• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2013.tde-21012015-214244
Documento
Autor
Nombre completo
Bruno de Paula Jacóia
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2013
Director
Tribunal
Tello, Jorge Manuel Sotomayor (Presidente)
Garcia, Ronaldo Alves
Zanata, Salvador Addas
Título en portugués
Estabilidade estrutural dos campos vetoriais seccionalmente lineares no plano
Palabras clave en portugués
Campos de vetores lineares por partes
Compactificação de Poincaré
Estabilidade estrutural
Resumen en portugués
Estudamos uma classe de campos de vetores seccionalmente lineares no plano denotada por X. Tais campos aparecem frequentemente em modelos matemáticos aplicados à engenharia. Baseados no trabalho de J. Sotomayor e R. Garcia [SG03], impondo condições sobre as singularidades, órbitas periódicas e separatrizes, definimos um conjunto de campos de vetores que são estruturalmente estáveis em X. Provamos que esse conjunto é aberto, denso e tem medida de Lebesgue total em X, o qual é um espaço vetorial de dimensão finita.
Título en inglés
Structural stability of piecewise-linear vector fields in the plane
Palabras clave en inglés
Piecewise-linear vector fields
Poincaré compactification
Structural stability
Resumen en inglés
We study a class of piecewise-linear vector fields in the plane denoted by X. These vector fields appear often in mathematical models applied to Engineering. Based on Jorge Sotomayor and Ronaldo Garcia paper [SG03], we impose conditions on singularities, periodic orbits and separatrices, to define a set of vector fields structurally stable in X. We give a proof that this set is open, dense and has full Lebesgue measure in X, that is a finite dimensional vector space.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2015-04-08
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.