• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2013.tde-21012015-214244
Document
Auteur
Nom complet
Bruno de Paula Jacóia
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Tello, Jorge Manuel Sotomayor (Président)
Garcia, Ronaldo Alves
Zanata, Salvador Addas
 
Titre en portugais
Estabilidade estrutural dos campos vetoriais seccionalmente lineares no plano
Mots-clés en portugais
Campos de vetores lineares por partes
Compactificação de Poincaré
Estabilidade estrutural
Resumé en portugais
Estudamos uma classe de campos de vetores seccionalmente lineares no plano denotada por X. Tais campos aparecem frequentemente em modelos matemáticos aplicados à engenharia. Baseados no trabalho de J. Sotomayor e R. Garcia [SG03], impondo condições sobre as singularidades, órbitas periódicas e separatrizes, definimos um conjunto de campos de vetores que são estruturalmente estáveis em X. Provamos que esse conjunto é aberto, denso e tem medida de Lebesgue total em X, o qual é um espaço vetorial de dimensão finita.
 
Titre en anglais
Structural stability of piecewise-linear vector fields in the plane
Mots-clés en anglais
Piecewise-linear vector fields
Poincaré compactification
Structural stability
Resumé en anglais
We study a class of piecewise-linear vector fields in the plane denoted by X. These vector fields appear often in mathematical models applied to Engineering. Based on Jorge Sotomayor and Ronaldo Garcia paper [SG03], we impose conditions on singularities, periodic orbits and separatrices, to define a set of vector fields structurally stable in X. We give a proof that this set is open, dense and has full Lebesgue measure in X, that is a finite dimensional vector space.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2015-04-08
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.