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A shale flake with engraved trellis patterns on both sides, from
Muden, KwaZulu-Natal, South Africa. An “individualistic
product of mere experimenters” from Pleistocene [Mal56].
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Resumo

João Paulo Ferreira de Mello. Quocientes Justos de Difeomorfismos de Smale em Superfícies.

Tese (Doutorado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2023.

Dado um difeomorfismo 𝑓 sobre uma superfície fechada, dois pontos são ditos zero-entrópicos equivalentes se

existe um contínuo contendo ambos os pontos onde o contínuo carrega zero entropia. Neste trabalho usamos este

conceito para mostrar que a dinâmica quociente, pela relação de zero-entropia, de um difeomorfismo do tipo shoe, que é

uma subclasse dos difeomorfismos de Smale em superfícies, é um homeomorfismo pseudo-Anosov generalizado sobre

uma superfície fechada possivelmente possuindo pontos identificados.

Palavras-chave: difeomorfismos de smale. equivalência de zero-entropia. homeomorfismo pseuso-anosov generaliza-

dos.





Abstract

João Paulo Ferreira de Mello. Tight Quotients of Smale Diffeomorphisms on Surfaces. Thesis

(Doctorate). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2023.

Given a diffeomorphism 𝑓 over a closed surface, two points are said to be zero-entropy equivalence if there exist

a continuum containing both points and the continuum carries zero entropy. In this work we use this concept to

prove that the quotient dynamics, by the zero-entropy relation, of a shoe diffeomorphism, which is a subclass of Smale

diffeomorphisms on surfaces, is a generalized pseudo-Anosov homeomorphism over a closed surface possibly having

identified points.

Keywords: smale diffeomorphisms. zero-entropy equivalence. generalized pseudo-anosov homeomorphisms.
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Introduction

In this work, the aim is to explore the connection between two fields in the study of dynamical
systems, namely, surface dynamics and hyperbolic dynamics. While attempts to bridge these two
areas have been made before, I drew inspiration from several works that helped guide my research.
These include the works of A. Yu. Zhirov, specifically [ZP95], G. Ruas’ thesis [RdM82], and A. S.
de Carvalho’s work [dC05]. In particular, two works that were instrumental in my research were
the book by C. Bonatti and R. Langevin [BL98], with a focus on the final chapter by C. Bonatti and
E. Jeandenans, and the works by A. S. de Carvalho and M. Paternain [dCP03].

We obtained in this thesis a semi-conjugacy, that preserve the topological entropy, between
two dynamics, one defined in a surface and the other defined in a finite cactoid. This statement
was inspired by the Theorem 8.3.1 of [BL98], due to Bonatti and Jeandenans. We will state exactly
the statement of this theorem after we present the principal theorem of this work.

This work is divided into three chapters. The first chapter is devoted to give some definitions and
state some theorems about topological entropy, metric entropy, symbolic dynamic and hyperbolic
dynamic. The last two subsections are less common subjects and we encourage the reader to read
the material. In the last section we define what is a generalized pseudo-Anosov homeomorphism
on a finite cactoid. This is one of the dynamics involved in the main theorem.

The second chapter we discuss hyperbolic dynamics on surface and we define the Shoe diffeo-
morphisms. This is the second dynamic that we will use in the final result.

The third chapter, we discuss the way to obtain the semi-conjungacy. We will study the zero-
entropy equivalence relation and we state and prove the final result: a shoe diffeomorphism on a
closed surface is semi-conjugate to a generalized pseudo-Anosov on a finite cactoid. Moreover, the
semi-conjugacy preserve the topological entropy.
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Chapter 1

General Notions

1.1 Topology and Measure

In this chapter we present some well established notions and results in topology, measure
theory, entropy, symbolic and hyperbolic dynamic theory. We do this for two reasons. Firstly, to fix
notation. Secondly, to eventually remind the reader of some notion or result used in this text that
may escape the reader’s memory and that will be important to our argument.

A probability compact metric space is a triple (𝑋, 𝑑, 𝜇), where (𝑋, 𝑑) is a compact metric space,
and 𝜇 is a probability measure over the Borel sets. A probability compact dynamic is a quadru-
ple (𝑋, 𝑑, 𝜇, 𝑓 ), where (𝑋, 𝑑, 𝜇) is a probability compact metric space, 𝑓 ∶ (𝑋, 𝑑) → (𝑋, 𝑑) is a
homeomorphism and 𝜇 is 𝑓 -invariant.

From now on, consider (𝑋, 𝑑, 𝜇, 𝑓 ) a probability compact dynamic. Let begin recalling the
notions of topological entropy and metric entropy.

For every 𝑛 ∈ ℕ, define new compact distances on 𝑋 ,

𝑑𝑛(𝑥, 𝑦) ∶= max{𝑑(𝑓
𝑖
(𝑥), 𝑓

𝑖
(𝑦)) ∶ 1 ≤ 𝑖 < 𝑛}, for 𝑥, 𝑦 ∈ 𝑋.

A set 𝐸 is (𝑛, 𝜀)-separated if for any two distinct points 𝑥, 𝑦 ∈ 𝐸, 𝑑𝑛(𝑥, 𝑦) ≥ 𝜀. A set 𝐾 , possibly
non-invariant, is (𝑛, 𝜀)-spanned by a set 𝐹 if for every 𝑥 ∈ 𝐾 there exists 𝑦 ∈ 𝐹 such that 𝑑𝑛(𝑥, 𝑦) ≤ 𝜀.
Let 𝐾 ⊆ 𝑋 be a compact subset and define the following quantities: 𝑠(𝑛, 𝜀, 𝐾) is the maximal
cardinality of an (𝑛, 𝜀)-separated subset of 𝐾 ; 𝑟(𝑛, 𝜀, 𝐾) is the minimal cardinality of a set which
(𝑛, 𝜀)-spans 𝐾 ; and 𝐷(𝑛, 𝜀, 𝐾) is the minimum number of sets whose 𝑑𝑛-diameter is smaller than 𝜀
and whose union covers 𝐾 . With these definitions, all the limits

ℎ(𝑓 , 𝐾) ∶= lim
𝜀→0

lim sup

𝑛→∞

1

𝑛

ln 𝑠(𝑛, 𝜀, 𝐾)

= lim
𝜀→0

lim sup

𝑛→∞

1

𝑛

ln 𝑟(𝑛, 𝜀, 𝐾)

= lim
𝜀→0

lim
𝑛→∞

1

𝑛

ln𝐷(𝑛, 𝜀, 𝐾),

exist and are all equal, see [HK95].

The quantity ℎ(𝑓 , 𝐾) is called the forward topological entropy carried by𝐾 under 𝑓 . The backward
topological entropy carried by 𝐾 under 𝑓 is the quantity ℎ(𝑓 −1, 𝐾). Finally, the topological entropy
carried by 𝐾 under 𝑓 , and denoted by ℎ𝑓 (𝐾), is the quantity ℎ𝑓 (𝐾) ∶= max{ℎ(𝑓 , 𝐾), ℎ(𝑓

−1
, 𝐾)}. If
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𝐾 is 𝑓 -invariant, then ℎ
𝑓
(𝐾) = ℎ(𝑓 , 𝐾) = ℎ(𝑓

−1
, 𝐾). The topological entropy of 𝑓 is defined as

ℎ(𝑓 ) ∶= ℎ
𝑓
(𝑋) = sup{ℎ

𝑓
(𝐾) ∶ 𝐾 ⊂ 𝑋 is compact}.

Two points 𝑥, 𝑦 ∈ 𝑋 are said to be zero-entropy related if there exist a continuum (compact
and connected) 𝐶 contained in 𝑋 such that 𝑥, 𝑦 ∈ 𝐶 and ℎ

𝑓
(𝐶) = 0. The zero-entropy relation

is an equivalence relation. The reflexive and the symmetric properties are straightfoward. The
transitivity follows from the equality ℎ(𝑓 , 𝐾 ∪ 𝐾

′
) = max{ℎ(𝑓 , 𝐾), ℎ(𝑓 , 𝐾

′
)}, where 𝐾 and 𝐾 ′ are

compacts, and the fact that the union of connected sets with one point in common is also connected.
If the compact 𝐾 carry zero entropy, then 𝑓 (𝐾) also carry zero entropy.

We denote by 𝑋 the set of all zero-entropy equivalence classes, by 𝜋 ∶ 𝑋 → 𝑋 its canonical
projection, and by ̃

𝑓 ∶= 𝜋 ◦ 𝑓 ◦ 𝜋
−1 the induced map ̃

𝑓 ∶ 𝑋 → 𝑋 , called the tight quotient of
𝑓 . It was proved in [dCP03] that if the map 𝑓 ∶ 𝑆 → 𝑆 is a 1+𝜖-diffeomorphism on a closed
surface 𝑆, then the zero-entropy equivalence relation induces a monotone upper-semicontinuous
decomposition of 𝑆. In particular, each zero-entropy equivalence class is a continuum. The notion
of zero-entropy equivalence is one of the main ingredient of this work.

The set of all compact subsets of 𝑋 is denoted by (𝑋). For all 𝐶, 𝐶′
∈ (𝑋), we define the

Hausdorff distance between these sets as

𝑑𝐻 (𝐶, 𝐶
′
) ∶= max

{

max
𝑎∈𝐶

inf

𝑏∈𝐶
′

𝑑(𝑎, 𝑏), max

𝑏∈𝐶
′

inf
𝑎∈𝐶

𝑑(𝑎, 𝑏)

}

.

The map 𝑑𝐻 is a compact distance on (𝑋), see [Sta67]. The compact metric space ((𝑀), 𝑑𝐻 ) is
called the hyperspace associated to 𝑋 . If we define ̂

𝑓 (𝐾) ∶= 𝑓 (𝐾), where 𝐾 ∈ (𝑋), the map ̂
𝑓 is a

homeomorphism and ((𝑋),
̂
𝑓 ) is also a compact reversible dynamic system.

For the measure 𝜇 of 𝑋 , a measurable pre-partition of 𝑋 is a finite family  = {𝑃1, … , 𝑃𝑛} of
measurable sets such that 𝜇(∪𝑛

𝑖=1
𝑃𝑖) = 1 and 𝜇(𝑃𝑖 ∩ 𝑃𝑗 ) = 0 if 𝑖 ≠ 𝑗 . Two measurable pre-partitions

 and  ′ are equivalents if for every 𝑃 ∈  , there exists 𝑃 ′ ∈  ′ such that 𝜇(𝑃 ⧵ 𝑃
′
) = 0, and for

every 𝑃 ′ ∈  ′, there exist 𝑃 ∈  such that 𝜇(𝑃 ′ ⧵ 𝑃) = 0. The previous relation is an equivalence
relation, and an equivalence classe of this equivalence relation is called a measurable partition of 𝑋 .
From a measurable partition  and 𝑛 ∈ ℕ we can construct new partitions,

𝑛 ∶=

𝑛−1

⋁

𝑖=0

𝑓
−𝑖
(),

where  ∨  ′
∶= {𝑃 ∩ 𝑃

′
∶ 𝑃 ∈  , 𝑃 ′ ∈  ′

}.

The entropy of a measurable partition  of 𝑋 which respect to a measure 𝜇 is given by

𝐻𝜇() ∶= −∑

𝑃∈
𝜇(𝑃) log 𝜇(𝑃).

The metric entropy of 𝑓 with respect to a measurable partition  of 𝑋 and a measure 𝜇 is

ℎ𝜇(𝑓 ,) ∶= lim
𝑛→∞

1

𝑛

𝐻𝜇(𝑛).

We also define the metric entropy of 𝑓 with respect to a measure 𝜇 by

ℎ𝜇(𝑓 ) ∶= sup{ℎ𝜇(𝑓 ,) ∶  is a measurable partition of 𝑋}.

The Variational Principle, see [HK95], establish the following relation between topological
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entropy and metric entropy:

ℎ(𝑓 ) = sup{ℎ𝜇(𝑓 ) ∶ 𝜇 is an 𝑓 -invariant measure in 𝑋}.

If exist a measure 𝜇 such that ℎ(𝑓 ) = ℎ𝜇(𝑓 ), then we say that 𝜇 is a measure of maximal en-
tropy.

A Omega-recurrent point of (𝑓 , 𝑋) is an element of 𝑋 such that belongs to its own Omega-limit
set, i.e. there exist a strictly increasing sequence of natural number (𝑛𝑘)𝑘∈ℕ such that 𝑓 𝑛𝑘 (𝑥) → 𝑥

when 𝑘 → ∞. There is a similar notion, called Alpha-recurrent points, of elements in 𝑋 such that
belongs to its own Alpha-limit set. If a point is Omega-recurrent and Alpha-recurrent, then the
point is called a recurrent point. The set of all recurrent points is a Borel 𝑓 -invariant set and it is
denoted by Rec(𝑓 ).

1.1.1 Poincaré Recurrence theorem - probability compact dynamic version. If (𝑋, 𝑑, 𝜇, 𝑓 ) is
a probability compact dynamic, then 𝜇(Rec(𝑓 )) = 1.

1.2 Symbolic dynamics

For each 𝑘 ∈ ℕ, denote by Σ𝑘 = {0, … , 𝑘 − 1}
ℤ the set of all bi-infinite sequences 𝜙 = (𝜙𝑖)𝑖∈ℤ =

𝜙 ∶ ℤ → {0,… , 𝑘 − 1}. Define for the elements of Σ𝑘 the distance

𝑑𝑘(𝜙, 𝜙
′
) ∶=

∞

∑

𝑖=−∞

𝛿𝑖(𝜙, 𝜙
′
)

𝑘
|𝑖|

,

where 𝛿𝑖(𝜙, 𝜙′) ∶= 0 if 𝜙𝑖 = 𝜙
′

𝑖
, and 𝛿𝑖(𝜙, 𝜙′) ∶= 1 otherwise. It turns the metric space (Σ𝑘 , 𝑑𝑘) into a

Cantor space, i.e. a zero-dimensional, perfect and compact metric space. The topology generated by
𝑑𝑘 is the product topology over Σ𝑘 . The most natural dynamic on Σ𝑘 is the shift map 𝜎 ∶ Σ𝑘 → Σ𝑘 ,
where 𝜎.(𝜙𝑖)𝑖∈ℤ = (𝜙𝑖+1)𝑖∈ℤ. The map 𝜎 is a homeomorphism.

Given𝑚, 𝑛 ∈ ℤ, where𝑚 ≤ 𝑛 and 𝑖𝑚, 𝑖𝑚+1, … , 𝑖𝑛−1, 𝑖𝑛 ∈ {1, … , 𝑘}, we define the cylinder set

[𝑖𝑚, … , 𝑖𝑛] ∶= {(𝑗𝑖)𝑖∈ℤ ∈ Σ𝑘 ∶ 𝑗𝑙 = 𝑖𝑙 where 𝑚 ≤ 𝑙 ≤ 𝑛},

and we consider the Sigma-algebra in Σ𝑘 generate by all cylinders. The topology generate by the
set of all cylinder coincides with the product topology.

Consider a 𝑘 × 𝑘, {0, 1}-matrix 𝐴. Define the subshift space of finite type as the set

Σ𝐴 ∶= {𝜙 ∈ Σ𝑘 ∶ 𝐴𝜙𝑖,𝜙𝑖+1
= 1},

endowed with the metric 𝑑𝑘 . The metric space (Σ𝐴, 𝑑𝑘) is also a Cantor set and it is 𝜎-invariant.

A matrix 𝐴 is said to be reducible if, by a permutation of the index set, it is possible to put it in
triangular block form:

[

𝐵 0

𝐶 𝐷]
.

Otherwise, 𝐴 is said to be irreducible. The matrix 𝐴 is said to be irreducible and aperiodic if there
exists a positive integer 𝑘 such that 𝐴𝑘 is positive, that is, all its entries are positive.

For aperiodic matrices, Perron [Per07] proved that the spectral radius 𝜆𝐴 is simple and greater
than 1. Moreover, for this eigenvalue, there correspond positive left (row), and right (column)
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eigenvectors of 𝐴. The matrix 𝐴 is aperiodic if and only if the dynamic (Σ𝐴, 𝜎) is topologically
mixing, see [DGS76]. From now on, let assume that the matrix 𝐴 is aperiodic.

Consider 𝑢 = (𝑢1, … , 𝑢𝑘) and 𝑣
𝑇
= (𝑣1, … , 𝑣𝑘)

𝑇 the left and right positive eigenvectors of 𝐴
associated to 𝜆𝐴, where 𝑢.𝑣 = 1. On the cylinders we define

𝜚([𝑖𝑚, … , 𝑖𝑛]) ∶= 𝜆
𝑚−𝑛

𝐴
. 𝑢𝑖𝑚

. 𝐴𝑖𝑚𝑖𝑚+1
. … .𝐴𝑖𝑛−1𝑖𝑛

. 𝑣𝑖𝑛
,

that can be extended to a Borel measure over the Sigma-algebra generated by the cylinder sets. The
measure 𝜚 is called the Parry measure of Σ𝐴. The Parry measure have some interesting properties:
it is a Bernoulli measure, with 𝑢.𝑣 as the probability vector; it is ergodic, it is nonatomic, it is the
unique maximal entropy measure of 𝜎, therefore, ℎ(𝜎) = ℎ𝜚(𝑓 ) = log 𝜆𝐴, and 𝜚 is positive in open
sets, see [DGS76].

1.3 Hyperbolic Dynamic

We will present definitions and theorems in general uniformly hyperbolic dynamic theory.
Since in the very early in this text we will restrict the discussion for dynamic on a closed surface,
worth to say that the definitions and results presented here are not at all subject to this restriction.
However, the two dimension dynamics have some unique properties that will be highlighted during
the text.

Suppose 𝑆 a closed (compact without boundary), connected, orientable, 1-surface and 𝑓 ∶ 𝑆 →

𝑆 a 1-diffeomorphism that preserves the orientation of 𝑆. Let take a Riemann metric ⟨., .⟩ defined
over the tangent space 𝑇 𝑆, and denote by ‖.‖ and 𝑑 the canonical norm and distance constructed
from it.

An 𝑓 -invariant, compact subset Λ ⊆ 𝑆 is called a hyperbolic set for 𝑓 if there are constants
𝜆 > 1 and 𝑐 > 0, and a decomposition of the tangent bundle of 𝑆 restricted to Λ into a direct sum of
two subbundles 𝑇Λ𝑆 = 𝐸

𝑠

Λ
⊕ 𝐸

𝑢

Λ
, where, for all 𝑥 ∈ Λ, 𝐷𝑓𝑥 .𝐸𝑠𝑥 = 𝐸

𝑠

𝑓 (𝑥)
and 𝐷𝑓𝑥 .𝐸𝑢𝑥 = 𝐸

𝑢

𝑓 (𝑥)
, such that,

for all 𝑛 ∈ ℕ,

‖𝐷𝑓
𝑛
.𝑣‖ ≤ 𝑐.𝜆

−𝑛
.‖𝑣‖, for all 𝑣 ∈ 𝐸𝑠

Λ
,

‖𝐷𝑓
−𝑛
.𝑣‖ ≤ 𝑐.𝜆

−𝑛
.‖𝑣‖, for all 𝑣 ∈ 𝐸𝑢

Λ
.

The constant 𝑐 reflect the particular choice of the Riemann metrics and it does not affect the
hyperbolicity of Λ. In fact, by Mather’s argument, see [Mat68], we can find a Riemann metric
where 𝑐 = 1. This is called an adapted Riemann metric of 𝑆. One interesting property of the adapted
Riemann metric is that, for all 𝑥 ∈ Λ, the angle between the tangent spaces 𝐸𝑠

𝑥
and 𝐸𝑢

𝑥
is equal to

𝜋/2, see [Bar12].

We say that a diffeomorphism 𝑓 satisfies the Axiom A if its nonwandering set Ω(𝑓 ) is hyperbolic,
and the set of all periodic points of 𝑓 is dense on Ω(𝑓 ).

In dimension two (and one) it is only necessary suppose the hyperbolicity of Ω(𝑓 ) since, by
Newhouse and Palis [NP73], it implies in the density of the periodic points on Ω(𝑓 ). In dimension
greater than 2, we can find examples of dynamics where Ω(𝑓 ) is hyperbolic but the set of all
periodic points of 𝑓 is not dense in Ω(𝑓 ), see [Dan78] and [Kur79].

From now on, suppose that 𝑓 satisfies the Axiom A and that ⟨. , .⟩ is adapted to Ω(𝑓 ).

A hyperbolic set of 𝑓 is trivial if it is finite set number of hyperbolic points. In the context we
are working, every non-trivial hyperbolic set of 𝑓 have an infinite number of orbits of periodic
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points contained on it.

Let Λ be a hyperbolic set for 𝑓 . For all 𝜀 > 0 and 𝑥 ∈ Λ, the local stable and unstable manifold
are respectively defined as

𝑊
𝑠

𝜀
(𝑥) ∶= {𝑦 ∈ 𝑆 ∶ 𝑑(𝑓

𝑛
(𝑥), 𝑓

𝑛
(𝑦)) < 𝜀, for all 𝑛 ≥ 0},

𝑊
𝑢

𝜀
(𝑥) ∶= {𝑦 ∈ 𝑆 ∶ 𝑑(𝑓

−𝑛
(𝑥), 𝑓

−𝑛
(𝑦)) < 𝜀, for all 𝑛 ≥ 0}.

The global stable and unstable manifolds are respectively defined as

𝑊
𝑠
(𝑥) ∶= ⋃

𝑛≥0

𝑓
−𝑛

(𝑊
𝑠

𝜀
(𝑓

𝑛
(𝑥))) ,

𝑊
𝑢
(𝑥) ∶= ⋃

𝑛≥0

𝑓
𝑛

(𝑊
𝑢

𝜀
(𝑓

−𝑛
(𝑥))) .

Technically, we cannot called these sets manifolds yet. It is the next theorem that allow us to give
such name.

1.3.1 Stable and Unstable Manifold Theorem [Shu86]. Let Λ be a hyperbolic set for 𝑓 . For all
𝜀 > 0 and 𝑥 ∈ Λ, the local stable and unstable manifolds are 1-embedded disks tangent at 𝑥 to 𝐸𝑠

𝑥

and 𝐸𝑢
𝑥

respectively. Furthermore, the global stable/unstable manifolds are 1-immersed submanifolds
of 𝑆 satisfying the following properties:

- 𝑓 (𝑊
𝑠/𝑢

(𝑥)) = 𝑊
𝑠/𝑢

(𝑓 (𝑥)),

- 𝑊
𝑠
(𝑥) = {𝑦 ∈ 𝑆 ∶ 𝑑(𝑓

𝑛
(𝑥), 𝑓

𝑛
(𝑦)) → 0 as 𝑛 → ∞},

- 𝑊
𝑢
(𝑥) = {𝑦 ∈ 𝑆 ∶ 𝑑(𝑓

−𝑛
(𝑥), 𝑓

−𝑛
(𝑦)) → 0 as 𝑛 → ∞},

- For all 𝑦 ∈ 𝑊
𝑠

𝜖
(𝑥) and 𝑧 ∈ 𝑊 𝑢

𝜖
(𝑥) we have:

𝑑(𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝜆
−1
.𝑑(𝑥, 𝑦),

𝑑(𝑓
−1
(𝑥), 𝑓

−1
(𝑧)) ≤ 𝜆

−1
.𝑑(𝑥, 𝑧).

Since we are assuming the dimension of 𝑆 is two, for every 𝑥 ∈ Λ, the dimension of 𝑊 𝑠
(𝑥) is

equal to zero, one, or two. When the dimension of 𝑊 𝑠
(𝑥) is zero, then the dimension of 𝑊 𝑢

(𝑥) is
two. In this case 𝑥 is a periodic point and it is called a source. When the dimension of 𝑊 𝑠

(𝑥) is two,
then the dimension of 𝑊 𝑢

(𝑥) is zero. In this case 𝑥 is a periodic point and it is called a sink. A point
𝑥 is called a saddle point if the dimension of its stable and unstable manifold are equal to one. A
hyperbolic set is called a saddle hyperbolic set if it is formed exclusively by saddle points.

We say that 𝑓 satisfies the Strong Transversality Condition if, for every 𝑥 ∈ Λ, the sets 𝑊 𝑠
(𝑥)

and 𝑊 𝑢
(𝑥) are transverse at 𝑥 . A diffeomorphism is Smale if satisfies both, the Axiom A, and the

Strong Transversality Condition. From now on, suppose that 𝑓 is a Smale diffeomorphism.

A hyperbolic set Λ of 𝑓 is isolated1 if there is a neighborhood  of Λ such that Λ = ∩𝑛∈ℤ𝑓
𝑛
( ).

Every isolated hyperbolic set of 𝑓 have a local product structure, i.e. there exist 𝛿 > 0 and 𝜀 > 0

such that, for any two points 𝑥, 𝑦 ∈ Λ, where 𝑑(𝑥, 𝑦) < 𝛿, the intersection 𝑊 𝑠
(𝑥) ∩ 𝑊

𝑢
(𝑦) consists

of one point. We denote by 𝜌𝑠/𝑢𝑥 ∶ 𝐵(𝑥; 𝛿) → 𝑊
𝑠/𝑢

𝜀 (𝑥) the canonical local projections induced by
the local product structure. It is also possible to define a continuous map [., .] ∶ {(𝑥, 𝑦) ∈ Λ × Λ ∶

𝑑(𝑥, 𝑦) ≤ 𝛿} → Λ, where {[𝑥, 𝑦]} = 𝑊
𝑠

𝜀
(𝑥) ∩ 𝑊

𝑢

𝜀
(𝑦). A basic piece Λ of 𝑓 is a hyperbolic, isolated,

and transitive subset of Ω(𝑓 ).

1 or locally maximal
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1.3.2 Smale Spectral Decomposition Theorem [Sma67], [Bow04]. If 𝑓 is a Smale diffeomor-
phism, then there exist 𝑛 ∈ ℕ and a disjoint family {Λ𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} of basic pieces of 𝑓 such that
Ω(𝑓 ) = ∪

𝑛

𝑖=1
Λ𝑖. Later, Bowen proved that for each basic piece Λ𝑖 exist 𝑛𝑖 ∈ ℕ and a finite family of

hyperbolic sets {Λ𝑗
𝑖
∶ 𝑗 ∈ ℤ𝑛𝑖

} such that Λ𝑖 = ∪
𝑛𝑖

𝑗=1
Λ
𝑗

𝑖
, 𝑓 𝑛𝑖(Λ𝑗

𝑖
) = Λ

𝑗+1

𝑖
, and 𝑓

𝑛𝑖
|
Λ
𝑗

𝑖

is topologically
mixing.

If Λ is a basic piece of 𝑓 , we define 𝑊 𝑠
(Λ) as the set of points on 𝑆 that have its Omega-limit

set contained on Λ. The set 𝑊 𝑢
(Λ) is defined as the set of points on 𝑆 that have its Alpha-limit set

contained on Λ. We can use the Shadowing Lemma to prove that 𝑊 𝑠
(Λ) = ∪𝑥∈Λ𝑊

𝑠
(𝑥) and 𝑊 𝑢

(Λ) =

∪𝑥∈Λ𝑊
𝑢
(𝑥). A consequence of the previous theorem is 𝑆 = ∪

𝑛

𝑖=1
𝑊

𝑠
(Λ𝑖) = ∪

𝑛

𝑖=1
𝑊

𝑢
(Λ𝑖).

Two basic pieces Λ and Λ
′ of 𝑓 are heteroclinic related, and denoted by Λ ≼ Λ

′, if 𝑊 𝑠
(Λ) ∩

𝑊
𝑢
(Λ

′
) ≠ ∅, and it turns the set of all basic pieces of 𝑓 into a finite partially ordered set, or just

a poset. The Inclination Lemma, see [Pal69], allow us to prove that 𝑊 𝑢
(Λ) = ∪Λ′

≼Λ𝑊
𝑢
(Λ

′
) and

𝑊
𝑠
(Λ) = ∪Λ≼Λ′𝑊

𝑠
(Λ

′
).

It is always possible to associate an oriented graph, called Hasse graph, to a poset (𝑌 , ≤). Given
𝑎, 𝑏 ∈ 𝑌 , we say that 𝑎 covers 𝑏 if 𝑏 < 𝑎 and there is no 𝑐 ∈ 𝑌 such that 𝑏 < 𝑐 < 𝑎. The Hasse graph is
constructed by taking the elements of 𝑌 as the vertices and the edges are the ordered pair (𝑎, 𝑏)
where 𝑎 covers 𝑏.

When the poset is the finite poset of all basic pieces of a Smale diffeomorphism 𝑓 , the Smale
order between two basic pieces is the cover relation of the heteroclinic relation of basic pieces.
When two basic pieces are comparable with respect to the Smale order we say they are Smale
related. The Smale graph is the Hasse graph associated to the finite poset of all basic pieces of
𝑓 .

One important property of Smale diffeomorphism is concerned with its stability in the space
of all dynamics. Let be more specific. Consider Diff1(𝑆) the space of all 1-diffeomorphism of 𝑆
endowed with the 1-topology. We say that 𝑓 is structurally stable if it has a neighborhood  of
𝑓 such that every 𝑔 ∈  is conjugate to 𝑓 . By Mañé [Mañ82], a diffeomorphism 𝑓 ∈ Diff1

(𝑆) is
Smale if and only if 𝑓 is structurally stable. It was also proved by Mañé [Mañ87] a similar result
but for dynamics occuring in dimension greater than 2.

Two Smale diffeomorphisms 𝑓 and 𝑔 are said to be Ω-related if 𝑓 |
Ω(𝑓 )

is conjugate to 𝑔|
Ω(𝑔)

.
We can consider another notion of stability using the relation above: 𝑓 is Ω-stable if it has a
neighborhood  of 𝑓 such that every 𝑔 ∈  is Ω-related to 𝑓 . We say 𝑓 satisfies the no-cycle
condition if there is not cycles in the Smale graph associate to 𝑓 .

It was proved by Mañé [Mañ82] and Palis [Pal87] that every Ω-stable diffeomorphism satisfies
the Axiom A and the no-cycle condition. The converse was proved by Smale [Sma]. Every Smale
diffeomorphism is Ω-stable and, thus, satisfies the no-cycle condition. Hence, for each basic piece Λ
of 𝑓 the set 𝑊 𝑠

(Λ) is a lamination2, and it will be called the stable lamination of Λ. The set 𝑊 𝑢
(Λ) is

also a lamination and it will be called the unstable lamination. For the hypothesis we are working,
each leaf on either stable or unstable lamination is a 1-embedding of the real line ℝ. Furthermore,
Λ = 𝑊

𝑠
(Λ) ∩ 𝑊

𝑢
(Λ), and the stable and unstable laminations are transverse laminations.

Finally, the topological dimension of a basic piece Λ can be equal to zero, one, or two. In fact, it
is not standard consider the dimension of a basic piece greater than zero. However, for our purpose,
it will make sense to consider basic pieces with non-zero topological dimensions. If dim(Λ) = 2,
then Λ = 𝑆 = 𝕋

2, and 𝑓 is an Anosov diffeomorphism, see [GMP16]. If dim(Λ) = 1, then Λ is

2 A lamination is a topological space partioned into subsets (called “sheets” or “leaves”) which look parallel in local
charts.
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equal either to 𝑊 𝑢
(Λ) or 𝑊 𝑠

(Λ). If Λ = 𝑊
𝑢
(Λ), then Λ is called an attractor. If Λ = 𝑊

𝑠
(Λ), then

Λ is called a repeller. Both cases will be discussed further but, for the moment, consider that the
dimension of all basic pieces of 𝑓 is equal to zero.

By the properties of topological entropy, we can say that

ℎ(𝑓 ) = ℎ(𝑓 |
Ω(𝑓 )

) = ℎ
𝑓
(Ω(𝑓 )) = max

𝑖,𝑗

ℎ
𝑓
(Λ

𝑗

𝑖
).

Furthermore, Bowen [Bow74] proved that the Borel measure define below is a measure of maximal
entropy of 𝑓 :

𝛽 = lim
𝑛→∞

∑

𝑥∈Fix(𝑓 𝑛)

𝛿𝑥

#Fix(𝑓 𝑛)
,

where 𝛿𝑥 is the probability measure supported by {𝑥}, and Fix(𝑓 𝑛) is the set of all fixed points of
𝑓
𝑛.

1.4 Roberts and Steenrod Theorems

The next theorems, due to Roberts and Steenrod [RS38], gives a characterization of the quotient
space in the case of a upper semi-continuous equivalence relations. Before we discuss the theorems,
let’s do some definitions and remind the reader about some important facts.

A set of 𝑛+ 1 points {𝑣0, … , 𝑣𝑛} ⊂ ℝ
𝑛+1 are said to be in general position if they are not contained

in an (𝑛−1)–dimensional hyperplane. An 𝑛-simplex is the smallest convex hull for the set {𝑣0, … , 𝑣𝑛}.
The 𝑛-simplex is denoted by [𝑣0, … , 𝑣𝑛] and each point 𝑣𝑖 is called the vertice of the 𝑛-simplex. From
this definition, we can see that each simplex is uniquely defined by its vertices. By choosing an
enumeration of the vertices, we give the simplex an orientation. A face of an 𝑛-simplex 𝜍3 is an
(𝑛 − 1)–simplex contained in 𝜍.

A simplicial complex 𝐾 = (𝑉 , Σ) is a collection of vertices 𝑉 and simplices Σ contained in ℝ
𝑛+1,

for some 𝑛 ∈ ℕ, satisfying the following properties:

- Every vertex 𝑣 ∈ 𝑉 is the vertex of at least one and at most finitely many simplices in Σ.

- Every face of a simplex in Σ is itself an element of Σ.

- The intersection of two simplices is a common face of each, i.e. is itself a simplex in Σ.

A finite complex is a simplicial complex where Σ have a finite number of elements. The geometric
realization of a simplicial complex 𝐾 = (𝑉 , Σ) is a subset  ⊂ ℝ

𝑛+1 obtained from the embedding
of 𝐾 in ℝ

𝑛+1, together with the subspace topology.  is therefore a topological space.

A topological space 𝑀 is triangulable if it is homeomorphic to the geometric realization of a
simplicial complex 𝐾 . We say that  is a triangulation of 𝑀 . Every closed surface is triangulable,
see [DM68].

Let 𝑀 be a topological space with a triangulation . For each 0 ≤ 𝑖 ≤ 𝑛, let 𝐶𝑖(𝑀,ℤ2) be the
free abelian group generated by the 𝑖-simplices 𝑠𝑖

𝛼
contained in 𝐾 . Elements of 𝐶𝑖(𝑀,ℤ2), called

𝑖-chains, can be written as ∑
𝛼
𝑚𝛼𝑠

𝑖

𝛼
with coefficients 𝑚𝛼 ∈ ℤ2.

We define the boundary function 𝜕𝑖 ∶ 𝐶𝑖(𝑀,ℤ2) → 𝐶𝑖−1(𝑀,ℤ2) that takes each oriented 𝑖-
simplex 𝜍 with vertices 𝑣1, … , 𝑣𝑖 to its boundary. More precisely, if the notation 𝑣̂𝑗 denotes the

3 This symbol is the lowercase sigma in word-final position.
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elimination of that 𝑣𝑗 from [𝑣0, … , 𝑣𝑛], then we define

𝜕𝑖(𝜍) ∶= ∑

𝑗

(−1)
𝑗
[𝑣0, … , 𝑣̂𝑗 , … , 𝑣𝑖].

The boundary of an 𝑖-simplex is a (𝑖 − 1)–chain, a sum of oriented (𝑖 − 1)–dimensional simplices.
Consequently, the boundary functions are homomorphisms from each free abelian group 𝐶𝑖(𝑀,ℤ2)

to the following 𝐶𝑖−1(𝑀,ℤ2), and so we can create the chain complex below.

0 → 𝐶𝑛(𝑀,ℤ2)

𝜕𝑛

−−→ 𝐶𝑛−1(𝑀,ℤ2)

𝜕𝑛−1

−−−→ ⋯

𝜕1

−−→ 𝐶0(𝑀,ℤ2)

𝜕0

−−→ 0

It is possible to prove that the composition of two boundary maps is the zero homomorphism,
𝜕𝑖 ◦ 𝜕𝑖+1(𝜉) = 0, for all (𝑖 + 1)–chain 𝜉 ∈ 𝐶𝑖+1(𝑀,ℤ2). This implies that the image of 𝜕𝑖+1 is in the
kernel of 𝜕𝑖. We will denote the image of 𝐶𝑖+1(𝑀,ℤ2) by 𝜕𝑖+1 as 𝑍𝑖(𝑀,ℤ2) and the kernel of 𝜕𝑖 as
𝐵𝑖(𝑀,ℤ2).

The 𝑖𝑡ℎ simplicial homology group 𝐻𝑖(𝑀,ℤ2) of a triangulable manifold 𝑀 is the abelian group
obtained by the quotient group of the kernel of 𝜕𝑖 by the image of 𝜕𝑖+1,

𝐻𝑖(𝑀,ℤ2) = 𝑍𝑖(𝑀,ℤ2)/𝐵𝑖(𝑀,ℤ2).

Let 𝐾 be a finite complex. The mod 2 𝑖–Betti number 𝑖(𝐾) is defined to be the rank4 of the 𝑖𝑡ℎ

simplicial homology group 𝐻𝑖(𝑀,ℤ2).

Let 𝑋 be a compact metric space and  a partition of 𝑋 . The partition  is called monotone
if it is a partition into connected sets. It is called an upper semi-continuous if 𝑥𝑛, 𝑦𝑛 ∈ 𝑄 ∈ , and
𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦, when 𝑛 → ∞, imply that 𝑥, 𝑦 ∈ 𝑄

′
∈ . In this case, each element of  is a

continuum.

Consider 𝑆 a closed surface. By Lemma 1 of [RS38], if 𝑄 ⊂ 𝑆 is a continuum and 𝐷 is a
connected component of 𝑆 ⧵ 𝑄, then 𝐷 contains a closed connected finite complex 𝐾 where 𝜕2(𝐾)
is the formal sum of a finite number Γ1, … , Γ𝑠 of pairwise disjoint simple closed curves (1-complex),
and 𝐷 ⧵ 𝐾 = 𝐸1 ∪ ⋯ ∪ 𝐸𝑠 , where the 𝐸𝑖 are mutually disjoint open cylinders and the boundary of 𝐸𝑖
is the union of Γ𝑖 and some subset of 𝑄. We will say that 𝐸𝑖 is a cylinders of 𝐷 ⧵ 𝐾 that approach
𝐷.

Let 𝑋 a connected topological space. A point 𝑝 ∈ 𝑋 for which 𝑋 ⧵ {𝑝} is not connected, is a cut
point of 𝑋 . An endpoint of 𝑋 is a point which has arbitrarily small neighborhoods whose boundary
is a single point. A cut point 𝑞 separate two points 𝑝, 𝑝′ ∈ 𝑋 if it is possible to write 𝑋 ⧵ {𝑞} = 𝐴 ∪ 𝐵

where 𝑝 ∈ 𝐴, 𝑝′ ∈ 𝐵′ and 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 = ∅. If 𝑝 ∈ 𝑋 is neither a cut point nor an endpoint of 𝑋 ,
the set of all points which cannot be separated from 𝑝 by any other point is called a (simple) link of
𝑋 .

Let 𝑋 be a locally connected continuum. If each simple link of 𝑋 is homeomorphic to 𝕊
2 then

𝑋 is called a cactoid. Let 𝑌 be a space that each link is homeomorphic to a surface and all but finite
many links are homeomorphic to 𝕊

2. In this case, the space 𝑌 is called a generalized cactoid. Suppose
the space 𝑌 is a generalized cactoid and 𝑍 is obtained by identifying finitely many pairs of points
of 𝑌 . Such 𝑍 is called a finite generalized cactoid. If 𝑌 is a closed surface, then we call 𝑍 a finite
cactoid.

Consider 𝑆 a closed surface and 𝑆 an upper semi-continous collection of continua filling 𝑆.

4 The rank of a group is the smallest cardinality of a generating set of the group.
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For a simplicial complex 𝐾 , consider the quantity 1(𝐾) the mod 2 1–Betti number of the set 𝐾 .
Note that not only the compact surfaces are triangulable, the cactoid are also triangulable.

1.4.1 Theorem. If, for each 𝑄 ∈ 𝑆 , the set 𝑆 ⧵ 𝑄 is connected and has just one cylinder approaching
to 𝑄, then 𝑆 is a closed surface, (𝑆) ≤ (𝑆), and if 𝑆 is orientable so is 𝑆 .

1.4.2 Theorem. With no restriction on 𝑆 , there exists a finite number of spaces 𝐶0, 𝐶1, … 𝐶𝑘 where
𝐶0 is a generalized cactoid and 𝐶𝑖 is obtained by identifying just two points of 𝐶𝑖−1 (i=1, . . . , k) such
that 𝑆 is homeomorphic to 𝐶𝑘 and 1(𝑆) ≤ 1(𝑆) − 𝑘. Converselly , given 𝐶0, 𝐶1, … 𝐶𝑘 as above,
there exits an 𝑆 and a 𝑆 such that 𝑆 is homeomorphic to 𝐶𝑘 and 1(𝑆) = 1(𝑆) − 𝑘.

Note that in the previous theorem the space 𝐶𝑘 is a finite generalized cactoid. Furthermore, if
𝐶0 is a closed surface, then 𝐶𝑘 is a finite cactoid.

1.5 Generalized Pseudo-Anosov Homeomorphisms

A singular foliation  on a closed surface 𝑆 is a decomposition of 𝑆 into a disjoint union of
subsets of 𝑆, called the leaves of  , and a countable set of points of 𝑆, called singular points of  ,
such that the following conditions hold:

• For each non-singular point 𝑝 ∈ 𝑆, there is a smooth chart from a neighborhood of 𝑝 to ℝ
2

that takes leaves to horizontal (or vertical) line segments.

• Singular points can be divided into two groups: the isolated singular points, and the accumu-
lated singular points. The first group of singular points is possibly countably infinite, and
can be modeled on 𝑘-pronged singularities, with 𝑘 = 1 or 𝑘 ≥ 3, as show in the figure below.
The second group of singular points is finite and is accumulated by isolated singular points.

Figure 1.1: A 1-pronged, a 3-pronged, and a 5-pronged singularities respectvelty

Let  be a singular foliation on a surface 𝑆. A smooth arc 𝛼 in 𝑆 is transverse to  if it is
transverse to each leaf of  at each point in its interior, and misses all the singular points of  .
Let 𝛼1, 𝛼2 ∶ [0, 1] → 𝑆 be smooth arcs transverse to  . A leaf-preserving isotopy from two arcs
𝛼1 ∶ [0, 1] → 𝑆 to 𝛼2 ∶ [0, 1] → 𝑆 is a map 𝐻 ∶ [0, 1] × [0, 1] → 𝑆 such that

• 𝐻([0, 1] × {0}) = 𝛼1 and 𝐻([0, 1] × {1}) = 𝛼2.

• 𝐻([0, 1] × {𝑡}) is transverse to  for each 𝑡 ∈ [0, 1].

• 𝐻({0} × [0, 1]) and 𝐻({1} × [0, 1]) are each contained in a single leaf of  .

A transverse measure 𝜇 on  is a function that assigns a positive real number to each smooth arc
transverse to  , so that 𝜇 is invariant under leaf-preserving isotopy. A measure singular foliation on
𝑆 is a pair ( , 𝜇) where  is a singular foliation of 𝑆 equipped with a transvere measure 𝜇.
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Apropos from the above discussion, if  and ′ are two transverse laminations on 𝑆, a transverse
measure 𝜈 on  adapted to ′ is a function that assigns a positive real number to each arc contained
on′, so that 𝜈 is invariant under leaf-preserving isotopy restricted to all arcs contained in′.

Two foliations  and  ′ are called transverse if they share all singular points and at non-singular
points they cross transversely.

A homeomorphism Φ ∶ 𝑆 → 𝑆 is called a generalized pseudo-Anosov if there exist a pair of Φ-
invariant transverse measure singular foliations ( 𝑠

, 𝜇
𝑠
) and (𝑢

, 𝜇
𝑢
), the accumulated singularities

are fixed points, and a real number 𝜆 > 1 such that:

Φ ∗ 𝜇
𝑠
= 𝜆

−1
𝜇
𝑠
,

Φ ∗ 𝜇
𝑢
= 𝜆 𝜇

𝑢
,

where ∗ is the pushfoward of measure.

Consider Φ ∶ 𝑆 → 𝑆 is a generalized pseudo-Anosov and 𝜋 ∶ 𝑆 → Π a monotone upper
semi-continuous projection, where 𝐶0 (in the Theorem 1.4.2) is a closed surface, and the points
that are identified to obtain the sequence of spaces 𝐶1, … , 𝐶𝑘 are accumulated singularities in 𝐶0.
The map 𝜋 ◦ Φ ◦ 𝜋

−1 is a homeomorphism and will also be called a generalized pseudo-Anosov, but
now defined on a finite cactoid.
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Chapter 2

Shoe Diffeomorphism on Surfaces

We will obtain some consequences of all hypothesis that we did so far. With some more
restrictions to the dynamic (𝑆, 𝑓 ) we obtain a special type of diffeomorphism that we called shoe
diffeomorphism. Some propositions have already been proved by Bonatti, Langevin and Jeandenans
in [BL98]. In these cases we will reference the pages where the proof can be found.

Just to reinforce, we are assuming that 𝑓 ∶ 𝑆 → 𝑆 is a 1-Smale diffeomorphism on a closed
orientable surface 𝑆, that preserve the orientation of 𝑆, and 𝑓 have just zero-dimensional basic
pieces.

2.1 Shoe diffeomorphisms

We say that 𝑓 is a shoe diffeomorphism if:

- 𝑓 have only one non-trivial basic piece Λ,

- the dynamic (Λ, 𝑓 |Λ) is topologically mixing,

- all saddle basic pieces are Smale related only with sources and sinks.

From now on, consider 𝑓 a shoe diffeomorphim, and Λ the only non-trivial basic piece of 𝑓 .

By the assumptions we made so far, for all 𝑥 ∈ Λ, the set 𝑊 𝑠
(𝑥) is a non-compact one-

dimensional manifold and, thus, it is homeomorphic to ℝ. An 𝑠-interval is any connected subset of
𝑊

𝑠
(𝑥). We will use the same nomenclature and notation of intervals on ℝ for 𝑠-intervals on 𝑊 𝑠

(𝑥).
For instance, any compact 𝑠-interval of 𝑊 𝑠

(𝑥) have extreme points 𝑝 and 𝑞, and it is denoted by
[𝑝, 𝑞]

𝑠

𝑥
. An isolated 𝑠/𝑢-interval 𝐼 is an 𝑠/𝑢-interval with extreme points in Λ and there exist an

open 𝑠/𝑢-interval 𝐽 such that 𝐼 ⊂ 𝐽 and 𝐽 ∩ Λ ⊂ 𝐼 .

2.1.1 Lemma. If 𝑓 is a shoe diffeomorphism, then 𝑊 𝑠
(Λ) ∪ 𝑊

𝑢
(Λ) is path-connected.

Proof. Consider 𝑥, 𝑦 ∈ Λ and neighborhoods 𝐴, 𝐵 ⊂ 𝑆 of 𝑥 and 𝑦, respectively, that admits a product
structure. Consider 𝜀 > 0 small enough such that 𝑊 𝑠/𝑢

𝜀 (𝑥) ⊂ 𝐴 and 𝑊
𝑠/𝑢

𝜀 (𝑦) ⊂ 𝐵. Since 𝑓 |Λ is
topologically mixing, we can find an 𝑁 ∈ ℕ such that 𝑓 𝑛(𝐴) ∩ 𝐵 ≠ ∅ and 𝑓

𝑛
(𝐴) ∩ 𝐴 ≠ ∅, for

all 𝑛 ≥ 𝑁 . Moreover, we can find 𝑁 ≥ 𝑁 where the space 𝑓 𝑁 (𝑊 𝑢

𝜀
(𝑥)) cross 𝑊 𝑠

𝜀
(𝑥) and 𝑊 𝑠

𝜀
(𝑦) at

one point, let’s say, at the points 𝑥 and 𝑦, respectively. The curve [𝑥, 𝑥]
𝑠

𝑥
∪ [𝑥, 𝑦]

𝑢

𝑓
𝑁
(𝑥)

∪ [𝑦, 𝑦]
𝑠

𝑦
is

continuous and connects the point 𝑥 and 𝑦. Thus, 𝑊 𝑠
(Λ) ∪ 𝑊

𝑢
(Λ) is path-connected.
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In the context we are working, a region 𝑅 ⊂ 𝑆 is a rectangle if there exist compact intervals
𝐼 , 𝐽 ⊂ ℝ and a homeomorphism 𝜑 ∶ 𝐼 × 𝐽 → 𝑅 such that:

- 𝜑(𝜕𝐼 × 𝐽 ) ⊂ 𝑊
𝑢
(Λ) and 𝜑(𝐼 × 𝜕𝐽 ) ⊂ 𝑊 𝑠

(Λ).

- For all 𝑡 ∈ 𝐽 , 𝜑(𝐼 × {𝑡}) is either disjoint of 𝑊 𝑠
(Λ) or 𝜑(𝐼 × {𝑡}) ⊂ 𝑊 𝑠

(Λ).

- For all 𝑡 ∈ 𝜑({𝑡} × 𝐽 ) is either disjoint of 𝑊 𝑢
(Λ) or 𝜑({𝑡} × 𝐽 ) ⊂ 𝑊 𝑢

(Λ).

For a rectangle 𝑅, we denote by 𝜕
𝑠
𝑅 = 𝜑(𝐼 × 𝜕𝐽 ) the stable edges of 𝑅, and 𝜕

𝑢
𝑅 = 𝜑(𝜕𝐼 × 𝐽 ) the

unstable edges of 𝑅. A sub-rectangle of 𝑅 is a rectangle contained on 𝑅 with stable edges, or unstable
edges, contained in 𝜕

𝑠
𝑅, or 𝜕𝑢𝑅. If 𝑥 ∈ 𝑅 ∩ Λ, the 𝑅-stable/unstable manifold of 𝑥 is the unique

connected subset of 𝑊 𝑠/𝑢
(Λ) ∩ 𝑅 that contains 𝑥 . Denote by 𝜌𝑠/𝑢

𝑥,𝑅
∶ 𝑅 ∩ Λ → 𝑊

𝑠/𝑢

𝑅
(𝑥) the canonical

projections of points of 𝑅 ∩ Λ over 𝑊 𝑠/𝑢

𝑅
(𝑥). A sub-rectangle of 𝑅 is a rectangle contained on 𝑅 with

stable edges, or unstable edges, contained in 𝜕𝑠𝑅, or 𝜕𝑢𝑅.

For any point 𝑝 ∈ 𝑊
𝑠
(Λ), there exist 𝑥 ∈ Λ such that 𝑝 ∈ 𝑊

𝑠
(𝑥). We also denote by 𝑊 𝑠

(𝑝) the
set 𝑊 𝑠

(𝑥). Every point 𝑝 ∈ 𝑊
𝑠
(Λ) divide its leaf into two connected components and each one

is called a separatrix of 𝑝. When one of the separatrices does not intersect Λ, it is called a free
separatrix of 𝑝. We can do analogous definitions to points on 𝑊 𝑢

(Λ).

Since 𝑊 𝑠
(Λ) is a lamination, for any 𝑝 ∈ 𝑊

𝑠
(Λ), it is possible to find a neighborhood 𝑝 , with

a product structure, and a homeomorphism 𝜑𝑝 ∶ 𝑄 = (−1, 1)
2
→ 𝑝, such that 𝜑𝑝(0, 0) = 𝑝 and

𝜑
−1

𝑝
(𝑝 ∩ 𝑊

𝑠
(Λ)) = (−1, 1) × 𝐹

𝑢

𝑝
, where 𝐹𝑢

𝑝
is a Cantor set. Analougous facts holds for points in

the lamination 𝑊
𝑢
(Λ). If 𝐶 is a Cantor set that is a subspace of a topological space 𝑋 , then the

endpoints of 𝐶 with respect to 𝑋 , is all the points in the boundary of a connected component of the
complementary set 𝑋\𝐶. It will be important later the fact that the set of all endpoints of a Cantor
set is a dense subset of this Cantor set.

A point 𝑝 ∈ 𝑊
𝑠
(Λ) is an s-boundary point if 0 is an endpoint of 𝐹𝑢

𝑝
. We can similarly define the

u-boundary points on 𝑊 𝑢
(Λ). A corner is both an 𝑠-boundary and an 𝑢-boundary point.

The next theorem is due to [NP73] and the proof can be found in pag. 42–45 of [BL98].

2.1.2 Proposition. Let 𝑓 be a shoe diffeomorphism. Then,

1. If 𝑥 ∈ 𝑊
𝑠/𝑢

(Λ) is an 𝑠/𝑢-boundary point, then all iterates of 𝑥 by 𝑓 is also an 𝑠/𝑢-boundary
point. Moreover, all points belonging to 𝑊 𝑠/𝑢

(𝑥) are 𝑠/𝑢-boundary points.

2. A point 𝑥 ∈ Λ is an 𝑠/𝑢-boundary periodic point if, and only if, one, and only one, of the
separatrices of 𝑊

𝑢/𝑠
(𝑥) is free.

3. A point 𝑝 ∈ 𝑊
𝑠/𝑢

(Λ) is an 𝑠/𝑢-boundary point if it is contained in one of the 𝑠/𝑢-separatrices
of an 𝑠/𝑢-boundary periodic point.

4. There is a finite, and not null, 𝑠/𝑢-boundary periodic points on Λ.

An s/u-boundary separatrices is a non-free 𝑠/𝑢-separatrix of an 𝑠/𝑢-boundary periodic point.
Let respectively denote by Per

𝑠
(Λ) and Per

𝑢
(Λ) the set of all 𝑠-boundary and 𝑢-boundary periodic

points on Λ, and BPer(Λ) = Per
𝑠
(Λ) ∪ Per

𝑢
(Λ) the set of all boundary periodic points on Λ. Note

that the corner periodic points are the points on Per
𝑠
(Λ) ∩ Per

𝑢
(Λ). For each 𝑝 ∈ Per

𝑠/𝑢
(Λ), denote

by 𝑊̂ 𝑢/𝑠

𝑝
the unique unstable/stable free separatrices of 𝑝. Each free separatrix is homeomorphic

to an open interval, with one of its extreme point the boundary periodic point, and the other
extremity a sink or source, depending on the nature of the free separatrix. Let’s denote by 𝑞𝑠/𝑢

𝑝
the

sink/source that is the other extreme point of 𝑊̂ 𝑢/𝑠

𝑝
.
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𝑝

𝑊
𝑠
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𝑠
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𝑢

𝑝
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𝑠
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𝑊
𝑢
(𝑝)
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𝑢

𝑝

𝑊̂
𝑠

𝑝

Figure 2.1: A boundary and corner periodic points.

We will make one more assumption about shoe diffeomorphism. We will assume that all points
on BPer(Λ) and all trivial basic pieces of the shoe diffeomorphism 𝑓 are fixed points. We do this
just to simplify the writing and avoiding cumbersome notation. We can always get a new shoe
diffeomorphism satisfying these hypothesis from a previous shoe 𝑓 just considering a new map
𝑓

lcm, where lcm is the least common multiple of the periods of the points on BPer(Λ) and periods
of the trivial basic pieces of 𝑓 .

2.1.3 Corollary. Any 𝑠/𝑢-boundary periodic point but not corner have two non-free 𝑠/𝑢-boundary
separatrices. A corner periodic point also have two non-free boundary separatrices but they are of
different nature. Moreover, any boundary periodic point does not have three free separatrices.

Proof. The proof is a direct application of (2) of Proposition 2.1.2.

An u-arc1
𝛾 of Λ is a compact 𝑢-interval [𝑥1, 𝑥2]𝑢 where the interior is disjoint of Λ, i.e. (𝑥1, 𝑥2)𝑢∩

Λ = ∅, and 𝑥1, 𝑥2 ∈ Λ. We define s-arcs of Λ similarly as 𝑢-arcs. Note that if 𝛾 is an arc, then 𝑓 (𝛾)

is also an arc, and its extreme points are over the same boundary separatrices. Two 𝑢-arcs 𝛾 and
𝛾
′ are said to be equivalent if either 𝛾 = 𝛾

′, or there exist a rectangle 𝑅, where 𝜕𝑢(𝑅) = {𝛾, 𝛾
′
}. An

analogous arc equivalence holds for 𝑠-arcs. The map 𝑓 acts on the classes of equivalence of arcs.
Thus, we are able to work with the orbits of each class of equivalence of arcs by 𝑓 .

𝛾 𝛾’

Figure 2.2: Two equivalent arcs.

2.1.4 Proposition. The set of orbits (by 𝑓 ) of equivalence classes of arcs is finite.

The proof of this proposition can be found in pag. 48–49 of [BL98].

1 In any case, when we use the word arc, it means a space homeomorphic to a closed interval.
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A domain of an equivalence class of arcs is the union of all rectangles that turns the arcs
equivalent. An arc is called an extreme arc of the domain if it is contained on the boundary of the
domain. Note that not all equivalence class of arcs have an extreme arc. When an equivalence class
of arcs have extreme arcs, then we say that this equivalence class is a limited equivalent class of
arcs.

For any 𝑢-arc 𝛾 of Λ, with extremities 𝑥1 and 𝑥2 contained respectively in the 𝑠-boundary
separatrix 𝑊 𝑠

𝑝1
and 𝑊

𝑠

𝑝2
, we can define the closed curve 𝜎𝛾 2 in the following way: if 𝑊 𝑠

𝑝1
≠ 𝑊

𝑠

𝑝2
,

then 𝜕
𝑢
𝜎𝛾 = {𝛾, 𝑓 (𝛾)} and 𝜕

𝑠
𝜎𝛾 = {[𝑥1, 𝑓 (𝑥1)]

𝑠

𝑝1
, [𝑥2, 𝑓 (𝑥2)]

𝑠

𝑝2
}; if 𝑊 𝑠

𝑝1
= 𝑊

𝑠

𝑝2
, then 𝜕

𝑢
𝜎𝛾 = {𝛾} and

𝜕
𝑠
𝜎𝛾 = {[𝑥1, 𝑥2]

𝑠

𝑝1
}. Similar definitions can be made for 𝑠-arcs.

2.1.5 Proposition. For any arc 𝛾 , the closed simple curve 𝜎𝛾 is the boundary of a topological disk
𝑇 (𝜎𝛾) disjoint of Λ, and the family {𝑓

𝑛
(𝑇 (𝜎𝛾)) ∶ 𝑛 ∈ ℤ} form a disjoint family of topological disks.

The prove for this proposition can be found in pag. 55–59 of [BL98].

2.2 Iterates of Arcs

Let 𝛾 = [𝑥1, 𝑥2]
𝑢 be an 𝑢-arc and 𝑊

𝑠

𝑝1
and 𝑊

𝑠

𝑝2
the two 𝑠-boundary separatrices containing,

respectively, the extremities 𝑥1 and 𝑥2 of 𝛾 . Let also be 𝑊̂ 𝑢

𝑝1
and 𝑊̂ 𝑢

𝑝2
the free 𝑢-separatrices associated

to 𝑝1 and 𝑝2, and 𝑞𝑠
𝑝1

and 𝑞𝑠
𝑝2

the sinks associated to each free separatrix.

2.2.1 Lemma. The interior of 𝛾 , the set 𝛾̊ ∶= (𝑥1, 𝑥2)
𝑢, is contained in an unique basin of attraction

𝑞 = 𝑞
𝑠

𝑝1
= 𝑞

𝑠

𝑝2
of a sink of 𝑓 .

Proof. Suppose the lemma is false, i.e. there exist two points of 𝛾̊ such that each one is contained
in two distinct basin of attraction. However, every basin of attraction is an open set and have
stable manifolds of saddle periodic points as its boundary. Thus, if the hypothesis we made is true,
should exist a point on 𝛾̊ that is contained in a stable manifold of a saddle periodic point, what is a
contradiction with the fact that 𝛾 is an arc. If 𝛾 is contained in the basin of atraction of a sink 𝑞,
then 𝑞 = 𝑞

𝑠

𝑝1
= 𝑞

𝑠

𝑝2
.

Note that 𝑊 𝑠

𝑝1
could be distinct of 𝑊 𝑠

𝑝2
, but there is the possibility that 𝑊 𝑠

𝑝1
= 𝑊

𝑠

𝑝2
. In this case 𝛾

bend over 𝑊 𝑠

𝑝1
. In both cases 𝑊̂ 𝑢

𝑝1
∪ 𝑊̂

𝑢

𝑝2
∪ {𝑝1, 𝑝2} ∪ {𝑞

𝑠

𝑝1
, 𝑞

𝑠

𝑝2
} is a compact set of 𝑆, as well as 𝛾 .

2.2.2 Proposition. The iterates of 𝛾 converge, in the Hausdorff metric, to 𝑊̂ 𝑢

𝑝1
∪𝑊̂

𝑢

𝑝2
∪{𝑝1, 𝑝2}∪{𝑞

𝑠

𝑝1
, 𝑞

𝑠

𝑝2
},

i.e. 𝑑𝐻 (𝑓 𝑛(𝛾), 𝑊̂ 𝑢

𝑝1
∪ 𝑊̂

𝑢

𝑝2
∪ {𝑝1, 𝑝2} ∪ {𝑞}) → 0, when 𝑛 → ∞.

Proof. Consider  an neighborhood of 𝑝1 that admits a product structure. Since 𝑓 𝑛(𝑥1) → 𝑝1, we
can find an 𝑁 ∈ ℕ, such that 𝑓 𝑛(𝑥1) ∈  , for all 𝑛 > 𝑁 . The proof of this proposition follows from
the following observations:

• Suppose 𝛿1 is a compact sub-arc of 𝛾 with 𝑥1 as extreme point and 𝑓 𝑛(𝛿1) ⊂  , where 𝑛 > 𝑁 ,
and 𝛿′

1
is a compact sub-arc of 𝑊̂ 𝑢

𝑝1
∪{𝑝1} with 𝑝1 as extreme point. Then, 𝑑𝐻 (𝑓 𝑛(𝛿1), 𝑓 𝑛(𝛿′1)) →

0, when 𝑛 → ∞.

• For a 𝛿′
1

satisfying the same properties, then 𝑑𝐻 (𝑓 𝑛(𝛿′1), 𝑊̂
𝑢

𝑝1
∪ {𝑝1} ∪ {𝑞}) → 0, when 𝑛 → ∞.

2 Not be confused with the shift map 𝜎.
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From these two observations we can conclude that 𝑑𝐻 (𝑓 𝑛(𝛿1), 𝑊̂ 𝑢

𝑝1
∪ {𝑝1} ∪ {𝑞}) → 0, when

𝑛 → ∞. An analogous result can be obtained for 𝛿2 a compact sub-arc of 𝛾 with 𝑥2 as extreme
point and 𝑓 𝑛(𝛿2) ⊂  , where 𝑛 > 𝑁 .

Consider now 𝛾
′
= 𝛾\(𝛿1∪𝛿2). The open arc 𝛾′ is completely contained in the basin of atraction

of 𝑞, so 𝑑𝐻 (𝑓
𝑛
(𝛾

′
), 𝑞) → 0, when 𝑛 → ∞. Thus, 𝑑𝐻 (𝑓 𝑛(𝛾), 𝑊̂ 𝑢

𝑝1
∪ 𝑊̂

𝑢

𝑝2
∪ {𝑝1, 𝑝2} ∪ {𝑞}) → 0,

when 𝑛 → ∞.

𝑝1

𝑝2

𝑊
𝑠

𝑝1

𝑊
𝑠

𝑝2

𝑊̂
𝑢

𝑝1

𝑊̂
𝑢

𝑝2

𝑞
𝑠

𝑝1

𝛾𝑓 (𝛾)

𝑝

𝑊
𝑠

𝑝

𝑊̂
𝑢

𝑝

𝛾

𝑓 (𝛾)

Figure 2.3: The two cases of Proposition 2.2.2.

As well as in the other results, we can obtain an analogous result for the iterates of an 𝑠-
arc.

2.3 Margulis Measure

We are now able to present an important, and well explored, property of hyperbolic dynamic,
namely, the existence of a Markov partition. Just like the others results presented early, the existence
of Markov partition is not at all restricted to surface dynamic.

A Markov partition for Λ is a finite family of rectangles  = {𝑅𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚} such that:

- For all (𝑖, 𝑗) ∈ {1, … , 𝑚}
2, every connected component of the intersection 𝑅𝑖 ∩ 𝑓 (𝑅𝑗 ) is a

sub-rectangle of 𝑅𝑖 (resp. 𝑓 (𝑅𝑗 )) with stable edges (resp. unstable edges) included in 𝜕
𝑠
𝑅𝑖

(resp. 𝜕𝑢𝑓 (𝑅𝑗 )), and crossing each of the connected component of 𝜕𝑠𝑅𝑖 (resp. 𝜕𝑢𝑓 (𝑅𝑗 )).

- For all sequence (𝑖𝑛)𝑛∈ℤ ∈ {1, … ,𝑚}
ℤ, each connected component of the intersection

∩𝑛∈ℕ𝑓
𝑛
(𝑅𝑖𝑛

) contains at most one point of Λ.

Since we are assuming that the topological dimension ofΛ is equal to zero, then all the rectangles
in a Markov partition form a disjoint family. A result by Bowen [Bow70] proved that there exist a
Markov Partition for Λ. The existence of a Markov Partition for Λ allow us to find a conjugacy
between the dynamic (Λ, 𝑓 |Λ) and a subshift of finite type, in the following way: consider the 𝑚×𝑚

matrix 𝑀 = (𝑚𝑖𝑗 ), where 𝑚𝑖𝑗 is the number of sub-rectangles of 𝑅𝑖 with image by 𝑓 contained in
𝑅𝑗 . Note that if some entry of 𝑀 is greater than 1, than we can consider a new Markov Partition of
Λ made of sub-rectangles of the original Markov Partition such that all the entries of 𝑀 are 0 or 1.
Thus, we can suppose, without loss of generality, that 𝑀 is a {0, 1}-matrix. It is possible to prove
that (Λ, 𝑓 |Λ) is conjugate to (Σ𝑀 , 𝜎) by a homeomorfism ℎ ∶ Λ → Σ𝑀 and 𝜚 = ℎ ∗ 𝛽.

2.3.1 Proposition. Consider the laminations 𝑊 𝑠
(Λ) and 𝑊 𝑢

(Λ) on 𝑆. Then, there is a transverse
measure 𝜈𝑢 on 𝑊 𝑢

(Λ) adapted to 𝑊 𝑠
(Λ), called the Margulis stable measure, satisfying the following
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conditions:

• The measure of a segment on 𝑊 𝑠
(Λ) is strictly positive if, and only if, its interior cross 𝑊 𝑢

(Λ).

• There exist a constant 𝜆 > 1 such that, for all segments 𝛼 contained on 𝑊 𝑠
(Λ) and transverse to

𝑊
𝑢
(Λ), holds 𝜈𝑢(𝑓 −1(𝛼)) = 𝜆.𝜈

𝑢
(𝛼).

Proof. Consider {𝑅1, … , 𝑅𝑘} a Markov Partition for Λ and 𝑀 the {0, 1}-matrix as described above.
Consider also 𝑢 = (𝑢1, … , 𝑢𝑘) and 𝑣

𝑇
= (𝑣1, … , 𝑣𝑘)

𝑇 the left and right positive eigenvectors of 𝑀
associated to 𝜆𝑀 > 1, where 𝑢.𝑣 = 1.

For 𝑛 ∈ {0, 1, 2, … } and 𝑖 ∈ {1, … , 𝑘}, consider now all the intervals 𝐼 𝑛
𝑖

of 𝑊 𝑠
(Λ), where 𝐼 𝑛

𝑖
⊂

𝑓
𝑛
(𝑅𝑖) and both extreme points of 𝐼 𝑛

𝑖
are elements of 𝜕𝑢(𝑓 𝑛(𝑅𝑖)). For these intervals we define,

𝜈
𝑢
(𝐼
𝑛

𝑖
) ∶= 𝜆

−𝑛

𝑀
.𝑣𝑖. Intervals 𝐼 that do not intersect Λ we define 𝜈𝑢(𝐼 ) ∶= 0. Note that for both type of

intervals 𝐼 the relation 𝜈𝑢(𝑓 −1(𝐼 )) = 𝜆𝑀 .𝜈
𝑢
(𝐼 ) holds.

Consider now an isolated 𝑠-interval 𝐼 ⊂ 𝑊 𝑠
(Λ). In this case, it is possible to split the interval 𝐼

into a union of finite 𝑠-arcs, and 𝑘𝐼 finite intervals 𝐼 𝑛𝑗
𝑖𝑗

, where 𝑗 ∈ {1, … , 𝑘𝐼 }, and 𝐼 𝑛𝑗
𝑖𝑗
⊂ 𝑓

𝑛𝑗
(𝑅𝑖𝑗

) and
both extreme points of 𝐼 𝑛𝑗

𝑖𝑗
are elements of 𝜕𝑢(𝑓 𝑛𝑗 (𝑅𝑖𝑗 )). By what was define until now we have

𝜈
𝑢
(𝐼 ) ∶= ∑

𝑘𝐼

𝑗=1
𝜈
𝑢
(𝐼
𝑛𝑗

𝑖𝑗
). The equality 𝜈𝑢(𝑓 −1(𝐼 )) = 𝜆𝑀 .𝜈

𝑢
(𝐼 ) is true by the previous equality and by

the fact that the inverse of 𝑠-arcs continue to be an 𝑠-arcs.

Consider now 𝐼 ⊂ 𝑊
𝑠
(Λ) any compact 𝑠-interval. This interval can be written as a union of an

isolated 𝑠-interval 𝐼 and at most two 𝑠-intervals that do not intersect Λ. In this case 𝜈𝑢(𝐼 ) ∶= 𝜈
𝑢
(𝐼 ),

and obviously satisfies 𝜈𝑢(𝑓 −1(𝐼 )) = 𝜆𝑀 .𝜈
𝑢
(𝐼 ).

Finally, note that we define 𝜈𝑢 for all compact 𝑠-intervals contained in 𝑊
𝑠
(Λ). For each leaf

of 𝑊 𝑠
(Λ) we can proceed like the construction of the Lebesgue measure on the real line ℝ, and

extend the measure 𝜈𝑢 to the Sigma-algebra on this leaf generated by the compact intervals in this
leaf.

Following an analogous argument, we can prove the existence of a transverse measure 𝜈𝑠 of
𝑊

𝑠
(Λ) adapted to 𝑊 𝑢

(Λ), where 𝜈𝑠(𝑓 (𝛼)) = 𝜆.𝜈
𝑠
(𝛼). Both the measures 𝜈𝑠 and 𝜈𝑢 are unique, up a

multiplication by a constant. The product measure 𝜈𝑠 ×𝜈𝑢 is defined over the Sigma-algebra generate
by all sub-rectangles contained in any rectangle of a Markov Partition {𝑅1, … , 𝑅𝑘} of Λ. Moreover,
the measure 𝜈𝑠 × 𝜈𝑢 is supported over Λ. Note that 𝜈𝑠 × 𝜈𝑢(∪𝑘

𝑖=1
𝑅𝑖) = 1. In this case, for an element 𝑅

of the Sigma-algebra generate by all sub-rectangles, we have 𝜈𝑠 × 𝜈𝑢(𝑅) = 𝛽(𝑅 ∩ Λ).

2.4 Tied and Sewn relations

An arc chain is a curve 𝛼 formed by alternating boundary 𝑠-arcs and boundary 𝑢-arcs. Each arc
that formed an arc chain is called a side of the arc chain. We say that a side is adjacent to other side
if they share a point. Each side can have at most two adjacent sides. A finite arc chain is an arc
chain with a finite number of sides.

A closed arc chain is a simple closed curve formed by alternating boundary 𝑠-arcs and boundary
𝑢-arcs. Every closed arc chain is a finite arc chain. Moreover, every closed arc chain have an even
number of sides.

2.4.1 Proposition. The following statement are true: A closed arc chain 𝜓 is the boundary of an open
topological disk 𝑃(𝜓) that do not intersect Λ. Moreover, the iterates of these disks {𝑓 𝑛(𝑃(𝜓)) ∶ 𝑛 ∈ ℤ}

form a pairwise disjoint family. The set of orbits (by 𝑓 ) of any non-trivial polygon is finite.
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Figure 2.4: Part of an arc chain.

The proof of this statment can be found in pag. 68-69 of [BL98].

If a finite arc chain is not a closed arc chain, then we called it an open arc chain. We say that
two arcs are finite linked if they are contained in an open finite arc chain.

A 𝑛-polygon is the union of a closed arc chain 𝜓, with 2𝑛 sides, and its associated topological
disk 𝑃(𝜓). A trivial polygon is a 2-polygon (or a rectangle) and non-trivial otherwise.

2.4.2 Lemma. The set of orbits (by 𝑓 ) of any non-trivial polygon is finite.

The proof of this statment can be found in pag. 69 of [BL98].

We say that two distinct 𝑠-boundary separatrices 𝑊 𝑠

1
and 𝑊 𝑠

2
are tied if there exist an 𝑢-arc 𝛾

with one extreme point over 𝑊 𝑠

1
and the other extreme point over 𝑊 𝑠

2
. We use the same word (tied)

to refer a similar notion that we can define for 𝑢-boundary separatrices.

The next propositions 2.4.3, 2.4.5 and 2.4.6 were also proved in [BL98], but with different
terminology. We provide the proofs of these propositons for the convenience of the reader.

2.4.3 Propostion. If the boundary separatrices 𝑊1 and 𝑊2 are tied, then there is no distinct boundary
separatrix 𝑊3 tied to 𝑊1 or 𝑊2. In other words, 𝑊1 is only tied to 𝑊2 and vice versa.

Proof. Consider 𝑊 𝑠

𝑝1
and 𝑊 𝑠

2
two distinct 𝑠-boundary separatrices tied by an 𝑢-arc 𝛾 , and 𝑥 ∈ 𝑊

𝑠

𝑝1

an extreme point of 𝛾 . Consider now another 𝑢-arc 𝛾′ with extreme point 𝑦 ∈ [𝑥, 𝑝1]
𝑠

𝑝1
. Since

𝑓
𝑛
(𝑥) → 𝑝1, when 𝑛 → ∞, there exist 𝑁 ∈ ℕ such that 𝑦 ∈ [𝑓

𝑁
(𝑥), 𝑓

𝑁+1
(𝑥)]

𝑠

𝑝1
. By the Proposition

2.1.5, the set 𝜎
𝑓
𝑁
(𝛾)

is a closed curve and is the boundary of a topological disk 𝑇 (𝜎
𝑓
𝑁
(𝛾)
). Hence,

the interior of 𝛾′ should be contained in 𝑇 (𝜎
𝑓
𝑁
(𝛾)
) and, thus, there are only two possibility for the

other extreme point of 𝛾′: or belongs to 𝑊 𝑠

𝑝1
or belongs to 𝑊 𝑠

2
.

Suppose now that there exist a third 𝑠-boundary separatrix 𝑊 𝑠

3
, distinct to 𝑊 𝑠

𝑝1
and distinct to

𝑊
𝑠

2
, but tied to 𝑊 𝑠

𝑝1
by an 𝑢-arc 𝛾′′, and 𝑧 ∈ 𝑊 𝑠

𝑝1
the extreme point of 𝛾′′ contained in 𝑊

𝑠

𝑝1
. Since

𝑓
𝑛
(𝑧) → 𝑝1, when 𝑛 → ∞, there exist 𝑁 ∈ ℕ such that 𝑓 𝑁 (𝑧) ∈ [𝑥, 𝑝1]

𝑠

𝑝1
. Then, we can do a similar

argument of the argument above, and prove that 𝑓 𝑁 (𝛾′′) should have the other extremity on 𝑊 𝑠

𝑝1
or

𝑊
𝑠

2
, which leads us to a contradiction. We can do an analogous argument to prove the proposition

for tied 𝑢-boundary separatrices.

The next Corollary of the previous Proposition will be important later.

2.4.4 Corollary. Every non-trivial polygon have at most two 𝑠-sides that tied two distinct 𝑢-boundary
points.

Proof. If the 𝑢-sides a finite arc chain 𝜓 are all contained in just one 𝑢-boundary separatrix, then
the corollary is true. Furthermore, if 𝜓 have just two sides, then the statement is also true. Suppose
now that 𝜓 have 2𝑛 sides, where 𝑛 ≥ 3.

By the Proposition 2.4.3, the 𝑢-sides of 𝜓 can be contained in at most two 𝑢-boundary separatrix.
If this happen to 𝜓, then at least two 𝑠-sides tied the 𝑢-boundary separatrices. If there is a third
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𝑠-side that tied the two 𝑢-boundary separatrices, then one of these 𝑠-sides are in between the others
two, a contradiction.

It is possible to state and prove an analogous Corollary about 𝑢-sides of a polygon.

Consider now an 𝑠-boundary separatrix 𝑊 𝑠 where all arcs with one extreme point over 𝑊 𝑠

have, in fact, both extreme points over 𝑊 𝑠 . In this case, the 𝑢-arcs can be compare in the following
way: if 𝛾 and 𝛾′ are two 𝑢-arcs having their extreme points over 𝑊 𝑠 , we say that 𝛾 is subordinated
to 𝛾′ if 𝑇 (𝜎𝛾) ⊂ 𝑇 (𝜎𝛾′). Note that this relation make the set of all 𝑢-arcs having their extreme points
over 𝑊 𝑠 a poset. Denote by 𝛼(𝑊 𝑠

) the set of all maximal elements of this poset. The set 𝛼(𝑊 𝑠
) is

𝑓 -invariant and have infinite elements.

2.4.5 Proposition. Consider 𝑊 𝑠 and 𝛼(𝑊 𝑠
) as above. There exist a unique 𝑢-boundary separatrix

𝑊
𝑢 such that 𝛼(𝑊 𝑠

) ⊂ 𝑊
𝑢. On the other hand, all 𝑠-arc having one extreme points over 𝑊 𝑢 have in

fact both extreme points over 𝑊 𝑢, and 𝛼(𝑊 𝑢
) ⊂ 𝑊

𝑠 .

Proof. Denote by (𝑊
𝑠
) the set of all 𝑢-boundary separatrices 𝑊 𝑢 such that exist an 𝑢-arc 𝛼 ⊂ 𝑊 𝑢

where 𝛼 ∈ 𝛼(𝑊
𝑠
). We need to proof that (𝑊

𝑠
) have just one element. Firstly, the set (𝑊

𝑠
) is

not null. More than that, since there exist just a finite number of boundary separatrices, the set
(𝑊

𝑠
) is a finite set.

Let suppose that there exist more than one element in (𝑊
𝑠
). Hence, by the finiteness of (𝑊

𝑠
),

there should exist an 𝑠-arc 𝛾 ⊂ 𝑊 𝑠 that tied two distinct 𝑢-boundary separatrices 𝑊 𝑢

1
, 𝑊

𝑢

2
∈ (𝑊

𝑠
).

By Proposition 2.4.3, the set (𝑊
𝑠
) have just two elements, namely, 𝑊 𝑢

1
and 𝑊 𝑢

2
. Note that 𝑓 𝑛(𝛾),

where 𝑛 ∈ ℤ, also tied 𝑊 𝑢

1
and 𝑊 𝑢

2
.

Consider an 𝑠-arc 𝛾 ∈ 𝛼(𝑊
𝑠
) that tied 𝑊 𝑢

1
, 𝑊

𝑢

2
∈ (𝑊

𝑠
). Take another 𝑠-arc 𝛾′ ∈ 𝛼(𝑊 𝑠

) that
tied 𝑊 𝑢

1
, 𝑊

𝑢

2
∈ (𝑊

𝑠
), such that 𝛾 and 𝛾′ are finite linked by the finite arc chain 𝛼′ such that they

have just one adjacent side in 𝛼′, and there is no other 𝑠-arc in 𝛼′ that ties 𝑊 𝑢

1
and 𝑊 𝑢

2
. Thus, there

is a finite number of 𝑠-arcs in 𝛼
′ with both extreme points over the same 𝑢-boundary separatrix,

let’s say 𝑊 𝑢

1
. If 𝑥 and 𝑥′ are extreme points of 𝛾 and 𝛾′, respectively, and contained in 𝑊

𝑢

2
. Note

that all the 𝑠-arcs contained in 𝛼(𝑊 𝑠
)\𝛼

′ must have all its extreme points in [𝑥, 𝑥
′
]
𝑢. However, this

implies in the existence of a 𝑢-boundary periodic point, a contradiction. Thus, there is just only
one element, denoted by 𝑊 𝑢, in 𝛼(𝑊 𝑠

).

Any 𝑠-arc that have one extreme point in 𝑊 𝑢 have both extreme point in 𝑊 𝑢. Now we wat to
prove that 𝛼(𝑊 𝑢

) ⊂ 𝑊
𝑠 . Let’s suppose that 𝛾 is an extreme arc for its equivalent class of arcs, and 𝛾

is contained in an 𝑠-boundary separatrix 𝑊 𝑠

1
. If 𝑊 𝑠

1
≠ 𝑊

𝑠 , then we can find an 𝑢-arc contained in
𝑊

𝑢 with extreme point on 𝑊 𝑠 and on 𝑊 𝑠

1
, a contradiction.

Two boundary separatrices of oposite nature 𝑊 𝑠 and 𝑊
𝑢 are sewn if it is related as in the

Proposition described above.

2.4.6 Proposition. Consider that 𝑊 𝑠 and 𝑊 𝑢 are sewn boundary separatrices, and 𝑝𝑠 and 𝑝𝑢 its
associated boundary periodic point. Then, 𝛼(𝑊 𝑠

, 𝑊
𝑢
) ∶= 𝛼(𝑊

𝑠
) ∪ 𝛼(𝑊

𝑢
) is an infinite arc chain, and

𝛼(𝑊
𝑠
, 𝑊

𝑢
) ∪ 𝑊̂

𝑢

𝑝
𝑠 ∪ 𝑊̂

𝑠

𝑝
𝑢 ∪ {𝑝

𝑠
, 𝑝

𝑢
} ∪ {𝑞

𝑠

𝑝
𝑠 , 𝑞

𝑢

𝑝
𝑢} is a continuum. Furthermore, every infinite arc chain is

associated to a sewn boundary separatrices.

Proof. The way 𝛼(𝑊
𝑠
) and 𝛼(𝑊

𝑢
) was constructed in Proposition 2.4.5, it is easy to see that

𝛼(𝑊
𝑠
, 𝑊

𝑢
) is an infinite arc chain. By Proposition 2.2.2, we know that, for any arc 𝛼 ⊂ 𝛼(𝑊 𝑠

, 𝑊
𝑢
),

we have 𝑑𝐻 (𝑓 𝑛(𝛼), 𝑊̂ 𝑢

𝑝
𝑠 ∪ {𝑝

𝑠
} ∪ {𝑞

𝑠

𝑝
𝑠 }) → 0 and 𝑑𝐻 (𝑓

−𝑛
(𝛼), 𝑊̂

𝑠

𝑝
𝑢 ∪ {𝑝

𝑢
} ∪ {𝑞

𝑢

𝑝
𝑢}) → 0, when 𝑛 → ∞.

This shows that 𝛼(𝑊 𝑠
, 𝑊

𝑢
) ∪ 𝑊̂

𝑢

𝑝
𝑠 ∪ 𝑊̂

𝑠

𝑝
𝑢 ∪ {𝑝

𝑠
, 𝑝

𝑢
} ∪ {𝑞

𝑠

𝑝
𝑠 , 𝑞

𝑢

𝑝
𝑢} is a compact set.
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Suppose now that 𝛼(𝑊 𝑠
, 𝑊

𝑢
) ∪ 𝑊̂

𝑢

𝑝
𝑠 ∪ 𝑊̂

𝑠

𝑝
𝑢 ∪ {𝑝

𝑠
, 𝑝

𝑢
} ∪ {𝑞

𝑠

𝑝
𝑠 , 𝑞

𝑢

𝑝
𝑢} can be written as a union of two

disjoint non-empty open sets𝐴 and𝐵. Here, open sets of 𝛼(𝑊 𝑠
, 𝑊

𝑢
)∪𝑊̂

𝑢

𝑝
𝑠∪𝑊̂

𝑠

𝑝
𝑢∪{𝑝

𝑠
, 𝑝

𝑢
}∪{𝑞

𝑠

𝑝
𝑠 , 𝑞

𝑢

𝑝
𝑢} are

induced by the open sets of 𝑆. Note that 𝛼(𝑊 𝑠
, 𝑊

𝑢
) is a one-dimensional non-compact topological

space and, thus, is homeomorphic to ℝ. Thus, 𝛼(𝑊 𝑠
, 𝑊

𝑢
) is connected and if the set 𝐴 contain just

one element of 𝛼(𝑊 𝑠
, 𝑊

𝑢
), it should be contained entirely on 𝐴.

Suppose without loss of generality that 𝛼(𝑊 𝑠
, 𝑊

𝑢
) ⊂ 𝐴. It remains for the set 𝐵 contain one

of the sets 𝑊̂ 𝑢

𝑝
𝑠 , 𝑊̂ 𝑠

𝑝
𝑢 , {𝑝𝑠}, {𝑝𝑢}, {𝑞𝑠

𝑝
𝑠 } or {𝑞𝑢

𝑝
𝑢}. However, any point contained in any of these sets

is accumulated by points of 𝛼(𝑊 𝑠
, 𝑊

𝑢
). Thus, if 𝐵′ is an open set of 𝑆 that contains any point of

any set listed above, then it contains infinite elements of 𝛼(𝑊 𝑠
, 𝑊

𝑢
). Hence, if 𝐵 is an open set of

𝛼(𝑊
𝑠
, 𝑊

𝑢
) ∪ 𝑊̂

𝑢

𝑝
𝑠 ∪ 𝑊̂

𝑠

𝑝
𝑢 ∪ {𝑝

𝑠
, 𝑝

𝑢
} ∪ {𝑞

𝑠

𝑝
𝑠 , 𝑞

𝑢

𝑝
𝑢} and not contain 𝛼(𝑊 𝑠

, 𝑊
𝑢
), then 𝐵 = ∅. It proves that

𝛼(𝑊
𝑠
, 𝑊

𝑢
) ∪ 𝑊̂

𝑢

𝑝
𝑠 ∪ 𝑊̂

𝑠

𝑝
𝑢 ∪ {𝑝

𝑠
, 𝑝

𝑢
} ∪ {𝑞

𝑠

𝑝
𝑠 , 𝑞

𝑢

𝑝
𝑢} is connected and, thus, a continuum.

Finally, if we proceed as in the proof of Proposition 2.4.5, we can show that any infinite arc
chain 𝛼 is contained in the union of two boundary separatrices of oposite nature, say 𝛼 ⊂ 𝑊 𝑠

𝛼
∪𝑊

𝑢

𝛼
.

The existence of an arc tiying 𝑊 𝑠 to a distinct 𝑠-boundary separatrix, or an 𝑠-arc tying 𝑊 𝑢 to a
distinct 𝑢-boundary separatrix, make impossible the existence of an infinite arc chain contained in
the union of these two boundary separatrices.

We can finally state an important result that we will use during the rest of the text.

2.4.7 Theorem. A boundary separatrix is either tied to a single distinct boundary separatrix of same
nature, or it is sewn to a single boundary separatrix of opposite nature.

Proof. For a boundary separatrix, there are two options: either there exist an arc with one extreme
point at the boundary separatrix and the other extreme point in another distinct boundary separatrix
of the same nature, and in this case the boundary separatrices are tied; or all the arcs with extreme
point on the boundary separatrix have both extremities on the boundary separatrix, and in this case
the boundary separatrix is sewn to other boundary separatrix of oposite nature. The uniquiness of
the tieness and the sewness are part of the Propostions 2.4.3 and 2.4.5.

2.5 Zippers and Humps

Zippers

Consider now two tied 𝑠-boundary separatrices 𝑊 𝑠

𝑝1
and 𝑊

𝑠

𝑝2
, where 𝑝1, 𝑝2 ∈ Per

𝑠
(Λ). An s-

zipper is the region of 𝑆, with interior disjoint of Λ, and delimited by 𝑊 𝑠

𝑝1
and 𝑊 𝑠

𝑝2
, 𝑊̂ 𝑢

𝑝1
and 𝑊̂ 𝑢

𝑝1
,

𝑝1 and 𝑝2, and 𝑞 ∶= 𝑞
𝑠

𝑝1
= 𝑞

𝑠

𝑝2
. The 𝑠-zipper is denoted by 𝑠

(𝑊
𝑠

𝑝1
, 𝑊

𝑠

𝑝2
). An undone 𝑠-zipper is an

𝑠-zipper such that every 𝑢-arc realizing the tying between 𝑊 𝑠

𝑝1
and 𝑊 𝑠

𝑝2
are arc equivalence, and a

stuck s-zipper, otherwise. We can make similar definitions of 𝑢-zippers.

Note that the domain of an 𝑢/𝑠-arc of an undone 𝑠/𝑢-zipper does note have any extreme
arc, thus the domain of any arc realizing the tying coincide with the whole 𝑠/𝑢-zipper. On the
other hand, a stuck 𝑠/𝑢-zipper only happen when some 𝑢/𝑠-arc have its extreme points over the
same 𝑠/𝑢-boundary separatrix. Thus, each equivalent class of 𝑢/𝑠-arcs tying the 𝑠/𝑢-boundary
separatrices have two extreme arcs.

Consider now 𝑠
(𝑊

𝑠

𝑝1
, 𝑊

𝑠

𝑝2
) a stuck 𝑠-zipper and 𝛾 an extreme 𝑢-arc realizing the tying between

𝑊
𝑠

𝑝1
and 𝑊

𝑠

𝑝1
. Denote by 𝑥1 ∈ 𝑊

𝑠

𝑝1
and 𝑥2 ∈ 𝑊

𝑠

𝑝2
the extremities of 𝛾 . By the Propositon 2.1.5,

the region 𝑇 (𝜎𝛾) is a topological disk. Moreover, the region 𝑇 (𝜎𝛾) is a fundamental domain of
𝑠

(𝑊
𝑠

𝑝1
, 𝑊

𝑠

𝑝2
), thus, 𝑠

(𝑊
𝑠

𝑝1
, 𝑊

𝑠

𝑝2
) = ∪𝑛∈ℤ𝑓

𝑛
(𝑇 (𝜎𝛾)).
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𝑝1

𝑝2

𝑞

𝑊̂
𝑠

𝑝1

𝑊̂
𝑠

𝑝2

𝑝1

𝑝2

𝑞

𝑊̂
𝑠

𝑝1

𝑊̂
𝑠

𝑝2

𝛾

𝑓 (𝛾)

𝛾

𝑓 (𝛾)

Figure 2.5: Undone zipper and a stuck zipper.

2.5.1 Lemma. There is a finite number 𝑘𝛾 of equivalent classes of 𝑢-arcs tying 𝑊 𝑠

𝑝1
and 𝑊 𝑠

𝑝2
contained

in 𝜎𝛾 ∪ 𝑇 (𝜎𝛾). Moreover, 𝑘𝛾 is independent of 𝛾 .

Proof. The existence of an infinite number of equivalent classes of 𝑢-arcs tying 𝑊
𝑠

𝑝1
and 𝑊

𝑠

𝑝2

contained in 𝜎𝛾 ∪ 𝑇 (𝜎𝛾) implies the existence of an 𝑠-boundary periodic points on [𝑥1, 𝑓 (𝑥1)]
𝑠

𝑝1
and

another 𝑠-boundary periodic points on [𝑥2, 𝑓 (𝑥2)]
𝑠

𝑝2
, a contradiction.

Consider now 𝛾
′ another extreme 𝑢-arc realizing the tying between 𝑊

𝑠

𝑝1
and 𝑊

𝑠

𝑝1
. For each

equivalence class of 𝑢-arcs that tied 𝑊 𝑠

𝑝1
and 𝑊 𝑠

𝑝1
and is contained in 𝜎𝛾′ ∪ 𝑇 (𝜎𝛾′), we can find an

integer such that the iterate of this equivalent class of arcs by this integer lies on 𝜎𝛾 ∪ 𝑇 (𝜎𝛾). This
proves that 𝑘𝛾′ ≤ 𝑘𝛾 . Following an analogous argument, we can show that 𝑘𝛾 ≤ 𝑘𝛾′ , and, thus,
𝑘𝛾 = 𝑘𝛾′ .

By the previous Lemma, there are 𝑘 ∈ ℕ equivalence classes of 𝑢-arcs contained on 𝜎𝛾 ∪ 𝑇 (𝜎𝛾)
and tying𝑊 𝑠

𝑝1
and𝑊 𝑠

𝑝2
. Let’s denote by {𝜔𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} such family of equivalence classes of 𝑢-arcs.

If 𝑊 𝑠

𝑝1
is oriented towards its associated periodic points, we are assuming that the enumeration of

the family {𝜔𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} is coherent with the orientation of 𝑊 𝑠

𝑝1
, i.e. 𝜔1 is further away than

𝜔2 from 𝑝1, and 𝜔2 is further away than 𝜔3 from 𝑝1, ando so on until the last region 𝜔𝑘 , that is
the closest equivalent class to 𝑝1. Note that if we choose 𝑊 𝑠

𝑝2
instead of 𝑊 𝑠

𝑝1
does not change the

enumeration, since in the case we are working, the orientation of 𝑊 𝑠

𝑝1
and 𝑊 𝑠

𝑝2
are coherent, see

Corollary 2.4.3, item (3), page 57 in [BL98].

The spaces obtained removing from 𝜎𝛾 ∪ 𝑇 (𝜎𝛾) the interior of the domain of each 𝜔𝑖 is a union
of 𝑘 regions delimited by four intervals of diferent nature and having 𝑢-arcs in its interior with
both extreme points over the same separatrix. Each region described above is denoted by 𝐷𝑖

𝛾
, for

𝑖 ∈ {1, ⋯ , 𝑘}, and 𝜙𝑖
1

and 𝜙𝑖
2

are the sides of 𝐷𝑖

𝛾
respectively contained on 𝑊

𝑠

𝑝1
and 𝑊 𝑠

𝑝2
. Again, we

are considering that the enumeration of the regions 𝐷𝑖

𝛾
are also coherent with the orientation of

𝑊
𝑠

𝑝1
and 𝑊 𝑠

𝑝2
towards its associated periodic points.

Let 𝑀 𝑖

𝑗
be the set of all equivalent classes of arcs having an 𝑢-arc with both extremities over 𝜙𝑖

𝑗

(𝑗 = 1 or 2).

2.5.2 Lemma. For each 𝑖 ∈ {1, ⋯ , 𝑘}, at least one 𝑀 𝑖

1
or 𝑀 𝑖

2
is non-empty. Furthermore, if 𝑀 𝑖

𝑗
is

non-empty, then is finite.

Proof. Each unstable side of 𝐷𝑖

𝛾
are not arc equivalent by hypothesis. Therefore, there must be

an 𝑢-arc with both extremities over the same 𝑠-boundary separatrix. Hence, each 𝑀
𝑖

1
is non-

empty. If 𝑀 𝑖

1
have infinite elements, then there must have an 𝑠-boundary periodic point on 𝜙

𝑖

1
, a

contradiction.
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𝛾
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𝛾
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𝜙
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1

Figure 2.6: Regions 𝐷𝑖

𝛾
for the stuck zipper in the Figure 2.6.

The space obtained removing from 𝐷
𝑖

𝛾
the interior of the domains of each element in 𝑀

𝑖

𝑗
, for

both 𝑗 = 1 and 𝑗 = 2, is a union of non-trivial polygons. There is exactly one polygon  𝑖 that
have its stable sides included both in 𝜙

𝑖

1
and in 𝜙

𝑖

2
. The rest of the polygons have its stable sides

exclusively include either in 𝜙𝑖
1

or in 𝜙𝑖
2
. Denote by 𝑃 𝑖

𝛾
= { 𝑖

𝑙
∶ 0 ≤ 𝑙 ≤ |𝑀

𝑖

1
| + |𝑀

𝑖

2
|}}, where  𝑖

0
=  𝑖,

the set of all polygons contained on 𝐷𝑖

𝛾
. The set 𝑃𝛾 = ∪

𝑘

𝑖=1
𝑃
𝑖

𝛾
is the set of all polygons contained in

𝜎𝛾 ∪ 𝑇 (𝜎𝛾). The set 𝑃(𝑊 𝑠

1
, 𝑊

𝑠

2
) = ∪𝑛∈ℤ𝑃𝑓 𝑛(𝛾) are all the polygons contained in 𝑠

(𝑊
𝑠

𝑝1
, 𝑊

𝑠

𝑝2
).

Of course we can do similar definitions and obtain similar propositions about tied 𝑢-boundary
separatrices and the 𝑢-zippers associated to it.

Figure 2.7: The five polygons in region 𝐷3

𝛾
for the stuck zipper in the Figure 2.6.

Humps

Consider now an 𝑠-boundary separatrix 𝑊
𝑠 sewn to an 𝑢-boundary separatrix 𝑊

𝑢. If we
oriented 𝑊 𝑠 towards its associated 𝑠-boundary periodic point 𝑝𝑠 and orient 𝑊 𝑢 away its associated
𝑢-boundary periodic point 𝑝𝑢, the curve 𝛼(𝑊 𝑠

, 𝑊
𝑢
) can also be oriented: the curve 𝛼(𝑊 𝑠

, 𝑊
𝑢
)

is oriented from the 𝑢-boundary periodic point toward the 𝑠-boundary periodic point. Taking
advantage of the orientation of 𝛼(𝑊 𝑠

, 𝑊
𝑢
) we define the following order on 𝛼(𝑊

𝑠
, 𝑊

𝑢
): given

𝛾, 𝛾
′
⊂ 𝛼(𝑊

𝑠
, 𝑊

𝑢
), we write 𝛾 ≺ 𝛾

′ if 𝛾 is behind 𝛾′, with respect to the orientation of 𝛼(𝑊 𝑠
, 𝑊

𝑢
).

Note that 𝛾 and 𝛾′ can be of different nature.

For each 𝛾 ∈ 𝛼(𝑊 𝑠
, 𝑊

𝑢
), each 𝑇 (𝜎𝛾) is called a hump. The spaces 𝛼(𝑊 𝑠

, 𝑊
𝑢
) and 𝛼ℎ(𝑊 𝑠

, 𝑊
𝑢
) ∶=

∪
𝛾⊂𝛼(𝑊

𝑠
,𝑊

𝑢
)
(𝑇 (𝜎𝛾)) are 𝑓 -invariants. We can also define the region 𝛼ℎ

𝛾
(𝑊

𝑠
, 𝑊

𝑢
) ⊂ 𝛼

ℎ
(𝑊

𝑠
, 𝑊

𝑢
) of all

regions 𝜎
𝑇 (𝜎

𝛾
′ )

such that 𝛾 ⪯ 𝛾
′
≺ 𝑓 (𝛾). Thus, 𝛼ℎ(𝑊 𝑠

, 𝑊
𝑢
) = ∪𝑛∈ℤ𝑓

𝑛
(𝛼

ℎ

𝛾
(𝑊

𝑠
, 𝑊

𝑢
)).
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Figure 2.8: The curve 𝛼(𝑊 𝑠
, 𝑊

𝑢
) and the humps 𝛼ℎ(𝑊 𝑠

, 𝑊
𝑢
).

2.5.3 Lemma. There is a finite number 𝜅𝛾 ∈ ℕ such that 𝛼ℎ
𝛾
(𝑊

𝑠
, 𝑊

𝑢
) have 𝜅𝛾 humps. Moreover, 𝜅𝛾 is

independent of 𝛾 .

The proof of this Lemma is similar to the proof of Lemma 2.5.2. Let’s write 𝛼ℎ
𝛾
(𝑊

𝑠
, 𝑊

𝑢
) =

∪
𝜅

𝑖=1
𝑇 (𝜎𝛾𝑖

), where 𝛾𝑖 ⪯ 𝛾𝑗 when 𝑖 ≤ 𝑗 .

2.5.4 Lemma. For each hump 𝑇 (𝜎𝛾𝑖) ∈ 𝛼
ℎ

𝛾
(𝑊

𝑠
, 𝑊

𝑢
), where 1 ≤ 𝑖 ≤ 𝜅, there exist a finite number

𝜏𝑖 ∈ ℕ of distincts equivalence classes of arcs contained in 𝑇 (𝜎𝛾𝑖).

Proof. As there is an arc 𝛾 ⊂ 𝑇 (𝜎𝛾𝑖) that is arc equivalent to 𝛾𝑖, then there exist at least one equivalent
class of arcs contained in 𝑇 (𝜎𝛾𝑖

). As in previous cases, the existence of infinite equivalent classes
of arcs contained in 𝑇 (𝜎𝛾𝑖

) implies the presence of a boundary periodic point on 𝑊
𝑠 , or 𝑊 𝑢, a

contradiction. Thus, there exist a finite number 𝜏𝑖 ∈ ℕ of distincts equivalent classes of arcs
contained in 𝑇 (𝜎𝛾𝑖).

Let’s denote by {𝜔
𝑗

𝛾𝑖
∶ 1 ≤ 𝑗 ≤ 𝜏𝑖} the family of equivalence classes of arcs contained in 𝑇 (𝜎𝛾𝑖).

For each 𝑇 (𝜎𝛾𝑖) ∈ 𝛼
ℎ

𝛾
(𝑊

𝑠
, 𝑊

𝑢
), the space obtained removing from 𝑇 (𝜎𝛾𝑖

) the interior of the domain
of each 𝜔

𝑖

𝛾𝑖
is a union of 𝜏𝑖 non-trivial polygons. We will denote by 𝛾𝑖

the unique polygon that
have one of its side in the same equilalence class of arc of 𝛾𝑖. Denote by 𝐿𝛾𝑖 = {𝑗

𝛾𝑖
∶ 1 ≤ 𝑗 ≤ 𝜏𝑖 − 1},

where 1

𝛾𝑖
= 𝛾𝑖

, the set of all polygons contained in 𝑇 (𝜎𝛾𝑖
). The set 𝐿𝛾 = ∪

𝜅

𝑖=1
𝐿𝛾𝑖

is the set of all
polygons contained in 𝛼

ℎ

𝛾
(𝑊

𝑠
, 𝑊

𝑢
). The set 𝐿(𝑊 𝑠

, 𝑊
𝑢
) = ∪𝑛∈ℤ𝐿𝑓 𝑛(𝛾) is the set of all the polygons

contained on 𝛼ℎ(𝑊 𝑠
, 𝑊

𝑢
).

Finally, we can prove the following proposition.

2.5.5 Proposition. If a non-trivial polygon is contained in a stuck 𝑠-zipper, then it is contained in a
stuck 𝑢-zipper. Moreover, every non-trivial polygon is either contained in a stuck zipper or in a hump.
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Proof. For any non-trivial polygon, by the Corollary 2.4.4, there exist at least two 𝑢-sides that ties
two distinct 𝑠-boundary separatrices. If a non-trivial polygon is contained in an 𝑠-zipper, then
there are two 𝑢-sides that tied two distinct 𝑠-boundary separatrices. On the other hand, by the
Corollary 2.4.4, there are two 𝑠-sides of the polygon that tied two 𝑢-boundary separatrices. Hence,
the polygon is contained in the 𝑢-zipper associated to these two 𝑢-boundary separatrices.

If a polygon is not contained in a zipper, then, by Corollary 2.4.4, its 𝑠-sides are contained in
only one 𝑠-boundary separatrix 𝑊 𝑠 , and its 𝑢-sides are contained in only one 𝑢-boundary separatrix
𝑊

𝑢. If the 𝑠-boundary separatrix𝑊 𝑠 is tied to another 𝑠-boundary separatrix, then it implies that the
polygon is contained in an 𝑠-zipper, a contradiction. Thus, every 𝑢-side of the polygon is contained
in 𝑇 (𝜎𝛾), where the 𝑢-arc 𝛾 ⊂ 𝛼(𝑊 𝑠

) satisfies 𝛾′ ≺ 𝛾 , when 𝛾′ is an 𝑢-side of the polygon.

2.6 Contact Between Boundary Periodic Point

By Theorem 2.4.7, a boundary separatrix is either tied to another boundary separatrix of the
same nature, or sewn to a boundary separatrix of oposite nature. We say that two boundary periodic
points are in contact if the boundary separatrix of one of these boundary periodic point is tied
or sewn to the boundary separatrix of the other boundary periodic point. Note that a boundary
periodic point can be in contact to itself.

From the contact relation between boundary periodic points we can construct a graph 
where each vertex is a boundary periodic point and each edge is the pair formed by the boundary
separatrices that turn the boundary periodic points in contact.

2.6.1 Proposition. There is a finite number 𝑔Λ ∈ ℕ of graphs , and each graph  is a cycle graph3.

Proof. By the Corollary 2.1.3, each boundary periodic point have two boundary separatrices. Thus,
each boundary periodic point is in contact to two other boundary periodic points, or it is in contact
with itself. In both cases, the degree of all vertices is two. W will denote by  each connected
component of the graph formed by all the boundary periodic point. Since there are just a finite
number of boundary periodic point, then the number of connected component  is finite, let’s say
𝑔Λ, and each connected component of  have an infinite number of vertices.

Consider  a cycle graph as described above and {𝑝

𝑖
; 1 ≤ 𝑖 ≤ 𝑣} all the boundary periodic

points associated to each vertex of , where 𝑣 is the number of vertex of . Let suppose that the
enumeration of the 𝑝

𝑖
’s are also cyclic, i.e., 𝑝

1
is in contact to 𝑝

2
, 𝑝

2
is in contact to 𝑝

3
, . . . , 𝑝

𝑣

is in contact to 𝑝
1
. If the contact between the periodic points is due to a tied, then we associate

to this contact the space formed by the union of the ree separatrices associated to the zipper, the
boundary periodic points associated to the tied boundary separatrices and the source/sink also
associated to the zipper.

formed by the free separatrices associated to the zipper, the boundary periodic points, and the
source/sink also associated to the zipper. Otherwise, if the contact between the periodic points is
due to a sewn, then we associate to this contact the infinite arc chain 𝛼 and the free separatrices.
The union of all spaces associated to each contact of vertices of  as we described is denote by
𝐶(). See Figure 2.9 and 2.11.

2.6.2 Lemma. The space 𝐶() is a continuum.

3 A cycle graph is any connected graph with vertices connected to exactly two other vertices.
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Proof. Consider𝑊 𝑠 and𝑊 𝑢 are sewn boundary separatrices and 𝑝𝑠 and 𝑝𝑢 are the boundary periodic
points associated to each boundary separatrices. By Proposition 2.4.6, the space 𝛼(𝑊 𝑠

, 𝑊
𝑢
) ∪ 𝑊̂

𝑢

𝑝
𝑠 ∪

𝑊̂
𝑠

𝑝
𝑢 ∪ {𝑝

𝑠
, 𝑝

𝑢
} ∪ {𝑞

𝑠

𝑝
𝑠 , 𝑞

𝑢

𝑝
𝑢} is a continuum. Moreover, each free separatrix is obviously a continuum.

Hence, the space 𝐶() is a union of continua. Since each continuum in this union share a point (in
fact a boundary periodic point) with another continuum, the union is a connected space.

The compactness of 𝐶() follows from the fact that 𝐶() is a finite union of compact, which
implies that 𝐶() is also compact.

Define now the space 𝑆(Λ) ∶= 𝑊
𝑠
(Λ) ∪ 𝑊

𝑢
(Λ) ∪ {𝑃(𝜓) ∶ 𝜓 is a closed arc chain}. The space

𝑆(Λ) is an 𝑓 -invariant continuum in 𝑆.

2.6.3 Proposition. There exist an 𝑓 -invariant compact surface with boundary without a finite
number of points, denoted by Δ(Λ), and containing 𝑆(Λ), such that:

a) The points missing in the boundary of Δ(Λ) are sources and sinks. Furthermore, the union of
Δ(Λ) and the sources and sinks that are missing in the boundary of Δ(Λ) is equal to Δ(Λ).

b) There exist a finite number of connected component of Δ(Λ)\𝑆(Λ). Each connected component is
homeomorphic to ℝ×[0, +∞) and the dynamic restrict to each connected component is conjugate
to a translation.

c) Each connected component of Δ(Λ)\𝑆(Λ) is delimited by the boundary of Δ(Λ), and by either
a union of an infinite arc chain and the accumulated free separatrices, or by the union of two
separatrices of a corner.

The proof of this propositon can be found in [BL98], pag. 72–80.

By the assumptions we made for the diffeomorphism 𝑓 , for all connected component  of
𝑆\Δ(Λ), the space  is a compact surface with boundary and the dynamic of 𝑓 restricted to  is a
Morse-Smale dynamic.

2.6.4 Corollary. Each connected component of 𝑆\Δ(Λ) is contained in only one connected component
of 𝑆\𝑆(Λ). Moreover, each connected component of 𝑆\𝑆(Λ) contains only one connected component of
𝑆\Δ(Λ).

Let’s denote by 𝑛Λ the number of boundary components of Δ(Λ), and by 𝑚Λ the number of
connected component of 𝑆\Δ(Λ). If {𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑚Λ} is the set of all connected component of
𝑆\𝑆(Λ), then ∑

𝑚Λ

𝑗=1
𝑡𝑗 ≤ 𝑔Λ ≤ 𝑚Λ ≤ 𝑛Λ.
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𝑝

1

𝑝

2

𝑝

3

𝑝

4

𝑝

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𝑝

6

𝑝

7

𝑝

8

𝑝

9

𝑝

10

Figure 2.9: The points 𝑝
𝑖−1

, 𝑝
𝑖

and 𝑝
𝑖+1

are in contact, for 𝑖 ∈ {1, … , 10}. For example, the point 𝑝
4

is tied to 𝑝
3
,

which in turn is sew to 𝑝
2
.
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𝑝
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𝑝

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𝑝
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4

𝑝
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𝑝

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𝑝

7

𝑝
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𝑝
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 𝐶()

Figure 2.10: The graph  and the space 𝐶() associated to Figure 2.9.

Figure 2.11: One boundary of the compact surface Δ(Λ) and the missing points on the boundary.
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Chapter 3

Zero-Entropy Equivalence

As we anticipated in the first chapter, the zero-entropy relation will play an important role
in this work. Just to remember, two points 𝑥, 𝑦 ∈ 𝑋 are said to be zero-entropy related if there
exist a continumm (compact and connected) 𝐶 contained on 𝑋 such that 𝑥, 𝑦 ∈ 𝐶 and ℎ𝑓 (𝐶) = 0.
As we wrote, the zero-entropy relation is an equivalence relation. We denote by 𝑋 the set of all
zero-entropy equivalent classes, by 𝜋 ∶ 𝑋 → 𝑋 its canonical projection, and by ̃

𝑓 = 𝜋 ◦ 𝑓 the
induced map ̃

𝑓 ∶ 𝑋 → 𝑋 . The map ̃
𝑓 is called the tight quotient of the map 𝑓 .

3.1 Monotone upper semi-continuous equivalence relation

Let 𝑋 be a compact metric space and  a partition of 𝑋 . The partition  is called monotone
if it is a partition into connected sets. It is called an upper semi-continuous if 𝑥𝑛, 𝑦𝑛 ∈ 𝑄𝑛 ∈ , and
𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦, when 𝑛 → ∞, imply that 𝑥, 𝑦 ∈ 𝑄

′
∈ .

We will need the following Lemma, that the reader can find the proof in [dCP03].

3.1.1 Lemma. Let (𝑋, 𝑑) be a compact metric space, 𝑓 ∶ 𝑋 → 𝑋 be a homeomorphism and 𝐶 ⊂ 𝑋 be
a compact set satisfying ℎ(𝑓 , 𝐶) > 0. Then there exists an 𝑓 -invariant ergodic Borel probability measure
𝜇𝐶 on 𝑋 , such that ℎ𝜇𝐶 (𝑓 ) > 0 and such that 𝜇𝐶-almost every point belongs to a non-degenerate set in
𝜔(𝐶)

1.

By the hypothesis we made so far, the closure of each leaf of 𝑊 𝑠/𝑢
(Λ) is a continuum that

carries entropy. Thus, there exist continua in 𝑆 that carries entropy.

A point 𝑥 ∈ Λ is called inaccessible if it is neither an 𝑠-boundary point, nor an 𝑢-boundary point.
An accessible point is all points in Λ that are not inaccessible. An inaccessible arc is any arc where
its extreme points are formed by two strictly boundary periodic points.

3.1.2 Lemma. If 𝐶 ⊂ 𝑆 is a compact set where ℎ(𝑓 , 𝐶) > 0, then, if 𝐴 ⊂ Λ is the set of all accessible
point, 𝜇𝐶(𝐴) = 0.

Proof. Since ℎ𝜇𝐶 (𝑓 ) > 0 and the measure 𝜇𝐶 is ergodic, then 𝜇𝐶 is non-atomic. Consider {𝑅1, … , 𝑅𝑘}

a Markov Partition for Λ. If 𝐼 𝑠/𝑢
𝑖

is one connected component of 𝜕𝑠/𝑢(𝑅𝑖), then the set of endpoints
contained in 𝐼 𝑠/𝑢

𝑖
, that will be denoted by 𝐸𝑠/𝑢

𝑖
, is countable.

1 Here the set 𝜔(𝐶) is the Omega-limit set of 𝐶 associated to the dynamic (
̂
𝑓 ,(𝑋)), where (𝑋) is the hyperspace

associated to 𝑋 .
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Since 𝐴 ⊂ (∪
𝑘

𝑖=1
(𝐸

𝑠

𝑖
× 𝐼

𝑢

𝑖
) ∩ 𝑊

𝑠
(Λ)) ∪ (∪

𝑘

𝑖=1
(𝐼
𝑠

𝑖
× 𝐸

𝑢

𝑖
) ∩ 𝑊

𝑢
(Λ)), and this union is also countable,

the measure by 𝜇𝐶 of all accessible points is zero.

3.1.3 Lemma. Let 𝐾, 𝐾 ′ be two continua of 𝑆 such that 𝑑𝐻 (𝑓 𝑛(𝐾), 𝑓 𝑛(𝐾 ′
)) → 0, when 𝑛 → ∞. Then,

ℎ(𝑓 , 𝐾) = ℎ(𝑓 , 𝐾
′
).

Proof. Consider 𝜀 > 0 and 𝑁 ∈ ℕ such that 𝑑𝐻 (𝑓 𝑛(𝐾), 𝑓 𝑛(𝐾 ′
)) < 𝜀/2 for all 𝑛 ≥ 𝑁 . Note that

if we cover 𝑓 𝑛(𝐾) by open sets of diameter 𝜀, then it is also covers the compact 𝑓 𝑛(𝐾 ′
). Hence,

𝐷(𝑛, 𝜀, 𝐾
′
) ≤ 𝐷(𝑛, 𝜀, 𝐾), for all 𝑛 ≥ 𝑁 . We can proceed in similar way to prove that 𝐷(𝑛, 𝑟, 𝐾) ≤

𝐷(𝑛, 𝑟, 𝐾
′
). Thus, ℎ(𝑓 , 𝐾) = lim

𝜀→0

lim
𝑛→∞

1

𝑛

ln𝐷(𝑛, 𝜀, 𝐾) = lim
𝜀→0

lim
𝑛→∞

1

𝑛

ln𝐷(𝑛, 𝜀, 𝐾
′
) = ℎ(𝑓 , 𝐾

′
).

3.1.4 Lemma. Consider a compact 𝑠/𝑢-interval 𝐼 ⊂ 𝑊
𝑠/𝑢

(Λ). If 𝐼 is contained in a 𝑠/𝑢-arc, then
ℎ
𝑓
(𝐼 ) = 0.

Proof. First of all, note that the closure of any free separatrix carry zero entropy.

Consider 𝐼 a compact 𝑢-interval contained in an 𝑢-arc. The interior of 𝐼 do not cross 𝑊 𝑠
(Λ). By

Proposition 2.2.2, this 𝑢-arc converges, in Hausdorff distance, to the closure of a free separatrix. By
Lemma 3.1.3, the forward topological entropy carried by this 𝑢-arc under 𝑓 is zero. Furthermore,
the length of the inverse iterates of this 𝑢-arc converge to zero. Hence, the backward topological
entropy carried by this 𝑢-arc under 𝑓 is also zero. Thus, ℎ𝑓 (𝐼 ) = 0.

The proof of the next theorem was inspired by the proof of a similar proposition presented
in [dCP03]. In the case of this paper, the authors proved, among other things, that for a 1+𝜖

diffeomorphism on a surface, the zero-entroy equivalence is a upper semi-continuous equivalence
class. The next theorem was necessary since we are assuming that the diffeomorphism 𝑓 is 1

diffeomorphism.

3.1.5 Theorem. If 𝑓 ∶ 𝑆 → 𝑆 is a shoe diffeomorphism, then the zero-entropy equivalence relation in
𝑆 is a monotone upper-semicontinuous equivalence relation.

Proof. The zero-entropy equivalence is monotone by the construction of the equivalence relation.
It remains to show that the zero-entropy equivalence relation is upper semi-continuous.

Consider two sequences (𝑥𝑛)𝑛∈ℕ, (𝑦𝑛)𝑛∈ℕ ⊂ 𝑆 such that 𝑥𝑛 is zero-entropy equivalence to 𝑦𝑛,
and 𝑥𝑛 → 𝑥 ∈ 𝑆 and 𝑦𝑛 → 𝑦 ∈ 𝑆, when 𝑛 → ∞. Consider 𝐶𝑛 a continuum containing 𝑥𝑛 and 𝑦𝑛 and
carrying zero entropy. By compactness of the space ((𝑀), 𝑑𝐻 ), there exist a continuum 𝐶 that
contains 𝑥 and 𝑦, and a sequence (𝐶𝑚𝑖

)𝑖∈ℕ such that 𝑑𝐻 (𝐶𝑚𝑖
, 𝐶) → 0, when 𝑖 → ∞.

Suppose that ℎ(𝑓 , 𝐶) > 0 and consider 𝜇𝐶 the measure given by Lemma 3.1.1. By Poincaré
Recurrence theorem 1.1.1, by Lemma 3.1.1, and by Lemma 3.1.2., the set of all recurrent, inaccessible
and that belongs to a non-degenerate set in 𝜔(𝐶), have full measure.

Consider 𝑥 a recurrent, inaccessible and 𝑥 ∈ 𝐸 ∈ 𝜔(𝐶), where 𝐸 is non-degenerate. Since
𝐸 ∈ 𝜔(𝐶), then there exist a strictly increasing sequence of natural number (𝑛𝑘)𝑘∈ℕ such that
𝑑𝐻 (𝑓

𝑛𝑘 (𝐶), 𝐸) → 0, when 𝑘 → ∞. By the continuity of ̂
𝑓 , for all 𝜖 > 0 there exist 𝛿 > 0 such that for

all compact 𝐷, 𝑑𝐻 (𝐷, 𝐶) < 𝛿 implies 𝑑𝐻 ( ̂𝑓 𝑛(𝐷), ̂𝑓 𝑛(𝐶)) < 𝜖/2. Consider a natural number 𝑁 greater
enough such that 𝑑𝐻 (𝑓 𝑛𝑘 (𝐶), 𝐸) < 𝜖/2, for all 𝑛𝑘 > 𝑁 . Thus, for all compact 𝐷, 𝑑𝐻 (𝐷, 𝐶) < 𝛿

implies 𝑑𝐻 ( ̂𝑓 𝑛(𝐷), 𝐸) < 𝜖.

Consider a point 𝑦 ∈ 𝐸, such that diam(𝐸)/2 < 𝑑(𝑥, 𝑦) < diam(𝐸). Then, there exist a point
𝑤 ∈ 𝑓

𝑛𝑘 (𝐷) such that 𝑑(𝑦, 𝑤) < 𝜖. Thus, 𝑑(𝑤, 𝑥) ≥ 𝑑(𝑥, 𝑦) − 𝑑(𝑤, 𝑦) > diam(𝐸)/2 − 𝜖.
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Consider a rectangular neighborhood 𝑥 of 𝑥 such that diam(𝐸) > 2diam(𝑥), and 𝜕𝑠/𝑢𝑥

are contained in boundary sepratrices.

Consider points 𝑧, 𝑤 ∈ 𝑓
𝑛𝑘 (𝐷) such that 𝑧 ∈ 𝑥 and 𝑑(𝑥, 𝑤) > diam(𝐸)/2 − 𝜖. Suppose also

that 𝜖 is small enough such that 𝜖 < diam(𝐸)/2 − diam(𝑥). Thus, 𝑑(𝑥, 𝑤) > diam(𝑥). The point
𝑧 is contained in 𝑥 and 𝑤 is not contained in 𝑥 . Consider  ′

𝑥
a rectangular neighborhood of 𝑥

that also contains 𝑤.

Consider 𝑈 a continuum contained in  ′

𝑥
. Define 𝑈1 = 𝑈 ∩ Int(𝑥) and 𝑈2 = 𝑈 ∩ Int( ′

𝑥
\𝑥).

Define also 𝑈 ′

1
= 𝑈 1 ∩ 𝛿𝑥 and 𝑈 ′

2
= 𝑈 2 ∩ 𝛿𝑥 . We say the continuum 𝑈 cross 𝑥 if there exit

𝑎1 ∈ 𝐶
′

1
and 𝑎2 ∈ 𝐶

′

2
, and a continuum 𝑇 ⊂ 𝐶 ∩ 𝜕𝑥 with 𝑎1, 𝑎2 ∈ 𝑇 . The continuum 𝑇 can be

degenerate.

Suppose that 𝑈 ⊂  ′

𝑥
is a continuum that cross 𝑥 . Thus, we can take points 𝑎1 ∈ 𝐶

′

1
and

𝑎2 ∈ 𝐶
′

2
, and a continuum 𝑇 ⊂ 𝐶 ∩ 𝜕𝑥 with 𝑎1, 𝑎2 ∈ 𝑇 . Consider two sequences (𝑢𝑖)𝑛∈ℕ ⊂ 𝑈1 and

(𝑢
′

𝑖
)𝑛∈ℕ ⊂ 𝑈2, such that 𝑢𝑖 → 𝑎1 and 𝑢′

𝑖
→ 𝑎2, when 𝑛 → ∞.

Suppose that the continuum 𝑇 contain some compact 𝑠/𝑢-interval 𝐼 that have its interior
disjoint of Λ. Consider an endpoint 𝑒 ∈ Int(𝐼 ). Since the point 𝑒 is a 𝑠/𝑢-boundary point, thus there
exist a 𝑠/𝑢-boundary periodic point 𝑞 such that 𝑒 ∈ 𝑊 𝑠/𝑢

(𝑞). Hence, 𝑑𝐻 (𝑓 𝑛(𝐼 ), 𝑊 𝑢/𝑠
(𝑞)) → 0, when

𝑛 → ∞. Thus, by Lemma 3.1.3, ℎ(𝑓 , 𝐼 ) = ℎ(𝑓 , 𝑊
𝑢/𝑠

(𝑞)) > 0.

Suppose now that the continuum 𝑇 does not contain any compact 𝑠/𝑢-interval that have
its interior disjoint of Λ. Thus, 𝑇 is contained in an 𝑠/𝑢-arc 𝛾 = [𝑝1, 𝑝2]

𝑠/𝑢

𝑞 ⊂ 𝑊
𝑠/𝑢

(𝑞), where
𝑞 is an 𝑠/𝑢-boundary periodic point. Suppose that 𝑞1 and 𝑞2 are 𝑢/𝑠-boundary periodic point
such that 𝑝1 ∈ 𝑊

𝑢/𝑠
(𝑞1) and 𝑝2 ∈ 𝑊

𝑢/𝑠
(𝑞2). Define 𝑄 the sub-rectangle contained in  ′

𝑥
where

𝜕
𝑢
𝑄 = {𝑊

𝑢

 ′

𝑥

(𝑝1), 𝑊
𝑢

 ′

𝑥

(𝑝2)} and 𝜕𝑠𝑄 ⊂ 𝜕
𝑠 ′

𝑥
. The sets 𝑄1 = 𝑄∩𝐶1 and 𝑄2 = 𝑄∩𝐶2 are compact sets.

Since 𝑑𝐻 (𝑓 𝑛(𝑊 𝑢

 ′

𝑥

(𝑝𝑖)), 𝑊
𝑢/𝑠

(𝑞)) → 0, when 𝑛 → ∞, and 𝑖 = 1, 2, then 𝑑𝐻 (𝑓 𝑛(𝐶1∪𝐶2), 𝑊 𝑢/𝑠
(𝑞)) → 0,

when 𝑛 → ∞. Hence, the compact 𝐶1 ∪ 𝐶2 is a compact set contained in 𝑈 that carry positive
entropy. Thus, 𝑈 carry positive entropy. We showed that if a continuum cross 𝑥 , then it carry
positive entropy.

Suppose we consider 𝑈 a continuum that is contained in  ′

𝑥
and contains the points 𝑧 and 𝑤.

By what was proved before, this continuum cross 𝑥 , thus it carries positive entropy. Hence, 𝑧 and
𝑤 are not zero-entropy equivalent. With that, we can conclude that 0 < ℎ(𝑓 , 𝑓

𝑛𝑘 (𝐷)) = ℎ(𝑓 , 𝐷).

Consider now 𝑁
′
∈ ℕ such that 𝑑𝐻 (𝐶𝑛𝑖 , 𝐶) < 𝛿. Thus, by the previous conclusion, 0 < ℎ(𝑓 , 𝐶𝑛𝑖

),
which is a contradiction. Thus, ℎ(𝑓 , 𝐶) = 0, and 𝑥 and 𝑦 are zero-entropy equivalent, and the
zero-entropy equivalence relation is upper-semicontinuous.

The space 𝑆 can be made into a compact metric space if we consider the distance ̃𝑑(𝑥, 𝑦) ∶=
𝑑𝐻 (𝜋

−1
(𝑥), 𝜋

−1
(𝑦)), for all 𝑥, 𝑦 ∈ 𝑆.

3.1.6 Corollary. Every zero-entropy equivalence class have at least one point of Λ.

Proof. Since the zero-entropy equivalence class is upper semicontinuous, then each zero-entropy
equivalence class is closed. Note that if a zero-entropy equivalence class does not contain a point in
Λ, then it also does not contain any point in 𝑊

𝑠
(Λ) ∪ 𝑊

𝑢
(Λ). Thus, if a zero-entropy equivalence

class does not contain a point in Λ, then it is a connected component of 𝑆\𝑊 𝑠
(Λ) ∪ 𝑊

𝑢
(Λ). However,

each connected component of 𝑆\𝑊 𝑠
(Λ) ∪ 𝑊

𝑢
(Λ) is an open set. Thus, a connected component of

𝑆\𝑊
𝑠
(Λ) ∪ 𝑊

𝑢
(Λ) is either the empty set, or 𝑆. Both leads to contradictions.
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3.2 Equivalence Classes for the Zero-Entropy Equivalence

Consider 𝐵 a zero-entropy equivalence class. Let’s denote by 𝐵Per = 𝐵 ∩ Per(Λ) and 𝐵NPer =

(𝐵 ∩ Λ)\Per(Λ).

3.2.1 Lemma. If 𝐵Per = ∅, then 𝐵NPer is finite. Moreover, the number of elements of 𝐵NPer is either
one, or an even number. In other words, 𝐵 is a polygon.

Proof. Consider that 𝐵NPer is infinite. Note that 𝐵NPer is not 𝑓 -invariant. Consider 𝑝 an accumulation
point of 𝐵. Denote by (𝑥

𝑛

𝑖
)𝑛,𝑖∈ℕ sequences contained in 𝑓 𝑛(𝐵) and converging to 𝑓 𝑛(𝑝). Since each

𝑓
𝑛
(𝐵) is a closed set, then 𝑓

𝑛
(𝑝) ∈ 𝑓

𝑛
(𝐵). The sequence (𝑥

𝑛

𝑛
)𝑛∈ℕ converge to a periodic point 𝑞.

Thus, the sequence (𝑓 −𝑛(𝑥𝑛
𝑛
))𝑛∈ℕ ⊂ 𝐵 converge to a periodic point 𝑞′ contained in 𝐵. But we assume

that 𝐵Per = ∅.

Since 𝐵NPer is non empty, then 𝐵NPer is finite. Suppose first that 𝐵NPer contain an inaccessible
point. Then, following the proof of Theorem 3.1.5, 𝐵 is a singleton and contain just this point.
Suppose now that 𝐵NPer contain just boundary points.

If 𝐵NPer contain a strictly boundary point, then, there must exist a distinct strictly boundary
point in 𝐵NPer, and 𝐵NPer contain just these two point. This is because the unique continuum that
carry zero entropy is the arc that have at each extremities one strictly boundary point contained in
𝐵NPer. In other words, its is an inaccessible arc.

If 𝐵NPer contain just corners points, then we can associate to 𝐵NPer a closed arc chain. This is
because, each corner is zero-entropy related with two extreme points of its two access. Clearly
these two extreme points are also contained in 𝐵NPer. Since the access of a corner have oposite
nature, the union of the points in 𝐵NPer and the arcs that have the corners of 𝐵NPer as extremities,
forms a closed arc chain. By Proposition 2.4.1, the number of arcs is even, thus the number of
points in 𝐵NPer is also even.

If 𝐵Per ≠ ∅, then we can divide 𝐵Per = 𝐵BPer∪(𝐵Per\𝐵BPer), where 𝐵BPer is the set of all boundary
periodic points contained in 𝐵Per.

3.2.2 Lemma. a) If 𝐵Per\𝐵BPer ≠ ∅, then 𝐵 is a singleton, and the unique element of 𝐵 is an
inaccessible periodic point.

b) If 𝐵Per = 𝐵BPer, then 𝐵Per is a union of the vertices of the circular graphs induced by the contact
between boundary periodic points. In other words, 𝐵 = 𝐶(), where  is a circular graph.

Proof. a) The point contained is 𝐵Per is inaccessible. Hence, it is not zero-entropy equivalent
with any other point. Thus, 𝐵Per have just this inaccessible periodic point.

b) Consider 𝑥 ∈ 𝐵BPer and consider that 𝑥 is in contact to a boundary periodic point 𝑦.

If this contact is due to a tiedness between boundary separatrices of 𝑥 and 𝑦, then the union
of the boundary periodic points 𝑥 and 𝑦, its free separatrices, and the sources and sinks
associated to the free separatrices is a continuum containing 𝑥 and 𝑦.

If this contact is due to a sewness between the boundary separatrices 𝑊 𝑠 and 𝑊
𝑢, the

the union of the boundary periodic points 𝑥 and 𝑦, its free separatrices, and the union of
𝛼(𝑊

𝑠
, 𝑊

𝑢
) is a continuum contained 𝑥 and 𝑦.

Both continua described in the previous paragraphs carry zero entropy. Thus, if 𝑥 is a point
of 𝐵Per and is in contact to a boundary periodic point 𝑦, then 𝑦 ∈ 𝐵Per. Thus, 𝐵Per is a union of
the vertices of the circular graphs induced by the contact between boundary periodic points.
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If for a zero-entropy equivalence class 𝐵 holds 𝐵Per = 𝐵BPer, consider 𝐵source/sinks the set of all
associated sources/sinks to each free separatrices of points in 𝐵BPer. Note that in this case the set
𝐵source/sinks is non-empty.

We can describe all the equivalence classes for the zero-entropy equivalence relation.

3.2.3 Theorem. Consider 𝑓 ∶ 𝑆 → 𝑆 a shoe diffeomorphism on a closed surface 𝑆. The only possible
equivalence classes for the zero-entropy equivalence are the following:

1. An inaccessible point or an inaccessible arc.

2. A polygon 𝜓 ∪ 𝑃(𝜓), where 𝜓 is a closed arc chain.

3. The continua 𝐶(), where  is a circular graph and 𝐶()source/sinks have just one element.

4. Each  =  ∪ (∪
𝑡
𝑖=1
𝐶(𝑖)), where  is a connected component of 𝑆\𝑆(Λ), and each 𝑖 is a

circular graph.

Proof. Denote by 𝐵 a zero-entropy equivalence class.

By Lemma 3.2.1 and item (a) of Lemma 3.2.2, if 𝐵 have one point of Λ, then 𝐵 is an inaccessible
point, that can be either periodic or non-periodic. Moreover, if 𝐵 have only two non-periodic strictly
boundary points, then 𝐵 is an inaccessible arc. If 𝐵 have an even number of non-periodic corners,
then 𝐵 is a polygon.

Suppose now that 𝐵Per = 𝐵BPer. If 𝐵sources/sinks is a singleton, then all the contacts between 𝐵BPer

is due to a tied relation between the boundary separatrices of the points of 𝐵BPer. Moreover, all the
points in 𝐵BPer are strictly boundary periodic point that are vertices of the same circular graph .
The zero-entropy class 𝐵 is the continuum 𝐶().

Finally, suppose that 𝐵Per = 𝐵BPer and 𝐵sources/sinks have more than one point. By item (b) of
Lemma 3.2.2, consider {𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑡𝐵}, where 𝑡𝐵 is the number of circular graphs in which the
elements of 𝐵BPer are vertices. Note that each continuum 𝐶(𝑖) carry zero entropy, and ∪

𝑡𝐵

𝑖=1
𝐶(𝑖) ⊂

𝐵.

Consider Δ(Λ) the compact surface with boundary given by the Proposition 2.6.3. The set
𝐵sources/sinks is contained in connected components of 𝜕Δ(Λ). Denote by 𝐵Δ the set of all connected
components of 𝜕Δ(Λ) that contain the points of 𝐵sources/sinks. There exist a connected component  ′

of 𝑆\Δ(Λ) where the connected components of 𝜕 ′ are exactly the same elements of 𝐵Δ. Otherwise,
the non-existence of such connected component would imply the existence of 𝑎, 𝑏 ∈ 𝐵sources/sinks
such that there is no continuum containing 𝑎 and 𝑏, an absurd, since 𝐵sources/sinks ⊂ 𝐵.

As we observe early, the dynamic of 𝑓 restricted to  ′ is a Morse-Smale dynamic. Thus,  ′

carry zero entropy, and  ′
⊂ 𝐵. Consider  the connected component of 𝑆\𝑆(Λ) that contains  ′.

By item (b) of Proposition 2.6.3, each connected component of \ ′ is an 𝑓 -invariant set that is
homeomorphic to ℝ

2 and the dynamic restricted to this connected component is conjugate to a
translation. Thus, the compact set  carry zero entropy and  ⊂ 𝐵. By a connectedness argument,
we can show that 𝐵 =  ∪ (∪

𝑡𝐵

𝑖=1
𝐶(𝑖)).

3.3 Neighborhoods of the Equivalence Classes

An alternate curve is a curve formed by alternating 𝑠-intervals and 𝑢-intervals. Arc chains
are special type of alternate curves. A regular neighborhood of a zero-entropy equivalence class
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𝐵 is a closed set  ⊂ 𝑆, such that 𝐵 ⊂ Int() and the boundary of 𝐵 is formed by a finite
number of finite alternate closed curves. A minimal neighborhood is a regular neighborhood that
minimize the number of sides of the alternate curve that formed each connected component of the
boundary.

3.3.1 Proposition. Every zero-entropy equivalence class have a minimal regular neighborhood.

Figure 3.1: Minimal regular neighborhoods of an inaccessible point and an inaccessible arc.

𝜓

Figure 3.2: Minimal regular neighborhood of a polygon 𝜓.



Figure 3.3: Minimal regular neighborhoods.

3.4 Final Theorem

3.4.1 Theorem. Consider 𝑓 ∶ 𝑆 → 𝑆 a shoe diffeomorphism on a closed surface 𝑆. The space 𝑆 is a
finite cactoid and ̃

𝑓 is a generalized pseudo-Anosov homeomorphism. Moreover, 𝜋 ∶ (𝑆, 𝑓 ) → (𝑆,
̃
𝑓 ) is

a semi-conjugacy, and ℎ(𝑓 ) = ℎ(
̃
𝑓 ).

Proof. Let’s first describe the topology of 𝑆. Consider the case when 𝑆 ⧵ 𝑆(Λ) does not have any
connected components. In this case, for all zero-entropy equivalence class 𝐵, there is only one



3.4 | FINAL THEOREM

35

cylinder of 𝑆 ⧵ 𝐵 approaching 𝐵. By Theorem 1.4.1, the space 𝑆 is an orientable closed surface and
1(𝑆) = 1(𝑆). Note that 1(𝑆) < 1(𝑆) is only possible if 𝑆 ⧵ 𝑆(Λ) have connected components.

Consider the case when 𝑆 ⧵ 𝑆(Λ) have connected components. Denote by 𝑗 , for 1 ≤ 𝑗 ≤ 𝑡,
each connected component of 𝑆 ⧵ 𝑆(Λ), where 𝑡 is a positive integer that represent the number
of connected components of 𝑆 ⧵ 𝑆(Λ). As we see in Theorem 3.2.3, each 𝑗 is a zero-entropy

equivalence class, and 𝑗 ⧵ 𝑗 = ∪

𝑡
𝑗

𝑖=1
𝐶(𝑖), where 𝑖 is a circular graph and 𝑡𝑗 is the number

cylinders of 𝑆 ⧵ 𝑗 that approach to 𝑗 . Note that 1(Δ(Λ)) = 2𝑔Λ + 𝑏Λ − 1, where 𝑔Λ is the genus
of Δ(Λ) and 𝑏Λ is the number of connected component of the boundary of Δ(Λ). The number
𝑏Λ = ∑

𝑡

𝑗=1
𝑡𝑗 .

Denote by (Λ) the union of the space Δ(Λ) and topological disks, where the boundary of
each topological disk is some connected component of Δ(Λ). We can “glue” this topological disk
respecting the dynamic. Thus, suppose that the dynamic on each topological disk is a Morse-
Smale dynamic in the closure of the disk and the sources and sinks associated to each connected
component of Δ(Λ) are sources and sinks in the boundary of the disk. The map 𝑓 is defined as 𝑓 in
all points in Δ(Λ) and some Morse-Smale dynamic in the glued topological disks. Note that (Λ) is
a closed surface and ((Λ), 𝑓 ) is a shoe dynamic.

1 2

Δ(Λ) Δ(Λ)

𝑆
(Λ)

Figure 3.4: The number 1 is a source/sink associated to a free separatrix. The number 2 is a boundary periodic
point associated to Λ.

With these changes, for each zero-entropy equivalence class 𝐵, there exist just one cylinder of
(Λ) ⧵ 𝐵 approaching to 𝐵. By the Theorem 1.4.1, 𝜋((Λ)) is a closed surface and 1(𝜋((Λ))) ≤
1(𝑆).

(Λ)
𝜋((Λ))

Figure 3.5: In the right image, we represent the accumulated singular points. The arcs leaving theses points is
an attempt to represent the stable and unstable manifold of these points. For an accurate representation it would
be necessary to know what are the zippers and humps of each contact between the periodic points.

Consider 𝐶0 = 𝜋((Λ)). We construct a finite cactoid via the sequence of spaces 𝐶1, … , 𝐶𝑡
1

(like
in the Theorem 1.4.2), obtaining the finite cactoid 𝐶𝑡

1

, where all 𝐶(𝑖), for 1 ≤ 𝑖 ≤ 𝑡1
, are identified

to a point. From the finite cactoid 𝐶𝑡
1

we can obtain, via the sequence of spaces 𝐶𝑡
1
+1, … , 𝐶𝑡

1
+𝑡

2

,
obtaining the finite cactoid 𝐶𝑡

1
+𝑡

2

, where all 𝐶(𝑖), for 1 ≤ 𝑖 ≤ 𝑡2
, are identified to a point. If we

do the same argument until the last 𝑡𝑡 we will obtain a finite cactoid 𝐶𝑡
1
+⋯+𝑡𝑡

= 𝑆.
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𝑆 ̃

Figure 3.6: As in the previous image, the right image is just an attempt to represent the space after the collapse
by the zero-entropy equivalence relation.

For simplicity, we will denote by 𝑊 the space 𝑊 𝑠
(Λ) ∪ 𝑊

𝑢
(Λ). Consider now a rectangle 𝑁 ⊂ 𝑆

and 𝑙
𝑢

𝑁
and 𝑙

𝑠

𝑁
are the length and width, measure by 𝜈

𝑠 and 𝜈
𝑢, of 𝑁 . The image 𝜋(𝑁 ∩ 𝑊) is

diffeomorphic to [0, 𝑙
𝑠

𝑁
] × [0, 𝑙

𝑢

𝑁
], by a diffeomorphism 𝜑 ∶ 𝜋(𝑁 ∩ 𝑊) → [0, 𝑙

𝑠

𝑁
] × [0, 𝑙

𝑢

𝑁
]. Let’s give

an explanation how to obtain the previous assertion. Firstly, note that, for constants 𝑎, 𝑏 ∈ ℝ,
the set [0, 𝑎] × [0, 𝑏] ⊂ ℝ

2 can be parametrized by the set {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ
4
∶ 𝑥1 + 𝑥2 = 𝑎, 𝑥3 +

𝑥4 = 𝑏 and 0 ≤ 𝑥𝑖 ≤ 𝑎, for 1 ≤ 𝑖 ≤ 4}. For each 𝑝 ∈ 𝑁 ∩ 𝑊 , denote by 𝑙
𝑠/𝑢

1
(𝑝) and the 𝑙𝑠/𝑢

2
(𝑝)

the measures of each 𝑠/𝑢-separatrix of 𝑊 𝑠/𝑢

𝑁
(𝑝). Thus, define 𝜗 ∶ 𝑁 ∩ 𝑊 → [0, 𝑙

𝑠

𝑁
] × [0, 𝑙

𝑢

𝑁
] as

𝜗(𝑝) ∶= (𝑙
𝑠

1
(𝑝), 𝑙

𝑠

2
(𝑝), 𝑙

𝑢

1
(𝑝), 𝑙

𝑠

2
(𝑝)). The map 𝜗 is a differentiable projection2 and sends 𝑊 𝑠

(Λ) ∩ 𝑁

to horizontal lines, and sends 𝑊 𝑢
(Λ) ∩ 𝑁 in vertical lines. See Figure 3.7

𝑝

𝑙
𝑢

1
(𝑝)

𝑙
𝑢

2
(𝑝)

𝑙
𝑠

1
(𝑝) 𝑙

2

2
(𝑝)

Figure 3.7: Each 𝑙𝑠/𝑢
1

(𝑝) and the 𝑙𝑠/𝑢
2

(𝑝) of a point 𝑝 ∈ 𝑁 ∩ 𝑊 .

Two points 𝑝, 𝑝′ ∈ 𝑁 ∩ 𝑊 are zero-entropy equivalence if, and only if, 𝜗(𝑝) = 𝜗(𝑝
′
). Since the

only type of zero-entropy equivalence class contained in 𝑁 are inaccessible points, inaccessible
arcs, and 2-gons (or just rectangles with interior disjoint of 𝑊 𝑠

(Λ)∪𝑊
𝑢
(Λ)), then each zero-entropy

equivalence class contained in 𝑁 is one-to-one, via a map 𝜑 such that 𝜑 ◦ 𝜋 = 𝜗, to the space
[0, 𝑙

𝑠

𝑁
] × [0, 𝑙

𝑢

𝑁
]. Since the map 𝜋|𝑁 and 𝜗 are differentiable at all points, then 𝜓 is also differentiable.

Furthermore, 𝜗 ∗ (𝜈
𝑠
× 𝜈

𝑢
) is the Lebesgue measure restricted to [0, 𝑙

𝑠

𝑁
] × [0, 𝑙

𝑢

𝑁
].

By the existence of a finite Markov partition {𝑁1, … , 𝑁𝑚} for Λ, we can prove that 𝜋((Λ)) can
be foliated by the image of (∪𝑖𝑁𝑖) ∩ 𝑊 𝑠/𝑢

(Λ) by the map 𝜗. These two foliation of 𝑆 are measurable
transverse foliations, where the measures are given by 𝜗 ∗ 𝜈

𝑠/𝑢.

Let’s describe the possible types of singularities of ̃𝑓 , and finally prove that ̃𝑓 is a generalized
pseudo-Anosov homeomorphism.

Every minimal neighborhood of a non-trivial 𝑛-polygon 𝜓 is mapped to a minimal neighborhood

2 Surjective and continuous.
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of a 𝑛-gon singularity. Thus, every isolated singularity can be modeled by a 𝑛-gon as in the Figure
1.1.

It remains to show what happens to a minimal neighborhood 𝑁 of  ∪𝐶(), where  is a con-
nected component of (Λ)\𝑆(Λ). Consider 𝛾 an 𝑠/𝑢-arc contained in 𝑁 . Then the positive/negative
iterates of 𝛾 by 𝑓 converges, in the Hausdorff distance, to 𝐶(). Hence, every polygon contained
in 𝑁 must converge, in the Hausdorff distance, to 𝐶() in the future, or in the past. Thus, there
is only one point 𝑝 ∈ 𝜋(𝑁) such that all the other singularities contained in 𝜋(𝑁) converge to 𝑝
for positive, or negative iterate of 𝑓 . In other words, the point 𝜋( ∪ 𝐶()) is an accumulated
singularity of 𝑓 . Since we have just a finite number of connected components of (Λ)\𝑆(Λ), then
there is just a finite number of accumulated singularities. Note that will be the accumulated points
that will be identificated to obtain the finite cactoid 𝑆.

With all that, we proved that 𝑓 ∶ 𝜋((Λ)) → 𝜋((Λ)) is a generalized pseudo-Anosov of a
closed surface 𝜋((Λ)). Proceeding as in Theorem 1.4.2, we will identify the accumulated points to
obtain a generalized pseudo-Anosov homeomorphism in the finite cactoid 𝑆.

Consider that 𝑆 is (𝑛, 𝜖)-spanned by a finite set 𝐹 ⊂ 𝑆, containing 𝑟(𝑛, 𝜖, 𝑆) elements. Hence, the
family of compact sets 𝜋−1

(𝐵
̃
𝑑
(𝑥, 𝜖)), where 𝑥 ∈ 𝑆 and 𝐵

̃
𝑑
(𝑥, 𝜖)) = {𝑦 ∈ 𝑆 ∶

̃
𝑑(𝑥, 𝑦) ≤ 𝜖}, covers the

set 𝑆. Thus, 𝐷(𝑛, 𝜖, 𝑆) ≤ 𝑟(𝑛, 𝜖, 𝑆), what implies that

ℎ(𝑓 ) = lim
𝜀→0

lim
𝑛→∞

1

𝑛

ln𝐷(𝑛, 𝜀, 𝑆) ≤ lim
𝜀→0

lim sup

𝑛→∞

1

𝑛

ln 𝑟(𝑛, 𝜀, 𝑆) = ℎ(
̃
𝑓 ).

However, since 𝜋 is a semi-conjugacy, we have that ℎ( ̃𝑓 ) ≤ ℎ(𝑓 ). This, proves that ℎ(𝑓 ) = ℎ(
̃
𝑓 ).

As we wrote in the introduction, the previous theorem was inspired by the Theorem 8.3.1
of [BL98]. It state that if the diffeomorphism 𝑓 does not have any 2-gon, or in its terminology,
the diffeomorphism 𝑓 does not admit impasses, then the generalized pseudo-Anosov is in fact a
pseudo-Anosov homeomorphism on a compact surface.

Note that by the Theorem 3.4.1, if there is no 2-gon, then there is no stuck zipper and there is not
possible any sewn between boundary separatrices. Hence, for all circular graph , the continuum
𝐶() is formed just by boundary periodic point, free separatrices and sources and sinks associated
to each undone zipper. Finally, the point of 𝑆 that 𝐶() is sent will be a 𝑛-gon, where 𝑛 depends on
how many stable and unstable free separatrices is contained in 𝐶(). Furthermore, the dynamic
(
̃
𝑓 , 𝑆) is a pseudo-Anosov homeomorphism, as in the result obtained by Bonatti and Jeandenans in

[BL98].

Let’s remember that we are supposing that Λ have topological dimension 0. Le’s suppose now
that the basic piece Λ have dimension 1, i.e. is a hyperbolic attractor/repeller. Hence, Λ = 𝑊

𝑢
(Λ) if

Λ is an attractor, and Λ = 𝑊
𝑠
(Λ) if Λ is a repeller. Moreover, 𝑊 𝑠

(Λ) is a foliation, if Λ is an attractor,
and 𝑊 𝑢

(Λ) is a foliation, if Λ is a repeller. Note that the existence of impasses implies that both
stable and unstable laminations are not foliations. This because, the an impass occurs in the "gaps"
between the leaves of the laminations. If the laminations does not have any "gap", i.e. is a foliation,
then it is not possible the existence of impasses. By what was discuss in the previous paragraph,
the dynamic ( ̃𝑓 , 𝑆) is also a pseudo-Anosov homeomorphism on a closed surface.
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Figure 3.8: The collapsing of a stuck zipper.

Figure 3.9: The collapsing of a zero-entropy equivalence class of type (3).
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Figure 3.10: The collapsing of a zero-entropy equivalence class of type (4). Note that all the contacts are due to
a tiedness.

Figure 3.11: The collapsing of humps.

Figure 3.12: The collapsing of a zero-entropy equivalence class of type (4).
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