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Resumo

Fabŕıcio Rodrigues Lapolli. Accuracy and stability analysis of finite-volume methods on
unstructured spherical grids for shallow water oceanic models. Tese. Instituto de Matemática
e Estat́ıstica, Universidade de São Paulo, São Paulo, 2023.

Uma importante ferramenta ao nosso alcance para a avaliação da robustez dos Modelos
de Circulação Globais (GCM) é a compreensão da discretização horizontal do core dinâmico
sob o regime de aproximação de água rasa e seu uso nas grades respectivas. Nessa tese, a
acurácia e a estabilidade de diferentes métodos usados, ou com uso adequado, em mode-
los oceânicos não estruturados considerando o regime de água rasa foram avaliadas. Esse
trabalho uni os esforços feitos durante a qualificação apresentada em 2021 até o trabalho fi-
nalizado. Também junto a esse segue um artigo a submetido ao Journal of Ocean Modelling.
Nesse trabalho foi avaliado os esquemas de grade A (NICAM), B (FeSOM 2.0) e esquemas
de grade C: TRiSK nos triângulos, discretização horizontal de MPAS-O e de ICON. Duas
grades foram utilizadas: uma grade padrão não-otimizada (MODSTD) e a Spherical Circum-
centre Voronoi Tessellation (SCVT) do artigo submetido. Os presentes resultados mostraram
que os esquemas possuem diferentes desempenhos em relação à acurácia, sendo os esquemas
de grade A e B apresentando ao menos uma acurácia de ordem 1 nos operadores e na sua
integração no tempo. Mesmo assim, o esquema de grade A mostrou-se suscet́ıvel às mani-
festações de oscilações numéricas na grade MODSTD, podendo elas contaminarem a grade e
consequentemente prejudicar a solução. Enquanto isso, os esquemas de grade C mostraram,
dependendo da grade utilizada, uma dificuldade em aproximar os operadores de água rasa.
Além disso, a teoria de representação de ondas inércio-gravitacionais em grade regulares
mostrou-se podendo ser extendida aos esquemas não-estruturados, onde se foi encontrado da
menor para a maior representação os esquemas: A, B e C, respectivamente. Dos esquemas C,
TRiSK nos triângulos mostrou ser o que mais se aproximava à forma cont́ınua da solução,
seguido por MPAS e ICON. Em relação à estabilidade, o esquema A mostrou possuir as
propriedades mais estáveis. Entretanto, as oscilações desse esquema mostraram influenciar
nessa estabilidade, i.e. enquanto MODSTD a estabilidade permanecia constante com a mu-
dança de profundidade, seu uso na grade SCVT mostrou-se haver uma perda de estabilidade
à medida que a altura equivalente era maior. Finalmente, em um esforço para compreender
os efeitos das oscilações numéricas no modelo 3D ICON, simulações com e sem filtro bi-
harmônico foram utilizados. Notamos que as oscilações presentes não foram suficientes para
desestabilizar o modelo, mas elas foram responsáveis por prejudicar na dinâmica do mod-
elo. Esse prejúızo foi identificado na perda da energia cinética das correntes. Além disso,
uma perda na energia cinética turbulenta fora também observado, podendo ser parcialmente
responsável pela perda de energia do sistema de correntes.

Palavras-chave: Modelo de água rasa, NICAM, FeSOM 2.0, MPAS-O, ICON-O, Insta-
bilidade numérica
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Abstract

Fabŕıcio Rodrigues Lapolli. Accuracy and stability analysis of finite-volume methods on un-
structured spherical grids for shallow water oceanic models. Thesis. Instituto de Matemática
e Estat́ıstica, Universidade de São Paulo, São Paulo, 2023.

One important tool at our disposal to evaluate the robustness of Global Circulation
Models (GCMs) is to understand the horizontal discretization of the dynamical core under a
shallow water approximation and its respective grid. In this thesis, we evaluate the accuracy
and stability of different methods used in, or adequate for, unstructured ocean models con-
sidering shallow water models. Our work draws a path from the early qualifying dissertation
presented in 2021 and the finalized work along with a submitted paper. We evaluated A-
(NICAM), B-grid (FeSOM 2.0), and C-grid schemes: one concerning the TRiSK discretiza-
tion in triangles, the other on hexagons (MPAS) and the ICON horizontal discretization
using a modified standard non optimized grid (MODSTD) and a Spherical Circumcentre
Voronoi Tessellation (SCVT) grid. Our results show that the schemes have different ac-
curacy capabilities, with the A- (NICAM) and B-grid (FeSOM 2.0) schemes providing at
least 1st order accuracy in most operators and time integrated variables, while the C-grid
(TRiSK, ICON and MPAS) schemes display more difficulty in adequately approximating the
horizontal dynamics depending on the grid use. However, A-grid has shown to be susceptible
to the manifestation of computational waves on the MODSTD grid that could contaminate
and damage the solution. Moreover, the theory of the inertia-gravity wave representation
on regular grids can be extended for our unstructured based schemes, where from least to
most accurate we have: A-, B, and C-grid, respectively. Considering only C-grid schemes,
TRiSK on triangles most accurately represent the inertia-gravity waves, followed by MPAS
and ICON. In terms of stability, we see that the A-grid scheme displays the best stability
properties. However, the scheme’s stability has shown to be influenced by its grid, due to the
manifestation of the spurious numerical waves. In contrast, both B-grid and ICON displayed
the least stability of all schemes. Finally, in an effort to understand the effects of potential
instabilities in ICON, we note that the full 3D model without a filtering term does not desta-
bilize as it is integrated in time. However, the present spurious oscillations are responsible for
decreasing the kinetic energy of the oceanic currents. Furthermore, an additional decrease
of the currents’ turbulent kinetic energy is also observed, which may play an important role
in the weakness of the oceanic currents.

Keywords: Shallow water model, NICAM, FeSOM 2.0, MPAS-O, ICON-O, Numerical
Instability
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Chapter1

Introduction

The interest in weather and climate research has been growing rapidly due to the increased
climate change, whose long-term effects are already been observed (e.g. Rignot and Thomas,
2002; Carton et al., 2005; Church and White, 2006), which may lead to irreversible changes
in the climate. Additionally, drastic short term effects are becoming more frequent, which in
turn may lead to severe consequences, such as material damages or a substantial loss of life.
In light of this situation, there is an increasing demand to prioritize the minimization of the
climate impact of current economic activities.

The importance of this field has been underscored by two recent recognitions. In 2018,
in economics for a work that aimed to develop “an integrated assessment model, i.e. a
quantitative model that describes the global interplay between the economy and the climate”
(RSAS, 2018). Subsequently, in 2021, a second prize was awarded for the use of climate
models as a way to quantify and predict global warming (RSAS, 2021).

These climate models are invaluable tools for understanding and projecting climate
change. Despite there being some level of criticism for these tools, due to its level of un-
certainty (Cowtan et al., 2015), they have been known to provide reliable results for the use
in research and weather prediction (Hausfather et al., 2020). Thus, it is highly desirable to
keep pushing the boundaries on this field and aim to improve these models.

Indeed, these efforts lead to our understanding being significantly expanded since the
inception of climate models. Currently, are comprised of several components, such as atmo-
spheric, ocean, ice, and land. The atmospheric and ocean components are subdivided into a
physical core and a dynamical core. The physical core model incorporates parameterizations
for factors such as the thermodynamical and dynamical impact of radiation, precipitation,
cloud and ice processes, as well as unresolved sub-grid scale motion. On the other hand,
the dynamical core model is responsible for solving the governing fluid and thermodynamic
equations on resolved scales, which are typically larger than the cell size.

In the particular case of the dynamical core, the continuous governing equations of
weather and climate models possess numerous physical properties, including mass conser-
vation, energy conservation, potential vorticity conservation, and more. It is important for
a dynamical core to contemplate these properties in order to provide reliable simulations.
To further discuss the topic, we provide a background history on the development of these
weather and climate models.

1.1 Modelling history

In 1950, the first successful numerical model was developed by Charney et al. (1950) on
the ENIAC computer and utilized the barotropic vorticity equation, which are simplified

1



INTRODUCTION 2

equations free of gravity waves. They incorporated a significant contribution by Courant
et al. (1928) (republished in English in Courant et al. (1967)), in which was shown that the
ratio between the time step and spatial resolution times the signal speed (or wind speed)
is bounded above, in order for the model to remain stable. This criterion, known as CFL
(Courant-Friedrichs-Lewys) criteria, remains fundamental today.

These early models were simplified and focused on the atmosphere. However, advances
were also being made in the field of oceanic modelling. Significant advancements emerged
for the general oceanic circulation theory through the seminal works of Sverdrup (Sverdrup,
1947), Stommel (Stommel, 1948), and Munk (Munk, 1950). Subsequent research also con-
tributed to the understanding of the ocean vertical structure and its associated density driven
circulation (Robinson and Stommel, 1959).

These developments helped the creation of the Bryan-Cox model (Bryan and Cox, 1967).
Although their model was not the first oceanic model created (e.g. Bryan, 1963; Veronis,
1963), their tool was coupled with an atmospheric model, creating the first atmosphere-
ocean coupled model (Manabe and Bryan, 1969).

Both ocean and atmospheric models at the time used a different positioning for their
variables on a horizontal grid, but no consistent definition was made for these positioning,
until Arakawa and Lamb (1977). They defined grids varying from A-E grids (Figure 1.1).
Further research on these designs have shown that the C-grid was found to be the most
accurate representation of inertia-gravity waves (e.g. Dukowicz, 1995; Konor and Randall,
2018a,b).

Figure 1.1: Different Arakawa grids. Source: Rajpoot et al. (2012)

Most ocean and atmospheric models so far used a finite difference approach for their
models, but the use of spectral methods, i.e. methods based on the Fourier Transform, was
popularizing among modellers. This method is far more accurate than the finite difference.
However, this increased accuracy sacrificed computational cost. Despite this, the use of semi-
lagrangian and semi-implicit methods allowed longer time steps, hence, diluting the overall
cost of computation (Randall et al., 2018a).
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Additionally, global grids of the finite difference method, presented a substantial issue,
the accumulation of points on the poles. This grid is an orthogonal quadrilateral grid with
a spatial step based on the longitude and latitude of the grid, thus the real distance of each
point of this grid decreased latitudinally as it reaching the poles.

Because of these issues, researchers sought viable alternatives in hope to eliminate or
minimize this problem, such as the overset composite grids (Phillips, 1957), cubed spheres
(Sadourny, 1972), icosahedral grids (Williamson, 1968; Sadourny et al., 1968). All previously
suggested alternatives. However, there were some problems that thwarted the use of these
geometries at the time. One such problem was the computational limitation. Variables in
lat-lon grids could be stored in large arrays for computation, which was not easily feasible in
other geometries. Another issue was related to the grid optimization. Most of the alternative
grids had an unstructured nature, and the distortion of the cells could concentrate errors at
some points of the grid. Hence, the Spectral Method became almost unchallenged for many
years. It is worth noting that some point accumulation also happened in the global grids
of the spectral methods, however to a much less degree. Furthermore, a special grid was
eventually devised for these methods that could avoid this singularity (Hortal and Simmons,
1991).

At the early dawn of the digital age, it was hypothesized that the computational power
in a single CPU would double every couple of years. However, in the present day, we are
witnessing signs of a slowdown in this trend (Schaller, 1997). As a result, this delay shifted
the focus from developing computers of a single processor to multiple processors. For context,
the Cray-1 was a revolutionary supercomputer of the 1970s, containing the vector processing
system1. It contained a single CPU node of 80 MHz (Russell, 1978). On the other hand,
in 2020, The Fugaku supercomputer was ranked first for the most powerful supercomputer
with 158,976 CPU nodes of 2.2 GHz (Kodama et al., 2020).

Therefore, methods that are able to easily parallelize could benefit from these many
nodes. However, the Spectral Method faces challenges in terms of inter-processor communi-
cation and does not readily benefit from parallelization, unlike gridpoint methods. Therefore,
the previously popularized spectral method started being substituted back to the gridpoint
method.

The previously utilized lat-lon grids were very useful, in that they had many properties
that were beneficial for the dynamical core. Lat-lon grids, however, had some obstacles that
prevented the optimization of the parallelization. As a result, alternative grids were sought
as to circumnavigate these obstacles, but also to maintain many of the properties of the
dynamical core. These properties, as mentioned by Staniforth and Thuburn (2012), are:
conservation of mass, which is highly desirable for long range climate predictions, as to
accurately describe some of the models tracers; accurate representation of balanced flows
and its adjustment, in which several important atmospheric and ocean flow is in a state of
quasi balanced/geostrophic state and dispersing inertia-gravity waves; absence or limitation
of computational modes, discretization processes include some solutions in the equations that
are non-physical, creating oscillations that are purely numerical, which may interact with
the physical modes (through nonlinear terms), potentially causing unrealistic results; the
ability to mimic basic geometrical or mathematical properties of the continuous equations,

1an implementation that allows for a CPU to operate efficiently with one-dimensional arrays.
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including, for example, energy, vorticity, and enstrophy conserving properties.
Many grids were considered as potential candidates, such as the cubed sphere, Yin-Yang,

Kite grids, etc (Staniforth and Thuburn, 2012). But one of the most popularized grids are the
spherical geodesic dual icosahedron-dodecahedron derived grids. They are tessellated either
by triangular cells or quasi-hexagonal (mix between pentagons and hexagons) cells. Their
use is highlighted by their flexibility to distort around the sphere. Notable models that use
these grids are: Tomita A-grid model (Tomita et al., 2001), used in NICAM; Danilov B-grid
(Danilov et al., 2017), used in FESOM2.0; TRiSK C-grid (Thuburn et al., 2009; Ringler
et al., 2010), used in MPAS and MPAS-O; and Korn C-grid (Korn and Linardakis, 2018),
used in ICON-O (Korn, 2017).

NICAM A-grid, A-grid hereafter, is a developed atmospheric model used with a grid
optimization on the triangular icosahedral grid. It contains a simple staggering design, but it
provides an efficient and high accurate model. FeSOM 2.0 B-grid, B-grid hereafter, is an ocean
model using, again, the triangular icosahedral mesh with a slightly different B-grid structure.
It is slightly more complicated than the previous model, but it still is quite a flexible grid,
and it avoids some issues present in the A-grid (Discussed in Chapter 3). TRiSK’s C-grid,
TRiSK hereafter, is a scheme used for both ocean and atmospheric component models. Both
models use the quasi-hexagonal dual mesh of the icosahedron. The scheme is able to satisfy
many important prerequisites for an ideal dynamical core. It is a very promising, but there
still remains a few problems that needs to be addressed (Refer Chapter 3). Korn’s C-grid
scheme, ICON hereafter, solved some of these issues, by relying on some special operators in
which he coined as admissible reconstructions Korn (2017). It is particularly advantageous
for triangular grids. It is what used in the current oceanic component of ICON. We further
discuss these schemes in Chapter 3.

These schemes, however, are prone to mesh distortion, which is known to impact the
overall performance of the model (Peixoto, 2016). In addition, the operations resolved in the
triangular tessellation allows for the manifestation of computational oscillations due to their
inherent structure. These oscillations could irreversibly damage the model if not treated.
Lastly, as we are achieving finer resolution with our technological advance, one important
issue is with the model stability. The instability noted by Hollingsworth et al. (1983) is once
again resurging (e.g. Gassmann, 2013; Bell et al., 2017; Peixoto et al., 2018; Gassmann,
2018), and is now an important point to consider for current models.

It is clear that the scientific community has not converged towards a single best choice
of grid and scheme. The deeper understanding of these schemes is still a matter to be
pursued, with many questions to be addressed. Of major importance are questions related
to accuracy and stability of such schemes, as well as adequate representation of relevant
ocean/atmospheric dynamics features.

1.2 Objective

We aim to present a general thorough comparison in accuracy and in stability between
horizontal discretization methods used in global models relying on unstructured triangular
icosahedral spherical grids. The schemes are the A-grid (Tomita et al., 2001), B-grid (Danilov
et al., 2017), TRiSK-MPAS (Ringler et al., 2010), and ICON (Korn and Linardakis, 2018).
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1.2.1 Specific Objectives

To achieve that, we aim to:

1. Analyse the properties of the triangular icosahedral grid and its dual Pentagonal/Hexag-
onal grid;

2. Investigate the accuracy of the operators involved in the solution of the nonlinear
shallow water equations for all schemes;

3. Analyse the normal modes of the linear shallow water equations on the grids;

4. Analyse the near grid scale instabilities;

Of utmost importance, this work targets to shed more light on the problem of development
of numerical methods for ocean models that rely on unstructured grids. Knowing the char-
acteristics of existing schemes is a key step towards development of new methods and/or
convergence of the scientific community to the most adequate numerical model formulation.

1.3 Organization

This thesis is organized as follows. In Chapter 2 we describe and analyse the triangular
icosahedral grid. In Chapter 3 we present a description of the methods and an analysis of
the shallow water operators’ accuracies. In Chapter 4 we analyse the presence of the near
grid scale instabilities.

In Chapter 5, we show the main results submitted to the Journal of Ocean Modelling.
It incorporates some results from the previous chapters, but with some differences. The first
difference is that the paper utilizes a different grid optimization than the ones previously used.
This change is important, since many models today utilize some form of grid optimization
(discussed in Chapter 2). Secondly, the scheme used in Chapter 3 uses the TRiSK scheme in
the primal (triangular) grid, however, in Chapter 5 we utilized the scheme used in MPAS-O,
i.e. we used the dual (quasi-hexagonal) grid. Finally, our work was done in collaboration
with the Max-Planck Institute für Meteorology. Hence, we analysed the presence and effects
of near grid numerical oscillations on the full 3D ICON-O.

Finally, in Chapter 6 we conclude our work. Here, we discuss the path undertaken
throughout the PhD program and necessary steps towards more reliable and efficient models.



Chapter2

Icosahedral Grid Analysis

For many years, the main choice of grid was the lat-lon grid, i.e. a grid composed of quadri-
lateral tiles equispaced around the globe (Figure 2.1). This grid was capable of satisfying
most of the ideal properties of a dynamical core. However, it suffered from some problems.
The most notable is that it has a poleward clustering of cells, in which the grid size sharply
decreases toward the pole, creating a singularity. This poleward increase of resolution would
change the Rossby Radius of Deformation1, proportionally, while in earth’s dynamics this
radius would not change so abruptly with latitude. Therefore, this change in radius could
potentially generate numerical waves of different speeds not present on the real earth. More
importantly, for explicit time integration methods (e.g. leapfrog, RK44), this singularity
would heavily cap the time step at the poles, requiring a lot of computational power to
simulate a rough resolution at the equator.

Figure 2.1: Illustration of lat-lon grid, obtained from Williamson (2007)

To avoid the problems of the lat-lon grid, it was necessary to find a mesh that could
provide a regularity in the resolution throughout the surface of the sphere (Earth).

Geometrically, there are 9 regular polyhedra, i.e. a solid whose faces are identical in
shape and size, and all angles equal. Out of these, however, only 5 are convex2: tetrahedron,
hexahedron (cube), octahedron, icosahedron, and the dodecahedron. These are called the
Platonic Solids (Figure 2.2).

Research has shown that, in general, solids with smaller faces will have a reduced dis-
tortion on the grid when transforming from the surface of the polyhedron to the surface of
the sphere (White et al., 1998). Thus, making the icosahedron and dodecahedron providing
the smallest distortion with the transformation. Hence, making them well suited for a basis
solid for climate modelling.

1Rd = c/(f0∆x) or Rd =
√
c/(2β) at the equator, where β is from the β-plane.

2any set of two points inside the polyhedron will draw a line that would still be inside the polyhedron

6
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Figure 2.2: Platonic Solids

Regardless, these solids are too rough for practical use, the finest is the dodecahedron
with around 4546 km of edge length. Hence, some subdivision of the faces must be performed
in order to increase the grid’s resolution.

In order to refine the solid to generate a viable grid, we subdivide the triangle through the
midpoints of each edge. As illustrated in Figure 2.3, for each face, we connect the midpoints
of the original grid, forming new inscribed triangles. The vertices of these new triangles are
then projected onto the sphere and thus forming a new grid. We repeat this process enough
times as needed until the desired resolution is achieved.

It should be noted that, on the plane, this process creates new equilateral triangles, thus
maintaining the domain uniformity. On the sphere, however, when we project the points onto
it, we create a distortion in the triangles (Figure 2.3.d). Any grid refining process of any solid
on the sphere will produce a distortion of the mesh. Nonetheless, this refining process of the
icosahedron has the smallest maximum-minimum length size ratio, of around 1.2 (Staniforth
and Thuburn, 2012).

However, this standard way of refining a grid is not optimal and some optimization is
desired as to either better distribute the distortion around the domain, or to increase the
operators’ accuracy. Tomita et al. (2001), for example, created a process that allowed the
grid to be smoother by connecting the mesh points with ”springs”, hence the process was
called Spring Dynamics. Heikes and Randall (1995b) created another optimization, moving
the vertices of the grid in order to improve the accuracy of a discrete Laplacian operator.
This method is now known as HR95. A rather popular optimization used is the Spherical
Voronoi Tessellation (SCVT) which is used by many models. It aims to move the vertices
of the grid, such that these vertices are the barycentric points of the dual mesh (Miura and
Kimoto, 2005).

Regardless of optimization, all meshes have an associated figure known as a dual mesh.
This is constructed by connecting the centre of the cells of the (primal) mesh. This concept
of the dual grid is used in most numerical schemes. For example, NICAM model has its main
variables defined on the centre of the dual mesh, while FESOM2.0, MPAS, and ICON-O
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Figure 2.3: Triangle subdivision

uses both primal and dual cells of the grids, in order to better achieve the accuracy of the
operators without much interpolation. We note that these models consider different dual
grids. Both NICAM and FESOM2.0 consider the dual cell connecting the barycentre of
the primal mesh, while MPAS and ICON-O connect the circumcentres of the primal cells
to obtain the dual cell. Another important remark is that the dual mesh of the triangular
tilling, i.e. the quasi-hexagonal mesh, is the primal mesh for the MPAS model.

As previously stated, the use of these tessellations are highly beneficial for numerical
schemes, as both have a degree of flexibility associated. The triangular grid, in particular,
allows for the mesh to delineate sharp boundaries of the oceans, such basins, estuaries, coastal
areas, inlets, and islands. In addition to that, the ocean presents a wide range of dynamical
spectrum phenomena, with the high wavenumber dynamics occurring at the continental shelf
and low wavenumber at the open ocean. This flexibility enables to refine areas of high/fast
dynamics without needing to refine the whole domain. For these reasons, the triangular grid
is quite popular among coastal ocean modelling, but uncommon for global modelling.

In this chapter, we will introduce the grid notation, which will be used throughout this
dissertation. Our focus will ultimately be to evaluate the cell distortion of an icosahedral
based grid. We will analyse an ensemble of parameters of the grid: area distribution, edge
midpoint displacement, and grid distortion and alignment (concepts from Peixoto (2013)).
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Our primal grid used will be triangular tiling derived from the icosahedral grid. For that, we
will use an optimized algorithm known as Jigsaw Software (Engwirda, 2014).

2.1 Triangular Grid

2.1.1 Notation

In this section, it is important for us to define a few important points regarding the grid
that will be used throughout the documentation. We will use a similar notation as Korn and
Linardakis (2018).

Every vertex v ∈ V is connected by edges e ∈ E to form a triangular cell K ∈ C, where
V , E , and C are the set of vertices, edges and triangular cells. The boundary of a cell K is
denoted as ∂K and the boundary of an edge e is denoted by ∂e. These elements, when bold
(e.g. v, e, K) will denote the point on the sphere.

We will be representing the duality with a hat symbol (̂·). Therefore, generically, the dual
grid cell will be represented by K̂ ∈ Ĉ, where Ĉ is the set of dual cells on the sphere. For the
purpose of this document, we will be dealing with a dual cell formed by either the barycentre
or the circumcentre points of the neighbouring triangles. For each case, respectively, we shall
also include the superscripts (·)(b) and (·)(c). Occasionally, we will omit these superscripts
and let reader aware by the context.

The elements v1, v2, · · · , vn ∈ ⋃e∈∂K ∂e will be ordered in a counterclockwise rotation of
their respective cell (the same ordering will be used in case of the dual cell). v1, v2 ∈ ∂e or ∂ê
will be in an order, such that, the associated unit vector te along the edge, will be from
v1 to v2. These unit vectors will be defined at the midpoint e of e. Furthermore, these
tangent vectors will have an associated normal ne with its direction perpendicular to te, s.t.
ne × te = e. We also define control values associated with the direction of these vectors:

ne,K = −sgn ⟨ne,K− e⟩,
te,v = −sgn ⟨te, K̂v − e⟩.

This implies that ne,k will be 1 if the ne has a direction outwards of the cell K and −1 if it
points inward.

Each edge e will have its length |e| calculated as a distance on the unit sphere. In other
words:

|e| = d(v1,v2) = 2 sin−1 |v1 − v2|
2

v1,v2 ∈ ∂e (2.1)

A similar calculation will be performed for the edge length of ê.
Each cell K will have an area |K|, calculated as:

|K| = A(v1,v2,v3) = 4 tan−1

√∣∣∣∣tan
s

2
tan

s− d(v1,v2)

2
tan

s− d(v2,v3)

2
tan

s− d(v3,v1)

2

∣∣∣∣,

(2.2)



ICOSAHEDRAL GRID ANALYSIS 10

where v1, v2, v3 are the vertices of the cell K and s = 1/2[d(v1,v2) + d(v2,v3) + d(v3,v1)].
For a dual cell K̂ with reference vertex v = k̂, we will perform:

|K̂| =
∑

ê∈∂K̂

A(K1,K2, K̂). K1, K2 ∈ ∂ê (2.3)

A notation summary can be found in Table 2.1.

Table 2.1: Notation Summary
K, L Primal cells
e, ê primal and dual edge
∂K edge set of cell K
∂e vertex set of edge e

K̂(b), L̂(b), K̂(c), L̂(c) Dual cells
ê(b),ê(c) Dual edge
e Primal edge
C Set of primal cells sets

V(b),V(c) Set of dual cells
E Set of primal edge sets

Ê (b),Ê (c) Set of dual edge sets
e = K|L edge e between K and L

2.1.2 Construction

To construct the icosahedron, we consider three orthogonal rectangles on R3, as illustrated
in Figure 2.4. These rectangles have side 1 and τ = (

√
5 + 1)/2, where τ is the golden ratio.

The vertices v of these rectangles belong to the icosahedron, so that v ∈ V .
Now, for each vertex vi ∈ V , we connect it with vj ∈ Br(vi) ∩ V , where Br(vi) is the ball

with radius r = minvj∈V\{vi}(|vi − vj|) centred at vi. Specifically, each vertex is connected by
five other vertices.

For each connection, we can then obtain our edges e ∈ E . To obtain the circumcentre,
let us again take vi ∈ V , and vj, vk ∈ Br(vi)∩ V , with the same radius previously created. If
vi, vj, vk ∈ Br(vi) ∩Br(vj) ∩Br(vk), then these three vertices define our triangle. Since each
triangle is equilateral, we can easily obtain the circumcentre K ∈ C.

Using the notation of Tomita et al. (2001), this will define our g0 grid. To obtain g1, for
a triangle K ∈ C0 we connect its midpoint elements e ∈ ∂K ∪ E0 of each face, forming new
triangles. This will form four additional triangles with E0 ⊂ V1. Doing this for all faces, we
created a new generation of the mesh. This procedure can be repeated i-th times, in order
to obtain gi grid.

The grid used in this research will differ slightly from the standard way of mesh gener-
ation. For each bisection, the vertices of the grid are projected onto the sphere, until the
desired mesh is achieved. We will project the elements onto the sphere only when we achieve
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Figure 2.4: Icosahedron with its three orthogonal rectangles.

the desired resolution, as to accentuate the distortions of the grid and better observe the
behaviour of the schemes in a distorted grid. We will call it MODSTD grid.

Regardless, from this process of bisection, we can define the number of faces and edges
by #C = 20× 4i and #E = 30× 4i, respectively. Euler’s formula also dictates that:

#C +#V −#E = 2

The Table 2.2 lists the number of elements up to a level g6, which will be used in further
chapters.

Table 2.2: Number of cells, vertices and edges for each grid.
Grid #C #V #E
g0 20 12 30
g1 80 42 120
g2 320 162 480
g3 1280 642 1920
g4 5120 2562 7680
g5 20480 10242 30720
g6 81920 40962 122880

2.2 Grid Properties

As previously mentioned, this subdivision process will inevitably break the homogeneity of
the grid and create distortion of the grid. A first evidence of this distortion is how the length
of each edge is in comparison to the length of the largest edge of the domain (Figure 2.5.A).
A similar comparison can be performed when analysing the circumcentre distance between
neighbouring cells (Figure 2.5.B).
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Figure 2.5: Normalized arc length of primal (A) and dual (B) edge. The shaded area in
the lower panels represent the range of the minimum and maximum length, and the line
represents the mean value.

The first bisection produces the largest difference in lengths in the grid. The minimum
normalized edge length decreases from 1 to around 0.88, while the average of the domain is
from 1 to around 0.94 (Table 2.3). Each subsequent bisection is slower than the previous.
The difference between each value decreases by a factor of 2 for the minimum edge length of
the domain. The average field difference decreases much faster (the ratio g6 − g5/(g5 − g4) is
of around 23/3). In that case, if we expect a consistent decrease, we expect the minimum/av-
erage normalized edge length value to converge to 0.675/0.909.

The circumcentre distance also has its largest decrease in the first bisection (Figure
2.5.B2). The minimum/average value of the field decreases from 1/1 to 0.8/0.9 (Table 2.3).
Unlike the edge length ratio, the bisection g1 to g2 increase the field average ratio of the
circumcentre distance. However, further bisection behaves similar to the other parameter,
decreasing, but slower at each subdivision. This brake is found to be of an order of 2 for
the minimum value and an order of 3 for the average value of the field. Assuming that this
break is consistent to these orders, then the minimum/average values will likely converge
to approximately 0.447/0.909. Therefore, though the average is similar to the primal edge
length, the circumcentre distance, or dual edge length, is more affected by the bisection.

Observing the spatial structure of the parameters in a g6, we see that both behave quite
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Table 2.3: Minimum/mean normalized edge length and circumcentre distance.
|e|

max |e|
|e⊥|

max |e⊥|
g0 1.0000.100/1.0000.100 1.0000.100/1.0000.100

g1 8.8104.10−1/9.4058.10−1 8.0276.10−1/9.0143.10−1

g2 7.7787.10−1/9.1766.10−1 7.4249.10−1/9.5114.10−1

g3 7.2513.10−1/9.1149.10−1 5.9164.10−1/9.2333.10−1

g4 7.0001.10−1/9.0986.10−1 5.1623.10−1/9.1285.10−1

g5 6.8785.10−1/9.0940.10−1 4.8080.10−1/9.1022.10−1

g6 6.8187.10−1/9.0934.10−1 4.6381.10−1/9.0950.10−1

similarly (Figure 2.5.A1 and Figure 2.5.B1). The regions of the original g0 present the small
ratios of the grid, with the smallest occurring at the regions of the original vertices. In
contrast, the centre of the faces (of the original g0) shows the largest ratios. The largest
distortions, therefore, are located within these g0 edges. It is evident that the primal and
dual edge suffer from these distortions in the same regions, though the dual edge seems much
more affected.

In comparison to other grids, according to (Figure 3 of Peixoto, 2016), the SCVT opti-
mization has a continued decrease of this ratio, without an apparent slow-down. However, its
minimum values for up to g6 are substantially higher than ours (larger than 0.7). The HR95
optimization is also much better in this respect, as it not only does not lose continuously its
uniformity, but also, again, has a convergent value higher than ours (minimum values near
0.8). According to Miura and Kimoto (2005), the standard mesh also behaves similarly as
the HR95, having a minimum ratio around 0.85.

Another useful parameter to observe is the offset between the midpoint of primal and
dual (circumcentre) edges and between the circumcentre and barycentre of the triangular cell
(Figure 2.6). The original grid, as expected, should not present any distance between these
points as the solid is composed only of equilateral triangles (Table 2.4). The fist bisection
will create a distortion in the grid. This distortion produces an offset of these points. The
largest offset is at the g1. The mean/maximum normalized midpoint edge offset value is of
0.0016/0.0031, while the cell centre distance is 0.24/0.33. Subsequent bisections, decrease
both parameters continuously with a second order convergence. This convergence is also
present in HR95, but not in SCVT (Figure 3 of Peixoto, 2016).

When observing its spatial distribution on the sphere, we notice some similarities. As the
primal/dual edge length ratio, both of these parameters have their largest values near the
original edges of the solid, which implies for its distortion. The lowest values are located near
the centre of the face of the icosahedron. A noteworthy difference that should be highlighted
is that the edges of the cell along the original g0 edges and the edges neighbouring the original
g0 vertices have a small normalized distance between edges. This will likely have an impact
on the error distribution of some operators dependent on these edges.

Another important analysis of grid structure to analyse is the cell areas of the grid.
There are three main areas to analyse, the primal and dual cell area, and the edge area,
which is calculated using the edge neighbouring points circumcentre and vertex point. This
resulting area and its distribution in its normalized form is presented in Figure 2.7 and
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Figure 2.6: Mean primal-dual- edge point distance (A), and circumcentre and centroid point
distance (B).

Table 2.5. All values start 1 (implying their homogeneity in the icosahedron). The first
bisection introduces the most expressive loss of uniformity for the primal grid, decreasing in
0.17/0.13 for the minimum/average of the area field. As with the other parameters, the loss
for subsequent bisection is diminished. In contrast, for both the edge area and the dual area,
the largest difference occurs at the bisection g1 to g2 and g2 to g3, decreasing 0.089/0.044
and 0.115/0.033.

However, all the areas seems to converge in their minimum and average values, since
there is a slow-down of this loss. The minimum/average of the primal area field from g5 to
g6 is 6.4/4.15 times slower than g4 to g5. For both the dual and edge area, the g5 → g6 is 2/4
slower than g4 → g5. At the current rate, we expect that the minimum area of each field to
be: 0.501, 0.355, and 0.479, for the primal, edge, and dual area, respectively. However, the
average field normalized area is expected to be 0.8288 for all fields.

When observing their distribution around the sphere, we notice the same pattern as our
other analysis, in other words, the worst results (small values) are in regions near the original
g0 edges and vertices of the icosahedron. The best results (large values) are located near the
centre of each face of the solid.

In comparison to other grids, Miura and Kimoto (2005) found that for tested grids, the
normalized dual area of most grids perform better than ours. The HR95 has the largest ratio
without any decrease as our grid. However, the SCVT is one of the worst performing, and
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Table 2.4: Mean/Maximum distance between primal and dual edge midpoints and between
cell circumcentre and barycentre.

(e− e⊥)/max |e| K −Kc

g0 0.0000.100/0.0000.100 0.0000.100/0.0000.100

g1 1.5688.10−2/3.1377.10−2 2.4463.10−2/3.2617.10−2

g2 6.1112.10−3/1.7637.10−2 7.0561.10−3/1.8918.10−2

g3 1.9510.10−3/4.8197.10−3 2.9828.10−3/9.2951.10−3

g4 5.4254.10−4/1.2099.10−3 1.4178.10−3/4.5387.10−3

g5 1.4266.10−4/3.0349.10−4 6.9924.10−4/2.2360.10−3

g6 3.6557.10−5/7.5891.10−5 3.4840.10−4/1.1090.10−3

Table 2.5: Mean/Maximum distance between primal and dual edge midpoints and between
cell circumcentre and barycentre.

|K|/max |K| Ae/maxAe |K̂|/max |K̂|
g0 1.0000.100/1.0000.100 1.0000.100/1.0000.100 1.0000.100/1.0000.100

g1 8.3117.10−1/8.7337.10−1 9.1115.10−1/9.5557.10−1 8.8525.10−1/9.6721.10−1

g2 6.5935.10−1/8.4008.10−1 6.8392.10−1/8.8519.10−1 6.9457.10−1/9.2371.10−1

g3 5.7625.10−1/8.3163.10−1 5.0365.10−1/8.4302.10−1 5.6523.10−1/8.5331.10−1

g4 5.3778.10−1/8.2951.10−1 4.2462.10−1/8.3236.10−1 5.1708.10−1/8.3498.10−1

g5 5.1947.10−1/8.2897.10−1 3.8876.10−1/8.2969.10−1 4.9691.10−1/8.3035.10−1

g6 5.1056.10−1/8.2884.10−1 3.7176.10−1/8.2902.10−1 4.8775.10−1/8.2918.10−1

has continuous decrease in this ratio, yet it has a better performance on the g6 grid showing
a ratio of around 0.6. The distribution of our normalized dual area show high similarities
with the HR95, with the largest area difference near original vertices.
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Figure 2.7: Normalized area of the triangles (A), edge (B), dual grid(C), and the g6 grid
triangle area.

2.3 Distortion and Alignment

The distortion and alignment index parameters were calculated from the definitions of
Peixoto and Barros (2013). Suppose a Voronoi cell is composed of n even vertices {vi}1≤i≤n ∈
V . Define di,j = d(vi, vj), so the alignment index is:

Ξ =
1

nd̄

n/2∑

i=1

|di+1+n/2,i − di+n/2,i+1|+

|di+1,i − di+n/2+1,i+n/2|,
(2.4)

where d̄ = (1/n)
∑n

i=1 di,j+1. For cells with odd number of vertices Ξ = 0. The distortion
parameter is:

Θ =

√
1
n

∑
e∈∂K(|e| − ¯|e|)

¯|e| , (2.5)
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where ¯|e| =
√

(1/3)
∑

e∈∂K |e|2.
It should be noted that since triangles all have an odd number of vertices, then Ξ = 0

for all cells. Therefore, the alignment index will be calculated on the Voronoi grid. The
distortion, however, will be done on our primal grid.

The results are present in Figure 2.8 and Table 2.6. The g0 grid, since it is composed of
only equilateral triangles, shows a zero distortion in the mesh and a perfect (1) alignment
of the dual grid. The first bisection, as with the other parameters, show a large distortion,
increasing the minimum/average distortion to 0.046/0.061 and average alignment increases to
0.286. It should be noted that, at this point, the dual grid has the presence of pentagons (12,
in fact), and these pentagons will bring the minimum alignment to zero for all gi. For grids
finer than g1 we observe a decrease in the distortion of the primal mesh. From g1 to g2, the
average distortion decreases 0.0182, but the maximum increases 0.0137. Further refinements
have a slower change in both the average and the maximum distortion. The change in both
average and maximum distortion for g5 → g6 is about 4 times slower than g4 → g5. The
alignment decreases for all subdivisions. It also slows-down with the refinement, with an
order close to 2. For the same constant rate, the expected average/maximum distortion will
be of around 0.023/.0786 and the average alignment will be of 9.13.10−4.

Table 2.6: Average alignment and average/maximum distortion. The minimum alignment
disregards the cells where Ξ = 0.

gi Ξ Θ
g0 1.0000.100 0.0000.100/0.0000.100

g1 2.8576.10−1 4.5618.10−2/6.0824.10−2

g2 2.3783.10−1 2.7418.10−2/7.4523.10−3

g3 1.5024.10−1 2.4193.10−2/7.7243.10−2

g4 8.2947.10−2 2.3352.10−2/7.7831.10−2

g5 4.3349.10−2 2.3132.10−2/7.7967.10−2

g6 2.2131.10−2 2.3077.10−2/7.8000.10−2

When observing the spatial distribution of the both fields, we again see that the largest
distortions are confined near the g0 edges and vertices (Figure 2.8.A1). Near the centre of
the faces of the original icosahedron, we see a decrease in the distortion of the cell.

The alignment, however, shows a different behaviour. The best values are near these
regions of g0, but instead of showing a smooth gradient, as had presented the distortion, it
is presented as a confined region of large alignment. A dual cell located at a point in the
original g0 will be symmetrical along the segments of this edge. This centre of this cell will
have two segments of this original edge, and since it is symmetrical along the edge, the dual
edges opposite to one another will have the same length. Due to this symmetry, this cell will
have a large alignment.
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Figure 2.8: Triangle distortion (A), and dual grid alignment (B), Triangle distortion distri-
bution on g6.

In comparison to other grids, Peixoto and Barros (2013) found that the mean alignment of
the standard icosahedral g6 grid is of around 0.55. Further grid subdivisions, notwithstanding,
impacts substantially the alignment of the grid. It is also shown that this grid has various
patterns of low and high alignments values. Ours, in contrast, are mostly restricted to the
original icosahedron edges.

2.4 Concluding Remarks

Our grid shows that it is quite affected by the refinement process. There is, as expected, an
abrupt loss of homogeneity. Some primal grid parameters present a recovery as the grid is
bisected. Other parameters do not seem to worsen with refinement. The dual mesh alignment,
however, present a decline with each bisection. There are two main issues pointed by Peixoto
(2016):

• the vertices/cell circumcentre are not necessarily the centroid of the dual/primal cell,

• non coincidence of the primal and dual edge midpoint.

The first, according to the author, will have a direct impact on the accuracy of operators
of the next chapter. Although our defined grid does not have this coincidence of points on
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the primal mesh, they converge as the grid is refined. The second point causes the Laplacian
operator to be inconsistent, which is solved by using the HR95.

Concerning the optimizations, our results provide similar results with Miura and Kimoto
(2005), Peixoto and Barros (2013) and (Figure 3 of Peixoto, 2016). Spatially, it appears as
that the distortions associated with the grid are more closely related to the HR95, rather
than the standard icosahedral grid, despite not using optimization. On average, our alignment
present better results than the standard icosahedral grid.

Like all other grids, ours also show signs of imprinting. We expect that this imprinting
will be the main responsible for the operator accuracy error in our grid. We expect that
the loss of alignment, in particular, will provide even poorer results for operators defined in
these cells. In the next chapter (Chapter 3), we will evaluate these operators for the Shallow
Water Equations in our grid.



Chapter3

Shallow Water Analysis

A suitable grid choice is only one key piece of a well thought numerical weather or climate
model. Another important consideration is the choice of an appropriate numerical scheme,
and, alongside, the grid staggering. When determined, those choices should go through a
battery of tests, as a way to determine their advantages and limitations. It is common to
define such a model on one of the simplest set of system of equations available, the Shallow
Water Equations:

∂h

∂t
+∇ · u = 0 (3.1a)

du

dt
+ fk× u+∇Φ + κ∇2u+ F = 0 (3.1b)

where d/dt = ∂/∂t + u · ∇ is the material derivative, Φ = g(h + b), g is gravitational
acceleration, f , is the Coriolis parameter, h is the mass field, b is the bathymetry, u is the
vector field, denominated as wind/current velocity, κ is the biharmonic coefficient, and F is
the external forces.

There is a large interest to provide some conservation properties, such as energy, vorticity,
and enstrophy. The above system of equations has a non-linearity term (advective term) that
present issues in conserving these quantities. Therefore, it is usual to reformulate this term
as:

u · (∇u) = ζu+∇Ek,

where ζ = k̂∇× u is the relative vorticity and Ek = |u|2/2 is the kinetic energy. Now, the
momentum equation can then be written as:

∂u

∂t
+ ωk× u+ g∇Φ +∇Ek = 0, (3.2)

where ω = ζ + f is the absolute vorticity. It is also not uncommon to write ω(k × u) =
q(k× uh), where q = ω/h is the potential vorticity.

Regardless of the choice of the momentum equation, the two primary unknowns/variables
are the h and u, which are a scalar and a vector field, respectively. It is crucial to define
where these variables will ultimately be positioned, i.e. which grid staggering to use. Initially,
Arakawa and Lamb (1977) defined 5 possible staggering grids from ”A” to ”E”. Randall
(1994) defined a new one which he coined ”Z”, but used other variables derived from u.

The A-grid is one of the simplest suggested staggering. It is considered a non-staggered
grid, since all variables coincide at the vertices of the grid. On traditional grids, it requires

20
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many averaging operations, such that the resulting operators could be defined again at the
vertices. This averaging would, inevitably, ”hide” the physical waves associated with 1-grid
scale. Another huge drawback of this scheme is the presence of computational modes on the
2-grid scale interval. These waves are not only present, but are also easily excited, making
the scheme unconditionally unstable. It is, therefore, required the addition of a smoothing
filter to mitigate these waves and provide stability to the model. This smoothing attenuate
waves of large wavenumbers impacting their representation on this scale (Figure 3.1.A).

Figure 3.1: Contours of non-dimensional frequency |u|/f for schemes (A)-(E) by each com-
ponent of non-dimensional wave number. The lower right corner panel is the true wave
representation. Source Arakawa and Lamb (1977)

.

A slightly more complex staggering is the type B-grid. This staggering has its mass
variable points positioned at the vertices, while its vector variable points are located at the
faces of the primal cells. On traditional structured grids, it also requires averaging, however,
in contrast to the A-grid, this averaging occurs on the orthogonal complement axis, e.g.
∂h/∂x requires averaging on the y-axis. In this staggering, there is also a smoothing of the
waves on the 1 grid scale for this direction. However, for the other axis, no averaging is
required, and, consequently, there will be a presence of waves in this scale. These numerical
waves are associated with spurious pressure modes on the system. Similar to the A-grid, it
will be necessary the use of a damping filter to remove this noise. This damping again will
attenuate waves of large wavenumbers.

The C-grid, in contrast, is yet more complex than the previous types. The vector field
is separated, and each orthogonal component is allocated to the edges. For structured grids,
the zonal component is located at the midpoint of the vertical (lines of same longitude)
edges, and the meridional components are positioned at the midpoint of the horizontal edges
(lines of same latitude). The mass variable h is located at the face (centre) of the cell. This
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positioning provides an accurate representation of the geostrophic adjustment, portraying
well inertia gravity waves of near grid scale frequency (Figure 3.1.C). The largest drawback
is that this separation of the vector components requires the field to be reconstructed, in
order to calculate the Coriolis Force term. The reconstruction of the field will not be exact
and will, therefore, add another layer of uncertainty in the equations.

Other grid positioning will also present many problems. The D-grid needs substantial
averaging, which impacts the wave dispersion much more strongly than the A-grid (Figure
3.1.D). The E-grid has a positioning issue that, for some specific conditions, it might behave
as the A-grid. Finally, The Z-grid has similar benefits as the C-grid, but it uses variables
that are derivative from the h and u. It, thus, demands for a solution of a Poisson equation
for each time step to retrieve the original variables, making the whole scheme quite costly.

Despite the necessity of vector reconstruction, the advantage of a more accurate inertia
wave dispersion representation made C-grid popular. A good deal of research was done to
provide an effective vector reconstruction that maintained important conservative properties
of the core (e.g. Arakawa and Lamb, 1977). However, the rise of unstructured grids for global
modelling, in particular for ocean modelling, required new strategies for devising the Coriolis
Term. One main issue is the lack of orthogonality between edges, which could potentially
create new terms and produce new sources of computational noise that could make the model
unstable. One solution is to use finite-element strategies, which was popular among ocean
modellers for triangular tilling (e.g. TELEMAC, COMPAS, FESOM1.4). These methods can
provide satisfactory results in their spatial and time range needed. They have, however, a
large computational cost, making them unfeasible for finer grids.

Another alternative is the use of finite-volume methods, a rather new concept in the
geophysical fluid modelling community. The basis of these methods is to consider the cells
as volume representations within the cells and calculate the flux out and in of these cells.
It is mostly guaranteed at least the conservation of mass. For climate modelling, we wish to
achieve other conservation properties such as energy.

An early finite-volume scheme for icosahedron was devised by Tomita et al. (2001) with an
A-grid staggering. This scheme became the basis of the Japanese Non-hydrostatic Icosahedral
Atmospheric Model (NICAM). Their model avoided many shortcomings at the time, such as
the vector reconstruction problem. Since the staggering of choice required some use of filter
technique, it also solved many issues with noise. Not all grids, however, were optimal for the
model. The standard icosahedral grid was found to be inconsistent to use in their model.
There was an apparent noise surging due to the inconsistency of the mass equation operators.
They solved this issue using a special kind of optimization known as Spring Dynamics.

Subsequently, based on the work of Arakawa and Lamb (1981), a couple of papers sug-
gested a new scheme for discretizing the shallow water equations on an arbitrary polygon for
a staggering of type C on the sphere (Thuburn et al., 2009; Ringler et al., 2010). This scheme,
known as TRiSK, became the basis for the Los Alamos Laboratory and the National Center
for Atmospheric Research (COSIM) Model for Prediction Across Scales (MPAS) in both
atmospheric and oceanic component. Their model, however, used the dual of the icosahedral
grid, which is composed of pentagonal-hexagonal tiling.

The reason why the icosahedral dual was used instead, was because C-grid triangular
meshes requires a special treatment. This tiling presents a substantial noise in a 1-grid interval
pattern known as a chequerboard pattern. It is specially dominant on flows dominated by
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slow geostrophic dynamics (Figure 3.2), which can contaminate the domain and damage the
solution.

Figure 3.2: Geostrophic adjustment divergence on the h field for both the triangular and its
dual C-grid meshes. Source: Gassmann (2011)

Le Roux et al. (2005) studied this problem for planar grids and diagnosed that an un-
balance in the Degrees of Freedom (DOFs) of height and velocity would evoke this pattern.
He realized that it is necessary, although not sufficient, that the velocity DOFs be twice as
many as the height DOFs.

Weller et al. (2012) analysed the TRiSK scheme using different geometries and observed
that, it indeed, showed the same pattern in either the vorticity (quasi-hexagonal mesh) or
divergence (triangular mesh). They unsuccessfully suggested a different geometry that would
satisfy the condition imposed by Le Roux et al. (2005). They found that this grid would
present an even stronger noise, which they would conclude that an anisotropic resolution
would also play an important role on the noise generation.

Gassmann (2011) was able to better elucidate this problem. She assumed an equilateral
triangular mesh on the plane and the representation of the canonical basis as (i, j) = (j1, j2, j3)
with ji a normal unit vector associated with the edge ei pointing away from the cell (Figure
3.3). She realized that, in other to avoid the numerical pattern, we require:

v1 + v2 + v3 = 0, (3.3)

where vi is the scalar velocity associated with ji. A solution proposed by the author is that
we can guarantee this relation if the divergence can be reformulated as an average of the
divergence of three overlapping rhombi in the triangular cell.

Some authors have, thus, developed schemes and/or filters to damp these modes (e.g.
Gassmann, 2011; Wolfram and Fringer, 2013). However, the useful conservation properties
of a scheme would eventually be eliminated with use of these methods.

Korn and Danilov (2016), in an effort to develop an ocean model that would remove this
noise and also retain the useful physical conservation properties, developed a scheme that
integrated notions of finite volume and finite difference methodology, leading to a mimetic
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Figure 3.3: Example of equilateral triangular cells with velocity vectors

discretization. This became the basis of the Icosahedral Nonhydrostatic (ICON) ocean com-
ponent model Korn (2017). However, his discretization requires a matrix inversion for each
time step (as does some finite element schemes). This is quite costly, so the authors used
a technique known as matrix lumping which removes the inversion requirement, and, thus,
making the scheme faster. There is a drawback of losing some conservation properties, but
the underline robustness of the model is maintained.

A scheme devised by Danilov et al. (2017) on a B-grid tiling also present the same
issue with excessive DOFs. However, in contrast, to the C-grid, it does not need to concern
with the velocity reconstruction, since the full velocity vector field is placed on the triangular
nodes. Moreover, their scheme is free from pressure modes, which dominates A-grid schemes.
Despite this, the excessive DOFs leads to spurious inertial modes, which requires filtering to
reduce, breaking possible conservation of the model. This scheme became the basis of the
Finite VolumE Sea-Ice Model (FESOM) 2.0.

Thus, no scheme presents an optimal solution for practical use, specially on a triangular
mesh. Additionally, due to the novelty of the new technology, there is a lack of work regarding
the comparison of these new schemes. So, we pose the following questions: How does A-C
grid staggering behave on the sphere? How are their accuracy affected by distortion and
noise?

To answer these questions, in this chapter we will provide a comparison between three
staggering types: A-, B-, and C-grid. For A- and B-grid, we will study the schemes of Tomita
et al. (2001) and Danilov et al. (2017), respectively. To compare with the C-grid, we will
study both TRiSK (Ringler et al., 2010) and ICON-O (Korn and Danilov, 2016).

Prior to tackle these objectives, in the next section (Section 3.2) we will provide in
details the discretization of the operators used in each scheme. In Section 3.3 we will provide
the spatial error accuracy of the spatial operators and in Section 3.3.3 the accuracy of the
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time integrated accuracy of the variables. The physical modes of TRiSK and ICON will be
analysed in Section 3.4. Finally, an application of the plausible real world scenario will be
used in Section 3.5.

3.1 Discrete Grid Spaces

To be able to provide the dicretizations for the schemes, we need to define the spaces where
we will perform our calculations. Particularly, for the primal and dual cells, we define:

HE := {v : E → R, v : e 7→ ve} (3.4)

HC := {p : C → R, p : K 7→ pK} (3.5)

HV := {p̂ : V → R, p̂ : V 7→ p̂V } (3.6)

HC := {p : C → R3,p : K 7→ pK} (3.7)

HV := {p̂ : V → R3, p̂ : K̂ 7→ p̂K̂}. (3.8)

The last two spaces are defined for vector fields, while the first three spaces are for scalar
fields. We endow these spaces with inner products for the use in ICON scheme:

⟨v1, v2⟩HE :=
∑

e

|e||ê|v1ev2e , ∀v1, v2 ∈ HE (3.9)

⟨p1, p2⟩HC :=
∑

K

|K|p1Kp2K , ∀p1, p2 ∈ HC (3.10)

⟨p̂1, p̂2⟩HV :=
∑

V

|V |p̂1V p̂2V , ∀p̂1, p̂2 ∈ HV (3.11)

and

⟨p1,p2⟩HC :=
∑

K

|K|p1
Kp

2
K , ∀p1,p2 ∈ HC (3.12)

⟨p̂1, p̂2⟩HV :=
∑

V

|V |p̂1
V p̂

2
V , ∀p̂1, p̂2 ∈ HV . (3.13)

3.2 Discrete Operators

The nonlinear frictionless momentum and mass equations in the vector invariant form have
three primary differential operators, namely divergence, vorticity, and gradient. For the first
two, suppose F is continuous differentiable, and V and Σ are regions that can be discretized
in a piecewise continuous arbitrary polygon of N sides, then we can, for all schemes, employ
the Gauss Theorem: ∫

V

∇ · FdV =

∮

S

F · ndS ≈
N∑

i=1

Fi · nili (3.14)

and the Stokes theorem:
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∫

Σ

∇× FdV =

∮

∂Σ

F · tdS ≈
N∑

i=1

Fi · tili. (3.15)

Dividing by the area/volume of the cell, we obtain the average of the divergence and vorticity,
respectively.

The gradient of a scalar function f is a vector field, whose components are the partial
derivatives of a point p. It can be defined as:

(∇f(p)) · n̂ =
∂f

∂n̂
(p) (3.16)

Each scheme will have its own formulation of the aforementioned operators. Nonetheless,
they are all consistent with the provided definitions.

3.2.1 A-grid

The A-grid, derived from Tomita et al. (2001), has all its variables defined on the vertices
of the triangles. We require an interpolation of these variables at the dual edge midpoint so
to apply the theorems (Figures 3.4). The correspondent dual edge will be the midpoint edge
of the dual cell, whose vertices are the triangle barycentre. To simplify the notation, we will
assume on this section that ê = ê(b).

First, let h ∈ Hv and u ∈ Hv. Then, our interpolations are of the following:

uK =
1

3

∑

v∈⋃e∈∂K ∂e

uv (3.17)

h
K
=

1

3

∑

v∈⋃e∈∂K ∂e

hv. (3.18)

and on the edge of the dual grid:

ũê =
1

2

∑

K∈∂ê
uK (3.19)

h̃ê =
1

2

∑

K∈∂ê
h
K
. (3.20)

The operators are defined on the dual mesh pentagonal-hexagonal mesh:

|K̂|div(A)uK̂ =
∑

ê∈∂K̂

ũê · n̂ê|ê|nê,K̂ (3.21)

|K̂|vort(A)uK̂ =
∑

ê∈∂K̂

ũê · t̂ê|ê|tê,K̂ (3.22)

|K̂|grad(A)hK̂ =
∑

ê∈∂K̂

h̃ên̂ê|ê|nê,K̂ −
∑

ê∈∂K̂

hKn̂ê|ê|nê,K̂ . (3.23)
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Figure 3.4: Hexagonal cell of an A-grid

The second term of the gradient is a correction term, so that homogenous fields are zero.
Additionally, Tomita et al. (2001) argues that if the grid point vertex v ∈ V coincides with

the gravitational centre of the dual control volume Ĉ, these operators would be consistent
and have an increased accuracy.

The kinetic energy is defined at the same points and, therefore, the definition is simply:

E
(A)
K =

|u|2
K̂

2
, (3.24)

so that we will have an exact operator.
We recall that this method as is is unstable, since the A-grid discretization allows for the

presence of spurious numerical oscillations known as pressure modes. Therefore, we require
the application of some filter to damp these waves. Following the authors, we will use a
biharmonic filter, defined as the divergence of the gradient of the vector field. In order to
position the biharmonic field at the triangle vertices, we define a different gradient operator,
which is positioned at the triangle barycentre. To compute the gradient, we interpolate the
velocity at the midpoint edge of the triangles ũe (do not confuse with the interpolation at
the midpoint of the dual cell ũê). This new gradient, we define as grad’(A):

|K|grad’(A) uK =
∑

e∈∂K
ũene|e|ne,K , (3.25)

where ũe = 1/2
∑

v∈∂e uv. The divergent is applied to the resulting value. We will then have
a diffusion operator ∇2 = ∆ positioned at the vertices of the triangles. The same process is
applied twice to get the biharmonic.
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3.2.2 B-grid

This scheme from Danilov et al. (2017) has the mass field located at the vertices and the
vector field at the barycentres of the triangle (Figure 3.5). Our dual edge will have its vertices
at the neighbouring triangle barycentres and the neighbouring primal edge midpoint. The
dual edge area will then be the third part of the sum of the neighbouring triangles:

|K̂(b2)| = 1

3

∑

K∈⋃ê∈∂K̂ ∂ê

|K|. (3.26)

Now, our dual cell will have 1/3 of the area of the sum of its neighbour triangles. The
resulting cell will have around 12 to 14 edges. In this section, we will assume K̂(b2) = K̂.

Figure 3.5: Hexagonal cell of an B-grid

First, let h ∈ Hv and u ∈ HC, then the necessary interpolation can be performed as
follows:

h̃e =
1

2

∑

v∈∂e
hv

The primal operators (divergence, gradient and vorticity) are defined on this grid as follows:

|K̂|div(B)huv =
∑

ê∈∂K̂

∑

K∈∂ê
h̃KuK · n̂ed(ê,K), (3.27)

|K̂|vort(B)uv =
∑

ê∈∂K̂

∑

K∈∂ê
uK · t̂ed(ê,K), (3.28)

|K|grad(B)hK =
∑

e∈∂K
h̃ene|e| (3.29)
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where d(ê,K) is the distance between the primal edge midpoint e and the triangular barycen-

tre K and h̃K is an interpolation on the barycentre of the triangular cells following (3.18).
Note that vort(B) is defined on the vertex v. To use in the momentum equation, we need to
interpolate ωv = (vort(B)uv + fv) on the barycentre K using (3.18).

In contrast to the A-grid, The kinetic energy requires an interpolation, in order to employ
grad(B). Since the variables u are defined on the barycentre of the triangle, we define the
following operator:

E
(B)
k =

1

6|K̂|
∑

K∈⋃
ê∈K̂

∂ê

|K||uK |2. (3.30)

Similar to the A-grid, this scheme also requires some filter to reduce the noise, in order to
stabilize the method. Following Danilov et al. (2017), we again use the biharmonic operator,
however, in this case, the points are defined in the centre of the triangles. Thus, we define
this operator on the B-grid as:

∆u ≈ (diff (B) u)K =
∑

K,L∈⋃e∈∂K ∂e

uK − uL. (3.31)

This operator is applied twice to get the biharmonic.

3.2.3 C-grid

Both schemes on this section use the Voronoi Diagram as the dual of our primal. In this
case, the circumcentre of the primal cell will be considered the centre of the cell: K̂ = K̂(c).

Since each velocity component on the C-grid is not the complete vector, we let the
following: u ∈ HE with ue = ue · n̂e. We can then, define our divergence and vorticity similar
as the previous:

(∇ · u)(K) ≈ (div(C) u)K :=
1

|K|
∑

e∈∂K
ue|e|ne,K (3.32a)

(k · ∇ × u)(v) ≈ (curl(C) u)v :=
1

|K̂|
∑

e∈∂K̂

ue|ê|te,K̂ (3.32b)

These operators are defined on the cell centres of the primal grid, in the divergence case,
and the dual grid, in the case of the vorticity.

In the case of ICON, we can implicitly define its gradient as the negative adjoint of the
divergent operator (da Veiga et al., 2014). In other words, for h ∈ HC:

⟨div u, h⟩HC = −⟨u,grad h⟩HE . (3.33)

Explicitly, for both schemes, we can define the discrete gradient as:

(∇h)(e) · ne ≈ (grad(C) h)e =
hK − hL

|ê| ne,K , e = K|L. (3.34)

A few other properties, we can define on these discretizations are:
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1. (curl grad h)v = 0, ∀v ∈ V

2. (curl u)v = −(d̂iv u)v, ∀v ∈ V

The divergence operator has at most a first order convergence for most cell geometries
(Peixoto and Barros, 2013). For some polygons, such as squares, it can increase to a second
order. However, in the case of triangles, it is known to present this first order only. In the
case of this geometry, it is argued that it is because of the odd number of sides present,
which is likely linked to the fact of geometry being non-aligned.

For the use of the icosahedral or its dual, the chequerboard pattern will still be present
(Figure 3.2). In the case of triangles, it is present in the divergent. For its dual, it will be
present in the vorticity operator, due to the property (2).

We can analyse the vorticity of our primal grid, by analysing the results of Peixoto and
Barros (2013) for the divergence on the dual grid. On their analysis, it is expected that this
operator would reach at most a 1st order approximation. If they were aligned, however, it
would reach a 2nd order approximation. In essence, it is to be expected that our vorticity
operator to have its convergence linked with the alignment of cells.

For the gradient operator, in equilateral triangles, it is expected to achieve a 2nd order
convergence, since for these cells, the primal edge midpoint of the cells are equivalent to their
dual edge midpoints. So, for distorted meshes, we will have a greater distance between these
midpoints, and, therefore, a decrease on the convergence of the operator.

The following sections will deal with the other operators. Both reconstruction method
and kinetic energy operators are computed differently for TRiSK and ICON.

3.2.3.1 TRiSK

The TRiSK method is inspired by the method of Arakawa and Lamb (1981), which is a
weight based method. It reconstructs the tangent velocity of the whole Coriolis term of
(3.64). In order to conduct the method, we restate the term as follows:

(f + ω)k× u = qu⊥h, (3.35)

where u⊥ = k× u. We assume that our perpendicular velocity is a weighted combination of
the normal velocities as:

|ê|(uhq)e =
∑

e′∈Ve

we,e′ q̃
e′h

e′ |e′|ue′ , Ve =
⋃

K∈∂ê
∂K (3.36)

where we,e′ is a weight scalar, q̃e
′
and h

e′
are interpolations on the edge e′ of the potential

vorticity and sea level height, respectively. The weight scalar is computed as follows:

we,e′te,v′ =

(∑

v

RK,v −
1

2

)
ne′,K (3.37)

where
∑

v RK,v is the sum of normalized areas traversing from e′ to e. The vertex v′ is chosen
to be the last vertex encountered in the path from e′ to e.
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Figure 3.6: TRiSK example illustration

Thuburn et al. (2009) calculated the reconstruction on triangles in a linear shallow water
equations with two different methods. The first method utilized the primal cell edges to
calculate the weights. For example, to calculate the perpendicular velocity at e1 as illustrated
in Figure 3.6, we will have:

|ê1|(uhq)e1 = we1,e11|e11|ue11h
e11
q̃e11 + we1,e2|e2|ue2h

e2
q̃e2

+we1,e6 |e6|ue6h
e6
q̃e6 + we1,e7|e7|ue7h

e7
q̃e7 .

The second method, used the dual cells edges. For example, to calculate the same edge e1:

|ê1|(uhq)e1 = we1,e7|e7|ue7h
e7
q̃e7 + we1,e8|e8|ue8h

e8
q̃e8

+we1,e9|e9|ue9h
e9
q̃e9 + we1,e10|e10|ue10h

e10
q̃e10

+we1,e11|e11|ue11h
e11
q̃e11 + we1,e2|e2|ue2h

e2
q̃e2

+we1,e3|e3|ue3h
e3
q̃e3 + we1,e4|e4|ue4h

e4
q̃e4

+we1,e5|e5|ue5h
e5
q̃e5 + we1,e6|e6|ue6h

e6
q̃e6 .

We shall denote the former as TRiSK1 and the latter as TRiSK2.
The interpolation of q̃e is done in a way as to provide energetic neutrality to the operator

(Ringler et al., 2010). Therefore, for a fixed e, we require that:

q̃e
′
=
qe + qe

′

2
, e′ ∈

⋃

K∈∂ê
∂K (3.38)

where the interpolated variables are:

qe = (1/2)
∑

K̂∈Ue

qK̂ Ue =
⋃

K̂∈∂ê

K̂ (3.39)

h
e
=

1

Ae

∑

K∈Ve

hKAe,K Ve =
⋃

K∈∂e
K (3.40)
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On the original work, the kinetic energy operator (Ek) was defined on Voronoi Diagrams;
however, Weller et al. (2012) provided a modification, which applied to non-voronoi type
grids as:

(Ek)K =
1

|K|
∑

e∈∂K
Ae,Ku

2
e (3.41)

which can be considered a barycentric interpolation around the edges of the triangle.

3.2.3.2 ICON-O

We start by rewriting (3.64) in its weak/variational form. For that, we multiply the vector
invariant form (3.2), by a couple of test functions ψ, ϕ:

〈
∂h

∂t
, ψ

〉

L2

= −⟨∇ · hu, ψ⟩L2 , (3.42a)

〈
∂u

∂t
,ϕ

〉

L2

= −⟨ωu⊥,ϕ⟩L2 − ⟨∇Φ,ϕ⟩L2 − ⟨∇K,ϕ⟩L2 , (3.42b)

where have that ⟨A,B⟩ :=
∫
Ω
A ·BdS and ⟨f, g⟩ :=

∫
Ω
fgdS. We are assuming that both h

and u are differentiable.
Next, we will define the concept of admissible reconstructions. Models with staggered

variables require reconstructions in a way to connect these variables located at different
points, so that we can perform the computations. These admissible reconstructions are con-
figured in a way as to retain many properties of the model. For that, we define the following
linear maps:

PG : HE → HC (3.43)

v 7→ PGv (3.44)

with ⟨PGv, ϕ⟩HC = ⟨v,PG
Tϕ⟩HE , where PG

T is the transpose operator. To be able to connect
the vertices to edges, we define:

P̂G : HE → HV (3.45)

v 7→ PGv. (3.46)

To get the connection from the vertex to the edge points that will provide a tangential flux,
we define the P̂†

G:

P̂†
G : HC → HE (3.47)

v 7→ P̂†
Gv. (3.48)

Both P̂G and P̂†
G is going to be used for the vector reconstruction.

It is important to note that the domain and range of both operators have different dimen-
sions (Section 2); therefore, they are not isomorphic and, consequently, non-invertible. With
these maps, we can finally define the admissible reconstruction. From Korn and Linardakis
(2018):
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Definition 3.2.1. Let MG := PG
TPG and M̂G := P̂†

GP̂G. The (PG, P̂G, P̂†
G) is an admissible

reconstruction if:

1. PG, P̂G reproduces constants;

2. PG and PG
† provide unique and first order accurate fluxes;

3. The null space NMG := {v ∈ HE : MGv = 0} coincides with the divergence noise space
N := {v ∈ HE : sgn(div vK) ̸= sgn(div vL) and |div vK | ≈ |div vL|,∀e = K|L};

4. MG is strictly positive definite on the image space;

5. M̂G is skew symmetric;

According to the authors, the property (1) ”allows to avoid dealing with discontinuous
fluxes”, while property (2) allows for a more accurate model and increase the stability of
the model. The imposition (3) deals with the chequerboard pattern for the triangular primal
grid. To produce an operator with filtering properties, we aim for one in which the image
and its kernel are orthogonal, i.e. ⟨MGv, u⟩HE = 0, v ∈ HE , u ∈ NMG ⊂ HE . That would

make HE = H̊E
⊕NMG . Therefore, for a velocity v = u + γ =⇒ MGv = MGu ∈ H̊E . The

requirement 4 is necessary to invert the operators, to retrieve the variables h and u and,
finally, 5 imposes that the Coriolis term should not contribute with energy to the system.

By using this method of admissible reconstructions and connecting different discrete
spaces, we can now create a viable discretization for each operator of the vector invariant
shallow water equations. The details of the discretization of each term can be seen in Korn
and Linardakis (2018), but in essence:

⟨div hu, ψ⟩L2 ⇝ ⟨div PG
ThPGu, ψ⟩HC = ⟨div MGhu, ψ⟩HC (3.49a)

⟨(f + ζ)k× u, ϕ⟩L2 ⇝ ⟨P̂†
G(f + ζ)P̂Gk× u, ϕ⟩HE = ⟨M̂G(f + ζ)k× u, ϕ⟩HE (3.49b)

⟨grad Φ, ϕ⟩L2 ⇝MG⟨grad Φ, ϕ⟩HE (3.49c)

⟨grad Ek, ϕ⟩L2 ⇝MG⟨grad
|PGu|2

2
, ϕ⟩HE . (3.49d)

⟨ ∂
∂t

u, ϕ⟩L2 ⇝ ⟨ ∂
∂t

MGu, ϕ⟩HE (3.49e)

The discretized weak form of the system (3.42) is, then:

⟨ ∂
∂t
h, ψ⟩HC = −⟨div MG[h, u], ψ⟩HC (3.50a)

⟨ ∂
∂t

MGu, ϕ⟩HE = −⟨M̂G[ω, u]u, ϕ⟩HE − ⟨MGgrad Φ, ϕ⟩HE − ⟨MGgrad
|PGu2|

2
, ϕ⟩HE ,

(3.50b)

The authors show that this equation conserves energy, vorticity and enstrophy.
Note that to get the approximate solution of the algorithm, it is necessary to calculate

the inversion of the mass matrix MG at each time step. This requires a high computational
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cost. To bypass this problem, we use a lumping, i.e. the substitution of the mass matrix by
a diagonal matrix. We can let MG

−1 ≈ I. Korn and Danilov (2016) studied this form of
lumping and noted that it does not expressively affect the solutions on the triangular grid.

What is left for us to define, are the linear maps betweens the spaces that compose the
admissible reconstruction. The original authors used the Perot’s reconstruction, since it had
all the aforementioned properties.

3.2.3.3 Perot’s Reconstruction

These reconstructions were developed by Perot (2000). He showed that this method is at
least first order accurate and maintain the energy conservation regarding the Coriolis term.
Korn and Danilov (2016) and Korn and Linardakis (2018) have shown that the method
has a filtering property on the divergence, and it is strict positive-definite. These properties
demonstrate that this reconstruction is admissible. We can define these operators as:

PvK :=
1

|K|
∑

e∈∂K
ve|e|d(e,K)ne (3.51a)

P TFê :=
1

|ê|

[∑

K∈∂ê
FKd(e,K)

]
· nê (3.51b)

The dual reconstruction is defined as the following:

P̂ vK̂ :=
1

|K̂|
∑

e∈∂K̂

ve|ê|e× d(e, K̂)ne (3.52a)

P̂ †Fe :=
1

|e|


∑

K̂∈∂e

FK̂d(e, K̂)


 · ne (3.52b)

We can also show that the Perot Reconstruction removes the chequerboard pattern by
using Gassmann (2011) argument. Let (j1, j2, j3), and vi be the velocity variable on the i-th
component of the trivariate coordinate (as in Figure 3.3). We have the triangle K1 composed
of the edges {e1, e2, e3}, K2 of {e1, e5, e7}, K3 of {e2, e6, e8}, and K4 of {e3, e4, e9}. The Perot
map on the triangles, is, then:

PvK1 :=
1

3
(u1j1 + u2j2 + u3j3)

PvK2 :=
1

3
(u1j1 + u5j2 + u7j3)

PvK3 :=
1

3
(u8j1 + u2j2 + u6j3)

PvK4 :=
1

3
(u9j1 + u4j2 + u3j3),
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Where we used the fact that Ae = 1/3|K|. Then, for an equilateral grid, we have a simple
average of all edges of each triangle projected in the centre. Now, the transposed map is
then:

P T (Pu)1 :=
1

3
[u1 −

1

2
(u2 + u5)−

1

2
(u3 + u7)]

P T (Pu)2 :=
1

3
[−1

2
(u1 + u8) + u2 −

1

2
(u6 + u3)]

P T (Pu)3 :=
1

3
[−1

2
(u1 + u9)−

1

2
(u2 + u4) + u3].

Divergent can, therefore, be calculated as:

Div P T (Pv) =
1

3
[D1 +D2 +D3]

where D1, D2, and D3 are the divergences on three rhombi overlapping the triangle K1.
This shows that the Perot reconstruction on an equilateral mesh satisfies the condition of
Gassmann (2011), since the divergence of each triangular cell K can be restated as the
average of the rhombi overlapping this cell. On a curved surface, however, that might not
necessarily be true. In particular, Ae ̸= |ê||e|/2, and, therefore, the previous argument is
made invalid for a spherical grid. Hence, the aforementioned property will act only as an
approximation. Nonetheless, since the spherical excess of a grid tends to 0 as it gets refined,
then the filtering capability of the reconstruction is expected to improve for each bisection.

3.3 Error Analysis

To be able to compare both schemes, we analyse the error of their spatial operators and
variables. We are mainly focusing on the norm 2 and the infinity norm. Following Ringler
et al. (2010), we define the errors as:

L2 =

√
S((fn(j)− fr(j))2)

S(f 2
r (j))

(3.53a)

L∞ =
maxj |fn(j)− fr(j)|

maxj |fr(j)|
, (3.53b)

assuming S(f 2
r (j)) ̸= 0 and maxj |fr(j)| ≠ 0, where:

S =

∑Nj

j=1 f(j)A(j)∑Nj

j=1A(j)
. (3.54)

In the case of geostrophic balance, where div uh = 0, we will substitute S(f 2
r (j)) and

maxj |fr(j)| by 1.
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3.3.1 Test Cases

For our analysis we will use four different test cases (TC0, TC1, TC2). Each case has its
own importance and details of their use will be cleared below. Global parameters are set as
to match the earths’ parameter:

1. radius r ≡ 6.37122× 106 m,

2. rotation frequency Ω ≡ 2π
86400

≈ 7.292× 10−5 s−1,

3. acceleration of gravity g ≡ 9.80616 m s−1.

Latitude and Longitude will be denoted as θ and ϕ.The mentioned testcases are described
as follows:

3.3.1.1 Test Case 0

TC0 is the standard nonlinear geostrophic balance case from Williamson et al. (1992). The
generalized initial conditions are, given an arbitrary choice of α ∈ (0, π/2), by:

(uϕ)0 = u0 cos θ cosα + cosϕ sinα (3.55a)

(uθ)0 = −u0 sinϕ sinα (3.55b)

where u0 = 2π/(12days). The height field is initialized as:

h = h0 −
1

g

(
aΩu0

u20
2

)
(− cosϕ cos θ sinα + sin θ cosα)2, (3.56)

with h0 = 2.94× 104/g. The Coriolis parameter is also given by:

f = 2Ω(− cosϕ cos θ sinα + sin θ cosα). (3.57)

The bathymetry field is trivial, i.e. b = 0. In our work, we analyse the above equations on
the parameter α = 0.

The spatial distribution of u, h, and grad h can be observed in Figure 3.7. The divergence
field is not shown, since the field is geostrophic, and, therefore, div u = 0.

This case is a steady state solution, where we know that the solution would be the same
for all integrated times. This makes it easier to evaluate the error of variable (u,h). We will
use this case to compare with all operators from all schemes, as they will have a direct impact
on the error evolution of the variables.
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Figure 3.7: Zonal (u) component of the velocity vector field, mass field (h), and its respective
gradient.

3.3.1.2 Test Case 1

This is a special case from Tomita et al. (2001) to test the spatial operators of its scheme.
We define two test functions as:

α(ϕ, θ) = sin(ϕ), (3.58)

βm,n(ϕ, θ) = r2 cos(mϕ) cos4(nθ). (3.59)

Then the variables u and h are defined as:

u = α∇β (3.60)

We will evaluate this condition with the parameters set as m = n = 1. The spatial distribu-
tion of the spherical vector field, and its divergent, can be seen in Figure 3.8. These do not
have analytical solutions, so we are not aiming to evaluate their error integrated in time.



SHALLOW WATER ANALYSIS 38

Figure 3.8: Zonal (u) and meridional (v) component of velocity vector field, and the diver-
gence of the velocity.

3.3.1.3 Test Case 2

This case is also from Williamson et al. (1992). It is a zonal flow over an isolated mountain.
It is defined as follows:

b = b0(1− r/R), (3.61)

where b0 = 2× 103 m, R = π/9,

r = min(R2,
√

(ϕ− ϕc)2 + (θ − θc)2),

ϕc = −π/2, θc = π/6. The mass variable is a constant h = 5960 m and the velocity is a zonal
flow, similar to TC0:

(uϕ)0 = u0 cos θ (3.62)

(uθ)0 = 0, (3.63)

where u0 = 20 m s−1. The bathymetry is seen in Figure 3.9.
This testcase is useful to verify the dynamical evolution of the scheme. There is no known

analytical solution.
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Figure 3.9: Bathymetry.

3.3.2 Spatial and Time Accuracy

In this section, we will present the error operators of all the terms in the system of shallow
water equations. We will divide our results for the A-, B-grid and the C-grid TRiSK and
ICON.

3.3.2.1 Divergence

The divergence operator is known to have at most a second order convergence (Peixoto and
Barros, 2013). This is true for squares; however, for triangles the Gauss’ Theorem will only
be at most first order. This is likely because of the non-alignment of the cells, since it has
an odd number of edges. On quasi-hexagonal cells, it is shown that the convergence rate
for rougher grids is close to second order. However, since the refinement increases the cell
misalignment, this convergence is lost. Thus, finer grids will have a convergence close to the
first order.

Our A- and B-grid schemes will have its operator defined on the dual grid, which are
cells of 5 to 6 edges for the former, or 10 to 12 edges for the latter. On both of these cases, it
is expected that the operator will have a second order convergence, at least for the first few
grid generations (gi). Since the cells of our grid have an alignment similar to the standard
grid (Peixoto and Barros, 2013), we expect the convergence to slow down to a first order for
finer grids. Additionally, the presence of intense imprinting on our grid is likely, since our
mesh shows strong signs of distortion (Section 2).

In the case of the C-grid, we expect both schemes to have a first order convergence. Ad-
ditionally, ICON will likely show less noise, than the traditional operator (TRiSK). However,
since our grid is highly distorted, some noise might not be completely removed.

We will display the error of both TC0 and TC1. We can then evaluate both convergence
and distribution of the error in a trivial and non-trivial divergence field.
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A- B-grid
Both schemes show a similar convergence rate for both cases (Table 3.1 and Figures 3.10

and 3.11). They display a near second order on L2 norm. There is also second order on the
L∞; however, only up to g5 on TC0 for the B-grid, and g4 on TC1 for both schemes. For
the geostrophic case, the error from g5 to g6 has a difference of around 40% for the B-grid,
slightly less than first order. For the TC1, on the other hand, there is a decrease of 45% and
53% for the A-grid and 39% and 45% for the B-grid for the grid refinement of g4 to g5 and g5
to g6. It is also evident from the error observation that the B-grid displays an overall smaller
error.

Table 3.1: Maximum Divergence error for A-/B-grid for each grid generation for all Test
Cases.

g-level TC0 TC1
g0 0/0 6.6106.10−8/4.7567.10−10

g1 0/0 2.1633.10−7/7.9352.10−8

g2 7.1409.10−8/1.7669.10−8 7.2038.10−8/2.2101.10−8

g3 2.6386.10−8/8.9528.10−9 1.9842.10−8/6.2014.10−9

g4 7.6860.10−9/2.4695.10−9 5.4219.10−9/2.3443.10−9

g5 2.4493.10−9/6.3977.10−10 2.5248.10−9/1.4390.10−9

g6 8.6826.10−10/3.8031.10−10 1.3836.10−9/7.9291.10−10

Both schemes also present a similar error distribution on the sphere (Figure 3.10 and
Figure 3.11). For TC0, the largest errors are located near the edges of g0. Additionally, it is
evident a pattern of a zonal variation on the face of each g0 triangle, where the smallest errors
are located on the centre of each face. In this case, the main difference between schemes is
that the error sign is flipped (A-/B-grid shows a positive/negative error). For TC1, there is
a large error on the edges of g0. There is also a second expected error pattern which matches
with the magnitude of the true field (Figure 3.8). However, this pattern is dwarfed by the
much larger error of the edges. The main issue is likely again due to the cell misalignment.

For the A-grid, our results are similar to the ones provided by Tomita et al. (2001) on
the standard icosahedral grid. It is likely that the provided divergent operator of the authors
is not as highly affected by the grid distortion as the ones of Danilov et al. (2017), since
for particular conditions it still provided with near second order convergence. However, the
absolute the error was still smaller for the B-grid. This could be explained by the use of a
larger stencil, i.e. the dual cell contains 10 to 12 edges, which could positively impact the
divergence approximation. Regardless, There is a refinement issue which makes the operator
lose its order of convergence. The non-linear geostrophic case seems less impacted, since the
field that it is trying to approximate is homogenous, but the main culprit of the convergence
loss could be associated due to the mismatch between the grid vertex and the associated
barycentre of the dual cell.

C-grid
Both schemes have a similar rate of convergence, being near first order for both norms

(Table 3.2 and Figures 3.12 and 3.13). For TC0, both schemes accelerate the convergence to
near first order and have very similar absolute errors. For TC1, on the other hand, TRiSK
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Figure 3.10: Spatial distribution (1) and plot for different levels (2) of the error of the
divergence operator for TC0 for both A- (A) and B- grid (B).

is also near first order through all grid refinements, however, ICON’s scheme maintains a
second order convergence up to g3. Further refinements show deceleration of the error, the
minimum value is g4 → g5, when the error decreases by only 40%. However, there is a slight
acceleration from g5 → g6, when the error decreases by 48%, indicating that the operator
will reach a first order convergence. Although both absolute errors are similar, the standard
divergence operator shows, surprisingly, a slight smaller error than ICON, even though the
latter has a larger stencil.

The spatial error distribution shows clearly the presence of a chequerboard pattern for the
traditional operator for both testcases (Figure 3.12 and Figure 3.13). This magnitude of this
noise is larger near the vertices of the original icosahedron. This error pattern seems linked
with the triangle distortion, since from Figure 3.14 it can be seen that for large distortions
there is a larger magnitude of the error on both positive and negative sides. Additionally, on
TC1, the expected pattern of the divergence field with its error is not observed, due to the
mesh being contaminated by the noise.

On the other hand, ICON’s operator seems to provide some improvement on the operator.
For TC0, this improvement is modest and much of the noise is still present in the grid (Figure
3.12.B1). A much larger correction is displayed in TC1. As expected, there is still some noise
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Figure 3.11: Same as Figure 3.10, but for TC1.

present on the grid, which is located near some vertices of g0 (Figure 3.13.B1). As observed
in Figure 3.14, these errors are associated with the grid distortion. This indicates that,
although the noise can be removed of the operator, its efficiency is largely impacted by the
grid distortion. The reason why some vertices are affected than others, might be due to the
magnitude of the vector field, since the noise is larger near regions of large velocities.

Overall Comparison
Grid imprinting is an inherent behaviour of the operator on the grid. The error results

of A-/B-grid are similar to the ones obtained by both Tomita et al. (2001) and Peixoto and
Barros (2013). The former scheme is less subjected by the grid quality compared to the latter
scheme. This, on the other hand, displays a deceleration in both tested cases. A similar be-
haviour occurs with ICON, likely due to its extended stencil. The simpler standard operator
of TRiSK, albeit, not apparently affected by the distortion, presents a lower convergence
rate than ICON. As though seemingly unexpected that the absolute error of TRiSK being
larger than ICON, this is likely the consequence of the combined extreme grid distortion of
the vertex and the chosen initial condition. Other tested conditions (not displayed) shows
that ICON does actually portray not only a better convergence, but also an overall absolute
error smaller than the traditional operator. Since the use of the standard grid by Korn and
Linardakis (2018) portrays this result for the tested TC0, it is likely that a better distribution
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Table 3.2: Maximum Divergence error for TRiSK/ICON for each grid.
g-level TC0 TC1
g0 0/0 2.9340.10−1/8.8583.10−1

g1 1.8475.10−3/1.8639.10−6 1.6882.10−1/4.3079.10−1

g2 1.9999.10−3/2.1115.10−3 8.3112.10−2/1.3168.10−1

g3 1.2830.10−3/1.4322.10−3 4.0739.10−2/3.6644.10−2

g4 6.6764.10−4/7.8719.10−4 2.0110.10−2/1.6423.10−2

g5 3.3579.10−4/4.0722.10−4 9.9936.10−3/9.9437.10−3

g6 1.6819.10−4/2.0656.10−4 4.9792.10−4/5.4589.10−4

Figure 3.12: Spatial distribution (1) and plot for different levels (2) of the error of the
divergence operator for TC0 for both TRiSK- (A) and ICON (B).
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Figure 3.13: Same as Figure 3.12, but for TC1

of the error on the grid, will provide overall better results.
The noise of the triangular tiling of TRiSK is apparent in our results. ICON provides a

partial correction of this noise. This correction seems to fail where there is a combination of
the strong cell distortion couples with the magnitude of the field. Additionally, for geostrophic
dynamics, the filtering capability has its worst performance, since the noise should be at its
most intense. On the other schemes; however, where the operator is defined on the dual cell,
this pattern is not displayed.

Essentially, all operators are affected by the grid quality, either of the primal or the
dual cell. Therefore, a good choice of mesh, which decreases the distortion, will provide an
improvement on these results.
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Figure 3.14: Divergent error by triangle distortion for TC0 (1) and TC1 (2) for TRiSK (A)
and ICON (B).

3.3.2.2 Gradient

The gradient operator has a similar calculation as the divergent for the both A-/B-grid.
Since the A-grid scheme has the computation on the vertices, we would expect a similar
convergence rate. Opposite to it, the B-grid scheme has the operator performed on the
barycentre of the triangles. Since there is a similarity between both divergence and gradient,
we expect a behaviour similar to the divergent operator of TRiSK. In particular, the error
distribution will likely be contaminated by noise and also the convergence rate will be at
most first order without being much affected by the distortion, specially because the point
where it is computed is the barycentre rather than the circumcentre.

Both C-grid schemes are defined similar to a midpoint differentiation method. This is
expected to be second order. This is expected only if the computed point is halfway between
each of the values to be computed. Since our grid is deformed, there is an offset between the
primal and dual edge midpoint, and, therefore, it is likely that the second order will not be
reached with this additional source of error. It is also likely to be a noise associated with
the computation, since the gradient computed in this scheme is associated to a single vector
direction, which is normal to the edge.

A- B-grid
Both schemes show a very different response to the gradient operator (Table 3.3). The

A-grid has a L∞ convergence rate near second order up to g4. Further refinements lead to
a slow-down of the convergence to near second order, where the slowest change is g5 to g6,
when the error decreases in only 40%. However, the L2 convergence stays consistent near
second order (Figure 3.15.A2). These results are consistent with the ones obtained by Tomita
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Table 3.3: Maximum Gradient Energy error for A- and B-grid.
g-level A-grid B-grid
g0 2.2888.100 5.5970.10−1

g1 3.6278.10−1 2.3208.10−1

g2 8.3234.10−2 1.0599.10−1

g3 2.1639.10−2 4.8515.10−2

g4 5.5264.10−3 2.3694.10−2

g5 2.5210.10−3 1.1786.10−2

g6 1.5164.10−3 5.8747.10−3

et al. (2001) with the standard grid, despite our grid having a lesser quality. Regardless, the
absolute error of this scheme is larger than B-grid. As it is expected, this latter operator,
has a first order convergence for both L∞, and L2 (Figure 3.15.B2), which is similar to the
convergence of the divergence operator of TRiSK.

The spatial error distribution is also quite different (Figure 3.15). The A-grid operator
shows a clear grid imprinting, as did its divergence. There are two patterns to be observed,
the first and more evident, is the large error delineating the original edges of g0. The second
is a meridional (latitudinal) variation of the error, where the smallest error is located near
the face centre of the grid and increasing with latitude. This is similar to Figure 3.10, except
it was a zonal variation. B-grid, in contrast, shows a chequerboard pattern, although not
clearly visible by observing the normed error of the vector. The most visible pattern of the
error is that it is more intense near the triangle faces of g0. However, the error pattern does
seem connected with the vertices of g0, despite its strong distortions, which was a result
observed on the divergence of TRiSK (Figure 3.12).

C-grid
The gradient operator has a first order convergence from up to g2 for both norm. Sur-

prisingly, this convergence accelerates to near second order for finer grids, with the error g5
to g6 reducing by 77.7% (Table 3.4 and Figure 3.16).

Table 3.4: Maximum Gradient Energy error for each grid.
g-level TC0
g0 1.0847.10−2

g1 6.2230.10−3

g2 3.4133.10−3

g3 9.4113.10−4

g4 2.4210.10−4

g5 6.1378.10−5

g6 1.3640.10−5

When observing the spatial distribution of the error, we observe that the errors on the
centre of the triangle faces of g0 are the smallest (Figure 3.16.C). This region is where there
is the smallest amplitude of the gradient operator (Figure 3.7). The variation of this error is
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Figure 3.15: Spatial distribution error (1) and error plot for different grid refinements (2) of
gradient operator for TC0 for both A- (A) and B- grid (B).

mostly meridional, with the largest magnitudes at the top of the triangle. Another observed
error pattern is that the error is largest where the edge is closely parallel to the longitudinal
lines. For edges more orthogonal to these lines, the error is smaller. Additionally, the error
pattern also shows a distribution similar to the noise of the triangular chequerboard pattern.
Some error behaviour seems to have a close relation with the edge midpoint offset of the
grid (Figure 3.16.B), since it can be observed that some points of larger offset have larger
errors. However, For edges with a distance larger than 6× 10−5, the majority of the points
with large offset do not show a clear relation between the error and the distance.

Overall Comparison
All schemes show widely different behaviour of approximating the operator. The A-grid

provides a similar behaviour with its divergent operator. Therefore, similar interpretations
can be drawn from it: an impact from the grids quality, ranging from the error convergence
to the presence of imprinting. The B-grid noise presence was expected, due to the similarities
between computation of this operator and the divergent. The lack of relation between the
error and the distortion of the cell, might be explained due to the fact the gradient of this
scheme is defined at the barycentre of the cell. From the theory, the expected point the centre
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Figure 3.16: Spatial distribution of the error for the g6(g6), maximum and second norm error
plot for different grid refinements (A), and distribution of the error by the distance between
primal and dual edge midpoint of the gradient operator for TC0 for the C-grid.

of mass, which is likely free from the distortion. Therefore, regardless of the distortion of the
grid, this behaviour was expected.

The C-grid scheme acted, surprisingly, with a convergence error better than anticipated.
This behaviour might be due to the fact that, although |e − ê| ̸= 0, the distance between
these points tends to 0 (Figure 2.6.A). Additionally, our convergence order of 2/2 for L2/L∞
is better than the computed by Peixoto (2016), which at best found 2/1 and at worst 0/−1.
Additionally, it is evident that there is a relation between the error and the normal vector
direction, since the gradient direction is predominantly meridional which seems to coincide
with the edges of larger error.

3.3.2.3 Kinetic Energy

As all variables of the A-grid are defined on the vertex of the mesh, then the kinetic energy
operator is exact for this scheme. On the other hand, The B-grid requires and interpolation
to be performed, in order to place the velocities on the vertices of the triangle, which in
turn will make the gradient of the kinetic energy on the barycentre of the triangle tiling.
The computation of this operator behave as a barycentric interpolation (which is a weighted
average of all the neighbour points). However, due to the large number of points to be
interpolated in the vertices; therefore, it is expected some grid imprinting on the operator,
which goes in opposition to mass interpolation of the triangle, requiring only three points.
If the vertices were the barycentric centre of the dual cell, we would have expected that the
error of this interpolation would convert to a second order. However, since there is mismatch
between these points, we assume that the additional error would pose an obstacle for the
convergence.

The C-grid schemes has different computation for Ek. TRiSK’s scheme comes from Weller
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Table 3.5: Maximum kinetic energy error for B-grid for each grid.
g-level TC0
g0 274.6762
g1 67.2432
g2 25.6115
g3 7.33677
g4 1.92377
g5 1.15875
g6 0.64761

et al. (2012), which is barycentric interpolation to the circumcentre of the triangle (requir-
ing to calculate the edge areas). As such, we expected a consistent interpolation in second
order, which has been said by the aforementioned authors that this interpolation is more
accurate for these non-Voronoi type grids. ICON, in contrast, utilizes Perot reconstruction
to interpolate the velocities on the circumcentre of the triangular cell, and then compute
the kinetic energy. Its use by Peixoto (2016) on Voronoi grids found that it converges to a
second order. However, Perot (2000) have identified for triangles that this scheme first-order
accurate. This indicates that we will likely expect that the kinetic energy operator might
have a worse performance than TRiSK kinetic energy computation.

B-grid
The B-staggering scheme starts with a near second order convergence for the L∞ norm

up to the g1. It slows down slightly up to g4, but still remained near second order. However,
up to g6 it slowed down once more to a near first order convergence. In contrast, L2 remained
consistent, converging near second order on all iterations.

The spatial distribution of the error shows a pattern similar to other operators. The
largest errors are found at regions near g0 edges (Figure 3.17)). Note that these regions
displays a small area in comparison to the grid (Figure 2.7.C), but also a large misalignment.
In contrast, the grid pentagons, which are generated at the g0 vertices, present small errors.
This indicates that a large amount of cell vertices might negatively impact the interpolation
of the grid.

C-grid
Both C-grid schemes show a second order convergence for both norms. The difference

found on both schemes is that TRiSK show an error one order of magnitude less than ICON
(Table 3.6).

This difference of behaviour in both schemes is also evident. For TRiSK, large errors
seems closer to regions of large cell distortion (g0 vertices). ICON, on the other hand, has
its largest errors at the centre of the original g0 triangles. Note that these regions are the
less distorted ones, but also has the largest areas of the triangle. This might indicate that
the ICON scheme is more susceptible to the overall area of the triangle rather than the
distortion. Despite this, it is also worth noting that these regions are where the largest
magnitude of velocity is located. Therefore, it is also possible that the operator is correlated
by the magnitude of the interpolant, which could explain why only one sign of the error is
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Figure 3.17: Spatial distribution error (g6), and maximum and second norm error plot for
each grid refinement (A) of the Kinetic Energy for the TC0 for the B-grid.

Table 3.6: Maximum kinetic energy error for TRiSK/ICON for each grid.
g-level TC0
g0 0.0000/79.0000
g1 2.2066/27.3284
g2 4.8240.10−1/6.5064
g3 1.0380.10−1/1.6969
g4 2.4565.10−2/4.2438.10−1

g5 6.2123.10−3/1.0541.10−1

g6 1.5634.10−3/2.6302.10−2

shown.

Overall Comparison
It is evident that the operator performs better on C-grid operator rather than B-grid,

despite the vector components of the TRiSK and ICON being separated. The implementation
of Weller et al. (2012) for the TRiSK operator on triangles has the best performance, as it is
expected. This method outperforms even Perot’s formula. Recall that, TRiSK’s operator uses
the spherical edge area Ae,K to perform the calculation, while ICON uses the combination
of primal-dual edge length |e|d(e,K). The area of the former, provide more information
than only the length, and; therefore, might pose a better interpolation. It should be noted,
however, that the former operator calculates Ek only for the normal component. ICON’s Ek

operator use the total vector component, which is interpolated by Perot’s reconstruction.
The spatial error of the grids also displays a quite distinct behaviour. The grid imprinting

of B-grid is very well present and similar to the operators. This indicates that this operator
is susceptible to misalignment of the cell, due to its barycentric interpolation. If such a
computation were to be performed on triangular cells, it is likely that it would be less
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susceptible to it. However, a similar behaviour occurs in TRiSK. This susceptibility likely
occurs because the velocity vectors are decomposed in each edge and the Kinetic Energy
is computed in each edge separately and then interpolated in the triangle. ICON’s absence
of such a structure likely occurs, since the kinetic energy is computed after the vector is
reconstructed in the circumcentre of the triangular cell.

Figure 3.18: Spatial distribution error on g6 grid (1), and maximum and second norm error
plot for different grid refinements (2) of the kinetic energy operator for TC0 for both TRiSK
(A) and ICON (B).

3.3.2.4 Coriolis Term

In this section, we will only analyse the C-grid scheme, since this operator requires a recon-
struction of the velocity vector (A- and B- grid schemes already have the complete vector field
defined on the same point). Prior to analyse the operator, we will verify the inconsistency
index, which is defined as:

χ = ∥tne − te∥,
where tne is the numerical tangent vector and te is the analytical tangent vector. This index
was presented by Peixoto (2016) which stated that for a method to be consistent on the
spherical grid, it is required that it converges to 0 for larger resolutions. We have presented
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Table 3.7: Maximum inconsistency index for TRiSK1/TRiSK2 for each grid.
g-level
g0 2.1084.10−1/1.9980.10−1

g1 1.8595.10−1/5.9912.10−2

g2 1.9292.10−1/1.0994.10−1

g3 3.5464.10−1/4.2010.10−2

g4 4.7141.10−1/3.1397.10−2

g5 5.4062.10−1/2.5171.10−2

g6 5.7824.10−1/2.3131.10−2

two TRiSK methods, which uses the weights of the primal or the dual cell, respectively. We
will present an inconsistency index for both of those.

The first method present no convergence on both norms, except from g0 to g2 where
there is a slight decrease in error for L∞ and near first order convergence for L2 (Table 3.7
and Figure 3.19). A continuous refinement from g2 to g6 shows a stagnation of the error for
around 10−1 on L2. However, L∞ shows an increase in error from 1.9.10−1 in g2 to 5.782.10−1

in g6, an almost 3 times increase in error.
TRiSK2, on the other hand, shows a slightly better performance on both norms. Up

to g2 there is not an evident convergence of the error; however, from g2 to g3, we observe
an almost 60% decrease in error for the L∞, which slows down with further refinement,
eventually stagnating. The error from g5 to g6 show a decrease only 8% in L∞. For the L2

norm, however, from g2 to g5 there is a convergence of near second order, which slows down
to a near first order in g5 → g6.

For both methods, their error distribution on the distribution are quite similar. The
largest errors are found near the g0 edges. The edge that shares the original g0 edge displays a
smaller error than their neighbours. The most noteworthy difference is that TRiSK1 displays
an error decreasing radially from the original g0 vertices. Contrary to it, TRiSK2 shows
a confined error at the aforementioned regions, displaying a pattern similar to the grid
imprinting described for the dual cell on the other schemes.

For the former method, we might argue that it seems closely related to the triangle
distortion (Figure 2.8.A), since there is close match with large errors and worse triangle
distortions. In contrast, TRiSK2 seems to have close relation with cell alignment. The large
alignment band at the g0 edges reflects the band of small error at the same region. It is likely
that the dual edge that shares an aligned cell with a poor aligned one is the reason of large
errors found for this method.

There is some evidence that the grid quality interferes with the accuracy of each method.
Despite TRiSK2 showing a better performance, both tested schemes displays a 0th order
convergence for the maximum norm. Peixoto (2016) have shown that, for some grids, TRiSK
may improve on its accuracy. Therefore, it is possible that utilizing a different, TRiSK might
improve on its convergence. However, Thuburn et al. (2009) also have shown that TRiSK2
contains non-zero frequencies on the geostrophic modes (which we will revisit in Section 3.4).
For this reason, it is unreliable the application of the operator for time integration testing.

We will now evaluate the nonlinear Coriolis term error for both schemes with TC0. This
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Figure 3.19: Inconsistency index spatial distribution error on g6 (1), and maximum and
second norm error plot (2) for both TRiSK1 (A) and TRiSK2.

operator, we recall, is defined as qu⊥h, which consists of an interpolation of h to the vertices
of the grid and the computation of the relative vorticity ζ. We will perform this test only
for TRiSK1 and ICON, due to the issues mentioned above of TRiSK2.

Similar to the inconsistency index, the Coriolis term of TRiSK does not indicate a con-
vergence of the error on either norms. Moreover, L∞ displays a slight increase in error from
5.05.10−4 in g2 to 13.86.10−4 in g6, more than twice. ICON, however, displays a consistent
convergence rate for both norms. L2 consistently converge near second order, while L∞ is
near first order, with g5 to g6 presenting the lowest decrease of around 52%.

TRiSK1 shows a larger error concentrated around the vertices g0 (Figure 3.20). There is,
however, a slight difference in pattern around these vertices. The error seems to vary pre-
dominantly meridional. ICON, on the other hand, present a similar distribution as TRiSK2,
with the largest errors restricted to the original icosahedral edges. Opposite to TRiSK2, the
edges that coincide with g0 also present large errors.

The Coriolis term of both schemes is likely controlled by the reconstruction, since we see
no convergence on TRiSK1, while ICON has a pattern similar to TRiSK2. It is likely that
this similarity is explained by the fact that both schemes are computed considering weights
of the neighbouring dual cells. However, the weights are better adjusted for our grid such
that ICON’s reconstruction operator consistently converge.

Peixoto (2016) had proposed the Perot method to substitute TRiSK’s reconstruction for
the quasi-hexagonal tiling, with the argument to provide a consistent method. His method
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Table 3.8: Nonlinear Coriolis maximum error for TRiSK1/ICON for each grid for TC0.
g-level
g0 1.4440.10−3/1.2318.10−3

g1 6.7610.10−4/4.3780.10−4

g2 5.0573.10−4/1.7573.10−4

g3 7.5572.10−4/7.3100.10−5

g4 1.0607.10−3/3.1222.10−5

g5 1.2715.10−3/1.4078.10−5

g6 1.3863.10−3/6.6354.10−6

also have a similar convergence. This shows the robustness of the accuracy of the reconstruc-
tion method in comparison to the traditional TRiSK scheme.

The Coriolis term seems highly sensitive to the reconstruction scheme chosen. For all
tested scheme, the distortion and cell alignment is the primary drive for the accuracy of
reconstruction.
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Figure 3.20: Nonlinear Coriolis error term spatial distribution for g6 grid (1), and maximum
and second norm error plot for each grid refinement (2) for TRiSK1 (A) and ICON (B).

3.3.3 Variable Error

To evaluate the accuracy of both scalar (h) and vector (u) field, we will run our model with
the initial conditions of the TC0. We will use the time integration method of Runge-Kutta
order 4 (RK44), with a time step of 400 seconds. The maximum time integrated will be
15 computer days. Since TC0 is in geostrophic balance, the fields are expected to remain
stationary.

To compute the error of the vector field, we will consider the total vector error, i.e.
|un − u|, to compute L2, L∞, in the case of A- and B-grid. For C-grid, we will compute the
errors similar to the scalar field, i.e. |un − u · n|. To display the spatial distribution of the
error, we will only use the zonal velocity, which will be the dominant field. To do that for
both C-grid scheme, we will reconstruct the vector at the triangle’s circumcentre using the
Perot’s operator (PvK).

We remark that ICON requires the computation of the inverse of its admissible recon-
struction operator. This operation is computational costly. Therefore, we will use the lumping
mass matrix in which we will assume that the inverse is a diagonal matrix, i.e. MG

−1 = Iλ.
In particular, we will consider λ = 1 (Korn and Danilov, 2016; Korn and Linardakis, 2018).

Since TC0 is mostly stationary, nonlinearity should be absent in this scheme. In that
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regard, A- and B-grid should be the best performing schemes. However, due to the issues
of inconsistency presented by Tomita et al. (2001), we expect strong noise to appear in
our grid, which will likely damage the accuracy of the variables. Moreover, since the B-grid
scheme has some operators defined at the barycentres of the triangles, the accuracy of the
variables will likely not be the most optimal. Regardless, both schemes necessarily require
a filter to remove unwanted noise, which will negatively impact the accuracy. Despite this,
we expect both C-grid methods to have a lower accuracy, specially because of necessity of
the vector reconstruction of the Coriolis term. Moreover, it is likely that ICON will have a
better performance, since TRiSK’s reconstruction fails to present a convergence of the error.

In regard to the spatial distribution, since the C-grid scheme will not contain filtering
techniques in their discretizations, near grid scale oscillations will likely be present. Since
TRiSK contain no type of correction of the chequerboard pattern, opposite to ICON; it is,
therefore, likely that this noise will be also present within the solution of scalar field.

A- B-grid
Both schemes exhibit a vastly different result. The A-grid (Figure 3.21) accelerates its

convergence of the error up to g3 for both norms, where the error from g2 to g3 has near
second order convergence, i.e. decreasing in almost 79% and 86% for h and u, respectively
(Table 3.9 and Figure 3.9). However, L∞ slows down with further refinements. It is observed
that the scalar field error maximum norm increases 66% from g5 to g6, while the vector field
has only a 2% increase. The L2 norm also slows down, but remain convergent with a first
order with grids finer than g3.

Table 3.9: Maximum variable error for A-/B- grid
L∞(h) L∞(u)

g0 1.9105.10−2/5.1995.10−1 5.3933.10−1/84.575.100

g1 4.0315.10−2/1.1123.10−1 4.2177.10−1/6.5812.10−1

g2 2.5001.10−2/8.5065.10−3 1.6146.10−1/9.5452.10−2

g3 3.1830.10−3/3.2516.10−3 2.3112.10−2/5.1187.10−2

g4 1.4166.10−3/8.7003.10−4 1.1346.10−3/1.1827.10−2

g5 3.1994.10−4/2.0436.10−4 2.7379.10−3/3.2065.10−3

g6 5.3236.10−4/5.5774.10−5 2.8187.10−3/1.1818.10−3

On the other hand, for the B-grid scheme (Figure 3.22), it is observed a slight acceleration
up to g2 for both norms and fields. The L∞ decreases in more than 99% and 85% for both h
and u. Further refinements are met with a slow-down of the error, but as intense as A-grid.
Both variables in both norms retain a near second order convergence without clear signs of
braking. For g5 to g6 in L∞, in particular, the error decrease in 72% and 63% for both h and
u.

When observing the error distribution of the spatial error, we observe that the A-grid is
fully contaminated with noise in the mass field h. This noise seems more intense near the
vertices of g0. In a Further analysis of this noise, we observed that the noise is generated at
each time step of the integration at the edges of g0. This noise is then transported westward,
without damping, until the whole grid is contaminated, despite the presence of hyperviscosity.
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Figure 3.21: Mass (A) and zonal velocity (B) field spatial distribution error on g6 (1), and
maximum and second norm error plot (2) for TC0 for the A-grid scheme.

If we remove this filter, the integration destabilizes prior to the 15th day.
B-grid, however, displays no presence of any noise on the grid. The error pattern of both

variables show a zonal oscillatory pattern of wavenumber of around five. The grid imprinting
at the g0 edges, which was identified at the operators, is also present in both fields. However,
the magnitude of the error is much smaller than the surrounding error

We remark that a noise was also described by Tomita et al. (2001) in their work, though
they only performed an analysis without using any form of filter. They have not thoroughly
explained the reason for such a noise, but they have shown that the use of a grid in which
there is a consistency and an improvement of the accuracy of the operators leads to a noise
reduction. They reasoned, that the use of a spring dynamics grid was more consistent with
their model. We provided a similar discretization in Appendix A, where we moved both
vertices and triangle barycentres, such that vertices coincide with the mass centre of the
dual cell. It is clear that the noise present is not generated at the momentum equation, since
there is a presence of a filter. This noise is purely generated at the mass equation, likely in
the divergence operator. This explains why the noise is much more prominent at the scalar
field rather than the vector field.

The B-grid, on the other hand, does not display such visible oscillations. For TC0, this
scheme outperforms A-grid’s scalar field error by 1 order of magnitude. B-grid’s error is
comparable to the A-grid in a spring dynamics grid (Tomita et al., 2001). This suggests that
the scheme provides a better flexible to grid quality, while A-grid is highly sensible to it.
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Figure 3.22: Same as Figure 3.21, but for the B-grid scheme.

C-grid
Both schemes show a well-behaved error control. TRiSK has an increase of the error up

to g2 for both fields and norms. From g2 the error begin converging. The mass field L∞ has
its largest decrease from g2 to g3 of about 80%. It, then, slows-down, but remain convergent
to near first order, with the error decreasing by 51%. The L2 follows a similar behaviour.
The vector field has its convergence near second order constant to the all grid levels. There
is a slight slow down from g5 to g6, where the error decrease around 64%, less than second
order, but more than first.

ICON’s scheme has a similar error pattern. The mass field starts converging from grid

Table 3.10: Maximum variable error for TRiSK/ICON
L∞(h) L∞(u)

g0 2.2277.10−3/4.9853.10−3 1.6387.10−1/2.7624.10−1

g1 2.2089.10−2/3.6300.10−2 2.9333.10−1/1.2704.100

g2 4.9740.10−2/1.6902.10−2 4.5466.10−1/2.2850.10−1

g3 1.0317.10−2/6.3856.10−3 7.0111.10−2/1.0780.10−1

g4 5.2617.10−3/3.5896.10−3 1.3362.10−2/3.2745.10−2

g5 1.8232.10−3/8.3187.10−4 2.1799.10−3/1.0314.10−2

g6 8.9341.10−4/2.8325.10−4 7.8181.10−4/3.5797.10−3
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level g1, but we observe a more consistent convergent pattern from g3. The largest decrease
in error for L∞ is from g5 to g6 of around 51%, i.e. near first order. L2 is shown to have the
same behaviour. Moreover, the vector field starts converging also from g1, and we observe a
consistent convergence of near second order, with the last refinement decreasing in 65%, less
than second, but more than first order.

The largest differences between schemes occur in their distribution around the sphere.
The mass field of TRiSK has a clear presence of chequerboard type pattern, which is larger
near the vertices of the icosahedron; however, some errors are accentuated near the edges
of the tropics. The vector field error displays an overall zonal pattern with wavenumber five
around the sphere. Nevertheless, there is a presence of a clear noise on the sphere, which
looks parallel to some edges of g0. Additionally, there is a clear grid imprinting around these
icosahedron edges that are slightly more pronounced closer to the poles.

Figure 3.23: Mass (A) and zonal velocity (B) field spatial distribution error on g6 (1), and
maximum and second norm error plot (2) for TC0 for the TRiSK scheme.

On the other hand, there is no clear noise visible in ICON’s scalar field, as one should
expect. The visible pattern of this error field is the presence of zonal waves with a wavenumber
of five, where one side of the equator will have its sign flipped in comparison to the other
side. In addition, the g0 edges at the tropics contain have a slightly larger error than its
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surrounding. The vector field also has this wavenumber pattern present; however, similar to
TRiSK’s vector field error, it contains some level of noise on the grid. This noise is slightly
less pronounced than TRiSK. Also, similar to the scalar field, slightly larger errors are present
near the g0 edges in the tropics.

Figure 3.24: Same as Figure 3.23, but for ICON.

Overall Comparison
The A-grid presents the worst performance of the tested schemes. Its noise amplification

is not damped by the filter. All the other schemes show at least a first order convergence.
However, the scheme of B-grid has an error magnitude smaller than either C-grid schemes.
This could have many causes, such as the filter used, the complete vector field being defined
exactly, the choice of discretizations being at least first order and some near second order,
but a more in depth investigation is required to evaluate these potential causes.

Additionally, the zonal wavenumber pattern for the mass field is observed in both B-grid
and ICON. This pattern is also obtained by Korn and Linardakis (2018). Therefore, despite
our grid having a worse distortion than the standard icosahedron, both schemes, ICON in
particular, are robust enough so that the geostrophic balance is properly computed in time.

A-grid, however, is shown to not properly simulate the condition as the noise in these
distorted are intense enough to contaminate the grid, making the scheme useful only for
some specific grids (Appendix A). TRiSK, on the other hand, the noise does not seem to
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affect heavily on the simulation, since it still converges. However, the poor performance of
the reconstruction could likely impact heavier conditions that require more of the nonlinear
components.

3.4 Normal Modes

In order to evaluate differences in TRiSK1, TRiSK2 and ICON, we will conduct normal
mode test following Thuburn et al. (2009) and Weller et al. (2012). To achieve that, we use
the linear form of (3.1b):

∂h

∂t
= −h0∇ · u, (3.64a)

∂u

∂t
= −f0k× u−∇Φ. (3.64b)

Let A be the linear action of the shallow water equations on the sphere. Let x = (h,u) =
[xi]i, where xi = (0, · · · , 0, 1, 0, · · · , 0) where it is 1 on the i-th component and 0 on the rest.
Then:

Ax = B.

We then calculate eigenvalue (λ) and eigenvector (v) of the matrix B. Since we know that
λ = αeiω∆t, we can then solve for ω which is the frequency.

We will consider the f -sphere, where f0 = 1.4585× 10−4 s−1, gH = 105 m2.s−1. We will
integrate the equations using the g2 grid with RK44 with a time step of 10 seconds, similar
to Weller et al. (2012). The analytical curves are:

c[c2 − f 2 − n(n+ 1)
gH

r
] = 0. (3.65)

For all schemes, we calculated a total of 798 modes. For both TRiSK1 and ICON, we
found 162 geostrophic modes with zero frequency (Figure 3.25), i.e. neutral modes, which
are the same obtained by Thuburn et al. (2009) and Weller et al. (2012). TRiSK2 and ICON,
shows overall a slower inertia-gravity waves than TRiSK1, with ICON displaying the most
intense reduction. Since both schemes share the use of the dual grid to reconstruct the vector
velocity field, therefore, this might be indicative of the decrease in the inertia-gravity wave
propagation.

Additionally, both schemes also display a lower quantity of zero-frequency geostrophic
modes (48 modes) than that expected by the theory (Le Roux et al., 2005). This has the po-
tential effect, depending on the initial condition, of not being able to sustain the geostrophic
balance. For ICON, a similar result was observed by Peixoto (2016), however, as the author
argued, it does not appear that these modes display an expressive issue in the scheme.

On the other hand, on both TRiSK schemes, there is also the presence of a frequency
jump near the 50th mode. According to Thuburn et al. (2009), this jump is associated with
a spurious branch of the inertio-gravity waves.
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Figure 3.25: Normal modes on the f-sphere for TRSK1 (A), TRSK2 (B), and ICON (C)
on the full range (1) and zoomed around the geostrophic portion (2). The red lines are the
geostrophic modes, the blue lines are given the inertia-gravity modes.

ICON scheme, in contrast, does not display this jump and has a smoother transition to
higher frequencies. However, ICON also displays a much slower frequency of inertio-gravity
waves for the higher modes than the other schemes. The dual reconstruction is partly the
culprit of such a loss of speed. The MG on the divergence is likely also responsible to not
only also to brake some of these waves, but also to make to eliminate the jump. Since the
TRiSK2 displays this jump, this spurious branch is, therefore, probably associated with the
chequerboard noise of the divergent operator.

The reader should be aware that in our work, we did not thoroughly investigate the
associated eigenvectors of the analysis. However, we briefly observed for all schemes, some
associated with the neutral geostrophic modes possess a more symmetrical around the equa-
tor, while modes associated with higher frequency present a more noisy high wavenumber
pattern around the sphere, following from the work of Weller et al. (2012). A potential veri-
fication is in future to check whether the spurious Rossby modes from the triangular C-grid
are diminished with admissible reconstructions of the ICON scheme.

3.5 Mountain Case

This testcase considers an orographic forcing at midlatitudes. We aim to verify a more
realistic approach to fluid behaviour in a rotational setting.

The models show a disturbance caused by the mountain that propagates in the eastern
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direction. This propagation allows the surge of planetary waves on the Southern Hemisphere,
which is largely present at day 15th (Figures 3.26 and 3.27). We observe, at this time, small
scale noises throughout all schemes. These noises are more prevalent at the midlatitudes and,
in particular, in both C-grid schemes.

Figure 3.26: Mountain Test case day 15 for A-grid (A) and B-grid (B) for ζ (left panels) and
Φ (left panels) variables.

We also note that near the mountain, where is a large positive concave vorticity feature,
both C-grid schemes show a small frontal feature. Korn and Linardakis (2018) results (Figure
3.28) also show this phenomenon at g7, while g5 it is not as pronounced. The absence of
this feature is noted on both A- and B-grid schemes. Therefore, this feature might be the
consequence of an accurate small wave propagation of the schemes, which is smoothed by
the filtering on the other simpler staggering schemes.

Further integration of the testcase lead to a stronger interaction of the planetary waves at
day 50 (Figure 3.29), leading to a vortex shedding at the mountain location, and a constant
source vortex emission. In this point, the differences of the schemes are higher. The noises
previously present on A- and B-grid schemes dissipate, displaying a much smoother vorticity
field. In contrast, both C-grid schemes show a much more detailed features of small scale
waves. Between these latter schemes, TRiSK seems to display more detailed vorticity field
than ICON. It is likely that the operators defined in ICON, which has a larger stencil,
acts to smooth the operators, which was a result presented in the normal modes (Section
3.4). Despite that, TRiSK is heavily polluted by near grid scale noises. Although ICON also
shows some noise, it is much less pronounced. This spurious oscillation is likely related to



SHALLOW WATER ANALYSIS 64

Figure 3.27: Mountain Test case day 15 for TRSK (A) and ICON (B) for v (left panels) and
Φ (left panels) variables.

the chequerboard pattern of the divergence operator. This hypothesis was also presented by
Weller et al. (2012), in which they stated that ”the oscillations [...] are the manifestations
of the computational Rossby modes caused by the excessive number of velocity DOFs in
comparison to height”.

3.5.1 Spectral Analysis

To visualize how well these features are presented, we show the kinetic energy spectrum on
the sphere. This spectrum was done averaging the fields from day 16-50 using a g5 grid. In
the following section, we describe how the spectrum of the kinetic energy was obtained.

3.5.1.1 Description

Following Boer (1983), spherical harmonics are special functions defined on the surface of
the sphere. A function ψ(λ, θ) can be expanded on the sphere as:

ψ(λ, θ) =
N∑

n=0

n∑

m=−n

ψm
n Y

m
n (λ, θ), (3.66)
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Figure 3.28: Mountain test case day 15 for ICON’s scheme on g5 (left) and g7 (right). Source:
Korn and Linardakis (2018).

Figure 3.29: Relative vorticity field for the A-grid (A), B-grid (B), TRiSK (C1), and ICON
(C2).

where this expansion is truncated and Y m
n (λ, θ) = Pm

n (µ)eimλ, and Pm
n (µ) is the associated

Legendre Polynomial of order n defined as:

Pm
n (µ) =

√
2n+ 1

2

(n−m)!

(n+m)!

√
(1− µ2)m

2nn!

dn+m

dµn+m
(µ2 − 1)n. (3.67)

This way guarantee that the functions are orthogonal in the sphere.
We can then calculate the Kinetic Energy Spectra following Jakob-Chien et al. (1995):

(Ek)n = − r2

4n(n+ 1)

[
ζ0n(ζ

0
n)

∗ + δ0n(δ
0
n)

∗ + 2
n∑

i=1

ζ in(ζ
i
n)

∗ + δin(δ
i
n)

∗
]
. (3.68)

where ¯(Ek)n is the global mean spectra, ζjn, δ
j
n and (ζjn)

∗, (δjn)
∗ are spectrum coefficients of

the vorticity and divergence, and (·)∗ is the complex conjugate.
Due to the optimization of the package, we are going to use pyshtools, a python pack-

age aimed to extract spectral coefficients. Subsequently, we will employ Equation (3.68) to
compute the spectrum of the kinetic energy
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3.5.1.2 Analysis

All schemes (Figure 3.30) show a very similar energy cascade for large wavenumbers. For
high wavenumbers we observe an order from faster cascade to lower cascade is A-grid, B-grid,
ICON, TRiSK. This goes in line with the previous observations. As A-grid has the worst
representation for high wavenumbers, it is expected that it shows a worse energy behaviour.
B-grid follows A-grid as it better represents high wavenumber waves, but not as well as
C-grid. Lastly, C-grid shows that both TRiSK and ICON has an increase of energy near
these high wavenumbers. ICON seems to have a slightly lower energy at this scale. Thus, it
is likely that this energy behaviour might likely be linked with the grid scale oscillation of
schemes.

Figure 3.30: Spectral Analysis from the average of day 16 to 50.

3.6 Concluding Remarks

Our observations show that these schemes shares a lot of similarities. One very important
similarity is their vulnerability to cell distortion. There seems to be a direct connection with
the error and this grid property, and this likely impacts the convergence of the operators.
This result is in agreement with Peixoto and Barros (2013).

The distortion of the grid is one of the reasons for the choice of an optimization, as means
to minimize these problems. Even though the A- and B-grid shows first order convergence
for the operators, there are critical issues due to the usage of this grid. Tomita et al. (2001),
for example, have briefly showed that the standard icosahedral grid is highly inadequate for
this scheme. We here have provided further evidence to attest to this inadequacy.

The C-grid schemes are also not immune to the effects of the grid. The main TRiSK
discretization seems to not even converge its Coriolis operator. A second discretization of



SHALLOW WATER ANALYSIS 67

TRiSK is shown to apparently have a first order convergence, but it does not have stable
geostrophic modes, making it unusable. For these considerations, ICON seems to be a bet-
ter alternative than TRiSK, since it does have a better convergence of the operators and
minimizes some chequerboard pattern noise of the grid.

This noise is present in the B-grid and both C-grids. Regardless of the grid optimization, it
will be present if the variable/operator be defined in the centre of the triangle cell. Although
it is present on the B-grid, it does not affect heavily the solutions because this scheme
requires an associated filter, which would remove any spurious oscillation. However, in C-
grid it is present and has the potential to deteriorate the grid solution. ICON provided an
efficient improvement of the oscillation. This scheme, however, has some limitations. It does
not conserve energy, neither vorticity nor enstrophy with its lumping mass matrix. Some
conservations are inherently built in TRiSK. Besides that, ICON seems to remove some grid
scale features. This, however, could be an advantage for mitigating some instability (refer to
Chapter 4).

In contrast, most small scale features are absent in the A- and B-grid schemes. Our
results from the nonlinear mountain case show that ’we might require A-grid to have a finer
resolution as to match with the results of the other schemes. B-grid, in that case, performs
quite well, as it does show a good representation of the inertial gravity waves, but it does
present small grid scale noise. It is possible that the same might be achieved by the C-grid
schemes if they were to use diffusion.

It might be useful to consider using a different grid. It has not been shown how well these
schemes perform on a Spherical Centroid Voronoi Tessellation for triangular cells. Many have
used TRiSK in a hexagonal tessellation, but a triangular one. A-grid has been used on spring
dynamics by Tomita et al. (2001), but we might argue that an SCVT grid will have a better
performance, despite not being as flexible as used by the authors. The B-grid might also be
improved on this grid.



Chapter4

Numerical Instability Analysis

The use of computation approximations for the shallow water equations provides a good
resource for understanding the behaviour of fluid flow. However, these approximations can
generate unphysical waves or spurious oscillations. These are potentially harmful, as some
of these waves may amplify and crash the integration process. They have a variety of causes
and may amplify through some conditions, such as the choice of time integration scheme,
the proper choice of CFL condition or the associated with the staggering grids.

The schemes of Tomita et al. (2001) (A-grid) and Danilov et al. (2017) (B-grid) have
some well known oscillations that are very unstable. The former is caused by excitation of
pressure modes within the integration, while the latter is caused by the excessive DOFs of
the velocity vector field. These issues cause uncontrollable growth of the height and velocity
fields that eventually lead to instability, which will necessarily require some use of filter to
remove the noise.

Most instabilities are well known and studied. Some, however, are still an open-ended
problem. One such example is the one reported by Hollingsworth and Kallberg (1979). They
observed uncontrollable behaviour in their energy/enstrophy conserving scheme, which lead
to a decrease in the intensity of a jet stream in their model followed by an increase of the short
wave kinetic energy in the system. The authors followed on a second paper (Hollingsworth
et al., 1983) with a deeper analysis on this instability, which is now known as Hollingsworth
or Hollingsworth-Kallberg instability, HK instability henceforth. It arises due to the 3D
structure of the model, with the internal mode of the highest wavenumber being the trigger.

Subsequently, Gassmann (2013) have shown that the root of the problem lies in an
unbalance between the advection term with its discretized vector invariant form. In other
words, in theory:

u · ∇u = kζ × u+∇Ek.

However, the discretization of the term of the Right-hand Side (RHS) are not necessarily
equal with the Left-Hand Side (LHS), and this discrepancy may potentially lead to HK
instability. The author was led to this conclusion by observing that the instability would
arise even in a geostrophically balanced state. She also observed that in a quasi-geostrophic
setting, this instability did not occur, since the equations filter out some inertia-gravity
waves. Ultimately, the author makes a final suggestion to extend the stencil of the scheme,
which could have a positive effect in reducing this cancellation error.

In a novel paper by Bell et al. (2017), they were able to provide a further understanding of
the HK instability. Focused on oceanic flows on a plane, they assumed a few approximations,
such as hydrostatic, adiabatic, f -plane, and Boussinesq. Since only the internal modes were
of interest on this instability, they considered the ocean as a layered stack of barotropic fluid,
resembling a layered model (Figure 4.1). As the instability would only be triggered by the

68
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highest internal modes, it is then implied that the shallowest layer of the model would be
the first to trigger the instability.

Figure 4.1: Illustration of a layered model.

Their results also found a connection between HK, and Froude and Rossby numbers,
defined as:

Ro =
U

f0L
(4.1)

Fr =
U

c
, (4.2)

where U and L are, in this case, defined as U = max |u| and L = min{|e|, |ê|}. They found
that the instability triggers faster for large values of Ro and Fr. The Froude Number dictates
the shear of the fluid which goes in accordance with Gassmann (2013) which stated that the
largest vertical shear will trigger faster the instability. Additionally, since the grid resolution
impacts the Rossby Number, therefore, a larger resolution might also trigger the instability
faster.

Subsequently, Peixoto et al. (2018) follows this work and analyse the instability in
a curved geometry: quasi-hexagonal tiling (TriSK, Gassmann (2013), and Peixoto (2016)
schemes), Cubed Sphere (Thuburn et al. (2014) scheme), and the ENDgame model (Wood
et al., 2014). The stability of these methods were evaluated by the use of an adapted power
method algorithm.
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Their results show that all, but a version of the ENDgame, were in fact unstable. They
also identified that HK on these grids follow predominantly the grid imprinting. They con-
clude their arguments by stating that, although there is a root problem for the triggering of
the instability, other myriad of factors may work as either a catalyst or a damping of the
instability. Furthermore, as it was previously mentioned in Bell et al. (2017), the resolution
does not help to alleviate the symptoms of the instability, and it can, in turn, help to trigger
it.

Recently, Gassmann (2018) also attacked this problem by utilizing a similar argument in
a previous paper Gassmann (2011). She reasons that due to trivariate linear dependence con-
straint (3.3), the vector-invariant form and the advective form of the shallow water equations
no longer exactly agree with each other in the discretization.

She also proposes a modified TRiSK scheme such that this trivariate constraint is met for
the Coriolis term. In her previous work (Gassmann, 2013), she tried to alleviate the problem,
but her success was limited to the equilateral triangular tiling. On a deformed mesh, however,
she unfortunately failed to meet the constraint.

As it can be seen, there is not a definitive solution to the problem. Currently, the best way
to circumnavigate this issue is to use some form of filtering, such as a diffusion operator. The
inclusion of it poses some issues. Higher order diffusions are generally physically inconsistent.
One form of inconsistency is that the conservation of angular momentum is often violated.
Hence, its use is discouraged as it may result in unphysical solutions for long time integration.
However, due to its simplicity, it is often used for some schemes. A- or B-grid schemes usually
opt for these diffusion operators, which will eventually mitigate waves small scale waves. C-
grid does not necessarily need to use filter, but with the HK instability, its use might be
considered. Thus, for the use of hyperdiffusion operator, how much viscosity will we require
for each scheme to be stable? Does ICON operators help to mitigate the instability issues?

To answer these questions, we will then evaluate the stability of each scheme studied in
the previous chapters. We will apply the instability analysis method used by Peixoto et al.
(2018) for each equivalent depth, and we will observe the spectrum of each scheme with and
without such diffusion.

From a theoretical perspective, we expect the following order of schemes from more to
less unstable: A-grid, B-grid, TRiSK, and ICON. We reason that since there is a pressure
mode excitation inherent to the first scheme, then it is enough to be highly unstable. The
second scheme requires less interpolation, but has a DOF unbalance, which would eventually
lead to an instability. For some conditions, both C-grid schemes are not unstable, but it is
shown that they could be for small equivalent depths. We expect ICON to be the more stable
scheme, since it contains an operator that acts to damp some high frequency waves, and it
also removes some noise present in the system.

4.1 Instability Analysis

4.1.1 Description Power Method

Prior to present our results, it is important to show an intuition behind the power method
used for the analysis of the instability. This method is derived from Peixoto et al. (2018) and
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aims to find the largest eigenvalue with its associated eigenvector of a matrix, which would
translate to the dominant instability of a scheme.

It works as follows: let us assume an initial condition x(0) under geostrophic balance x̄.
If we then apply our shallow water scheme function G, we will get the integration of the
initial condition after a time step, i.e.

x(1) = G(x(0)).

We expect that x(1) = x(0), however, numerical deviation will be present. We can remove
this deviation by letting:

x(k+1) = G(x(k)) + F, (4.3)

where F = x̄−G(x̄). F will be a constant on the iterated solution, removing the numerical
drift.

Let us now assume that our solution is x(k) = x̄+y(k), where y(k) is a small perturbation.
Substituting on (4.3):

x̄+ y(k+1) = G(x̄+ y(k)) + F.

Linearizing through Taylor Expansion, we obtain:

y(k+1) = G′(x̄)y(k) + F+O(2),

where G′ is the Jacobian gradient of numerical scheme operator. The value of this operator
will tell us the behaviour of the numerical scheme. In other words, we can determine where
and when the model will blow up by finding the eigenvalue and eigenvector of this operator.

This assumption relies on the fact that y(k) remains small so that the eigenvalue is found.
However, there is a possibility that y(k) does not stay small enough before we find the
eigenvalue, so we need to rescale the perturbations of the model. To do this, we apply a
scaling factor similar to (4.3):

x∗ = G(x(k)) + F, (4.4)

where our perturbation without the numerical drift will then be r(k+1) = x∗ − x̄. Now, we
rescale our perturbation as:

x(k+1) = αk+1r
(k+1) + x̄, (4.5)

where αk = ϵ/||r(k)||, ϵ > 0 is a small constant.
Assuming the method converges, αk → α, then we can estimate our dominant eigenvalue

as λ = 1/α. In this case, the scheme will only be unstable if λ < 1. The growth rate ν of the
scheme can be determined by the equation:

λ = eν∆t, (4.6)

and the e-folding time Te = 1/ν.
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4.1.2 Scheme Stability

To analyse the instability, we will define an initial condition in geostrophic balance similar
to TC0 (Section 3.3.1.1), but now the topography will act to retain the geostrophic balance:

b = −1

g

(
aΩu0 −

u20
2

)
sin2 θ. (4.7)

The sea level height will be a small constant h = H0, such as to mimic the equivalent depth.
The velocity will be unchanged:

uϕ = u0 cos(θ). (4.8)

We will be using a g5 grid refinement, which has an average resolution of 480 Km.
Our analysis show that although A-grid is inherently unstable, its e-folding time is the

largest of all schemes, reaching a maximum of 48 days at the 20 m equivalent depth (Figure
4.2). up to the 20 m equivalent depth, the scheme does not display a visible difference on
the instability behaviour.

Figure 4.2: e-folding time by equivalent depth for both TRiSK and ICON.

In contrast, B- and both C-grid schemes are much more unstable for these shallow H0.
They do, however, improve on their stability drastically near the 10 m equivalent depth
mark. From these schemes, TRiSK shows the worst e-folding time, reaching a minimum of
0.1 days for 0.001 m and a maximum of 0.46 day for 20 m. B-grid has a better result on this
instability, although still very unstable. It has a minimum e-folding time analysed as 0.21
day for 0.001 m and a maximum of around 0.6 day for 20 m. ICON seems to outperform
both of these other schemes, in particular TRiSK’s scheme. It shows a minimum/maximum
e-folding time at 0.001/20 m of around 0.6/1 day.

Comparing both C-grid schemes, we fix the 10 m equivalent depth and verify which C-
grid operators are the most responsible for the stability of ICON (Figure 4.3). We observe
that the div operator aid to improve the stability, increasing the e-folding time to around
0.25 day. Although it is not the main operator responsible for the instability, it already
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shows signs of improvement by removing the chequerboard pattern. The Coriolis term of the
momentum equation, on the other hand, has a massive improvement on stability, reaching
0.4 day of e-folding time. However, the kinetic energy does not show sign to improve on the
stability of the equation. Even if we use both kinetic energy and Coriolis terms of ICON, we
see a similar result as only using the Coriolis operator. This suggests that the largest source
of instability of TRiSK is primarily due to how poorly it reconstructs the vector field on the
grid.

Figure 4.3: e-folding time by each operator component of ICON for H0 = 10 m.

To understand how the instability is triggered on the grid, we analyse the associated
eigenvector of the method of the most unstable mode. We will again verify the 10 m equivalent
depth. All schemes seem to have a strong propensity of developing the instability around the
edges and/or vertices of the icosahedra (Figures 4.4 and 4.5), similar to what was found by
Peixoto et al. (2018).

When we observe the resulting eigenvector of the method for the 10 m equivalent depth,
we can see where likely this instability is going to occur and what kind of pattern is going to
present. These are seen in Figures 4.4 and 4.5. All schemes seem to have a strong propensity
of developing the instability around the edges and/or vertices of the icosahedra, similar to
what was found by Peixoto et al. (2018). A few differences are of particular interest. A-grid
seems to develop a strong oscillation within the edges of the grid. This oscillation is likely
the same oscillation found in the previous chapter and mentioned by Tomita et al. (2001).
Therefore, it might be likely that the instability is due to the inconsistency of the divergence
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operator on this kind of grid, rather than HK. Conversely, B-grid shows a propensity to
develop instabilities near the vertices of g0. These instabilities, however, appear to be near
2-grid intervals, which would be likely due to the instability of the staggering scheme rather
than HK.

Figure 4.4: Eigenvector of h for A-grid (A) and B-grid (B).

Finally, C-grid shows the same pattern over g0 edges. TRiSK’s scheme seems to present
an oscillation of 1-grid interval. ICON’s eigenvector also displays a 1-grid interval oscillation,
but much less apparent. It seems that the predominant oscillation is of around 2-grid interval.
This indicates that TRiSK might actually have an HK instability, while ICON might could
have HK instability, but other instability might appear earlier in the integration.

Figure 4.5: Eigenvector of h for TRiSK (A) and ICON (B).

To validate our analysis, we integrate these schemes on the 10 m equivalent depth. The
A-grid scheme does not blow up after 15 days integration, while the B-grid scheme amplify
its error near 3 day integration (Figure 4.6.A2 and Figure 4.6.B2). Despite the lack of noise
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amplification with the time integration, error on g5 shows a strong noise on the mass field, not
particularly associated with the edges of g0. A performed spectral analysis (Figure 4.7.A)
on this field shows that we have a strong signal at the wavenumber of around 10, which
is the interface between global scale and mesoscale. For higher wavenumber we see small
prominences at around 2-grid interval, which is likely the noise associated with the field.

Figure 4.6: A-grid (A) and B-grid (B) scheme time integration (lower panels). The error
spatial distribution of h mass variable is shown on the upper panels. B-grid is shown prior
to blow up, while A-grid is shown after 15 days time integration.

However, with such a large e-folding time, we might only be able to observe some am-
plification after 1 year integration. The B-grid scheme, in contrast, display a strong noise
emanating from the original vertices of g0, as our analysis have previously predicted. This
noise seems to match the wavelength of the analysis method we performed of around 2/3-grid
interval. The same can also be observed on the spectrum analysis of its field (Figure 4.9.B).
There, we can see, not only an increase of the 2/3-grid interval noise, but also a small 1-grid
oscillation. Therefore, there are two types of numerical oscillation at play. One is associated
with the DOF unbalance (2/3 grid interval) and the other due to HK instability (1 grid
interval).

The time integration of C-grid schemes agrees with the e-folding time (Figure 4.8). TRiSK
blows up near at around 0.36 day, while ICON blows up at around 4 days. TRiSK seems
to have a large noise emanating from the vertices of g0 which is not completely in line with
the findings of the power method, but it is close to where it was supposed to be found. This
oscillation is stationary and has a close to 1-grid interval (Figure 4.9.A). Likewise, ICON
has an instability that somewhat matches with the power method; however, while TRiSK
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Figure 4.7: Spectral Analysis of A-grid (left) and B-grid (right) of the snapshots of Figure
4.6.

instability remain stagnated at the location where it was generated, ICON’s instability is
propagated eastward, in contrast to the B-grid scheme. This instability ranges from the 1/2
grid interval (Figure 4.9.B). Therefore, we see that TRiSK is highly affected by HK, and
ICON’s is less prone to this instability, but it can also be triggered.



NUMERICAL INSTABILITY ANALYSIS 77

Figure 4.8: TRiSK (A) and ICON (B) time integration (lower panels). h mass variable prior
to blow up

Figure 4.9: Spectral Analysis of TRiSK (left) and ICON (right) prior to blow up.
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4.1.3 Applying hyperdiffusion

Before we apply the hyperdiffusion, we will present the discretization of the biharmonic
operator. For the A-grid and B-grid, we will use the same operators utilized by the original
authors, as we did in Chapter 3. For the C-grid scheme, we will seek a relation from Ringler
and Randall (2002):

∆u = ∇(∇ · u) +∇× (k · ∇ × u). (4.9)

Due to the duality of the operators, mentioned in chapter 3, our discretized operator is:

∆u ≈ grad div ue − grad⊥ vort ue. (4.10)

This is going to be used for both TRiSK and ICON.
Now, we can answer the question of how much diffusion is required in order to stabilize

the scheme. Therefore, we perform the power method for different viscosity coefficients using
the 10 m equivalent depth (Figure 4.10).

Figure 4.10: e-folding time per viscosity coefficient for TRiSK, ICON, A-, and B-grid schemes.

The A-grid is shown to have the largest e-folding time of the schemes of around 46 days
with a coefficient of 1013 m2s−1. Utilizing a coefficient of 7.1013 m2s−1 already stabilizes the
scheme. Analysing the spectral analysis of the scheme using 1016 m2.s−1, we can see that the
time integration after 15 days shows a longitudinal oscillation of around 10 waves near the
equation. There is also no visual presence of a near grid scale noise on h. The same can be
observed in the kinetic energy spectral analysis (Figure 4.13). The maximum energy found is



NUMERICAL INSTABILITY ANALYSIS 79

Figure 4.11: Time integrated solution for the mass field using biharmonic for the A- (left) and
B- (right) grid schemes. Lower panels are the mass field error by time. The initial condition
consists of a constant h0 = 10m.

close to the spherical number 10, which is likely the same oscillation observed on the error.
Higher wavenumbers show an almost linear decrease in kinetic energy.

B-grid has a low e-folding time (lower than ICON as already mentioned) for low viscosity,
but increases rapidly and surpass ICON’s scheme at around 5.1015 m2s−1. Its time integration
is also quite stable, as did the A-grid, without much variation. After 15 days integration we
observe a similar distribution of the error of h as did the A-grid with a large magnitude near
the equator. A similar spectral analysis is, thus, observed for this scheme. A high energy
around the wavenumber 10 and an almost linear decrease of energy.

For both TRiSK and ICON, there is a similar increase of e-folding. Their stability accel-
erate rapidly at 1015 m2s−1 and both need a larger damping than both A-grid and B-grid
scheme.

TRiSK, when integrated over time, has a larger time oscillation than the previous schemes.
This oscillation has lower frequency than TC0 scheme. Its spatial error distribution shows
a larger error around the midlatitude edges of g0, where its instability was previously trig-
gered. It can also be seen in this distribution that there is a presence of a near grid scale
oscillation. This oscillation is still observed in the spectral analysis of the scheme (Figure
4.13). A similar observation can also be made for ICON. It also shows a large error near the
midlatitude edges of g0 with an apparent near grid scale oscillation. However, this oscillation
is substantially smaller than TRiSK (Figure 4.13).

There are other differences beside this oscillation in the energy spectrum. It can be seen
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Figure 4.12: Time integrated solution for the mass field using biharmonic for both TRiSK
(left) and ICON (right). Lower panels are the mass field error by time. The initial condition
consists of a constant h0 = 10m.

that while ICON has a maximum energy at wavenumber 10, similar to the previous schemes,
TRiSK shows this maximum at around 30. ICON, however, show local maximum at the
same point as TRiSK. For larger wavenumbers there is, then, an almost linear decrease in
energy in the spectrum.
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Figure 4.13: Kinetic Energy spectral analysis for both A- and B-grid (left) and TRiSK and
ICON (right) at day 15 for all schemes with an equivalent depth of 10 m.

4.2 Concluding Remarks

All schemes have their stability attached to the grid properties. All, but A-grid, has the
instability generated at the midlatitudes, in particular at the g0 vertices, which has the
largest, misalignment/distortion.

In the case of A-grid, a instability would likely be generated at the g0 edges, but this
instability is likely associated with the consistency of the operators. Regardless, this scheme
has the largest stability. The inherent instability of A-grid scheme, due to the value inter-
polation, does not seem to be substantially affected by the equivalent depth, implying that
HK is not the primary cause of the A-grids instability. It is likely that pressure mode excita-
tion is the strongest cause of instability. The numerical inconsistency of the operators could
potentially benefit the scheme to provide some stabilization.

B-grid, on the other hand, although is less stable than A-grid it is more stable than
TRiSK and ICON (for some conditions). It shows a strong instability near at the g0 vertices
at the midlatitudes of the grid, which is propagated westward. It seems that this scheme in
particular shows a combination of instabilities, since there is a noise excitation on both 1 and
2/3 grid intervals. There is an improvement of its stability with the increase of the equivalent
depth. Therefore, it is likely that this grid not only suffers from the inherent instability of
the staggering, but also with HK.

Finally, both C-grid staggering schemes shows slightly different behaviours. TRiSK has
the lowest stability from the tested schemes. The reconstruction provided by Thuburn (2008)
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and Ringler et al. (2010) definitely provide quite useful conservation properties, but it poorly
reconstructs the velocity vector. Since there is also 1 grid excitation noise on the 1 grid
interval, it is likely that there is a presence of the HK instability in this scheme. The diffusion
aids to remove this oscillation, but due to the chequerboard pattern of the triangular grid, it
seems difficult to completely remove it. Furthermore, this pattern seems to also contribute to
generate the instability on the scheme. However, the primary contributor of the instability
seems the vector reconstruction.

Therefore, the provided Perot’s of ICON, not only seems to improve the accuracy of
the method, but also improves on its stability. Most of its instability occurs on the 2-grid
interval. It is likely that the averaging of the Perot’s operators helps to mitigate most of the
1-grid noise. Furthermore, since C-grid has a better wave representation and that the noise
removal not being perfect of the operators of ICON’s scheme, thus we reason that this is the
cause of why B-grid diffusion helps to faster improve on stability compared to ICON.



Chapter5

Accuracy and stability analysis of hor-
izontal discretizations used in unstruc-
tured grid ocean models

In this chapter, we present our submitted paper to the Journal of Ocean Modelling, which
combines the findings from this thesis and collaborative work conducted at the Max Planck
Institute for Meteorology. It first presents a general comparison between different General
Circulation Models, in terms of accuracy and stability. Secondly, it analyses the effects of
near-grid numerical oscillations on the fully functioning 3D ICON ocean model component.
The submitted paper can be found in Appendix B.

5.1 Introduction

Much of the scientific knowledge of the climate is largely due to the development of Earth
System Models (ESMs), i.e. coupled models consisting of the atmosphere, ocean, sea ice,
and land surface. The ocean, in particular, is a key component of these ESMs and a driver
of the climate. Consequently, it is crucial to develop and improve such ocean models, with
particular attention to global models (Randall et al., 2018b; Fox-Kemper et al., 2019).

These efforts, along with the atmospheric modelling community, allowed us to acquire
important insights related to these numerical models, such as being able to compartmentalize
models into what is termed dynamical cores along with several physical parametrizations
(Thuburn, 2008; Staniforth and Thuburn, 2012). Combined, these form the main building
blocks of the current operational ESMs. The dynamical core is defined as being responsible
for solving the governing equations on the resolved scales of our domain (Randall et al.,
2018b; Thuburn, 2008). For climate modelling, it is important that these cores are able
to mimic important physical properties, such as mass and energy conservation, minimal
grid imprinting, increased accuracy, and reliable representation of balanced and adjustment
flow, which can be achieved by using a proper grid geometry and horizontal discretization
(Staniforth and Thuburn, 2012). However, the use of unstructured grids may pose challenges
in fulfilling these properties.

Traditional ocean models commonly used Finite Difference or Finite Volume discretiza-
tion on regular structured grids (Fox-Kemper et al., 2019), e.g. NEMO (Gurvan et al., 2022),
MOM6 (Adcroft et al., 2019). This approach was useful for the limited regional modelling.
However, for global models it posed some problems. The most critical is the presence of
singularity points at the poles, which constrained the timestep size for explicit methods, po-
tentially making it unfeasible for use in high resolution models (Sadourny, 1972; Staniforth
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and Thuburn, 2012; Randall et al., 2018b). Therefore, in recent years, a lot of effort has been
put on the development of unstructured global oceanic models.

Given the success of triangular grids on coastal ocean models, one popular approach is
the use of triangular icosahedral-based global models, i.e. using geodesic triangular grids.
However, there are still present issues with triangular grids, in particular with the variable
positioning considering a C-grid staggering. The C-grid staggering (Arakawa and Lamb,
1977) considers the velocity decomposed into normal components at the edges of a computa-
tional cell. On traditional quadrilateral meshes, this staggering was found to more accurately
represent the inertia-gravity waves (Randall, 1994). On unstructured triangular grids, a spu-
rious oscillation is present on the divergence field manifested as a chequerboard pattern, and
it is present due to the excessive degrees of freedom (DOF) on the vector velocity field
(Gassmann, 2011; Le Roux et al., 2005; Danilov, 2019; Weller et al., 2012). In theory, these
can lead to incorrect results if not correctly filtered, or can potentially trigger instabilities.

This chequerboard pattern issue led modellers to avoid triangular grids. One potential
solution, which is used by MPAS-O model, is to use the dual grid, based on hexagonal-
pentagonal cells, formed by connecting the circumcentres of the triangles (defining a Voronoi
grid dual to the triangulation). By relying on the orthogonality properties between the
triangular and the dual quasi-hexagonal grid, the problem of the spurious divergence modes
is avoided. However, the noise will appear on the vorticity field, where it is easier to filter
(Weller et al., 2012).

Another potential solution to the chequerboard pattern on triangular grids is the use
of filters on the divergence field in order to dampen these oscillations. However, these can
potentially break the conservative properties of the model. A solution devised by the ICON-
O ocean model community is the implementation of mimetic operators that required the
preservation of some physical dynamical core properties, while, simultaneously, filtering the
noise of the divergence field (Korn and Danilov, 2016; Korn, 2017; Korn and Linardakis,
2018). However, the added triangle distortion of the grid might not completely remove the
noise, and, thus, the filtering property might be at most approximate.

In order to avoid the noise on the divergence field of triangular grids at all, a possibil-
ity is to avoid C-grid staggering. FeSOM 2.0 model, for example, uses the (quasi-) B-grid
discretization in which the velocity vector field and the height field are allocated at the
cells centre and vertices, respectively (Danilov et al., 2017). Alternatively, the NICAM at-
mospheric model, uses the A-grid discretization, which has all its fields positioned at the
vertices of the grid (Tomita et al., 2001; Tomita and Satoh, 2004). Nonetheless, there are
drawbacks from this solution. For example, both staggerings display spurious modes that are
potentially unstable without treatment (Randall, 1994). The nature of these modes differs for
each of the grid designs. The A-grid source of numerical noise is related to the manifestation
of spurious pressure modes, whilst the B-grid allows the manifestation of spurious inertial
modes due to excessive DOFs of the horizontal velocity (Tomita et al., 2001; Danilov et al.,
2017).

Nonetheless, regardless of grid design, other artefacts may also be present. One partic-
ular spurious oscillation was detected on an energy-enstrophy conserving scheme (EEN) on
an atmospheric model, leading to an instability (Hollingsworth et al., 1983). This kind of
instability is dependent on the fastest internal modes of the model, the horizontal velocity
and resolution of the model (Bell et al., 2017). Due to the presence of distortion on these
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newer models, instability might be more easily triggered (Peixoto et al., 2018). This kind of
noise is noticeable on atmospheric models, due to the large flow speeds of the atmosphere
and the near to kilometre grid resolutions used in their simulations (Skamarock et al., 2012).
Although the ocean dynamics are less energetic than the atmosphere, the higher distortion
of the grids and the rapid increase of resolution towards submesoscale models make the
effects of this noise more relevant. In fact, some models, such as the NEMO’s EEN ocean
model, identified this noise and its effects, which have shown significant effects on the model’s
mesoscale jets and submesoscale phenomena (Ducousso et al., 2017).

Considering the challenges discussed, this works aims at investigating and comparing
the accuracy and stability of different horizontal discretizations used in global unstructured
ocean models. First, the unstructured nature of the model’s grid have different implications
with respect to the computation of the underlying dynamics operators. As such, can we
expect expressive differences in accuracy between A-, B- and C-grid models? Second, each
of these grid designs are expected, from the theory, to perform differently when integrating
them in time. Therefore, are the inertia-gravity wave dispersion representation similar to a
structured grid case? Third, both the accuracy of the operators and the representation of
the phenomena are expected to have an impact on the stability of the model. Consequently,
which models are more prone to instability and which are easier to control?

To address these questions, we chose to evaluate both MPAS-O and ICON-O C-grid
discretization schemes, due to their robustness and different approaches on computing the
necessary operators; the FESOM2.0 for the B-grid scheme; and the NICAM A-grid scheme,
which, to our knowledge, currently is not present in ocean models, but could be easily incorpo-
rated in existing ones. The investigation will be mostly focused on the rotating shallow water
system of equations, but we will also evaluate some properties of the 3D ICON-O model. In
section 5.2, we describe each of the aforementioned schemes. In section 5.3, we evaluate the
accuracy and rate of convergence of each of these schemes. In section 5.4, we perform a time
integration, in order to evaluate the accuracy of the integrated quantities and to observe
some important properties of the models, such as the representation of inertia-gravity waves
and the manifestation of near-grid scale oscillations under near realistic conditions. Finally,
we evaluate the stability of the models under the effects of spurious grid scale oscillations
and the effects of these oscillations in a 3D realistic oceanic ICON-O model.

5.2 Shallow Water models

In order to investigate these models, we test the schemes under the shallow water system of
equations (Gill, 1982). This system is as follows:

∂h

∂t
= −∇ · (uh) (5.1a)

∂u

∂t
= −u · ∇u−∇Φ− fu⊥ + F

= −∇(Φ + Ek)− ωu⊥ + F
(5.1b)
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where h and u are the height (scalar) and velocity (vector) fields of the system; f is the
Coriolis parameter; ω = ζ + f is the absolute vorticity; ζ is the relative vorticity or curl;
Φ = g(b+h) is the geopotential, g is the acceleration of gravity, and b is the bathymetry; u⊥ =
k̂×u is the perpendicular vector field u and k̂ is the vertical unit vector; and Ek = |u|2/2 is
the kinetic energy. The right-hand most side of (5.1b) is known as the vector invariant form
of the system of equations.

On this section, we present an introduction to each model and how they interpolate their
quantities of the shallow water operators. On the next section, Section 5.3, we describe how
each model compute each of the shallow water operator.

5.2.1 Discrete Framework

The models were evaluated with the Spherical Centroidal Voronoi Tessellation (SCVT) opti-
mization (Miura and Kimoto, 2005) between the second (g2) and eighth (g8) refinements of
the icosahedral grid (Table 5.1). This optimization has the property of having its vertices co-
incide with the barycentre of the dual cells, quasi-hexagonal (red lines of Figure 5.1). Despite
this grid having loss of uniformity with refinement, for oceanic applications, it provides an
additional analysis, since the unstructured grid is useful for contouring continental regions
of the earth.

Circ. distance (Km) Edge length (Km)
g2 1115 1913
g3 556 960
g4 278 480
g5 139 250
g6 69 120
g7 35 60
g8 17 30

Table 5.1: Spatial resolution of the SCVT grid, considering the average distance between
triangles circumcentre and the average edge length in Km.

The structure of the grid domain will consist of triangular cells (primal grid) K ∈ C with
edges e ∈ E . The set of edges of a particular cell K is represented by ∂K. The vertices in
the endpoint of these edges are represented by ∂e. Occasionally, when necessary, the edges
may be denoted as e = K|L where it is positioned between cells K and L. The dual cells will

be denoted by the (̂·) symbol. The dual cells and edges, for example, are denoted as K̂ ∈ Ĉ
and ê ∈ Ê , respectively. Furthermore, the centre/midpoint position of the elements will be
denoted by the boldface, e.g. the cell circumcentre position K, and the length or area of the
respective elements will be denoted by | · |, e.g. |e|, |K̂| is the edge length and dual cell area,
respectively.

We note that the relationship between the primal and dual mesh will differ depending
on the model discretization definitions. Some models use circumcentre of the triangle to
construct the dual mesh. The resulting relationship will be a Delaunay triangulation (for the
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Figure 5.1: SCVT primal (black lines) and dual (red lines) g2 grid.

primal) and a Voronoi diagram (for the dual), making their edges orthogonal to each other,
which can be exploited by these models.

Additionally, normal (ne) and tangent (te) vectors are positioned at the edge e or ê, such
that ne × te = e. The former vector is normal to e, while the latter is parallel to it. These
definitions are summarized in Table 5.2.

5.2.2 NICAM (A-grid)

The NICAMmodel is a non-hydrostatic atmospheric-only model developed at AICS, RIKEN.
Its development aimed to develop a high-performance global model (Tomita and Satoh,
2004). The model has been shown to produce accurate results for simulations with a 3.5
km mesh size, and recent developments aim to pursue sub-kilometre grid scales (Miyamoto
et al., 2013).

NICAM’s dynamical core’s horizontal component is based on the A-grid discretization,
in which all variables are located at the grid vertices (Figure 5.2). The discretization of this
scheme allows only for mass conservation. Other quantities, specially related to the velocity
equation, can not be conserved. This is because this scheme allows for spurious pressure
modes, which may destabilize the model, thus, requiring filtering.

Additionally, small scale oscillations may also be present due to the grid imprinting, which
may also decrease the model’s stability (Tomita et al., 2001). These oscillations, however,
can be remedied with a proper grid optimization. One important requirement is that the
dual cell centre coincide centre of mass coincide with the vertex of the grid, guaranteeing
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Symbol Description
C Set of primal cells
E Set of primal edges

K, L primal grid cells
∂K Set of edges of cell K

e = K|L primal edge
ne , te Normal and tangent vectors on edge e
∂e Set of vertices of edge e

Ĉ Set of dual cells

Ê Set of dual edges

K̂, L̂ dual grid cells

∂K̂ Set of edges of cell K̂

ê = K̂|L̂ dual edge
nê , tê Normal and tangent vectors on edge ê
∂ê Set of vertices of edge ê

Table 5.2: Definitions of the grid structure.

consistency of the discretization of the operators.
Moreover, NICAM’s A-grid discretization compared to the MPAS-O shallow water scheme

this scheme has been shown to display a higher resilience when non-linearities are present,
implying that it can better treat some types of instabilities than other models (Yu et al.,
2020). Therefore, despite this scheme not have originally been developed for oceanic pur-
poses, It can be suitably implemented in such applications.

5.2.2.1 Interpolating operators

To compute the operations in the shallow water system, we need that the position of these
operators coincide with the variables, i.e., at the vertices. Therefore, the computation must
be performed on the dual cell. To do this, it is necessary to interpolate the variables at the
dual edge midpoint. We do this by first interpolating at the circumcentre of the primal cell:

h̃K =
1

|K|
∑

v∈∂eK
wvhv, (5.2a)

ũK =
1

|K|
∑

v∈eK
wvuv, (5.2b)

where wv is the sectional triangular area formed by the circumcentre and the opposite vertices
of the cell (See Figure 2 of Tomita et al. (2001)). This interpolation, known as the barycentric
interpolation, will provide us with a second order accurate interpolation. A second order
interpolation to the edge midpoint can then be met by averaging neighbouring primal cells:

h̃ê =
1

2
(hK + hL), (5.3a)

ũê =
1

2
(uK + uL). (5.3b)
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Figure 5.2: A-grid cell structure. The blue circles on the vertices are the height scalars points
and the arrows are the components of the velocity vector points.

5.2.3 FESOM (B-grid)

FESOM 2.0, developed in the Alfred Wegener Institute, contains ocean (Danilov et al.,
2017) and ice (Danilov et al., 2015, 2023) components only. The model is an update from
its previous 1.4 model (Wang et al., 2008). The new model was developed to provide faster
simulations compared to its 1.4 predecessor (Scholz et al., 2019), which is partly owed to the
change from Finite Element Methods to Finite Volume discretization (Danilov et al., 2017).

In addition to its updated components and faster simulations, FESOM 2.0’s horizontal
discretization of the dynamical core is based on the Arakawa B-grid staggering (Arakawa and
Lamb, 1977). It is important to note that there is no true analogue of the B-grid on triangles
(Danilov, 2013), and such a discretization has been coined as quasi-B-grid. However, due to
the similarities in the positioning of the fields in the cell, in this work, we will describe this
discretization only as B-grid.

Contrary to the aforementioned A-grid, this discretization is free of pressure modes.
However, it allows for the presence of spurious inertial modes, due to its excessive degrees
of freedom (Danilov et al., 2017). Thus, again, requiring the use of filters to remove these
oscillations.

In addition to the B-grid discretization, FESOM’s grid design plays a crucial role in
computing the operators necessary for FESOM’s horizontal discretization. It creates a dual
cell by connecting the triangles’ barycentre with its edge midpoint, creating a cell with 10
to 12 edges (Figure 5.3).

5.2.3.1 Interpolation operators

This grid allows computing the operators by only interpolating the height field at the edges
when needed to compute the gradient at the cells’ barycentre. Given an edge e, with vertices
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Figure 5.3: B-grid cell structure. The blue circles on the vertices are the height scalars points,
and the arrows on the triangle centre are the components of the velocity vector points.

K̂, L̂ ∈ ∂e, then the interpolation is defined as:

h̃e =
1

2
(hK̂ + hL̂), (5.4)

thus achieving a second order interpolation on the edge.
FESOM’s horizontal momentum discretization is provided with three alternative compu-

tations of the momentum equations: two in its flux advective equation form, one computed
at the centre of mass of the triangular cell and the other computed at the vertex, and one
in a vector-invariant form, which is computed at the vertices of the grid. The two forms
computed at the vertices would thus require to be interpolated at the centre of mass of the
triangle with (5.4). It is also argued that the use of the flux advective form of the equation
provides a small internal diffusion on the system (Danilov et al., 2015). However, there is
a surprising lack of published work comparing these forms, indicating a need for a more
in-depth research in the future. In this work, in order to ensure a fair comparison with the
other schemes, we chose to compute this discretization using the vector invariant form of the
equation.

5.2.4 MPAS-O (C-grid)

MPAS, an ESM from the Climate, Ocean and Sea Ice Modelling (COSIM) and National
Center for Atmospheric Research (NCAR), comprises atmospheric, ocean, and ice compo-
nents (Ringler et al., 2010; Skamarock et al., 2012; Hoffman et al., 2018; Turner et al., 2022).
The oceanic component has been shown capable of accurately representing geophysical flows
on meshes with a large variation of resolution (Ringler et al., 2013).

The horizontal discretization of the dynamical core of MPAS was developed for arbitrarily
sided C-grid polygons (Thuburn et al., 2009; Ringler et al., 2010). It is inspired by the
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Arakawa and Lamb’s scheme (Arakawa and Lamb, 1981), which is capable of providing some
conservative properties, such as total energy and potential vorticity, while also providing
reliable simulations for these arbitrary grid structures without a breakdown of the time-
integrated solutions, which has previously affected schemes using a quasi-hexagonal mesh
(Staniforth and Thuburn, 2012).

Although this scheme could potentially be used for any arbitrarily sided polygonal mesh,
the icosahedral based hexagonal grid was shown to provide the most accurate and well-
behaved solutions (Weller et al., 2012). For example, analysis of this discretization has shown
that the scheme can achieve at most first order accuracy for most of the operators, but a
stagnation or divergent accuracy for others (Peixoto, 2016). Despite this, the model’s noise
is well controlled, while also maintaining its geostrophic modes with zero-frequency (Weller
et al., 2012; Peixoto, 2016).

On this C-grid discretization (Figure 5.4), the velocity vector field is decomposed on the
edges of our primal grid (triangular cells), where these velocities are normal to the dual grid
(pentagonal or hexagonal cell), while the height field is collocated at the vertices of the grid.
This minimizes the use of interpolating variables on this scheme. The only interpolation
used is to calculate the perpendicular velocity and the kinetic energy, which will be better
discussed in the following sections.

Figure 5.4: C-grid cell structure. Red circles on the vertices are the height scalar points, and
the arrow on the edge midpoint is the decomposed velocity vector field.

5.2.5 ICON-O (C-grid)

The ICON numerical model is a joint project between the German Weather Service and
the Max Planck Institute for Meteorology and consists of atmosphere, ocean (including
biogeochemistry), land, and ice components (Giorgetta et al., 2018; Korn, 2017; Jungclaus
et al., 2022). The ICON modelling team was not only able to successfully provide an accurate
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simulation of geophysical flow, but also provided evidence that their model is within reach
to accurately simulate ocean submesoscale flow (Hohenegger et al., 2023).

In the particular case of ICON’s oceanic component, i.e. ICON-O, its horizontal dis-
cretization of the dynamical core is based on the mimetic methods approach, which is a
practical way to discretize PDEs while taking into account fundamental properties of these
equations (Brezzi et al., 2014). This philosophy, in theory, could allow for ICON depending
on the truncation time to achieve the conservation of total energy, relative and potential
vorticity, and potential enstrophy to some order of accuracy.

To accomplish these conservation properties under the mimetic methods, ICON-O uses
the concept of admissible reconstructions (P , P̂ , P̂†) (Korn and Linardakis, 2018). These are
in charge of connecting variables at different points, acting as interpolation and reduction
operations. They, i.e. the admissible reconstructions, are required to have some properties,
such as providing unique and first-order accurate fluxes and having its nullspace coinciding
with the space of divergence noise.

5.2.5.1 Interpolating operators

Operationally, ICON-O model uses the Perot operator. This function reconstructs the veloc-
ity field components of the edge midpoint to the triangle centre (P = P), and subsequently
project these reconstructed vectors to their original position at the edge midpoint (P TP)
(Perot, 2000):

PuK =
1

K

∑

e∈∂K
|e|uene, (5.5)

P Tue =
1

|ê|
∑

K∈∂ê
de,KuK · ne. (5.6)

The combination of operators is denoted as M = P TP and is key to compute the operators
of the shallow water equations. This mapping, M , was found to filter the divergence noise
of triangles without losing the aforementioned physical properties (Korn and Danilov, 2016;
Korn, 2017; Korn and Linardakis, 2018). However, the operator has the potential to smooth
high wavenumber phenomena (Korn and Danilov, 2016).

Additionally, there is also a set of operators that reconstructs the vector velocity field
into the vertices of the grid (P̂ = P̂) and reduce it back into the edge midpoints (P̂ † = P̂†).
This sequence is defined as:

P̂ uK̂ =
1

|K̂|
∑

e∈∂K̂

|ê|uee× nê, (5.7)

P̂ †ue =
1

|ê|
∑

K̂∈∂e

de,K̂uK̂ · ne. (5.8)

Thus, the sequence M̂ = P̂ †P̂ allows us to compute the Coriolis term of the shallow water
equations. This dual operator has shown to provide a non-zero spurious frequency geostrophic
modes, which have been shown to create numerical waves in the system (Peixoto, 2016), and
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Institution Staggering Components Conservation
NICAM AORI, JAMSTEC, AICS A-grid Atm TE
FESOM AWI B-grid Oc TE
MPAS COSIM, NCAR C-grid Atm/Oc/Ice PV, TE
ICON DWD, Max-Planck C-grid Atm/Oc/Land/Ice KE, TE, PV, Enst

Table 5.3: Summary of the main models to be compared with their respective components:
Ocean (Oc), Atmosphere (Atm), Ice Dynamics (Ice) or Land; and their conservation prop-
erties: Total energy (TE), Kinetic Energy (KE), Potential vorticity (PV), and Enstrophy
(Enst).

could potentially be damaging to the stability of the scheme (Peixoto et al., 2018). However,
due to the filtering property of the operator M , these modes could be removed from the
simulation due to their filtering property on the grid scale.

5.3 Accuracy of the Discrete Operators

We aim to analyse the truncation errors of each operator from Nonlinear Shallow Water
Equations (5.1). To achieve this we evaluate two different test cases: The first follows from
Heikes and Randall (1995a) and Tomita et al. (2001), henceforth Test Case 0 or TC0, where
for α, β defined as:

α = sinϕ

β = cos(mϕ) cos4(nθ),

where ϕ and θ are the longitude and latitude, respectively, then u and h are defined:

u = α∇β (5.9)

h = β. (5.10)

We consider in our analysis m = n = 1, since it is a smooth particular smooth case with
both non-zero vector components, which allows us to evaluate the accuracy of the operators
and compare with the literature.

A second case is the Nonlinear Geostrophic testcase, henceforth Test case 1 or TC1, from
the toolkit set of Williamson et al. (1992). u and h are defined as:

gh = gb0 − h0 sin
2 θ (5.11)

u = u0 cos θ, (5.12)

where gb0 = 2.94 × 104 m2s−2, h0 = aΩu0 + u20/2 m2s−2, u0 = 2πa/(12 days) ms−1, g =
9.81 ms−2 is the acceleration of gravity, a = 6.371×106 m is the radius, and Ω = 2π/86400 s−1

is the angular frequency of earth.
Additionally, in order to compare our results, we define the errors in our domain as

∆f = fr − f ref
r , where fr and f

ref
r is the computed and reference function, respectively, for a
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mesh element r of the domain. Thus, the maximum and second error norm may be defined
as:

L∞ =
maxr |∆fr|
maxf |f ref

r | (5.13)

L2 =

√
S(∆f 2)

S((f ref)2)
(5.14)

where S(f) =
∑

r∈Ω∆fAr/
∑

f∈ΩAr, and Ar is the area of the element, e.g. Ae for the edge,

|K| for triangles, or |K̂| for the dual cell.

5.3.1 Divergence

The divergence operator, part of the mass equation, can be defined from the Divergence
Theorem. Following it, we can provide a general formula for its discretized version as:

(∇ · u)i ≈ (div u)i =
1

|F |
∑

e∈∂F
|e|u · nene,F , (5.15)

where F is a cell with barycentre i and edges e ∈ ∂F , ne,F = {1,−1} is a signed valued
aimed to orient the normal velocity u · ne away from the element F .

In order to compute the divergence field, we note that both the A-grid and B-grid schemes
compute divergence field at the dual cells (vertices). For the former scheme, we require an
interpolation of both the scalar height, (5.2) and (5.3), and vector velocity fields at the dual
edge midpoint, in order to compute the divergence at the dual cell, i.e. quasi-hexagonal cell.
In the case of the latter scheme, we only require the interpolation of the scalar height field at
the primal edge midpoint (5.4), in order to compute the same divergence field at the primal
cell.

In the case of the C-grid, there is a substantial difference between the computation of
both schemes. MPAS interpolates the scalar height field at the primal edges, similar to B-
grid, while ICON uses admissible reconstruction operators of the form P ThPu to compute
the operator.

These differences on the schemes are reflected in our results (Figure 5.5.div). The A-grid
for the TC0 testcase displayed an error convergence with an initial rate of second order up
to the sixth refinement (g6). On finer grids, for the L∞, this scheme has slowed down to first
order, while on second order, the scheme remained converging up to second order rate. On
the TC1, a more consistent convergence rate was observed, on the L∞ and L2, the scheme has
displayed a first and second order convergence rate. On other grids, in particular the standard
and Spring Dynamics, the A-grid has shown to achieve at least a first order convergence rate
(Tomita et al., 2001). Although a direct comparison cannot be provided, since our testcases
differ, the scheme on an SCVT has apparently shown to provide a comparable convergence
rate to the intended optimized grid on either the L∞ or the L2 norm.

Regarding both C-grid schemes, we observe a similar behaviour in the computed operator.
In particular, neither scheme displays an increase in accuracy of the divergence field on the
L∞. For the case of ICON, this result has been previously observed in a similar work by
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Korn and Linardakis (2018). It was also shown that the naive approach to calculate the
divergence field still retained a first order increase in accuracy, implying that the main
culprit of this inability to increase the accuracy likely lies on Perot’s operator itself (Table
4 of Korn and Linardakis (2018)). The authors have not provided a geometrical analysis of
their non-uniform grid, but we note that the SCVT grid share some similarities with the
standard grid, such as the non convergence of the distance between the primal and dual edge
midpoints, which likely has a deleterious effect on the accuracy of the operator. However, on
the L2, the scheme was able to reach at least a first order convergence rate on both testcases.

On the case of MPAS, the inability to provide a decrease in error with grid has been
discussed in Peixoto (2016). It is reasoned that since the computation of the divergence is
not based on velocities from the Voronoi edge midpoints, the discretization is inconsistent,
and a first order convergence is not guaranteed. In contrast, on the L2, MPAS was able to
reach a second order rate up to g4, but the speed of convergence slows down to first order
on TC0, while on TC1 the second order rate is maintained throughout grid refinements.

Finally, B-grid has provided consistent accuracy throughout each testcase. We observed a
first and second convergence rate for L∞ and L2, respectively, for both testcases. A decrease
is observed on TC0, however, this decrease is likely associated with the error approaching
the machine truncation error.

When comparing the errors of the schemes, we note that both A- and B-grid schemes
display a decrease in speed of accuracy convergence as the grid is refined, with the latter
scheme displaying the smallest errors on most of the tested cases and error norms. Addi-
tionally, despite ICON providing convergence on some tests, the scheme displays the largest
errors of all tested schemes. It is likely that the smaller stencil used in ICON’s divergence
computation play a role in these larger errors. Another contribution is potentially related to
Perot’s operator, whose interpolation could act as smoothing the velocity field.

Overall, we note that the structure of the mesh, regarding cell geometry (primal or dual
cell) and distortion, plays a contributing factor on approximating the divergence field on all
schemes. Both C-grid schemes, in particular, seemed to be the most vulnerable to the grid.
In contrast, B-grid’s consistency in its accuracy apparently seems to be the least vulnerable
to the increase in the distortion of the grid.

5.3.2 Gradient

The gradient operator, from the momentum equation, is a vector field, whose vector points
itself to the steepest regions of the original field. The schemes provide different discretizations
for this operator:

∇h ≈ grad h =

{∑
e∈∂F h|e|ne A- and B-grid,

1
|e|
∑

i∈∂e hne C-grid.
(5.16)

A- and B-grid’s schemes provide a complete vector field on our domain by computing the
average gradient within the centre of the respective cell F . The C-grid, on the other hand,
computes the gradient with respect to the normal vector ne by computing the difference
between the values of the cell neighbouring the edge e. In that regard, the C-grid computation
can be perceived as a gradient in the direction of ne.
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In relation to the mesh, the A-grid scheme is computed at the vertices of the mesh, while
the B-grid is computed at the barycentre of the triangular cells. On the other hand, both
C-grid schemes are computed on the primal edge midpoint of our mesh. However, the MPAS
scheme considers the neighbouring vertices to compute the gradient, while ICON considers
the neighbouring triangles.

As in the divergence approximation, these differences in computation are as well reflected
in our results (Figure 5.5.grad). The A-grid displays for coarser grids a fast convergence rate
(second order rate), up to g5, for both testcases. For finer grids, the L∞ the decrease in
error slows down to a first order convergence, but with the L2 the convergence rate remains
consistent. The analysis made by Tomita et al. (2001) have showed that their grid is capable
of displaying a second order error convergence. We again note that although we cannot
directly compare our results, due to the differences in testcases used, our results show a
comparable error convergence with the authors with the SCVT optimized grid.

Similarly, the B-grid scheme shows a consistent decrease in error on all norms and test-
cases, similar to the divergence operator results. However, it displays only a first order con-
vergence rate, in contrast to the second order on the divergence operator. The computation
of the gradient on the B-grid is analogue to the divergence computation in ICON, therefore
a similar argument follows, explaining that the expected convergence rate of such a scheme
being a first order.

Comparably, MPAS also displays a consistent convergence rate, but in this case this
scheme achieves a second order rate on all norms and testcases. Since the edge midpoint is
situated, by definition, at the midpoint between the neighbouring vertices, the discretization
is analogue to a centred difference scheme used in traditional quadrilateral grids. Therefore,
we can properly achieve a second order convergence rate. The same argument is provided
in Peixoto (2016), however the author also argues that when we consider the computation
of the gradient of the kinetic energy we do not only reach a convergence rate, but our error
diverges with grid refinement. The author reasons that the error of kinetic energy is of zeroth
order (to be discussed further), and, thus, its gradient diverges.

On the other hand, the ICON’s scheme gradient error displays a near second order con-
vergence rate for coarser grids on the L∞ norm of the TC0, but this error slows down for
further refinements. On the TC1 testcase, the rate of convergence on L∞ is consistent in
first order. However, at the L2 norm, the scheme has an accuracy of near second order with
magnitude similar to that of MPAS.

Finally, we can then draw a comparison from all schemes. The B-grid has displayed the
largest errors in magnitude and was the only scheme to achieve a low first order convergence
on the L2. The A-grid L∞ displays a similar error magnitude and behaviour in convergence
with ICON. MPAS has shown the lowest errors among all schemes, and, in the L2, displayed
a comparable magnitude and convergence behaviour with ICON.

Overall, we again observe an impact of the grid structure on our schemes, however,
this impact is not as damaging as found in the divergence computation. The directional
derivative of MPAS makes it easier to achieve a consistent increase in accuracy, and the
mismatch between the edge midpoints, has thwarted ICON’s convergence rate. Despite this,
the scheme still retained a first order convergence rate.
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5.3.3 Curl

The curl operator, part of the vector invariant form of the shallow water velocity equation,
is connected to the Coriolis Term. This term requires a careful discretization to allow for
Coriolis energy conservation. This operator, in its continuous form, is defined from Stokes
Theorem. Its Finite Volume discretization follows from this theorem and a general formula-
tion for all our schemes can be defined as:

∇× ui ≈ |F |vort ui =
∑

i∈∂F
|e′|ui · te′te,F , (5.17)

for any F cell with edges e′, tangent vector te′ , and te,F = {1,−1} is a signed value guaran-
teeing that the unit tangent vector is counterclockwise on the cell.

For each scheme, the both A-grid, and B-grid computes the vorticity field on the vertices
of the mesh. Since, for the B-grid, the shallow water velocity equation requires the points
at the barycentre of the triangle cell, we interpolate the vorticity from the vertices to the
barycentre. For the both C-grid schemes, MPAS computes this operator at the circumcentre
of the cell, while ICON computes at the vertices, in duality with the divergence operator.

In this context, similarities are observed with the divergence operator. For example, the
A-grid convergence rate for both norms and testcases, reach the same order as the divergence
operator. On the TC0 testcase, however, throughout all grid refinements the error retain a
first order, unlike the divergence operator, which begins with a second order and slows down
to a first order. Additionally, on the TC1 testcase, we observe that the vorticity error displays
a second order convergence up to g4 and slows down to first order, unlike the divergence
operator (Figure 5.5.Vort).

Similarly, the B-grid scheme displays the same behaviour as in the divergence operator.
It displays a first order convergence rate on L∞ and a rate of second order for L2 on both
testcases.

In contrast, both C-grid schemes display a different behaviour from the divergence opera-
tor. MPAS shows a consistent first order convergence rate for both norms on both testcases.
Given that this computation is computed on the dual cell centre (red polygon in Figure 5.4),
i.e. pentagon or hexagon, we can then achieve a higher accuracy rate of around second order.

ICON, on the other hand, displays a zeroth order convergence on L∞ for the TC0 testcase.
This is likely due to the mismatch of edge midpoints, similar to MPAS’s divergence operator.
However, on this norm for TC1, the error converges on a first order rate. This difference
implies that different testcases will potentially impact the error. On this particular case, we
note that the meridional velocity is not present on TC1, which may facilitate the computation
of the vorticity. This result is also seen on L2, while for TC0, the norm converge in first order,
for TC1, it converges in second order.

In comparison, we observe that ICON is the only scheme that has trouble in increasing
its accuracy when approximating the vorticity operator. In addition, both A- and B-grid
schemes were the only to display a second order error rate on the L2 for both schemes.
Although MPAS also has shown an overall convergence, in contrast to ICON, it still has
shown a larger error for TC0’s L2 norm and both norms of TC1.

Overall, there are similarities on the error behaviour between both vorticity and diver-
gence scheme due to its similar concepts underlying the discretization. In that regard, we
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also observe an impact of the grid structure and the testcase used on the accuracy of the
vorticity approximation.

5.3.4 Kinetic Energy

Similar to the vorticity operator, the kinetic energy is part of the vector invariant form of the
velocity equation of the shallow water, whose gradient will then be computed. The kinetic
energy is defined as:

Ek =
1

2
|u|2.

The computation of this operator on both A- and B-grid schemes is straightforward, since
the vector velocity field is complete on each vertex and barycentre, respectively, of the mesh.
However, for the C-grid schemes the vector field is decomposed on the edges of the mesh,
therefore require a reconstruction in order to approximate the value of the kinetic energy
field. In the particular case of MPAS and ICON, it is difficult to provide a general formula,
therefore we individually define:

E
(MPAS)
k =

1

2|K̂|
∑

e∈∂K̂

|e||ê|
2

u2e, (5.18)

E
(ICON)
k =

|Pu|2
2

. (5.19)

Both schemes provide some form of interpolation of the velocity on the cell centre, dual
for MPAS, primal for ICON. It is observed on this computation that MPAS’s and ICON’s
weights are shown to be: |e||ê|/2, and |e|de,K , where again de,K is the distance between the
edge midpoint e and circumcentre K. We note that for equilateral triangles de,K = |ê|/2.
Another note is that MPAS computes the square of the component of the velocity and then
interpolates the resultant on the cell centre, while ICON interpolates the complete vector
velocity field on the cell centre, and then computes the kinetic energy.

These difference in computation are reflected on the error of the field (Figure 5.5.Ek). On
MPAS scheme, we see that for both testcases it does not converge on L∞. This result was
discussed by Peixoto (2016), as being an inconsistent formulation of the kinetic energy on
the SCVT. Part of this inconsistency could partly be due to the computation of the kinetic
energy on a single velocity component, as previously mentioned. Despite this, on L2, MPAS
display a second order convergence on TC0, on coarser grids, but it slows down to first order
on finer grids. Similarly, on TC1, MPAS displays a first order rate, but throughout all grids.

ICON, in contrast, show a consistent convergence rate on both norms of first order on TC0
and second order on TC1. It can also be observed that, except for TC0’s L2, ICON’s error
is substantially lower than MPAS. ICON’s Perot operator interpolation allows for a higher
convergence, in comparison with MPAS, in part due to the vector velocity field interpolated
on the cell circumcentre prior to the computation of the kinetic energy.

Overall, both C-grid computations display very distinct error behaviour. On this grid,
although on both schemes the kinetic energy formulation allows for energy conservation,
MPAS is unable to provide a consistent formulation of the operator. In contrast, ICON is
provided with its consistent through the use of its Perot operator.
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5.3.5 Perpendicular Velocity

The perpendicular velocity is an important part of the Coriolis Term, which is a forcing
that takes into account the non-inertial reference frame of the shallow water equations. In
that case, it is important that the Coriolis term of our schemes does not input energy into
the system. Similar to the kinetic energy, both the A- and B-grid schemes have their vector
velocity defined on the same points, providing an exact value for the perpendicular velocity.
However, since C-grid schemes do have their vector velocity decomposed on the edges of the
grid, an interpolation is necessary.

This interpolation should be carefully chosen in order to retain the conservation of energy
of the system. Following the argument of Peixoto (2016), a reconstruction can be thought
as a weighted composition of the neighbouring edges of the cell:

u⊥e =
∑

e′

we,e′ue′ . (5.20)

These weights should be chosen such that this reconstruction is unique and does not provide
energy to the system.

Choosing the edges e′ from cells that share the same edge e we can define the perpendic-
ular velocity as:

u⊥e = ae,F1u
⊥
e,F1

+ ae,F2u
⊥
e,F2

, (5.21)

where ae,Fn are the weights with respect to the cell Fn. This formulation is capable of achiev-
ing a unique solution on the edge.

In the case of MPAS’s vector interpolation, we define the weights we,e′ as:

we,e′ = ce,K
|e′|
|ê|

(
1

2
−
∑

K∈∪∂e

AK̂,K

|K̂|

)
ne′,K̂ ,

where ce,K̂ and ne′,K are sign corrections that guarantee the vector tangent vector is an-

ticlockwise on the for the cell K̂ and that the norm vector ne′ point outwards of the cell
K̂; and AK̂,K is the sectional area of the triangle cell K formed by the vertex K̂ and the
neighbouring edges of the circumcentre K in respect to the vertex. Using these weights on
(5.20), we can compute u⊥e,K . In order to provide a unique reconstruction on edge e we let
ae,K = ae,L = 1 on (5.21).

In the case of ICON’s scheme, we use the interpolation P̂ TωP̂u. In this case P̂ uK̂ = u⊥
K̂
,

so the weights are defined as:

we,e′ = wê,K̂ =
|ê|dê,K̂
|K̂|

,

giving a unique reconstruction on the centre of the dual cell K̂. In order to reduce it back
to the edge, we do ae,K̂ = de,K̂/|e|. We note that this set of operators allows not only
the energy conservation, but also potential enstrophy (Korn and Danilov, 2016; Korn and
Linardakis, 2018). We recall, however, that this operator has the potential of producing
non-zero frequency geostrophic modes (Peixoto, 2016).



ACCURACY AND STABILITY ANALYSIS OF HORIZONTAL DISCRETIZATIONS
USED IN UNSTRUCTURED GRID OCEAN MODELS 100

Our results show that MPAS displays a second order convergence rate on L∞ up to g6 on
TC0, but decrease to a first order for finer grids (Figure 5.5.u⊥). On L2, it shows a second
order throughout all refinement. Similarly, on TC1, it also shows a second order rate up
to g7, but decrease near first order to g8. A similar result is obtained for L2. This result is
similar to Peixoto (2016) showing that MPAS achieves at most a first order convergence rate
on the L∞.

5.4 Shallow Water Time Integration

The time integration of the shallow water equations provides us knowledge about the be-
haviour and limitations of the model throughout time. In order to gather this understanding,
in this section we will put the schemes under a battery of tests. For the purpose of these tests,
we chose to use a simple Runge-Kutta (RK44) operator, with 50 seconds timestep for all
schemes and grids. Such choices are enough to ensure that the temporal errors are minimal
and that the dominating error comes from the spatial discretization. We note that although
both C-grid schemes may not require a stabilization term, since their error are expected to
be well controlled, both A- and B-grid schemes could excite errors that would potentially
destabilize the model. It is possible to use a harmonic (∇2u) or biharmonic (∇4u) term
to provide stability of the scheme. In order to be more scale selective and avoid damping
physical waves of our simulations we chose to use only the biharmonic, and as it was shown
by the original authors of A- and B-grid schemes (Tomita et al., 2001; Danilov et al., 2017)
the biharmonic term is enough to provide the necessary stability.

Therefore, the stabilizing operator can be regarded as a composition of Laplace diffusion
operators, i.e. ∇4u = ∆∆u. To compute the Laplace diffusion operator, both A- and B-grid
schemes are equipped with different approaches in its computation. For the former scheme,
the Laplace operator is defined as:

∆u = ∇ · ∇u. (5.22)

Thus, we can approximate the Laplacian operator by ∆u ≈ div grad u, using the operators
defined in the previous section.

On the other hand, the B-grid scheme, computes the harmonic diffusion for a cell K as:

∆u ≈ 1

|K|
∑

L

|e|
|ê|(uL − uK), (5.23)

where L are all the triangles neighbouring the cell K. For the tested schemes, we used the
biharmonic coefficient defined in Table 5.4. Our coefficients are much higher than found in
literature (Tomita et al., 2001; Danilov et al., 2017; Majewski et al., 2002; Jablonowski and
Williamson, 2011), however both A- and B-grid schemes differ in their discretization and
the A-grid scheme is found susceptible to numerical oscillations depending on the choice of
grid (Tomita et al., 2001). Therefore, by choosing an intense coefficient, we guarantee that
numerical waves will not participate in the comparison of our results.

All schemes will then be evaluated. Firstly, we provide an accuracy analysis of the inte-
grated height and vector velocity fields (Section 5.4.1). Then, we evaluate the linear mode
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A-grid/B-grid (m2s−1)
g2 1022

g3 1020

g4 1019

g5 1018

g6 1017

g7 1016

g8 1015

Table 5.4: Biharmonic coefficient used for stabilizing the shallow water schemes.

analysis of our schemes (Section 5.4.2). Thirdly, we evaluate the scheme’s capacity in main-
taining its geostrophic balance (Section 5.4.3). Finally, we evaluate the behaviour of each
scheme under a barotropic instability, which is an initial condition that accentuate the non-
linear terms of our schemes (Section 5.4.4).

5.4.1 Time integrated accuracy of variables

Our results demonstrate that both A- and B-grid schemes exhibit improvements in accuracy
close to second order for both norms of the height field variable (Figure 5.6). However, for
the vector velocity field, the values differ. For L∞, A-grid is shown to converge near second
order, while B-grid, which displays a near second order convergence for coarser grids (up
until g5), only shows a first order for the finer grids. Nevertheless, on L2, both schemes are
shown to display an accuracy increase near second order.

Regarding both C-grid schemes, both of them face problems on increasing their accuracy
on L∞. MPAS does not converge on the height scalar field, but does display a first order
convergence rate on L2. Concerning the vector velocity field on L∞, MPAS shows a seconder
order rate for coarser grids (up until g6), but decrease to first order in finer grids. However, on
L2, MPAS displays a second order rate consistently for all refinements. This result was also
observed in Peixoto (2016), and it is suggested that either the kinetic energy approximation
or the divergence, might be responsible for reducing the solution’s accuracy.

In contrast, ICON displays a first order convergence rate on both norms for the height
scalar field. Nevertheless, the scheme does not seem to convergence on the vector velocity
field for the L∞ norm. In the case of L2, it displays, for coarser grids, a second order accuracy
rate, but from g7 to g8 it slows down to a first order rate. Similar to MPAS, some operators,
face challenges in converging the solution. In this scheme, the divergence, vorticity, and the
perpendicular velocity do not display a convergence of the solution. It is noted that both
vorticity and perpendicular velocity are critical components of the Coriolis Term of (5.1b),
potentially impacting the convergence of the vector velocity field. Korn and Linardakis (2018)
did not observe the same results. Therefore, it is likely that the grid choice is crucial for
obtaining convergence on the fields.

Overall, A- and B-grid display similar errors, specially, in the height field. ICON’s scheme
have showed the largest errors of the tested schemes, except in the height field L∞, where
MPAS did not converge. B-grid show the second-largest magnitude error, only on the vector
velocity field. This is likely due to the use of the biharmonic and the notably due to the
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gradient operator that is defined on triangles, unlike both A-grid and MPAS, which shows
similar magnitudes on L2. On L∞, however, MPAS shows a larger error and lower convergence
rate, in comparison to the A-grid, likely due to the aforementioned challenges.

5.4.2 Linear Normal Modes

The earth’s ocean behaviour is modulated by oscillations that are mostly affected by the
earth’s rotation. The complete nonlinear equations are difficult to analyse to the high degree
of interactions between these oscillations. However, linear analysis can be done by considering
(5.1) the following approximations:

h = H∇ · u
u = −∇h− fu⊥,

(5.24)

where H is a fixed constant. This system still provides a large set of inertia-gravity waves
present in either the ocean or atmosphere. In order to calculate the normal modes, we follow
the methodology of Weller et al. (2012) by considering a vector (h,u′)T , where both elements,
i.e. h and u, are scalars, so that we have (h,u′)T = [h1, h2, · · · , hM , u1, u2, · · · , uN ] for M
and N elements of height and velocity fields, respectively. In the case of A- and B-grid, the
scalar velocity is obtained by decomposing them into zonal and meridional velocity scalars,
whereas for both C-grid schemes these scalar fields are obtained directly from the velocity
on the edges of the grid.

We run (5.24) M + N times for one timestep of ∆t = 10 seconds on a g2 grid, with
the RK4. The initial conditions used are defined by a unit value on the j-th position of
(h,u′)T , i.e. for the k-th run the initial condition is defined as (h0,u

′
0)

T
k = [δkj ], where δ

k
j is

the Kronecker delta. We use as parameters: gH = 105 m2s−2, f = 1.4584× 10−4 s−1 and the
radius of the earth a = 6.371× 106.

From these runs, we create a matrix A, where each column is the approximated solution
of the initial condition provided. We, then, can calculate the eigenvalues λ of the matrix and,
consequently, obtain the frequency of the modes from λ = αeiω∆t, where ω is the frequency
of the normal modes. We, then, order our results from lowest to maximum frequency. We
will have 486 eigenvalues for the A-grid, 642 for both B-grid and MPAS, and 800 for ICON.
These values correspond to the total degrees of freedom of our system. There are, in the g2
grid, 162 vertices, 480 edges, and 320 triangles. For the A-grid, since both mass and vector
fields are defined at the vertices, the total DOFs are three times the vertices. In the case
of the B-grid, the vector field is defined at the triangles, therefore the total DOFs are the
vertices plus twice the triangles. For both C-grid schemes, the vector velocity field is defined
at the edges, however MPAS has the mass at the vertices, while ICON has the mass defined
at the triangles. In that case, MPAS DOFs are the vertex plus edge points and ICON is the
triangle points plus edge points.

The normal modes can be seen in Figure 5.7. A clear difference is observed between
frequency representation on all grids. The A-grid shows the slowest representation of inertia-
gravity waves, with the maximum frequency of 1.6×10−3 s−1 s−1 on the 119 index. On the
other hand, the B-grid scheme shows higher frequencies, with a maximum on the 167 index
of around 2.6×10−3 s−1.
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In contrast, a more accurate representation is obtained by both C-grid schemes. ICON
shows a similar, but slightly higher frequencies, compared to the B-grid scheme. However, the
highest frequency is obtained on its tail on the 635 index of around 4.2×10−3 s−1. Conversely,
MPAS displays a more accurate representation of the modal frequency with a maximum on
index 320 of around 4.2 ×10−3 s−1.

Overall, our results show similar results with the traditional quadrilateral grids (Arakawa
and Lamb, 1977; Randall, 1994). It is known that on these grids, the C-grid schemes represent
modes more accurately than the either A- or B-grid schemes, but also B-grid display a
higher frequency, and a more accurate representation of inertia-gravity waves, than the A-
grid schemes. We highlight that the expected decrease in inertia-gravity representation from
the traditional grids is not observed in our results, since we reordered our modes from least to
highest frequency. Consequently, higher modes (higher wavenumbers) of both A- and B-grid
schemes are not accurately displayed in our results. Despite this, our results demonstrate
that the maximum represented frequency of both schemes are indeed lower than that of the
C-grid schemes, following the theory.

Regarding both C-grid schemes, our results for MPAS agree with the other authors
(Weller et al., 2012; Thuburn et al., 2009; Peixoto, 2016). In addition, we note that ICON’s
has a less accurate representation of the normal modes in comparison with on MPAS either
on the quasi-hexagonal grid or its implementation on triangles (Thuburn et al., 2009). This
result in ICON has already been observed (Korn and Danilov, 2016), and it is argued that the
filtering property of the divergence on the mass equation might not only remove the intended
noise of the triangular mesh, but also some of the higher frequency physical oscillations.

5.4.3 Localized Balanced Flow

An important testcase is to evaluate the model’s capability of maintaining its geostrophically
balanced state. Our TC1 testcase (Section 5.4.1), allowed us to test whether the models are
capable of maintaining their state under small wavenumbers. However, a harder evaluation
is to test whether the model have the ability to maintain its state under high wavenumber
oscillations. For this reason, we used the testcase developed in Peixoto (2016). This test is
particularly important for two main reasons: one of them is that the Perot’s operator might
not have steady geostrophic modes which may have consequences for the ICON model, the
second reason is that both A- and B-grid are unable to maintain their geostrophic balanced
state. We evaluate, without the stabilizing term, how all models behave under this testcase.

On that account, we define the testcase as follows:

h = h0(2− sinn θ)

uϕ =
−F +

√
F 2 + 4C

2
,

(5.25)

where h0 is a constant, such that gh0 = 105m2s−2, and n = 2k + 2 for any positive k. In our
particular case, k = 160. We also define F and C as:

F = af0
cos θ

sin θ
C = g0n sin

n−2(θ) cos2(θ).
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We will also consider the f-sphere with f0 = 1.4584 × 10−4 s−1. Finally, the grid is rotated
so that the nucleus of the depression is centred at 1◦E, 3◦N.

The parameters used in this testcase will have a timestepping scheme and timestepping
value as defined in section 5.4. We will also use a g6 refinement, where there are abrupt
changes on the height field in a very restrict number of cells.

Our results displayed in Figure 5.8 show that both A- and B-grid, without the stabilizing
term, are not capable of maintaining the geostrophic balance. For the A-grid, the numerical
artefacts, emanated primarily from the pentagons of the grid, destabilize the scheme leading
to an exponential growth blowing up the model around the 40 hours integration. In contrast,
in the case of the B-grid scheme, there was not detected the presence of fast spurious numer-
ical oscillations. However, the detected numerical dispersion waves were capable of breaking
the down the depression up until the 24 hours after the start of the simulation.

Conversely, both C-grid schemes maintain the depression throughout the 5-day period of
integration. However, in ICON’s case there is a small presence of a noise on the system, but
it does not seem to be enough to impact the overall solution.

Overall, the solution of A- and B-grid are impacted from their numerical oscillations.
Although in the work of Yu et al. (2020) the A-grid is capable of integrating for a long time,
the small wavelength oscillations in this testcase, generated mostly on the pentagons of the
mesh, destabilize the integration, blowing up the solution. In contrast, both C-grid schemes
solutions do not display damaging oscillations on the solution. MPAS’s scheme and Perot’s
operator on the dual grid for this testcase has been observed by Peixoto (2016) and observed
the scheme accurately maintain their geostrophic state. We show are able to show that on
the primal grid, ICON, with the use of Perot’s formulation, is also able to represent the
geostrophic balance state on small scale flows, despite the issues on accuracy of its operators
on the SCVT (Section 5.3 and 5.4.1).

5.4.4 Barotropic Instability

Previous testcases aimed in studying the fluid flow under highly controlled experiments, in
order to evaluate their accuracies, linear normal modes, and balanced state flow. However,
the highly energetic and chaotic nature of the ocean require a more realistic testcase, such a
fluid flow instability.

u =

{
umax

en
exp

[
1

(ϕ−ϕ0)(ϕ−ϕ1)

]
ϕ0 < ϕ < ϕ1

0 (ϕ− ϕ0)(ϕ− ϕ1) > 0

gh(ϕ) = gh0 −
∫ ϕ

−π/2

au(ϕ′)

[
f +

tan(ϕ′)

a
u(ϕ′)

]
dϕ′.

(5.26)

where umax = 80ms−1, ϕ0 = π/7, ϕ0 = π/2 − ϕ0, en = exp[−4/(ϕ1 − ϕ0)
2]. These initial

conditions are under geostrophic balance, but with high potential for fluid instability. In
order to trigger it, we add a perturbation to the height field:

h′(θ, ϕ) = hmaxe
−(θ/α)2e−[(ϕ2−ϕ)/β]2 cosϕ, (5.27)

where ϕ2 = π/4, α = 1/3, β = 1/15, and hmax = 120 m. All schemes are tested on a g7
refinement with a timestep of 50 seconds under a RK4 timestepping scheme. In order to
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avoid the instability, we use a hyperviscosity coefficient of 5 × 1015 and 2 × 1015, for both
A- and B-grid, respectively. These choices of coefficients are in agreement with Tomita and
Satoh (2004). We also found that smaller values of these coefficients of each scheme would
lead to instability for the A-grid and the appearance of near grid scale oscillations in the
B-grid.

The potential vorticity, on the sixth day of integration (Figure 5.9), display the behaviour
of the growth of the instability on all the evaluated schemes. Between these schemes, it is
observed a clear difference in the representation of the smaller scale features of the instabil-
ity. Both A-grid and B-grid schemes displays no small scale oscillations present within the
vorticity field. Additionally, it is evident that both schemes display slightly coarser features
in representing the state of the fields.

Similarly, in both C-grid schemes, we observe more small scale features in this system,
helping could potentially aid in the growth of the instability even if no perturbation was
added. However, it is evident that in these schemes, near-grid scale oscillations play a role
in the physical solutions of the integration. Comparing both C-grid schemes, both schemes
seem equally contaminated by numerical noise, however, the small scale oscillations in MPAS
display a higher wavenumber than the ICON scheme. MPAS’s noise in the vorticity was
discussed and argued that the chequerboard noise of the vorticity is the main culprit in the
manifestation of this contamination in our physical simulations (Peixoto, 2016). Likewise,
we also know that the Perot’s operator on the dual grid is capable of manifesting numerical
noises on the solutions. Since ICON’s divergence operator has the potential to remove small
scale oscillations, but the scheme does manifest spurious waves, which was also observed
in Korn and Linardakis (2018), therefore, the Perot’s dual operator is potentially the main
responsible for this manifestation.

Overall, all schemes suffer from the grid scale computational modes. There is, however,
the stabilization term for both A- and B-grid schemes, such that the schemes remain sta-
ble throughout the integration. Despite both C-grid schemes remaining stable throughout
the integration, the solutions are contaminated with noise, that will inevitably require a
smoothing term, such as the biharmonic, in order to remove these high wavenumber waves.
Additionally, It is observed that the waves from the A-grid to the C-grid schemes, an appar-
ent increase in the effective resolution of the computation, agreeing with the previous results
in Section 5.4.2. Following this result, we analyse the kinetic spectrum of these schemes.

5.4.4.1 Kinetic Energy Spectrum

The global kinetic energy spectrum, is a useful tool in evaluating the energy cascade of the
fluid. On different scales of the ocean’s motion, we observe a power law of k−3 for larger
scales or k−5/3 for smaller scales (Wang et al., 2019). For the 2D case, the former is related
to the turbulence of the flow, whereas the latter is related to the reverse energy cascade
turbulence. These spectral fluxes provide useful insight into the performance of the models
in transferring energy motion between different scales.

Therefore, we define the Kinetic Energy Spectrum as follows:

(EK)n =
a2

4n(n+ 1)

[
|ζ0n|2 + |δ0n|2 + 2

M∑

m=1

(
|ζmn |2 + |δmn |2

)
]
, (5.28)
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where ζmn , δmn are the spectral coefficient of the vorticity and divergence. These coefficients
are defined as:

ψm
n =

∫ 1

−1

1

2π
F(ψ(ϕ, θ), ϕ)Pm

n (θ)dθ, (5.29)

where ψ is the variable to be transformed, F(ψ(ϕ, θ), ϕ) is the Fourier Transform on this
variable, and Pm

n (θ) is the normalized associate Legendre polynomial. To evaluate these
equations, we use the nearest neighbour to interpolate the original unstructured grid into a
quadrilateral grid of 10 km resolution on the equator with the nearest neighbour method.

The energy spectrum of the schemes is shown on Figure 5.10. From the testcase, a small
decrease of the spectrum from the wavenumber 1 to 4, and subsequently an increase, reaching
a maximum at the wavenumber 6. Afterwards there is a constant decrease of the spectrum
with a slope near k−3 for all grids. At approximately wavenumber 80, the A-grid scheme has
a considerable loss of its power, decreasing more rapidly. Similarly, at wavenumber 90 the
B-grid scheme also displays this rapidly loss of energy. With slight higher wavenumber, both
A- and B-grid slows its slope until the last evaluated wavenumber.

Comparably, both C-grid schemes extend the physical slope of k−3 up to the wavenumber
300. At this wavenumber, ICON display a similar loss of kinetic energy, whereas MPAS
maintain a similar slope up to the end of the evaluated wavenumbers.

In summary, we have shown that for smaller wavenumbers there is a good agreement
between the models. Additionally, we also have shown that even for the nonlinear time
integration of the shallow water system of equations, the schemes behave similar to the
linear normal mode analysis, with A-grid having the coarsest effective resolution, and MPAS,
on the other extreme, having the highest effective resolution. Additionally, the presence of
a slow-down of the loss of the power or even an increase of the spectrum on the highest
wavenumbers is likely related to the impact of the interpolation to cause this increase, as
it was previously reported in other works (Wang et al., 2019; Rı́podas et al., 2009; Juricke
et al., 2023).

5.4.5 Models Stability

Our previous results were able to show elementary characteristics of each of the shallow water
schemes. Some of our results required the inclusion of a stabilizing term for both A- and B-
grid schemes, in order to remove damaging numerical oscillations that participated in the
dynamics. Although the same term was not used in the C-grid scheme in our simulations, it
is desired to include some sort of filtering, as the simulations may contain numerical waves
that could either damage the solution or cause a potential blow up of the model.

One particular cause of numerical dispersion is associated with 3D energy-enstrophy
conserving models, regardless of the staggering used. The imbalance between the Coriolis
and kinetic energy term generates numerical noise, causing near grid-scale oscillations and
decreasing the kinetic energy of jets (Hollingsworth et al., 1983). This instability, known as
Hollingsworth Instability, also manifests as a destabilized inertia-gravity wave, leading to
a blow up of the solution depending on the models’ resolution and distortion of the mesh
(Bell et al., 2017; Peixoto et al., 2018). Recent ocean models, such as NEMO’s model, have
shown susceptibility to these oscillations, producing spurious energy transfer to the internal
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gravity-waves and dissipation, resulting in corruption of mesoscale currents and submesoscale
structures (Ducousso et al., 2017).

Although this instability is 3D in nature, it is possible to mimic it, by considering the
ocean model as a layered model, where the vertical flow is associated with one of the thin
layers of the ocean (Bell et al., 2017). This can be done by assuming the ocean model is
hydrostatic and under a Bousinesq approximation (assumptions made by all ocean models
evaluated in this work). In that case, one of the layers, henceforth equivalent depth H, if
unstable, will display a strong noise on the horizontal velocity, and, thus, can be analysed
with the shallow water equations.

5.4.5.1 2D stability Analysis

In order to examine the instability, we analyse the models under a nonlinear geostrophic
testcase, similar to TC1. In this testcase, however, we consider the bathymetry as driving
the geostrophic balance. The mass height field will be constant and small to mimic the
equivalent depth of the internal modes of the 3D model, as done by Bell et al. (2017),
and Peixoto et al. (2018). Furthermore, we apply a linear analysis using the power method
(Peixoto et al., 2018):

x(k+1) = αk+1r
(k+1) + x, (5.30)

where α(k+1) = ϵ/|r(k+1)|, ϵ = 10−5 is a small constant, x is the model state under geostrophic
balance, r(k+1) = x∗ − x is the perturbation, x∗ = G(xk) + F, G(xk) is the model evolution
operator, and F = x − G(x) is a constant forcing. The methods converge, when αk →k α
is found for large enough k. The eigenvalue is then obtained as λ = 1/α. From there we
can compute the E-folding timescale from the growth rate ν = log λ/∆t, where ∆t is the
timestep. We will use, a timestep of 200 seconds.

Ranging from an equivalent depth from 10−3 to 100 m we observe a substantial difference
between the stability of the evaluated schemes (Figure 5.11). B-grid and ICON show similar e-
folding time at around 0.1 and 0.2 days from the shallowest depth up to 1 m. Larger thickness
display a stabilization of both schemes. B-grid, in this case, display a faster stabilization than
ICON, whose e-folding time remain below 1 day for the 200 m, whilst B-grid show over 2
days e-folding time for the same thickness.

The similarities of both schemes for lower equivalent depths is potentially due to the use
of triangular cells on some of their operators. However, the difference between the schemes
for larger depths is likely associated with the error created by the reconstruction of the
velocity vector field for both Coriolis and Kinetic energy terms in ICON, amplifying the
imbalance of the discretization. Additionally, in different grids, ICON is found to be more
stable (Korn and Linardakis, 2018), implying that our choice of grid might be a source of a
higher instability.

On the other hand, both MPAS and A-grid display overall a more stable scheme. MPAS
displayed a 0.6 day e-folding time for the shallowest depths, but showed an increase, reaching
around 40 days. Similarly, A-grid displays an even larger stability of around 0.2 day for
the shallowest depth. However, contrary to the other schemes, the stability of the A-grid
decrease with the increase of the equivalent depth. A-grid’s stability loss with depth might
be potentially due to different causes of instability being dominant for the equivalent depths,
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i.e. for shallower depths, the cause of the instability is likely the Hollingsworth Instability,
while for deeper depths, the instability is caused by the excitation of spurious pressure modes.

5.4.5.2 Biharmonic

In order to evaluate the biharmonic effect on the stability of the models, we perform the
same analysis for different viscosity coefficients, using an equivalent depth of 1 metre, and a
timestep of 200 seconds. For A- and B-grid schemes, we use (5.22) and (5.23), respectively.
On C-grid, we use the formulation:

∆u = ∇∇ · u−∇×∇× u ≈ grad div u− grad Tvort u,

where grad T is the transpose gradient operator defined on the dual grid.
Our analysis, shown on Figure 5.12, indicates that all schemes were found to be stable

for a viscosity coefficient no more than 1015 m4s−1. Individually, B-grid and ICON does not
display difference in stability for a coefficient up to 1013 m4s−1. However, increasing the
coefficient, shows that the B-grid has, not only a faster stabilization than ICON, but has the
fastest of all evaluated schemes, reaching an e-folding time of over 10 days for a coefficient
of 1× 1014 m4s−1. ICON, in contrast, shows the slowest stabilization, reaching an e-folding
time of 1.1 days for a coefficient of 4× 1014 m4s−1.

Similarly, both A-grid and MPAS schemes display an unchanged e-folding time of up
to 1013 m4s−1 and 1014 m4s−1, respectively. Additionally, A-grid is shown to stabilize faster
than MPAS, reaching an e-folding time of over 20 days for a coefficient of 3 × 1014 m4s−1,
while MPAS reaches 10 days for the same coefficient.

Overall, we see that despite B-grid showing a lower stability than all schemes, it has the
potential to faster achieve stability. Conversely, although ICON obtains a similar stability as
the B-grid, it requires a more intense coefficient, in order to stabilize the scheme. The similar
behaviour happens with A-grid and MPAS, with MPAS requiring a more intense coefficient
for stabilization. This implies that this difficulty is on the C-grid discretization itself, and it
is likely associated with either the vector reconstruction of the Coriolis term or the Kinetic
Energy discretization.

5.5 ICON-O Model

Given the importance of the biharmonic term in order to stabilize the scheme or, at least,
remove spurious computational waves in the system, we, then, aim to bridge the gap between
the shallow water model and ICON’s operational model. We will first acknowledge that our
analysis in this section will be restricted only with ICON-O research model, and will not
give light to other models mentioned in this work. However, providing results with ICON-
O will be an important step towards understanding the effects of numerical oscillations on
research/operational models. Additionally, our simulations presented in this section were
not fine-tuned, i.e. the physical parameters and coefficients were not thoroughly calibrated,
and, therefore, these simulations may not necessarily represent reality accurately. However,
our discussions in this section will be restricted to analyse differences between simulations



ACCURACY AND STABILITY ANALYSIS OF HORIZONTAL DISCRETIZATIONS
USED IN UNSTRUCTURED GRID OCEAN MODELS 109

with and without the biharmonic filter, so the lack of calibration will not impact the overall
analyses of the results.

The research ICON-O model, developed at the Max-Planck Institute for Meteorology, is
the oceanic component of the ICON Earth System Model. It uses horizontal discretization
described in the earlier sections. Vertically, it extends the triangular cells into prisms, for
the use of its z coordinate levels. Additionally, In its 3D formulation, ICON-O uses the
hydrostatic and Bousinesq approximations to solve its state vector {u, h, T, S}, where T and
S are temperature and salinity, respectively. These tracers are also imbued with dissipative
and subgrid-scale operators, such as isoneutral diffusion and the mesoscale eddy advection
Gent-Mcwilliams Korn (2018). The full 3D spatial discretization will be omitted in this
section, but the reader can refer to equation (32) of Korn (2017).

For its time integration, ICON-O is discretized using an Adams-Bashforth 2-step predictor-
corrector scheme (equation 33, 34, and 35 of (Korn, 2017)). This scheme does not conserve
neither energy nor enstrophy (Korn and Linardakis, 2018), but it also contains an implicit
diffusion, allowing for more stable simulations.

Our 3D simulations were performed using an HR95 grid with a radial local refinement
with the finest resolution, around 14 Km edge length, located near South Africa, and the
coarsest resolution, around 80 Km edge length, on the antipode of the earth, i.e. North
Pacific (Figure 5.13 upper panel). These locally refined mesh created enumerated distortion
spots around the refined region (Figure 5.13 lower panel).

The model was initialized under rest with 128 layers with climatological temperature and
salinity from the Polar Science Center Hydrographic Climatology (Steele et al., 2001) and
was forced with the German-OMIP climatological forcing, which is derived from the ECMWF
reanalysis 15 years dataset. This climatological forcing is daily with a resolution of 1 degree.
An initial thirty years spin up was performed under these conditions utilizing a biharmonic
coefficient of 2 × 10−1A

3/2
e , where Ae = |e||ê|/2. In addition, we added a Turbulent Kinetic

Energy (TKE) closure scheme, in order to parameterize the turbulent subgrid phenomena
on the mesh.

Following the spin up, we, subsequently, ran 2 simulations by 10 years each. One simulated
with the same parameters as the spin up, which we will coin as our reference simulation.
The other was simulated without the aforementioned biharmonic filter.

The simulation without the filter show a clear decrease in the strength of the currents
on the ocean system, e.g. the Gulf, Kuroshio, North Brazil, Agulhas, and Malvinas currents
(Figure 5.14). Other regions were found to slightly increase in kinetic energy, in particular,
the neighbourhood around the Agulhas Current, near the Antarctic Circumpolar Current,
the Equatorial Currents of the Atlantic Ocean and both Northern and Southern of the
Pacific Ocean, and the Brazil-Malvinas Confluence. The integrated kinetic energy averaged
over these years show that surface kinetic energy loss of around 4.7 ×1013 km2m2s−2 of its 20
×1013 km2m2s−2. Additionally, it is observed, in particular on regions of coarser resolution,
such as the Kuroshio Current and Gulf Stream, the presence of a numerical oscillation
emanating from the main currents.

Following Ducousso et al. (2017), we show a similar result as that reported by the authors,
in the sense that the structure of the Equatorial Undercurrent (EUC) is shown to be more
deformed on the simulation without the biharmonic. Although the intensity of the EUC in
our results were unchanged, the core of current narrowed vertically and moved from 125 m of
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depth to 100 m. According to the authors, the region is subject to barotropic and baroclinic
instability, producing waves and vortices which are the main contributors to the current.
Although we detect a decrease of EKE on the No Biharmonic run in the southernmost
branch of the zonal current (Figure 5.15), we also detect an increase of the EKE over the
equatorial countercurrent. Since this decrease in EKE also follows with a decrease in the
strength of the core of both northern and southern branches, It is possible that this decrease
in EKE is indeed related to a decrease in baroclinic instability, while the increase in EKE over
the countercurrent is possibly related to numerical oscillations on the grid, which strengthens
the zonal flux over this countercurrent, and, thus, deepening its core.

Other regions of the ocean also display a decrease of the EKE, most notably the Agulhas
Current Retroflection, where it meets with the colder water of the South Atlantic Current
and Antarctic Circumpolar Current (Figure 5.16). The retroflection region EKE is known to
be modulated by the baroclinic instability of the Agulhas current (Zhu et al., 2018).

Additionally, the Agulhas current itself is affected by the absence of biharmonic (Figure
5.17). One observed difference is that the intensity of the surface current is lost. Moreover,
the cross-section of the No Biharmonic simulation shows a trail of intense EKE manifesting
from the core of the Agulhas Current and propagating southwestward (Figure 5.17.B). These
oscillations span from the surface, down to 400 m depth. It is possible that these oscilla-
tions absorbs energy from the main current system, adding to the mixing of the water and,
consequently, weakening the current.

5.6 Conclusions

In this work, we provided a thorough comparison analysis between different shallow water
staggering schemes used in unstructured ocean models and their capability in maintaining a
stable integration. Alongside, we also investigated ICON’s susceptibility to such numerical
instabilities in realistic 3D settings.

The shallow water analyses have shown that all models haves advantages and disad-
vantages. The NICAM horizontal discretization, from Tomita et al. (2001), is simple to
discretize, due to its collocated approach, provides accurate representation of the operators,
and presents reasonably stable integrations for complex experiments, for chosen grid opti-
mizations, such as the SCVT. However, similar to the traditional discretization of A-grids on
regular grids (Arakawa and Lamb, 1977; Randall, 1994), it displays a low effective resolution,
difficulty in maintaining the geostrophic balance, and it is susceptible to the manifestation
of numerical oscillations caused by the grid discretization.

Similarly, the FeSOM 2.0 horizontal discretization, from Danilov et al. (2017), also pro-
vides a quite simple discretization, accurate approximations of the operators, and a higher
effective resolution compared to the A-grid. However, it also has a low effective resolution,
and it displays some difficulty in maintaining the geostrophic balance. Additionally, despite
not suffering from pressure modes, the B-grid scheme is found to be the least stable scheme,
but as shown here and discussed by Danilov (2013), It can be easily fixed by a low coefficient
of biharmonic.

Finally, both C-grid schemes, MPAS-O, from (Skamarock et al., 2012), and ICON-O,
from Korn (2017), have the most complex discretizations between the evaluated schemes.
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Some operators do not accurately approximate the operators of the Shallow Water system.
The difficulty for MPAS-O to show convergence in the error was also discussed by Peixoto
(2016). Similarly, ICON-O also displays some difficulty in converging some of the operators of
the shallow water equations. The lack of convergence of the divergence operator, for example,
was also shown in Korn and Linardakis (2018). For both schemes, it is argued that the issue
lies in the use of the grid. Therefore, a proper choice of grid optimization should also be taken
into consideration when using or using these schemes. Moreover, a dissimilarity between both
schemes is seen in their stability. MPAS is shown to have a high stability, as it was discussed
in (Peixoto et al., 2018), but ICON, similar to the B-grid, is shown to have a low stability
and requires a larger viscosity than B-grid to stabilize the scheme.

Remarkably, in the 3D ICON-O simulation using a grid with Spring Dynamics optimiza-
tion, the model was found to be stable throughout the simulated years, despite the lack
of biharmonic filter. However, near grid oscillations were apparent in the grid and a con-
tribution of these oscillations of the dynamics of the model was apparent. As it was also
diagnosed by Ducousso et al. (2017) for the NEMO model, these oscillations seemed to give
rise to spurious mixing of the system and also decreases the energy of the ocean’s currents.
Regions where its strength is derived from baroclinic instability seems more affected by these
small scale oscillations. Yet, it is clear the need for further research in this topic. Though
the model is stable, it can be affected by these oscillations if the coefficient is not properly
adjusted. Moreover, an excess of the viscosity may also decrease the effective resolution of
the model, which also is not ideal.

In conclusion, we stress that further research is necessary in order to shed more light
into these schemes. We note that all schemes under the shallow water tests have shown to
be robust and provide reliable results for their respective purpose. However, testing these
schemes under different grids or with more realistic settings might provide greater insights
into the performance of the models. Additionally, it seems evident that despite a model
being stable without filters, the numerical oscillations in the model may interact with the
physical waves, leading to errors or to misinterpretation of the results. It is, therefore, crucial
for further investigation on this topic in order to properly make use of filters to avoid these
oscillations, but also minimize the damping of physical waves.

5.7 Acknowledgements

We are grateful to the financial support given by the Brazilian Coordination for the Improve-
ment of Higher Education Personnel (CAPES) PRINT project - Call no. 41/2017, Grant
88887.694523/2022-00, the São Paulo Research Foundation (FAPESP) Grant 2021/06176-0,
and the Brazilian National Council for Scientific and Technological Development (CNPq),
Grants 140455/2019-1 and 303436/2022-0.



ACCURACY AND STABILITY ANALYSIS OF HORIZONTAL DISCRETIZATIONS
USED IN UNSTRUCTURED GRID OCEAN MODELS 112

Figure 5.5: TC0 (first and second row panels) and TC1 (third and fourth row panels) op-
erators L∞ (first and third panels) and L2 (second and fourth panels) error norms for the
A-grid (black lines), B-grid (red lines), MPAS (blue lines), and ICON (green lines).
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Figure 5.6: h and u error after 15 days.

Figure 5.7: Linear normal modes of the considering the linear shallow water equations (5.24)
on the f -sphere.
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Figure 5.8: Height field of the different schemes for the localized balanced flow testcase
without using biharmonic for both A- and B-grid schemes. Using a grid refinement g6 and a
timestep of 50s.
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Figure 5.9: Potential Vorticity of all schemes on the 6th day of integration for the barotropic
instability testcase with perturbation using a g7 refinement grid and a respective biharmonic
for A- and B-grid schemes, following Table 5.4.
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Figure 5.10: Kinetic energy spectra for the Barotropic instability testcase for all schemes as
in Figure 5.9.
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Figure 5.11: E-folding time for the different evaluated schemes, considering a time-step of
200 s in a geostrophic test case where the balanced state is given by the bathymetry, while
the height is given by the equivalent depth and constant.

Figure 5.12: E-folding time by viscosity coefficient for each scheme, using a g6 grid refinement
with a timestep of 200 s and a 1 m equivalent depth.
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Figure 5.13: The upper panel is the cell area of the spherical grid used in the simulations.
The lower panel is the respective cell distortion of the mesh.
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Figure 5.14: Kinetic Energy difference between a reference simulation and simulation without
the use of biharmonic, i.e. E

(ref)
k − E

(no bih)
k .
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Figure 5.15: Cross-section of the 130◦W longitude of the reference (A) and the without
biharmonic (B) simulation and a vertical profile of the zonal velocity of both simulation over
the 0◦ Latitude (C).
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Figure 5.16: Eddy Kinetic Energy (A) and difference between simulations of EKE (B) of the
Agulhas Current System.
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Figure 5.17: P1 Cross-section between the Observational data (A), Reference simulation (B),
and No Biharmonic Simulation (C), and the vertical profile of the normal velocity in the 42
km distance (D).



Chapter6

Conclusions

This work aimed to analyse some core properties of global geophysical numerical models.
We have provided results for the traits of the modified triangular icosahedral grid (Chapter
2). Using this grid, it was analysed different schemes, where it was tested the accuracy of
their operators, and their time integrated solutions (Chapter 3). It was also analysed these
schemes’ stability to numerical oscillations and how these schemes can increase this stability
with a hiperdiffusion filter (Chapter 4). Finally, we incorporated our knowledge in work
submitted to the Journal of Ocean Modelling, described in Chapter 5. The overall summary
of the results can be seen in Table 6.1.

The modified standard grid (MODSTD) showed overall worse results for the properties
tested in this work than the grids tested by Miura and Kimoto (2005). In particular, the grid
showed signs of worse distortions. These distortions were more localized than the standard
grid, presenting a spatial distribution similar to that of HR95. The SCVT grid used in
Chapter 5 displays a lower amount of distortion, and the high distortion cells are localized
on the original icosahedral vertices.

These distortions are observed on the operator error spatial distribution. For the A- and
B-grid schemes, all operators were able to converge in either first or second order, regardless
of grid used (MODSTD in Chapter 3 or SCVT in 5). The error rate of these operators is
decreased as the grid is refined, likely due to these distortions, which was pointed out by
Peixoto and Barros (2013). On the other hand, the operators defined on the primal cell,
i.e. triangular tilling, were mostly first order, with a notable exception to the kinetic energy
operator of TRiSK (Chapter 3), which as it was pointed out by Weller et al. (2012) was
expected to show better performance than its analogue on the dual quasi-hexagonal cell. In
fact, as it was show, TRiSK-MPAS (Chapter 5) displays a 0th order convergence for the
SCVT grid, which is in line with the discussed error in Peixoto (2016).

Additionally, some operators, such as the divergence operator on TRiSK and the gradient
operator on the B-grid, display an error distribution similar to the chequerboard pattern.
For the latter, this was not expected to be a problem, since the model requires the use of
a filter, which had removed any signs of noise. For the former, however, this noise would
be a problem, since the model can be used without filter. In contrast, ICON’s admissible
reconstruction operator was able to almost completely remove this noise. In some tests,
however, the divergence operator had a worse error than TRiSK, i.e. such as in the case of
SCVT grid, where the divergence error does not converge.

These operators influence the simulation test performed on the grids. In the use of the
MODSTD grid, the A-grid is contaminated with numerical oscillation despite the use of
the biharmonic filter. Its use aid the scheme to stabilize, but have not helped it to remove
this noise, which was evident near the areas of larger distortion, thus making the scheme not
converge with grid refinement. This was not observed in the SCVT case, since the barycentre
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of the dual cell coincide with the vertices of the grid, as it was stated as requisite by Tomita
et al. (2001). Regardless, in the mountain case scenario, this scheme on the MODSTD grid
has not shown visible oscillations, implying that the scheme could still be used without an
instability of the solution. Despite this, it is evident that a grid, such as the Spring Dynamics
or the SCVT, is desirable in order to attain optimal results.

On the other hand, B-grid scheme have shown a near first to second order convergence
and no signs of visible noise on either the mass nor the velocities fields were detected. Like-
wise, both C-grid have shown a convergence of its error with refinement on the MODSTD.
However, contrary to the B-grid there was some noise detected, in particular, at the mass
field. TRiSK was much more affected to this noise, while ICON’s use of admissible recon-
struction was able to solve this issue. On the SCVT grid, however, it was observed that both
C-grid schemes struggle to display a convergence on both mass (h) and vector (u) fields.
These likely are related to the difficulty of converging of the aforementioned operators.

Additionally, on ICON, it was observed some drawbacks on the use of its admissible
reconstruction. Despite providing a solution to the issue of the chequerboard pattern, it
makes the inertia gravity waves underrepresented. This is a similar result obtained by Korn
and Danilov (2016). Moreover, the use of the dual reconstruction of ICON manifests non-
stationary geostrophic modes, which, as shown by Peixoto (2016), do not display observable
damage to the results shown.

Regardless, the ICON’s under-representation of inertia-gravity waves could act in favour
of the stability of the scheme. Under a thin test case, TRiSK have shown to be the most
unstable of the tested schemes. It requires a large diffusivity coefficient to be able to control
these spurious waves. It is likely that part of the spurious oscillations that aid the instability
are the aforementioned chequerboard pattern. ICON, on the other hand, is more stable
than TRiSK, and it requires less diffusion to control the unstable modes. On the dual grid,
however, MPAS has shown to be more stable than ICON, implying that the triangular grid
still suffer from modes that create instability on the model. Likewise, B-grid is surprisingly
more stable than TRiSK and with the use of diffusion it can better control spurious waves
than ICON. Additionally, the use of SCVT seems to easier control unstable oscillations in
the B-grid than in ICON. One such reason for these results is the necessity of ICON to
reconstruct the vector field, which would increase the level of uncertainty in the model.
Moreover, the grid distortion on ICON seems to have a higher influence on the results than
B-grid.

In contrast, the A-grid was found to be less unstable of those schemes, despite the con-
tamination present in the model. It can be argued that the scheme does not only not require
reconstructing the vector field, like B-grid, but also the kinetic energy is almost exactly de-
fined at the necessary points. Not only that, but it is possible that this contamination on
the mass field aids in stabilizing the scheme. On the SCVT, however, A-grid scheme display
a slightly different behaviour. It still is the least unstable scheme, however, its instability
increase with higher equivalent depths. This difference likely lies on the manifestation of the
numerical oscillations of the MODSTD grid. In the SCVT grid, the oscillations likely migrate
from a Hollingsworth instability to a pressure mode manifestation, which might explain the
decrease in stability. On the MODSTD, the manifested waves of the grid are likely present
throughout all equivalent depths and are likely the main reason which is making the scheme
unstable.
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order of Accuracy Resolution Stability
A-grid 1st-2nd Low High
B-grid 1st-2nd Low Low
TRiSK -1nd-0th High Low
MPAS 0th-1st High High
ICON 0th-1st High Low

Table 6.1: Summary of different properties analysed for the different schemes used.

Finally, we observe that the full ICON 3D is not found unstable without the biharmonic
filter. However, it is observed noticeable impacts on the solution of the integrated model.
Although these waves are not amplified in the mode, they contribute to the dynamics, by
providing spurious mixing of the currents. The impact is found to be higher on currents,
where the main contribution comes with baroclinic instability. With this spurious mixing,
there is a decrease in this instability, thus making these currents weaker. We, therefore, note
the importance of providing a well-balanced filter, in particular to higher degree of distorted
grids, so that we avoid unnecessary damping of higher frequency waves, and are able to avoid
the impact of these numerical oscillations, which can lead to erroneous interpretations of the
given simulations.

Further work could be done in understanding the behaviour of these schemes. these os-
cillations can be evaluated in other 3D models. In particular, FESOM 2.0 while displaying
different computations of the momentum equations, may provide a better control of these
oscillations. Additionally, the work of Perot (2000) also allows for the computation of the
advection equation, which is used in ICON may also provide a greater stability. Addition-
ally, the work of Perot and Chartrand (2021), generalize their arguments using harmonic
reconstruction. Is it possible, then, to increase the model’s stability, and can we remove the
non-stationary geostrophic modes of the linearized shallow water simulations?



AppendixA

A-Grid GC

In this chapter, we are going to show the improvement on the operators using an optimized
grid. We aimed to follow Tomita et al. (2001) and iterate a grid where both K(b) and K̂(b)

are the geometric centres of the primal and dual cell, respectively. The algorithm goes as
follows. Assume v(0) is the vertex of the grid, and p(0) is the barycentre of the cell calculated
normally. We moved the vertex for the kth iteration by a weighted average of the dual cell
vertices (triangle barycentre):

v
(k)
k =

∑

j

Ajp
(k−1)
j

Aj

(A.1)

where Aj is the area of the triangular cell. With the new vertices, we calculate the new
barycentre of the triangular cell. We stop the iteration as |v(k) − v(k−1)| ≤ ϵ, ϵ > 0.

Our results show the error for Nonlinear Geostrophic Test Case (TC0 of Chapter 3).
The L2 error is of the order of second order for all operators. The L∞ error is also near
second-order for all operators, except for the divergent operator, which is near first order
(Table A.1). Although not expected, it could be due to the initial condition. Other tested
cases are near second-order (not shown here).

Table A.1: Maximum error of the operators for the nonlinear geostrophic case.
grid-level div grad curl

g0 0.0000 2.6575.100 4.7082.10−1

g1 0.0000 4.1228.10−1 1.0153.10−1

g2 5.0024.10−8 8.8841.10−2 2.4272.10−2

g3 2.9508.10−8 2.1833.10−2 6.0982.10−3

g4 1.4387.10−8 5.4696.10−3 1.5289.10−3

g5 6.7665.10−9 1.4579.10−3 3.8237.10−4

g6 3.1585.10−9 6.9593.10−4 1.0516.10−4

All the operators show a pattern near the vertices of the original icosahedron (Figures A.1,
A.2), similar to what was obtained by Tomita et al. (2001). This follows the new distortion
of the grid.

The variables h and uθ follow a similar pattern as B-grid (Figure 3.22). The background
noise is now much less predominant than the standard grid, but still present. It, however,
does not contaminate the grid as did the standard grid. Similar to what was obtained by
Tomita et al. (2001).
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Figure A.1: Divergence error for g6 (left) and it’s L∞ and L2 norm.

Figure A.2: Gradient operator error for g6 (left) and it’s L∞ and L2 norm.
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Figure A.3: Variable error for g6 (left) and L∞ and L2 error norms.



AppendixB

Accuracy and Stability Analysis of Hor-
izontal Discretizations used in Unstruc-
tured Grid Ocean Models

Below we include the paper submitted to the Journal of Ocean Modelling. This paper com-
pare the shallow water model mentioned in the thesis using the SCVT optimization grid. We
note the importance of evaluated the sometimes overlooked accuracy tests and energy tests
provided in the submitted paper. Moreover, the use of high resolution grids is now discussed
being many research institutes, in which case numerical noises might be more visible in these
models. Therefore, we note the importance of evaluating the potential instability of these
models and the effects of the numerical noise on the grid.
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C-grid schemes display difficulty in convergence for some of the operators14

due to the used grid.15

• C-grid is shown to display the most accurate representation of the energy16

spectrum from the tested schemes, followed by B- and A-grid schemes,17

respectively.18

• Schemes’ stability was investigated, and the necessary filter was evaluated19

to maintain stability.20

• 3D ICON-O operational model was used for evaluating near grid scale21

instabilities.22

• ICON-O was found stable, but susceptible to spurious oscillations partic-23

ipating in the dynamics.24
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Abstract28

One important tool at our disposal to evaluate the robustness of Global Cir-
culation Models (GCMs) is to understand the horizontal discretization of the
dynamical core under a shallow water approximation. Here, we evaluate the
accuracy and stability of different methods used in, or adequate for, unstruc-
tured ocean models considering shallow water models. Our results show that the
schemes have different accuracy capabilities, with the A- (NICAM) and B-grid
(FeSOM 2.0) schemes providing at least 1st order accuracy in most operators
and time integrated variables, while the two C-grid (ICON and MPAS) schemes
display more difficulty in adequately approximating the horizontal dynamics.
Moreover, the theory of the inertia-gravity wave representation on regular grids
can be extended for our unstructured based schemes, where from least to most
accurate we have: A-, B, and C-grid, respectively. Considering only C-grid
schemes, the MPAS scheme has shown a more accurate representation of inertia-
gravity waves than ICON. In terms of stability, we see that both A- and C-grid
MPAS scheme display the best stability properties, but the A-grid scheme relies
on artificial diffusion, while the C-grid scheme doesn’t. Alongside, the B-grid
and C-grid ICON schemes are within the least stable. Finally, in an effort to
understand the effects of potential instabilities in ICON, we note that the full
3D model without a filtering term does not destabilize as it is integrated in time.
However, spurious oscillations are responsible for decreasing the kinetic energy
of the oceanic currents. Furthermore, an additional decrease of the currents’
turbulent kinetic energy is also observed, creating a spurious mixing, which also
plays a role in the strength decrease of these oceanic currents.

Keywords: Shallow water model, unstructured ocean models, NICAM,29

FeSOM 2.0, MPAS-O, ICON-O, Numerical Instability30

1. Introduction31

Much of the scientific knowledge of the climate is largely due to the devel-32

opment of Earth System Models (ESMs), i.e. coupled models consisting of the33

atmosphere, ocean, sea ice, and land surface. The ocean, in particular, is a key34
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component of these ESMs and a driver of the climate. Consequently, it is crucial35

to develop and improve such ocean models, with particular attention to global36

models (Randall et al., 2018; Fox-Kemper et al., 2019a).37

These efforts, along with the atmospheric modelling community, allowed38

us to acquire important insights related to these numerical models, such as39

being able to compartmentalize models into what is termed dynamical cores40

along with several physical parametrizations (Thuburn, 2008; Staniforth and41

Thuburn, 2012). Combined, these form the main building blocks of the cur-42

rent operational ESMs. The dynamical core is defined as being responsible for43

solving the governing equations on the resolved scales of our domain (Randall44

et al., 2018; Thuburn, 2008). For climate modelling, it is important that these45

cores are able to mimic important physical properties, such as mass and energy46

conservation, minimal grid imprinting, increased accuracy, and reliable repre-47

sentation of balanced and adjustment flow, which can be achieved by using a48

proper grid geometry and horizontal discretization (Staniforth and Thuburn,49

2012). However, the use of unstructured grids may pose challenges in fulfilling50

these properties.51

Traditional ocean models commonly used Finite Difference or Finite Vol-52

ume discretization on regular structured grids (Fox-Kemper et al., 2019b), e.g.53

NEMO (Gurvan et al., 2022), MOM6 (Adcroft et al., 2019). This approach was54

useful for the limited regional modelling. However, for global models it posed55

some problems. The most critical is the presence of singularity points at the56

poles, which constrained the timestep size for explicit methods, potentially mak-57

ing it unfeasible for use in high resolution models (Sadourny, 1972; Staniforth58

and Thuburn, 2012; Randall et al., 2018). Therefore, in recent years, a lot of59

effort has been put on the development of unstructured global oceanic models.60

Given the success of triangular grids on coastal ocean models, one popular61

approach is the use of triangular icosahedral-based global models, i.e. using62

geodesic triangular grids. However, there are still present issues with triangular63

grids, in particular with the variable positioning considering a C-grid stagger-64

ing. The C-grid staggering (Arakawa and Lamb, 1977) considers the velocity65

decomposed into normal components at the edges of a computational cell. On66

traditional quadrilateral meshes, this staggering was found to more accurately67

represent the inertia-gravity waves (Randall, 1994). On unstructured triangu-68

lar grids, a spurious oscillation is present on the divergence field manifested as69

a chequerboard pattern, and it is present due to the excessive degrees of free-70

dom (DOF) on the vector velocity field (Gassmann, 2011; Le Roux et al., 2005;71

Danilov, 2019; Weller et al., 2012). In theory, these can lead to incorrect results72

if not correctly filtered, or can potentially trigger instabilities.73

This chequerboard pattern issue led modellers to avoid triangular grids. One74

potential solution, which is used by MPAS-O model, is to use the dual grid,75

based on hexagonal-pentagonal cells, formed by connecting the circumcentres76

of the triangles (defining a Voronoi grid dual to the triangulation). By rely-77

ing on the orthogonality properties between the triangular and the dual quasi-78

hexagonal grid, the problem of the spurious divergence modes is avoided. How-79

ever, the noise will appear on the vorticity field, where it is easier to filter (Weller80
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et al., 2012).81

Another potential solution to the chequerboard pattern on triangular grids82

is the use of filters on the divergence field in order to dampen these oscillations.83

However, these can potentially break the conservative properties of the model. A84

solution devised by the ICON-O ocean model community is the implementation85

of mimetic operators that required the preservation of some physical dynamical86

core properties, while, simultaneously, filtering the noise of the divergence field87

(Korn and Danilov, 2017; Korn, 2017; Korn and Linardakis, 2018). However,88

the added triangle distortion of the grid might not completely remove the noise,89

and, thus, the filtering property might be at most approximate.90

In order to avoid the noise on the divergence field of triangular grids at91

all, a possibility is to avoid C-grid staggering. FeSOM 2.0 model, for example,92

uses the (quasi-) B-grid discretization in which the velocity vector field and the93

height field are allocated at the cells centre and vertices, respectively (Danilov94

et al., 2017). Alternatively, the NICAM atmospheric model, uses the A-grid dis-95

cretization, which has all its fields positioned at the vertices of the grid (Tomita96

et al., 2001; Tomita and Satoh, 2004). Nonetheless, there are drawbacks from97

this solution. For example, both staggerings display spurious modes that are98

potentially unstable without treatment (Randall, 1994). The nature of these99

modes differs for each of the grid designs. The A-grid source of numerical noise100

is related to the manifestation of spurious pressure modes, whilst the B-grid101

allows the manifestation of spurious inertial modes due to excessive DOFs of102

the horizontal velocity (Tomita et al., 2001; Danilov et al., 2017).103

Nonetheless, regardless of grid design, other artefacts may also be present.104

One particular spurious oscillation was detected on an energy-enstrophy con-105

serving scheme (EEN) on an atmospheric model, leading to an instability (Hollingsworth106

et al., 1983). This kind of instability is dependent on the fastest internal modes107

of the model, the horizontal velocity and resolution of the model (Bell et al.,108

2017). Due to the presence of distortion on these newer models, instability might109

be more easily triggered (Peixoto et al., 2018). This kind of noise is noticeable110

on atmospheric models, due to the large flow speeds of the atmosphere and the111

near to kilometre grid resolutions used in their simulations (Skamarock et al.,112

2012). Although the ocean dynamics are less energetic than the atmosphere,113

the higher distortion of the grids and the rapid increase of resolution towards114

submesoscale models make the effects of this noise more relevant. In fact, some115

models, such as the NEMO’s EEN ocean model, identified this noise and its116

effects, which have shown significant effects on the model’s mesoscale jets and117

submesoscale phenomena (Ducousso et al., 2017).118

Considering the challenges discussed, this works aims at investigating and119

comparing the accuracy and stability of different horizontal discretizations used120

in global unstructured ocean models. First, the unstructured nature of the121

model’s grid have different implications with respect to the computation of the122

underlying dynamics operators. As such, can we expect expressive differences123

in accuracy between A-, B- and C-grid models? Second, each of these grid124

designs are expected, from the theory, to perform differently when integrating125

them in time. Therefore, are the inertia-gravity wave dispersion representation126
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similar to a structured grid case? Third, both the accuracy of the operators127

and the representation of the phenomena are expected to have an impact on the128

stability of the model. Consequently, which models are more prone to instability129

and which are easier to control?130

To address these questions, we chose to evaluate both MPAS-O and ICON-O131

C-grid discretization schemes, due to their robustness and different approaches132

on computing the necessary operators; the FESOM2.0 for the B-grid scheme;133

and the NICAM A-grid scheme, which, to our knowledge, currently is not134

present in ocean models, but could be easily incorporated in existing ones. The135

investigation will be mostly focused on the rotating shallow water system of136

equations, but we will also evaluate some properties of the 3D ICON-O model.137

In section 2, we describe each of the aforementioned schemes. In section 3,138

we evaluate the accuracy and rate of convergence of each of these schemes. In139

section 4, we perform a time integration, in order to evaluate the accuracy of140

the integrated quantities and to observe some important properties of the mod-141

els, such as the representation of inertia-gravity waves and the manifestation of142

near-grid scale oscillations under near realistic conditions. Finally, we evaluate143

the stability of the models under the effects of spurious grid scale oscillations144

and the effects of these oscillations in a 3D realistic oceanic ICON-O model.145

2. Shallow Water models146

In order to investigate these models, we test the schemes under the shallow147

water system of equations (Gill, 1982). This system is as follows:148

∂h

∂t
= −∇ · (uh) (1a)

∂u

∂t
= −u · ∇u−∇Φ− fu⊥ + F

= −∇(Φ + Ek)− ωu⊥ + F
(1b)

where h and u are the height (scalar) and velocity (vector) fields of the system;149

f is the Coriolis parameter; ω = ζ + f is the absolute vorticity; ζ is the relative150

vorticity or curl; Φ = g(b+h) is the geopotential, g is the acceleration of gravity,151

and b is the bathymetry; u⊥ = k̂ × u is the perpendicular vector field u and152

k̂ is the vertical unit vector; and Ek = |u|2/2 is the kinetic energy. The right-153

hand most side of (1b) is known as the vector invariant form of the system of154

equations.155

On this section, we present an introduction to each model and how they156

interpolate their quantities of the shallow water operators. On the next sec-157

tion, Section 3, we describe how each model compute each of the shallow water158

operator.159

2.1. Discrete Framework160

The models were evaluated with the Spherical Centroidal Voronoi Tessella-161

tion (SCVT) optimization (Miura and Kimoto, 2005) between the second (g2)162
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and eighth (g8) refinements of the icosahedral grid (Table 1). This optimization163

has the property of having its vertices coincide with the barycentre of the dual164

cells, quasi-hexagonal (red lines of Figure 1). Despite this grid having loss of165

uniformity with refinement, for oceanic applications, it provides an additional166

analysis, since the unstructured grid is useful for contouring continental regions167

of the earth.168

Circ. distance (Km) Edge length (Km)
g2 1115 1913
g3 556 960
g4 278 480
g5 139 250
g6 69 120
g7 35 60
g8 17 30

Table 1: Spatial resolution of the SCVT grid, considering the average distance between tri-
angles circumcentre and the average edge length in Km.

Figure 1: SCVT primal (black lines) and dual (red lines) g2 grid.

The structure of the grid domain will consist of triangular cells (primal grid)169

K ∈ C with edges e ∈ E . The set of edges of a particular cell K is represented170

by ∂K. The vertices in the endpoint of these edges are represented by ∂e.171

Occasionally, when necessary, the edges may be denoted as e = K|L where it172

is positioned between cells K and L. The dual cells will be denoted by the (̂·)173

symbol. The dual cells and edges, for example, are denoted as K̂ ∈ Ĉ and ê ∈ Ê ,174
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respectively. Furthermore, the centre/midpoint position of the elements will be175

denoted by the boldface, e.g. the cell circumcentre position K, and the length176

or area of the respective elements will be denoted by | · |, e.g. |e|, |K̂| is the177

edge length and dual cell area, respectively.178

We note that the relationship between the primal and dual mesh will differ179

depending on the model discretization definitions. Some models use circumcen-180

tre of the triangle to construct the dual mesh. The resulting relationship will181

be a Delaunay triangulation (for the primal) and a Voronoi diagram (for the182

dual), making their edges orthogonal to each other, which can be exploited by183

these models.184

Additionally, normal (ne) and tangent (te) vectors are positioned at the edge185

e or ê, such that ne× te = e. The former vector is normal to e, while the latter186

is parallel to it. These definitions are summarized in Table 2.187

Symbol Description
C Set of primal cells
E Set of primal edges

K, L primal grid cells
∂K Set of edges of cell K

e = K|L primal edge
ne , te Normal and tangent vectors on edge e
∂e Set of vertices of edge e

Ĉ Set of dual cells

Ê Set of dual edges

K̂, L̂ dual grid cells

∂K̂ Set of edges of cell K̂

ê = K̂|L̂ dual edge
nê , tê Normal and tangent vectors on edge ê
∂ê Set of vertices of edge ê

Table 2: Definitions of the grid structure.

2.2. NICAM (A-grid)188

The NICAM model is a non-hydrostatic atmospheric-only model developed189

at AICS, RIKEN. Its development aimed to develop a high-performance global190

model (Tomita and Satoh, 2004). The model has been shown to produce accu-191

rate results for simulations with a 3.5 km mesh size, and recent developments192

aim to pursue sub-kilometre grid scales (Miyamoto et al., 2013).193

NICAM’s dynamical core’s horizontal component is based on the A-grid194

discretization, in which all variables are located at the grid vertices (Figure195

2). The discretization of this scheme allows only for mass conservation. Other196

quantities, specially related to the velocity equation, can not be conserved. This197

is because this scheme allows for spurious pressure modes, which may destabilize198

the model, thus, requiring filtering.199
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Additionally, small scale oscillations may also be present due to the grid200

imprinting, which may also decrease the model’s stability (Tomita et al., 2001).201

These oscillations, however, can be remedied with a proper grid optimization.202

One important requirement is that the dual cell centre coincide centre of mass203

coincide with the vertex of the grid, guaranteeing consistency of the discretiza-204

tion of the operators.205

Moreover, NICAM’s A-grid discretization compared to the MPAS-O shallow206

water scheme this scheme has been shown to display a higher resilience when207

non-linearities are present, implying that it can better treat some types of in-208

stabilities than other models (Yu et al., 2020). Therefore, despite this scheme209

not have originally been developed for oceanic purposes, It can be suitably im-210

plemented in such applications.211

Figure 2: A-grid cell structure. The blue circles on the vertices are the height scalars points
and the arrows are the components of the velocity vector points.

2.2.1. Interpolating operators212

To compute the operations in the shallow water system, we need that the213

position of these operators coincide with the variables, i.e., at the vertices.214

Therefore, the computation must be performed on the dual cell. To do this, it215

is necessary to interpolate the variables at the dual edge midpoint. We do this216

by first interpolating at the circumcentre of the primal cell:217

h̃K =
1

|K|
∑

v∈∂eK

wvhv, (2a)

218

ũK =
1

|K|
∑

v∈eK

wvuv, (2b)

where wv is the sectional triangular area formed by the circumcentre and the219

opposite vertices of the cell (See Figure 2 of Tomita et al. (2001)). This inter-220

polation, known as the barycentric interpolation, will provide us with a second221
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order accurate interpolation. A second order interpolation to the edge midpoint222

can then be met by averaging neighbouring primal cells:223

h̃ê =
1

2
(hK + hL), (3a)

224

ũê =
1

2
(uK + uL). (3b)

2.3. FESOM (B-grid)225

FESOM 2.0, developed in the Alfred Wegener Institute, contains ocean226

(Danilov et al., 2017) and ice (Danilov et al., 2015, 2023) components only.227

The model is an update from its previous 1.4 model (Wang et al., 2008). The228

new model was developed to provide faster simulations compared to its 1.4 pre-229

decessor (Scholz et al., 2019), which is partly owed to the change from Finite230

Element Methods to Finite Volume discretization (Danilov et al., 2017).231

In addition to its updated components and faster simulations, FESOM 2.0’s232

horizontal discretization of the dynamical core is based on the Arakawa B-grid233

staggering (Arakawa and Lamb, 1977). It is important to note that there is234

no true analogue of the B-grid on triangles (Danilov, 2013), and such a dis-235

cretization has been coined as quasi-B-grid. However, due to the similarities236

in the positioning of the fields in the cell, in this work, we will describe this237

discretization only as B-grid.238

Contrary to the aforementioned A-grid, this discretization is free of pressure239

modes. However, it allows for the presence of spurious inertial modes, due to240

its excessive degrees of freedom (Danilov et al., 2017). Thus, again, requiring241

the use of filters to remove these oscillations.242

In addition to the B-grid discretization, FESOM’s grid design plays a crucial243

role in computing the operators necessary for FESOM’s horizontal discretiza-244

tion. It creates a dual cell by connecting the triangles’ barycentre with its edge245

midpoint, creating a cell with 10 to 12 edges (Figure 3).246

2.3.1. Interpolation operators247

This grid allows computing the operators by only interpolating the height248

field at the edges when needed to compute the gradient at the cells’ barycentre.249

Given an edge e, with vertices K̂, L̂ ∈ ∂e, then the interpolation is defined as:250

h̃e =
1

2
(hK̂ + hL̂), (4)

thus achieving a second order interpolation on the edge.251

FESOM’s horizontal momentum discretization is provided with three al-252

ternative computations of the momentum equations: two in its flux advective253

equation form, one computed at the centre of mass of the triangular cell and the254

other computed at the vertex, and one in a vector-invariant form, which is com-255

puted at the vertices of the grid. The two forms computed at the vertices would256

thus require to be interpolated at the centre of mass of the triangle with (4). It257

is also argued that the use of the flux advective form of the equation provides258
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Figure 3: B-grid cell structure. The blue circles on the vertices are the height scalars points,
and the arrows on the triangle centre are the components of the velocity vector points.

a small internal diffusion on the system (Danilov et al., 2015). However, there259

is a surprising lack of published work comparing these forms, indicating a need260

for a more in-depth research in the future. In this work, in order to ensure a261

fair comparison with the other schemes, we chose to compute this discretization262

using the vector invariant form of the equation.263

2.4. MPAS-O (C-grid)264

MPAS, an ESM from the Climate, Ocean and Sea Ice Modelling (COSIM)265

and National Center for Atmospheric Research (NCAR), comprises atmospheric,266

ocean, and ice components (Ringler et al., 2010; Skamarock et al., 2012; Hoffman267

et al., 2018; Turner et al., 2022). The oceanic component has been shown capable268

of accurately representing geophysical flows on meshes with a large variation of269

resolution (Ringler et al., 2013).270

The horizontal discretization of the dynamical core of MPAS was developed271

for arbitrarily sided C-grid polygons (Thuburn et al., 2009; Ringler et al., 2010).272

It is inspired by the Arakawa and Lamb’s scheme (Arakawa and Lamb, 1981),273

which is capable of providing some conservative properties, such as total en-274

ergy and potential vorticity, while also providing reliable simulations for these275

arbitrary grid structures without a breakdown of the time-integrated solutions,276

which has previously affected schemes using a quasi-hexagonal mesh (Staniforth277

and Thuburn, 2012).278

Although this scheme could potentially be used for any arbitrarily sided279

polygonal mesh, the icosahedral based hexagonal grid was shown to provide the280

most accurate and well-behaved solutions (Weller et al., 2012). For example,281

analysis of this discretization has shown that the scheme can achieve at most282

first order accuracy for most of the operators, but a stagnation or divergent283

accuracy for others (Peixoto, 2016). Despite this, the model’s noise is well284
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controlled, while also maintaining its geostrophic modes with zero-frequency285

(Weller et al., 2012; Peixoto, 2016).286

On this C-grid discretization (Figure 4), the velocity vector field is decom-287

posed on the edges of our primal grid (triangular cells), where these velocities288

are normal to the dual grid (pentagonal or hexagonal cell), while the height field289

is collocated at the vertices of the grid. This minimizes the use of interpolating290

variables on this scheme. The only interpolation used is to calculate the per-291

pendicular velocity and the kinetic energy, which will be better discussed in the292

following sections.293

Figure 4: C-grid cell structure. Red circles on the vertices are the height scalar points, and
the arrow on the edge midpoint is the decomposed velocity vector field.

2.5. ICON-O (C-grid)294

The ICON numerical model is a joint project between the German Weather295

Service and the Max Planck Institute for Meteorology and consists of atmo-296

sphere, ocean (including biogeochemistry), land, and ice components (Giorgetta297

et al., 2018; Korn, 2017; Jungclaus et al., 2022). The ICON modelling team was298

not only able to successfully provide an accurate simulation of geophysical flow,299

but also provided evidence that their model is within reach to accurately simu-300

late ocean submesoscale flow (Hohenegger et al., 2023).301

In the particular case of ICON’s oceanic component, i.e. ICON-O, its hor-302

izontal discretization of the dynamical core is based on the mimetic methods303

approach, which is a practical way to discretize PDEs while taking into account304

fundamental properties of these equations (Brezzi et al., 2014). This philosophy,305

in theory, could allow for ICON depending on the truncation time to achieve306

the conservation of total energy, relative and potential vorticity, and potential307

enstrophy to some order of accuracy.308

To accomplish these conservation properties under the mimetic methods,309

ICON-O uses the concept of admissible reconstructions (P, P̂, P̂†) (Korn and310

Linardakis, 2018). These are in charge of connecting variables at different points,311
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acting as interpolation and reduction operations. They, i.e. the admissible312

reconstructions, are required to have some properties, such as providing unique313

and first-order accurate fluxes and having its nullspace coinciding with the space314

of divergence noise.315

2.5.1. Interpolating operators316

Operationally, ICON-O model uses the Perot operator. This function recon-
structs the velocity field components of the edge midpoint to the triangle centre
(P = P), and subsequently project these reconstructed vectors to their original
position at the edge midpoint (PTP) (Perot, 2000):

PuK =
1

K

∑

e∈∂K

|e|uene, (5)

PTue =
1

|ê|
∑

K∈∂ê

de,KuK · ne. (6)

The combination of operators is denoted as M = PTP and is key to compute317

the operators of the shallow water equations. This mapping, M , was found318

to filter the divergence noise of triangles without losing the aforementioned319

physical properties (Korn and Danilov, 2017; Korn, 2017; Korn and Linardakis,320

2018). However, the operator has the potential to smooth high wavenumber321

phenomena (Korn and Danilov, 2017).322

Additionally, there is also a set of operators that reconstructs the vector
velocity field into the vertices of the grid (P̂ = P̂) and reduce it back into the

edge midpoints (P̂ † = P̂†). This sequence is defined as:

P̂ uK̂ =
1

|K̂|
∑

e∈∂K̂

|ê|uee× nê, (7)

P̂ †ue =
1

|ê|
∑

K̂∈∂e

de,K̂uK̂ · ne. (8)

Thus, the sequence M̂ = P̂ †P̂ allows us to compute the Coriolis term of the323

shallow water equations. This dual operator has shown to provide a non-zero324

spurious frequency geostrophic modes, which have been shown to create numer-325

ical waves in the system (Peixoto, 2016), and could potentially be damaging to326

the stability of the scheme (Peixoto et al., 2018). However, due to the filtering327

property of the operator M , these modes could be removed from the simulation328

due to their filtering property on the grid scale.329
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Institution Staggering Components Conservation
NICAM AORI, JAMSTEC, AICS A-grid Atm TE
FESOM AWI B-grid Oc TE
MPAS COSIM, NCAR C-grid Atm/Oc/Ice PV, TE
ICON DWD, Max-Planck C-grid Atm/Oc/Land/Ice KE, TE, PV, Enst

Table 3: Summary of the main models to be compared with their respective components:
Ocean (Oc), Atmosphere (Atm), Ice Dynamics (Ice) or Land; and their conservation prop-
erties: Total energy (TE), Kinetic Energy (KE), Potential vorticity (PV), and Enstrophy
(Enst).

3. Accuracy of the Discrete Operators330

We aim to analyse the truncation errors of each operator from Nonlinear
Shallow Water Equations (1). To achieve this we evaluate two different test
cases: The first follows from Heikes and Randall (1995) and Tomita et al. (2001),
henceforth Test Case 0 or TC0, where for α, β defined as:

α = sinϕ

β = cos(mϕ) cos4(nθ),

where ϕ and θ are the longitude and latitude, respectively, then u and h are
defined:

u = α∇β (9)

h = β. (10)

We consider in our analysis m = n = 1, since it is a smooth particular smooth331

case with both non-zero vector components, which allows us to evaluate the332

accuracy of the operators and compare with the literature.333

A second case is the Nonlinear Geostrophic testcase, henceforth Test case 1
or TC1, from the toolkit set of Williamson et al. (1992). u and h are defined
as:

gh = gb0 − h0 sin
2 θ (11)

u = u0 cos θ, (12)

where gb0 = 2.94×104 m2s−2, h0 = aΩu0+u
2
0/2 m2s−2, u0 = 2πa/(12 days) ms−1,334

g = 9.81 ms−2 is the acceleration of gravity, a = 6.371 × 106 m is the radius,335

and Ω = 2π/86400 s−1 is the angular frequency of earth.336

Additionally, in order to compare our results, we define the errors in our
domain as ∆f = fr − f refr , where fr and frefr is the computed and reference
function, respectively, for a mesh element r of the domain. Thus, the maximum
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and second error norm may be defined as:

L∞ =
maxr |∆fr|
maxf |f refr | (13)

L2 =

√
S(∆f2)

S((f ref)2)
(14)

where S(f) =
∑

r∈Ω ∆fAr/
∑

f∈ΩAr, and Ar is the area of the element, e.g.337

Ae for the edge, |K| for triangles, or |K̂| for the dual cell.338

3.1. Divergence339

The divergence operator, part of the mass equation, can be defined from340

the Divergence Theorem. Following it, we can provide a general formula for its341

discretized version as:342

(∇ · u)i ≈ (div u)i =
1

|F |
∑

e∈∂F

|e|u · nene,F , (15)

where F is a cell with barycentre i and edges e ∈ ∂F , ne,F = {1,−1} is a signed343

valued aimed to orient the normal velocity u · ne away from the element F .344

In order to compute the divergence field, we note that both the A-grid and345

B-grid schemes compute divergence field at the dual cells (vertices). For the346

former scheme, we require an interpolation of both the scalar height, (2) and347

(3), and vector velocity fields at the dual edge midpoint, in order to compute348

the divergence at the dual cell, i.e. quasi-hexagonal cell. In the case of the latter349

scheme, we only require the interpolation of the scalar height field at the primal350

edge midpoint (4), in order to compute the same divergence field at the primal351

cell.352

In the case of the C-grid, there is a substantial difference between the compu-353

tation of both schemes. MPAS interpolates the scalar height field at the primal354

edges, similar to B-grid, while ICON uses admissible reconstruction operators355

of the form PThPu to compute the operator.356

These differences on the schemes are reflected in our results (Figure 5.div).357

The A-grid for the TC0 testcase displayed an error convergence with an initial358

rate of second order up to the sixth refinement (g6). On finer grids, for the L∞,359

this scheme has slowed down to first order, while on second order, the scheme360

remained converging up to second order rate. On the TC1, a more consistent361

convergence rate was observed, on the L∞ and L2, the scheme has displayed362

a first and second order convergence rate. On other grids, in particular the363

standard and Spring Dynamics, the A-grid has shown to achieve at least a first364

order convergence rate (Tomita et al., 2001). Although a direct comparison365

cannot be provided, since our testcases differ, the scheme on an SCVT has366

apparently shown to provide a comparable convergence rate to the intended367

optimized grid on either the L∞ or the L2 norm.368

Regarding both C-grid schemes, we observe a similar behaviour in the com-369

puted operator. In particular, neither scheme displays an increase in accuracy370
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of the divergence field on the L∞. For the case of ICON, this result has been371

previously observed in a similar work by Korn and Linardakis (2018). It was372

also shown that the naive approach to calculate the divergence field still re-373

tained a first order increase in accuracy, implying that the main culprit of this374

inability to increase the accuracy likely lies on Perot’s operator itself (Table 4375

of Korn and Linardakis (2018)). The authors have not provided a geometrical376

analysis of their non-uniform grid, but we note that the SCVT grid share some377

similarities with the standard grid, such as the non convergence of the distance378

between the primal and dual edge midpoints, which likely has a deleterious ef-379

fect on the accuracy of the operator. However, on the L2, the scheme was able380

to reach at least a first order convergence rate on both testcases.381

On the case of MPAS, the inability to provide a decrease in error with grid382

has been discussed in Peixoto (2016). It is reasoned that since the computation383

of the divergence is not based on velocities from the Voronoi edge midpoints, the384

discretization is inconsistent, and a first order convergence is not guaranteed.385

In contrast, on the L2, MPAS was able to reach a second order rate up to g4,386

but the speed of convergence slows down to first order on TC0, while on TC1387

the second order rate is maintained throughout grid refinements.388

Finally, B-grid has provided consistent accuracy throughout each testcase.389

We observed a first and second convergence rate for L∞ and L2, respectively,390

for both testcases. A decrease is observed on TC0, however, this decrease is391

likely associated with the error approaching the machine truncation error.392

When comparing the errors of the schemes, we note that both A- and B-393

grid schemes display a decrease in speed of accuracy convergence as the grid394

is refined, with the latter scheme displaying the smallest errors on most of the395

tested cases and error norms. Additionally, despite ICON providing convergence396

on some tests, the scheme displays the largest errors of all tested schemes. It397

is likely that the smaller stencil used in ICON’s divergence computation play a398

role in these larger errors. Another contribution is potentially related to Perot’s399

operator, whose interpolation could act as smoothing the velocity field.400

Overall, we note that the structure of the mesh, regarding cell geometry401

(primal or dual cell) and distortion, plays a contributing factor on approximating402

the divergence field on all schemes. Both C-grid schemes, in particular, seemed403

to be the most vulnerable to the grid. In contrast, B-grid’s consistency in its404

accuracy apparently seems to be the least vulnerable to the increase in the405

distortion of the grid.406

3.2. Gradient407

The gradient operator, from the momentum equation, is a vector field, whose408

vector points itself to the steepest regions of the original field. The schemes409

provide different discretizations for this operator:410

∇h ≈ grad h =

{∑
e∈∂F h|e|ne A- and B-grid,

1
|e|
∑

i∈∂e hne C-grid.
(16)
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A- and B-grid’s schemes provide a complete vector field on our domain by411

computing the average gradient within the centre of the respective cell F . The412

C-grid, on the other hand, computes the gradient with respect to the normal413

vector ne by computing the difference between the values of the cell neighbouring414

the edge e. In that regard, the C-grid computation can be perceived as a gradient415

in the direction of ne.416

In relation to the mesh, the A-grid scheme is computed at the vertices of the417

mesh, while the B-grid is computed at the barycentre of the triangular cells. On418

the other hand, both C-grid schemes are computed on the primal edge midpoint419

of our mesh. However, the MPAS scheme considers the neighbouring vertices420

to compute the gradient, while ICON considers the neighbouring triangles.421

As in the divergence approximation, these differences in computation are as422

well reflected in our results (Figure 5.grad). The A-grid displays for coarser grids423

a fast convergence rate (second order rate), up to g5, for both testcases. For424

finer grids, the L∞ the decrease in error slows down to a first order convergence,425

but with the L2 the convergence rate remains consistent. The analysis made426

by Tomita et al. (2001) have showed that their grid is capable of displaying a427

second order error convergence. We again note that although we cannot directly428

compare our results, due to the differences in testcases used, our results show a429

comparable error convergence with the authors with the SCVT optimized grid.430

Similarly, the B-grid scheme shows a consistent decrease in error on all norms431

and testcases, similar to the divergence operator results. However, it displays432

only a first order convergence rate, in contrast to the second order on the di-433

vergence operator. The computation of the gradient on the B-grid is analogue434

to the divergence computation in ICON, therefore a similar argument follows,435

explaining that the expected convergence rate of such a scheme being a first436

order.437

Comparably, MPAS also displays a consistent convergence rate, but in this438

case this scheme achieves a second order rate on all norms and testcases. Since439

the edge midpoint is situated, by definition, at the midpoint between the neigh-440

bouring vertices, the discretization is analogue to a centred difference scheme441

used in traditional quadrilateral grids. Therefore, we can properly achieve a sec-442

ond order convergence rate. The same argument is provided in Peixoto (2016),443

however the author also argues that when we consider the computation of the444

gradient of the kinetic energy we do not only reach a convergence rate, but our445

error diverges with grid refinement. The author reasons that the error of ki-446

netic energy is of zeroth order (to be discussed further), and, thus, its gradient447

diverges.448

On the other hand, the ICON’s scheme gradient error displays a near second449

order convergence rate for coarser grids on the L∞ norm of the TC0, but this450

error slows down for further refinements. On the TC1 testcase, the rate of451

convergence on L∞ is consistent in first order. However, at the L2 norm, the452

scheme has an accuracy of near second order with magnitude similar to that of453

MPAS.454

Finally, we can then draw a comparison from all schemes. The B-grid has455

displayed the largest errors in magnitude and was the only scheme to achieve456

15



a low first order convergence on the L2. The A-grid L∞ displays a similar457

error magnitude and behaviour in convergence with ICON. MPAS has shown458

the lowest errors among all schemes, and, in the L2, displayed a comparable459

magnitude and convergence behaviour with ICON.460

Overall, we again observe an impact of the grid structure on our schemes,461

however, this impact is not as damaging as found in the divergence computation.462

The directional derivative of MPAS makes it easier to achieve a consistent in-463

crease in accuracy, and the mismatch between the edge midpoints, has thwarted464

ICON’s convergence rate. Despite this, the scheme still retained a first order465

convergence rate.466

3.3. Curl467

The curl operator, part of the vector invariant form of the shallow water468

velocity equation, is connected to the Coriolis Term. This term requires a469

careful discretization to allow for Coriolis energy conservation. This operator,470

in its continuous form, is defined from Stokes Theorem. Its Finite Volume471

discretization follows from this theorem and a general formulation for all our472

schemes can be defined as:473

∇× ui ≈ |F |vort ui =
∑

i∈∂F

|e′|ui · te′te,F , (17)

for any F cell with edges e′, tangent vector te′ , and te,F = {1,−1} is a signed474

value guaranteeing that the unit tangent vector is counterclockwise on the cell.475

For each scheme, the both A-grid, and B-grid computes the vorticity field476

on the vertices of the mesh. Since, for the B-grid, the shallow water velocity477

equation requires the points at the barycentre of the triangle cell, we inter-478

polate the vorticity from the vertices to the barycentre. For the both C-grid479

schemes, MPAS computes this operator at the circumcentre of the cell, while480

ICON computes at the vertices, in duality with the divergence operator.481

In this context, similarities are observed with the divergence operator. For482

example, the A-grid convergence rate for both norms and testcases, reach the483

same order as the divergence operator. On the TC0 testcase, however, through-484

out all grid refinements the error retain a first order, unlike the divergence485

operator, which begins with a second order and slows down to a first order.486

Additionally, on the TC1 testcase, we observe that the vorticity error displays487

a second order convergence up to g4 and slows down to first order, unlike the488

divergence operator (Figure 5.Vort).489

Similarly, the B-grid scheme displays the same behaviour as in the divergence490

operator. It displays a first order convergence rate on L∞ and a rate of second491

order for L2 on both testcases.492

In contrast, both C-grid schemes display a different behaviour from the di-493

vergence operator. MPAS shows a consistent first order convergence rate for494

both norms on both testcases. Given that this computation is computed on the495

dual cell centre (red polygon in Figure 4), i.e. pentagon or hexagon, we can496

then achieve a higher accuracy rate of around second order.497
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ICON, on the other hand, displays a zeroth order convergence on L∞ for498

the TC0 testcase. This is likely due to the mismatch of edge midpoints, similar499

to MPAS’s divergence operator. However, on this norm for TC1, the error500

converges on a first order rate. This difference implies that different testcases501

will potentially impact the error. On this particular case, we note that the502

meridional velocity is not present on TC1, which may facilitate the computation503

of the vorticity. This result is also seen on L2, while for TC0, the norm converge504

in first order, for TC1, it converges in second order.505

In comparison, we observe that ICON is the only scheme that has trouble in506

increasing its accuracy when approximating the vorticity operator. In addition,507

both A- and B-grid schemes were the only to display a second order error rate on508

the L2 for both schemes. Although MPAS also has shown an overall convergence,509

in contrast to ICON, it still has shown a larger error for TC0’s L2 norm and510

both norms of TC1.511

Overall, there are similarities on the error behaviour between both vorticity512

and divergence scheme due to its similar concepts underlying the discretization.513

In that regard, we also observe an impact of the grid structure and the testcase514

used on the accuracy of the vorticity approximation.515

3.4. Kinetic Energy516

Similar to the vorticity operator, the kinetic energy is part of the vector
invariant form of the velocity equation of the shallow water, whose gradient will
then be computed. The kinetic energy is defined as:

Ek =
1

2
|u|2.

The computation of this operator on both A- and B-grid schemes is straightfor-
ward, since the vector velocity field is complete on each vertex and barycentre,
respectively, of the mesh. However, for the C-grid schemes the vector field is
decomposed on the edges of the mesh, therefore require a reconstruction in or-
der to approximate the value of the kinetic energy field. In the particular case
of MPAS and ICON, it is difficult to provide a general formula, therefore we
individually define:

E
(MPAS)
k =

1

2|K̂|
∑

e∈∂K̂

|e||ê|
2

u2e, (18)

E
(ICON)
k =

|Pu|2
2

. (19)

Both schemes provide some form of interpolation of the velocity on the cell517

centre, dual for MPAS, primal for ICON. It is observed on this computation518

that MPAS’s and ICON’s weights are shown to be: |e||ê|/2, and |e|de,K , where519

again de,K is the distance between the edge midpoint e and circumcentre K.520

We note that for equilateral triangles de,K = |ê|/2. Another note is that MPAS521

computes the square of the component of the velocity and then interpolates522
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the resultant on the cell centre, while ICON interpolates the complete vector523

velocity field on the cell centre, and then computes the kinetic energy.524

These difference in computation are reflected on the error of the field (Figure525

5.Ek). On MPAS scheme, we see that for both testcases it does not converge526

on L∞. This result was discussed by Peixoto (2016), as being an inconsistent527

formulation of the kinetic energy on the SCVT. Part of this inconsistency could528

partly be due to the computation of the kinetic energy on a single velocity529

component, as previously mentioned. Despite this, on L2, MPAS display a530

second order convergence on TC0, on coarser grids, but it slows down to first531

order on finer grids. Similarly, on TC1, MPAS displays a first order rate, but532

throughout all grids.533

ICON, in contrast, show a consistent convergence rate on both norms of534

first order on TC0 and second order on TC1. It can also be observed that,535

except for TC0’s L2, ICON’s error is substantially lower than MPAS. ICON’s536

Perot operator interpolation allows for a higher convergence, in comparison537

with MPAS, in part due to the vector velocity field interpolated on the cell538

circumcentre prior to the computation of the kinetic energy.539

Overall, both C-grid computations display very distinct error behaviour. On540

this grid, although on both schemes the kinetic energy formulation allows for541

energy conservation, MPAS is unable to provide a consistent formulation of the542

operator. In contrast, ICON is provided with its consistent through the use of543

its Perot operator.544

3.5. Perpendicular Velocity545

The perpendicular velocity is an important part of the Coriolis Term, which546

is a forcing that takes into account the non-inertial reference frame of the shallow547

water equations. In that case, it is important that the Coriolis term of our548

schemes does not input energy into the system. Similar to the kinetic energy,549

both the A- and B-grid schemes have their vector velocity defined on the same550

points, providing an exact value for the perpendicular velocity. However, since551

C-grid schemes do have their vector velocity decomposed on the edges of the552

grid, an interpolation is necessary.553

This interpolation should be carefully chosen in order to retain the conser-
vation of energy of the system. Following the argument of Peixoto (2016), a
reconstruction can be thought as a weighted composition of the neighbouring
edges of the cell:

u⊥e =
∑

e′

we,e′ue′ . (20)

These weights should be chosen such that this reconstruction is unique and does554

not provide energy to the system.555

Choosing the edges e′ from cells that share the same edge e we can define
the perpendicular velocity as:

u⊥e = ae,F1
u⊥e,F1

+ ae,F2
u⊥e,F2

, (21)

18



where ae,Fn are the weights with respect to the cell Fn. This formulation is556

capable of achieving a unique solution on the edge.557

In the case of MPAS’s vector interpolation, we define the weights we,e′ as:

we,e′ = ce,K
|e′|
|ê|

(
1

2
−

∑

K∈∪∂e

AK̂,K

|K̂|

)
ne′,K̂ ,

where ce,K̂ and ne′,K are sign corrections that guarantee the vector tangent558

vector is anticlockwise on the for the cell K̂ and that the norm vector ne′ point559

outwards of the cell K̂; and AK̂,K is the sectional area of the triangle cell K560

formed by the vertex K̂ and the neighbouring edges of the circumcentre K in561

respect to the vertex. Using these weights on (20), we can compute u⊥e,K . In562

order to provide a unique reconstruction on edge e we let ae,K = ae,L = 1 on563

(21).564

Figure 5: TC0 (first and second row panels) and TC1 (third and fourth row panels) operators
L∞ (first and third panels) and L2 (second and fourth panels) error norms for the A-grid
(black lines), B-grid (red lines), MPAS (blue lines), and ICON (green lines).
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In the case of ICON’s scheme, we use the interpolation P̂TωP̂u. In this case
P̂ uK̂ = u⊥

K̂
, so the weights are defined as:

we,e′ = wê,K̂ =
|ê|dê,K̂
|K̂|

,

giving a unique reconstruction on the centre of the dual cell K̂. In order to565

reduce it back to the edge, we do ae,K̂ = de,K̂/|e|. We note that this set of566

operators allows not only the energy conservation, but also potential enstrophy567

(Korn and Danilov, 2017; Korn and Linardakis, 2018). We recall, however, that568

this operator has the potential of producing non-zero frequency geostrophic569

modes (Peixoto, 2016).570

Our results show that MPAS displays a second order convergence rate on571

L∞ up to g6 on TC0, but decrease to a first order for finer grids (Figure 5.u⊥).572

On L2, it shows a second order throughout all refinement. Similarly, on TC1, it573

also shows a second order rate up to g7, but decrease near first order to g8. A574

similar result is obtained for L2. This result is similar to Peixoto (2016) showing575

that MPAS achieves at most a first order convergence rate on the L∞.576

4. Shallow Water Time Integration577

The time integration of the shallow water equations provides us knowledge578

about the behaviour and limitations of the model throughout time. In order579

to gather this understanding, in this section we will put the schemes under580

a battery of tests. For the purpose of these tests, we chose to use a simple581

Runge-Kutta (RK44) operator, with 50 seconds timestep for all schemes and582

grids. Such choices are enough to ensure that the temporal errors are minimal583

and that the dominating error comes from the spatial discretization. We note584

that although both C-grid schemes may not require a stabilization term, since585

their error are expected to be well controlled, both A- and B-grid schemes could586

excite errors that would potentially destabilize the model. It is possible to use587

a harmonic (∇2u) or biharmonic (∇4u) term to provide stability of the scheme.588

In order to be more scale selective and avoid damping physical waves of our589

simulations we chose to use only the biharmonic, and as it was shown by the590

original authors of A- and B-grid schemes (Tomita et al., 2001; Danilov et al.,591

2017) the biharmonic term is enough to provide the necessary stability.592

Therefore, the stabilizing operator can be regarded as a composition of593

Laplace diffusion operators, i.e. ∇4u = ∆∆u. To compute the Laplace diffusion594

operator, both A- and B-grid schemes are equipped with different approaches595

in its computation. For the former scheme, the Laplace operator is defined as:596

∆u = ∇ · ∇u. (22)

Thus, we can approximate the Laplacian operator by ∆u ≈ div grad u, using597

the operators defined in the previous section.598
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A-grid/B-grid (m2s−1)
g2 1022

g3 1020

g4 1019

g5 1018

g6 1017

g7 1016

g8 1015

Table 4: Biharmonic coefficient used for stabilizing the shallow water schemes.

On the other hand, the B-grid scheme, computes the harmonic diffusion for599

a cell K as:600

∆u ≈ 1

|K|
∑

L

|e|
|ê| (uL − uK), (23)

where L are all the triangles neighbouring the cell K. For the tested schemes,601

we used the biharmonic coefficient defined in Table 4. Our coefficients are602

much higher than found in literature (Tomita et al., 2001; Danilov et al., 2017;603

Majewski et al., 2002; Jablonowski and Williamson, 2011), however both A-604

and B-grid schemes differ in their discretization and the A-grid scheme is found605

susceptible to numerical oscillations depending on the choice of grid (Tomita606

et al., 2001). Therefore, by choosing an intense coefficient, we guarantee that607

numerical waves will not participate in the comparison of our results.608

All schemes will then be evaluated. Firstly, we provide an accuracy analysis609

of the integrated height and vector velocity fields (Section 4.1). Then, we evalu-610

ate the linear mode analysis of our schemes (Section 4.2). Thirdly, we evaluate611

the scheme’s capacity in maintaining its geostrophic balance (Section 4.3). Fi-612

nally, we evaluate the behaviour of each scheme under a barotropic instability,613

which is an initial condition that accentuate the nonlinear terms of our schemes614

(Section 4.4).615

4.1. Time integrated accuracy of variables616

Our results demonstrate that both A- and B-grid schemes exhibit improve-617

ments in accuracy close to second order for both norms of the height field vari-618

able (Figure 6). However, for the vector velocity field, the values differ. For L∞,619

A-grid is shown to converge near second order, while B-grid, which displays a620

near second order convergence for coarser grids (up until g5), only shows a first621

order for the finer grids. Nevertheless, on L2, both schemes are shown to display622

an accuracy increase near second order.623

Regarding both C-grid schemes, both of them face problems on increasing624

their accuracy on L∞. MPAS does not converge on the height scalar field, but625

does display a first order convergence rate on L2. Concerning the vector velocity626

field on L∞, MPAS shows a seconder order rate for coarser grids (up until g6),627

but decrease to first order in finer grids. However, on L2, MPAS displays a sec-628

ond order rate consistently for all refinements. This result was also observed in629
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Figure 6: h and u error after 15 days.

Peixoto (2016), and it is suggested that either the kinetic energy approximation630

or the divergence, might be responsible for reducing the solution’s accuracy.631

In contrast, ICON displays a first order convergence rate on both norms for632

the height scalar field. Nevertheless, the scheme does not seem to convergence633

on the vector velocity field for the L∞ norm. In the case of L2, it displays, for634

coarser grids, a second order accuracy rate, but from g7 to g8 it slows down to a635

first order rate. Similar to MPAS, some operators, face challenges in converging636

the solution. In this scheme, the divergence, vorticity, and the perpendicular637

velocity do not display a convergence of the solution. It is noted that both638

vorticity and perpendicular velocity are critical components of the Coriolis Term639

of (1b), potentially impacting the convergence of the vector velocity field. Korn640

and Linardakis (2018) did not observe the same results. Therefore, it is likely641

that the grid choice is crucial for obtaining convergence on the fields.642

Overall, A- and B-grid display similar errors, specially, in the height field.643

ICON’s scheme have showed the largest errors of the tested schemes, except in644

the height field L∞, where MPAS did not converge. B-grid show the second-645

largest magnitude error, only on the vector velocity field. This is likely due646

to the use of the biharmonic and the notably due to the gradient operator647

that is defined on triangles, unlike both A-grid and MPAS, which shows similar648

magnitudes on L2. On L∞, however, MPAS shows a larger error and lower649

convergence rate, in comparison to the A-grid, likely due to the aforementioned650

challenges.651

4.2. Linear Normal Modes652

The earth’s ocean behaviour is modulated by oscillations that are mostly653

affected by the earth’s rotation. The complete nonlinear equations are difficult654

to analyse to the high degree of interactions between these oscillations. However,655

linear analysis can be done by considering (1) the following approximations:656

h = H∇ · u
u = −∇h− fu⊥,

(24)
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where H is a fixed constant. This system still provides a large set of inertia-657

gravity waves present in either the ocean or atmosphere. In order to calculate the658

normal modes, we follow the methodology of Weller et al. (2012) by considering659

a vector (h,u′)T , where both elements, i.e. h and u, are scalars, so that we660

have (h,u′)T = [h1, h2, · · · , hM , u1, u2, · · · , uN ] forM and N elements of height661

and velocity fields, respectively. In the case of A- and B-grid, the scalar velocity662

is obtained by decomposing them into zonal and meridional velocity scalars,663

whereas for both C-grid schemes these scalar fields are obtained directly from664

the velocity on the edges of the grid.665

We run (24) M +N times for one timestep of ∆t = 10 seconds on a g2 grid,666

with the RK4. The initial conditions used are defined by a unit value on the667

j-th position of (h,u′)T , i.e. for the k-th run the initial condition is defined as668

(h0,u
′
0)

T
k = [δkj ], where δ

k
j is the Kronecker delta. We use as parameters: gH =669

105 m2s−2, f = 1.4584× 10−4 s−1 and the radius of the earth a = 6.371× 106.670

From these runs, we create a matrix A, where each column is the approx-671

imated solution of the initial condition provided. We, then, can calculate the672

eigenvalues λ of the matrix and, consequently, obtain the frequency of the modes673

from λ = αeiω∆t, where ω is the frequency of the normal modes. We, then, order674

our results from lowest to maximum frequency. We will have 486 eigenvalues675

for the A-grid, 642 for both B-grid and MPAS, and 800 for ICON. These values676

correspond to the total degrees of freedom of our system. There are, in the g2677

grid, 162 vertices, 480 edges, and 320 triangles. For the A-grid, since both mass678

and vector fields are defined at the vertices, the total DOFs are three times the679

vertices. In the case of the B-grid, the vector field is defined at the triangles,680

therefore the total DOFs are the vertices plus twice the triangles. For both681

C-grid schemes, the vector velocity field is defined at the edges, however MPAS682

has the mass at the vertices, while ICON has the mass defined at the triangles.683

In that case, MPAS DOFs are the vertex plus edge points and ICON is the684

triangle points plus edge points.685

The normal modes can be seen in Figure 7. A clear difference is observed686

between frequency representation on all grids. The A-grid shows the slowest rep-687

resentation of inertia-gravity waves, with the maximum frequency of 1.6×10−3
688

s−1 s−1 on the 119 index. On the other hand, the B-grid scheme shows higher689

frequencies, with a maximum on the 167 index of around 2.6×10−3 s−1.690

In contrast, a more accurate representation is obtained by both C-grid691

schemes. ICON shows a similar, but slightly higher frequencies, compared to692

the B-grid scheme. However, the highest frequency is obtained on its tail on the693

635 index of around 4.2×10−3 s−1. Conversely, MPAS displays a more accurate694

representation of the modal frequency with a maximum on index 320 of around695

4.2 ×10−3 s−1.696

Overall, our results show similar results with the traditional quadrilateral697

grids (Arakawa and Lamb, 1977; Randall, 1994). It is known that on these698

grids, the C-grid schemes represent modes more accurately than the either A- or699

B-grid schemes, but also B-grid display a higher frequency, and a more accurate700

representation of inertia-gravity waves, than the A-grid schemes. We highlight701
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Figure 7: Linear normal modes of the considering the linear shallow water equations (24) on
the f -sphere.

that the expected decrease in inertia-gravity representation from the traditional702

grids is not observed in our results, since we reordered our modes from least to703

highest frequency. Consequently, higher modes (higher wavenumbers) of both704

A- and B-grid schemes are not accurately displayed in our results. Despite705

this, our results demonstrate that the maximum represented frequency of both706

schemes are indeed lower than that of the C-grid schemes, following the theory.707

Regarding both C-grid schemes, our results for MPAS agree with the other708

authors (Weller et al., 2012; Thuburn et al., 2009; Peixoto, 2016). In addition,709

we note that ICON’s has a less accurate representation of the normal modes in710

comparison with on MPAS either on the quasi-hexagonal grid or its implemen-711

tation on triangles (Thuburn et al., 2009). This result in ICON has already been712

observed (Korn and Danilov, 2017), and it is argued that the filtering property713

of the divergence on the mass equation might not only remove the intended714

noise of the triangular mesh, but also some of the higher frequency physical715

oscillations.716

4.3. Localized Balanced Flow717

An important testcase is to evaluate the model’s capability of maintaining718

its geostrophically balanced state. Our TC1 testcase (Section 4.1), allowed719

us to test whether the models are capable of maintaining their state under720

small wavenumbers. However, a harder evaluation is to test whether the model721

have the ability to maintain its state under high wavenumber oscillations. For722

this reason, we used the testcase developed in Peixoto (2016). This test is723

particularly important for two main reasons: one of them is that the Perot’s724

operator might not have steady geostrophic modes which may have consequences725

for the ICON model, the second reason is that both A- and B-grid are unable to726
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maintain their geostrophic balanced state. We evaluate, without the stabilizing727

term, how all models behave under this testcase.728

On that account, we define the testcase as follows:729

h = h0(2− sinn θ)

uϕ =
−F +

√
F 2 + 4C

2
,

(25)

where h0 is a constant, such that gh0 = 105m2s−2, and n = 2k + 2 for any
positive k. In our particular case, k = 160. We also define F and C as:

F = af0
cos θ

sin θ

C = g0n sin
n−2(θ) cos2(θ).

We will also consider the f-sphere with f0 = 1.4584×10−4 s−1. Finally, the grid730

is rotated so that the nucleus of the depression is centred at 1◦E, 3◦N.731

The parameters used in this testcase will have a timestepping scheme and732

timestepping value as defined in section 4. We will also use a g6 refinement,733

where there are abrupt changes on the height field in a very restrict number of734

cells.735

Our results displayed in Figure 8 show that both A- and B-grid, without736

the stabilizing term, are not capable of maintaining the geostrophic balance.737

For the A-grid, the numerical artefacts, emanated primarily from the pentagons738

of the grid, destabilize the scheme leading to an exponential growth blowing739

up the model around the 40 hours integration. In contrast, in the case of the740

B-grid scheme, there was not detected the presence of fast spurious numerical741

oscillations. However, the detected numerical dispersion waves were capable of742

breaking the down the depression up until the 24 hours after the start of the743

simulation.744

Conversely, both C-grid schemes maintain the depression throughout the 5-745

day period of integration. However, in ICON’s case there is a small presence of746

a noise on the system, but it does not seem to be enough to impact the overall747

solution.748

Overall, the solution of A- and B-grid are impacted from their numerical749

oscillations. Although in the work of Yu et al. (2020) the A-grid is capable of750

integrating for a long time, the small wavelength oscillations in this testcase,751

generated mostly on the pentagons of the mesh, destabilize the integration,752

blowing up the solution. In contrast, both C-grid schemes solutions do not753

display damaging oscillations on the solution. MPAS’s scheme and Perot’s op-754

erator on the dual grid for this testcase has been observed by Peixoto (2016)755

and observed the scheme accurately maintain their geostrophic state. We show756

are able to show that on the primal grid, ICON, with the use of Perot’s for-757

mulation, is also able to represent the geostrophic balance state on small scale758

flows, despite the issues on accuracy of its operators on the SCVT (Section 3759

and 4.1).760
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Figure 8: Height field of the different schemes for the localized balanced flow testcase without
using biharmonic for both A- and B-grid schemes. Using a grid refinement g6 and a timestep
of 50s.

4.4. Barotropic Instability761

Previous testcases aimed in studying the fluid flow under highly controlled762

experiments, in order to evaluate their accuracies, linear normal modes, and763

balanced state flow. However, the highly energetic and chaotic nature of the764

ocean require a more realistic testcase, such a fluid flow instability.765

u =

{
umax

en
exp

[
1

(ϕ−ϕ0)(ϕ−ϕ1)

]
ϕ0 < ϕ < ϕ1

0 (ϕ− ϕ0)(ϕ− ϕ1) > 0

gh(ϕ) = gh0 −
∫ ϕ

−π/2

au(ϕ′)

[
f +

tan(ϕ′)
a

u(ϕ′)

]
dϕ′.

(26)

where umax = 80ms−1, ϕ0 = π/7, ϕ0 = π/2 − ϕ0, en = exp[−4/(ϕ1 − ϕ0)
2].766

These initial conditions are under geostrophic balance, but with high potential767

for fluid instability. In order to trigger it, we add a perturbation to the height768

field:769

h′(θ, ϕ) = hmaxe
−(θ/α)2e−[(ϕ2−ϕ)/β]2 cosϕ, (27)

where ϕ2 = π/4, α = 1/3, β = 1/15, and hmax = 120 m. All schemes are tested770

on a g7 refinement with a timestep of 50 seconds under a RK4 timestepping771

scheme. In order to avoid the instability, we use a hyperviscosity coefficient of772

5 × 1015 and 2 × 1015, for both A- and B-grid, respectively. These choices of773

coefficients are in agreement with Tomita and Satoh (2004). We also found that774

smaller values of these coefficients of each scheme would lead to instability for775

the A-grid and the appearance of near grid scale oscillations in the B-grid.776
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The potential vorticity, on the sixth day of integration (Figure 9), display the777

behaviour of the growth of the instability on all the evaluated schemes. Between778

these schemes, it is observed a clear difference in the representation of the smaller779

scale features of the instability. Both A-grid and B-grid schemes displays no780

small scale oscillations present within the vorticity field. Additionally, it is781

evident that both schemes display slightly coarser features in representing the782

state of the fields.783

Similarly, in both C-grid schemes, we observe more small scale features in784

this system, helping could potentially aid in the growth of the instability even if785

no perturbation was added. However, it is evident that in these schemes, near-786

grid scale oscillations play a role in the physical solutions of the integration.787

Comparing both C-grid schemes, both schemes seem equally contaminated by788

numerical noise, however, the small scale oscillations in MPAS display a higher789

wavenumber than the ICON scheme. MPAS’s noise in the vorticity was dis-790

cussed and argued that the chequerboard noise of the vorticity is the main791

culprit in the manifestation of this contamination in our physical simulations792

(Peixoto, 2016). Likewise, we also know that the Perot’s operator on the dual793

grid is capable of manifesting numerical noises on the solutions. Since ICON’s794

divergence operator has the potential to remove small scale oscillations, but795

the scheme does manifest spurious waves, which was also observed in Korn and796

Linardakis (2018), therefore, the Perot’s dual operator is potentially the main797

responsible for this manifestation.798

Overall, all schemes suffer from the grid scale computational modes. There799

is, however, the stabilization term for both A- and B-grid schemes, such that800

the schemes remain stable throughout the integration. Despite both C-grid801

schemes remaining stable throughout the integration, the solutions are contam-802

inated with noise, that will inevitably require a smoothing term, such as the803

biharmonic, in order to remove these high wavenumber waves. Additionally, It804

is observed that the waves from the A-grid to the C-grid schemes, an apparent805

increase in the effective resolution of the computation, agreeing with the previ-806

ous results in Section 4.2. Following this result, we analyse the kinetic spectrum807

of these schemes.808

4.4.1. Kinetic Energy Spectrum809

The global kinetic energy spectrum, is a useful tool in evaluating the energy810

cascade of the fluid. On different scales of the ocean’s motion, we observe a811

power law of k−3 for larger scales or k−5/3 for smaller scales (Wang et al., 2019).812

For the 2D case, the former is related to the turbulence of the flow, whereas the813

latter is related to the reverse energy cascade turbulence. These spectral fluxes814

provide useful insight into the performance of the models in transferring energy815

motion between different scales.816

Therefore, we define the Kinetic Energy Spectrum as follows:817

(EK)n =
a2

4n(n+ 1)

[
|ζ0n|2 + |δ0n|2 + 2

M∑

m=1

(
|ζmn |2 + |δmn |2

)
]
, (28)
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where ζmn , δmn are the spectral coefficient of the vorticity and divergence. These818

coefficients are defined as:819

ψm
n =

∫ 1

−1

1

2π
F(ψ(ϕ, θ), ϕ)Pm

n (θ)dθ, (29)

where ψ is the variable to be transformed, F(ψ(ϕ, θ), ϕ) is the Fourier Transform820

on this variable, and Pm
n (θ) is the normalized associate Legendre polynomial.821

To evaluate these equations, we use the nearest neighbour to interpolate the822

original unstructured grid into a quadrilateral grid of 10 km resolution on the823

equator with the nearest neighbour method.824

The energy spectrum of the schemes is shown on Figure 10. From the test-825

case, a small decrease of the spectrum from the wavenumber 1 to 4, and sub-826

sequently an increase, reaching a maximum at the wavenumber 6. Afterwards827

there is a constant decrease of the spectrum with a slope near k−3 for all grids.828

At approximately wavenumber 80, the A-grid scheme has a considerable loss829

of its power, decreasing more rapidly. Similarly, at wavenumber 90 the B-grid830

scheme also displays this rapidly loss of energy. With slight higher wavenumber,831

both A- and B-grid slows its slope until the last evaluated wavenumber.832

Comparably, both C-grid schemes extend the physical slope of k−3 up to the833

wavenumber 300. At this wavenumber, ICON display a similar loss of kinetic834

energy, whereas MPAS maintain a similar slope up to the end of the evaluated835

wavenumbers.836

In summary, we have shown that for smaller wavenumbers there is a good837

agreement between the models. Additionally, we also have shown that even for838

the nonlinear time integration of the shallow water system of equations, the839

schemes behave similar to the linear normal mode analysis, with A-grid having840

the coarsest effective resolution, and MPAS, on the other extreme, having the841

highest effective resolution. Additionally, the presence of a slow-down of the loss842

of the power or even an increase of the spectrum on the highest wavenumbers843

is likely related to the impact of the interpolation to cause this increase, as it844

was previously reported in other works (Wang et al., 2019; Ŕıpodas et al., 2009;845

Juricke et al., 2023).846
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Figure 9: Potential Vorticity of all schemes on the 6th day of integration for the barotropic
instability testcase with perturbation using a g7 refinement grid and a respective biharmonic
for A- and B-grid schemes, following Table 4.
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Figure 10: Kinetic energy spectra for the Barotropic instability testcase for all schemes as in
Figure 9.
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4.5. Models Stability847

Our previous results were able to show elementary characteristics of each848

of the shallow water schemes. Some of our results required the inclusion of a849

stabilizing term for both A- and B- grid schemes, in order to remove damaging850

numerical oscillations that participated in the dynamics. Although the same851

term was not used in the C-grid scheme in our simulations, it is desired to852

include some sort of filtering, as the simulations may contain numerical waves853

that could either damage the solution or cause a potential blow up of the model.854

One particular cause of numerical dispersion is associated with 3D energy-855

enstrophy conserving models, regardless of the staggering used. The imbal-856

ance between the Coriolis and kinetic energy term generates numerical noise,857

causing near grid-scale oscillations and decreasing the kinetic energy of jets858

(Hollingsworth et al., 1983). This instability, known as Hollingsworth Insta-859

bility, also manifests as a destabilized inertia-gravity wave, leading to a blow860

up of the solution depending on the models’ resolution and distortion of the861

mesh (Bell et al., 2017; Peixoto et al., 2018). Recent ocean models, such as862

NEMO’s model, have shown susceptibility to these oscillations, producing spu-863

rious energy transfer to the internal gravity-waves and dissipation, resulting in864

corruption of mesoscale currents and submesoscale structures (Ducousso et al.,865

2017).866

Although this instability is 3D in nature, it is possible to mimic it, by consid-867

ering the ocean model as a layered model, where the vertical flow is associated868

with one of the thin layers of the ocean (Bell et al., 2017). This can be done869

by assuming the ocean model is hydrostatic and under a Bousinesq approxima-870

tion (assumptions made by all ocean models evaluated in this work). In that871

case, one of the layers, henceforth equivalent depth H, if unstable, will display872

a strong noise on the horizontal velocity, and, thus, can be analysed with the873

shallow water equations.874

4.5.1. 2D stability Analysis875

In order to examine the instability, we analyse the models under a nonlinear876

geostrophic testcase, similar to TC1. In this testcase, however, we consider the877

bathymetry as driving the geostrophic balance. The mass height field will be878

constant and small to mimic the equivalent depth of the internal modes of the879

3D model, as done by Bell et al. (2017), and Peixoto et al. (2018). Furthermore,880

we apply a linear analysis using the power method (Peixoto et al., 2018):881

x(k+1) = αk+1r
(k+1) + x, (30)

where α(k+1) = ϵ/|r(k+1)|, ϵ = 10−5 is a small constant, x is the model state882

under geostrophic balance, r(k+1) = x∗ − x is the perturbation, x∗ = G(xk) +883

F, G(xk) is the model evolution operator, and F = x − G(x) is a constant884

forcing. The methods converge, when αk →k α is found for large enough k.885

The eigenvalue is then obtained as λ = 1/α. From there we can compute the E-886

folding timescale from the growth rate ν = log λ/∆t, where ∆t is the timestep.887

We will use, a timestep of 200 seconds.888
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Ranging from an equivalent depth from 10−3 to 100 m we observe a sub-889

stantial difference between the stability of the evaluated schemes (Figure 11).890

B-grid and ICON show similar e-folding time at around 0.1 and 0.2 days from891

the shallowest depth up to 1 m. Larger thickness display a stabilization of both892

schemes. B-grid, in this case, display a faster stabilization than ICON, whose893

e-folding time remain below 1 day for the 200 m, whilst B-grid show over 2 days894

e-folding time for the same thickness.895

Figure 11: E-folding time for the different evaluated schemes, considering a time-step of 200
s in a geostrophic test case where the balanced state is given by the bathymetry, while the
height is given by the equivalent depth and constant.

The similarities of both schemes for lower equivalent depths is potentially896

due to the use of triangular cells on some of their operators. However, the897

difference between the schemes for larger depths is likely associated with the898

error created by the reconstruction of the velocity vector field for both Coriolis899

and Kinetic energy terms in ICON, amplifying the imbalance of the discretiza-900

tion. Additionally, in different grids, ICON is found to be more stable (Korn901

and Linardakis, 2018), implying that our choice of grid might be a source of a902

higher instability.903

On the other hand, both MPAS and A-grid display overall a more stable904

scheme. MPAS displayed a 0.6 day e-folding time for the shallowest depths, but905

showed an increase, reaching around 40 days. Similarly, A-grid displays an even906

larger stability of around 0.2 day for the shallowest depth. However, contrary907

to the other schemes, the stability of the A-grid decrease with the increase of908

the equivalent depth. A-grid’s stability loss with depth might be potentially909

due to different causes of instability being dominant for the equivalent depths,910

i.e. for shallower depths, the cause of the instability is likely the Hollingsworth911

Instability, while for deeper depths, the instability is caused by the excitation912

of spurious pressure modes.913
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4.5.2. Biharmonic914

In order to evaluate the biharmonic effect on the stability of the models, we
perform the same analysis for different viscosity coefficients, using an equivalent
depth of 1 metre, and a timestep of 200 seconds. For A- and B-grid schemes,
we use (22) and (23), respectively. On C-grid, we use the formulation:

∆u = ∇∇ · u−∇×∇× u ≈ grad div u− grad Tvort u,

where grad T is the transpose gradient operator defined on the dual grid.915

Our analysis, shown on Figure 12, indicates that all schemes were found to916

be stable for a viscosity coefficient no more than 1015 m4s−1. Individually, B-917

grid and ICON does not display difference in stability for a coefficient up to 1013918

m4s−1. However, increasing the coefficient, shows that the B-grid has, not only919

a faster stabilization than ICON, but has the fastest of all evaluated schemes,920

reaching an e-folding time of over 10 days for a coefficient of 1 × 1014 m4s−1.921

ICON, in contrast, shows the slowest stabilization, reaching an e-folding time922

of 1.1 days for a coefficient of 4× 1014 m4s−1.923

Figure 12: E-folding time by viscosity coefficient for each scheme, using a g6 grid refinement
with a timestep of 200 s and a 1 m equivalent depth.

Similarly, both A-grid and MPAS schemes display an unchanged e-folding924

time of up to 1013 m4s−1 and 1014 m4s−1, respectively. Additionally, A-grid is925

shown to stabilize faster than MPAS, reaching an e-folding time of over 20 days926

for a coefficient of 3 × 1014 m4s−1, while MPAS reaches 10 days for the same927

coefficient.928

Overall, we see that despite B-grid showing a lower stability than all schemes,929

it has the potential to faster achieve stability. Conversely, although ICON ob-930

tains a similar stability as the B-grid, it requires a more intense coefficient,931

in order to stabilize the scheme. The similar behaviour happens with A-grid932
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and MPAS, with MPAS requiring a more intense coefficient for stabilization.933

This implies that this difficulty is on the C-grid discretization itself, and it is934

likely associated with either the vector reconstruction of the Coriolis term or935

the Kinetic Energy discretization.936

5. ICON-O Model937

Given the importance of the biharmonic term in order to stabilize the scheme938

or, at least, remove spurious computational waves in the system, we, then, aim939

to bridge the gap between the shallow water model and ICON’s operational940

model. We will first acknowledge that our analysis in this section will be re-941

stricted only with ICON-O research model, and will not give light to other942

models mentioned in this work. However, providing results with ICON-O will943

be an important step towards understanding the effects of numerical oscillations944

on research/operational models. Additionally, our simulations presented in this945

section were not fine-tuned, i.e. the physical parameters and coefficients were946

not thoroughly calibrated, and, therefore, these simulations may not necessar-947

ily represent reality accurately. However, our discussions in this section will948

be restricted to analyse differences between simulations with and without the949

biharmonic filter, so the lack of calibration will not impact the overall analyses950

of the results.951

The research ICON-O model, developed at the Max-Planck Institute for Me-952

teorology, is the oceanic component of the ICON Earth System Model. It uses953

horizontal discretization described in the earlier sections. Vertically, it extends954

the triangular cells into prisms, for the use of its z coordinate levels. Addi-955

tionally, In its 3D formulation, ICON-O uses the hydrostatic and Bousinesq956

approximations to solve its state vector {u, h, T, S}, where T and S are temper-957

ature and salinity, respectively. These tracers are also imbued with dissipative958

and subgrid-scale operators, such as isoneutral diffusion and the mesoscale eddy959

advection Gent-Mcwilliams Korn (2018). The full 3D spatial discretization will960

be omitted in this section, but the reader can refer to equation (32) of Korn961

(2017).962

For its time integration, ICON-O is discretized using an Adams-Bashforth963

2-step predictor-corrector scheme (equation 33, 34, and 35 of (Korn, 2017)).964

This scheme does not conserve neither energy nor enstrophy (Korn and Linar-965

dakis, 2018), but it also contains an implicit diffusion, allowing for more stable966

simulations.967

Our 3D simulations were performed using an HR95 grid with a radial lo-968

cal refinement with the finest resolution, around 14 Km edge length, located969

near South Africa, and the coarsest resolution, around 80 Km edge length, on970

the antipode of the earth, i.e. North Pacific (Figure 13 upper panel). These lo-971

cally refined mesh created enumerated distortion spots around the refined region972

(Figure 13 lower panel).973

The model was initialized under rest with 128 layers with climatological974

temperature and salinity from the Polar Science Center Hydrographic Clima-975

tology (Steele et al., 2001) and was forced with the German-OMIP climatological976
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Figure 13: The upper panel is the cell area of the spherical grid used in the simulations. The
lower panel is the respective cell distortion of the mesh.

forcing, which is derived from the ECMWF reanalysis 15 years dataset. This977

climatological forcing is daily with a resolution of 1 degree. An initial thirty978

years spin up was performed under these conditions utilizing a biharmonic coef-979

ficient of 2× 10−1A
3/2
e , where Ae = |e||ê|/2. In addition, we added a Turbulent980

Kinetic Energy (TKE) closure scheme, in order to parameterize the turbulent981

subgrid phenomena on the mesh.982

Following the spin up, we, subsequently, ran 2 simulations by 10 years each.983

One simulated with the same parameters as the spin up, which we will coin as984

our reference simulation. The other was simulated without the aforementioned985

biharmonic filter.986

The simulation without the filter show a clear decrease in the strength of the987

currents on the ocean system, e.g. the Gulf, Kuroshio, North Brazil, Agulhas,988

and Malvinas currents (Figure 14). Other regions were found to slightly increase989

in kinetic energy, in particular, the neighbourhood around the Agulhas Current,990

near the Antarctic Circumpolar Current, the Equatorial Currents of the Atlantic991

Ocean and both Northern and Southern of the Pacific Ocean, and the Brazil-992

Malvinas Confluence. The integrated kinetic energy averaged over these years993

show that surface kinetic energy loss of around 4.7 ×1013 km2m2s−2 of its994

20 ×1013 km2m2s−2. Additionally, it is observed, in particular on regions of995

coarser resolution, such as the Kuroshio Current and Gulf Stream, the presence996

of a numerical oscillation emanating from the main currents.997

35



Figure 14: Kinetic Energy difference between a reference simulation and simulation without

the use of biharmonic, i.e. E
(ref)
k − E

(no bih)
k .
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Figure 15: Cross-section of the 130◦W longitude of the reference (A) and the without bihar-
monic (B) simulation and a vertical profile of the zonal velocity of both simulation over the
0◦ Latitude (C).

Following Ducousso et al. (2017), we show a similar result as that reported998

by the authors, in the sense that the structure of the Equatorial Undercurrent999

(EUC) is shown to be more deformed on the simulation without the biharmonic.1000

Although the intensity of the EUC in our results were unchanged, the core of1001

current narrowed vertically and moved from 125 m of depth to 100 m. Accord-1002

ing to the authors, the region is subject to barotropic and baroclinic instability,1003

producing waves and vortices which are the main contributors to the current.1004

Although we detect a decrease of EKE on the No Biharmonic run in the south-1005

ernmost branch of the zonal current (Figure 15), we also detect an increase of1006

the EKE over the equatorial countercurrent. Since this decrease in EKE also1007

follows with a decrease in the strength of the core of both northern and southern1008

branches, It is possible that this decrease in EKE is indeed related to a decrease1009

in baroclinic instability, while the increase in EKE over the countercurrent is1010

possibly related to numerical oscillations on the grid, which strengthens the1011

zonal flux over this countercurrent, and, thus, deepening its core.1012

Other regions of the ocean also display a decrease of the EKE, most notably1013

the Agulhas Current Retroflection, where it meets with the colder water of the1014

South Atlantic Current and Antarctic Circumpolar Current (Figure 16). The1015

retroflection region EKE is known to be modulated by the baroclinic instability1016

of the Agulhas current (Zhu et al., 2018).1017

Additionally, the Agulhas current itself is affected by the absence of bihar-1018

monic (Figure 17). One observed difference is that the intensity of the surface1019

current is lost. Moreover, the cross-section of the No Biharmonic simulation1020
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Figure 16: Eddy Kinetic Energy (A) and difference between simulations of EKE (B) of the
Agulhas Current System.

shows a trail of intense EKE manifesting from the core of the Agulhas Current1021

and propagating southwestward (Figure 17.B). These oscillations span from the1022

surface, down to 400 m depth. It is possible that these oscillations absorbs1023

energy from the main current system, adding to the mixing of the water and,1024

consequently, weakening the current.1025
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Figure 17: P1 Cross-section between the Observational data (A), Reference simulation (B),
and No Biharmonic Simulation (C), and the vertical profile of the normal velocity in the 42
km distance (D).

6. Conclusions1026

In this work, we provided a thorough comparison analysis between different1027

shallow water staggering schemes used in unstructured ocean models and their1028

capability in maintaining a stable integration. Alongside, we also investigated1029

ICON’s susceptibility to such numerical instabilities in realistic 3D settings.1030

The shallow water analyses have shown that all models haves advantages and1031

disadvantages. The NICAM horizontal discretization, from Tomita et al. (2001),1032

is simple to discretize, due to its collocated approach, provides accurate repre-1033

sentation of the operators, and presents reasonably stable integrations for com-1034

plex experiments, for chosen grid optimizations, such as the SCVT. However,1035

similar to the traditional discretization of A-grids on regular grids (Arakawa and1036

Lamb, 1977; Randall, 1994), it displays a low effective resolution, difficulty in1037

maintaining the geostrophic balance, and it is susceptible to the manifestation1038

of numerical oscillations caused by the grid discretization.1039

Similarly, the FeSOM 2.0 horizontal discretization, from Danilov et al. (2017),1040

also provides a quite simple discretization, accurate approximations of the oper-1041

ators, and a higher effective resolution compared to the A-grid. However, it also1042

has a low effective resolution, and it displays some difficulty in maintaining the1043

geostrophic balance. Additionally, despite not suffering from pressure modes,1044

the B-grid scheme is found to be the least stable scheme, but as shown here1045

and discussed by Danilov (2013), It can be easily fixed by a low coefficient of1046

biharmonic.1047

Finally, both C-grid schemes, MPAS-O, from (Skamarock et al., 2012), and1048
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ICON-O, from Korn (2017), have the most complex discretizations between the1049

evaluated schemes. Some operators do not accurately approximate the operators1050

of the Shallow Water system. The difficulty for MPAS-O to show convergence1051

in the error was also discussed by Peixoto (2016). Similarly, ICON-O also dis-1052

plays some difficulty in converging some of the operators of the shallow water1053

equations. The lack of convergence of the divergence operator, for example, was1054

also shown in Korn and Linardakis (2018). For both schemes, it is argued that1055

the issue lies in the use of the grid. Therefore, a proper choice of grid optimiza-1056

tion should also be taken into consideration when using or using these schemes.1057

Moreover, a dissimilarity between both schemes is seen in their stability. MPAS1058

is shown to have a high stability, as it was discussed in (Peixoto et al., 2018),1059

but ICON, similar to the B-grid, is shown to have a low stability and requires1060

a larger viscosity than B-grid to stabilize the scheme.1061

Remarkably, in the 3D ICON-O simulation using a grid with Spring Dynam-1062

ics optimization, the model was found to be stable throughout the simulated1063

years, despite the lack of biharmonic filter. However, near grid oscillations were1064

apparent in the grid and a contribution of these oscillations of the dynamics of1065

the model was apparent. As it was also diagnosed by Ducousso et al. (2017)1066

for the NEMO model, these oscillations seemed to give rise to spurious mixing1067

of the system and also decreases the energy of the ocean’s currents. Regions1068

where its strength is derived from baroclinic instability seems more affected by1069

these small scale oscillations. Yet, it is clear the need for further research in1070

this topic. Though the model is stable, it can be affected by these oscillations1071

if the coefficient is not properly adjusted. Moreover, an excess of the viscosity1072

may also decrease the effective resolution of the model, which also is not ideal.1073

In conclusion, we stress that further research is necessary in order to shed1074

more light into these schemes. We note that all schemes under the shallow water1075

tests have shown to be robust and provide reliable results for their respective1076

purpose. However, testing these schemes under different grids or with more1077

realistic settings might provide greater insights into the performance of the1078

models. Additionally, it seems evident that despite a model being stable without1079

filters, the numerical oscillations in the model may interact with the physical1080

waves, leading to errors or to misinterpretation of the results. It is, therefore,1081

crucial for further investigation on this topic in order to properly make use of1082

filters to avoid these oscillations, but also minimize the damping of physical1083

waves.1084
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