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Outline

Guatimosim, C. N. Analytical Variation in the generalization of deep feed-forward

neural networks. 2020. 96f. Dissertação (Mestrado) - Instituto de Matemática e Es-

tat́ıstica, Universidade de São Paulo, São Paulo, 2020.

The essence of Machine Learning modelling may be summarized as: to unravel the im-

plicit pattern in the data by having access to only a finite number of samples. The theory

which studies this process is rich, and two quantities are of particular importance: the per-

formance errors inside and outside the sample. The error inside the sample is called the

training error, and is calculated over the set used to optimize the model’s parameters. The

outside error is the average error amongst all samples, and may be understood as the true

error. Although the final objective is to construct a model with low true error, we only have

access to the training error, which is an empirical estimation. Thus, in order to deduce the

general pattern in the data, is necessary that both are similar.

The distance between those errors is called the generalization gap, and much of the the-

ory is dedicated to study its properties and upper bounds, so that we may understand under

what circumstances it is controlled. The gap is a measure of the model’s ability to properly

induce the global pattern, and is a major topic in all applied instances of Machine Learning.

The classical view of statistics correlates the generalization property with the model ca-

pacity to fit patterns in the data. The reasoning behind this is that, being capable of fitting

many configurations, the model is prone to read noise in the sample, and thus perform

poorly in general. However, the definition of a model’s complexity is loose, and while it usu-

ally translates to the number of parameters, there is one hypothesis space which seemingly

escapes this intuition. That is the case of Neural Networks.

Using Neural Networks with many layers (Deep learning) is proving to be the best mod-

elling paradigm for many benchmark problems, and many of the advances in the industry are

due to their success. However, this seemingly goes against what classical Statistical Learn-

ing theory states about generalization and complexity, since Deep networks are capable of

fitting many patterns. Indeed, there has been experiments showing that networks may fit



even random labels.

This apparent paradox is an open question in the field and the main topic of this work.

After a introduction and overview of the classical understanding of generalization, we intro-

duce the work of [20], which is the central to our contributions. In it a new approach named

Analytical Learning is proposed, aiming to complement the classical one, hopefully bringing

some insights about the apparent contradiction emerged from Deep Learning.

Instead of analyzing probabilistic bounds, in this paper the generalization gap is studied

in a context where the predictor and the dataset are fixed. By doing so, we prevent the

pessimistic cases, and a tighter bound is hopefully achieved. Additionally, it provides a

more real scenario, since in practice usually the data is given.

The main result of [20] bounds the gap involving a term related to the data and another

related to the loss function Hardy-Kruase Variation. Our main contribution revolves around

tracing similarities between this variation term with the stability concept studied in the

classical approach of generalization, making parallels with what may be understood in the

Analytical case as information.

The main idea is that the loss function variation decreases if the partial derivatives of the

predictor, according to the instance space, are close to the oracle’s. The derivatives in this

sense may be understood as how much information the function is reading, since it measures

the impact of a certain dimension in a local prediction. Thus, if the predictor reads infor-

mation similarly to the oracle, then we guarantee a low gap. With this, we argue that the

partial derivatives of the predictor are the main measure of regularization in the analytical

sense. One of the advantages of this is simplicity: rewriting the SGD (Stochastic Gradient

Descent) optimization step in the function space, we have an easy way to investigate the

evolution of the model’s complexity during training.

Furthermore, we use this interpretation to develop on relative recent papers trying to

tackle the generalization paradox in deep learning, [28] and [37]. In the former we make an

extensive analysis. while in the latter we make a more brief qualitative approach, showing

how our interpretation relates with their result.

In [28], the complexity of networks is studied through the lens of Fourier Theory. There

is shown that the space of ReLU (Rectifier Linear Unit) networks has a high spectral decay:

during optimization, the increments in the k-th harmonic caused by the weights updates

decreases with at least k2. This means that high frequencies magnitudes in this space are

naturally damped during training, suggesting an inherent regularization property. However,

at no moment in [28] the generalization gap is mentioned, and so it is not clear if the spectral

decay is enough to guarantee a good estimation of the true error. Motivated by this, we
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show a bound using the Hardy-Krause Variation on splines which decreases with the degree,

justifying the special properties of ReLU activation functions.

In [37] the main theorem shows that if the architecture of the network follows a funnel

pattern (when the number of neurons in the network decreases as we go deeper), then in-

creasing the number of layers actually reduces the generalization gap, thus supporting the

deep learning approach. This happens because the funnel like architecture forces a non

trivial kernel in the linear transformations, which translates into a loss of information. This

implies that as the number of layers increases, the information shared between the final layer

and the dataset decreases, making the prediction less data dependant and thus regularized.

This result relates closely to our interpretation of information in the analytical sense.

Having a non trivial kernel means that in some cases the prediction is constant with respect

to disruptions in certain dimensions. This means that the overall variation (in the sense of

derivatives) will be smaller, which according to Analytical Learning translates to a smaller

generalization gap.
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neural networks. 2020. 96f. Dissertação (Mestrado) - Instituto de Matemática e Es-

tat́ıstica, Universidade de São Paulo, São Paulo, 2020.

Since their overwhelming success in real applications, the overparametrization paradox

in Deep Neural Networks has been an open problem in the field. It greatly motivated the

study of bounds for the generalization gap, and after the results of [36] it became clear that

the classical understanding was not enough and maybe a different approach was required.

Here we use the Analytical Theory of learning developed in [20], where the Hardy-Krause

Variation of the loss function plays the role of complexity to bound the gap. By making

parallels with the stability and information concepts in the classical theory, we attempt to

expand the work of [28], show how ReLU architectures provide a bound to the Hardy-Krause

Variation.
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“For a long time, I did not go to bed early.”
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0.1 List of Notation

Here we set the basic notation used in this work. It will not change unless explicitly stated.

n Sample size

d Dimensions

X Instance Space (Vectorial space from which the data is sampled)

Y Label Space

Z Z , X × Y
H The Hypothesis Space

S The dataset already coupled with the labels (S ⊂ Z)

µ Distribution from which data is sampled from Z
Lµ(h) The true error made by the hipothesis h according to the distribution µ

LS(h) Training error of the hypothesis h on the dataset S

`(z) The loss function evaluated in z ∈ Z
〈u, v〉 The inner product between vectors u and v

1A Indicator function of the set A

||x||2 Euclidean distance

∇f Gradient of f

ker(T ) Kernel of the linear transformation T

I(X, Y ) Mutual information between the random variables X and Y

µ1 × µ2 Product distribution induced my the distributionsµ1 and µ2

E(X) Expected value

z ∼ Dm a sample of size m from the distribution D
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Chapter 1

Introduction

The prevalence of machine learning in our society today is unquestionable. Its use, ranging

from social media to security, credit allowance to physics, is overwhelming and its domi-

nance, unrivaled. Although machine learning’s date of birth is up for debate1, it is a fact

that its use has risen sharply since, propelled by the exponential growth of processing power

and data storage capacity. Knowledge of machine learning is currently in high demand,

even when it is not needed, and proficiency in its applications is the best career path in the

United States according to Glassdoor’s 2016-2019 report [1] and others. It seems inadequate

to list detailed applications in order to illustrate the importance of machine learning in our

lives, since assuming one’s knowledge of it would be, not only reasonable, but also among

the tenderest assumptions made in this work. Nevertheless, that to question the importance

of machine learning’s applicability today is to question modern technology itself.

Although many areas do not allow an explicit division between their applications and

the theory which legitimates them, machine learning do so. Due to the development of

high level programming languages and libraries, the use of machine learning is becoming

not only increasingly popular, but also alienated from its foundations, making the devel-

opment of real life applications possible without fluent theoretical knowledge. It would be

absurd to consider an aeronautical engineer unfamiliar with the Navier-Stokes equation, but

it is far from being an exception a machine learning practitioner who is not well versed in

the Fundamental Theorem of Statistical Learning, Cybenko’s Theorem or the Representer

Theorem. Despite this apparent distinction, one would be mistaken to believe that formal

machine learning theory did not keep up with the flourishing of its practical counterpart.

Nurtured by a vast amount of questions raised in the already heated applied realm, theory

is presenting itself incomplete, making research about its mathematical foundations not just

evermore present in the academia but also increasingly so inside technology companies.

Among the questions that arose from the ubiquity of machine learning models, are of

undeniable importance those regarding the overwhelming success of overparametrized neu-

11952 when Arthur Samuel first used the term, 1957 when Frank Rosenblatt designed the perceptron, etc
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ral networks. Ever increasing data and processing power has allowed data scientists to fool

around with such complex architectures, applying them in many areas, such as computer

vision, speech recognition, speech translation and natural language processing, unexpectedly

obtaining unparalleled performance [14]. However, a theoretical problem arises: the capacity

of neural network’s hypothesis class is tied with the architecture’s complexity, implying that

the overparametrized regime is prone to overfitting. This begs the question: how can such

elaborate networks perform so well in practice, to the point of completely outclassing more

parsimonious models such as logistic regression and SVM, when they seem to contradict

the Occam’s Razor principle? To answer this, a natural step would be to investigate the

generalization capability of neural networks.

However, before delving inside more intimate properties of neural networks’s general-

ization power, an essential theme which motivates our work, we shall first present a broad

classical approach to such questions for completeness and to set the notation. Moreover, it

would be mistaken to assume that former understanding about generalization cannot help

to better grasp the apparently anomalous behaviour of deep networks, persuading us to step

back towards the foundations.
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1.1 The Foundations

Here, we set the basic framework of supervised learning, which shall be the one used in

this work. Although a brief overview is given, knowledge of some fundamental concepts is

assumed. We refer the interested reader to [32] for a more careful study. All notation used

shall remain unaltered throughout the work unless a change is explicitly stated.

A general classification problem may be described as follows: consider an instance space

X whose elements we wish to label. An element x ∈ X might be a person whose gender we

wish to predict, or a photo which belongs to some previously specified category. In other

words, we are looking for a function which receives x as an input and outputs its class, which

in the case of gender could be indexed as 0 or 1.

Firstly, we need to define a loss metric that quantifies the error made by the predic-

tor. Consider a measure space (Z, µ), Z , X × {0, 1}, where Z contains each instance

together with all possible labels and is equipped with the joint distribution µ = p(x, y).

The loss function would then be, given a hypothesis h, a real mapping ` defined in Z, such

as `(z, h) = (h(x) − y)2. Naturally, we would like to find a predictor h that minimizes

Lµ(h) , Eµ[`(z, h)] =
∫
Z
`(z, h)dµ, however, the measure µ is unknown2. As a matter

of a fact, our only known link to the true labelling rule comes in the form of a dataset,

sometimes called the training set, which is any finite subset S of Zn sampled according to

µ. The general idea would be to approximate the hypothesis which minimizes Lµ by find-

ing one with good performance in the training set. Formally, defining the training error as

LS(h) , 1
|S|
∑
z∈S

l(z, h), the obvious approach would be to design an algorithm A that finds a

function which minimizes LS(h) and hope it performs similarly in the whole X . Such class

of algorithms are famous and commonly called empirical risk minimizers (ERM). Formally,

Definition 1.1.1. Let
⋃∞
i=1Z i , Λ and ΛH be the set of all mappings from Λ to H. We say

that an algorithm A′ follows the ERM paradigm if it belongs to the set of all risk minimizers,

that is,

A′ ∈ {A ∈ ΛH ; A(S) = argmin
h∈H

LS(h)} .

So, if we are to adopt this paradigm, given a labelled dataset S and a loss function `, we

need to fix a hypothesis space H so that we can choose an optimizer to solve

A : S −→ H , A(S) = argmin
h∈H

LS(h) .

Having defined the main objects of the theory and notation, we can now turn to the

heart of the problem which is the core of our work: supposing we adopt, for instance, the

2Had we had knowledge of µ the learning problem would be trivial, since the best predictor would be, in
the least squares case, h(x) = max

y∈{0,1}
p(y|x)
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ERM paradigm, under what circumstances can we guarantee that a function that does well

in S will warrant us a good approximation of the labeling rule? In other words, when

can we guarantee a low
∣∣Lµ(h) − LS(h)

∣∣ ? The latter mentioned quantity is known as the

generalization gap, an essential notion in machine learning whose impacting agents we shall

spend the rest of this section carefully discussing. Being as it may, it should be no surprise

that many times Lµ(h) is much larger than LS(h) regardless of the algorithmic paradigm,

a quite frequent phenomena called overfitting. Effectively, the very act of achieving a small

Lµ(h) through a minimization of LS is seen as the definition of learning itself.

Definition 1.1.2. (Agnostic PAC Learnability)3 A hypothesis class H is agnostic PAC

(probably approximately correct) learnable with respect to a set Z and a loss function `

if there exists a function mH : (0, 1)→ N and a learning algorithm with the following prop-

erty: for every ε, δ ∈ (0, 1) and for every distribution µ over S, the algorithm returns h ∈ H
such that, with probability of at least 1− δ,

Lµ(h) ≤ min
h′∈H

Lµ(h′) + ε .

Not worrying much about the definition’s technicalities, probably the first observation is

that, regardless of the algorithm or the hypothesis space used, in order to learn we approxi-

mate the true expected value of a random variable according to an unknown measure µ with

the empirical mean. This kind of approximation is usual and many results are known, one of

which being the Hoeffding’s inequality, which establishes an upper bound for the error made

by approximating the true mean with the empirical expectation. Applying it in machine

learning terms we obtain the famous result,

Theorem 1.1.1. [32] Let S be a subset of Z, |S| = n, sampled according to µ. Consider a

predictor h ∈ H, h : X −→ R and `(z, h) a loss function. Then

µn
( ∣∣Lµ(h)− LS(h)

∣∣ ≥ ε
)
≤ 2e−2nε2 . (1.1.1)

This result is quite intuitive and relates closely to the Law of Large numbers: as we in-

crease n, the training set S will become an increasingly faithful representation of Z. We call

attention that the measure is over S. This means that, as n increases, the datasets which

would convey the wrong pattern and yield a large
∣∣Lµ(h) − LS(h)

∣∣ become exponentially

unlikely according to µ for a fixed h.

We may then conclude that everything works well as long as we have enough samples.

Unfortunately, things are often not so simple in the practice: even in the information era,

gathering data is still expensive and we have no guarantee that the measure which produced

the training set will be the same one to measure the true error, compelling us to look for other

factors that might shorten the generalization gap. Additionally, if we restrict ourselves to

the notion of PAC learnability, the above bound is not strong enough since it is not uniform

3In [32] other similar, yet weaker, definitions of learnability are presented.
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to all hypothesis in H, and thus (1.1.1) must be improved. Such refinement is trivially

achieved for finite hypothesis spaces, where one can simply unite over all possible h using

the union bound, and obtain

µn
( ∣∣Lµ(h)− LS(h)

∣∣ ≥ ε
)
≤
∣∣H∣∣ 2e−2nε2 ∀h ∈ H .

Indeed, this proves that any finite hypothesis space is PAC learnable. In the infinite case,

however, a more elaborate theory is required. Concepts were developed in order to replace

the cardinality of H for more informative quantities that can faithfully translate the true

richness of the hypothesis space without redundancy. We are of course alluding to VC di-

mension and Rademacher complexity4.

Definition 1.1.3. The VC dimension of a function space H, from here on denoted as

VC(H), is the maximum size of a set C ∈ X that can be labelled with −1 or 1 in all possible

ways by functions in H.

Definition 1.1.4. Given a loss function `, a dataset S of size n and a hypothesis space H,

we define the Radamacher complexity of H with respect to S and ` by

R(` ◦ H ◦ S) ,
1

m
E
σ

[
sup
h∈H

m∑
i=1

σi`(h, zi)

]
.

where σ is uniformly distributed in {−1, 1} and ai is the i-th coordinate of a.

Loosely speaking, these concepts aim to gauge the representation capacity of a hypothesis

class, capturing its true size, or in other words, its degrees of freedom. For the case of VC

dimension, consider a given domain X and a hypothesis space H capable of reproducing any

set of labeled points S, regardless of size. Then learn this class in the PAC sense would be

akin to learn the set of all functions from X to {−1, 1}, since S could depict all labelling

patterns. However, according to the No-Free Lunch Theorem, learn such class in the PAC

sense is impossible. This means that the PAC learnability of a class — and as a consequence

the ability to achieve a low gap — depends on its capacity to represent labels, which is

precisely what VC dimension and Rademacher complexity measures. With hold of these

stronger tools we may now state improved versions of inequality (1.1.1):

Theorem 1.1.2. (VC generalization bound, [26]) Let H be a class of functions assuming

values in {−1, 1} and VC(H) = d. Then ∀δ ≥ 0, with probability at least 1 − δ over the

sample S of size n, the following holds.

Lµ(h)− LS(h) ≤
√

2d log en
d

n
+

√
log 1

δ

2n
∀h ∈ H .

4Here we define VC dimension restricted to the classification context. For a broader scenario, see for
example [25]
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Theorem 1.1.3. (Rademacher generalization bound, [32]) Let H be a class of functions, `

a loss function and S a dataset of size n. Then ∀δ ≥ 0, with probability at least 1− δ over

S, the following holds.

Lµ(h)− LS(h) ≤ 2R(` ◦ H ◦ S) + c

√
2 ln 4

δ

n
∀h ∈ H .

where c is some positive constant.

What we should take from the above bounds is the fundamental role the hypothesis

space choice plays in the approximation of the true error. If H is not too complex in the

VC or Rademacher sense, that is, if it does not have a large variety of functions, then their

empirical loss is fairly close to the true loss for any dataset S. On the other hand, if either

the VC dimension or the Rademacher complexity is infinite, then we cannot possibly expect

to learn and we should look for simpler solutions5.

Another way of viewing the influence of H in learning theory is by decomposing the

distance between the true error of a fixed h ∈ H and the Bayes error6 L∗ in the following

fashion:

Lµ(h)− L∗ = Lµ(h)− Lµ(h′)︸ ︷︷ ︸
εest

+ Lµ(h
′
)− L∗︸ ︷︷ ︸

εapp

, (1.1.2)

where h ∈ H is an arbitrary hypothesis which may be thought of as the output of the algo-

rithm A, and h′ is the best performing hypothesis in the class: h′ = argminh∈H Lµ(h).

The first term is called the estimation error and it quantifies how far from the best

achievable error in your class Lµ(h) is. Notice that this error depends on h, and thus, on

the algorithm and the dataset. As the complexity of the class increases, εest will increase,

since more functions with superior performance will be contemplated. One could think of

this error as how far they are from the best possible hypothesis in the chosen H.

The second term is called the approximation error and it quantifies how far from the the-

oretical smallest error the best performing hypothesis in your class is. This error depends

only on H and it is a measure of how well your class as a whole represents the phenomenon

to be learned. Naturally, as H is enriched, we obtain a smaller εapp.

Seeking generalization, we clearly see a trade-off between performing well in S and ap-

proximating Lµ, which is analogous to the bias-variance trade-off in Statistics. For instance,

Theorem 1.1.2 shows that if the VC dimension is low, we will achieve a small generalization

5In the PAC learning sense, indeed, a hypothesis class is learnable if and only if its VC dimension is
finite, such is the Fundamental Theorem of Statiscal Learning [33].

6The Bayes error is the true error made by the best possible predictor, the Bayes predictor b∗. It always
exists and depends solely on the distribution and on the loss function. For example, in the mean squared
error case, b∗(x) , E[y|x], where the expected value is in respect to the posterior distribution.
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gap. However, since we are restricting the representational power of the class, the training

error will increase, which implies that both empirical and true error are high. In summary:

we wish to minimize Lµ but only LS is known, so we need to reduce it and make it close

to the true error. However, these are counteracting processes. Since the training error is

the main term in the loss function, usually the problem lies in reducing the generalization

gap. Methods which tend to this matter are called regularization methods, and are widely

used in practice. The essence of these techniques is to find ways to give up some training

accuracy (such as using a simpler hypothesis space), in exchange of a better approximation

of the true error.

So far, we restrained our discussion about the generalization to the choice of H, but

as we just saw this factor’s influence is dependant of other elements, making it extremely

restricted, suggesting that other ways to regularize must be considered, demanding thus a

change of perspective. Indeed, looking back at (1.1.2) one might argue that is not only

harmless but helpful to choose a rich H as long as one manages to output a function whose

true error is close to Lµ(h∗). With this in mind, we now set aside the hypothesis space

matter and turn our attention to the algorithm and the loss function.

Naturally simplifying the hypothesis space is one way to regularize, but most regulariza-

tions done in practice are not concerned with the hypothesis space itself, but with the choice

of method to search it. In this work, we understand by regularization any technique or

decision regarding the learning processes by which one intends to shorten the generalization

gap, that is, to make LS closer to Lµ.

Many such methods have been developed as heuristics to further improve the quality of

the hypothesis found by A. Let us now illustrate this with a few examples.

Formal techniques

• Weight Decay: If our loss function is only composed in terms of the training error, our

algorithm will blindly fit the noise in S and output an overfitting hypothesis. One

common way to get around this is to add a term that penalizes complex functions in

the optimization7, such as ones with parameters of high norm, biasing the algorithm’s

search in H towards simpler ones. Denoting by w ∈ W the parameters 8 of h, the

algorithm would do

argmin
w∈W

LS(hw) + ||w||pp .

• Bagging: In order to reduce overfitting, a common technique used in machine learning is

ensemble learning, where one combines several models to make predictions. The most

7It should be noted that part of the regularization problem is to understand how to define complexity,
and for each case this word might have a different technical meaning.

8For instance, the coefficients of a polynomial.
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common way to generate such “council” of predictors is by using the Bagging method,

native from statistics. The procedure is to uniformly sample from S, with replacement,

m subsamples Si ⊂ S , i = 1, . . . ,m, and then use each of those as a training set to

generate m distinct models, defining the final predictor as their average. It has been

demonstrated that bagging reduces the estimators variance by smoothing the predic-

tions, providing great improvements, especially for discrete predictors such as decision

trees [8]. Although both are regarded as ensemble learning techniques, we would like

to stress that bagging and boosting differ in a central way: the former reduces the

variance, while the latter is primarily used to reduce the bias9.

Heuristics

• Stochastic Gradient Descent (SGD): SGD is a variant of the classic gradient descent

optimizer. Instead of using the whole dataset to calculate the gradient and start the

iteration10 wi+1 = wi − η∇LS(hwi), it considers approximations of LS(hwi) using not

the entire dataset but randomly selected subsets called batches. The iteration would

then be stochastic and in average equivalent to the classic gradient descent. Formally,

the step iteration would be written as below.

wi+1 = wi + η
∑
z∈βi+1

∇`(hwi , z) (1.1.3)

where βi+1 is a randomly selected subset of S of predetermined size used in the i-th

step.

• Early Stopping : Early stop is a regularization technique that can be applied in any

step oriented algorithm. Rather than running for as long as possible, one breaks the

iteration after some kind of training error convergence, giving up a possibly lower

LS(h) in order to obtain a tighter generalization gap.

Firstly, we point out that we are not discussing why the above mentioned improve the

gap, since this matter lies beyond the boundaries of this work. However, before turning

ourselves to the generalization problem in neural networks, it is worth noticing that these

methods revolve around a modification in the algorithm that lowers its tendency to look for

a hypothesis that only minimizes the training error. This change aims to prevent overfitting

by lowering the predictor’s dependency on S. In a way, we are handing over the unbiased

characteristic of the algorithm, which would guarantee convergence to the true hypothesis

in the limit n −→∞, to grant its output a tighter generalization gap.

9For a more detailed investigation between their differences, we reference the reader to [8].
10η quantifies the step size towards the gradient and is referred to as the learning rate.
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1.2 What about Neural Networks?

We spent the beginning of the last section introducing the reasoning behind regulariza-

tion with regards to the complexity of the hypothesis space, such as VC dimension and

Rademacher complexity. Although those fared relatively well to explain generalization in

more traditional models, theory started to reveal limitations with the recent success of

overparametrized neural networks, which have presented remarkable performance in various

fields and are now heavily sought in many applications. Although these accomplishments

(and shortcomings) are seen in various sorts of networks, in this dissertation we are restrict-

ing our discussion to deep feedforwards non linear ones, very commonly used in supervised

problems. We spend the next few lines formally defining it.

Definition 1.2.1. (Feedforward Neural Network) Let σ : R :→ R be any non linear real

function and W , {Wi}Li=0 a family of real valued matrices of sizes such that its composition

WL ◦ WL−1 ◦ · · · ◦ W0 makes sense. Then, a neural network with activation function σ,

parameters W and L− 1 hidden layers is a function fW : X → RdL of the form

f(x) = W (L) ◦ σ ◦W (L−1) ◦ σ ◦ · · · ◦ σ ◦W (1)(x) ,

where the compositions of σ are applied entrywise and dl is the dimension of W l’s range.

Remarks:

1. The term “layer” comes from a common interpretation of neural nets as a L-partite

graph. Each output vector σ
(
W (l)(·)

)
is seen as the l-th set (a layer), and each of its

entry, a vertex, as is shown in Figure 1.1.

2. While in principle a feedforward neural network can have many distinct activation

functions, and that is often the case in practice, in theoretical studies the choice of

restricting it to only one type is often made.

At the risk of being redundant, we stress again that, according to statistical theory,

overly rich hypothesis spaces are prone to overfitting. Despite their overwhelming success,

deep feedforward networks are probably the best candidate for the most expressive space

award, even more so when a more complex architecture is considered. Indeed, in 1989 George

Cybenko demonstrated that, as the number of neurons tends to infinity, single-layered feed-

forward sigmoidal neural networks are capable of uniformly approximating any continuous

function on a compact interval [10]11. This became known as Cybenko’s theorem, and after

11Two years later Kurt Hornik generalized the result for any activation function, showing that the ap-
proximation property is due to the architecture [18].
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Figure 1.1: [Image taken from [32]] In this example, X = R4 and L = 1, where the dimensions
of the inputs are denoted by xi (x4 is assumed to be a constant) and they enter in the network
rewritten as v0,i. Passing through the layer from left to right, they are transformed by W1 whose
entries are denoted by the edges, such that the dimension of the matrix establishes the width of

the layers. For instance, we have that v(1, j) = σ
(∑i

i=1 v(0, i)w
(j)
i

)
, where w(j) is the j-th row

vector of W0. All layers that are between the sets containing the input and the output are called
hidden layers. We say it has a feedforward behaviour because x flows in a linear fashion through
the architecture, going from each independent part of the graph in one directed way.

it many practitioners12 stopped working with multi-layered networks since, according to the

result, one layer was enough to guarantee asymptotic uniform approximation. In later years,

however, deep neural networks started receiving great attention when they proved capable

of outperforming the shallow architectures in many applications, going against the expecta-

tions.

Thinking in terms of VC theory, the VC dimension of neural networks is in the order

of O(|E| log(|E|)) [25] where |E| denotes the number of edges in the graph. Since this is

monotonically increasing in the number of edges, it fails to explain the benefits of over-

parametrization in generalization. In particular, it suggests that the bound in (1.1.2) is not

tight enough for this case.

The attention to overparametrized networks grew even further with the questionings

made in [36]. This paper takes benchmark architectures with number of parameters of or-

der 106 and use them to learn the CIFAR10 dataset13, a benchmark dataset composed of

60.000 images. It was already known that these would perform extremely well, but in [36]

they also trained these networks on randomized labels using SGD with the same training

hyperparameters, resulting in a complete memorization of the unstructured dataset by the

learners, with basically no difference between each learning dynamic. This means that the

12Current Chief AI Scientist at Facebook Yann Lecun was an exception.
13Alexnet, number of parameters: 1,387,786. Inception, number of parameters: 1,649,402. MLP 3x512,

number of parameters: 1,735,178. MLP 1x512, number of parameters: 1,209,866.
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hypothesis class’s capacity is high enough to memorize random labels of CIFAR10. Addi-

tionally, they made the same experiments (true and randomized labels), now using different

kinds of regularizations14, aiming to investigate their effect on the performance. The result

is surprising, showing that none of them are really required for learning, pointing towards a

possible implicit regularization in deep networks.

By showing how an extremely overparametrized H with capacity high enough to mem-

orize random labels may be a good learner, the experiments made in [36] defy our under-

standing of generalization, showing how limited and incomplete is the status quo.

Naturally, having in mind what has been said in this section, it would be a misguided

conclusion to deduce that parameters have no impact in the out of sample performance of

networks, since part of the problem is that we do not know what the “true parameters”

are. Instead, what one should take from this analysis is that we are unable to unwind the

contribution of each pertinent component in generalization, and thus we must look for other

concepts that can better capture the true quantities that explain the capacity of the network,

and even more, understand how it relates with the algorithm, loss function and the training

set.

Many other approaches came forth trying to better explain this problem, some more

directed to the neural network model, some developing a much broader analysis such as

the VC theory. In this work we first investigate recent studies, some more vigorously than

others, dedicated to this endeavor, exploring the trailed trajectory and the framework con-

structed by the community to pursue the solution for this apparent paradox. Then we make

use of recent results to ground our main contributions-15, consisting in a new interpretation

of hypothesis complexity which proves to be potentially fruitful to better understand neural

networks.

14Data augmentation, weight decay and dropout.
15Better detailed in chapter 7
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1.3 Chapter Overviews

Here we present how this work is organized, summarizing each chapter.

Chapter 2 : Aiming to ground the reasoning present in later chapters and provide the

reader with a bit of context, a formal treatment over the relationship between stability

and generalization is presented, contemplating precise definitions and rigorous results.

Chapter 3 : Here an overall study over the theory exposed in [20] is carried out, followed up

by our contributions concerning it, making use of the main theorem in chapter 3. We

adapt the stability’s concept to the analytical learning framework using Hardy-Krause

Variation. In the next chapters we use our insights to analyze two recent studies about

generalization in deep networks.

Chapter 4 : With no proper machine learning content, a review of Reproducing Hilbert

Space theory is made, culminating in a known result that allows us to write the gradient

descent optimization in the function space.

Chapter 5 : In an attempt to use our interpretation in recent studies about generalization,

we analyze the work of [28]. Using the analytical learning framework, we prove a

Theorem relating their result with the generalization power of neuralnets.

Chapter 6 : In the same spirit of chapter 5, we again use the developed interpretation to

parse through the theorems of [37]. We give a new qualitative analysis of the result,

using it to further justify the pertinence of our approach developed in Chapter 5.

Chapter 7 : Here we finish our work, listing the main conclusions developed in the last

chapters.
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Chapter 2

Stability and Generalization

This chapter is dedicated to a brief review about rather recent concepts regarding gener-

alization, some of which inspired by the previously mentioned paradox in deep networks.

All of them intend to characterize generalization by presenting bounds for Lµ(h) − LS(h)

which involves concepts beyond the ones described in the first chapter. In [19] a very minute

review over recent works on the subject of generalization is made, whose read is strongly

recommended. Here, however, we shall take a more concise approach, caring for one specific

notion which shall be of great use in this work: stability.

Hadamard was the first to define well-posedness, concept that brought to light the impor-

tance of stability in problems. A well-posed problem satisfies the following three conditions:

1. Admits solution.

2. The solution is unique.

3. The problem is stable, that is, the solutions are continuous on the initial data.

In [27] one finds a very informative discussion about this topic, considering a classical

example: given a map T : A→ B and u ∈ B, find g ∈ A such that

u = Tg . (2.0.1)

If we think T−1 as the learning algorithm, then T−1 is continuous if and only if small os-

cilations on its output may be achieved by small oscilations on the dataset. So, intuitively,

continuity is related to the problem stableness, making the beforehand study of this more

general approach aligned with our endeavors.

In principle, T can be as general as the problem allows, but for the sake of illustration

lets consider for now the case where the mapping is a matrix.

If the determinant is not null, then the first two conditions are satisfied, and so the

problem is well posed, and therefore stable, if and only if T−1 is continuous. This would
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mean that

In this particular case this is always true since any linear transformation in a finite di-

mension space is bounded, so one only has to keep the determinant in mind. In a more

general case, however, we must be mindful of continuity, which usually is the key criteria for

well posedness1.

Beyond its undeniable importance for certain applications, theoretically speaking, con-

tinuity implies in an important behaviour for solutions, which is often assumed in reality.

Again, consider (2.0.1) now with uδ , u + δ being a perturbed initial data and its associ-

ated solution gδ ∈ A, which always exists supposing that T is a bijection. Under the only

assumption that A and B are metric spaces, it is not always true that ||Tgδ − u||B ≤ ε1

implies in ||gδ − g||A ≤ ε2. In other words, by assuming only bijection and continuity of T ,

one yet does not have the guarantee that a solution for the perturbed problem is close to

the true solution, even asymptotically.

Indeed, as is observed in [27], weight decay, also known in mathematics as Tikhonov

regularization, was firstly created to solve this exact issue, and its origin lies in the following

topological Theorem.

Theorem 2.0.1. Consider an operator T mapping a compact set A ⊂ A onto B ⊂ B, A

and B being metric spaces. If T is continuous and one-to-one, then the inverse mapping

T−1 is also continuous.

The above theorem gives us a sufficient condition to mend the possible lack of stability:

compactness of the solution space. Additionally, this result explicitates the objects which

orchestrate the problem’s stableness, namely, the solution space and the mapping between

it and the initial data.

With some adaptations, one readily sees its relationship with weight decay: if we use

some norm regularization in the optimizer, we are implicitly restricting its size, rendering it

compact, and by the above theorem we would now have that uδ → u implies in gδ → g. This

similarity suggests that stability is, as is weight decay, sufficient for generalization. Indeed,

we are dedicating this chapter on this matter because the latter is true. [7] has become a

benchmark article on the topic and a brief rundown over its main results could not be more

natural.

1In the case of the learning problem, is worth remembering that uniqueness of solutions is always meant
under the equivalency class induced by the training error. That is, since the algorithm will pick at random
some hypothesis with the same LS , we are regarding them as all belonging to the same class
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2.1 A formal approach to Stabilization in Learning

The concept of stability is prominent in many areas, and to the best of our knowledge it was

first taken to the learning framework in the seventies, [11] and [12]. Albeit often related to

sensitivity analysis, where one measures the changes in some response variable according to

perturbations in the input, stability in learning communes with other elements which ought

to be considered. In [7], general bounds for the generalization gap are found by studying

the learning algorithm’s stability with respect to the training set S, giving a positive answer

to what is suggested in our analysis of problem (2.0.1).

Although we spent some lines arguing on how continuity is the basis of stability, usually

one deals with discrete problems. Since the possible ways to define discrete continuity are

many, the before well paved and defined path to understand ill posedness ramifies. Nat-

urally, the learning map is no exception. By taking a countable set as input, conceiving

some kind of stability notion that makes a prediction problem inherit the structure of the

continuous case is a challenge that must be faced.

One way to tackle this issue is to look for definitions of stability which implies in a con-

trolled generalization gap. Propelled by this , [7] proceeds as follows (the definitions and

theorems below are as presented in [19]).

Let S\i , {z1, . . . , zi−1, zi+1, . . . , zn} and Si , {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn}.

Definition 2.1.1. An algorithm A has hypothesis stability β with respect to the loss function

` if the following holds,

∀i ∈ {1, ..., n}, ES,z[|`(AS, z)− `(AS\i , z)|] ≤ β ,

where AX is the output of the learning algorithm A with X as the input.

Definition 2.1.2. An algorithm A has point-wise hypothesis stability β with respect to the

loss function ` if the following holds,

∀i ∈ {1, ..., n}, ES[|`(AS, zi)− `(AS\i , zi)|] ≤ β ,

While both of the above measure the change in predictions due to a single modification

in the dataset, the former bounds the expected variation in the loss function, while the latter

bounds the changes for any zi ∈ S.

We call attention to the similarities between the above definitions and continuity. Since

the input is a random variable, one could regard Definition 2.1.1 as some kind of continuity

of the mean, where the deletion of any point in S entails changes in the loss function smaller
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than β in expectation. In Definition 2.1.2 the expectation is only over the input S, and its

measured a point-wise stability according to the deleted point.

Theorem 2.1.1. [7] For any learning algorithm A with hypothesis stability β1 and point-

wise hypothesis stability β2 with respect to a loss function ` such that 0 ≤ `(f(x), y) ≤ M ,

we have, with probability 1− δ,

Lµ(AS) ≤ LS(AS) +

√
M2 + 12Mnβ1

2nδ
, and

Lµ(AS) ≤ Lloo(AS) +

√
M2 + 6Mnβ2

2nδ
,

where L\i(AS) , 1
n

∑n
i=1 `(AS\i , si).

This theorem gives a positive answer to what was previously postulated: according to

the defined notions, stability implies generalization. As a matter of fact, such relation was

already known, and the main contribution of [7] is an even stronger definition which is found

to be sufficient for a similar bound as the ones stated in the above theorem, but now with

logarithmic components in δ.

Having in mind the sufficiency of stability for generalization, some remarks are at hand.

Is intuitive that a stable algorithm contributes for generalization. After all, by producing a

hypothesis whose prediction does not vary much with respect to perturbations in the train-

ing set S, is expected that the learning process which generated the hypothesis cared not

for the specificity’s of each learning instance, but rather, tried to grasp the general labelling

rule implicit in the sample2. However, the interesting question remains: under which as-

sumptions it is equivalent to generalization?

In the ERM case, is a classical result that consistency is equivalent to generalization,

which in turn is equivalent to the hypothesis class being uniform Glivenko-Cantelli (for any

measure) for uniformly bounded loss functions [33]. Here by consistency we mean universal

weak consistency:

Definition 2.1.3. A learning map is said to be weak universally consistent if, for any ε,

lim
n→∞

sup
µ

{
P
(
LS ≥ Lµ + ε

)}
.

The task of finding a similar relation for stability, that is, one which is sufficient for

generalization and in turn equivalent to consistency in the ERM paradigm, is achieved in

2We insist on “expected” since, by simply ignoring the data, stability (and thus generalization) is trivially
achieved despite nothing being learned, the constant predictor being a good example. This is to argue that
one must be mindful of the trade off between good generalization and good performance, since a small gap
is easily achieved if one does not tend to LS .
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[27]. There is defined the notion of Cross-validation, error and empirical error Leave-One-

Out stability (CV EEEloo stability) and its demonstrated to yield the same implications,

showing how fruitful this approach is for the learning problem.
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2.2 Mutual Information and Stability

So far, having made this parallel between well posedness (stability), continuity and general-

ization, we point out that the learning map has been always considered deterministic. While

it does cover a wild range of algorithms, there are a non contemplated few which ought to be

attended. Stochastic gradient descent (SGD), being even more used than its deterministic

counterpart, comes to mind.

To the best of our knowledge, [29] is the first to take these methods into account. There,

stability is measured in terms mutual information shared between the algorithm and the

dataset, and again we see a relationship between it and the generalization gap.

However, before going any further, we provide the reader with a brief rundown over the

main concepts of Information Theory, which are imperative to understand results in [29],

but will also present itself as an insightful contextualization for what follows.

2.2.1 Information Theory background

Here we recapitulate some fundamental notions. For a less abbreviated reading, we recom-

mend [9].

The entropy of a discrete random variable X with alphabet X and probability mass p(x)

is defined as

H(X) , −
∑
x∈X

p(x) log p(x) .

Entropy may be seen as the amount of uncertainty we have about X, which is completely

characterized by p(X). For instance, the entropy of the binomial distribution is maximized

when p = 1
2
. If Y is another discrete random variable with alphabet Y , thenH(X)−H(X|Y )

would be the decrease of uncertainty about X when Y is realized, or in other words, the

mutual information between X and Y :

I(X;Y ) , H(X)−H(X|Y ) =
∑

x∈X ,y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
.

Another quantity of great interest is the Kullback-Leibler divergence, which establishes

a notion of distance between measures3 and is defined as

D(ρ||π) = −
∫

Ω

log
dπ

dρ
dρ ,

3Formally, It is not a distance since it is not reflexive and does not satisfy the triangle inequality.
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where Ω is a measurable space with respect to dρ, π << ρ and dπ
dρ

is the Radon–Nikodym

derivative (the definition can be easily adapted to discrete random variables). If π =

p(X)p(Y ) and ρ = p(X, Y ) then

D(p(X, Y )||p(X)(Y )) , −
∫
X×Y

log
p(x)p(y)

p(x, y)
p(x, y)d(x, y) ,

which in turn is equal to the mutual information for continuous random variables, i.e:

D(p(X, Y )||p(X)(Y )) , I(X;Y ) = H(X)−H(X, Y ) .

Mutual information is always non negative, reflexive, and most notably, vanishes if and

only if X and Y are independent.

2.2.2 Stability in Stochastic Algorithms

As it is quite common in the literature, stochastic algorithms may be regarded as a distri-

bution P (H|S) where P (S,H) = P (S)×P (H|S) = µn×P (H|S). That is, it will receive a

dataset S ⊆ Zn sampled from µn as an input, and sample a hypothesis h according to the

induced distribution P (H|S) in the hypothesis class H parametrized by the weight spaceW .

Notice that H is now a random variable4 with values in H, whose distribution is character-

ized by the algorithm, defining a stochastic learning map. Thus, it makes sense to address

the information shared by S and the output, or in other words, to how the prior’s entropy

H(W ) induced by the algorithm changes when it reads the dataset5.

For example, one could think of stochastic gradient descent as the conditional proba-

bility in the parametric space induced by the dataset S. When the optimization begins, a

distribution over all possible parameters P (W ), W ∈ W is established, and so each family

of weights has its own probability of being chosen6. In the ERM paradigm for instance,

parameters which correspond to functions of high training error would be unlikely to be

selected. In this framework, the loss function is naturally defined as the average over all

possible hypothesis for a given S:

`(P (H|S), z) , E
h∼P (H|S)

[`(h, z)] .

This entails in the following definition for the gap7:

4Here we are incurring an abuse of notion, since entropy is also denoted by H. This should not pose a
problem given the different context of each term.

5We call attention that, since only P (W |S) is given, P (W ) and H(W ) are unknown.
6Here we make an abuse of notation, using interchangeably P (W ) and P (H)
7This is equivalent to redefining Lµ and LS using `(P (H|S))
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E
P (H|S)

[Lµ(h)− LS(h)] .

Naturally, mutual information encapsulates the idea of stability discussed in determin-

istic algorithms: loosely speaking, here a stable algorithm would be one whose distribution

does not vary much in expectation over realizations of S. With this in mind, one might ask

if this property is also enough for generalization.

Indeed, such relation may be established. One classical result in this direction is the

PAC - Bayes bound given by McAllester in 1999:

Theorem 2.2.1 (PAC - Bayes Theorem, [32]). Let µ be an arbitrary distribution over Z and

` : Z ×W → [0, 1] be a loss function. Let P be a prior distribution over H and δ ∈ (0, 1).

Then for all distributions Q over H we have that

E
Q

[Lµ(h)]− E
Q

[LS(h)] ≤

√
D(Q||P ) + ln (n/δ)

2(n− 1)

holds with probability at least 1− δ over the choice of the training set S.

Intuitively, one might think of the prior as the distribution defined by8 P (H) ,

ES[P (H|S)P (S) ] and Q , P (H|S). The idea behind the result is that, if the prior

does not change too much with respect to S, then it will generalize with high probabil-

ity. For instance, if the algorithm is independent of the data (maximum stability), that is,

P (H|S) = P (H) ∀S, then D(Q||P ) = 0 and the gap is minimized, although LS will most

likely be high.

The main theorem in [34] thus comes with no surprises. It shows that mutual information

succeeds at expanding the concept of stability to stochastic learning maps, and further yet,

the generalization sufficiency is preserved. We also mention these bounds on behalf of their

informational interpretation, of which we shall make use to motivate our later work.

Theorem 2.2.2. [34] Let H be a random variable representing the hypothesis and H the

chosen hypothesis space. Suppose ` is σ-subgaussian loss function9 under the generating

distribution µ for all h ∈ H. Then

G(µ, P (H|S)) , E[Lµ(H)− LS(H)] ≤
√

2(σ2/n)I(S;H) .

where the expectation is taken over the joint distribution P (S,H).

Proof. A corollary from Theorem 8.1.1 proved in section 8.1. �

8Notice that under this assumption D(Q||P ) = D(P (H,S)||P (H)P (S)) = I(S,H)
9h is σ-subgaussian if logE[eλ(h−E[h])] ≤ λ2σ2/2 for all λ in R.
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In words, the theorem states that small variations of H’s entropy when some S is given

implies in a better expected generalization. Essentially, if an algorithm P (H|S) induces an a

priori distribution which already has a good guess as to what the output might be, then, in

expectation, it will generalize well. The difference between this result and the PAC - Bayes

Theorem is mainly in the bounded object. The latter bounded with probability δ, where

the former concerns the expected gap according to S.

Our motivation for presenting the last two results is to further clarify the reasoning

which shall orchestrate our study, apart from being quite useful for setting the context and

to pave the rationale of generalization theory. The latter, however, still lies behind a few

prerequisites which we cared to expose thoroughly in the next chapter.
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Chapter 3

Analytical Learning versus Statistical

Learning

The success of deep neural networks and the usefulness of their overparametrization poses

a challenge to the classical paradigm of statistical learning. As previously mentioned, [36]

shows how this hypothesis space, albeit capable of learning random noise, might outperform

other benchmark models in the overparametrized regime (number of parameters higher than

|S|).

This however, only poses a contradiction when considering the stability of the learning

map relative to changes in S, since performance is measured through the expected general-

ization error. So, if we consider S a given fixed variable, does learning in a high capacity

hypothesis space emerges as an issue? How stability may be seen in this scenario? This

chapter is dedicated to answering these questions.

In [21] discusses how complex hypothesis may solve regression problems for a given

dateset, presenting a theorem showing that linear models admit complex hypothesis which

have low training and generalization error:

Theorem 3.0.1. ([21]) Let Rdy be the label space, Rm the instance space, S a training set

of size n and Stest a test set of size ntest. Consider a feasible linear regression problem,

that is, given an oracle parametrized by W ∗ ∈ Rdy×m we wish to find W ∈ Rdy×m such

that ||WXtest − Ytest||2 ≤ ε by minimizing ||WX − Y ||2 ≤ ε , where X and Xtest are the

training and test instances of S and Stest respectively, W ∗Xtest = Ytest ∈ Rntest×dy and

W ∗Xtest = Ytest ∈ Rntest×dy .

Hence, if n ≤ m, rank(X) < m and rank(M) < n where M = [Xᵀ, Xᵀ
test], then there exists

a matrix W such that

• Ŷ = Y + εA for some matrix A with ||A||F ≤ 1

• Ŷtest = Ytest + εB for some matrix B with ||B||F ≤ 1

• ||W ||F ≥ δ and ||W −W ∗||F ≥ δ
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where Ŷ , WX and Ŷtest , WXtest

This result shows how there may be, for a given S, a high norm hypothesis which achieves

a low generalization error with a low training error. Is also worth mentioning that the above

result may be generalized to consider the expected instead of the test error.

By the classical learning paradigm, regularizations such as weight decay will ignore these

potential solutions, but this means that there is some other condition of learning that is

being disregarded. Indeed, the following simple result from [21] demonstrates the existence

of an arbitrarily unstable algorithm that outputs a hypothesis which generalizes for a given

S. This further argues that generalization gap bounds based on stability and robustness,

while sufficient, are not necessary for generalization.

Theorem 3.0.2. Consider a prediction problem defined by the pair (µ, S) specifying the true

distribution µ and the training set |S| = n. Let ε > inf
f ∈YX

Lµ(f)−LS(f) be the desired gap

and hε be a function such that Lµ(hε) − LS(hε) < ε , where YX is the set of all functions

from X to Y. Defining hA(S) , A(S) as the output of the algorithm A when given S, we

have that

(i) for any hypothesis spaceH whose VC dimension is at least n and contains the predictor

hε, there exists a learning algorithm Aε such that the generalization gap of hAε(S) is at most

ε, and

(ii) there exist an arbitrarily unstable and arbitrarily non-robust algorithm A′ such that

the generalization gap of hA(S) is at most ε.

Proof. (i): Let H be any hypothesis class which contains hε. We simply choose A to be any

algorithm from the class of all algorithms that outputs hε when S is given.

(ii): We define the algorithm A′ as follows. If S is the input, then A′(S) = hε, and for

any other S ′, A′(S ′) = h′ ∀S ′ 6= S where h′ is any arbitrary non robust and unstable

hypothesis. �

Naturally, in opposition to the probabilistic approach, theorem 3.0.1 and 3.0.2 argue

about problems whose framework considers a fixed tuple (P, S), and so they do not con-

tradict the bounds achieved in classical statistical learning, serving only to show that the

current analysis of the generalization gap is incomplete, needing something other than sta-

bility, VC dimention and so on.

When a triple (S, f, µ) is fixed, |Lµ(f) − LS(f)| is completely determined by its elements

independently of other factors, such as the complexity of the hypothesis space, algorithmic

robustness, stability etc. Investigate sufficient conditions to find hypothesis in this scheme

is potentially advantageous not only because it is more realistic 1 but also hopefully it is

1Practically speaking, in many cases one works on a problem where the dataset and the distribution are
already given.
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better suited to explain the success of deep neural networks, since under overparametriza-

tion the hypothesis space complexity is very large and the statistical bounds might be too

pessimistic.

The theory concerned with this kind of problem is Analytical Learning Theory2, and to the

best of our knowledge was firstly developed in [20]. While classical bounds consider all pos-

sible cases, like the ones based on VC dimension for neural networks, analytical bounds aim

to analyze the generalization gap in a framework where each given dataset is individually

treated, considering only gap bounds that exclusively depends on (S, f, µ), avoiding worst

case scenarios.

In this regard, we ask ourselves the following: what properties that depend only on

(S, f, µ) can we expect to be beneficial for learning, since stableness, robustness, VC dimen-

sion etc might be too pessimistic? Is generalization improved by overparametrization when

a fixed problem instance is considered? The next section is dedicated to the study of [20],

where a general analysis over the gap under the analytical framework is proposed, and we

take it as a natural first step towards answering these questions, leaving [21], which is more

oriented towards neural networks, with a strong reading recommendation3. We should also

remember that, given how recent this approach is, there is not much done yet on the subject

and one cannot be certain that it provides the answers we seek, but in [20] and [21] there is

enough to convince anyone of its theoretical importance.

2Not to be confused with Analytical Learning algorithms, which accepts prior knowledge together with
the data as input ??.

3Even though this paper relates closely with our work since it studies specifically neural networks through
the lens of analytical learning, its comprehension is not required to understand our main results, and so the
choice was made to leave it as a complementary reading.

35



3.1 A first step

As a first step towards answering the aforementioned questions, we study the main result

of [20], an upper bound for Lµ(f)− LS(f) which only depends on the triple (S, f, µ).

We first would like to draw attention that such bounds are not common. For instance,

the one given by the Hoeffding’s inequality (1.1.1) depends on all possible datasets sampled

by all possible distributions, yielding a bound which depends on many factors other than

(S, f, µ). Another example would be the Radamacher complexity shown in Theorem 1.1.3:

when the “expected ability” to fit unstructured data over the hypothesis space is considered,

we take into account all possible cases, losing the capability to capture the properties that

endows a fixed hypothesis a low generalization gap.

All this to argue how such deterministic bounds, from here on termed as instance de-

pendant bounds, are specific, strong and not so obvious to achieve. To have a grasp on how

restrictive this requirement is, notice that any that dependence on the size of the dataset,

but not on the data itself, is not instance dependant, since it concerns any dataset of the

same size.

In order to derive instance dependant bound presented in [20], we must first define two

quantities: discrepancy and variation in the sense of Hardy and Krause4. Also, in order

to adapt this new framework in Analytical Learning, there is a technical basis shift from

probability and statistics to measure theory.

3.1.1 Discrepancy and Variation

Consider a measurable space (Z = [0, 1]d, µ,B) where B is the Borel σ-algebra and µ some

normalized Borel measure. Given a set Tm = {t(i)}ni=1 ⊆ Z, suppose we would like to

estimate how likely this event is in respect to µ. This raises the definition of discrepancy.

Definition 3.1.1. Fixed Tm = {t(i)}mi=1 and t = (t1, t2, . . . , td) ∈ [0, 1]d, let Bt = [0, t1] ×
[0, t2]× · · · × [0, td] be the closed box with a vertex on the origin. Then the local discrepancy

of Tm and Bt is

D(Bt, Tn, µ) ,
1

n

∑
t(i)∈Tn

1t(i)∈Bt − µ(Bt) . (3.1.1)

D(Bt, Tn, µ) serves to measure how consistent Tn is according to µ. For example, if

µ(Bt) = 1
3
, then a set whose a third of its points t(i) belongs to Bt represents µ, and so the

4These concepts, although relatively new to the machine learning field, have already been vastly used in
numerical analysis [17].
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discrepancy vanishes. Also, it is worth noting that, while one may view Tn as a sample for

intuition’s sake, we are treating it as a set in a measurable space with no need for a clear

distribution. Figure 3.1 serves well to give a visualization about what D(Bt, Tn, µ) aims to

measure.

Figure 3.1: [Image taken from [20]] Plots of Tn and Bt in [0, 1]2. If t(i) is coherent with µ,
then the empirical probability is a good approximation for µ(Bt). Reciprocally, if µ(Bt) >>

1
n1t(i)

then the points are out of the box even though the measure µ sees it as “large”, suggesting that the
set Tn does not represent it well.

Since Bt merely compares sizes, we consider the the supremum of (3.1), that is, the

scenario with lowest coherence (highest discrepancy) between Tn and µ(Bt). Thus the star

discrepancy is defined as

D∗[Tn, µ] , sup
t∈Z
|D(Bt, Tn, µ)|.

Now we turn ourselves to the Hardy-Krause variance.

We define a partition P of Z of size m1,m2, . . . ,md as a set {tj}dj=1 of non-decreasing

finite sequences in Z where tj = t
(0)
j , t

(1)
j , . . . , t

(mj)
j . In other words, P is a set of ordered

partitions of each dimension of [0, 1]d, each with its own partition size. In our case we define

such ordering ≤ in Z as

a ≤ b ⇐⇒ ak ≤ bk for all k = 1, . . . , d . (3.1.2)

Given points a = (a1, . . . , ad), b = (b1, . . . , bd) in Z and ` ⊆ {1, . . . , d}, we define a` : b−` as

being the point whose i-th entry is ai if i ∈ ` and bi otherwise. Then, given a real function

g in Z, the difference operator ∆ is defined as

∆[g, a, b] ,
∑

`⊆{1,...,d}

(−1)|`|g(a` : b−`) ,
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j = 1

j = 2

a{1} : b{2}

a{2} : b{1}

a∅ : b{1,2}

a{1,2} : b∅

Figure 3.2: We show above a partition of the positive plane. The parallel rectangle defined by
a = (t13, t

2
1) and b = (t18, t

2
6), highlighting the vertices a` : b−`. Notice that, according to the defined

measure, the entries of a must all be less than b, and so the rectangle defined by them has always
non zero area.

where −` is the complement of `.

In essence, ∆[g, a, b] is the alternating sum of evaluations of g in all vertices of the axis-

parallel rectangle5 [a, b] defined by the ordering in 3.1.2. See figure ?? for more details.

Furthermore, we define the restriction of g to u = {j1, . . . , jk} evaluated at t = (t1, t2, . . . , td) ∈
[0, 1]d as

gu(t) , g(t′)

where t′i = 1 if i /∈ {j1, · · · , jk} and t′i = ti otherwise.

Finally, the variation of g in the sense of Vitali is

V (u)g , sup
P∈Pu

∑
t∈P

∣∣∣∆[gu, t, t+]
∣∣∣ , (3.1.3)

where Pu is the set of all partitions in [0, 1]|u| and t+ is the successor of t in P according to ≤.

In words, by the definition of the difference operator,
∣∣∣∆P [gu, t, t+]

∣∣∣ is the sum of differ-

ences of gu evaluated on all vertices of the rectangle defined by [t, t+]. When the supremum

is taken, we are considering infinitely finer partitions, and so the Vitali’s variation would be

similar to a sum of derivatives. Indeed, if gu is continuous we have the somewhat intuitive

5Indeed, since [a, b] is the set of all points x such that a ≤ x ≤ b, considering the defined norm, [a, b]
equals the interior and the borders of the rectangle.
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result.

Theorem 3.1.1. if gu is a function for which ∂j1,...,jkgj1,...,jk exists on [0, 1]d, then

V (u)g ≤ sup
(tj1 ,...,tjk )∈ [0,1]|u|

∣∣∣∂j1,...,jkgu(t)∣∣∣ , (3.1.4)

if ∂j1,...,jkgu is also continuous,

V (u)g =

∫
[0,1]d

∣∣ ∂j1,...,jkgu(t)∣∣ dtj1 , . . . , dtjk .
The demonstration is omitted due to its solely technical nature. For a detailed proof

see [20], proposition 1.

At last, the variation in the sense of Hardy-Krause is essentially the sum of Vitali’s over

all possible dimension restrictions of all possible sizes:

V [g] =
∑

u⊆{1,...,d}

V (u)g .

3.1.2 The generalization gap in Analytical Theory

As previously mentioned, the motivation to consider Analytical Learning Theory is to pro-

vide a deterministic upper bound to the generalization gap which is strongly instance-

dependant. In the first section we gave an intuitive idea of the properties of such bound.

Here we render this notion precise.

Definition 3.1.2. A problem instance is any tuple (µ, S, `(f)) whose elements specify some

measure, a dataset and a loss function of a hypothesis. For simplicity we leave omitted the

existence of a measurable space, although it is also specified by the measure.

Definition 3.1.3. Let φ be any object which depends on the tuple (µ, S, `(f)). φ is called

strongly instance-dependant with respect to (µ, S, `(f)) if it is invariant under any change of

any mathematical object that contains or depends on any µ̂ 6= µ, Ŝ 6= S, f̂ 6= f .

One example of a φ which is not strongly instance-dependant is the bound derived by

Hoeffding’s inequality. Since it varies according to n, then it would remain invariant for any

Ŝ 6= S of the same size. Our intention is to ignore such bounds since, by translating the

concept of representativity to n, it ignores the elements of the dataset, becoming possibly

loose. Another example would be any bound that depends on the norm of the hypothesis’s

parameter, since one could have many hypothesis whose parameter’s norm are the same.

The Hardy-Krause variation and the star discrepancy are common concepts in numerical

analysis, and in the Hlawka-Koksma inequality ( [17], [23]) they are used to upper bound
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the estimation error made when approximating an integral with a finite sum. The idea of

the main theorem in [20] is to adapt this inequality to the machine learning framework,

hopefully arriving at a strongly instance-dependant quantity.

Recovering our usual notation, let X = [0,1]d be the instance space and Z = X ×Y =

[0,1]d+1 the set of tuples (x, y) = z, that is, the instances coupled with the answer variable.

In the analytical framework we work with measures, so we consider the input space for the

loss function (Z, µ,B) a measure space coupled with a normalized Borel measure µ defined

in the Borel σ-algebra B.

Theorem 3.1.2. ([20])6 Consider f : X → R a measurable function and g : (Z µ,B),→ R
a loss function which depends on f such that V [g] is finite. Then, for any given dataset

S = {z1, . . . zn} ⊂ Zn,

∣∣Lµ(f)− LS(f)
∣∣ ≤ V [g]D∗[µ, S] , (3.1.5)

where

Lµ(f) − LS(f) =

∫
Z
g(z)dµ − 1

n

n∑
i=1

g(zi) .

Remark: In general, the finiteness of V [g] is a rather strong assumption which excludes

many simple non continuous functions, such as the indicator of a ball, as shown in [16]. In

this paper a new less restrictive concept of variation is defined, and a similar bound holds,

albeit some algebraic properties are lost. This note is not made in [20], and since the usage

of this theorem has not seen much applicability in the machine learning scenario yet, is hard

to say if it is too restrictive to the point of needing a new idea of variation.

Proof. At first we present a lemma which will be necessary for the demonstration. Its proof

is technical enough to redirect the reader to [20].

Lemma 3.1.1. Any real valued function g in Z with V [g] <∞ is measurable.

Also, theorem 3 from [3] will be evoked to relate right-continuous functions with signed

measures, but before that, a brief definition is called for.

Definition 3.1.4. Consider a measure space Z equipped with a signed measure ν. Let

ν+ , sup
A⊆Z
{ν(A)}

ν− , sup
A⊆Z
{−ν(A)} .

6Most part of the demonstration is an adaptation of the one found in [3], where a simplified proof of the
generalized Koksma–Hlawka inequality for non-uniform measures is presented.
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Then the total variation of ν is defined as

|ν| , ν+ + ν− .

Theorem 3.1.3. ([3]) Let g be a right-continuous function on Z which has bounded Hardy-

Krause variation. Then there exists a unique signed Borel measure ν on [0, 1]d+1 for which:

g(z) = ν([0, z]) ∀ z ∈ [0, 1]d+1 (3.1.6)

and

|ν|([0,1]d+1) = V [f ] + |f(0)| . (3.1.7)

The idea of the proof is to show equation (3.1.5) in the case where g is left continuous,

and then expand the result for any loss function with finite variation. In order to use (3.1.6),

let ĝ(z) = g(1− z)− g(1). Then ĝ is right continuous and there exists νĝ such that (3.1.6)

and (3.1.7) holds. To have a similar measure for g instead, let us define νg as the reflected

measure of νĝ, i.e , νg([a, b]) , νĝ([1− b, 1− a]). Therefore,

g(z)− g(1) = ĝ(1− z) = νĝ([0,1− z]) = νg([z,1]) .

The fact that |νg|([0,1]d+1) = V [g] follows from equation 20 in [3].

With this correspondence between vg and g at hand, we now rewrite Lµ(f)−LS(f) exclusively

in terms of νg. From the last equation,

g(z) = g(1) + νg([z,1]) = g(1) +

∫
Z
1[z,1](t)dνg(t) = g(1) +

∫
Z
1[0,t](z)dνg(t) .

This means that g(z) may be rewritten as the size of the box [z,1] according to dνg

times V [g]. Now, substituting the integral form of g in LS and Lµ and using Fubini-Tonelli

Theorem, we arrive at

(a) : LS(f) =
1

n

n∑
i=1

g(zi) = g(1) +
1

n

n∑
i=1

∫
Z
1[0,t](zi)dνg(t) ;

(b) : Lµ(f) =

∫
Z
g(z)µ(z) = g(1) +

∫
Z

∫
Z
1[0,t](z)dµ(z)dνg(t) = g(1) +

∫
Z
µ([0, t])dνg(t) .

Thus, with the left continuity assumption of g, the generalization gap becomes

|Lµ(f)− LS(f)| ≤
∫
Z

∣∣∣µ([0, t])− 1

n

n∑
i=1

1[0,t](zi)
∣∣∣dνg(t) =

∫
Z
D(Bt, S, µ)dνg(t) ≤

|Vg|D∗[S, µ] . (3.1.8)

We have then demonstrated (3.1.5) for left continuous functions. The idea now is to
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create a function gm which will be left continuous and behave similarly to g, in a sense that

shall be made precise. But before, some inequalities must be established.

By the the law of large numbers, for a given ε there exists Âm = {ẑi}mi=1 such that∣∣∣∣∣
∫
Z
g(z)dµ− 1

n

n∑
i=1

g(ẑi)

∣∣∣∣∣ ≤ ε

Also, the Glivenko-Cantelli Theorem shows us that the empirical measure of a set B

converges uniformly to µ(B), that is 7,

sup
B ∈Z

∣∣∣µ(B) − 1

m

n∑
i=1

1B(ẑi)
∣∣∣ = D∗[µ, Âm] ≤ ε .

Now we claim the following: for any g defined in Z with finite variation, there exists a

left continuous function gm such that gm(z) = g(z) ∀ z ∈ S ∪ Âm and V [gm] ≤ V [g]. We

shall proceed the demonstration by assuming the existence of such function and after we

construct an example.

Summing and subtracting inside the generalization gap
∫
Z gm(z)µ(z) and 1

n

n∑
i=1

gm(ẑi) we

obtain ∣∣∣∣∣
∫
Z
g(z)dµ− 1

n

n∑
i=1

g(zi)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Z
gm(z)dµ− 1

n

n∑
i=1

g(zi)

∣∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣ 1

m

m∑
i=1

gm(ẑi)−
∫
Z
gm(z)dµ

∣∣∣∣∣︸ ︷︷ ︸
(ii)

+

∣∣∣∣∣
∫
Z
g(z)dµ− 1

m

m∑
i=1

gm(ẑi)

∣∣∣∣∣︸ ︷︷ ︸
(iii)

.

Since gm is left continuous and g(zi) = gm(zi) for all zi in S, we may use (3.1.8) and conclude

that (i) ≤ V [gm]D∗[T (S), Tµ] ≤ V [g]D∗[S, µ]. Moreover, because gm = g in Âm, Glivenko-

Cantelli theorem tells us that (ii) and (iii) are at most ε. Since ε can be made arbitrarily

small by choosing an appropriate Âm, we arrive at (3.1.5).

To show that this definition of gm is not vacuous, we present an example of such function.

Consider the grid G generated by S ∪ Âm ∪ 0 ∪ 1, that is,

G , {z ∈ Z ; ∀k ∈ {1, . . . , d} ∃a ∈ S ∪ Âm ∪ {0} ∪ {1} s.t zk = ak} .

We define gm(z) , g(succG(z)) where succG(z) outputs the highest t in G such that z ≥ t

according to the ordering defined in (3.1.2). First note that by construction gm is left-

7Here we are suppressing the step where we take the biggest m such that Âm satisfies both inequalities
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continuous coordinate wise. Additionally, S ∪ Âm ⊂ G and succG(z) = z ⇐⇒ z ∈ G, and

so gm(z) = g(z) for z ∈ S ∪ Âm. As for variation, gm is a piecewise constant function whose

partitions are given by G, so V [gm] ≤ V [g]. �

First and foremost, one must see that this adaptation of the Hlawka-Koksma bound

for Machine Learning considers a problem instance (µ,Z, g(f)), and as such it is strongly

instance-dependant. Indeed, the generalization gap bound is composed by two terms:

• V [g]: A measure of variance of the loss function for a given hypothesis f .

• D∗(S, µ): A term that encases all influences of S in the generalization gap. It gauges how

representative the dataset is according to the measure and only depends on µ and S.

Note that (3.1.5) is invariant to any complexity measure of the hypothesis space or al-

gorithm. Given a hypothesis, the bound tells us that all that matters is V [f ], regardless of

the numbers of parameters, meaning that overparametrization could be valuable as long as

it reduces the loss function’s variance.

By ignoring other possible outcomes originated by the stochasticity of the sample or the

algorithm, (3.1.5) gives a deterministic tight bound, giving a clearer understanding about

what matters given a realization. For example, it sustains the concept of one-shot learning,

since even in the case where n = 1, as long as the hypothesis has zero training error, and

the loss functions, low variance, it will have a high performance.

More importantly for our case, it also translates the idea of stability previously presented

in the stochastic case. Indeed, when g = `(f) ∈ C∞, V k[gj1,...,jn ] becomes the continuous

sum of |∂j1,...,jkgj1,...,jk |, that is, the sum over all points of variations of gj1,...,jk according

to local changes in zj1 , . . . , zjk , meaning that V [g] gauges the overall prediction’s stability

according to the inputs. For instance, if g is unstable in a certain open set with respect to

disruptions of a certain combination of variables, then it will contribute greatly to Hardy-

Krause Variation. In the eyes of classical statistical learning this notion is applied in the

context of algorithms, and the disruptions considered are usually in the sample or parame-

ters, as noted in chapter 2.

All this to conclude that in Analytical Learning Theory, being a study of the learning

process after S and f are given, the generalization bound depicts the classical regularization

factor of stability in another form, obliging us to accordingly change its interpretation. In the

next section we push further rational and attempt to link it with information compression.
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3.2 A formal analysis of Compression

Unlike in [20], where an algorithmic analysis is developed, here we are mostly interested in

the theoretical idea of stability suggested by V [g] and how it relates with mutual informa-

tion.

As seen in chapter 2, definitions which try to encapsulate this concept are many, but in

general, an algorithm is considered stable if similar datasets yield similar hypothesis. In

Analytical Learning Theory this concept’s importance is somewhat maintained, but in a

different context. When a problem instance is fixed, (3.1.5) decouples the factors that de-

pend on the dataset and the hypothesis, evidenciating the Hardy-Krause Variation as the

property which characterizes the stability of a predictor, but now relative to changes in the

instance space and not S. So this notion remains of great importance in the Analytical

Learning perspective just as it is in the classical one, preserved in the form of the loss func-

tion’s Hardy-Krause variation.

However, before further discussions on information8, an issue lingers: (3.1.5) establishes

a relationship between the generalization gap and the Hardy-Krause variation of the loss

function, omitting the hypothesis f . So far we have always referred to the stability of g,

but in Machine Learning we wish to know the properties of the predictor which yields a low

generalization error, and thus remains to be exposed some kind of similarity between V [g]

and V [f ]. We elaborate on that herein.

We assume a teacher-student scenario: let X be a vectorial space with dimension d and

suppose that the labels are obtained by the rule f ∗, where f aims to approximate it according

to the loss g(x) = (f(x)− f ∗(x))2. We first start with a naive approach, using the partial

derivatives to extrapolate properties for the variance.

∂g(x)

∂xi
= 2(f(x)− f ∗(x))(fxi(x)− f ∗xi(x)) .

Intuitively, we would like conclude that its is sufficient to control the partial derivatives of

f(x) − f ∗(x) so that the variation of V [g] is small, or in other words, it is sufficient that

the partial derivatives of f are close to the ones of f ∗ to achieve a low V [g]. In the context

of stability, this suggests that the predictor should vary according to the oracle, thus main-

taining the pertinence of each variable in the prediction of x, hopefully reducing V [g].

Indeed, rewriting the partial derivatives as

∂j1,...,jk g , ∂ug

8It should be stressed that, since there is no stochastic phenomena being considered in analytical learn-
ing, the word “information” becomes imprecise. We use it loosely in order to guide our informational
interpretation of V [g], appealing to an intuitive understanding.
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where u = {∂j1,...,jk} ⊆ {1, . . . , d}, we may write a general partial derivative of g as

∂u g = 2
∑
j⊆u

(
fj − f ∗j

)(
f−j − f ∗−j

)
,

and thus

| ∂u g | ≤ 2
∑
j⊆u

∣∣(fj − f ∗j )(f−j − f ∗−j)∣∣ . (3.2.1)

where −j denotes the complement of j.

Thus, we find that in order to decrease |∂ug(x)|, and consequently V [g], it is enough to

make ∂uf(x) close to ∂uf
∗(x) for all k ≤ d. Formally, assuming that f and f ∗ are such that

g ∈ C∞ and using equation (3.1.1) from Theorem 5.2,

V (u)gu =

∫
[0,1]k

∣∣∂ugu(tj1 , . . . , tjk)∣∣dtj1 , . . . , dtjk =∫
[0,1]k

η(tj1 , . . . , tjk)dtj1 , . . . , dtjk

where η(tj1 , . . . , tjk) is a positive function that converges point-wise to zero as

∂ufu(tj1 , . . . , tjk) tends to ∂uf
∗
u(tj1 , . . . , tjk).

Since V [g] is defined as the sum of all V (k)gu over all possible combinations of dimensions,

the above equality gives us a criteria that is sufficient to control V [g] by simply looking at

the partial derivatives of the predictor and of the oracle9, enabling us to derive a direct

and easy to calculate quantity that will conduct the learning process. More concretely, if

∂ufu(tj1 , . . . , tjk) is close to ∂uf
∗
u(tj1 , . . . , tjk) in an open set for all possible restrictions u,

then we can guarantee a reduction of V [g] and therefore of the generalization gap. This

enriches our interpretation, allowing us to equate the variation of the loss function with the

variance disparity of f relative to f ∗.

Its worth stressing that if the variation of both f and f ∗ are close, then V [g] ≤ ε . This

because reduce |V u[f ] − V u[f ∗]
∣∣∣ would require a similarity between the derivatives norm,

which is not sufficient to control (3.2.1). Indeed,

|V u[f ]− V u[f ∗]
∣∣∣ ≤ ∫

[0,1]k

∣∣∣ ∣∣∂ufu(tj1 , . . . , tjk)∣∣− ∣∣∂uf ∗u(tj1 , . . . , tjk)|
∣∣∣dtj1 , . . . , dtjk .

This resonates with what we said before: to reduce V [g], f must create dependency with

the inputs, not only in the same intensity, but with the same sign.

9There maybe are other ways to reduce the loss function’s Hardy-Krause variance, but in the machine
learning framework, approximating the oracle’s derivatives is the most reasonable approach.
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Having elaborated on the relationship between V [f ] and V [g], we now bring information

to the matter. In chapter 2 we explain how mutual information may be seen as an alterna-

tive concept of stability, being able to bound the expected generalization gap. Parting ways

from [20], here we argue how compression, seen in the lens of information theory, relates to

V [g].

In mutual information, we sum variations of the entropy as we change the outcomes

of the input variable, and so, if our uncertainty about Y changes as we see realizations of

X, then both share information. Similarly in the deterministic case, fixing a hypothesis f ,

x = (x1, . . . , xn), ∂f(x)
∂xi

could be seen as a measure of how locally dependant f(x) is of the

i-th entry of x: if the function’s slope peaks according to xi on x, then it means that f(x)

is highly susceptible to changes in the i-th dimension, suggesting us to interpret ∂f(x)
∂xi

as

a measure of pertinence of xi for the prediction. From another perspective, given a set of

points to interpolate, to choose a function of low V [f ] is to choose a function more “oblivi-

ous” and invariant relative to the inputs 10. On the other hand, a function of high oscillation

would be one that reads strongly the information in the inputs, making it more dependant

and unstable.

Motivated by how the Hardy-Krause variation contributes to learning and relates to sta-

bility, we propose an interpretation that sees it as a quantifier of information shared between

the inputs and the prediction, measuring the local participation of each dimension and their

entanglements.

The translation of the relationship between information and stability from the classical

context to the analytical one is rather unique. As far as the statistical approach goes, al-

gorithmic stability is always welcome when it comes to the reduction of the generalization

gap. However, while the reduction of V [g] always contributes, equation (3.1.5) tells us that

the benefits brought by the hypothesis’s variation (in the analytical sense) only goes so far.

The partial derivatives of f must be close to the oracle’s: loosely speaking, if it is much

greater, f is reading more information than it should, yielding in a higher V [g]. Conversely,

if partial derivatives are close to f ∗, then it is reading important information and ignoring

what f ∗ ignores, implying in a tighter gap.

This makes sense when one thinks about the original application of the Koksma–Hlawka

inequality, integral estimations. Regardless of the method used to discretely estimate the

area, a curve of high oscillations will usually make the approximation poorer. The same

reasoning may be applied to Machine Learning when LS is used to approximate Lµ. From

this we draw an important conclusion: when it comes to the reduction of the gap, is in

the loss function where stability is truly important, and in order to achieve it, information

10In the limit case, the constant predictor, having a null Hardy-Krause variation, would read no “infor-
mation” from the inputs.
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must be correctly compressed, that is, f must be stable only where f ∗ also is. This means

that V [g] is a measure of the hypothesis’s compression in relation to f ∗, which is in turn, a

measure of their derivative’s distance.

This chapter was meant to introduce Analytical Learning Theory and our own interpre-

tation of variation as a deterministic information. Having all this in mind, we see these

benefits:

(i) By making parallel with the classic statistical concepts, it brings a clearer understand-

ing of the Koksma-Halwaka Inequality in the Machine Learning context, contributing

to Analytical Learning Theory.

(ii) Being based on partial derivatives, it is easy to manipulate. In particular, it provides a

simple way to analyze information compression during training, unwinding the relation

between training error optimization and stability.

(iii) Together with (3.1.5), we believe that it may also shed light on the overparametrization

paradox in deep networks.

Our goal now is to elaborate on the listed items using the tools here described. On the

next chapter we will use Kernel Theory to detail and formalize (ii), and the last two chap-

ters will be dedicated to develop (iii) by analyzing two papers through the lens of Analytical

Learning Theory.
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Chapter 4

Reproducing Kernel Hilbert Spaces

and Optimization

In a fixed problem instance context, compression can be understood in terms of decay of the

derivatives. For example, if ∂f(x)
∂xi

= 0 then f is using no information from the i-th dimension

when labeling x, that is, it learned that xi is not a relevant feature for that prediction, and

as such its variations should not change it. Equation (3.1.5) shows that if f compression

coincides with the oracle’s, then the gap will be small. However, it remains to be shown

how information reading evolves during learning, and how it may relate to the training error.

Following this reasoning, in this chapter we ask the question: when one trains a hypoth-

esis using a gradient descent method, is there some kind of pattern governing compression

and accumulation of information? In order to answer this question, we need to monitor the

evolution of the partial derivatives during optimization.

In supervised learning, once a dataset S and a hypothesis space H parametrized by a

weight space W is given, an optimization algorithm of the gradient descent class is usu-

ally chosen. The model is parametrizable, and the computation takes place in the weight

space W , as it is represented in (1.1.3). However, while the equivalence between W and H
is of fundamental importance in computations, especially when designing the optimization

algorithm, this approach is often unfriendly to other approaches in studying learning. For

instance, the parametric space representation of functions clouds the generalization analy-

sis, hindering any study of hypothesis complexity that considers objects beyond the weight

magnitudes. Since an akin approach is taken in this work, we ignore the parametric form

unless explicitly stated.

By taking this decision, albeit granting flexibility, the absence of parametrization disal-

lows the use of the classical gradient descent formula. Aiming to restore something analogous

to our resolution before any other further progress, the main objective of this chapter is to

retrieve equation (1.1.3) in its non parametric form, now as an optimization in the function
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space:

fSt+1 , fSt −
2

n

n∑
i=1

(ft(xi)− yi)Kxi , (4.0.1)

where Kxi is the kernel function with one of its entries evaluated at xi.

The theory behind this result is that of Reproducing Kernel Hilbert Spaces (RKHS),

and the preliminaries shall be thoroughly studied in section 4.1. In section 4.2 we restrict

ourselves to the regression problem using square differences as a loss function, following the

reasoning in [35]1, using the results gathered so far to demonstrate that gradient descent in

the RKHS may be described as in (4.0.1).

1In [35]. The formula of the gradient descent in the RKHS is derived in proposition 2.2, but the essential
part of the demonstration is omitted.
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4.1 A brief overview of Reproducing Kernel Hilbert

Spaces

Firstly a brief introduction of Reproducing kernels Hilbert Spaces is provided. We then use

it to arrive at a formula for the gradient descent in the function space, which will be the

basis of our later analysis. In this section we describe RKHS theory oblivious of any aspect

of learning theory, so the reader may fathom its generality.

Kernel is one of those words whose understanding is obscured by its almost ominous pres-

ence in a wild range of fields, always assuming different meanings. In the context of RKHS,

the definition of Kernel is any real2 function of two variables K : X × X → R. This notion

has been frequently used in machine learning, being the theoretical basis for the kernel trick

and the Representer Theorem, demonstrated by Schölkopf, Herbrich, and Smola in 2001 [31].

Consider a Hilbert space H of real valued functions defined in X , a domain with, in

principle, no structure. We may then ask ourselves whether or not the evaluation functional,

defined as ex(f) = f(x), is continuous. If it is, then it belongs to the dual H∗, and so we are

allowed to use the Riesz Representation Theorem [24], giving us the so called reproducing

property :

∀ex ∈ H∗, ∃Kx ∈ H such that ex(f) = 〈 f,Kx 〉H = f(x) . (4.1.1)

When H is such that (4.1.1) holds, we call it a Reproducing Kernel Hilbert Space. This is

because it naturally generates a Mercer kernel, that is, a semi positive-definite, continuous

and symmetric function K : X × X → R defined as

K(x, y) , ey(Kx) = 〈Kx, Ky 〉H = ex(Ky) .

When (4.1.1) holds, not only H produces the above kernel, but it is also generated by the

same one up to a isomorfism, such is he Moore-Aronszayn Theorem [4].

Theorem 4.1.1. (Moore-Aronszayin [4]) Let K be a real Mercer Kernel (positive semi-

definite, symmetric and continuous) function on X ×X . Then there exists only one Hilbert

space HK of functions on X with K as the reproducing kernel, which is given by HK ,

span{Kx/x ∈ X} where Kx( · ) , K(x, · ). Moreover, for f =
∑n

i=1 αiKxi and g =∑m
j=1 βjKxj , the inner product of H is defined as

〈 f, g 〉K ,
n∑
i=1

m∑
j=1

αiβjK(xi, xj) .

2Formally, a kernel might also take complex values, but since we aim for applications in machine learning,
this is a case which we happily abdicate.
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For f and g limits of Cauchy sequences fn, gn ∈ HK, the inner product becomes

〈 f, g 〉K , lim
n→∞
〈 fn, gn 〉K .

The proof revolves around the formalities needed to be taken care when extending the

inner product to the closure and also as to how convergence is given according to the norm

defined by it.

For uniqueness, were there another RKHS H′ with respect to K, we first note that

HK ⊆ H′. Secondly, for all f ∈ H′, f ⊥ HK iff f = 0 because 〈 f,Kx 〉H = f(x) = 0.

Since HK is closed, H′ = HK +H⊥K = H′ would be dense in HK . For a more detailed proof

and deepened study of kernels we recommend [6].

The importance of this result is the characterization of the RKHS exclusively in terms

of K, property that is used in the proof of Lemma 4.2.3. For this reason, we shall forgo in

this work other pathologic kernels, assuming from here on that K is always Mercer, so that

we are supported by the Moore-Aronszayn Theorem.
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4.2 Gradient Descent and RKHS

Now to contextualize, we ask: how does RKHS theory may be embedded in the supervised

learning framework, culminating in (4.0.1)? As a short answer, it all comes down to an

isomorphism between a RKHS and the space of square integrable functions L2(µ). We elab-

orate as follows.

Consider the instance space X , label space Y = [−M,+M ] and the dataset S ∈ Zn =

(X × Y)n. We define the loss function as

Lµ(f) ,
∫
Z

(f(x)− y)2 dµ , (4.2.1)

where µ is a probability measure in Z. Since we are now working under the learning theory

scheme, we will assume that X is a compact metric space.

Now, turning our attention to the hypothesis space, we carry out as general as possible,

defining H as the space of all functions f where (4.2.1) is finite, that is, L2(µ). So,

Lµ : H = L2(µ)→ R .

Defining µx ,
∫
X dµ we have that µ = µy|x × µx. Additionally, the function which

minimizes Lµ is

fµ(x) ,
∫
Y

y dµy|x ; fµ = argmin
f∈L2(µx)

Lµ(f) . (4.2.2)

Therefore, the class of functionals that minimize Lµ lie in L2(µx), and so, if we are to

run an algorithm to optimize it, we might as well set L2(µx) as the choice space.

From here on we follow the reasoning in [35]. Although the main result is not of our

interest, here we work towards providing a detailed demonstration of its Proposition 2.2,

which states the gradient descent formula in the RKHS.

Naturally, the goal of a machine learning model is to find a hypothesis in L2(µx) whose

prediction is as close as possible to those of fµ. Under a few conditions, however, it is pos-

sible to prove that there is a RKHS isomorphic to L2(µx), allowing us to write the gradient

descent algorithm in terms of the kernel. The rest of this chapter is dedicated to prove this

claim.

We first state a trivial Corollary of the Moore-Aronszayn theorem, showing us how to

construct the unique RKHS given a kernel K.
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Corollary 4.2.1. Let K : X × X → R be a Mercer kernel. Then the set defined as

HK , span{Kx/x ∈ R} , where Kx( · ) , K(x, · ) ,

is a RKHS with respect to the linear extension of the inner product 〈Kx, Ky 〉K , K(x, y ) .

The intent is to find a link between L2(µx) and the RKHS. Firstly one must notice that,

since K is Mercer and X is compact, Kx ∈ L2(µx) and therefore the elements of HK are in

L2(µx), although they have different topological structures (inner product).

A natural way to construct the isomorphism is to project a given function from L2(µx)

in the space where Kx acts as some kind of basis, in hopes that property (4.1.1) is valid on

that component of f . Formally,∫
X
Ky(x)f(x) dµx = 〈 f,Ky 〉 ,

where 〈 ·, · 〉 shall denotes the Euclidean norm and inner product of L2(µx).

This quantity is a function of y and measures the alignment of f and Ky. Notice that were

Ky an orthogonal basis for L2(µx) then the above would be the f ’s coordinate corresponding

to Ky. Indeed, we shall see further on that this reasoning is not far from the truth. Moreover,

the inner product of an element from L2(µx) and K defines, not by coincidence, a linear

transformation which plays a central role in kernel theory3:

TK : L2(µx)→ C(X ) ; TK(f)(·) =

∫
X
K(x, · )f(x) dµx , (4.2.3)

where C(X ) is the Banach space of all real continuous functions in X . This last assertion is

not so direct and we justify it in the following lemma.

Lemma 4.2.1. TK(f) ∈ C(X ) for all f ∈ L2(µx).

Proof. Since X is compact, Kx is uniformly continuous for all x, that is, given ε ≥ 0 there

is δ ≥ 0 such that |Kx(y)−Kx(z)| ≤ εx for all ||y − z||X ≤ δ. Then, for such y and z,

|TK(f)(y)− TK(f)(z)| =∣∣∣ ∫
X

(K(x, y)−K(x, z))f(x)dµx

∣∣∣ =

|〈 f,Kx(y)−Kx(z) 〉| ≤
||Kx(y)−Kx(z)|| ||f || ≤√
µx(X ) max

x
|Kx(y)−Kx(z)| ||f || ≤ ε||f || for all x, y, z ∈ X ,

3Note that T (f)(·) = 〈 f,K( · , x) 〉. When this relation holds we say that K is the kernel of TK , which
is unique.
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where in the last line we used the fact that (Ky −Kz)(x) admits a finite maximum since X
is compact. �

Since the image of TK is continuous, then it is also square integrable. So, with some

abuse of notation, we redefine its codomain by adding an inclusion mapping4, embedding

its image in L2, yielding TK : L2(µx)→ L2(µx).

As it just so happens, TK is actually a compact map, that is, the image of a compact

set is relatively compact (a set is relatively compact if its closure is compact). This prop-

erty unlocks numerous results, most notably the Spectral Theorem for compact operators,

unveiling strong consequences. But before proving the compactness of TK , we must state

previously a Theorem that shall aid us:

Theorem 4.2.1. (Arzelá-Ascoli Theorem) Let X be a compact metric space. Then a subset

B of C(X ) is relatively compact in the topology induced by the uniform norm if and only if

it is equicontinuous 5 and pointwise bounded 6.

Lemma 4.2.2. The transformation TK defined in (4.2.3) is compact, that is, the image of

a compact set is relatively compact.

Proof. The idea is to apply the Arzelá-Ascoli Theorem in the image of TK applied in the

ball of radius r, Br ⊆ C(X ).

Let f ∈ Br ⊆ C(X ) and fK , TK(f). To prove point wise boundness of TK(Br) we use the

Cauchy-Schwartz inequality and the Reproducing property, giving us

|fK(x)| = |〈 f(·), K(x , ·) 〉| ≤ ||f || ||Kx|| ≤ ||Kx||r ∀fK ∈ TK(Br) .

For equicontinuity we use again Cauchy-Schwartz paired with the uniform continuity of K,

fK(y)− fK(y0) =

∫
X

[K(x, y)−K(x, y0)]f(x) dµx =⇒

|fK(y)− fK(y0)| ≤ |〈 f,Ky −Ky0 〉| ≤
||f || ||Ky −Ky0|| ≤ εr ∀y such that ||y − y0|| ≤ δ .

Note that δ, whilst possibly dependant on y0 and ε, it is constant on f , which implies that the

image of any bounded set with respect to TK is equicontinuous. Gathering these two results,

by the Arzelà–Ascoli theorem, all sequences in TK(Br) must admit a uniformly convergent

subsequence, and so it must also admit one converging in L2(µx).

�
4This is due to a technicality, since while an element of C(X ) is a function, in L2(µx) it is a class.
5We say that a set A ⊆ C(X ) is equicontinuous if ∀xandε ≥ 0, exists a neighborhood of x Ux such that

for every f ∈ A, y ∈ X , |f(y)− f(x)| ≤ ε.
6We say that a set A ⊆ C(X ) is pointwise bounded if for every x, supf∈A{f(x)} ≤ ∞.
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Hence, by the Spectral Theorem for compact operators, there exists {λi}∞i=1 and an

orthonormal basis {ei}∞i=1 of L2(µx) such that TK(ei) = λiei. Or in other words, the eingen-

functions of TK form a basis in the domain. Also, since the mapping TK is continuous, we

can choose ei to be continuous7.

With this in mind, We are now able to state the result demonstrated by James Mercer in

1909, known as the Mercer’s Theorem. It shows that the kernel’s coordinates are equal to

the eigenvalues of TK , each of which corresponding to an eigenfunction, implicating that the

kernel and the operator defined by 4.2.1 are related one to one. This result is the essence of

the representer theorem and essential for our work.

Theorem 4.2.2. (Mercer’s Theorem) Let K be a Mercer kernel defined in X × X , then

{λi}∞i=1 are strictly positive and

K(x, y) =
∞∑
i=1

λiei(x)ei(y) , (4.2.4)

where the convergence is uniform in X × X and absolute for each (x, y) ∈ X .

Proof. [6] �

Indeed, all Mercer kernels may be written in terms of functions mapping the set of

instances to a Hilbert Space φ : X → H, commonly called feature maps, such that K(x, y) =

〈φ(x), φ(y) 〉H holds. The above theorem shows this correspondence by setting H = `2

and φ(x) = {
√
λiei(x)}∞i=1 , where `2 is the space of real sequences x = {xi} such that∑

x2
i ≤ ∞.

Since the kernel’s action is completely characterized by the operator, a natural step is to

characterize the whole space HK in terms of the eigenfunctions and eigenvalues. Finally, the

isomorphism follows as a corollary.

Lemma 4.2.3. Given a Mercer kernel and TK a compact operator defined in (4.2.3), then

HK = H0 ,
{
f ∈ L2(µx) ;

∞∑
i

〈 f, ei 〉2

λi
< ∞

}
. Moreover, for f, g ∈ HK ,

〈 f, g 〉K = 〈 f, g 〉H0 ,
∞∑
i

〈 f, ei 〉〈 g, ei 〉
λi

. (4.2.5)

Proof. Note that all there is to prove is that H0 is a RKHS with respect to K and to the

inner product defined in (4.2.5), since by the Moore-Aronszayn theorem, the RKHS must

be unique.

Obviously, H0 is a normed vectorial space under || · ||H0 and (4.2.5) is an inner product. As

to completeness, the demonstration is analogous to that of the completeness of `2, and so

7Given an equivalence class ẽj , we may assign to it a continuous function ej , λ−1j 〈 ẽ(x),K( · , x) 〉 ∈
C(X ).
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H0 is a Hilbert Space.

As for the reproducing property, using equation (4.2.4),

〈Kx, ej 〉 = λjej(x) =⇒
∞∑
j

〈Kx, ej 〉2

λj
=

∞∑
j

λjej(x)2 = K(x, x) ≤ ∞ .

Therefore Kx ∈ H0, and so, for f ∈ H0, 〈 f,Kx 〉K is well defined, giving

〈 f,Kx 〉H0 =
∞∑
k

〈 f, ek 〉〈Kx, ek 〉
λk

=
∞∑
k

〈 f, ek 〉
λk

∞∑
i=1

λiei(x)〈 ei, ek 〉 =

∞∑
k

〈 f, ek 〉ek(x) = f(x) .

Thus, H0 has the reproducing property. By the Moore-Aronszajn Theorem, it must be then

isomorph to the closed span of Kx. �

Corollary 4.2.2. T
1
2
K is an isomorphism between HK and L2(µ)

/
ker(TK) , where the frac-

tional operator T rK is defined as T rK(ei) = λri ei ∀r ∈ R.

Proof. Since T
1
2
K is linear, the algebraic structure is preserved, and so is enough to show that

it is an isometry. Using the decomposition of f in terms of the basis,

||T
1
2
k (f) ||2K =

∣∣∣∣∣∣ ∞∑
i

√
λi〈 f, ei 〉ei

∣∣∣∣∣∣
K

=
∞∑
j

∑
i λi〈 〈 f, ei 〉ei, ej〉2

λj
=

∞∑
j

λj〈 f, ej 〉2

λj
=

||f ||2 .

�

Hence, T
1
2 maps each feasible point of the optimization in (4.2.2) to a point in HK ,

preserving both topological and algebraic structures. The function to be minimized is yet

the same, but not y the optimization of Lp(f) via gradient descent in L2
µx is equivalent to

the optimization in HK . The reason to use this equivalency is because gradient descent may

be written in a simple way in the RKHS. In this endeavor we remind the definition of a

Fréchet’s derivative.

Definition 4.2.1. Let V and W be normed vector spaces and U ⊂ V be an open subset of

V . A function L : U → W is called Fréchet differentiable at v ∈ U if there exists a bounded

linear operator T : V → W such that

lim
h→0

||L(v + h)− L(v)− Tv(h) ||W
||h ||V

= 0 . (4.2.6)

We call DL(v) , Tv the Fréchet derivative of f at v.
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Theorem 4.2.3 ([35]). The derivative of the functional V : HK → R , V (f) , (f(x)− y)2

at f is given by

DV (f)(·) = 〈2(f(x)− y)Kx, · 〉K .

Proof. Developing the numerator in (4.2.6),

|V (v + h)− V (v)−DV (f)(h) | =

| (f(x) + h(x))2 − 2(f + h)(x)y + 2f(x)y − f(x)2 −DV (f)(h) | =

| 2f(x)h(x) + h(x)2 − 2h(x)y −DV (f)(h) | =

| 2f(x)h(x) + h(x)2 − 2h(x)y − 2(f(x)− y)h(x) | = h(x)2 .

Now, using the definition,

|V (v + h)− V (v)−DV (f)(h) |
||h ||K

=
h(x)2

||h ||K
≤ ||Kx ||2K ||h ||2K

||h ||K
= ||Kx ||2K ||h ||K =⇒

lim
h→0

|V (v + h)− V (v)−DV (f)(h) |
||h ||K

= 0

where in order to achieve the inequality we used

h(x)2 = 〈h,Kx 〉2K ≤ ||Kx ||2K ||h ||2K .

�

Therefore, the gradient map of V is gradV (f) = 2(f(x) − y)Kx. That is, for each f ,

gradV maps f to the function in H which represents the functional DV (f) ∈ H∗.
Given a dataset S = {(xi, yi)}ni=1 and using the linearity of the Fréchet’s gradient, gradLS(f)

may be written as

gradLS(f) = grad(ÊS[V (f)] = ÊS[gradV (f)] =
2

n

n∑
i=1

(f(xi)− yi)Kxi ,

where ÊS is the empirical average over S.

Therefore, defining fSt as the hypothesis given by gradient descent in the t-th step, we arrive

at the iteration rule in the RKHS mentioned in (4.0.1):

fSt+1 , fSt −
2

n

n∑
i=1

(ft(xi)− yi)Kxi .

As previously mentioned, the advantage of this reformulation is the means it provides to

track the derivatives’s evolution during the optimization. Indeed, to describe the behaviour

of ∂uf we may simply derive the above equation, as states Theorem 1 in [38]:

Theorem 4.2.4. ([38] Let s ∈ N and K a Mercer kernel defined in X × X such that

K ∈ C2s(X × X ). Then follows that, For all x ∈ X and u :
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(i) ∂u(Kx) = (∂uK)x ∈ HK .

(ii) For f ∈ HK, 〈 f, ∂uKx 〉HK = ∂uf(x) .

Thus, since the gradient descent is contained inside HK , which in turn contains the

derivatives of power less or equal to s of Kx , we may write

∂uf
S
t+1 , ∂uf

S
t −

2

n

n∑
i=1

(ft(xi)− yi)∂uKxi .

We have then derived an analytical way to describe the derivatives of the function in each

step of the gradient descent.

Assuming again the existence of an oracle f ∗, the quality of information compression

may be measured by the distances of all partial derivatives |∂uf − ∂uf
∗|. Having this is

mind, a natural question is how the information compression relates to the training error.

The above equation shows that the derivatives evolve according to ∂uKxi , weighted by the

error in each point of S. This means that the convergence of the variation depends only

on the error in each point of the dataset. Furthermore, assuming that the Kxi are linearly

independent, the derivatives of f will be skewed towards the direction whose corresponding

point had the most contribution to error during training.

Also, the result is consistent with the early stop heuristic, since by interrupting learning

before a certain threshold one is preventing the variation to increase even further.

Finally, it should be mentioned that this result is well known in kernel theory. Our

intention presenting it is to expand its utility, not simply because it is the correct approach

in displaying the optimization for analytical learning, but also because it sheds new light on

our concept of information compression.
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4.3 Final Remarks

Having settled the formalities, in this section we attend to brief observations which we hope

clarify the discussion in the last two sections. The following reading is by no means a

necessity for the final objective of this work and the reader may disregard it if need be.

Notice that during this chapter the Mercer kernel K was always assumed arbitrary, and thus

are free to choose the space HK in which he wishes to optimize. We list a few examples for

concreteness so that the reader may have a firmer grasp about these mappings.

• Polynomial Kernel: Let x, x′, c ∈ X = Rm. The polynomial kernel is given by

K(x, x′) = (x · x′ + c)d .

Developing the equation, we may derive the corresponding feature map. For simplicity

we incorporate the constant c by setting x0 = c, x′0 = 1.

K(a, b) =

(
m∑
i=1

xix
′
j + c

)d

=

(
m∑
i=0

xix
′
j

)d

=

∑
J∈{0,1,...,m}d

d∏
i=1

xJix
′
Ji

=
∑

J∈{0,1,...,m}d

d∏
i=1

xJi

d∏
i=1

x′Ji ,

where Ji is the i-th entry of the vector J .

Hence we define ψ : X → R(m+1)k as ψJ(x) ,
∏m

i=1 xJi for every J ∈ {0, 1, . . . , n}k,
and so 〈ψ(x), ψ(x′)〉 = K(x, x′).

Notice that ∑
J∈{0,1,...,m}d

wJψ(x)J

is an polynomial of degree d in its general form. If one were to solve a classification

task by learning the space of all halfspaces h ∈ H, hw(x) , 〈w, x〉X , then by means

of the kernel trick one could choose to learn it in the feature space 〈w,ψ(x)〉X , which

corresponds to a polynomial regression of degree k.

• Gaussian Kernel: Let x, x′ ∈ X = R. Then the Gaussian kernel is given by

K(x, x′) = e−
||x−x′||2

2σ .

Here the instance space is mapped to the space of square convergent sequences `2.

Indeed, consider ψ : X → `2 where the n-th element of the sequence is ψ(x)m ,
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1√
m!
e− x

2

2
xm. Then

〈ψ(x), ψ(x′)〉`2 =
∞∑
n=0

(
1√
m!
e−

x2

2σxm

)(
1√
m!
e−

(x′)2
2σ (x′)m

)
=

e−
x2+(x′)2

2σ

∞∑
i=0

(
(xx′)m

n!

)
= e−

(x−x′)2
2σ ,

where in the last line we used the formulation in infinite series of the exponential.

Note that if x = x′ and σ = 1 then ||ψ(x)||`2 = 1, so in this case the Gaussian kernel

normalizes the previous notion of similarity in the original space.

The kernels listed above are the most common in machine learning practice. Maybe unsat-

isfied, one might ask how to conceive other Mercer kernels, and the answer is surprisingly

simple: there are as many Mercer kernels on a Hilbert space X as there are bounded linear

operators T : X → X which are self adjoint and positive semi-definite. Indeed, these spaces

are isomorphic and correspond to each other in the following manner.

Lemma 4.3.1. Let X be a Hilbert space with inner product 〈·, ·〉X . Then K : X × X → R
is a Mercer kernel if and only if there exists an operator T following the above assumptions

and

K(x, x′) = 〈x, T
(
x′
)
〉X .

Notice that if T can be factored into fractional operators T 1/2 such that T
1
2 ◦ T 1

2 = T ,

then we can write K(x, x′) = 〈T 1
2

(
x
)
, T

1
2

(
x′
)
〉X , and we also have the feature map.

Finally, its worth mentioning that the feature map corresponding to a kernel K may not

be unique. For example, consider X = R. Then K(x, x′) = xx′ admits ψ1(x) = x and

ψ2(x) = x√
2
(e1 + e2) as its feature maps, with corresponding feature space being R and R2

respectively.
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Chapter 5

A Fourier analysis of Neural Networks

So far, after introducing Reproducing Kernel Theory, we developed on the main concept

which will be used from now on, the Hardy-Krause Variation. On this chapter, we use it to

guide us through the reasoning and results from [28]. On this article, by the usage of spec-

tral theory, a regularization approach using frequencies is taken, and ReLU Neural Networks

are found to show a special behaviour. However, nothing is said about the generalization

gap or overparametrization.

On section 5.1 we present the main concepts and results of [28], making parallels with

generalization. On section 5.2 we attempt to link the results drawn from Fourier theory to

with the Hardy-Krause Variation and its stability interpretation described in chapter 4. In

subsection 5.2.1 we generalize the main results of [28] to V [f ], and in 5.2.2 we give a qual-

itative argument towards a possible contribution to generalization in the overparametrized

regime.
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5.1 An implicit regularization

As exposed before, many evidences point to a possible implicit regularization in neural net-

works, as if the very choice of this hypothesis space favored simple functions. In the last

chapter, we used a deterministic bound to attempt to track down a regularization factor that

might help understand learning in neural networks, and by using a compression oriented in-

terpretation, we studied how it evolved during gradient descent in an arbitrary hypothesis

space. Here we complete our work by proceeding with our analysis, now restrained to ReLU

neural networks, arriving at interesting results. In such endeavor, however, new tools are

required.

We will explore the work of [28] which displays an investigation of ReLU networks using

Fourier theory, showing that choosing this hypothesis space implies in a certain inclination

for fitting lower frequencies. Before delving into it we stress that the generalization error is

not the main object of this chapter (and neither of [28]), but in order to elucidate DNN’s

learning behaviour we ought to understand the implications of choosing it as the hypothesis

space.

Many results have been derived for linear neural networks, including an almost complete

analytical description of their training dynamic 1. However, these have limited relevance in

practice and are studied to expand the results to the non linear networks, hopefully gen-

eralizing some properties. ReLU activation functions represent the simplest non linearity,

making their study a natural first step towards understanding general architectures, one

that we take in this chapter.

5.1.1 The Main theorem

Let f : Rd → R be a ReLU neural network with L − 1 hidden layers, all composed by

N neurons. Throughout this work we assume that f has a compact support, a reasonable

supposition for all practical matters. We may then write f as

f = T (L) ◦ r ◦ · · · r ◦ T (2) ◦ r ◦ T (1) , (5.1.1)

where r(x) = max(0, x) is applied coordinatewise, T (l) is an affine transformation from RN

to RN for 1 < l < L, and TL : RN → R , T 1 : Rd → RN .

To analyze the behaviour of networks in the frequency domain, one must have some

kind of access to its Fourier’s transform. However, is too complicated to simply apply the

transform, so we need another way to make this approach tractable. This is a first advan-

1 [30]
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tage gained from the ReLU assumption: being a composition of piecewise linear functions,

f must then also be piecewise linear2. Hence, the first objective of [28] is to write f as the

sum of affine functions times an indicator, unwinding the contribution of each T l in each

linear region.

Therefore, we must first try to discriminate such regions. Since the non-linearity of f

comes solely from the presence of r in (6.1.1), a linear region P is one where the neurons

clipped by the activation function are the same neurons, that is, the region of all x where

r ◦ T l(x)|P acts as a linear transformation for each l. For the example where l = 1 , defin-

ing T
(1)
i as T (1) with the i-th row set to zero, then r ◦ T (1)(x) = T

(1)
i (x) for all x where

[T (1)(x)]i ≤ 0. Thus, the linear region Pi of T
(1)
i (x) is the one which induces the activation

pattern where the i-th neuron is clipped. Naturally, there will be as many linear regions

as there are activation patterns, which in turn increases exponentially with the number of

layers and vertices. In this example, the number of combinations of null rows in T (1) equals

the number of linear regions of r ◦ T l(x)|P , that is, 2d.

Formally, given an activation pattern e(1) , e(1) ∈ {−1, 1}N , we define

[T
(1)

ε(1)
(x)]i =

[T (1)(x)]i if ε
(1)
i = 1.

0 otherwise.
(5.1.2)

Hence, for a given activation pattern, the points x which reproduces it satisfy(
ε

(1)
i

) [(
T

(1)

ε(1)

)
(x)
]
i
≥ 0 i = 1, . . . , N .

Notice that the points where the above is negative are exactly the points where 5.1.2

does not behave like r ◦ T 1(x).

Expanding this reasoning for any number of layers, consider a set of L binary vectors

e = {ε(1), . . . , ε(L)} with ε(l) ∈ {−1, 1}N , where f(x) will behave linearly when ε
(l)
i = −1

under the x’s which nullify the i-th entry of the l-th layer (view figure 5.1). This then allows

us to parametrize the linear regions (or equivalently, activation patterns) with a binary

vector. Also, let [T
(l)

ε(l)
(x)]i be defined as in (5.1.2). Hence, fixed e, the points that belong

to the linear region associated with it are characterized by the following inequality (for all

l = 1, · · · , L): (
ε

(l)
i

)[(
T (l) ◦ T (l−1)

ε(l−1) ◦ · · · ◦ T
(1)

ε(1)

)
(x)
]
i
≥ 0 , i = 1, . . . , N .

We now structure the above conclusions in the following Theorem:

Theorem 5.1.1. ([28])

2Indeed, given two piecewise linear functions f1 and f2, then the linear regions of f defined by f(x) =
f2(f1(x)) will simply be f−11 (Ai), where Ai are the linear regions of f1
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x1
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Figure 5.1: A graph representation of a ReLU network with d = 4, L = 3, N = 5, e1 =
{1,−1, 1, 1,−1}, e1 = {1,−1, 1, 1, 1}. The red lines irradiating from neuron 2 and 3 in the first
layer indicate that [T 1(x)]2 and [T 1(x)]5 are negative for a fixed choice of x (analogously for layer
2). All x which convey this pattern in the network will belong to the same linear region, since this
behaviour is equivalent to ignoring r and simply nullifying the second and fifth row of T 1 and the
second one of T 2.

Consider f defined in 6.1.1. Then it may be written as

f(x) =
∑

ε(1),··· ,ε(L)

1Pε(x)
(
T (L) ◦ T (L)

ε(L) ◦ · · · ◦ T
(1)

ε(1)

)
(x) ,

where ε = {ε(i)}Li=1 and 1Pε denotes the indicator function of the N dimensional polytope 3

Pε ∈ Rd, defined as the set of solutions for the following inequalities (for all l = 1, · · · , L):(
ε

(l)
i

)[(
T (l) ◦ T (l−1)

ε(l−1) ◦ · · · ◦ T
(1)

ε(1)

)
(x)
]
i
≥ 0 , i = 1, . . . , N .

Corollary 5.1.1. Given a ReLU neural network defined as in (6.1.1), then we may write it

in a linear spline format

f(x) =
∑
ε

1Pε(x)(wεx+ bε) , (5.1.3)

where wε ,
∏ L+1

l=1
W

(l)
ε , and W

(l)
ε is the matrix of T (l) with its i-th row set to zero when-

ever εli = −14.

Needless to say, being able to write f in its piecewise linear form is extremely useful. In

our case, it provides the means to calculate its Fourier transform, here defined as

f̃(k) =

∫
Rd
f(x)e−ikxdx ; f(x) =

1

2π

∫
Rd
f̃(k)eikxdk .

We remind the reader that since we are assuming that the network f is a real continuous

3For us a polytope is a finite intersection of half spaces.
4We use the notation wε because

∏ L+1

l=1
W

(l)
ε is a vector since the network’s output is a real number.
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function with a compact support, its Fourier transform is well defined. Also, as it was in

the other chapters, || · || will denote the Euclidean norm.

Theorem 5.1.2. ([28])The Fourier transform of f defined in (5.1.3) is given by

f̃(k) =
∑
ε

wεk

i||k||2
1̃Pε(k) . (5.1.4)

Proof. For a fixed frequency vector k, the vector-valued function (f(x)eik·x) k is continuous

and has continuous derivatives almost everywhere (because of f(x) piecewise linearity).

Since f has a finite support, the divergence Theorem gives us∫
Rd
∇x · [kf(x)e−ik·x]dx =

∮
Γ

kf(x)e−ik·x · ndx = 0

for Γ being any closed surface outside the support, n its normal and ∇x the divergent.

Because in the above equation k is seen as a constant, the integrand on the left may be

calculated as follows5:

∇x ·
[
kf(x)e−ik·x

]
=

n∑
j=1

∂xj

[
kjf(x)e−ik·x

]
=

n∑
j=1

kjfxj(x)e−ik·x +
n∑
j=1

−ik2
jf(x)e−ik·x

= k · (gradxf)(x)e−ik·x − i||k||2f(x)e−ik·x .

Substituting the above result in the integral,∫
Rd
k · (gradxf)(x)e−ik·x − i||k||2f(x)e−ik·x dx = 0 −→∫

Rd
k · (gradxf)(x)e−ik·xdx =

∫
Rd
i||k||2f(x)e−ik·xdx = i||k||2f̃(k) −→

f̃(k) =
1

i||k||2
k ·
∫
Rd

(gradxf)(x)e−ik·xdx ,

where the last integral is taken over each component of the gradient vector. Using (5.1.3),

gradxf(x) =
∑

εwε1Pε(x), and so

f̃(k) =
1

i||k||2
∑
ε

k · wε
∫
1Pε(x) e−ik·xdx =

∑
ε

wε · k
i||k||2

1̃Pε(k) .

�

Now we are left with the Fourier transform of an indicator function of a polytope. Fact

is that 1̃Pε is a fairly intricate object, and it is not so easily derived. In [13] a recursive

application of Stokes Theorem is used in order to calculate it, the demonstration, however,

is beyond the scope of this work. Moreover, we are not interested in the exact Fourier

5We remember the reader that the divergent for a vector valued function u is defined as ∇xu =∑n
j=1 ∂xj

uj .
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transform of f , but in how its spectral magnitude depends on ||k||, so its enough for us to

evoke lemma 2 from [28].

Lemma 5.1.1. Let P be a full dimensional polytope in Rd. Then

|1̃P (k)| = O

(
1

k∆
(P )
k

)
. (5.1.5)

where 1 ≤ ∆
(P )
k ≤ d and ∆

(P )
k = j when k is orthogonal to some (d− j) dimensional face

of P .

For our later conclusions in this section ∆
(P )
k will play a central role, so it is worth in-

vesting time discussing it.

A polytope is a generalization of a polyhedron to higher dimensions. P may be seen as

a gathering of j-dimensional polytopes, j < d, which are called its j-th facet. For example,

if P is a cube, then the planes are the 2-th facet and the edges the 1-th one. The theorem

above states that the spectrum’s decay of |1̃P (k)| has order equal to the smallest codimen-

sion6 among all facets of P to which k is orthogonal. In the case when k is not orthogonal

to any facet of Pε, then ∆(Pε) = d.

This result shows that the behaviour of |1̃P (k)| is highly anisotropic, that is, the frequency

magnitude’s decay depends heavily on the direction of the vector k, since orthogonality is

paramount. Additionally, since Rn may be decomposed into a direct sum A⊕A⊥, it means

that the space of all k’s that are orthogonal to a (d− j)-dimensional subspace has dimension

j. Therefore, as we increase j, almost all directions will have a high ∆
(P )
k according to a

Lebesgue measure7.

Putting together (5.1.4) and (5.1.5), we arrive at the main Theorem of [28], which gives

the spectral decay of ReLU networks.

Theorem 5.1.3. ([28]) The coordinates norm of a ReLU neural network f in its Fourier

domain satisfy

|f̃(k)| = O

(
NfLf

||k||∆
(P )
k +1

)
,

where Nf is the number of linear regions, ∆
(P )
k , min

ε
∆

(Pε)
k and Lf , max

ε
||wε|| is the

Lipschitz constant of f .

Proof. Using (5.1.4), (5.1.5) and Cauchy-Schwartz,

|f̃(k)| ≤
∑
ε

∣∣∣∣∣ wεki||k||2

∣∣∣∣∣|1̃Pε(k)| ≤
∑
ε

||wε||
||k||

|1̃Pε(k)| ≤ Nf maxε ||wε||
||k||

∑
ε

|1̃Pε(k)| .

6Given V a vectorial space and W a subspace, then codimW = dimV − dimW .
7Here we are using the fact that the Lebesque measure of lower dimensional subspaces is zero.
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Since we are interested in the order, to make the above independent on ε we must choose it

aiming to minimize ∆
(Pε)
k .

Let ∆
(P )
k = min

ε
∆

(Pε)
k . Then, in light of lemma 5.1.1, ∆

(P )
k is the minimal integer such that

we can find a ∆(P )-codimensional facet of some Pε to which k is orthogonal. We may then

write

|f̃(k)| = O

(
NfLf

||k||∆
(P )
k +1

)
.

�

Hence, the coefficients of ReLU neural networks in the Fourier domain decrease, at the

very worst case, quadratically with the frequency norm. This means that, as |k| increases,

the space of parameters which achieves a fixed magnitude for a certain frequency k shrinks.

This means that there are, for fixed weights, less networks capable of fitting high frequencies.

Such decay rate is not so easily achieved even among almost everywhere C1 function’s.

For instance,
√
|x| is C1(R− {0}) and decays with k−1.5, as is noted in [28].

Looking back to the network, we see that by translating f to its linear spline form,

despite the analytical advantage, we lost track of the network parameter’s contribution to

the Fourier’s coefficients. To mend this technicality, we may further develop the last result

to unwind the Lipschitz constant’s dependency on the parameters.

Corollary 5.1.2. ([28]) Defining σ(A) as the spectral norm of A, we have

|f̃(k)| = O

(
Nf

∏L
`=1 σ(T (`))

||k||∆
(P )
k +1

)
. (5.1.6)

Proof. Consider a family {fi}ni=1 of composable ci - Lipschitz functions. Then

|(fn ◦ . . . ◦ f1)(x)− (fn ◦ . . . ◦ f1)(y)| ≤

cn|(fn−1 ◦ . . . ◦ f1)(x)− (fn−1 ◦ . . . ◦ f1)(y)| ≤
n∏
i=1

ci|x− y| , (5.1.7)

which means that
∏n

i=1 ci is the Lipschitz constant of the function defined as the composition

of {fi}ni=1.

Since f is a composition of linear transformations and ReLU functions8, then

Lf ≤
∏L

k=1 σ(T (k)).

�

We now take a brief step back to fathom these two last results under the lens of the

machine learning framework. First of all, the magnitude of high frequency amplitudes is a

natural way to measure the complexity of a function: since noise often comes in disruptive

8We remind that sup
( ||Tx||
||x||

)
= σ(T ).
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oscillations, in order to overfit the hypothesis would need to have high magnitudes asso-

ciated with high frequencies9. The main theorem of [28] shows that these magnitudes are

controlled by the frequency’s norm and some quantity representing the network’s parameters.

As shall be made precise in the next Lemma, the ReLU activation function gives us a

higher exponent in ||k||, making so that the weights needed to achieve a certain fit in high

frequencies be much larger in comparison to other models. This shows that increments in the

parameters during optimization have a smaller contribution to the capacity of the hypothesis

space in the Fourier domain, supporting the idea that this space endows the algorithm with

an extra regularization factor.

So far we have restrained our discussion to ReLU neural networks. However, in order to

understand why they are special, one must not only show that they have pivotal properties

for learning but also show that these properties are not present in other common models.

With this in mind, one might wonder about the spectral bias of other architectures. Of

course, for any function with a convergent Fourier series, the magnitude of the amplitudes

must decrease with ||k||, the matter at hand is the order with which it decays.

In the following [28] develops a result similar to Equation 5.1.5, but now for any Lipschitz

activation function. It presents a bound with a slower rate, leading us to believe that ReLU

network’s order is indeed not so easily found in other models. The demonstration relies on

the following lemma, which relates the Lipschitz constant to Fourier’s coefficients.

Lemma 5.1.2. For any real c-Lipschitz function h defined Rn with a finite support, it holds

that

|h̃(k)| ≤ V c

||k||
,

where V = V ol(supp(h)).

Proof. Using that exp{−ik(x − πk
||k||2 )} = − exp{−ikx}, we may translate x by a factor of

− πk
||k||2 in the Fourier Transform, arriving at

h̃(k) =
1

2π

∫
X
h(x)e−ikxdx = − 1

2π

∫
X
h

(
x− πk

||k||2

)
e−ikxdx .

9This notion is not formal and will be discussed in section 5.2.1.
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Multiplying the equation by 1
2

and summing both sides, we have

h̃(k) =
1

4π

∫
X
h (x) e−ikxdx− 1

4π

∫
X
h

(
x− πk

||k||2

)
e−ikxdx −−→

|h̃(k)| =
∣∣∣∣ 1

4π

∫
X
h (x) e−ikxdx− 1

4π

∫
X
h

(
x− πk

||k||2

)
e−ikxdx

∣∣∣∣ ≤ 1

4π

∫
X

∣∣∣∣h(x)− h
(
x− πk

||k||2

) ∣∣∣∣ dx
≤ c

4π

π

||k||
V =

V c

||k||
.

�

Theorem 5.1.4. 10 Let f be a neural network with L − 1 hidden layers, width N (for all

layers) and composed by A-Lipschitz activation functions. Let T l be the transformations of

f , where its entries wli,j are uniformly bounded by K. Then the magnitude of the Fourier

coefficient |f̃W (k)| is bounded by

|f̃(k)| ≤ V ALNLKL

||k||
.

Proof. We use again (5.1.7), now applying the result for a general A - Lipchitz activation

function, giving

Lf ≤
L∏
l=1

Aσ
(
T l
)
. (5.1.8)

Because each entry of T (l) is bounded, we are able to derive a relationship between K

and the spectral norm, as we explain in the following. Here we omit the index l for simplicity.

Defining wi as the i-th row vector of T , we have ||T (x)||2 =
∑N

i 〈wi, x 〉2 and |〈wi, x 〉| ≤
||wi|| ||x|| = ||wi|| for ||x|| = 1. Furthermore, the entries of T are uniformly bounded by K

implying that ||wi||2 =
∑N

j w
2
i,j ≤ NK2, giving us ||T l(x)||2 ≤

∑N
i NK

2 = N2K2 for all

x, ||x|| = 1. Since the linear transformation is bounded and the unit circle is compact we

have

σ(T l) = max
||x||=1

||T l(x)|| ≤ NK .

Using the above inequality together with (5.1.8) we conclude that Lf ≤ ALNLKL. Plugging

this result to (5.1.2) we get the desired result,

|f̃(k)| ≤ V ALNLKL

||k||
.

�

So, not only giving up the ReLU assumption we lost the guaranteed quadratic con-

10While we found this theorem to be relevant for the present discussion, it is omitted in the updated
version of [28].
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vergence, but also Lipschitzness only gives us linear decay. Moreover, notice that in both

theorems the bound increases polynomially with the number of neurons and exponentially

with the number of layers, suggesting that depth plays an important role in fitting high

frequencies. This shall be discussed in section 5.2.2.

5.1.2 The Spectral Bias

Comprising what we have viewed so far, the main theorem in [28] conveys the following

interpretation: the space of ReLU neural networks have a natural struggle to fit high fre-

quency signals. According to (5.1.6), as we increase the frequency, the magnitude of the

corresponding Fourier’s coefficients decrease with ||k||−∆
(P )
k −1. This would imply that if, for

instance, high frequency noise is present in the dataset, the optimization would be regular-

ized, biased to choose a predictor that would be incapable to fit it. This confirms what was

alluded previously in the preamble of this chapter: by choosing the space of ReLU neural

networks, we are, in some aspect, favoring simpler functions.

How is this behaviour depicted in the optimization? Suppose gradient descent is the op-

timizer of choice for training. If the optimization is initialized close to zero, which is usually

the case, the learning process would start in a region of low spectral norm, yielding a strong

upper bound for higher frequency components, as is pointed out in (5.1.6). As the weights

are updated, the gradient will consider these simpler networks first before advancing farther

into the space. If the high frequency present in the dataset is just noise, the SGD would stop

in a region of low spectral norm. If the rule to be learned has relevant harmonics of higher

frequency, the gradient will be guided by the loss function to leave the region close to the

origin due to underfitting. Naturally, this regularization only works if training is initialized

close to zero, further supporting this heuristic.

To observe empirically this behaviour, experiments are made in [28]. The details are as

follows.

Experiment 1

Two target functions are considered, λ(1), λ(2) : [0, 1]→ R

λ(1)(z) =
10∑
i=1

A
(1)
i sin(2πzki + φi) and λ(2)(z) =

10∑
i=1

A
(2)
i sin(2πzki + φi) .

where A
(1)
i = 1 for all i, A

(2)
i = 0.1× i, φi ∼ U(0, 2π) and ki = 5i.

The architecture chosen to learn both these oracles is a 6 layered ReLU network with 256

neurons in all layers. Both targets were sampled on 200 uniformly spaced points in [0, 1] and
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trained for 80000 steps of full batch gradient descent with Adam [22]. In order to monitor

the magnitude of their Fourier transform, here denoted by |f̃(ki)|, the neural network is

evaluated on the dataset every 100 steps in the training process. To further confirm the con-

jectures regarding ReLU networks and how the gradient descent should fit low frequencies,

the spectral norm of the parameters is plotted against the training iterations. Gradient De-

scent was chosen instead of the more common SGD so that the to be investigated behaviour

is not disturbed from the noise caused by randomness.

Figure 5.2: [Image taken from [28]] (Left side) Plot of the training steps (y axis) against the

frequencies (x-axis), where for each i = 1, 2, · · · , 10 |f̃(ki)|
Ai

is measured, here illustrated by the color
bar, clipped at 0 and 1.
(Right side) Plot of the spectral norm (y axis), measured by the power iteration algorithm, against

the training time (x axis), each color corresponding to a layer. Both |f̃(ki)|
Ai

and the spectral norm

are averaged over ten runs with different phases φi. Figure set a) is according to λ(1) and Figure
set b) is according to λ(2). We see that in both cases the learning went very similarly: the lower
frequencies were learned first and the spectral norm increased so the higher frequencies would also
be fitted, as presumed.

The theorem states that the harmonics amplitudes increase with O
(
||k||−∆

(P )
k −1

)
and

thus will not be able to fit anything whose amplitude decays slower, unless the weights are

updated accordingly. Together with the fact that initialization was close to zero, this makes

us expect an increase in the spectral norm during the optimization in order to reduce the

training error. Indeed, as observed in the right hand side of Figures 5.2 and 5.3, that is
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Figure 5.3: [Image taken from [28]] Sequential plots showing the goodness of fit of the target
function λ(1) (blue) against the learning function (green).

exactly what happens.

It is important to note that these dynamics does not result of a possible bias induced by

the loss function weighting more in errors made higher frequencies. Let xi be a point in our

dataset S, then the unitarity11 of the Fourier transform guarantees that

N∑
i=1

(f(xi)− g(xi))
2 =

N∑
i=1

(f̃(ki)− g̃(ki))
2 .

That is, since the error is gauged according to the discrete inner product induced by S, the

error’s measure is preserved in the spectral domain.

Another way to intuitively understand the spectral decay is to think of it in terms of

volume in the parametric space. Let Θk be the set of parameters from which we sample the

weights of f . Given ε and k, we define

Θk(ε) , { θ ∈ Θ / ∃k′ ≥ k such that |f̃θ(k′)| ≥ ε } .

Then, the relative volume inherits the spectral decay:

V ol(Θk(ε))

V ol(Θ)
= O

(
||k||−∆

(P )
k −1

)
.

That is, given a certain frequency k and a magnitude benchmark ε, the density of weights

that generates a f that admits a higher frequency with a higher magnitude follows the

spectral decay.

The demonstration is intuitive and may be found in Appendix D of [28].

11Unitary transformations are isometries, and so the inner product is preserved.
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5.2 Analytical learning and the Fourier Domain

The spectral bias shown in the last section opens a new interpretation for regularization in

neural networks, bringing to light special properties of ReLU architectures. It shows that

these kinds of networks have a natural delay to reach farther in the parametric space due

to a high spectral decay. However, not much is said in [28] on how it relates with the gen-

eralization gap or with the overparametrization paradox, or if it relates at all. Propelled by

these considerations, we consider the possibility of linking it to the Hardy-Krause variation.

On section 5.2.1 we study how variation relates to harmonics, and then we demonstrate the

formula for V [f ] in the ReLU scenario, concluding something similar to the spectral decay

for the Hardy-Krause Variation in polynomial splines. Next on section 5.2.2 we present

an experiment which suggests that overparametrization acts against the effects of spectral

decay. We then argue on how it may, despite this, contribute to reducing the gap.

5.2.1 Spectral Decay and Variation

Intuitively, it makes sense to argue that by choosing a hypothesis space with a “faster than

average” spectral decay one contributes to learning, albeit lacking a formal link. On the

other hand, by Theorem 3.1.2 we are able to connect the Hardy-Krause variation with the

generalization gap, but how the latter might be related with harmonics is not clear.

Since variations might come from any frequency given the right amplitude, it makes sense

that spectral decay is just one regularization factor, whereas V [f ] has a broader approach.

This suggests that there is no way to bound the generalization gap with the conclusions

drawn from [28].

One simple way to develop this intuition would be to bound the derivative’s norm with a

term that follows the spectral decay. Indeed, assuming invertibility of the Fourier Transform

for a function g,

∂xj1 , . . . ,xj` g(x) =
1

2π
∂xj1 , . . . ,xj`

∫
Rd
g̃(k)eikxdk =

1

2π

∫
Rd
i`
∏̀
i=1

kig̃(k)eikxdk (5.2.1)

−−→
∣∣∣ ∂xj1 , . . . ,xj` g(x)

∣∣∣ ≤ 1

2π

∫
Rd

∣∣∣ ∏̀
i=1

kig̃(k)eikx
∣∣∣dk ≤ 1

2π

∫
Rd

∏̀
i=1

∣∣ki∣∣∣∣g̃(k)
∣∣dk .

First thing one should notice from the above is that, in order to the inequalities be relevant,∏`
i=1 kig̃(k)eikx must be absolutely integrable. In fact, to guarantee that the right hand

side is finite for all derivatives, we must assume that g̃ belongs to a Schwartz Space12. In

this case, the right hand side would be a term that would be reduced as the spectral decay

12Informally, a function g belongs to a Schwartz Space if all its derivatives exists in Rd and all of them
decrease faster than any inverse power of x
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increases, allowing us to control the derivatives norm. Unfortunately this is not the case of

ReLU networks, and even if the order of the spectral decay is equal to O
(
||k||n

)
for some n,

the right hand side might still be unbounded. In other words, because the derivative’s norm

is the weighted continuous sum of all harmonics, |g̃(k)| decreasing with ||k||n is not enough

for the integral’s convergence.

As to why the elusiveness of the relation between harmonics decay and derivatives, it is

not clear. As already stated in this work, regularization may manifest itself on many stages

of the learning process. Maybe, by trying to measure the spectral decay as a regularization

agent using it as a bound to V [g], we are implicitly making an average of its contributions to

regularization over all learning stages, and since V [g] is so general, the bound does not hold.

This suggests that the spectral decay only acts on a few steps of learning, optimization being

the one where we think lies the core of its role as a regularizer. Were otherwise, it alone

would contemplate all cases needed to prevent overfitting and thus be sufficient to guar-

antee a low generalization gap. But in Analytical Learning we still might have a function

that came from a high spectral decay space and has a high variation due to its large weights13.

Having understood the limits of comparing the spectral bias and the Hardy-Krause vari-

ation in the general case, we turn ourselves to the ReLU architecture.

Before anything, we must first demonstrate that given an ReLU network f , then V [f ] <

∞ . We actually go even further, unwinding the relation of its Lipschitz constant with the

Hardy-Krause variation.

Lemma 5.2.1. Let f : Ω = [0, 1]d → R be a ReLU neural network with Lipschitz constant

Lf . Then

V [f ] ≤ d 22d−1Lf .

Proof. The idea is straightforward: we will first bound that the Vitali’s variation, and then

the result will follow. Unfortunately, since the derivatives of f do not exist on the frontier

of linear regions, we can not use the simplified formula of V (u)f shown in (3.1.4)14.

With this in mind, we recall the definition of the difference operator ∆ and V u[f ] given

in (3.1.3):

∆[f, a, b] ,
∑

`⊆{1,...,d}

(−1)|`|f(a` : b−`) ,

V (u)f , sup
P∈Pu

∑
x∈P

∣∣∣∆[fu, x, x+]
∣∣∣ ,

13Maybe in a classical approach one could presume that this case would only happen with low probability,
and so the gap would be low with a certain confidence given a high enough decay rate.

14Indeed, in [5] is given an example of a piecewise linear Lipschitz function defined in a compact support
which has infinite Hardy-Krause variation. This is not a counter example because in our case we have a
finite number of linear regions, whereas in the former this is crucial.
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where the restriction of f to u = {j1, . . . , jk} evaluated at x = (x1, x2, . . . , xd) ∈ [0, 1]d is

denoted as

fu(x) , f(x′)

for x′i = 1 if i /∈ {j1, · · · , jk} and x′i = xi otherwise.

Now, fixed u = {j1, . . . , jk} and x a point in the partition Pu, since ∆[fu, x, x+] is an

alternating sum of 2d terms, we may group them in differences, yielding 2d−1 pairs of the

form fu(x
`i : x−`i+ ) − fu(x

`j : x
−`j
+ ). Furthermore15, maxi,j ||(x`i : x−`i+ ) − (x`j : x

−`j
+ )|| =

||x− x+||.

Using these two observations, it follows that∑
`⊆{1,...,d}

(−1)|`|fu(x
` : x−`+ ) ≤ 2d−1Lf ||x− x+|| ≤ 2d−1Lf ||x− x+||1 .

Putting together the last inequality with the definition of V (u)f ,

V (u)f ≤ 2d−1Lf sup
P∈Pu

∑
x∈P

||x− x+||1 = d 2d−1Lf ,

where the last part follows from the fact that
∑
x∈P
||x− x+||1 = d since Pu is defined as the

Cartesian product of d partitions of [0, 1].

We have then shown that the Vitali’s variation is finite, now we just plug the result in the

definition of V [f ], yielding

V [f ] =
∑

u⊆{1,...,d}

V (u)f ≤ d 22d−1Lf .

�

What is interesting about this result is its relation with the main idea of this chapter:

just like in (5.1), we bounded a term measuring complexity using the Lipschitz constant.

Hence, if the weights start close to zero, so will the harmonics amplitude and the variation

of f . In the case when the error is high on low frequencies, the weights will be updated

and the harmonics will increase along with Lf , and the same would be expected of V [f ].

Furthermore, it was shown the ReLU has a high spectral decay, which makes the SGD

run farther than usual to find something with equal complexity. Likewise, the high order

derivatives are null for linear splines, implying that the only source of contribution to the

Hardy Krause Variation in the ReLU case are the first order derivatives, making V [f ] increase

slower. This last remark is the most pertinent since it is the analogue of the spectral decay,

and is made formal in the following Corollary.

15Here we are using the fact that the hypotenuse maximizes the distance.

75



Lemma 5.2.2. Let p : [−M,M ]d → R be a polynomial of degree n, and wi,j the coefficient

associated with the j-th dimension and i-th degree.

Hence its Lipschitz constant Lp is bounded by

Lp ≤ dW

(
n∑
i=1

iM i−1

)
,

where W , max
i,j
|wi,j|.

Proof. The Lipschitz constant will be the gradient of the polynomial. Thus,∣∣∣∣∣ ∂p∂xj
∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

i wi,j x
i−1
j

∣∣∣∣∣ ≤
n∑
i=1

| i wi,jM i−1 | ≤ W

n∑
i=1

| iM i−1 | .

This implies that

LP ≤ d
3
2 W

(
n∑
i=1

iM i−1

)
.

�

Corollary 5.2.1. Let fn : Ω = [0, 1]d → R be a spline of degree n and Lf , maxε Lε, where

Lε is the Lipschitz constant of the polynomial defined in the region Pε . Then

V [fn] ≤ 22d−1Lf ≤ 22d−1d
3
2 W

(
n∑
i=1

iM i−1

)

where Wj , max
i
wi,j and wi,j are the coefficients of the polynomial whose Lipschitz constant

is Lf .

Proof. The first inequality is just a corollary of lemma (5.2.1). The second one is derived by

simply plugging the formula of the Lipschitz constant given in lemma (5.2.2), considering

that the Lipschitz constant of fn is Lf . �

Proceeding with a reasoning similar to the spectral decay, for fixed wi,j, the above Theo-

rem shows that the updates are more relevant on the weights associated with a higher degree,

as if it would have a higher learning rate. Indeed, an increment on the weights represents an

increment of the power of n to the Lipschitz constant, and by reducing the degree, just like

increasing the order of |k| in (5.1), we diminish its impact, requiring higher weights to reach

the same complexity. With this result we demonstrate an analogue of the spectral decay for

polynomial spline, now using the Hardy-Krause Variation, displaying further advantages of

the ReLU architecture.

Our result is not as general as is the spectral bias, since we only argue the “low variation

bias” for linear splines relative to other splines, while in Theorem 5.1.4 it is shown that ReLU

architectures are advantageous in comparison to any other Neural Network with a Lipschitz

activation function. On the other hand, the link between our bias and the generalization
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gap is much more explicit. Furthermore, in (5.2.1) we suggest that these two dynamics are

independent, that is, low spectral decay does not guarantee low Hardy-Krause Variation.

5.2.2 Spectral Decay and Overparametrization

In view of what we learned in respect to the Hardy-Krause variation and the spectral decay,

how does it all couple to the overparametrization problem? The main benefit of the ReLU

architecture being biased towards low frequencies is the safe optimization: in comparison

with other activation functions, increments in the spectral norm will correspond to smaller

increments in harmonics amplitude. In other words, by choosing such space the step size

becomes effectively smaller, inheriting the same advantages to learning.

On the other hand, we saw in theorem Theorem 5.1.4 that the Lipschitz constant of f

may be bounded by

Lf ≤
L∏
l=1

Aσ(T (l)) ≤ ALNLKL ,

where L is the number of layers and N the number of neurons in each layer.

This means that, by considering a hypothesis space with a complex architecture (high L and

N), the algorithm will not have to reach far to achieve high complexity , since the Lipschitz

constant will increase exponentially with L, turning small weight increments into the source

of leaps of complexity, allowing the rapid increase of capacity.

Thus, the number of parameters and the spectral decay’s order have counter acting affects

on learning’s speed, both of which potentially beneficial and harmful for learning.

Beyond the obvious benefits, training faster has strong implications on the generaliza-

tion gap, as is shown in [15]. In this paper, under a few assumptions over loss function

smoothness, it is shown that SGD is algorithmic stable16 with a stability coefficient εstab

that satisfies

εstab ≤
2C2

n

T∑
t=1

αt ,

where |S| = n, αt is the step size and C is some constant.

Hence, learning with fewer steps improves generalization17, since, as discussed in chap-

ter 2, the stability constant bounds the gap. This is the main theorem of [15], and tying

it up with previous presented results, we use it together with the following experiment to

ground our assertions on the advantages of complex architectures.

16In [15] they refer to stability in the sense of Bousquet - Elissef [7], as viewd in chapter 2.
17Here we are referring to the classical framework of the generalization gap, and not the Analytical one.
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Experiment 2

Our data generating function is y : R→ R,

y(x) =
4∑
i=1

Aisin(kix),

Figure 5.4: (Left) A plot of 200 points generated according y(x), x ∼ U(0, 1). (Right) A plot of
150 disturbed normalized points which will be used for training. Notice that the scale is beyond 1
due to the applied noise.

where Ai ∼ U(10, 20), ki ∼ U(20, 30) and x ∈ [0, 1]. 200 points uniformly sampled in

[0, 1] were used to generated the dataset S, where 150 were used to train and 50 to validate.

In order to force some regularization, after normalizing S, all points in the dataset were

disturbed by ε ∼ N (0, 0.2), as is shown in Figure 5.4.

To compare the effect of overparametrization, four ReLU neural networks were chosen with

different architectures to learn S. All were trained using full batch Adam for 5000 iterations

and initialized using Xavier’s initialization, which starts the optimization close to the origin.

The performance after training for each model are shown in Figure 5.5.

Model 1: 4 layers, each composed by 60 neurons.

Model 2: 8 layers, each composed by 60 neurons.

Model 3: 4 layers, each composed by 30 neurons.

Model 4: 8 layers, each composed by 30 neurons.

Naturally, the regressors correctly fitted the dataset, since all had architectures large

enough to endow the hypothesis space with sufficient capacity to represent it. Also, no

overfitting is to be seen even by the most complex network, Model 2, which has 480 neurons,

much larger than the size of the entire dataset. Since we are interested in the impact of

parametrization on the validation loss and on the learning’s speed, we show below the history

of the validation loss for each model.

Note how the validation error is rising by the end of training, with the exception of

Model 3. It was important for our study to train until overtraining so we could see when

each model achieved its best validation error. The logs of Figure 5.6 are:
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Figure 5.5: A set of four subfigures:

Model 1: Best validation loss was 0.063731 achieved at epoch 2810

Model 2: Best validation loss was 0.067901 achieved at epoch 1154

Model 3: Best validation loss was 0.065027 achieved at epoch 4950

Model 4: Best validation loss was 0.061734 achieved at epoch 3095

These results, of course, contribute greatly to our conjectures. We see that the most

complex architecture, Model 2, achieved its best validation error the fastest, while the sim-

plest one, Model 3, has yet to learn. We point out that even though Model 2 did not have

the best validation error among all other models, the difference is theoretically negligible

and can not be related to the architecture.

From now on we will only analyze the differences between models 1 and 2, since the

analysis and conclusions are analogous when comparing models 3 and 4.

Observing the differences between the plots in Figure 5.7, its clear that the escalation of

the spectral norm saturates much quicker in complex architectures, where in simpler ones it

takes much longer to converge. Additionally, in the overparametrized regime, the spectral

norm of Model 2 saturated in 3.5, where in its simpler counter part it converged at 5.

Moreover, the spectral norm of Model 3, whose training error still have not converged, is

still evolving, meaning that the algorithm did not reach a region of enough capacity to fit

important frequencies present in the dataset.
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Figure 5.6: Training and validation error history for the four models. Observe how the training
error of the simplest architecture, Model 3, still has not saturated.

Figure 5.7: Plots of the spectral norm’s evolution of each layer during training. Notice the overall
increase and sharp saturation of σ in complex architectures.
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Naturally, the essence of this behaviour lies in (5.1.2). By increasing the number of layers and

parameters, the spectral norm required to reach a given complexity is decreased, reducing

the numbers of steps needed to reach a given capacity.

This experiment depicts overparametrization as an agent that endows the weight’s up-

dates with a larger impact to fit high frequencies, making the algorithm converge faster.

Counteractive, as said in the beginning of this section, the spectral decay diminishes the

contribution of the spectral norm in the learning of high oscillations, making it hard to

reach complex regions.

With this in mind, one might argue that the spectral decay of a neural network like

function space, together with the number of layers and vertices, are then just parameters

to tune the impact on the capacity caused by weight updates, changing the number of

steps required to achieve a certain complexity level. This might suggest that the effects of

overparametrization can be simulated by other means: if one wishes to speed up learning,

instead of increasing the number of layers or vertices, one could simply choose an activation

function with a slower decay, therefore reproducing the same effect.

While its true that both play the same role in contributing for the spectral norm, we

claim that there is at least one additional reason to complexify the architecture, at least in

the ReLU scenario.

Looking back to Chapter 4, we discussed how the loss function’s variation may be seen

as a similarity measure between the way the hypothesis and the oracle read information

from the input space. This quantity would, in some way, replace the role of stability in the

analytical learning context by using the derivative norm.

In the ReLU architecture, since derivatives are constant on linear regions, we can only

approximate the oracle’s compression on a given polytope by a constant, which might not

be enough, since it is committed to the same compression for each region. However, as

shown in 5.1.1, by increasing L and N we increase the number of linear regions, endowing

a flexible informational assignment in the input space, not only contributing for fitting, but

also assigning a different Hardy-krauser variation for each region. This makes possible to

reduce the loss function’s variation, and consequently, the generalization gap.

Notice that nothing in the optimization induces this process of making the hypothesis’s

derivatives close to the oracle’s, and as said in the end of section 3.2, the optimization of

the training error occurs independently.

In the end, our argument is not that, in the ReLU case, by increasing L and N a better

generalization gap will be achieved, but that there is an aspect of overparametrization that

might contribute to generalization.
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As for other activation functions, is not clear how overparametrization affects variation

or even if it is required, since their high non linearity, like the sigmoid, might be enough to

create a flexible variance.
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Chapter 6

Classical Information and Analytical

Learning

Taking as a pillar the Analytical Learning paradigm, we have so far exposed how derivatives

might be interpreted as the stability quantifier variant when a problem instance is fixed. In

this scenario, the objects which define the learning problem are non stochastic, striving for

a tighter bound for the generalization error.

We use this chapter to discuss the main result in [37], which relates closely with the

overparametrization paradox in neural networks. There is derived a bound which decreases

with the number of layers, showing the potential regularization power in some complex ar-

chitectures. We unwind close similarities between the demonstration of this result and our

reasoning based on analytical learning, aiming to further develop the understanding of vari-

ance and how it relates to other more mature notions.
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6.1 Information flow in Feed Forward Neural Networks

In this section we work under the interpretation of neural networks as encoders and decoders,

inducing a Markov process on the outputs of each layer, as is detailed in subsection 2.2.1.

Since its a information theory scheme, the context is completely different from that of Ana-

lytical Learning and as such we try to keep the notation as concise as possible. In Appendix

A we review the basic concepts used in this chapter.

Here the same interpretation from chapter 2 for the stochastic algorithm is used: A :

S → H is seen as a conditional distribution P (H|S) , H and S are now random variables

with values in S and H respectively.

Since we are considering a stochastic algorithm, we must account for it in the gener-

alization error as well. In this chapter we use the concept of the expected generalization

error:

G(D,A) , E[Lµ(H)− LS(H)] ,

where the expectation is taken over the joint distribution P (H,S) = P (H|S)× µn.

Looking at neural networks as a predictor coupled with a trained feature pre-processing

step, one might recall that there is no information to be gained by transforming the data,

but only lost. Indeed, one of the ideas behind preprocessing features is to filter useless in-

formation, namely, noise.

Having this in mind, a general fact is that invertible transformations of random vari-

ables preserve information, so it would be natural to regard the preprocessing step as one

composed only of non invertible transformations. In the case of a layer in DNN’s, a non

invertible transformation would be one which involves a singular matrix, since its kernel

colapses a whole dimension to zero. Indeed, viewing the network’s transformations between

layers as a Markov chain, in [2] it is shown that such property is sufficient and the result is

known as the Strong Data Processing Inequality (SDPI’s).

Theorem 6.1.1. (Strong Data Processing Inequality) Consider the Markov chain X ⇒ Y ⇒
Z and the corresponding transition probability p(Z|Y ). If there exists z, p(z) 6= 0, and more

than one y with p(z|y) 6= 0, that is, the channel is noisy, then ∃ η ∈ [0, 1) such that

I(X;Z) ≤ ηI(X;Y ) .

In other words, for our particular case, if we have a non invertible transformation between

Y and Z To apply the above result in DNN’s and analyze architectures which compress
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information, we must first adapt our framework to Markov Chains. Let fW : Rd → Rk be a

neural network with L− 1 layers and nl neurons defined1 as

fW = W (L) ◦ r ◦ · · · r ◦W (2) ◦ r ◦W (1) , (6.1.1)

where r is any activation function and W (l) : Rnl−1 → Rnl for l ∈ {1, 2, ..., L}, n0 = d

and nL = k

Since the input of the network, Z0 , X ∈ R0 is a random variable, the input of the l-th

layer defined by Z l ∈ Rnl may also be seen as random variables.

The previous theorem naturally suggests the following definition:

Definition 6.1.1. We call the l-th layer of a neural network a contraction layer if the linear

transformation W (l) : Rnl−1 → Rnl is such that rank(W (l)) < nl.

Throughout this section we will be considering only contraction layers, since they have

strict information loss, as we show below.

Theorem 6.1.2. [37] Let W (l) be a linear transformation from Rnl−1 to Rnl. If W (l) is such

that rank(W (l)) < nl then the channel Z l−1 ⇒ Z l is noisy.

Proof. By the hypothesis, ∃ a ∈ Rnl such that a ∈ ker{W (l)}. Thus, for z 6∈ ker{W (l)},

r ◦W (l)(z) = y = r ◦W (l)(z + a) .

�

The idea is simple: if the transformation has a non trivial kernel, then the transformation

output is invariant according to disruptions in the kernel’s dimension.

The last two result imply trivially in the following corollary,

Corollary 6.1.1. If W l is a contraction layer then

I(Z l−1, Z l+1) ≤ ηI(Z l−1, Z l) . (6.1.2)

Motivated by this information loss result, we now detail the Markov chain inside a feed

forward network. Instead of see it as a predictor as a whole, we shall view fW as a L − 1-

fold sequential transformation of the inputs, and in the last layer a regressor parametrized

by WL is applied on the transformed inputs ZL−1, as we see in (6.1). To formalize this

interpretation we make a slight change of notation, W (L) = h and W ∗ , W − h =

1We note that this is essentially the same definition as the one given in (6.1.1), but because the parametric
form is important here, we chose to write in terms of matrices instead of transformations. Also, while in
(6.1.1) r was the ReLU , here it can be any activation function.
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Z0 ∼ µ0 W (1) Z1 ∼ µ1 W (2) . . . ZL−1 ∼ µL−1 h

Figure 6.1: A graphical description of the feed forward network viewed as a Markov chain of
transformed features

{W (1),W (2), · · · ,W (L−1)}.

We now define recursively the variables which define the Markov chain in the network:

U0 , S ∼ µn

U l−1 , σ ◦W (l)(U l−1) = {Z l−1
1 , Z l

2, · · · , Z l
nl−1
} ∼ µnl−1 , l ∈ {1, . . . , L}.

Assuming that the weights are known, we have then that

h⇒ {W (L−1), h} ⇒ · · · ⇒ {W (2), . . . ,W (L−1), h} ⇒ W

⇓
UL−1|W ∗ ⇐ UL−2|W ∗ ⇐ · · · ⇐ U1|W ∗ ⇐ S

The first part of the chain is trivial since the weights W ∗ are given. The second part follows

because, in order to derive the distribution of UL−1, all that matters is UL−2. Having

translated the network behaviour in a Markov Chain, we may use (6.1.2), and so

I(U l−1, U l−2|W ∗) ≤ ηlI(U l−1, U l−3|W ∗) ∀l = 1, 2, . . . , L .

The idea behind the above equation is that, in an architecture where all matrices have

non trivial kernels, as the features are transformed, information is lost. It would be natural

then that, the more layers there are between the inputs and the regressor, the stabler are

the transformed inputs with respect to S. This reasoning is the essence of the main result

depicted in [37], where algorithmic stability is measured in terms of mutual information,

yielding an upper bound for the expected generalization error all while considering an ar-

chitecture composed by contraction layers.

Theorem 6.1.3. For a DNN with L−1 hidden layers, input S, and parameters W , assume

that the loss function l(W ;Z) is σ-sub-gaussian with respect to Z for any W ∈ W. With-

out loss of generality, let all L − 1 hidden layers be contraction layers. Then the expected
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generalization error can be upper bounded as

G(D,A) ≤ exp

(
−L− 1

2
log

1

η

)√
2σ2

n
I(S,W ) , (6.1.3)

where η ≤ 1 is the geometric mean over all loss factors.

Proof. For the full demonstration we reference the reader to [37]. However, in 8.1 we show

a key result used in the demonstration which relates G(D,A) with mutual information.

�

This result gives us a bound over the generalization error in terms of architecture and

algorithmic dependent factors. Firstly we call attention that η is a non increasing function

of L, since ηk ≤ 1 ∀k, and so as the number of layers increases the distance between the

training error and the generalization error will decrease, implying that the number of con-

traction layers can be seen as a regularization factor.

The uniqueness of this bound lies on the fact that each layer behaves as a compression agent.

Bounds for generalization error of a general hypothesis class usually are strictly increasing

functions of the parameters, which fails to explain the the success of deep neural networks.

The above theorem characterizes which kinds of layers yield a better generalization, under

mild assumptions over the loss function. This result however does not contradict the bias

variance trade off, as is argued in [37], and we present inthe following.

Consider the best predictor among all networks with a fixed architecture, fW∗ where

W ∗ , argmin
W∈W

Lµ(W ) .

Obviously,

E
[
L∗ − LS(H)

]
≤ exp

(
−L

2
log

1

η

)√
2σ2

n
I(S,W ) ,

where L∗ , LD(fW∗).

As discussed before, increasing the amount of contraction layers decreases the capacity of

the hypothesis class. This is because the only information used by the regressor to predict is

in the last input representation ZL−1, and assuming all layers contract, prediction on ZL−1

can’t do better than on ZL−2 since the latter contains all information used to create the

former, implying that L∗ is a non decreasing function of L.

If L∗ increases as we deepen the network, that is, our hypothesis class is being oversim-

plified, the training error will as well, meaning that the learner transformations are losing

important information and so losing prediction power at the cost of generalization.
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But what if L∗ stays the same? This would mean that there is still unimportant informa-

tion to be compressed, and increasing the number of layers will not only bring us closer to

the optimal classifier’s error (in expectation), but also will decrease the sample complexity

in order to achieve it. This last assertion follows from the fact that in the limit L → ∞,

information has been completely dissipated and the prediction becomes as good as a coin

toss, completely independent of S, meaning that n is important no longer.
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6.2 Regularization and algorithmic stability in Deep

Neural Networks

As elaborated in chapter 2, many methods known to make the empirical error a better

approximation of the true error may be seen as a technique to make the output predictor

less dependent of the dataset. In our case, (6.1.3) shows how contraction layers act as a

regularization agent, filtering information from the inputs.

Contributing to the work of [37] we provide an additional interpretation of this theo-

rem, now through the lens of Analytical Learning. For simplicity’s sake we shall assume

throughout this analysis that nl−1 > nl for all l, that is, as we go through the network the

dimensions of Z l will decrease.

What makes this filter-like architecture special is the forcing of non trivial kernels in the

linear transformations, since nl−1 > nl is enough for a layer to be a contraction. The kernels

are related to the regions where the network is invariant and this is what creates the infor-

mation loss in 6.1.2. If the inputs of a given layer are disrupted by a vector which belongs

to its kernel, then the transformation will ignore the noise. This notion is essential since it

shows the relationship between invariance (and therefore the simplicity) of the network with

the compression created by each processing step.

Naturally, due to non linearity, a kernel is a property of the transformation and not of the

whole network. However, assuming a ReLU activation function r = max(0, x), the network

f will be piecewise linear and we may write it as we did in chapter 5,

f(x) =
∑
ε

wεx = W (L)
ε · · ·W (1)

ε x ∀x ∈ Pε ,

where ε parametrizes the linear regions and W
(l)
ε is the matrix of T (l) with its i-th row

set to zero whenever εli = −1.

In this case, the non linearity of f originated by its activation function makes its invariant

space conditioned on the region of the input. This is very important for learning, seeing

that the relevance of a given dimension should depend on x. For instance, the pertinence of

certain pixels for the prediction of an image depends on other pixels, and only a few can be

totally ignored for any given image. Was the network linear, the invariant space would be a

vectorial space ker(f) = span{kj}, implying that x =
∑

i αvi +
∑

j βjkj and therefore,

f(x) = f
(∑

i

αvi

)
+ f
(∑

j

βjkj

)
= f

(∑
i

αvi

)
.
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That is, invariant spaces of linear networks are always global. In practice, it would be more

realistic to have invariant dimensions associated with only certain regions of x, providing

flexibility to discriminate noise.

Back to the piecewise linear case, for a fixed2 x ∈ Pε, u ∈ ker(wε) and η ≤ 1 such that

x+ ηu ∈ Pε, we have 3

f(x+ ηu) = wε(x+ ηu) = wε(x) = f(x) .

Also, for any linear transformation g1, g2,

dim(ker(g2 ◦ g1)) = dim(ker(g1)) + dim(range(g1) ∩ ker(g2)) .

Therefore, by choosing a ReLU architecture such that pl−1 ≤ pl for all l, we are forcing

the layers to have kernels, and by increasing the number of layers not only more directions

become invariant in a certain region, but also the number of regions grows making the in-

variance more flexible. Analytically speaking, using the basis of ker(Wε) as coordinates, the

partial derivatives of f according to the kernel’s dimensions will be zero in Pε.

All this, as one might expect, ties back to the Hardy-Krause variation and the gener-

alization gap. Supposing the existence of an oracle f ∗, these last observations conveys the

idea that f should learn the oracle’s kernel, so that their invariant spaces coincide, reducing

loss function variance and therefore tightening the generalization gap.

From an algorithmic point of view, this matches with the Fourier analysis and the spec-

tral norm dynamic studied in chapter 5. When f is initiallized close to zero, basically all its

derivatives are low, since it is piecewise linear, and thus it shall ignore mostly everything. As

training progresses, it will start to create dependence in some areas to reduce the training

error, and in the end, hopefully, the regions which are still invariant will coincide with the

oracle’s.

2Here we are recovering the notation used in 5 for the linear regions parametrized by ε
3Notice that f(x+ u) 6= f(x) + f(u), since in principle u 6∈ Pε.
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Chapter 7

Conclusion

The broad objective aimed in this work is to, by the usage of Analytical Learning Theory

concepts and its paradigm, attempt to contribute to the understanding of generalization

in deep feed forward neural networks, using the ReLU activation function example when a

concrete case is required.

Our rational is guided by the interpretation of the Hardy-Krause Variation as a measure

of information compression quality of the hypothesis, alluding to stability bounds for the

generalization error in classical learning theory. After linking it to the partial derivatives of

the hypothesis, we recreate the analytical form of the gradient descent, providing a simple

way to analyze information compression during training, unwinding the relation between

training error optimization and stability. We then used this interpretation to explore the

results of [28], from which the main contributions of this work are drawn:

(i) We have shown that the Hardy - Krause Variation behaves analogously to the spectral

decay: it increases in order to provide capacity for fitting, and furthermore, its rate

of growth is slower in the ReLU architecture when compared to higher degree polyno-

mials. Although the spectral decay phenomena holds for a more general architecture,

the Hardy-Krause Variation has a direct connection to the generalization gap.

(ii) Together with (3.1.5), we believe that it may also shed light on the overparametrization

paradox in deep networks. Since the number of linear regions increases with the number

of layers, not only the capacity to fit, but also the flexibility of the derivatives increases,

enabling a possibly lower Hardy-Krause Variation of the loss function, and thus a better

a generalization. This behaviour is further endorsed by the fact that gradient descent

and its variants test hypothesis with lower derivatives first, turning the event that a

highly variant hypothesis is chosen less likely.
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Chapter 8

Appendix
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8.1 Appendix - Information and Stability

Theorem 8.1.1. [34] Consider X and Y random variables with a joint distribution P (X, Y )

and let X̄ be an independent clone of X and Ȳ be an independent clone of Y such that

P (X̄, Ȳ ) = P (X)P (Y ). If f : X × Y → R is a σ-subgaussian function with respect to

P (X̄, Ȳ ) then

|E[f(X, Y )]− E[f(X̄, Ȳ )]| ≤
√

2σ2I(X;Y ) , (8.1.1)

where the expectations are taken according to the joint probability distributions of the argu-

ments.

Proof. We will make use of Donsker-Varadhan variational representation of the Kullback-

Leibler divergent.

D(π||ρ) = sup
F

{∫
Ω

F (x) dπ − log

∫
Ω

eF (x) dρ

}
.

Then, for a fixed f we have:

D(P (X, Y )||P (X̄, Ȳ )) ≥ E P (X,Y )[λf(X, Y )]− logE P (X̄,Ȳ )[e
λf(X̄,Ȳ )] ≥

λ(E P (X,Y )[f(X, Y )]− E P (X̄,Ȳ )[f(X̄, Ȳ )])− λ2σ2/2 ,

where the second inequality follows from the σ-subgaussian assumption. From now on

we shall omit the subscript of E for simplicity sake.

Since D(P (X, Y )||P (X̄, Ȳ )) = I(X;Y ) is always non negative, we have

0 ≥ −λ2σ2/2 + λ(E[f(X, Y )]− E[f(X̄, Ȳ )])− I(X;Y ) .

The above is a quadratic equation in λ that cannot have two distinct roots, so its deter-

minant must be non positive:

(E[f(X, Y )]− E[f(X̄, Ȳ )])2 − 2σ2I(X;Y ) ≤ 0 ,

which proves our statement.

�

Now we adapt (8.1.1) to the machine learning framework. Letting X = S, Y = H

and f(X, Y ) = LS(H), we have that LS(H) = 1
n

∑n
i=1 l(si, H) is σ

√
n-subgaussian if l is

σ-subgaussian. Moreover, the expected generalization gap G(µ,A) can be written as

E P (S)P (H)[LS(H)]− E P (S,H)[LS(H)] = E P (H)[Lµ(H)] − E P (S,H)[LS(H)] =

E P (S,H)[Lµ(H)− LS(H)] = G(µ,A) .

Thus we have the following corollary:
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Corollary 8.1.1. [34] If l(H,S) is a σ-subgaussian function under µ then

|G(µ,A)| ≤
√

2(σ2/n)I(S;H) .

The aforementioned result conveys the idea that, the less dependent from your dataset

your learning algorithm is, the less it will overfit. Observe that this is consistent with

the characterization of G(D,A) in terms of algorithmic stability, since if I(S;H) is small in

expectation then minor changes on the dataset will reflect minor changes in your predictions.

Note that we are not taking in consideration LS(H): losing information from S will inevitably

increase training error, such is the bias - variance trade off.
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