need to modify the definition of a contour to be external. In our new
definition, contours which are contained in the I, of some other contour are also
considered as external. This is somehow different of the usual found in the literature

for short-range models, but agrees with the long-range approach in [CMPR14].

This new notion of external contour was one of the major steps in order to get a conver-
gent cluster expansion and deviates from the the previous works ([ABEH21, ABM23b]).
Back then, the definition was a direct extension of the usual notion from Pirogov-Sinai
theory. In our case, we will have to change the volume V(7') from definition 1.5 by a
modified volume, V(v) = sp (7) UI_(7). As already pointed out, the main difference is
that, if v has its support inside the plus interior 1, (4’) of an external contour +/, then ~

is itself external. This can be summarized in the next definition.

2.1.1 External Contours

Definition 2.1 (External and Internal Contours). A contour v is external with
respect to a family I' if sp (7) N V(') = 0 for every 4/ € T'\{y}. As before, I'* denotes
the family of all external contours from a given family of contours I'. We define &, as
the collection of all compatible families I" of external contours in A such that V(I') C A.
Moreover, we say that a family of contours I' is internal to v if yUI is a compatible family
of contours with 7 being the only external contour. We define .#(+) as the collection of

all families of contours internal to .

Remark. We will use v U I' instead of {7} UT in order to lighten the notation. Notice
that .# () depends only on v, not on the other contours that can possibly be next to ~.

Proposition 2.1. Let T be a family of compatible contours. For any v € T\I'® there
exists v/ € T such that V(y) C 1_(y') holds.

Proof. By the definition of external contour, if v € I'\I'* then there exists 4" such that
it holds sp (7) NV (¥') # @. By Condition (A), sp (y) is a subset of one, and only one,
connected component of (sp (7/))¢. Since it has a nonempty intersection with the volume,
sp (7) cannot be contained in V(/)¢, thus it must be in I_(v'). Since we only have a
finite number of contours, by iterating the preceding argument we eventually get to an

external contour, proving the proposition. O

Remark. Proposition 2.1 implies that for any compatible family of contours I' and I'* =
{71, .-, 7}, the subset of external contours of I', there exists a unique partition of I'\I"®
into families I'y, ..., ', such that I'; € .#(;) for each 1.

Next we collect some results concerning the modified volume that will be important

later.
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Proposition 2.2. Let I" be a compatible family of contours and I'° the associated family
of external contours. Then o, = 1 for all z € V(I'¢)°.

Proof. Each configuration defines a partition of the lattice Z¢ with respect to the points
being incorrect, or +-correct. Then, let I' be a compatible family of contours and ¢ be
the configuration such that I'(c) =T'. Let ©, : Q© — R be the function such that

+1, if z is +-correct

O.(0) =4 -1

, if x is —-correct

0, if z is incorrect.

Then,

VI = |J {reV(®:0,0)=a}.

a=—1,0,41
If the point x is incorrect, then it must be in the support of some contour. Therefore,
Proposition 2.1 implies then that = € 1_(vy) for some v € T'°. If x is —-correct, since we
are in the 4+ boundary condition it must be surrounded by incorrect points. The previous

argument applies and we finish the proof. O

2.1.2 Spin Flip

Given a configuration in A € Z% such that I' C T'(c), we recall (4.3) from [ABEH21]

and define (o) as the configuration such that:

o, ifrxel (I)UuV()e°
T(0)s = —0, ifxel (I) (2.3)
+1  ifr e sp (D)

According to the correspondence between configuration and contours, given a com-
patible family of contours IV with I' C I, we define (') as (o), with o being the
configuration such that I'(o) = I.

The interpretation of this map is that it erases the family I" from the configuration.

Remark. One cannot erase an external contour «y from a family I' = {7, 2, ..., 7, } simply
writing I'\7y because this last family of contours may not be compatible. The internal
contours of v that become external when v is erased may have a boundary condition
different from +, for example. The spins of some internal contours of v must also be

flipped.
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2.2 Contour Hamiltonian

In this section, we are going to rewrite the hamiltonian in a suitable way for the cluster
expansion, only in terms of contours. We begin by defining the normalized Hamiltonian,
H™(T') = H{ (o) — Hy (07), where T = T'(¢). Then:

= Z Jay(1 — 020y) + Z Joy(1 = 00)

z,yeN reNyeAc
=92 Z Jggy]l{aﬁgay} + 2 Z chy]l{aﬂgl}
z,yEN rEN,yeEAC

Let A be a set which is the disjoint union of (A, ..., A,). Then clearly we have:

n

Yo flay)=>| > flzy)
rxEA i=1 ZL‘GAi
yeB yeB

Using also that, for symmetric f,

S flay) = Zfrcy

{zy}cA Zgﬁ
We also get:
> f(:v,y)=Z( > f(ﬂf,y)>+z > flz,y)
{z,y}CA =1 \{z,y}CA; {i,7} \ z€A;

yEA;
Now, since the modified volume of external contours are disjoint, we can use the
previous observations for the partition A = J V (v;) U (A\V(I'®)), and the proposition 2.2,

to obtain:

1
7H+ Z Z Jl"y]l{ffxiay} +5 Z Z ny]l{ffxff’y} + Z Z Jzy]l{ffccil}

=z y}cViv) 25 2€V (%) =1 2eV(y)
yeV(v;) yeV(re)e

" 1
- Z 2 Jwy]]'{o'aﬁéay} + NZ Jfﬂy]l{gaﬁél} + 5 Z NZ Jl’y]]‘{o'aﬁéo'y}
= {zylcVin) eV (7:) 7 2eV(7)

yeV(re)e yeV(v5)
The second summation inside the big parenthesis above depends not only on individ-
uals or pair of contours, but also on the whole I'*. To prevent it, we sum and subtract

the term
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n

D0 Inlry =D Y Jnlpan

=1 j#i we?(%) #J xei/(%)
yeV(v5) yeV (v5)

Rearranging this term a little bit, we notice that

L 1 1
> > 2 Julea =520 2 Tl t52 2 Juliry
=132 eV () P ae V() 7 2eV ()
yeV(v5) yeV(v5) yeV(v5)
1 1
=52 2 Jula 52 X Tl
73 2eV(v:) 73 yeV ()
yeV (v4) z€V (v5)
1 1
=52 2 Jnlay 52 2 Tl
#] IEE(%‘) i#] IGE(%‘)
yeV(v5) yeV(v;)

Where we made a double change of dummy indices x+ — y and ¢ — j and used that
Jyy = Jyz). The final product is:

n

1
S =21 X Jalpgey+ 2 Tl
= {zyrcVin) €V (7:)
yeV(v;)°

1
t50 2 e {Llinra) — Lo — L2 |
#] 556?(%‘)
yeV (v;)

n

== Z Zv ny]l{az;éay} + Z: ny]l{crz;él} - Z Z ny]l{azzay:fl}
= {z Vi) 2eV (%) 73 2eV(v)
yeV(v5)°¢ yeV(v5)

This implies that the normalized Hamiltonian can be written as

n

HH(T) =3 ®1(v) + Y Pa(vi,;), where (2.4)
i=1 i<j
q)1</yl) =2 Z Jacyﬂ{az;éay} + Z Jazy]l{oz;él} (25)
{z.y}CV (%) 2V (1)
yeV(v;)¢
qDQ(Vﬁ':Vj) =—4 Z nyll{ax:ay:—l} (26)
z€V (1)
yeV(v;)

Hence, the energy of the normalized Hamiltonian decomposes into a sum of the individ-

ual energy of each external contour v; (together with what is inside it) and the interaction
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energy between each pair of contours +;, ;. Since ®, is negative, the interaction between
external contours is attractive — a fact that turns the proof of the convergence trickier

than the short-range case.

An important remark is that if we defined the external contours in the usual way,
the unique change in the expressions above would be equal the replacement of 1% by V.
The interaction energy between two external contours would be smaller and hence more
attractive. In our case, the weaker interaction energy that appears thanks to our new
definition plays an important role in the convergence of the cluster expansion and there

would be serious problems with the convergence otherwise.

2.3 Partition Function

The aim of this section is to rewrite the partition function as the partition function
of a polymer gas. We are going to need some modifications with respect to the standard
way in which it is usually done. For example, having the interaction an infinite range, the
contours will not interact only as hard-core particles, so we will have to do the Mayer trick
for the contours. This yields families of contours that interact like hard-core particles, but
the consequence is that our polymers will have to be those families of contours, instead of
single contours, as usual. Recall that €+ (A) stands for the set of all compatible families
of contours in A with boundary condition +. Each family of mutually external contours
will be called a polymer and denoted by I'. The collections of polymers will be denoted
by X. More precisely,

Definition 2.2. A polymer is a set I' of mutually external compatible contours. Two

polymers I' and I are compatible if
1. For each v € ' and 4/ € I, v and ' are compatible
2. Exactly one of the following three conditions happens.
H) VIO NV(I) =0
(ii) There is v € I such that V(I) € V(v)
(iii) There is v/ € I such that V(I') ¢ V(')
Where the volume of a polymer is simply the union of the volumes of its contours.

When two polymers are compatible, we write I' ~ I"". The set of all polymers in A is
denoted by 2} .

Notice that there is a difference in the notation with respect to sections 1.3 and 1.5.
There, the polymers were denoted by v, and here we denoted I'. There, collections of

polymers were denoted by I', while here we denote by X. The reason for that is the
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already mentioned fact that we need the polymers to be families of mutually external

contours rather than the contours themselves. Now we are ready to state:

Proposition 2.3. The following equality holds.

Zi=1+ > JI=@ II Lrer, (2.7)
}

otxcoyiTeX {T.1”

which can be seen as the partition function of a gas of polymers with activity:

2p (D) = W) #r="13 (2.8)

K*(I)IL,er WH(y)  otherwise.

Proof. This equality can be obtained by following the exact same steps as in appendix 2
of [CMPR14]. O

2.4 Activity Bounds

In this section, we find useful bounds for the activities z(I"). Tt is here that our
definition of contour and external contour is really crucial. The rest of the chapter will

mainly be concerned with entropy bounds which are somewhat standard.

2.4.1 Omne-body activities

The first step is to bound W (y) for an external contour « in some polymer. This is
the easier step and follows immediately from the following proposition, which is proved
in [ABM23b]. Let o be the spin configuration corresponding to the contour configuration

v UT. Then we will write

HY (7,(yUT)) = Hy (74(0)) — H\ (o),

for the energy one gets when erasing the contour  through the action of the map 7.,. The
proposition shows that the difference of energy when one erases a contour is positive and

depends on its size and a surface energy term for each A € Z? defined as

Fa=3 Ju

TEA
yeA®

Proposition 2.4. For M large enough, there exists a constant co > 0 depending only on
a and d, such that for any A € Z2, and vyUT a family of contours such that v € (yUT)e,
it holds

H*(yUT) = H* (r,(yUT)) > ¢ (|74 F_3) + Fapi)) - (2.9)
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The activity W is now bounded as below.

W+(,y) — Erey(,y) e—BH*(yUI) _ ZFE](’y) o= BHT(YUD)+BH (75 (7UD)) = BH T (74 (yUI))
Yres(y €I OUD) S res(q € PHT AU
ZFEJ(W) e_’gCQ(WH_FI—<7)+FSP(W>)6*5H+(T«,(7UF))
<

= S ey € PHTHOUD)

< 6_602(|"/|+FI,(’y)+FSP(’Y)) — 6_552“’YH7

where [|7]l:= [v[+F1_(y) + Fapy)-
A useful property of the surface term F, that will be needed later is stated below.

Proposition 2.5. Let A, B @ Z% be two disjoint finite subsets. Then

FAUB:FA+FB_ZZme
z€A
yeEB

In particular, Faup < Fa+ Fp.

Proof.
Faop= 3, Jw+ 3 Ju
€A z€B

ye(AUB)© ye(AUB)*©

- Z ny—Zny+ Z Joy — ijy
€A €A z€EB r€EB
yeA° yeB yeB*° yeA

=2 oyt D Ty =23y
€A zeB z€A
yEA® yeB* yeB

We used that A°= (AU B)°Y B and that J,, is symmetric. O

2.4.2 Polymer activities

Given two external contours «y,7" and families of contours I', " internal respectively
to v and 4" we have

—Dy(yUD, Y UT) <4 Y Jyy = F(7,7"). (2.10)

zeV(y)

yev (')
The function F'(,~") may be seen as the maximum absolute value that an interaction

between two contours can achieve.

Lemma 2.6. There exists a constant c3 = c3(a,d, M) > 0 such that for all contours

and families of contours I' Z v such that v ~ T it holds

Z F(777/) < C3Ff/(,y)-

~'er
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Proof. Given a contour v and a polymer I' ~ v, define the sets Ty = {7 € I' : |[V(v/)|>
[V()I} and To = {y € I': [V(¥)|< [V(7)]}. Hence,

SF(A) =4 Y Jay+d Y (2.11)
v'er z€~\~/('y) xeN\N/('y)
yev(T1) yeV (T2)

For any 7' € Ty, it holds dist(y,~') > M|V (v)|#1 by condition (B), we get

D J < X ey = VO X oy, (2.12)

2V (v) z€V(7) ly|>R
yeV(Ty) ly—z|>R

with R = [M|V(v)|@1]. Defining sq(n) = |{z € Z% : |z|= n}|, it is known s4(n) <

22d-1ed=1pd=1" see for example [ABEH21, Lemma 4.2]. Using an upper bound by an

integral together with (2.12), we can show that

J2d—1+aed—1
Z er S T NATT
=~ (a —d)Me—d
zeV(7)
yeV (Y1)

V(o)

To bound the remaining term in (2.11), split T into layers Yo, == {7 € To : |V (¥')|=
m}, for 1 <m < |V(y)|—1. Given some z € V(7), we can bound

1
> Iy <Jm na
2V () rev(y st ) (2.13)
yEV(Ta.m) Y EY2,m

Define, for each 7' € Yy, the set B, = {y € Z% : dist(y,7') < Mma+1/3}. Any pair
v,7 € Ty, we know that dist(y,7) > Mm@+, implying that B, N B, = (. Moreover,
for each z € V(7) it holds

T2

'YIETQ,m

1 3

1
< Joy < >
. Na — —a_ Ty = —a_ Ty
Wtla, 7 = M 5, o @
7/€T2,m

hence joining inequalities (2.13) and (2.14) and summing over m we get

3¢(2)
2 e S = Fy
zeV(y)
yeV(T2)

By our choice of a, our statement follows by choosing c3 to be

J2d—1+a6d—1

8b
where b = max {m_d), 3{(2)}.

G = M (a—d)A1

notice that limy; . c3(M) = 0. O
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For the next propositions we will need to introduce some more notations for tree
graphs. Let 7, be the set of all rooted trees with n vertices. For a tree, every vertex v
with deg(v) = 1 is called a leaf, where deg(v) is the number of edges connected to v. For

each polymer I', define

e—Bezllll it I' =
Z() = . ) (2.15)
ZTeTm [her e P2l My yer F(7,7') - otherwise.

Proposition 2.7. For polymer I" it holds
25 (1) < TZH(D),
Proof. Proposition 2.4 implies that
W+(’7) < e—Peallll

Inequality (2.10) yields the bound for K (T")

Err)< S T1 (eﬁF(%v’) _ 1) '

Gegr| {v'}CG

Since each G is a connected graph, it has at least one spanning tree 7. Then one can

write
SOOI <6ﬂF<w') _ 1) <3 1 (eﬁF(w’) _ 1) 3 II (eﬁF(w) _ 1)
GeGr| {v'}€CG TeTr| {v'}eT GOT {v,y'}eE(G)\E(T)
<Y I (eﬁF(%v’) _ 1) I1 (eﬂF(%v’) 14 1) :
TeTir {vv'}eT v YeE(K ) r)\E(T)

where K, is the complete graph with n vertices. The last inequality comes from applying
the Mayer trick to (e?#07) — 1) 4 1 and by bounding the connected graphs that contain
T by arbitrary ones containing it. Now, multiplying by 1, the bound becomes

Z e > er FrpePes 2 er By H (eﬁF(%’Y') _ 1) H eBF(")

TeTr {v'ter " YeE(K p)\E(T)

T€eT {v'}eT {7y YeE(Kr)\E(T)

_ Z eﬁc3 Zwer o) H 67503/\%7’ Zwer L7 (eﬂF(%’Y') _ 1) H 6BF(%7/),

where

_ PO
Z{'y,'y’}ET F(’% ’Y/)

v

Using Lemma 2.6,
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Y. F(n)<Y Y F(ua)<ed Fy,

{v'}eT vel' v'el\y ~ver

— BF(7,7) < Beshyy Y F‘7(7)
~vel
Now, since 1 < e¥ for 0 < x <y, we see that
ePFOY) —q
BE(y, ) ~

BesAy Zyer FF\;(W) )

Hence,

S Z 6,803 Z’YEF F;(fy) H 5F(7’ 7’) H QBF(%'Y/)
TeTr)

{y~'}eT {7V }€E(K|r)\E(T)

H ﬁc3FV(7) Z H BF(V’ 7/) H eﬁF(%"/)

ver TETr {7y~ }eT {y " YeE(K ) r)\E(T)

H o BFV(’Y)] [65 Z’YGF Zw’el“\“/ F(’y,’y/)] [ Z H BF<77 ,y/)

|ver TeTr| {v~'}eT

< _H Pl >] [Z II ﬁF(’m’)]

RS TeTr) {'}eT

IN

Putting everything together yields

SO [Lew [-8 (elll-26F,)] ¥ I1 BF(.7).

yer TeTir| {v~'}eT

By proposition 2.5, ca|y||—=2c3Fy ) = calv]+(ca — 2¢3)(Fi_(5) + Fip()), 50

|< H o Blez|v|+(c2—2¢3)(F1_ () +Fep(v))) Z H 6F(777/)'

y€r TeT e {y'}eT
Since ¢z goes to 0 as M — oo, we can take M large enough to have co —2c3 > ¢2/2, giving

us the desired result. OJ

2.5 Entropy Bounds

We are going to omit the proofs of the lemmas in this section because, besides being
rather technical, they are well-known (see [Pfi91] and [CMPR14]), use few of the different

features of our contours and do not provide any new insight.

Lemma 2.8. There exists a constant cg = cg(a, d, J, M) such that for every fized contour

Yo one has

Y~70
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for all sufficiently large 3. Moreover, ﬁlim cg = 0.
—00
Proposition 2.9. For each contour vy, it holds that

> ZHI) < (dcgpo)ne PNl (2.16)

I'>v0
T|=n+1

for B large enough.

Corollary 2.9.1. For 3 large enough it holds for every polymer I' that

S BINEHT) < 36 # (2.17)
V(I")>0

Proposition 2.10. For all large enough [ it holds for every polymer '

> AT (1) < sMiePE|D.
IRPAN

2.6 Main Theorem

One of the main steps in the proof of convergence od the cluster expansion is to get
bounds good enough for the Ursell functions. The next theorem provides us with such
a bound. It was proved first in 1967 by Penrose in [Pen63] (see also [Pfi91]). For our
purposes, it suffices, but a general discussion on the so-called partition schemes can be

found in the recent monograph by Procacci [Pro23] for cluster expansions.

Theorem 2.11 (The tree-graph bound). For each n, let X C P} such that | X|= n.
Then it holds that

X< > I Tewr

TET, {LIV}CT

Lemma 2.12. For 3 large enough it holds that

S g(X)|< 3(12M e, (2.18)
Xcoy
zeV(X),|X|=n+1
Proof. Before we start, let us distinguish two cases. If | X|= 1, then we get that by using
Equation (1.4) and Corollary 2.9.1

Yoo )< > ANTEN(T) < 8e70% (2.19)

Xcot V()30
zeV(X),|X|=1

Therefore we will always assume that | X|> 2. In first place, notice that

> X Y :L!;]g(f‘o,...,f‘n)\.

Xcozf Lo; V(To)ox

2eV(X),|X|=n+1 1sk<n
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This bound may be strictly bigger because we can have more than one polymer con-
taining z, in which case the term is counted once in the left-hand side but more times in
the right-hand side. Now, we recall that

9(X) =" (X) ] «(I).

rex
So, using equation (2.7) and Theorem 2.11, we get the bound

< > 11 ﬂ'”‘lEE(F) I Irer, (2.20)
T€Tn+1 TET {r,r'ycr
where the sum is over the trees rooted on the family of contours I'y that contains z. The

left-hand side of equation (2.18) is then upper bounded by

ZB‘F()'_IEE(PO Z Z HBM\ 1~+ Fk H 11“741“ 7 (2'21)

V(Lo)2x T€7'n+1 Iy k=1 {igtcT
1<k<n
where again, we are labeling the vertices of the trees in 7,41 by {0, ..., n}, with the vertex

0 being the root. Now, we will first make the argument for a given fixed 7', and sum over
trees afterward. We start renumbering the vertices of the given tree 1" according to their
generation. In this way, the vertices will be regarded as (i, j), where the first coordinate
refers to the generation of the vertex, so i =1,...,/, ¢ being total number of generations
and 7 = 1,...,m; the total number of points in the generation . With this enumeration,

we have

¢ m; mi—1
II BItl= 1~+ (k) II Lp,r, = II II (51y]| 1ZH(Ty II Ir, 1y¢F1a> , (2.22)

{i.g}cT i=1j=1 §'=1
where we define the product term above corresponding to mg to be 1. Hence by summing

the terms in (2.22) over all the polymers I'; ; we get

—1 m; mgi—1 my_1
r 1~+ r 13 +
Z H H 6‘ wl= U) H HFi—l,j"?éFiyj Z HBI 24l Fg H ]11“2 1577 e
r;; i=1j=1 i'=1 Yo j=1 7'=1
i=1,...,0—1 7j=1,...,my
Jj=1,...m;

We proceed to bound the term corresponding to the last generation ¢ above. There are

integers 1 < j1,...,Jp, < myg such that the vertices (¢, j) from j, < j < j,41 — 1 from
q=1,...,ps, where we assume that j,,41 = my + 1, are connected to vertices (¢ — l,j;)
from the previous generation. Thus, Proposition 2.10 together with a straightforward
yields
me—1 pe Jor1—1
Ty, -1 VISP
> LAz ) 1T 1, e =10 TT 22 BT (Tey)
s =1 j'=1 =1 j=jq Te,j
J=Lymy F(’.,j’f/rl—l,j*

Pe

(SMd )mg H(]q+1 —]q)'e 4‘ 0— 1J*|

q=1

(2.23)
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Notice again that j,+1 — j, = deg({ — 1, j7) — 1, the degree of the vertex (£ — 1, jr). Also,
we used z" < n!e” in the last inequality above. Inequality (2.23) yields

—1 m; mi;—1
S a0 T san <5 T (500 T )+
=

1< {igycT g, 1j=1 J'=1
n 2:1 =1
j=1’,..?,m¢ (2.24)
d 82 yme T] : Sy
x (3M 6_’8?)"”H(deg(f—l,j;)—l)'e Fles;
q=1

We need to distinguish two cases regarding the number of generations of a given tree.
First, consider ¢ = 1. Then

; 1;[ ) TI Lrier, < (3M%e 3 )t #F ol (2.25)

hJ}CT
1<k<n

If £ > 1, then we can proceed similarly as before and write

/-1 m; mi—1 ‘F |
~+ 4 £— 1]
> % (L H Tr,, s, He
. ; =1 —

=2 m; mi—1 me—1 me—2
= , ZE(Fivj) H ﬂriﬂ,j’?éri,j Z H 25/2 (Fe- 13 H Ir,. 2,57 le-1,5

J'=1 Te1,5

-2 mg mMG—1 - ) .*
< Z (g;’r(Fz,J) H ]11“1-_1,3'/741“1’,]') (3]\/[d )mz 1 H (deg(¢ — Q’j;‘) —1)! eﬁ 2Tz, ‘
T =1

§'=1 q=1

We can iterate the procedure above yielding us

> MMz@) I Legr, < @M% %) [T (deg(k) - 1)) (2.26)
1<I];k.< k=1 {ij}cT k=1

Plugging Inequality (2.26) back into (2.21), together with Cayley’s Formula for the num-
ber of labelled trees with specified degrees for its n + 1 vertices, that we denote by
’7;L+1(d07 db cee 7dn)7 we get

- > > ﬁgg(rk) [T Lroer, < (@Ml #3)mefEmel $ (f[ deg(k )

T€771+1 'y k=1 {#,4}CT T6%+1
1<k<n

n

= (3Md€718%)n6/8%|r0| Z H k — 1 (dOa dh s 7dn)‘

dot-tdn=2n """ sl

= (3Mde—5?)"eﬁ?lfol< 2f 1) < (12M % PE)nehE Mol
n

where the last inequality is due to the Stirling approximation. Plugging the inequality
above again on (2.20) and using Corollary 2.9.1 we get (2.18) for 5 large enough. O
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Theorem 2.13. The logarithm of the partition function of Proposition 2.3 can be written

as
logZga= Y ¢"(X) [ =5 (D).
xcoy rex
Proof. Using Lemma 2.12, we have that for 3 large enough it holds
3JA|

l9(X)|= 9(X)|< o (2.27)
X@Z@A ;XCZ@X 1 —12Mde 8%
| X|=n
Therefore Lemma 1.5 implies the desired result. O]

Due to absolute convergence, a consequence of the proposition above is that the free
energy of the system can be written as
1

Xeo+

Jo = o,

for 5 large enough, where &% is the set of all polymers.
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CHAPTER

Quantum Spin Systems

3.1 State Space

Following the familiar prescription of quantum mechanics, the state space of each
particle is associated with a complex Hilbert space. In quantum spin systems we make
the assumption that the particles have fixed positions, like in a crystal, so the unique
degrees of freedom are the spins. As we are concerned with systems in Z¢, we denote by
‘H, the Hilbert space of the particle located at z, for each x € Z¢.

Rigorously speaking, the spin space is an abstract space which carries an irreducible
representation of the universal cover of the rotation group of the theory, which usually
are respectively SU(2) and SO(3). A famous result states that there is essentially one
irreducible representation of SU(2) for each dimension. Since the states corresponding to
the possible outcomes of some observable must form a Hilbert basis (that is, an orthonor-
mal set that spans a dense subspace), this result provides us with a spin space for each
number of spins. The identification of the spin space with C” is posterior to the choice of
an orthonormal basis of the physical space. Nevertheless, we will skip the technicalities
involved in the choice of such identification and readily treat the one-particle state as C".
Furthermore, we will use the term spin in a more broader sense to denote any observable
with finitely many possible values, allowing us to deal with effective models.

Again invoking the familiar prescription of quantum mechanics, the state space of
a system of particles is associated with the tensor product of the Hilbert space of each
particle. In view of this fact, this and the following subsection will also serve as a brief
review of tensor product of Hilbert spaces, and most of their properties needed later is

mentioned. For each finite A C Z?, we denote its state space by:

TEA

It is important to emphasize that the tensor product of Hilbert spaces is not merely

the algebraic tensor product, since we want the product space to be a Hilbert one as well.
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We may define an inner product on the algebraic tensor product of H; and Hs by linear

extension of the following relation:

(V1 ® Vg, w1 ® wa) = (v1, W1 ), (V2 @ Wa)n,- (3.2)

In the present work, as we will be dealing only with finite spin systems, each Hilbert
space will be finite dimensional and the algebraic tensor product will be automatically
complete, so it is one less thing to worry about. One must keep in mind, however, that
in the general case we also have to complete the space with respect to this new inner
product.

The standard way to define a linear map from V ® W to some space Z is by using the
universal property in a bilinear map from V' x W to Z. Those constructions will be done
in this work without warning. It is also possible to define a n—linear map in V@ W to Z
by means of a 2n—linear map in V' x W. For example, Let Q : (V x W) x (VxW) = Z
be a 4—linear mapping. For each (v,w) € V x W, we have a bilinear map from V' x W
to Z, which turns into a linear mapping Q'(v,w) : V@ W — Z for each (v, w). This
new (' can, then, be seen as a map from V x W to Lin(V ® W, Z), which is bilinear.
Using again the universal property, ()’ is identified with a linear map Q" from V ® W to
Lin(V @ W, Z), which is the same as a bilinear map from V@ W to Z. The reasoning for
sesquilinear maps is the same with minor modifications, and this establishes, for example,
that the inner product (3.2) is well-defined.

It is a useful fact that, if (e,), is a Hilbert basis for H; and (f,,)n a Hilbert basis
for Hsy, then (e, ® fin)nm is a Hilbert basis for H; ® Ho, even for infinite dimensions.
By induction in the number of spaces, if each particle has r spins, we may view the
space H, defined above as the set of complex linear combination ¢, ¢, |w) of classical

configurations w € Qy = {1,...,7}*, by means of the identification:

w) = & |we) (3.3)

TEA

Thanks to the associativity of the tensor product, if A W B = A, we can identify
Ha®Hp with H,. This kind of identification we be made throughout this work without

warning.

3.2 Observables

In the case of a %—spin particle, the observables of the spin projection onto each vector
of an orthonormal basis, labeled as 1,2,3 (instead of x,y, z so we are free to use these
letters for points in Z?¢ without risk of confusion) may be written in the following form,

known as Pauli matrices:
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(o (0 a_ (Lo
10 i 0 0 —1

The Pauli matrices, together with the identity, form a basis for M,(C) and, if we want

them to be in our algebra of observables, this algebra must be the whole M5(C). The
operator corresponding to the spin in a direction n = (ny,ny,n3) is n- o = nyo' +nyo? +
nso°.

From now on, we will denote the local algebras of bounded operators, B(H,) as 2.
For finite dimension spaces, there is a natural identification between B(V @ W) and
B(V) ® B(W), given by sending elements T'®@ U € B(V) ® B(W) to the linear map on

V @ W determined by:

vRw— TWw) @ U(w)

If A C A, we can identify 2, as a subalgebra of A by means of the map jaa: A —
A ® La\a. The previous identification tells us that this operator is defined by extension

of the following relation:

(A & HA\A)(wl & 1/12) = A(;Dl) X 1/)2, V¢1 c /HA,Vl/JQ S HA\A. (3.4)

We say that A is A—local if A € (5. Operators which are local with respect to disjoint
sets always commute. Precisely, if Aj U Ay =0, A € Ay, and B € Ay, then:

AB = (A9 1)(1® B)(1 © ¢2) = A1) © B(¢s) = (1© B)(A® 1) = BA.

Proposition 3.1. Let Hy, Ho and Hs be Hilbert spaces and T € B(H1 @ Ho @ Hs). If
there exists A € B(H1 ® Ha) and B € B(Hs ® Hs) such that T = A® 1 =1® B, then
T=1C®1 for some C € B(H,).

Proof. Let (e;)i, (f;); and (gx)r be Hilbert basis for Hy, H, and Hs respectively. We
know that

ijk
Since the ¢;;;, are uniquely determined, the condition "= A ® 1 implies that ¢;;; = 0
for every k # n, while T' = 1 ® B implies that c¢;;, = 0 for every ¢ # £. Since this holds

for every vector ey ® f,, ® gn, the conclusion follows. O

Corollary 3.1.1. If A is a finite set and T is an operator in Hy, then there is a minimum
subset A C A such that T is an operator in Ha. That is, if T € A’, then necessarily
ACA.
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Proof. Define:

A=A, T e Ap .} (3.6)

It suffices to show that 7" € AA. Notice that, if T € Ay, N 2A,,, we can use the
proposition above for H; = Ha\n,, H1 = Ha\a, and Hz = Hp,\a,, s0 that T € Ay qa,.
The conclusion follows by induction.

]

This minimum set for some operator T is called the support of T

3.3 Hamiltonian

To each Hilbert space H, we associate a Hamiltonian Hj, which is a self-adjoint ele-
ment of Ax. We will prescribe the Hamiltonians by means of interactions. An interaction
is a family ® = (dy) xep;(z4) of self-adjoint elements indexed by the finite subsets of 7
such that ®x € Ax for each X. The Hamiltonian for a finite A is, then:

HY =) @ (3.7)
XA

The dependence on ® will often be omitted. A particularly useful way of rewriting

this summation is

HA = —— | = HA x), 3.8
0%
e ))f(gu;n\ ‘Xl zEA

where the denominator |X| accounts for the fact that ®x is being counted once for
each x € X. The operator Hy(z) is to be interpreted as corresponding to the contribution

of x to the total energy.

Example 3.1. The most important example of a quantum spin system is the so-called
Ising model with transverse field (or quantum Ising model). In this example, we will have
only one-body and two-body interactions, that is, the interactions vanish for every X that
is not a singlet X = {z} or doesn’t have the form X = {z,y}. The simplest common
case is the nearest neighbor one, where we also require that d(z,y) = 1 in the ¢; metric,
d(z,y) = Si_qlar — ye|. We have @y = —eol and @,y = —Jolod, so that the full
Hamiltonian in A is

Hy=— Y Jojo, = eo, (3.9)
lz—y|=1

Notice that the subscript in the Pauli matrix tells us the particle in which the operator

is acting.
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The neareast neighbour Ising model is part of a class of interactions that will be of

most importance for us:

Definition 3.1. A short-range interaction is an interaction ® such that &x = 0 if
diam X > R, for some R > 0.

For a given A C Z%, we define:

A= U Xx= U x (3.10)

e X;zeX X; XNA#£QD
D x#0 ©x#0

In the short-range case, A is contained in the R—neighbourhood of A, so it is finite

for every finite A. This notations allows us to write expressions like Hy(z) € 2 o for

example. A useful property is that m = U; A

3.4 Boundary Conditions

The notion of interaction makes possible to define a boundary condition in analogy to
the classical setting. Trying to carry on with this analogy, we wish a boundary condition
to be determined by a state outside A. But how far from A a state must be defined? Since
the tensor product of infinitely many Hilbert spaces is not as well-behaved as desired, it’s
not a good idea to consider configurations in the whole Z?. We will restrict ourselves
to short-range interactions in the hope that, for such interactions, it will be enough to
specify the configuration in ]~\, which is finite. To deal with more general interactions, one
is led to consider the operator algebra associated with the system [Isr16].

For a finite A C Z%, define:

Z (I)Xv

XNA£D
which is a hamiltonian depending on the sites of the boundary, but with the configu-
ration there yet to be specified. Notice that the sum is well defined, since it has finitely
many nonzero terms by the hypothesis of short-range interaction and that the set A is

the smaller one in which this operator is well-defined. Similarly to (3.8), we have:

H{ = ZH/(\')(x), where H{(x => |XﬂA|

zeEA X>oz

Then, if  a normalized state! in /N\\A, we want the hamiltonian with boundary con-

dition H} to be a self-adjoint element of A, such that the following relation holds:

(W HY [ibo) = (1 @ HY o @), Vi, s € Ha (3.11)

L From now on, state will always refer to a normalized one, that is /(t[1)) = 1, unless stated otherwise.
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Now we need to address some questions. (i) Is H} a well-defined operator? Is there
any mathematical motivation for it? (ii) Is there any physical motivation for us to impose
the relations (3.11)? (iii) Does H] depend on A? That is, would it have any difference if
we had defined the operator for an extended box A’ containing A?

(i) The right-hand side of (3.11) is a sesquilinear form in 1; and s, so H} is uniquely
determined by the Riesz representation theorem. Moreover, it is easy to find an explicit

formula for H} in the basis (|0)),cq,. We define:

Hilo)= Y (wen H (e @n)|w). (3.12)

UJEQA

Then, for any |o), |p) in the basis, we have:

(p| HY o) = zg (wen, H (0@ n) (plw) (3.13)
= (pen H |locan), (3.14)

which tells us that (3.11) is satisfied for vectors in the basis, and then for every other,
since a sesquilinear form is uniquely determined by its value in a basis.

The mathematical motivation for this definition is that it is the most obvious way to
turn H ('), which is an operator in HK into an operator in H,. In fact, if H; and H-
are two Hilbert spaces, the choice of a vector n in Hs induces an inclusion a*(n) : Hy —
H1 ® Hay given by v — v ® 1y and also a projection a(n) : Hy ® Ho — Hy determined by
v ®w — (n,w)v. Elements of A4up can then be mapped to A4 by means of a* and a,
and we have exactly H] = a(n)H (')a*(n), with the product being given by composition,
This comes directly by noticing that the projection a(n) is the basis-free version of the

map:

w = Z<el @ 7, w>ez

Indeed, taking ¥ = 3" agjer @ fj,

(e @n, ) = Z%j(@' ®n, e @ f;)

k.j

= Zaij<7l,fy‘>

= D (a®@nv)ei = ai(n, fi)e: = a(n)y

We may also denote a(n) and a*(n) by a, and a;.
(ii) We begin by remarking that the inner product has a tremendous physical rele-

vance. Indeed, recall that (¢)|H) is the expected value of the observable corresponding
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to H for a system in the state 1 and it is experimentally accessible. More than that, the
data (|H), for every normalized 1), completely determine the operator, by the polar-
ization identity. The polarization identity is a well-known formula for inner products, but
its proof only requires the form to be a sesquilinear hermitean one. It is trivial to see that
By (Yn1,19) := (¢1|H1by) is a form with this properties, so the identity reads:

13, . .
(W[ Hy) = D i oy i o H (1 + i eby)) (3.15)
k=0
With this in mind, if we impose the weaker condition:

(| HY [¥) = (v @ n| HS [ @n) (3.16)

for every ¢ with norm one (which implies for the others) the condition (3.11) will be

automatically satisfied. Indeed:

3
(il HY o) = & 324 (il HY (0 -+ 70)) (317)
k=0
3
= i > (i ) @l HY (1 + i ) @) (3.18)
k=0
3
= i S i (@) + i (W @) HY (Y1 @n) + i (e @) (3.19)
k=0
= (¢ @n| HY v @ ) (3.20)

So we conclude that they are equivalent conditions. The advantage of (3.16), however,
is its experimental appeal: H} is the unique element of 2, whose expected value with
respect to any state |1) is the same as the expected energy of | @ 7).

(iii) Let A; := A\A and Ay := A'\A, and:

=2 D e @k (3.21)

UEQAI fGQA2

be some normalized state in A; U Ay = A’\A. Then:

Hloon)= Y el loon®¢E) (3.22)
nEQ,
EENY,

= Y el e ®f) (3.23)

nEQA,
§EQA,

= we|H |loan)= 3 celwen||[H  (cen) ®E) (3.24)
ey,
SGQAQ
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=Y Y e lwopal|H con o) (3.25)

nEQA, pEQA,
EEN), CEQY,

=Y 3 e wepl HY lo®n) (ClE) (3.26)

nEQA, PEQA,
EEN, CEQY,

= 3 Y cpecie(we pHY o @ n) (3.27)

nEQ, pEQA,
EENY,

= > > (Z cn,gc;,g) (w® pHY o @ n) (3.28)

NEQA, PEQA; \EEQ,

And we readily conclude that, in general, (w ® nH/(\')|a @mn) # (w1 H/(\') lo @ 1'),
so the size of the outer box does matter. Even sites that are further from A than the
radius of interaction R have a nonzero influence on A. This phenomenon is due to the
entanglement. That is, the restriction of a state in H,, to Ay is not a “common” state in
Ha,, but will be a mixed one, as will be explored soon. If we had chosen |f) = |n® &),
that is, ¢, ¢ is nonzero only once, there is no entanglement between A; and Ay and then

(3.28) would become (w ® 7| HI(\') lo ®n), so anything outside A; wouldn’t matter.

Throughout this text, whenever we deal with boundary conditions by this approach,
the condition will always be a product state (a ground state), so the size of the outer box
will not matter. However, there are more general approaches. One way to deal with it is

to consider mixed states and not only product ones.

We can define H"(z) similarly by requiring

(1) H'(z) o) = (b @ | HO () |2 @), Vb1, € Ha

Notice that H"(z) is different from H ?x}. In the first operator, the boundary condition is
only in A¢, while in the second they are close to {x}. Since there are a lot of similar op-
erators being a kind of hamiltonian, with subtle differences between them, we summarize
those operators, their relations and the algebras to which they belong in the next dia-
gram. We remark that the restriction A, — 2 is linear, which means that the diagram

commutes.
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reA
QI,\r~{f;-} > Hy(x) Hy € 2y
By By
* \Z XA ' sz XA
XDz AA£D
XNAA0 fibes
XNA“#D
A, > @) o e
n n
Ui ; 7
Q‘:\'w{}} > Hi(x) Hy € Ay

3.5 Translation Invariance

The aim of this section is to provide a definition of translation invariance for inter-
actions. That is, a way to tell if the interaction ®(A + ) € Ap., is the same as the
translation of ®(A) € A,. In order to define translation of operators, we first need to de-
fine translation of states. Supposing that every H, has the same dimension, let (Vj;); jeza
be a family of unitary mappings V;; : H; — H; such that: Vj; = idy, and Vj, o Vi; = Vig.
An obvious way to construct such a family is to choose a Hilbert basis (egi), o ,eg))
for each H;. Then Vj; is defined by linear extension of the relation Vl-j(e%)) = e%) for
1 < m < d. Another way to indexing this family is by putting V;, := Vjitq). This
indexing is more suitable to define, for each A € P;(Z?), the operator:

VA,a = ® ‘/;,a (329)

ieA
We recall that the tensor product of operators 77 ® ... ® T,, is defined by linear
extension of (11 ® ... @T,)(11 ® ... @v,) =T1(v1) @ ... @ Tp,(vy,). The isomorphism
V.o between Hy and Ha., induces naturally an isomorphism 7, , between Ay and Ay,

in the obvious way:

TA@(A) = VA’QAVA+Q7,a; A e Ay (330)
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3.6 Equilibrium States

In classical statistical mechanics, equilibrium states are given by probability measures
on the configuration space. By the Riesz-Markov theorem, measures are nothing but
positive linear functionals defined on the set of observables (continuous functions), being
w(f) the expected value of such observable. By analogy, our “quantum measures” will be
functionals on the algebra of observables as well. Such functionals must also be positive,
that is, p(A) > 0 for every positive operator A and the normalization condition (needed
for a measure to be a probability one) is translated into the condition ¢(1) = 1 or ||p||= 1,
which are equivalent for unital algebras. Such positive normalized functionals are often
called states. They are, in fact, generalizations of the concept of state as (normalized)
vector of the Hilbert space. Given such a vector v, the functional p, that maps A —
(1, Ay) is positive and normalized (and is also the expected value of the observable).
When there is risk of ambiguity, we will call this kind of state vector state. This way of
seeing the vector states as functionals is analogous to seeing points as Dirac measures in
the classical context.

For finite dimension spaces, the trace will play a remarkable role in the determination

of states.

3.6.1 Trace

The role played by the trace will be similar to the role played by the a priori measure
in classical statistical mechanics. In this regard, the trace of an operator is analogous to
the integral of a function and this analogy can be extended further, as we will comment
below. In the finite-dimensional context, there is a reasonable justification for viewing the
trace as a kind of a priori measure, which will be presented after we properly construct
the trace.

Given a finite-dimensional Hilbert space H and fixed a certain basis v = (e1,...,€,),

we define the trace of an operator A : H — H with respect to v as

iy (A) = 3 (el de) = 3 As,

i=1 =1

where A;; = (e;|Ae;) are the matrix elements of A. We know that

k=1

This tells us that
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=3 BrAy=> (BA)
k=1 i=1 k=1
= try(BA).

This property, sometimes called “cyclicity” of the trace is a fundamental property.
Now we can prove that the value tr, does not depend on the choice of the basis. Indeed,

let w be any other basis and B the change-of-basis matrix. Then

trw(A) = try (B'AB) = tr (BB 'A) = tr,(A)

From now on, we will write tr instead of try.

By way of information, the issue is much more sensitive when the space has infinite
dimension, even for bounded operators. The next paragraph contains a brief discussion
of them based on [RS81].

Applying the same formula, it is not even clear, for example, that >3, (v;|Av;) does
not depend on the order in which the summation is done and whether it is finite or infinite.
If (v|Av) > 0 for every v in the basis (in which case we say that A is positive-semidefinite),
at least the result does not depend on the order, so we can assign a value to tr(A) as long
as we allow it to be 400 as well. In this case, the trace does not depend on the basis as
well, but the proof cannot follow the same lines as in the finite case (see theorem VI.18
from [RS81]). For such operators, we say that it is trace-class if the trace is finite. This is
similar to defining the integral of a non-negative function, whose value can be infinity and
to be trace-class is, then, analogous of begin integrable. Strengthening the relationship
with integrals, we say that a general operator A is trace class if |A| is, where |A| comes
from the continuous functional calculus. It is true that an operator is trace-class if and
only if ... The set of trace-class operators forms an ideal of B(#) contained in the set
of compact operators. This ideal can be turned into a Banach space with norm tr|A|,

although it is not closed in norm from B(#). It is possible to show that. ..

3.6.2 Density Operators

It’s easy to see that (A, B)ys = tr(B*A) is an inner-product in M, (C), called the
Hilbert-Schmidt product. This induces an isomorphism between M, (C) and its dual. In
particular, every state w of M, (C) can be represented by a matrix D, called the density
matrix of w in such a way that w(A) = tr(D*A), which justifies the analogy between trace
and a priori measures in this context.

The conditions that a functional must satisfy to be a state are translated by requiring
their density matrices to be positive and have trace 1. In fact, w(1) =1 <= tr(D*1) =
1 <= tr(D) = 1. For every vector v, let Py, be the orthogonal projection onto v, given
by the (positive) linear map Py(¢) = (¢, ¢) [¢). Then, taking an orthonormal basis that

contains ¢, tr(D*Py) = > ;(e;, D*(Py(e;))) = (¢, D*9) = (¢, D). Thus, if tr(D*A) > 0
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for every positive A, D is (real and) positive. Reciprocally, suppose that D is positive, so
that D = D*. Given a positive observable A, let (ey,...,e,) be its basis of eigenvectors.
Then, tr(D*A) = Y ;{e;, DA(e;)) = Y5 Mifes, De;) > 0, since the eigenvalues \; of A are
positive. In the general case, we define a density operator to be a positive operator which
has trace 1.

As already explained, the set of vector states can be seen as a subset of the density
matrices. This subset is proper, that is, there are density matrices (the same as positive
normalized functionals) that do not come from vector states. This is not surprising,
though — it is like saying that not every measure is a Dirac measure. Let ¢ be an unit
vector and P, the orthogonal projection in the direction of ¢. If (¢ = ey, ea,...,¢,) is an

orthonormal basis containing 1/, we have, for every operator A:

n

(Py, Ayus =Y (i, A(Py(e:))) = (1, A(9)).

i=1

Thus, (Py,-)us is exactly the functional p, corresponding to 1, so we conclude that
P, is its density matrix and that the one-dimensional projectors are in one-to-one cor-
respondence with the vector states. Since any positive matrix can be written as a finite
linear combination of one-dimensional projectors with positive coefficients, we can think
of a general density matrix as a mixture of vector states. By mixture, one can think about
probabilistic uncertainty. For example, if P, and P_ are the density matrices of the up

and down spins, then the mixture %PJF + %P_, whose density matrix is

L) o

can be interpreted as the state where there is 50% probability of the particle having

e}

N[

spin up and 50% probability of the particle having spin down. This state is not a vector
state, since it is not a projector, and must not be confused with the linear combination

75 |+1) + 75 [=1), whose density matrix is the projector

(1)

Indeed, although both states applied to the observable o® give the same result, zero,

N[ N
N N

the mixed state applied to o; also gives zero, while the linear combination gives 1. This
phenomenon has to do with the fact that a linear combination produces interference
terms, while a mere statistical mixture does not. It is worth saying that there may be
more than one way of writing a state as a linear combination of vector ones?. Notice that
the density matrix corresponding to 50% probability of spin left and 50% probability of
spin right is also %]l. These two situations, although being clearly physically distinct are

experimentally indistinguishable.

2 this means that (unlike the classical counterpart) the quantum state space is not a simplex.
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Besides expected values, density matrices also provides with the probability of any
result. Indeed, let A be an observable and P, the projector onto the eigenspace of some
eigenvalue A\ of A. The probability p, that a measurement of A yields the value A is the
same as the probability that a measurement of P, yields one. The expected value of P,
tr(DP,) is then equal to py.

The formalism of density matrices is not only useful when the probabilistic aspect
comes from lack of information about one single particle, but also when it comes from a
real mixture: there are ways of preparing particles in the lab where approximately half
of them acquire spin up and the other half spin down. The most correct way of dealing
with this situation is with the formalism of tensor product and many-body systems, but
density matrices suffices in some situations.

Talking about many-particle systems, if we have a system with density matrix D; and
another with density matrix Ds, the composed system has D; ® Dy as density matrix.
Nonetheless, not every density matrix of a composed system is decomposable as D; ®
D,. For example, the density matrix associated with the entangled state |[+1 ® —1) —
|—1® +1) is:

00 0 0
0 5 =50 (3.32)
03 4 oo|
0 0 0 0

which clearly is not of the form A ® B.
There is a very important situation where statistical considerations (and hence more
general states) are needed: when we only have information about a smaller subsystem

instead of the whole one. This situation is dealt in what follows.

3.7 Classical Systems

Definition 3.2. We say that an interaction ® is classical if there is, for each z €
74, a basis ([1,),...,|r.)) of H, such that ®y is diagonal with respect to the basis
(®uex |02)) geq, for each finite X C Z%.

The reason for this name comes from the fact, to be developed in this subsection, that
there is a natural identification between quantum systems with classical interactions and
classical spin systems.

In general, recall that an operator is diagonal with respect to a basis (e, ..., e,) if,
and only if, it is AP, + - -- + A\, P,, where \; and P; are respectively the eigenvalue and
the projector corresponding to e;. The set of such operators is then identifiable with the

set of complex functions in the index {1,...,n}:
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Ao A=Y f(i)P,

It is easily verifiable that this identification is indeed a *-homomorphism of algebras,
that is, the operator AB corresponds to the function i — A(i)B(i). Moreover, the effect
of viewing an operator A as A ® 1 in the tensor product H @ M’ is the same as viewing
the function A in {1,...,n} ®{1,...,n'} as A(3,j) := A(7).

Back to statistical mechanics, the interactions are example of diagonal operators by
hypothesis and, consequently, every hamiltonian, including those with boundary condi-
tions, is identifiable with a function H : 2, — R.

The density matrix e ?# of the equilibrium state will also be diagonal:

e BH — Z e*ﬁH(”)Pw.

weN
By what was discussed about density matrices, this density matrix has the interpre-
tation of a probability measure on 2,. In particular, the probability of a superposition
is zero. A consequence of this is the following: given any operator A, and a diagonal

operator D, we have:

(W DAw) = 3 (w| Do) (o] Alw) = (w| D |w) (w| Alw),

TEQ
Which means that the expected value tr(DA) will only depend on the diagonal of A,
so only “classical observables” will matter. All these observations allows us to identify
Ha with Q4. Furthermore, every classical spin system can be seen as a quantum one by
the same identifications done here.
The Hilbert space H, is mapped into the set of basis vectors 25. We will see, in fact,

that the probability of a superposition is zero.
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CHAPTER 4

Pirogov-Sinai for Quantum Spin

Systems

4.1 Hypothesis

This section summarizes all the hypothesis needed for the main results. Even though
we have already stated some of this hypothesis, we will recall them here.

Every one-particle space H, is supposed to be |S|-dimensional, |S|< +o00. The total
hamiltonian will be build upon two interactions, (Px)x and (Vx)x. We suppose that
(Px)x is classical (see definition 3.2) and that depend smoothly on a parameter p € %,
with % C R? an open set. The hamiltonian corresponding only to (®x) will be denoted
by Hy. The total hamiltonian is defined with the aid of a coupling constant A:

Hy= ) ®x+AVx
XCA

Assumptions on the classical part:

1. The interaction (®x)y is translation invariant!.
2. It has finite range R < +o0.

3. There is a finite set of periodic configurations G' = {gV), ..., ¢} such that r = p+1
and for each p € %, the set of configurations that minimizes the specific energy

(see section 1.1) e,,(u) := e,(g™) is a subset of G.
4. For each m, e,,(u) is a C'! function in % .

5. Let eg(u) denote the min,, e,,(x). There is ug € % such that e,,(u) = eg(u) for

each m.

L There would be no harm to assume that they are only periodic.
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6. The matrix of derivatives

0
(em — er))
(8/“ 1<mi<r—1

is invertible [BI89].
7. There exists a constant 79 > 0 independent of p such that
H,(0) > ep(p) + 1o (4.1)
for all  that is an incorrect point for o.

8. There is a constant Cy such that

9
O

Those hypothesis are really standard when dealing with Pirogov-Sinai theory, includ-
ing a kind of Peierls condition (hypothesis 7). Recall from section 1.1 that hypothesis 6
implies that the zero-temperature phase diagram is reqular, that is, given any list of £ < r
indices i; < ... < i, the set of u € % such that the minimum ey(p) is attained ezactly
by €;,,...¢; is a (r — k)-dimensional submanifold of % .

Assumptions on the quantum perturbation:

1. Vx = 0 unless X is a connected set.
2. They are translation invariant.

3. For a given constant g, we have

0
Ops

Va

P
WVllho= 3 <||VA||+Z
=1

A;xeA

) M < oo (4.3)

The above condition is clearly satisfied if the perturbation has short-range, but also
is satisfied if ||V4|| and ||%VA|| has a sufficiently fast exponential decay. Perturbations
that depend on non-connected sets can be considered by putting the depended on a larger

set that is connected and contains the former.

Remark. Although there are a lot of hypothesis, a great class of important models satisfies
them. Indeed, a hamiltonian that has a classical part to which the usual Pirogov-Sinai
theory is applicable and a quantum perturbation with exponential decay is good enough.
This includes the usual Ising model with transverse field, the Potts and Blume-Capel

model with some kind of transverse fields, etc.
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4.2 Classical Representation

The aim of this section is to try and define objects, that will be called “contours”,
through which we will be able to write the partition function as the partition function of

a gas of non-interacting clusters of contours:

DR | 2600 § Caiiid (4.4)

P={y1,....ym} 7€l

4.2.1 Dyson Series

In order to do so, we are going to need the so-called Dyson series, which is often
a very useful tool to expand certain quantities in terms of a series when dealing with
perturbations of a Hamiltonian.

Although the Dyson series may look cumbersome of even scary at first sight, it contains
a very deep physical meaning and a tight relationship with quantum field theory. These
topics can be more naturally covered if we talk a little about the interaction picture. The
discussion here will be primarily heuristic and some adaptations are needed to put them
in a rigorous framework?.

Apart from the well-known Schrodinger picture — where the observables are fixed and
the states evolve with time, and the Heisenberg picture — where the states remain fixed
and the observables change with time, both the states and the observables have time
dependence in the interaction picture, which may be viewed as a kind of intermediate
picture. For reasons that will become clearer soon, the interaction picture is useful when
we can split the hamiltonian H like H = Hy + V', where Hj is usually some well-known
term. The term associated with V' is called the perturbation and we will always suppose
that it is bounded. We start by evolving the observables in the Heisenberg fashion, if the

hamiltonian were given only by the first term:

Af(t) = ei(t_tO)HOAe—i(t—tU)H07

where the subscript [ indicates that the quantity is in the interaction picture. The
states are, then, evolved in the necessary way to overcome the flaw in the observable

evolution:

(1) = eI ()

Recall that e?e? = e4*P is guaranteed only if A and B commute, so in the general
case the two exponentials cannot be simplified. For simplicity, we are going to denote
e!t=to)Ho o =it=t0)H 1yv {7, (¢), and the final problem is to compute it. In fact, U;(t) satisfies

a differential equation.

2 A standard reference for a rigorous treatment is [Ara73]
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U(t) = ie'tto)Ho f o=ilt—to)H _;cili=to)Ho po—i(t—to)H
e _iei(t_tO)HOV(g_i(t_tO)H
— —iei(t_tO)Hov<€_i(t_t0)H06i(t_t0)H0)@_i(t_tU)H

_ _iv(t)ei(t*to)Hoe*i(t*to)H

— Ul(t) = —iV()U;(#) (4.5)

where we evolved V' accordingly to the interaction picture. In quantum field theory,
instead of looking at H or Hj, one often starts with some operator V' and look for the
solution of (4.5). Then, the solution is combined with some one-parameter unitary group
Us(t) playing the role of e~(*=%0)Ho to obtain the evolution group U(t) = Uy(t)V (t).

The differential equation (4.5) is nothing more than a linear differential equation in
the space of operators of some Hilbert space. As such, we can make use of the classical

tools to solve it, for example, the trick to transform it into an integral equation:

Uilt) = Us(to) i | V() U () dt. (4.6)

to
The integral of a function f taking value in a Banach space, as above, is known as
Bochner Integral, which is the limit of the integral of simple functions converging to f,

exactly like the real case. There is a nice criterion for the integrability of such function:

Theorem 4.1. Let (X, A, p) be a measure space, B a Banach space and f : X — B a

function such that:

Q The composition ¢ o f is measurable for every continuous functional ¢ € B*;

[ There is a set Y C X with u(Y') = 0 such that the image f(X\Y) is a separable
subset of B.

Then, f is integrable (in the sense of Bochner) if, and only if the real function || f|| is

integrable.

Proof. Just use the Pettis’ measurability theorem (section V.4 from [Yos95]) together
with the Bochner integrability theorem (theorem V.5.1 from [Yos95]). O]

We are only going to integrate functions that are almost everywhere continuous defined
on compact sets, so everything will be integrable by the last theorem.

A useful property about Bochner integrals is that, if ¢ is a continuous functional in
B, then:
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@ (/fdu> = /¢Ofdu- (4.7)

This allows to prove all the expected properties of the integral in this case, including
its linearity and Fubini.

The integral (4.6) can be iterated, giving a (formal) series.

Uy(t) = 1 —z’/tV(tl)dtl + (—1)2/tV(t1)/t1 V() U (t2) dtadt,

to to to

Ur(t) “ =71+ 2(—2')" /tt /t:n1V(t1)...V(tn)dtn...dt1 (4.8)

Notice that the product of operators are time-ordered by construction: ¢, < t,_1 <
... < t; < t. Instead of worrying about it, we can make all intervals of integration between
to and t and then order the product with brute force.

It is customary in the physics literature to talk about the “time-ordering operator”
T and use it to write down expressions of this kind. However, this operator is not well-
defined® in B(H). Rather, we will use the following procedure.

For any given n—tuple of real numbers 7 = (t1,...,t,), let 7. : {1,...,n} — {1,...,n}
be some permutation such that (s, ..., s,) := (tx1), ..., tx(n)) is non-decreasing. In the case
where 7 consists only of distinct numbers, then there is exactly one such permutation?.
We define .(By, ..., B,) = Bra)...Brn) as the obvious action of the permutation group
on the n—tuples of operators composed with the product. Since the order is reversed, we

will actually apply 7_,:

/[to,t]n T (V(t1),....V(tn))dr,

which is, however, not equal to what we had before due to double-counting. Given
n instants of time (sq,...,s,) with s; < ... < s,, there are exactly n! distinct n—tuples
(t1,...,t,) that are mapped to it, so the error can be corrected by the introduction of a
global factor 1/nl.

Now, multiplying everything on the left by e~*!~%)Ho e have:

e t=to)(HotV) w — » o=ilt—to)Ho i (_Z')n /[ ettt o (v (). .V (t,))dr  (4.9)
n=1 n

to,t]"

Writing each V (¢;) in terms of V' and the evolution, the integrand is equal to

By redefining it as an operator in a tensor product of curves defined in operator algebras, possibly it
may become well-defined. We will not try to follow this path here.

In the general case, although there is in fact some ambiguity, the expressions we are going to write will
not depend on the specific choice. For example, when integrating over [tg,t]™, the set of problematic
points is a null set.
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efi(tfto)Ho T, (ei(tlftO)HO Vefi(tlftO)HO ei(tn*tO)HO Vef’i(tnfto)Ho)

PIRRED)

. e*i(t*tO)Hoe’i(Sn*tO)HO Vefi(snftQ)ngi(Snfl7t0)H0 vefi(snflftO)HO o ei(slfto)Hovefi(Slfto)Ho.

Now we can simplify the products of exponentials, since they all commute (the expo-

nents are all multiples of Hy). We finally get:

—i(t—to)(Ho+V) « 9 —i(t—to)H, . (_Z)n
e~ t=to)(HotV) « _ » =il O)O+Z -

/ U(Hy,7,V)dr, (4.10)
to.tl”

n=1

where

U(HO, T, V) — e—i(t—sn)HoVe—i(sn—snfl)Ho o e—i(SQ—sl)Ho Ve—i(sl—to)Ho

can be understood as the action of the perturbation V' at times 7 = (t1, o, .. .t,), while
the evolution is given by the unperturbed hamiltonian Hy in the intervals between them,
from ¢y to t. This interpretation is further reinforced by the usual Feynman diagrams in
quantum field theory.

Now we are going to adapt those ideas to get a series more suitable to our case. In
first place, we are going to perform the Wick rotation ¢t — i3. Taking ty = 0, this leads us
to e PHoePH  We would like the integrand to be V(t,)...V (¢;) instead of V (¢1)...V(¢,), so
the one-parameter group will be actually U(3) = e ##efHo which satisfies the differential
equation U'(5) = —U(B)V(B). Proceeding as before, we will end up with:

¢ OUHOHV) _ oBHo | 3

n=1

(—1)"/
T(Hy, 7, V)d 411
o | Hom VT (411)

T(Ho,7,V) = e oy e lmsHoyem(ss=s)Ho - o=(sn=sn-1)Hoy/ e =(B=sn)Ho

Y

and now we are using m_, instead of 7, to define the (sq, ..., $,).

Some commentaries about the difference in the physical meaning between e’ and the
Wick rotated e? are due. The former is a very special operator, which gives the time
evolution of the states. The second one is a density matrix, which describes the state
of a system in thermal equilibrium. The eigenvectors for e represents static states,
since these vectors only change by a phase. The evolution for a general vector is due
to different phases for different eigenvectors and the linearity. Now consider e# in the
basis that diagonalizes Hy,. If V = 0, that is, H is classical, then e’ is a diagonal
matrix whose elements are the probability of each configuration. Differently from e,
these elements don’t have modulus one, but rather the trace of e?¥ which stands for the

total probability, must be one. The change in f is not an evolution in time, but is the
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evolution of the probability distribution as the temperature decreases. For the perturbed
hamiltonian, the presence of elements out of the diagonal indicates a non-zero probability
of a superposition between basis vectors.

For finitely many potentials, we have the

Theorem 4.2. Let Hy and (V;)¥_, be elements of some Banach algebra. Then:

e_B(HO,A+Zi:O Vi) — Z (H ((_nll;:“> /[07/3]711 - /[075}% T(T, n)di...dﬁ, (4.12>

n \;=1

where the sum is over all multiindex n : {1,....k} = No, 7 = (71, ..., %), and

n:Zle i _
T(r,n)= [[ e oty (4.13)
=0

(%a () ‘771—1) = 71-7'(‘/17 [ ‘/17 ‘/27 a3} ‘/27 HS) V’m "'7Vn)7

with each potential V; being repeated n; times and the conventions: V, = 1, sg = 0

and Sp+1 = B.

This theorem can be proven by induction.

4.2.2 Classical Configurations

In this section we are going to develop some tools to map our d-dimensional lattice A
onto a d+ 1 dimensional lattice Ly = A x {1, ..., M }. The role of the extra dimension will
be played by the inverse temperature 3, so we have to divide it by M. Denoting 3/M by
B and the transfer matrix with 3 by T, we have:

M

Zi=tw T = Y Ao1|Tlos)...{ou| T o) = > [ (0| T|ows1), (4.14)
O14esO M 01400 t=1

where we considered periodic boundary conditions, that is, op;11 = 01 by convenience.

The next step is to expand T" by means of the theorem 4.2. Clearly, the theorem

must be applied with hamiltonian H& A, inverse temperature B and family of interactions

(Va) aca. In order for the expansion to be more suitable for our purposes, we are going to

rearrange the summation. Given a multiindex n, the support of n, supp n is the collection

of subsets A C A such that n4 # 0. The summation can be rewritten as:

=2 > >
n BCA o/={Ai,...,A } n;suppn=g/
Ui A;=B

So we introduce the notation:
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_ k(1)
T ) = . o (H <(n13! ) /[0,/31"1 m/[o,ﬁ]"k T(r,n)dr..dn

T(B) = > T(o).
o ={A1,..., AL}
Ui Ai=B

Now, we want to replace T in (4.14) by Y5 T(B). Before so, we need to derive some
properties of T'(B) and rewrite it in a more convenient way.

Since only perturbations due to sets Ay, ..., Ax that sum up to B contributes to T'(B),
spins that are far enough from B do not perceive the perturbations and should “evolve” ac-
cordingly to Hy. This intuition will guide our way to analyze T'(B). The first consequence
comes by considering the following definition. We say that an operator A € B(H; ® Ha)

is diagonal in #H; with respect to a basis (e;); if, whenever i # j,
<6i®1)1|14|6j®1}2> :0, VUl,UQEHQ.

It is clear that we only need to check this condition for vector vy, vy in a basis (f;); of
Ho. Also, if A and B are two operators diagonal in H; with respect to same basis, so is
their product AB. Indeed, if i # j, we have:

(e; @v|ABle; @) = (e, @ v| Aler @ fo) (ex @ fo| Ble; @ v')
N4

= 0k (e, @v| Alex ® fo) (ex ® fo| Ble; @ ')
ot

:Z<€Z’®U|A|6i®fz><€Z’®fg|B|€j®UI>:O
l

o

As a corollary, the integrand T%(7,n) is diagonal in H\p with respect to the stan-
dard basis — the exponentials are diagonal and the potentials are of the form 1 ® V.
This implies that T'(B) shares this same property. To see this, just take the functionals
Yoo (A) = (o] Alo") = (oa\p ® op| Aloy\ p ® 05) and apply equation (4.7). This is not
surprising, though, since it comes from the already mentioned fact that the quantum
perturbations only affect Hp.

Denoting by P,, the operator that sends |0’) to |o) and every other basis vector to

zero®, the discussion above allows us to perform®:

T(B): Z Z <0-A\B®O-B|T<B)|U;\\B®OJB> Po-7o-l

/ /
OA\B> UA\B 0B, 0p

(o1

In the physics literature, this operator is denoted by |o) (o’|. We don’t do that here.

6 This is telling us that, if we represent T'(B), using the Kronecker product, by a 21M\Bl 5 9IA\B plock
matrix with 2/A1 x 2/A1 blocks, and denote each one by M(oa\B, U;\\B), then only the diagonal ones
— M(oa\B) := M(0op\B,0A\B) — Will be non-zero.
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= Y Y (oas®0op|T(B)|oyp®0p) (PUA\B,,,/A\B ® Popol,)

! /