• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2023.tde-22022024-164112
Document
Auteur
Nom complet
Artur Almeida Moura de Oliveira
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2023
Directeur
Jury
Lomonaco, Luciana Luna Anna (Président)
Faria, Edson de
Hazard, Peter Edward
 
Titre en portugais
Um estudo sobre as Coordenadas de Fatou durante a bifurcação parabólica
Mots-clés en portugais
Bifurcação parabólica
Coordenadas de Fatou
Dinâmica complexa
Implosão parabólica
Resumé en portugais
A presente dissertação possui o objetivo de trazer detalhes sobre a implosão parabólica utilizando as Coordenadas de Fatou, estudando os conceitos e principais teoremas da bifurcação parabólica dentro da área da dinâmica complexa em C. Para um estudo completo, introduzimos conceitos básicos do tema, além de importantes resultados dos mapas quase-conformes, tais como a cirurgia quase-conforme, que foi de grande interesse para compreender a bifurcação parabólica, objetivo principal do trabalho. A área de dinâmica complexa foi primeiramente estudada por Gaston Julia, Pierre Fatou, Lucjan Böttcher, Gabriel Koenigs, Ernst Schröder, entre outros e, ultimamente Shishi- kura, Douady, Hubbard e Sullivan fizeram importantes contribuições para o avanço da Dinâmica Complexa Moderna. O trabalho usa como referência a obra de Shishikura, intitulada Bifurcação de pontos Fixos Parabólicos. Cada capítulo do trabalho está organizado por temas. O primeiro capítulo traz detalhes sobre os conceitos básicos da dinâmica complexa que são importantes para o entendimento da bifurcação de pontos fixos parabólicos. O segundo traz detalhes sobre os mapas quaseconformes. O terceiro sobre a dinâmica parabólica. O quarto traz o objetivo principal do tra- balho, a bifurcação parabólica. Por fim, nos último capítulos, os apêndices.
 
Titre en anglais
A study about the Fatou Coordinates during the parabolic fixed points bifurcation
Mots-clés en anglais
Complex dynamics
Fatou coordinates
Parabolic bifurcation
Parabolic implosion
Resumé en anglais
The present dissertation has the objective of bringing details about the parabolic implosion using the Fatou coordinates, studying the concepts and main theorems of the parabolic bifurcation within the area of complex dynamics in the complex plane. For a complete study, we introduce basic concepts of the area, in addition to important results of the quasiconformal mappings, such as the quasiconformal surgery, which was of great interest to understand the parabolic bifurcation, the main objective of the work. The area of complex dynamics was first studied by Gaston Julia, Pierre Fatou, Lucjan Böttcher, Gabriel Koenigs, Ernst Schröder, among others, and lately Shishi- kura, Douady, Hubbard and Sullivan made important contributions to the advancement of Modern Complex Dynamics. The work uses as a reference the paper by Shishikura, entitled Bifurcation of Parabolic Fixed Points. Each chapter of this paper is organized by themes. The first chapter details the basic concepts of Complex Dynamics which are important to understanding the bifurcation of parabolic fixed points. The second brings details about the quasiconformal mappings. The third on Parabolic Dynamics. The fourth brings the main objective of the work: the parabolic bifurcation. And, in the last chapters, the appendices.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2024-02-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.