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Resumo

Erick Manuel Delgado Moya. Modelos matemáticos para o estudo da aderência ao
tratamento da tuberculose levando em conta os efeitos do HIV/AIDS e diabetes.

Tese (Doutorado). Instituto de Matemática e Estatística, Universidade de São Paulo, São

Paulo, 2021.

Neste trabalho, propomos um novo modelo matemático para o estudo da eficácia do tratamento da

tuberculose, tendo em conta as subpopulações vulneráveis, o HIV/AIDS e doentes diabéticos. O nosso

modelo estuda os diferentes tipos de resistência ao tratamento, multirresistente (MDR-TB) e extensivamente

resistente aos fármacos (XDR-TB). Utilizamos duas técnicas de modelagem, equações diferenciais ordinárias

(EDO) e derivadas de ordem fracional (EDF) no sentido de Caputo. As principais características matemáticas

e epidemiológicas do modelo são investigadas. Foi obtido o número básico de reprodução (ℜ0) nas diferentes

subpopulações (diabéticos, HIV/AIDS, e aqueles que não sofrem destas doenças). Apresentamos resultados

que nos permitem saber como o número básico de reprodução é afetado quando variamos os parâmetros

de resistência e recuperação conjuntamente. Realizamos uma análise de sensibilidade dos parâmetros

associados à tuberculose. Demonstramos a persistência da tuberculose numa subpopulação num caso

particular, mostrando a necessidade de aplicar uma estratégia de controle. Formulamos e estudamos um

problema de controle ótimo com o objetivo de reduzir a resistência ao tratamento da tuberculose. Os controles

se concentram na reinfecção/reactivação, MDR-TB e XDR-TB diferenciados em subpopulações. Para formular

estes problemas, utilizamos os modelos ODE e FDE. A fim de estudar o nosso modelo, realizamos simulações

computacionais. Entre os resultados obtidos, temos que o maior número de casos de infectados foram os TB

sensíveis, e os casos de MDR-TB ultrapassam os casos de XDR-TB, exceto na subpopulação de diabéticos, que

tem um crescimento de casos de XDR-TB que ultrapassa os outros compartimentos de todas as subpopulações.

Mostramos a necessidade de prestar uma atenção diferenciada a estas subpopulações vulneráveis devido

ao comportamento de casos resistentes. Em relação ao estudo de controle, obtivemos que a estratégia mais

eficaz é quando ativamos todos os controles e começamos com um controle elevado. Com esta estratégia,

reduzimos significativamente o número de casos resistentes e impedimos o crescimento de casos ao longo

do tempo. Este trabalho ajuda as políticas de saúde sobre como agir nesta doença e estas ideias podem ser

aplicadas a outras epidemias de transmissão respiratória.

Palavras-chave: Modelo. Tuberculose. HIV/AIDS. Diabetes. Controle ótimo. Derivadas fracionárias no

sentido de Caputo.





Abstract

Erick Manuel Delgado Moya. Mathematical models for the study of adherence to
tuberculosis treatment taking into account the effects of HIV/AIDS and diabetes.

Thesis (Doctorate). Institute of Mathematics and Statistics, University of São Paulo, São

Paulo, 2021.

In this work, we propose a new mathematical model for the study of the effectiveness of TB treatment

taking into account the vulnerable subpopulations, HIV/AIDS and diabetic patients. Our model studies the

different types of treatment resistance, multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-

TB). We use two modeling techniques, ordinary differential equations (ODE) and fractional-order derivatives

equations (FDE) in the Caputo sense. The main mathematical and epidemiological properties of the model

are investigated. The basic reproduction number (ℜ0) in the different subpopulations (diabetics, HIV/AIDS,

and those who do not suffer from these diseases) was studied. We present results that allow us to know how

the basic reproductive number is affected when we vary the parameters of resistance and recovery together.

We performed a sensitivity analysis of the parameters associated with TB. We proved the persistence of

tuberculosis in a subpopulation showing the need to apply a control strategy. We formulated and studied an

optimal control problem with the objective of reducing resistance to tuberculosis treatment. The controls

are focused on reinfection/reactivation, MDR-TB and XDR-TB differentiated into subpopulations. We use

the models with ODE and FDE in the formulation of the control problems. In order to study our models, we

performed computational simulations. Among the results obtained, we have that drug-sensitive TB reported

a greater number of cases with respect to MDR-TB and XDR-TB cases, and MDR-TB cases surpass XDR-TB

cases, except in the diabetes subpopulation, which has a growth of XDR-TB cases that surpasses the other

compartments of resistant of all the subpopulations. We show the need to pay differentiated attention to

these vulnerable subpopulations due to the behavior of resistant cases. Regarding the control study, we

obtained that the most effective strategy is to activate all controls and start with a high control. With this

strategy we reduced the number of resistant cases significantly and prevented the growth of cases. This

work helps health policies on how to act in this disease and these ideas can be applied to other epidemics of

respiratory transmission.

Keywords: Model. Tuberculosis. HIV/AIDS. Diabetes. Optimal control. Fractional derivatives in the Caputo

sense.
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Chapter 1

Introduction

Background Information

Tuberculosis (TB) is one of the top 10 causes of death worldwide. TB is a chronic
bacterial infectious disease contemporary caused by Mycobacterium TB. The bacteria get
released in the air by a carrier with active TB through coughing, sneezing or talking. The
largest number of TB patients are asymptomatic, in this case, it is named as latent TB and
does not constitute a risk of transmission. An important feature of this disease is that all
the TB people aren’t equally infectious [43, 80].

TB treatments are mainly based on the use of antibiotics and we have two lines of
treatment. Among the drugs included in the first-line of treatment are rifampicin (RIF),
isoniazid (INH), pyrazinamide (PZA), ethambutol (EMB), and streptomycin (SM). The
amikacin (AMK), kanamycin (KAN), capreomycin (CAP), cycloserine (CS)/Terizidone (LEV),
ofloxacin (OFX), moxifloxacin (MOX), levofloxacin, Ethionamide (ETH)/ prothionamide
(PTH), p-aminosalicylic acid (PAS) are in the second-line of treatment [91].

Multidrug-resistant tuberculosis (MDR-TB) is caused by resistance to at least isoniazid
and rifampicin, the main drugs used to treat tuberculosis. The extensively drug-resistant
TB (XDR-TB) is a type of MDR-TB that is resistant to isoniazid and rifampicin, in addition
to any fluoroquinolose (ofloxacin, levoflaxin, moxifloxacim, and ciprofloxacin) and at least
one of three injectable second-line drug (amikacin, kanamycin, capreomycin) [1, 91, 53].

A total of 1.5 million people died of TB in 2020 including 214,000 people with HIV.
Tuberculosis is the 13th leading cause of death in the world. An estimated 10 million
people fell ill with TB worldwide in 2020. An estimated 66 million lives were saved
through TB diagnosis and treatment between 2000 and 2020. Only one in three people
with drug-resistant TB accessed treatment in 2020 [95]. Tuberculosis transmission and
multidrug-resistant tuberculosis have a strong impact on the population and are a current
problems for the countries health systems.

Reinfection or reactivation is linked to the immune status of the patient and takes into
account the behavior of the prevalence of the disease; in the case of HIV, the higher the
prevalence, the higher the incidence of TB. Several studies have now shown that multiple
genotypes can be detected by sampling both respiratory and extrapulmonary sites in
seropositive individuals, illustrating the presence of migration routes within and between
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organs. Reactivation of TB may occur if the patient’s immune system is weakened and
cannot contain the latent bacteria. The bacteria then become active; they overload the
immune system and cause the person to become ill with tuberculosis [75].

The impact that HIV has on the pathogenesis of TB is evident. HIV infection has an
important role in increasing the likelihood of developing TB disease infection and increases
the risk of reactivation of TB (post-primary TB). The risk of transitioning from latent to
active TB is estimated to be 12 to 20 times higher in people living with HIV. The risk of
death in TB-HIV/AIDS co-infected persons is twice that of HIV-infected persons without
TB. The lifetime risk of progression from latent to active tuberculosis in HIV-positive
individuals is estimated at 5-10% [109].

Diabetes represents an important risk factor for respiratory diseases. It increases the
TB risk from 1.5 to 7.8 times and the TB risk relative among patients with diabetes is 3.11
[87, 9, 63, 80]. The tuberculosis treatment regimen for diabetics is the same as for the
general population, but diabetes can affect the efficacy of first-line TB drugs, particularly
the use of rifampicin [87, 24, 80]. TB can develop impaired glucose intolerance (IGT) in
patients. After successful completion of TB treatment, IGT normalizes, but it remains an
important risk factor for the future development of diabetes [17, 21, 80].

The metabolic factors related to HIV, and antiretroviral therapy, may increase the
incidence of diabetes over time. Anti-HIV drugs can contribute to the risk of diabetes. These
include the older reverse transcriptase inhibitors (zidovudine, stavudine and didanosine)
and protease inhibitors (indinavir, and lopinavir). The possibility that weight gain may
increase the risk of developing diabetes is being studied. Some current treatments, such as
integrase inhibitors (dolutegravir and bictegravir, raltegravir, and elvitegravir), have been
associated with weight gain, although the reasons remain unclear [32].

1.0.1 Objectives
The aim of this work topresent a new mathematical model to study the resistance to

TB treatment taking into account the influence of HIV/AIDS and diabetes and to present
and solve the optimal control problem to reduce resistance to TB treatment. The specific
objectives are:

• To present the mathematical model of TB treatment resistance with HIV/AIDS and
diabetes.

• To use different modeling techniques, in particular ordinary differential equations
and fractional differential equations.

• To study the basic reproduction number and the influence of parameters associated
with resistance and recovery on it.

• To study the stability of the infection-free equilibrium points, the relationship with
the basic reproduction number, and the existence of endemic equilibrium points.

• To present, study and solve the optimal control problem of treatment resistance and
reinfection/reactivation of tuberculosis.

• To perform computational simulations to validate the model with the different
techniques and optimal control problems.
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1.0.2 Thesis Organization and Innovative Results
In the following section, we presented the theoretical results used in the work.
In the second chapter, we presented a state of art on the modeling of epidemics mainly

tuberculosis and its relationships with HIV/AIDS and diabetes. A new mathematical
model with ordinary differential equations focused on the resistance to the treatment of
tuberculosis that relates tuberculosis, HIV/AIDS and diabetes and taking into account
two types of resistance is presented. We found the basic reproduction number of the
general model and by subpopulations. We studied the influence of resistance and recovery
parameters on the basic reproduction numbers and obtained theoretical results that allow
us to characterize different scenarios. We characterized the infection-free equilibrium
points and their local and global stability related to the basic reproduction numbers. We
investigated the sensitivity index of the parameters on the basic reproduction number
and performed computational simulations to verify the theoretical results and studied
the resistance compartments. The model and the main results were published and are as
reference [80].

From the third to the fifth chapter, at the beginning a state of art was performed to
introduce the different modeling techniques and the applications to tuberculosis mainly.

In the third chapter, we incorporated controls on resistance and reinfection/reactivation.
As the controlled system is the model presented in the second chapter, it allows us to apply
differentiated control to the different subpopulations and to take into account the different
costs of control implementation. This is an important factor because reinfection/reactiva-
tion behavior, treatment resistance, and costs are not the same in different subpopulations.
We performed computational simulations with different control strategies and studied two
possibilities to start the control process.

In the fourth chapter, taking advantage of the use of fractional-order derivatives, we
studied the model using fractional derivatives in the Caputo sense. We studied the basic
properties of the model and the basic reproduction number using fractional-order derivative
theory. We performed computational simulations for different fractional-orders, in order
to validate the model and study the influence of the use of fractional-order derivatives in
the Caputo sense. This work was published and is found as reference [54].

In the fifth chapter, we used the model of the fourth chapter to incorporate the controls
and studied the optimal control problem. We presented a theoretical study of the control
problem using the optimal control theory with fractional-order derivatives and performed
computational simulations for different fractional-orders.

In the sixth chapter, we presented the final conclusions of the thesis.

1.1 Theorical Background

1.1.1 Basic Reproduction Number (ℜ0)

The basic reproduction number,ℜ0 is among the most important quantities in infectious
disease epidemiology. It plays a fundamental role in the study of mathematical models
of emerging infectious diseases in outbreak situations and provides information for the
design of control strategies. In a population composed only of susceptible individuals, the
average number of infections caused by an infected individual is defined as ℜ0.
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The ℜ0 is mathematically characterized considering the transmission of the infection as
a demographic process, in which the production of offspring is considered as causing a new
infection through transmission. Thus, in consecutive generations of infected individuals,
we can consider the infection process. Consecutive generations increasing in size indicate
a growing population, and the growth factor per generation indicates the growth potential.
This growth factor is the mathematical characterization of ℜ0. Then, we have that, if
0 < ℜ0 < 1 the infection will die out in the long run and if ℜ0 > 1 the infection will be able
to spread in a population [45]. The higher the ℜ0 the more difficult it will be to control
the epidemic. The ℜ0 can be affected by several factors, such as the duration of infectivity
of the affected patients, the infectivity of the organism and the degree of contact between
the susceptible and infected populations. To find the ℜ0 in systems modeling epidemic
behavior defined with ODE, we start with the equations that describe the production of new
infections and the changes of state among infected individuals, which is called the infected
subsystem. We first linearize the infected subsystem over the infection-free steady state.
Linearization shows that ℜ0 characterizes the initial spread potential of an infected in a
fully susceptible population and we assume that the change in the susceptible population is
negligible during the first virus outbreak. In the next subsections, we show the relationship
between ℜ0 and the local and global asymptotic stability at the infection-free equilibrium
point [45].

The relationship between ℜ0 and local stability in disease-free point

The basic reproduction number depends on how we define the infected and uninfected
compartments, and not only on the structure of the model. We define the number of
individuals in the compartments as 𝑥 = (𝑥1, ..., 𝑥𝑛), where 𝑥𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛. Then, we order
the compartments such that the first 𝑚 (𝑚 < 𝑛) compartments correspond to infected
individuals. Let 𝑋𝑠 be the set of all disease-free states, that is

𝑋𝑠 = {𝑥 ≥ 0| 𝑥𝑖 = 0, 𝑖 = 1, ..., 𝑚}.

𝑇𝑖(𝑥) is the rate of new infections in compartment 𝑖, Σ+
𝑖 (𝑥) the rate of transfer of

individuals into compartment 𝑖 by other means, and Σ−
𝑖 (𝑥) the rate of transfer out of

compartment 𝑖. We assume that all functions are continuously differentiable at least twice
in each variable. The disease transmission model is defined as:

�̇�𝑖 = 𝑇𝑖(𝑥) − Σ𝑖(𝑥) = 𝑓𝑖(𝑥), 𝑖 = 1, ..., 𝑛, (1.1)

with non-negative initial conditions, where Σ𝑖 = Σ−
𝑖 − Σ+

𝑖 and the following assumptions
are satisfied:

(P1) If 𝑥 ≥ 0, then 𝑇𝑖,Σ−
𝑖 ,Σ+

𝑖 ≥ 0 for 𝑖 = 1, ..., 𝑚 (each function represents a directed
transfer of individuals, and are non-negative).

(P2) if 𝑥𝑖 = 0 then Σ−
𝑖 (𝑥) = 0 (if a compartment is empty, there is no transfer of individuals

out of the compartment by any means).

(P3) 𝑇𝑖 = 0 if 𝑖 > 𝑚, (the incidence of infection for uninfected compartments is null).

(P4) If 𝑥 ∈ 𝑋𝑠 then 𝑇𝑖(𝑥) = 0 and Σ+
𝑖 (𝑥) = 0 for 𝑖 = 1, ..., 𝑚 (there is no inmigration of
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infectives, density independent).

(P5) Consider a population near the disease-free equilibrium point 𝑥0. If, we introduce
some infected individuals it does not lead to an epidemic, i.e. the population remains
close to 𝑥0, then according to the linearized system the population will return to 𝑥0.

�̇� = 𝐷𝑓 (𝑥0)(𝑥 − 𝑥0), (1.2)

where 𝐷𝑓 (𝑥0) is the Jacobian matrix, [
𝜕𝑓𝑖
𝜕𝑥𝑗 ](𝑖,𝑗)

evaluated at the 𝑥0. We have that

some derivatives are one-sided, since 𝑥0 is on the boundary of the domain. We focus
our study to systems in which 𝑥0 is stable in the absence of a new infection. That is,
If 𝑇 (𝑥) is set to zero, then all eigenvalues of 𝐷𝑓 (𝑥0) have negative real parts.

The following lemma shows us a way to partition 𝐷𝑓 (𝑥0) by the above conditions.

Lemma 1.1.1. If 𝑥0 is the equilibrium disease-free point of system (1.1) and 𝑓𝑖(𝑥) satisfies
(P1)-(P5), then the derivatives 𝐷𝑇 (𝑥0) and 𝐷Σ(𝑥0) can be decomposed as

𝐷𝑇 (𝑥0) = [
𝐓 0
0 0 ] ,

𝐷Σ(𝑥0) = [
𝚺 0
𝐽3 𝐽4 ] ,

where 𝐓 and 𝚺 are the 𝑚 × 𝑚 matrices defined by 𝐓 = [
𝜕𝑇𝑖
𝜕𝑥𝑗

(𝑥0)], 𝚺 = [
𝜕Σ𝑖

𝜕𝑥𝑗
(𝑥0)] with 1 ≤ 𝑖,

𝑗 ≤ 𝑚. Further, 𝐓 is non-negative, 𝚺 is a non-singular M-matrix1 and all eigenvalues of 𝐽4
have positive real part.

The (𝑗 , 𝑘) entry of 𝚺−1 is the average length of time this individual spends in compart-
ment 𝑗 during his lifetime, we assumed that the population remains close to disease-free
equilibrium and without reinfection. The (𝑖, 𝑗) entry of 𝐓 is the rate where individuals
in 𝑗 produce new infections in 𝑖. Then, the input (𝑖, 𝑘) in 𝐓𝚺−1 is the expected number
of new infections in compartment 𝑖 produced by the infected individual introduced in
compartment 𝑘. We define 𝐓𝚺−1 as the next-generation matrix for the model and

ℜ0 = 𝜌(𝐓𝚺−1),

where 𝜌(−𝐓𝚺−1) denotes the spectral radius of a matrix 𝐓𝚺−1.
The following lemmas are part of the proof of the Theorem (1.1.4). For more details of

Lemmas (1.1.2)-(1.1.3) and Theorem (1.1.4) and its proofs, the readers could consult to [51].

Lemma 1.1.2. Let 𝐻 be a non-singular M-matrix and suppose 𝐵 and 𝐵𝐻−1 have the 𝑍 sign
pattern2. Then 𝐵 is a non-singular M-matrix if and only if 𝐵𝐻−1 is a non-singular 𝑀−matrix.

1 If 𝐵 is non-negative matrix, and 𝑟 > 𝜌(𝐵) where 𝜌(𝐵) is the spectral ratio of 𝐵, then 𝐴 = 𝑟𝐼𝑚 − 𝐵 is
non-singular M- matrix where 𝐼𝑚 is the identity matrix. If 𝑟 = 𝜌(𝐵), then 𝐴 is a singular M-matrix [51].

2 A matrix 𝐵 = [𝑏𝑖𝑗 ] has the 𝑍 sign pattern if 𝑏𝑖𝑗 ≤ 0 for all 𝑖 ≠ 𝑗 .
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Lemma 1.1.3. Let 𝐻 be a non-singular 𝑀−matrix and suppose 𝐾 ≥ 0. Then,

i. (𝐻 − 𝐾) is non-singular 𝑀−matrix if and only if (𝐻 − 𝐾)𝐻−1 is a non-singular
𝑀−matrix.

ii. (𝐻 − 𝐾) is singular 𝑀−matrix if and only if (𝐻 − 𝐾)𝐻−1 is a singular 𝑀−matrix.

If all the eigenvalues of matrix 𝐷𝑓 (𝑥0) have negative real parts then 𝑥0 is locally
asymptotically stable and unstable if any eigenvalue of 𝐷𝑓 (𝑥0) has positive real part. Using
the Lemma (1.1.1), we can decompose the eigenvalues into two sets, the 𝐓 − 𝚺 eigenvalues
and those of −𝐽4 which all have negative real part. Therefore, the stability of the infection-
free point depends on the 𝐓−𝚺 eigenvalues. The following theorem shows the relationship
between the ℜ0 and the local stability in 𝑥0.

Theorem 1.1.4. Consider the disease transmission model given by (1.1) and 𝑓 (𝑥) satisfies
(P1)-(P5). If 𝑥0 is the equilibrium disease-free point of the model, then 𝑥0 is locally asymptoti-
cally stable (l.a.s) if ℜ0 < 1, but unstable if ℜ0 > 1 with ℜ0 = 𝜌(𝐓𝚺−1).

Proof. The (P1)-(P5) conditions are used in the Lemmas (1.1.2) and (1.1.3) that are applied
in the proof.

Let 𝐽1 = 𝐓 − 𝚺. As 𝚺 is non-singular M-matrix and 𝐓 is non-negative, −𝐽1 = 𝚺 − 𝐓, has
the 𝑍 sign pattern. Thus,

𝑠(𝐽1) < 0 ⇔ −𝐽1 is a non-singular matrix,

where 𝑠(𝐽1) denotes the maximum real part of all the eigenvalues of the matrix 𝐽1. Since
𝐓𝚺−1 is non-negative, −𝐽1𝚺−1 = 𝐼 − 𝐓𝚺−1 also has the 𝑍 sign pattern. For the application
of Lemma (1.1.2) with 𝐻 = 𝚺 and 𝐵 = −𝐽1 = 𝚺 − 𝐓, we have

−𝐽1 is a non-singular M-matrix ⟺ 𝐼 − 𝐓𝚺−1 is a non-singular M-matrix.

Finally, since 𝐓𝚺−1 is non-negative, all eigenvalues of 𝐓𝚺−1 have magnitude less than
or equal to 𝜌(𝐓𝚺−1). Then,

𝐼 − 𝐓𝚺−1 is a non-singular M-matrix,⟺ 𝜌(𝐓𝚺−1) < 1.

Hence,
𝑠(𝐽1) < 0 ⇔ ℜ0 < 1.

Analogously, we have that

𝑠(𝐽1) = 0 ⟺ −𝐽1 is a singular M-matrix,
⟺ 𝐼 − 𝐓𝚺−1 is a singular M-matrix, for Lemma (1.1.3) with 𝐻 = 𝚺 and 𝐾 = 𝐓
⟺ 𝜌(𝐓𝚺−1) = 1.

The rest of the equivalences are obtained as in the non-singular case. Therefore,
𝑠(𝐽1) = 0 if and only if ℜ0 = 1. Then, we have that 𝑠(𝐽1) > 0 if and only if ℜ0 > 1.
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Global Stability for the Disease-Free Equilibrium

In this subsection, we list two conditions that if met, also guarantee the global asymp-
totic stability of the disease-free point. First, we write the system as:

𝑑𝑥
𝑑𝑡

= 𝐹(𝑥, 𝐼 ),

𝑑𝐼
𝑑𝑡

= 𝐺(𝑥, 𝐼 ), 𝐺(𝑥, 0) = 0, (1.3)

where 𝑥 ∈ ℝ𝑛−𝑚 denotes the number of uninfected individuals (components) and 𝐼 ∈ ℝ𝑚

denotes the number of infected individuals including latent, infectious, etc (components).
𝑋0 = (𝑥∗, 0) denotes the disease-free equilibrium point. The conditions (𝐻1) and (𝐻2) below
must be satisfied to guarantee local asymptotic stability.

• (𝐻1): For
𝑑𝑥
𝑑𝑡

= 𝐹(𝑥, 0), 𝑥∗ is globally asymptotically stable (g.a.s) in Ω,

• (𝐻2): 𝐺(𝑥, 𝐼 ) = 𝐴𝐼 − 𝐺∗(𝑥, 𝐼 ), 𝐺∗(𝑥, 𝐼 ) ≥ 0 for (𝑥, 𝐼 ) ∈ Ω,

where 𝐴 = 𝐷𝐼𝐺(𝑥∗, 0) is an M-matrix (Jacobian of 𝐺 with the off-diagonal elements
nonnegative) and Ω is the invariant biologically feasible region of the system.

If the system (1.3) satisfies the above two conditions, then we have the following
theorem:

Theorem 1.1.5. The fixed point𝑋0 = (𝑥∗, 0) is a globally asymptotic stable (g.a.s) equilibrium
point of the system provided that ℜ0 < 1 (l.a.s) and that assumptions (𝐻1) and (𝐻2) are
satisfied.

This theorem, its proof and examples of its application can be found in [38].

Proof. Let 𝐼0 = 𝐼 (0), we have that 𝐼 (𝑡) ≥ 0 if 𝐼0 > 0 and that 𝑒𝐴𝑡 is a positive semigroup
(since 𝐴 is an M- matrix). Hence, using the variation-of-constants formula, we have

0 ≤ 𝐼 (𝑡) = 𝑒𝐴𝑡𝐼0 − ∫
𝑡

0
𝑒𝐴(𝑡−𝑠)𝐺∗(𝑥(𝑠), 𝐼 (𝑠))𝑑𝑠 ≤ 𝑒𝐴𝑡𝐼0. (1.4)

Since 𝐴 is an M-matrix, A has a dominant eigenvalues 𝑚(𝐴) with 𝑚(𝐴) < 0 for ℜ0 < 1.
Thus,

lim
𝑡→∞

||𝑒𝐴𝑡 || = 0 ⟹ lim
𝑡→∞

𝐼 (𝑡) = 0. (1.5)

Note that 𝑥∗ is a g.a.s equilibrium of
𝑑𝑥
𝑑𝑡

= 𝐹(𝑥, 0), a limiting system of
𝑑𝑥
𝑑𝑡

=
𝐹(𝑥(𝑡), 𝐼 (𝑡)).
Thus,

lim
𝑡→∞

𝑥(𝑡) = 𝑥∗. (1.6)
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1.1.2 Fractional-Order Derivative
In this subsection, we present definitions and results that show the advantages of using

fractional-order derivatives in epidemiological models. The main bibliographic reference
used to present the results is [29].

Definition 1.1.1. (Fractional integral of Riemann-Liouville, [116, 29] ) Let 𝛼 ∈ ℝ+, 𝑏 > 0
and 𝑓 ∈ 𝕃𝑝([0, 𝑏] → ℝ𝑚), with 1 ≤ 𝑝 ≤ ∞. The fractional integral of Riemann-Liouville, for
𝑡 ∈ [0, 𝑏], of order 𝛼, is given by

𝕀𝛼𝑡 𝑓 (𝑡) =
1

Γ(𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1𝑓 (𝑠)𝑑𝑠,

where Γ(⋅) is the Gamma function and when 𝛼 ∈ ℕ, we have Γ(𝛼) = 𝛼!
We define 𝐴𝐶𝑛[0, 𝑏] as the set of functions with order derivative 𝑛−1 absolutely continuous
in [0, 𝑏] [47].

Definition 1.1.2. (Fractional derivative of Riemann-Liouville, [116, 29]) Let 𝛼 ∈ ℝ+, 𝑏 > 0,
𝑓 ∈ 𝐴𝐶𝑛[0, 𝑏], and 𝑛 = [𝛼] (part entire of 𝛼). The fractional derivative of Riemann-Liouville
of order 𝛼, is given by

𝐃𝛼
𝑡 𝑓 (𝑡) = 𝐃𝑛

𝑡 𝕀
𝑛−𝛼
𝑡 𝑓 (𝑡) =

𝑑𝑛

𝑑𝑡𝑛(
1

Γ(𝑛 − 𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝑛−𝛼−1𝑓 (𝑠)𝑑𝑠). (1.7)

Definition 1.1.3. (Fractional derivative in the Caputo sense, [116, 29]) Let 𝛼 ∈ ℝ+, 𝑏 > 0
and 𝑓 ∈ 𝐴𝐶𝑛[0, 𝑏]. For 𝑡 ∈ [0, 𝑏], the fractional derivative in the Caputo sense of order 𝛼 is
given by

𝑐𝔻𝛼
𝑡 𝑓 (𝑡) = 𝐃𝛼

𝑡 (𝑓 (𝑡) − 𝑓 (0)). (1.8)

For 𝛼 ∈ (0, 1), we have that
𝑐𝔻𝛼

𝑡 𝑓 (𝑡) = 𝕀1−𝛼𝑡
̇𝑓 (𝑡), (1.9)

where ̇𝑓 (𝑡) represent of the first derivative of 𝑓 .

Other definition of the fractional derivative in the Caputo sense is:

Definition 1.1.4. (See [99, 54]) For 𝛼 > 0, with 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ ℕ, the fractional
derivative in the sense of Caputo is defined as

𝑐𝔻𝛼
𝑡 𝑓 (𝑡) =

𝑑𝛼𝑓 (𝑡)
𝑑𝑡𝛼

∶=
1

Γ(𝑛 − 𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝑛−𝛼−1𝑓 𝑛(𝑠)𝑑𝑠.

Now, we present definitions and statistical results that we will use.

Definition 1.1.5. (Beta distribution (Beta(⋅, ⋅)), [99, 29]) A random variable3, 𝕏, follows the

3 A random variable is a variable whose value is unknown or a function that assigns values to each of an
experiment’s outcomes [52].
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Beta distribution if its probability density function is given by

𝑓𝕏(𝑥) = 𝑓𝕏(𝑥; 𝑝, 𝑞) =
1

𝐵(𝑝, 𝑞)
𝑥𝑝−1(1 − 𝑥)𝑞−1𝐈(0,1)(𝑥), (1.10)

where 𝑝, 𝑞 > 0, 𝐈(0,1) is the indicator function of interval (0, 1) and 𝐵(⋅) is the beta function.

Remark 1.1.6. When 𝑝 = 𝑞 = 1, the Beta distribution becomes the uniform distribution
over the range (0, 1).

Definition 1.1.6. (See [99, 29]) Let 𝕏 be a continuous random variable with the probability
density function 𝑓𝕏(⋅). The expectation or expected value of 𝕏 is given by

𝐸[𝕏] = ∫
∞

−∞
𝑥𝑓𝕏(𝑥)𝑑𝑥. (1.11)

Proposition 1.1.7. (See [99, 29]) Let 𝑔 ∶ ℝ → ℝ and 𝕏 be a continuous random variable
with the probability density function 𝑓𝕏(⋅). The expectation or expected value of 𝑔(𝕏) is given
by

𝐸[𝑔(𝕏)] = ∫
∞

−∞
𝑔(𝑥)𝑓𝕏(𝑥)𝑑𝑥. (1.12)

Let’s mention important properties of fractional derivatives in the Caputo sense.

Lemma 1.1.8. Let 𝑛− 1 < 𝛼 < 𝑛, 𝑛 ∈ ℕ, 𝛼 ∈ ℝ+ and 𝑓 (𝑡) be such that 𝑐𝔻𝛼
𝑡 𝑓 (𝑡) exists. Then,

• lim𝛼→𝑛
𝑐𝔻𝛼

𝑡 𝑓 (𝑡) = 𝑓 (𝑛)(𝑡),

• lim𝛼→𝑛−1
𝑐𝔻𝛼

𝑡 𝑓 (𝑡) = 𝑓 (𝑛−1)(𝑡) − 𝑓 (𝑛−1)(0),

where 𝑓 (𝑛) and 𝑓 (𝑛−1) are the classical integer derivatives of 𝑓 of order 𝑛 and 𝑛 − 1 respec-
tively.

Lemma 1.1.9. (Linearly) Let 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ ℕ, 𝜆 ∈ ℂ and the function 𝑓 (𝑡) and g(t)
be such that both 𝑐𝔻𝛼

𝑡 𝑓 (𝑡) and 𝑐𝔻𝛼
𝑡 𝑔(𝑡) exist. The Caputo fractional derivative is a linear

operator, i.e:
𝑐𝔻𝛼

𝑡 (𝜆𝑓 (𝑡) + 𝑔(𝑡)) = 𝜆 𝑐𝔻𝛼
𝑡 𝑓 (𝑡) +

𝑐𝔻𝛼
𝑡 𝑔(𝑡).

Lemma 1.1.10. (Non-commutative) Let 𝑛 − 1 < 𝛼 < 𝑛 and 𝑛, 𝑚 ∈ ℕ and 𝑓 (𝑡) be such that
𝑐𝔻𝛼

𝑡 𝑓 (𝑡) exists. Then,

𝑐𝔻𝛼
𝑡 𝐃

𝑚𝑓 (𝑡) = 𝑐𝔻𝛼+𝑚
𝑡 𝑓 (𝑡) ≠ 𝐃𝑚( 𝑐𝔻𝛼

𝑡 𝑓 (𝑡)).

Memory Effect

The fractional calculus is a great tool that can be employed to describe real-life phe-
nomena with so-called memory effect. One way to introduce the memory effect into a
mathematical model is to change the order of the derivative so that it is non-integer [47,
29].

Let 𝑓 be a real function defined in [0, 𝑡], 𝑡1, 𝑡2 ∈ [0, 𝑡] are such that 0 < 𝑡1 < 𝑡2, and
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𝐹 = (𝕀𝛼𝑓 )(𝑡2) − (𝕀𝛼𝑓 )(𝑡1), for 𝛼 ∈ ℝ+. If 𝛼 ≠ 1 it can be seen that the value of 𝐹 depends on
the entire range of 𝑓 over [0, 𝑡2], whereas 𝐹 depends only on the range of 𝑓 over [𝑡1, 𝑡2].
Now, if 𝛼 = 1 [29]:

𝐹 = (𝕀𝛼𝑓 )(𝑡2) − (𝕀𝛼𝑓 )(𝑡1)

=
1

Γ(𝛼)[ ∫
𝑡2

0
(𝑡2 − 𝑠)𝛼−1𝑓 (𝑠)𝑑𝑠 − ∫

𝑡1

0
(𝑡1 − 𝑠)𝛼−1𝑓 (𝑠)𝑑𝑠]

=
1

Γ(𝛼)[ ∫
𝑡2

𝑡1
(𝑡2 − 𝑠)𝛼−1𝑓 (𝑠)𝑑𝑠 + ∫

𝑡1

0
[(𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1]𝑓 (𝑠)𝑑𝑠].

Note that if 𝛼 = 1, the second integral is eliminated and we obtain:

𝐹 = ∫
𝑡2

𝑡1
𝑓 (𝑠)𝑑𝑠.

Now, we study the memory effect in derivatives and integrals of fractional-order based
on the expected values of a random variable. The following proposition characterizes three
fractional operators that depend on expected values of a random variable (𝐸[𝕏]).

Proposition 1.1.11. Let 𝛼 ∈ ℝ+ and 𝑓 ∈ 𝐴𝐶[0, 𝑏]. Under these conditions, we have

𝕀𝛼𝑡 𝑓 (𝑡) =
𝑡𝛼

Γ(𝛼 + 1)
𝐸[𝑓 (𝑡𝑈 )]; (1.13)

𝐃𝛼
𝑡 𝑓 (𝑡) =

𝑡−𝛼

Γ(1 − 𝛼)
𝐸[𝑓 (𝑡𝑊 )] +

𝑡1−𝛼

Γ(3 − 𝛼)
𝐸[ ̇𝑓 (𝑡𝑉 )], if 0 < 𝛼 < 1; (1.14)

𝑐𝔻𝛼
𝑡 𝑓 (𝑡) =

𝑡1−𝛼

Γ(2 − 𝛼)
𝐸[ ̇𝑓 (𝑡𝑊 )], if 0 < 𝛼 < 1, (1.15)

where 𝑈 , 𝑉 and 𝑊 are random variables with 𝑈 ∼ Beta(1, 𝛼), 𝑉 ∼ Beta(2, 1 − 𝛼) and
𝑊 ∼ Beta(1, 1 − 𝛼).

The previous proposition is presented and proved in [29]. Let’s present the proof of
(1.15).

Proof. For 𝛼 ∈ (0, 1), we have that

𝑐𝔻𝛼
𝑡 𝑓 (𝑡) = 𝕀1−𝛼𝑡

̇𝑓 (𝑡)

=
1

Γ(1 − 𝛼) ∫
1

0
(𝑡 − 𝑠)−𝛼 ̇𝑓 (𝑠)𝑑𝑠

=
1

Γ(1 − 𝛼) ∫
𝑡

0
𝑡−𝛼(1 −

𝑠
𝑡)

−𝛼
̇𝑓 (𝑠)𝑑𝑠

=
1

Γ(1 − 𝛼) ∫
1

0
𝑡1−𝛼(1 − 𝑢)−𝛼 ̇𝑓 (𝑡𝑢)𝑑𝑢

=
𝑡1−𝛼

Γ(1 − 𝛼)
𝐵(1, 1 − 𝛼)∫

1

0

(1 − 𝑢)(1−𝛼)−1

𝐵(1, 1 − 𝛼)
̇𝑓 (𝑡𝑢)𝑑𝑢
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=
𝑡1−𝛼

(1 − 𝛼)Γ(1 − 𝛼) ∫
1

0

(1 − 𝑤)(1−𝛼)−1

𝐵(1, 1 − 𝛼)
̇𝑓 (𝑡𝑤)𝑑𝑤

=
𝑡1−𝛼

Γ(2 − 𝛼)
𝐸[ ̇𝑓 (𝑡𝑊 )],

where 𝑊 ∼ Beta(1, 1 − 𝛼). Thus, we obtain (1.15).

Remark 1.1.12. We can rewrite Caputo’s derivative as follows [29]:

𝑐𝔻𝛼
𝑡 𝑓 (𝑡) =

𝑡−𝛼

Γ(1 − 𝛼)
𝐸[𝑓 (𝑡𝑊 ) − 𝑓 (0)] +

𝑡1−𝛼

Γ(3 − 𝛼)
𝐸[ ̇𝑓 (𝑡𝑉 )]. (1.16)

The Hysteresis Phenomenon

When the current state of a system is influenced by its historical past, that system is said
to be influenced by the phenomenon of hysteresis. This is a typical kernel used to define
integral and fractional differential operators, such as the Caputo derivative. Fractional
operators can be interpreted from the statistical approach, through the mathematical
expectation, where the past history of the system follows a Beta distribution. As the 𝛼
parameter is between 0 and 1, recent times are more influential than past times in this
distribution [19, 29].

We can use fractional operator (1.13)-(1.15) to interpret the hysteresis effect. More
precisely, the rate of variation of the Caputo derivative is given explicitly by the weighted
average of all past derivatives as we can see in Formula (1.13). The other operators have
similar explanations [29].

As 𝑈 has distribution 𝐵(1, 𝛼), the random variable 𝑆 = 𝑡𝑈 has the values in the interval

(0, 𝑡). Thus, from (1.13), 𝕀𝛼𝑡 𝑓 (𝑡) coincides with
𝑡𝛼

Γ(𝛼 + 1)
𝐸[𝑓 (𝑆)], 0 ≤ 𝑠 ≤ 𝑡. The 𝕀𝛼𝑡 𝑓 (𝑡) is

affected by all previous values in 𝑡 because the expected value 𝐸[𝑓 (𝑆)] is affected as well.
Given that 𝐸[𝑓 (𝑆)] is in (1.14) and (1.15), we may deduce that 𝐃𝛼

𝑡 𝑓 (𝑡) and 𝑐𝔻𝛼
𝑡 𝑓 (𝑡) also have

memory effect. With the formulas (1.13)-(1.15), we arrive at the following interpretations
[29]:

• The fractional integral 𝕀𝛼𝑡 𝑓 (𝑡) is proportional to the weighted average of 𝑓 (𝑠), conside-
ring all prior values 𝑠 of 𝑡, distributed by a Beta distribution;

• 𝐃𝛼
𝑡 𝑓 (𝑡) is the sum of two amounts proportional to the weighted average of 𝑓 (𝑠);

• 𝑐𝔻𝛼
𝑡 𝑓 (𝑡) is proportional to the weighted average of the classic derivative ̇𝑓 (𝑠), con-

sidering all prior values 𝑠 < 𝑡 , distributed by a Beta distribution;

• if 𝛼 = 1, then 𝑈 ∼ 𝐵(1, 1), 𝑈 has uniform distribution such that 𝕀𝛼𝑡 = 𝑡𝐸[𝑓 (𝑡𝑈 )] =

∫ 𝑡
0 𝑓 (𝑠)𝑑𝑠. Therefore, 𝐃𝛼

𝑡 𝑓 (𝑡) =
𝑑
𝑑𝑡
𝕀0𝑡 𝑓 (𝑡) =

𝑑
𝑑𝑡
𝑓 (𝑡) = ̇𝑓 (𝑡) and 𝑐𝔻𝛼

𝑡 [𝑓 (𝑡) − 𝑓 (0)] =
𝑑
𝑑𝑡
𝕀0𝑡 [𝑓 (𝑡) − 𝑓 (0)] =

𝑑
𝑑𝑡
[𝑓 (𝑡) − 𝑓 (0)] = ̇𝑓 (𝑡). Consequently, when 𝛼 = 1 the fractional

and integer calculus coincide.

The authors of [29] show the influence of Beta distribution on fractional operators, in
particular on the Riemann-Liouville and Caputo fractional operators.
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Numerical Method

The algorithm used in this work to numerically solve nonlinear differential equations
of fractional-order can be found in [48, 49, 50]. The algorithm has the structure of a PECE
(Predict-Evaluate-Correct-Evaluate) method and combines a fractional-order algorithm
with a classical method. The approach chosen is Adams-Bashforth-Moulton for both
integrators. The key to deriving the method in the fractional variant is to use the trape-
zoidal quadrature product formula. This algorithm is independent of the 𝛼−parameter and
behaves very similar to the classical Adams-Bashforth-Moulton method. The stability prop-
erties do not change in the fractional version compared to the classical algorithm.

Optimal Control Problem with FDE

The following definitions are used to formulate and study the fractional-order optimal
control problem (FOCP).

We assume that 𝛼 ∈ ℝ+, 𝑏 > 0, 𝑓 ∈ 𝐴𝐶𝑛[𝑎, 𝑏], and 𝑛 = [𝛼]. We define the left-sided and
right-sided fractional integral Riemann-Louville for 𝑓 ∶ ℝ+ ⟶ ℝ, 𝛼 > 0 are:

𝑎𝕀𝛼𝑡 𝑓 (𝑡) ∶=
1

Γ(𝛼) ∫
𝑡

𝑎

𝑓 (𝑠)𝑑𝑠
(𝑡 − 𝑠)1−𝛼

, (Left) (1.17)

𝑡𝕀𝛼𝑏 𝑓 (𝑡) ∶=
1

Γ(𝛼) ∫
𝑏

𝑡

𝑓 (𝑠)𝑑𝑠
(𝑠 − 𝑡)1−𝛼

. (Right) (1.18)

Note: Let’s define 𝕀𝛼𝑡 𝑓 (𝑡) = 0𝕀𝛼𝑡 𝑓 (𝑡).
The left-sided and right-sided Riemann–Liouville fractional derivatives are define as

[33, 66]:

𝑎𝐃𝛼
𝑡 𝑓 (𝑡) =

𝑑𝑛

𝑑𝑡𝑛(
1

Γ(𝑛 − 𝛼) ∫
𝑡

𝑎
(𝑡 − 𝑠)𝑛−𝛼−1𝑓 (𝑠)𝑑𝑠), (Left) (1.19)

𝑡𝐃𝛼
𝑏 𝑓 (𝑡) =

𝑑𝑛

𝑑𝑡𝑛(
(−1)𝑛

Γ(𝑛 − 𝛼) ∫
𝑏

𝑡
(𝑠 − 𝑡)𝑛−𝛼−1𝑓 (𝑠)𝑑𝑠). (Right) (1.20)

Note: Let’s denote 𝐃𝛼
𝑡 𝑓 (𝑡) = 0𝐃𝛼

𝑡 𝑓 (𝑡).
The left-sided and right-sided fractional derivatives proposed by Caputo are given by

[33, 66]:
𝑐
𝑎𝔻

𝛼
𝑡 𝑓 (𝑡) =

1
Γ(𝑛 − 𝛼) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑛−1−𝛼𝑓 𝑛(𝑠)𝑑𝑠, (Left) (1.21)

𝑐
𝑡𝔻

𝛼
𝑏 𝑓 (𝑡) =

(−1)𝑛

Γ(𝑛 − 𝛼) ∫
𝑏

𝑡
(𝑠 − 𝑡)𝑛−1−𝛼𝑓 𝑛(𝑠)𝑑𝑠. (Right) (1.22)

Note: Let’s define 𝑐𝔻𝛼
𝑡 𝑓 (𝑡) =

𝑐
0𝔻

𝛼
𝑡 𝑓 (𝑡).

The Riemann-Liouville and Caputo derivatives are related by the following formulas
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[66]:

𝑎𝐃𝛼
𝑡 𝑓 (𝑡) =

𝑐
𝑎𝔻

𝛼
𝑡 𝑓 (𝑡) +

𝑛−1

∑
𝑘=0

𝑓 (𝑘)(𝑎)
Γ(𝑘 + 1 − 𝛼)

(𝑡 − 𝑎)𝑘−𝛼 , (1.23)

𝑡𝐃𝛼
𝑏 𝑓 (𝑡) =

𝑐
𝑡𝔻

𝛼
𝑏 𝑓 (𝑡) +

𝑛−1

∑
𝑘=0

𝑓 (𝑘)(𝑏)
Γ(𝑘 + 1 − 𝛼)

(𝑡 − 𝑏)𝑘−𝛼 . (1.24)

Now, we will present a general formulation of the fractional-order optimal control
problem (FOCP) and obtain the necessary conditions for the optimality of the FOCP.
Finding the optimal control 𝑢(𝑡) that minimizes the functional 𝐽 is defined as:

𝐽 (𝑢) = ∫
𝑏

0
𝑓 (𝑡, 𝑥, 𝑢)𝑑𝑡, (1.25)

subject to the model with control

𝑐𝔻𝛼
𝑡 𝑥(𝑡) = 𝑔(𝑡, 𝑥, 𝑢), (1.26)

with initial condition
𝑥(0) = 𝑥𝐼 , (1.27)

where 𝑥(𝑡) and 𝑢(𝑡) are the state and control variables, 𝑓 and 𝑔 are differential functions
and 0 < 𝛼 ≤ 1.

Theorem 1.1.13. If 𝑓 (𝑥, 𝑢) is a minimizer of (1.25) satisfying the constraint (1.26) and
the boundary condition (1.27), then there exists a function 𝜆 ∈ ℂ1[0, 𝑏] such that the triplet
(𝑥, 𝑢, 𝜆) satisfies:

1. the state and co-state systems

𝑐𝔻𝛼
𝑡 𝑥(𝑡) =

𝜕𝐻
𝜕𝜆

(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)), (1.28)

𝑐
𝑡𝔻

𝛼
𝑏 𝜆(𝑡) =

𝜕𝐻
𝜕𝑥

(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)), (1.29)

2. the stationary condition
𝜕𝐻
𝜕𝑢

(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)) = 0, (1.30)

3. and the transversality condition

𝑡𝕀1−𝛼𝑏 𝜆||𝑡=𝑏 = 𝜆(𝑏) = 0, (1.31)

where the Hamiltonian 𝐻 is defined by

𝐻 (𝑡, 𝑥, 𝑢, 𝜆) = 𝑓 (𝑡, 𝑥, 𝑢) + 𝜆 ⋅ 𝑔(𝑡, 𝑥, 𝑢). (1.32)

The theorem and its proof are in [66].
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Lemma 1.1.14 (See [66]). The following equations are equivalent:

𝑐
𝑡𝔻

𝛼
𝑏 𝜆(𝑡) =

𝜕𝐻
𝜕𝑥

(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)), (1.33)

𝑐𝔻𝛼
𝑡 𝜆(𝑏 − 𝑡) =

𝜕𝐻
𝜕𝑥

(𝑏 − 𝑡, 𝑥(𝑏 − 𝑡), 𝑢(𝑏 − 𝑡), 𝜆(𝑏 − 𝑡)), (1.34)

where 𝛼 ∈ (0, 1].

The proof of Lemma (1.1.14) is found in [66] and we can find applications of this lemma
in [66, 14].
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Chapter 2

A Mathematical Model for the
Study of Effectiveness in Therapy
in Tuberculosis

2.1 Introduction

In recent years, the use of mathematical models with different techniques to predict
the behavior of epidemics has been increasing [18, 93, 94]. For example, Farman et al. [18]
used evolutionary computational techniques and the Padé approach to study a nonlinear
model of Hepatitis B. A. Omame et al. [93] introduced and analyzed a model of human
papillomavirus (HPV) and Chlamydia trachomatis co-infection, and studied different con-
trol strategies to eliminate HPV and Chlamydia trachomatis co-infection. Omame and
Okuonghae [94] proposed a co-infection model for oncogenic HPV and tuberculosis with
an optimal control analysis and proved that the combination of HPV prevention and
tuberculosis treatment has a positive impact on the reduction of oncogenic HPV and
co-infection [80].

In recent decades, the number of mathematical papers on the impact of tuberculosis
on society has been growing [25, 58, 90, 91, 92, 123, 118, 77, 76, 16, 88, 12]. For example,
Okuonghae and Ikhimwin [91] developed a mathematical model for the tuberculosis
transmission dynamics classifying latently infected individuals by their level of knowledge
of tuberculosis. Zhang and Feng [123] performed a global analysis of a dynamic model
for the propagation of tuberculosis with isolation and incomplete treatment. Nkamba et
al. [16] formulated a mathematical model to study the impact of vaccination on tuber-
culosis transmission and proved that vaccination is not sufficient to control tuberculosis
in the population. Trauer et al. [118] introduced a mathematical model to simulate the
transmission of tuberculosis in the highly endemic regions of Asia-Pacific. Egonmwan and
Okuonghae [88] proposed a mathematical model that investigates the impact of diagnosis
and treatment on latent and active cases of TB transmission in a population. Guzzetta et
al. [12] proposed a computational model that takes into account the age structure and
individual sociodemographic basis (IBM) for the dynamics of tuberculosis infection in an
epidemic situation [80].
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Tuberculosis is the most frequent opportunistic infection and the leading cause of
death among persons living with HIV/AIDS, and studies on TB-HIV/AIDS co-infection
have been increasing in recent decades. For example, Long et al. [74] introduced two
variants of a co-epidemic model (TB-HIV/AIDS) and showed the effects of each epidemic
on transmission. Azeez et al. [3] developed a mathematical model for the TB-HIV/AIDS
co-infection to predict the propagation of these diseases in different scenarios. Bhunu et al.
[30] proposed a mathematical model of HIV/AIDS and tuberculosis co-infection that takes
into account antiretroviral therapy and treatment of different forms of tuberculosis, and
showed that antiretroviral therapy has a strong influence on the reduction of tuberculosis
cases. Naresh et al. [83] proposed a nonlinear mathematical model to study the impact of
tuberculosis on the propagation of HIV infection. Gakkhar and Chavda [84] introduced a
mathematical model for TB-HIV/AIDS co-infection and showed that an increase in the rate
of progression from latent to active TB in coinfected people can increase the prevalence of
TB. Kumar et al. [68] formulated a mathematical model for the dynamics of TB-HIV/AIDS
co-infection taking into account the HIV treatment in active tuberculosis and co-infection
cases. Tanvi et al. [114] explored a model of HIV/AIDS and TB co-infection with detection
and treatment of both diseases, designed an optimal control problem, and showed the
importance of rapid detection of cases of both diseases and treatment to reduce co-infection
[80].

The study of the relationship between diabetes and tuberculosis has intensified in recent
years. For example, Coll et al. [42] introduced and studied a prevalence model for diabetes.
Ferjouchia et al. [13] presented a mathematical model describing the whole blood glucose-
insulin system and the objective is to propose a therapeutic scheme for diabetes patients.
Moualeu et al. [78] proposed a deterministic model to determine the impact of diabetes
on tuberculosis transmission and demonstrated the importance of chemoprophylaxis for
individuals with latent tuberculosis and treatment of diabetics with active tuberculosis.
Girard et al. [10] presented a study on the impact of migration on tuberculosis transmission
in the growing diabetes pandemic and showed that improved access to health care for
diabetic patients could decrease the impact of diabetes on tuberculosis among migrants
[80].

The aim of this chapter is to propose a new mathematical model to study resistance to
tuberculosis treatment considering the impact of HIV/AIDS and diabetes. We studied the
mathematical and epidemiological properties of the model. The local and global stability
conditions of the disease-free equilibrium points are deduced. Some simulations are pre-
sented to illustrate the behavior of the model. The innovative aspect of our work is that it
simultaneously models tuberculosis, HIV/AIDS, and diabetes, focusing on the efficacy of
tuberculosis treatment.

2.2 Model Formulation
The model has 18 compartments and the population is stratified into those who do not

suffer from HIV/AIDS neither diabetes (index 𝑇 ), those HIV/AIDS positive (index 𝐻 ), and
diabetic individuals (index 𝐷). We defined three subpopulations, TB-Only, TB-HIV/AIDS,
and TB-Diabetes. The compartments of the model are TB uninfected (𝑆𝑇 , 𝑆𝐻 and 𝑆𝐷),
latent individuals (𝐸𝑇 , 𝐸𝐻 and 𝐸𝐷), drug-sensitive TB individuals (𝐼𝑇1 , 𝐼𝐻1 and 𝐼𝐷1), MDR-TB
individuals (𝐼𝑇2 , 𝐼𝐻2 and 𝐼𝐷2), XDR-TB individuals (𝐼𝑇3 , 𝐼𝐻3 and 𝐼𝐷3) and TB recovered (𝑅𝑇 , 𝑅𝐻
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and 𝑅𝐷). We have excluded cases starting with both diseases (HIV/AIDS and diabetes) [80].
The equations of uninfected individuals are:

𝑑𝑆𝑇
𝑑𝑡

= 𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆)𝑆𝑇 ,

𝑑𝑆𝐻
𝑑𝑡

= 𝑀𝐻 + 𝛼𝐻 (𝑆𝑇 + 𝑆𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝜔𝐻𝜆)𝑆𝐻 ,

𝑑𝑆𝐷
𝑑𝑡

= 𝑀𝐷 + 𝛼𝐻𝐷𝑆𝐻 + 𝛼𝐷𝑆𝑇 − (𝛼𝐻 + 𝜇 + 𝜔𝐷𝜆 + 𝜇𝐷)𝑆𝐷. (2.1)

The 𝑀𝑇 , 𝑀𝐻 and 𝑀𝐷 are recruitment rates for the different subpopulations. We assume
that the application of antiretroviral therapy begins from the detection of an HIV+ individ-
ual and we define the rate of acquiring diabetes by use of antiretroviral treatment as 𝛼𝐻𝐷
and it is assumed equal if is acquired for another cause. The rate of an individual acquiring
HIV is 𝛼𝐻 . The rate of developing diabetes is 𝛼𝐷 [80]. By definition 𝛼𝐻𝐷 ≠ 𝛼𝐷.

The TB-infection rate is defined as

𝜆 = 𝛼∗ 𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3)
𝑁

,

where 𝛼∗ is the effective contact rate and 𝑁 is the total population (𝑁 = 𝑆𝑇 +𝑆𝐻 +𝑆𝐷+𝐸𝑇 +
𝐸𝐻 + 𝐸𝐷 + 𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝑇3 + 𝐼𝐻3 + 𝐼𝐷3 + 𝑅𝑇 + 𝑅𝐻 + 𝑅𝐷). The parameters 𝜖𝑗 ,
𝑗 = 𝐻,𝐷 are modifications parameters, associated with TB infectivity in HIV-positive and
diabetic patients. The natural death rate 𝜇 is the same from any compartment. Diabetics
not infected with tuberculosis , 𝑆𝐷, and HIV positive patients not infected with tuberculosis
𝑆𝐻 , are infected with TB at a rate 𝜔𝐻𝜆, 𝜔𝐷𝜆, where 𝜔𝐻 , 𝜔𝐷 > 1, and are associated with
TB transmissibility of HIV-positive and diabetic patient respectively. The 𝜇𝐻 is the death
rate by HIV/AIDS and 𝜇𝐷 is the death rate by diabetes [80].

The dynamics of the latent individuals, are given by:

𝑑𝐸𝑇

𝑑𝑡
= 𝜆(𝑆𝑇 + 𝛽

′

1𝑅𝑇 ) − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝜂)𝐸𝑇 ,

𝑑𝐸𝐻

𝑑𝑡
= 𝜔𝐻𝜆(𝑆𝐻 + 𝛽

′

1𝑅𝐻 ) + 𝛼𝐻 (𝐸𝑇 + 𝐸𝐷) − (𝜖∗𝐻𝜂 + 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷)𝐸𝐻 ,

𝑑𝐸𝐷

𝑑𝑡
= 𝜔𝐷𝜆(𝑆𝐷 + 𝛽

′

1𝑅𝐷) + 𝛼𝐻𝐷𝐸𝐻 + 𝛼𝐷𝐸𝑇 − (𝛼𝐻 + 𝜖∗𝐷𝜂 + 𝜇 + 𝜇𝐷)𝐸𝐷. (2.2)

The latent state will be entered by those who come into contact with TB and those
who recover (partial immunity). We define 𝜖∗𝑗 , 𝑗 = 𝐻,𝐷 as the parameters modification
associated with resistance to tuberculosis treatment in HIV/AIDS and diabetics. We assume
that TB-recovered 𝑅𝑖, 𝑖 = 𝑇 , 𝐷, 𝐻 acquire partial immunity so that from the recovered
compartment enter the latent compartment with a parameter associated with reinfec-
tion/reactivation TB, 𝛽′

1 with 𝛽′

1 ≤ 1 [80].
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The drug-sensitive TB and MDR-TB, are represented by the following equations:

𝑑𝐼𝑇1
𝑑𝑡

= (1 − 𝛽∗)𝜂𝐸𝑇 − (𝑙𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑑𝑇 + 𝜂11)𝐼𝑇1 ,

𝑑𝐼𝑇2
𝑑𝑡

= (1 − 𝑝𝑇 )𝛽∗𝜂𝐸𝑇 + 𝑙𝑇 𝐼𝑇1 − (𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝑚𝑇 + 𝜇 + 𝑡
′

𝑇 𝑑𝑇 + 𝜂14)𝐼𝑇2 ,

𝑑𝐼𝐻1

𝑑𝑡
= 𝑡𝐻𝛼𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − 𝛽∗)𝜖∗𝐻𝜂𝐸𝐻 − (𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 + 𝜂12 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻1 ,

𝑑𝐼𝐻2

𝑑𝑡
= 𝑡𝐻𝛼𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝐻 )𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + 𝑙𝐻 𝐼𝐻1 − (𝑚𝐻 + 𝜇 + 𝜇𝐻 + 𝑡

′

𝐻𝑑𝑇𝐻 + 𝜂15 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻2 ,

𝑑𝐼𝐷1

𝑑𝑡
= 𝑡𝐷𝛼𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻1 + (1 − 𝛽∗)𝜖∗𝐷𝜂𝐸𝐷 − (𝑙𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝑑𝑇𝐷 + 𝜂13 + 𝜇𝐷)𝐼𝐷1 ,

𝑑𝐼𝐷2

𝑑𝑡
= 𝑡𝐷𝛼𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝐷)𝜖∗𝐷𝛽

∗𝜂𝐸𝐷 + 𝑙𝐷𝐼𝐷1 − (𝑚𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝑡
′

𝐷𝑑𝑇𝐷 + 𝜂16 + 𝜇𝐷)𝐼𝐷2 .

(2.3)

The 𝜂 is the natural rate of progression of tuberculosis. The 𝛽∗ is the proportion of active
TB cases that are resistant. From the latent state, the person will move to three possible
compartments of infected, drug-sensitive TB, MDR-TB, or XDR-TB in a first infection. The
𝑡𝐻 and 𝑡𝐷 are modification parameters associated with diabetes or HIV infection from the
compartments of active TB infection. We define 𝑑𝑇 , as TB death rate, 𝑑𝑇𝐻 is the death rate
by co-infection TB and HIV/AIDS and 𝑑𝑇𝐷 is the death rate by combination TB and diabetes.
We assume that 𝑑𝑇𝐷 ≥ 𝑑𝑇 and 𝑑𝑇𝐻 ≥ 𝑑𝑇 . The 𝑡 ′𝑇 , 𝑡

′

𝐻 and 𝑡 ′𝐷 represent modification parameters
associated with death by TB, death by combination TB-HIV/AIDS and by combination
TB-Diabetes after being MDR-TB. The 𝑙𝑇 , 𝑙𝐻 and 𝑙𝐷 rates are the cases that will be MDR-TB
(first resistance). The expressions (1 − 𝑝𝑇 )𝜂, (1 − 𝑝𝐻 )𝜖∗𝐻𝜂 and (1 − 𝑝𝐷)𝜖∗𝐷𝜂 are the cases
that in a first infection are going to be MDR-TB and 𝑝𝑇𝜂, 𝑝𝐻𝜖∗𝐻𝜂 and 𝑝𝐷𝜖∗𝐷𝜂 are the cases
that will be XDR-TB in a first infection. The 𝑡𝐻𝐷 is the parameter modification associated
with the combination of treatment for TB and antiretroviral therapy and the possibility of
developing diabetes. The 𝜂11, 𝜂12 and 𝜂13 are the recovery rate after being drug-sensitive
TB and 𝑚𝑇 , 𝑚𝐻 and 𝑚𝐷 are the recovery rate after being MDR-TB. We assume that 𝜂1𝑙 > 𝑚𝑙
for 𝑙 = 1, 2, 3 [80].

The XDR-TB and recovered dynamic, is interpreted by the following equations:

𝑑𝐼𝑇3
𝑑𝑡

= 𝑝𝑇𝛽∗𝜂𝐸𝑇 + 𝜂14𝐼𝑇2 − (𝜂∗11 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑡∗𝑇 𝑑𝑇 )𝐼𝑇3 ,

𝑑𝐼𝐻3

𝑑𝑡
= 𝑝𝐻𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + 𝜂15𝐼𝐻2 + 𝑡𝐻𝛼𝐻 (𝐼𝑇3 + 𝐼𝐷3) − (𝜂∗12 + 𝑡𝐻𝐷𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 )𝐼𝐻3 ,

𝑑𝐼𝐷3

𝑑𝑡
= 𝑝𝐷𝛽∗𝜖∗𝐷𝜂𝐸𝐷 + 𝜂16𝐼𝐷2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝐷𝐼𝑇3 − (𝑡𝐻𝛼𝐻 + 𝜂∗13 + 𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷)𝐼𝐷3 ,

𝑑𝑅𝑇

𝑑𝑡
= 𝑚𝑇 𝐼𝑇2 + 𝜂11𝐼𝑇1 + 𝜂∗11𝐼𝑇3 − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝛽

′

1𝜆)𝑅𝑇 ,

𝑑𝑅𝐻

𝑑𝑡
= 𝑚𝐻 𝐼𝐻2 + 𝜂12𝐼𝐻1 + 𝜂∗12𝐼𝐻3 + 𝛼𝐻 (𝑅𝑇 + 𝑅𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝛽

′

1𝜔𝐻𝜆)𝑅𝐻 ,

𝑑𝑅𝐷

𝑑𝑡
= 𝑚𝐷𝐼𝐷2 + 𝜂13𝐼𝐷1 + 𝜂∗13𝐼𝐷3 + 𝛼𝐷𝑅𝑇 + 𝛼𝐻𝐷𝑅𝐻 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝛽

′

1𝜔𝐷𝜆)𝑅𝐷. (2.4)
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The 𝜂∗11, 𝜂∗12 and 𝜂∗13 are the recovery rate after being XDR-TB. Due to the characteristics
of tuberculosis, let us assume that 𝜂1𝑙 > 𝜂∗1𝑙 and 𝑚𝑙 > 𝜂∗1𝑙 for 𝑙 = 1, 2, 3. The 𝑡∗𝑇 , 𝑡∗𝐻 and 𝑡∗𝐷
are modification parameters associated with death by TB, co-infection TB-HIV/AIDS and
combination TB-Diabetes after being XDR-TB respectively [80]. The parameters definition
is in Table (2.1).

Parameter Description
𝑀𝑇 , 𝑀𝐻 , 𝑀𝐷 Recruitment rates
𝛼∗ Effective contact rates for TB infection
𝛼𝐷 Acquiring diabetes rate
𝛼𝐻 Acquiring HIV rate
𝛼𝐻𝐷 Diabetes development rate by use of HIV therapy
𝜔𝐻 , 𝜔𝐷, 𝜖𝐻 , 𝜖𝐷 Modification parameters
𝜇 Natural mortality rate
𝜂 Natural rate of progression to active TB
𝑡𝐻 , 𝑡𝐷, 𝑡𝐻𝐷, 𝑡∗𝑇 , 𝑡∗𝐻 , 𝑡∗𝐷 Modification parameters
𝑡 ′𝑇 , 𝑡

′

𝐻 , 𝑡
′

𝐷 Modification parameters
𝜖∗𝐻 , 𝜖∗𝐷, 𝛽

′

1 Modification parameters
𝑙𝑇 , 𝑙𝐻 , 𝑙𝐷 Resistant TB development rates
𝑑𝑇 TB induced death rate
𝑑𝑇𝐻 TB-HIV induced death rate
𝑑𝑇𝐷 TB-Diabetes induced death rate
𝜇𝐻 , 𝜇𝐷 Death rate of HIV/AIDS and diabetes respectively.
𝑚𝑇 , 𝑚𝐻 , 𝑚𝐷 TB recovery rates for MDR-TB
𝛽∗ Proportion of active TB cases that are resistant.
𝜂11, 𝜂12, 𝜂13 TB recovery rates of drug-sensitive TB infected
𝜂14, 𝜂15, 𝜂16 Resistant (XDR-TB) TB development rates after being MDR-TB
𝜂∗11, 𝜂∗12, 𝜂∗13 TB recovery rates of XDR-TB
𝑝𝑇 , 𝑝𝐻 , 𝑝𝐷 Rates related to developing XDR-TB resistance

Table 2.1: Description of parameters of the model (2.5).

To summarize, the effectiveness of the TB treatment with the presence of HIV/AIDS
and diabetes is modeled with the following system of differential equations:

𝑑𝑆𝑇
𝑑𝑡

= 𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆)𝑆𝑇 ,

𝑑𝑆𝐻
𝑑𝑡

= 𝑀𝐻 + 𝛼𝐻 (𝑆𝑇 + 𝑆𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝜔𝐻𝜆)𝑆𝐻 ,

𝑑𝑆𝐷
𝑑𝑡

= 𝑀𝐷 + 𝛼𝐻𝐷𝑆𝐻 + 𝛼𝐷𝑆𝑇 − (𝛼𝐻 + 𝜇 + 𝜔𝐷𝜆 + 𝜇𝐷)𝑆𝐷,

𝑑𝐸𝑇

𝑑𝑡
= 𝜆(𝑆𝑇 + 𝛽

′

1𝑅𝑇 ) − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝜂)𝐸𝑇 ,

𝑑𝐸𝐻

𝑑𝑡
= 𝜔𝐻𝜆(𝑆𝐻 + 𝛽

′

1𝑅𝐻 ) + 𝛼𝐻 (𝐸𝑇 + 𝐸𝐷) − (𝜖∗𝐻𝜂 + 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷)𝐸𝐻 ,
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𝑑𝐸𝐷

𝑑𝑡
= 𝜔𝐷𝜆(𝑆𝐷 + 𝛽

′

1𝑅𝐷) + 𝛼𝐻𝐷𝐸𝐻 + 𝛼𝐷𝐸𝑇 − (𝛼𝐻 + 𝜖∗𝐷𝜂 + 𝜇 + 𝜇𝐷)𝐸𝐷,

𝑑𝐼𝑇1
𝑑𝑡

= (1 − 𝛽∗)𝜂𝐸𝑇 − (𝑙𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑑𝑇 + 𝜂11)𝐼𝑇1 ,

𝑑𝐼𝑇2
𝑑𝑡

= (1 − 𝑝𝑇 )𝛽∗𝜂𝐸𝑇 + 𝑙𝑇 𝐼𝑇1 − (𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝑚𝑇 + 𝜇 + 𝑡
′

𝑇 𝑑𝑇 + 𝜂14)𝐼𝑇2 ,

𝑑𝐼𝐻1

𝑑𝑡
= 𝑡𝐻𝛼𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − 𝛽∗)𝜖∗𝐻𝜂𝐸𝐻 − (𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 + 𝜂12 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻1 ,

𝑑𝐼𝐻2

𝑑𝑡
= 𝑡𝐻𝛼𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝐻 )𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + 𝑙𝐻 𝐼𝐻1 − (𝑚𝐻 + 𝜇 + 𝜇𝐻 + 𝑡

′

𝐻𝑑𝑇𝐻 + 𝜂15 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻2 ,

𝑑𝐼𝐷1

𝑑𝑡
= 𝑡𝐷𝛼𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻1 + (1 − 𝛽∗)𝜖∗𝐷𝜂𝐸𝐷 − (𝑙𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝑑𝑇𝐷 + 𝜂13 + 𝜇𝐷)𝐼𝐷1 ,

𝑑𝐼𝐷2

𝑑𝑡
= 𝑡𝐷𝛼𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝐷)𝜖∗𝐷𝛽

∗𝜂𝐸𝐷 + 𝑙𝐷𝐼𝐷1 − (𝑚𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝑡
′

𝐷𝑑𝑇𝐷 + 𝜂16 + 𝜇𝐷)𝐼𝐷2 ,

𝑑𝐼𝑇3
𝑑𝑡

= 𝑝𝑇𝛽∗𝜂𝐸𝑇 + 𝜂14𝐼𝑇2 − (𝜂∗11 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑡∗𝑇 𝑑𝑇 )𝐼𝑇3 ,

𝑑𝐼𝐻3

𝑑𝑡
= 𝑝𝐻𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + 𝜂15𝐼𝐻2 + 𝑡𝐻𝛼𝐻 (𝐼𝑇3 + 𝐼𝐷3) − (𝜂∗12 + 𝑡𝐻𝐷𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 )𝐼𝐻3 ,

𝑑𝐼𝐷3

𝑑𝑡
= 𝑝𝐷𝛽∗𝜖∗𝐷𝜂𝐸𝐷 + 𝜂16𝐼𝐷2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝐷𝐼𝑇3 − (𝑡𝐻𝛼𝐻 + 𝜂∗13 + 𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷)𝐼𝐷3 ,

𝑑𝑅𝑇

𝑑𝑡
= 𝑚𝑇 𝐼𝑇2 + 𝜂11𝐼𝑇1 + 𝜂∗11𝐼𝑇3 − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝛽

′

1𝜆)𝑅𝑇 ,

𝑑𝑅𝐻

𝑑𝑡
= 𝑚𝐻 𝐼𝐻2 + 𝜂12𝐼𝐻1 + 𝜂∗12𝐼𝐻3 + 𝛼𝐻 (𝑅𝑇 + 𝑅𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝛽

′

1𝜔𝐻𝜆)𝑅𝐻 ,

𝑑𝑅𝐷

𝑑𝑡
= 𝑚𝐷𝐼𝐷2 + 𝜂13𝐼𝐷1 + 𝜂∗13𝐼𝐷3 + 𝛼𝐷𝑅𝑇 + 𝛼𝐻𝐷𝑅𝐻 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝛽

′

1𝜔𝐷𝜆)𝑅𝐷, (2.5)

with initial conditions:
𝑆𝑇 (0) > 0, 𝑆𝐻 (0) > 0, 𝑆𝐷(0) > 0, 𝐸𝑇 (0) > 0, 𝐸𝐻 (0) > 0, 𝐸𝐷(0) > 0, 𝐼𝑇1(0) > 0, 𝐼𝑇2(0) > 0,
𝐼𝐻1(0) > 0, 𝐼𝐻2(0) > 0, 𝐼𝐷1(0) > 0, 𝐼𝐷2(0) > 0, 𝐼𝑇3(0) > 0, 𝐼𝐻3(0) > 0, 𝐼𝐷3(0) > 0, 𝑅𝑇 (0) > 0,
𝑅𝐻 (0) > 0 and 𝑅𝐷(0) > 0.

Figure 2.1: Diagram of model (2.5).
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Model Properties

In this subsection, we show the existence, positivity, and boundedness of solutions and
find the biologically feasible region. The proof of the following results can be found in
[80].

Theorem 2.2.1. Let the initial data for the model (2.5) be 𝑆𝑖(0) > 0, 𝐸𝑖(0) > 0, 𝐼𝑖1(0) >
0, 𝐼𝑖2(0) > 0, 𝐼𝑖3(0) > 0, 𝑅𝑖(0) > 0, 𝑖 = 𝑇 , 𝐻 , 𝐷. Then, the solutions (𝑆𝑖(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖1(𝑡), 𝐼𝑖2(𝑡), 𝐼𝑖3(𝑡),
𝑅𝑖(𝑡)), 𝑖 = 𝑇 , 𝐻 , 𝐷 of the model (2.5), with positive initial data, will remain positive for all
time 𝑡 > 0. Furthermore,

lim
𝑡→∞

sup𝑁 (𝑡) ≤
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
. (2.6)

Proof. Let us remark that the first equation of the system (2.5),

𝑑𝑆𝑇
𝑑𝑡

= 𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆)𝑆𝑇 ,

can be rewritten as,

𝑑
𝑑𝑡 [

𝑆𝑇 (𝑡) exp
{
(𝜇+𝛼𝐻+𝛼𝐷)𝑡+∫

𝑡

0
𝜆(𝜏)𝑑𝜏

}
] = 𝑀𝑇 exp

{
(𝜇+𝛼𝐻+𝛼𝐷)𝑡+∫

𝑡

0
𝜆(𝜏)𝑑𝜏

}
. (2.7)

Hence, fot 𝑡1 > 0,

𝑆𝑇 (𝑡1) exp
{
(𝜇+𝛼𝐻+𝛼𝐷)𝑡1+∫

𝑡1

0
𝜆(𝜏)𝑑𝜏

}
−𝑆𝑇 (0) = ∫

𝑡1

0
𝑀𝑇[ exp

{
(𝜇+𝛼𝐻+𝛼𝐷)𝑦+∫

𝑦

0
𝜆(𝜏)𝑑𝜏

}
]𝑑𝑦.

(2.8)
So that,

𝑆𝑇 (𝑡1) =𝑆𝑇 (0) exp
{
− (𝜇 + 𝛼𝐻 + 𝛼𝐷)𝑡1 − ∫

𝑡1

0
𝜆(𝜏)𝑑𝜏

}
+ exp

{
− (𝜇 + 𝛼𝐻 + 𝛼𝐷)𝑡1 − ∫

𝑡1

0
𝜆(𝜏)𝑑𝜏

}

×∫
𝑡1

0
𝑀𝑇[ exp

{
(𝜇 + 𝛼𝐻 + 𝛼𝐷)𝑦 + ∫

𝑦

0
𝜆(𝜏)𝑑𝜏

}
]𝑑𝑦 > 0. (2.9)

Analogously, a similar result can be shown for 𝑆𝐻 (𝑡), 𝑆𝐷(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖1(𝑡), 𝐼𝑖2(𝑡), 𝐼𝑖3(𝑡), 𝑅𝑖(𝑡), 𝑖 =
𝑇 , 𝐻 , 𝐷, for 𝑡 > 0. Thus, all solutions of the model (2.5) remain positive for non-negative
initial conditions [80].
Since the total population is the sum of all the compartments, we have that

𝑑𝑁
𝑑𝑡

= 𝑀𝑇+𝑀𝐻+𝑀𝐷−𝜇𝑁−𝜇𝐻 (𝑆𝐻+𝐸𝐻+𝐼𝐻1+𝐼𝐻2+𝐼𝐻3+𝑅𝐻 )−𝜇𝐷(𝑆𝐷+𝐸𝐷+𝐼𝐷1+𝐼𝐷2+𝐼𝐷3+𝑅𝐷)−

(𝑑𝑇 (𝐼𝑇1 + 𝑡
′

𝑇 𝐼𝑇2 + 𝑡∗𝑇 𝐼𝑇3) + 𝑑𝑇𝐻 (𝐼𝐻1 + 𝑡
′

𝐻 𝐼𝐻2 + 𝑡∗𝐻 𝐼𝐻3) + 𝑑𝑇𝐷(𝐼𝐷1 + 𝑡
′

𝐷𝐼𝐷2 + 𝑡∗𝐷𝐼𝐷3)).

Then,

𝑀𝑇 +𝑀𝐻 +𝑀𝐷 − (𝜇 + 𝜇𝐻 + 𝜇𝐷 + 𝑑𝑇 + 𝑑𝑇𝐻 + 𝑑𝑇𝐷)𝑁 ≤
𝑑𝑁
𝑑𝑡

≤ 𝑀𝑇 +𝑀𝐻 +𝑀𝐷 − 𝜇𝑁 ,
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which give,

𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇 + 𝜇𝐻 + 𝜇𝐷 + 𝑑𝑇 + 𝑑𝑇𝐻 + 𝑑𝑇𝐷
≤ lim

𝑡→∞
inf 𝑁 (𝑡) ≤ lim

𝑡→∞
sup𝑁 (𝑡) ≤

𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
. (2.10)

So, we have that:

lim
𝑡→∞

sup𝑁 (𝑡) ≤
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
.

The biologically feasible region is where all variables are non-negative and the solutions
of the system (2.5) remain positive with non-negative initial conditions.

Lemma 2.2.2. The closed set

𝐷 =
{
(𝑆𝑖, 𝐸𝑖, 𝐼𝑖1 , 𝐼𝑖2 , 𝐼𝑖3 , 𝑅𝑖) ∈ ℝ18

+ , 𝑖 = 𝑇 , 𝐻 , 𝐷 ∶ 𝑁 (𝑡) ≤
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇

}
,

is positively invariant and attracts all positive solutions of the model (2.5).

Proof. The derivative of 𝑁 (total population) is the sum of the derivative of all compart-
ments:

𝑑𝑁
𝑑𝑡

= 𝑀𝑇+𝑀𝐻+𝑀𝐷−𝜇𝑁−𝜇𝐻 (𝑆𝐻+𝐸𝐻+𝐼𝐻1+𝐼𝐻2+𝐼𝐻3+𝑅𝐻 )−𝜇𝐷(𝑆𝐷+𝐸𝐷+𝐼𝐷1+𝐼𝐷2+𝐼𝐷3+𝑅𝐷)−

(𝑑𝑇 (𝐼𝑇1 + 𝑡
′

𝑇 𝐼𝑇2 + 𝑡∗𝑇 𝐼𝑇3) + 𝑑𝑇𝐻 (𝐼𝐻1 + 𝑡
′

𝐻 𝐼𝐻2 + 𝑡∗𝐻 𝐼𝐻3) + 𝑑𝑇𝐷(𝐼𝐷1 + 𝑡
′

𝐷𝐼𝐷2 + 𝑡∗𝐷𝐼𝐷3)).

Since
𝑑𝑁
𝑑𝑡

≤ 𝑀𝑇 +𝑀𝐻 +𝑀𝐷 − 𝜇𝑁 , it follows that
𝑑𝑁
𝑑𝑡

≤ 0, if 𝑁 (𝑡) ≥
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
.

Hence, a standard comparison Theorem [69] can be used to show that 𝑁 (𝑡) ≤

𝑁 (0) exp{−𝜇𝑡} +
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇 (1 − exp{−𝜇𝑡}). In particular, if 𝑁 (0) ≤
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
,

then 𝑁 (𝑡) ≤
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
for all 𝑡 > 0. Hence, the domain 𝐷 is positively invariant.

Furthermore, if 𝑁 (0) >
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
, then either the solution enters the domain 𝐷

in finite time or 𝑁 (𝑡) approaches
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇
asymptotically as 𝑡 → ∞. Hence, the

domain 𝐷 attracts all solutions in ℝ18
+ [80].

The set 𝐷 is the biologically feasible region of model (2.5). The model (2.5) is mathe-
matically and epidemiologically well posed in 𝐷.

Theorem 2.2.3. The solutions of model system (2.5) with non-negative initial conditions
exists for all times.

Proof. The right-hand side of the system (2.5) is locally Lipschitz continuous, and this
proves the local existence of the solution. Global existence of the solution follows from
bounds known a priory [80].
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2.3 Basic Reproduction Number Study

In this section, the basic reproduction number, ℜ0, is computed using the next-
generation matrix method [45, 51, 44]. We calculated the basic number of reproduction in
the different subpopulations to study the transmission of tuberculosis in them.

TB-Only Submodel

We have the TB-Only submodel when 𝑆𝐻 = 𝑆𝐷 = 𝐸𝐻 = 𝐸𝐷 = 𝐼𝐻1 = 𝐼𝐻2 = 𝐼𝐷1 = 𝐼𝐷2 =
𝐼𝐻3 = 𝐼𝐷3 = 𝑅𝐻 = 𝑅𝐷 = 0, which is given by

𝑑𝑆𝑇
𝑑𝑡

= 𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆𝑇 )𝑆𝑇 ,

𝑑𝐸𝑇

𝑑𝑡
= 𝜆𝑇 (𝑆𝑇 + 𝛽

′

1𝑅𝑇 ) − (𝛼𝐻 + 𝛼𝐷 + 𝜂 + 𝜇)𝐸𝑇 ,

𝑑𝐼𝑇1
𝑑𝑡

= (1 − 𝛽∗)𝜂𝐸𝑇 − (𝑙𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑑𝑇 + 𝜂11)𝐼𝑇1 ,

𝑑𝐼𝑇2
𝑑𝑡

= (1 − 𝑝𝑇 )𝛽∗𝜂𝐸𝑇 + 𝑙𝑇 𝐼𝑇1 − (𝑚𝑇 + 𝜇 + 𝑡
′

𝑇 𝑑𝑇 + 𝜂14 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷)𝐼𝑇2 ,

𝑑𝐼𝑇3
𝑑𝑡

= 𝛽∗𝑝𝑇𝜂𝐸𝑇 + 𝜂14𝐼𝑇2 − (𝜂∗11 + 𝜇 + 𝑡∗𝑇 𝑑𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷)𝐼𝑇3 ,

𝑑𝑅𝑇

𝑑𝑡
= 𝑚𝑇 𝐼𝑇2 + 𝜂11𝐼𝑇1 + 𝜂∗11𝐼𝑇3 − (𝜇 + 𝛽

′

1𝜆𝑇 + 𝛼𝐻 + 𝛼𝐷)𝑅𝑇 , (2.11)

with initial conditions:

𝑆𝑇 (0) > 0, 𝐸𝑇 (0) > 0, 𝐼𝑇1(0) > 0, 𝐼𝑇2(0) > 0, 𝐼𝑇3(0) > 0 and 𝑅𝑇 (0) > 0.

The TB-infection rate for this submodel is defined as

𝜆𝑇 = 𝛼∗ 𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3
𝑁𝑇

,

and the total population is given by

𝑁𝑇 = 𝑆𝑇 + 𝐸𝑇 + 𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝑅𝑇 .

Due to biological constraints, the system (2.11) is studied in the following region:

𝐷1 =
{
(𝑆𝑇 , 𝐸𝑇 , 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝑇3 , 𝑅𝑇 ) ∈ ℝ6

+ ∶ 𝑁𝑇 (𝑡) ≤
𝑀𝑇

𝜇

}
.

We can show for this submodel (2.11) that the solutions, (𝑆𝑇 (𝑡), 𝐸𝑇 (𝑡), 𝐼𝑇1(𝑡), 𝐼𝑇2(𝑡), 𝐼𝑇3(𝑡), 𝑅𝑇 (𝑡))
are bounded and positively invariant in 𝐷1 (biologically feasible region).
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Disease-Free Equilibrium Point

The disease-free equilibrium point of model (2.11) is given by 𝜖𝑇0 = (𝑆
𝑇
0 , 0, 0, 0, 0, 0),

where 𝑆𝑇0 =
𝑀𝑇

𝜇 + 𝛼𝐻 + 𝛼𝐷
.

The matrices for the new infection terms, 𝐹𝑇 and the other terms, 𝑉𝑇 for system (2.11)
are given by:

𝐹𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
𝑀𝑇𝛼∗

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
𝑀𝑇𝛼∗

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
𝑀𝑇𝛼∗

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

𝑉𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑘11 0 0 0
−(1 − 𝛽∗)𝜂 𝑘12 0 0
−(1 − 𝑝𝑇 )𝛽∗𝜂 −𝑙𝑇 𝑘13 0

−𝑝𝑇𝛽∗𝜂 0 −𝜂14 𝑘14

⎤
⎥
⎥
⎥
⎥
⎦

,

where 𝑘11 = 𝛼𝐻 + 𝛼𝐷 + 𝜂 + 𝜇, 𝑘12 = 𝑙𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑑𝑇 + 𝜂11, 𝑘13 = 𝜇 + 𝑡 ′𝑇 𝑑𝑇 + 𝜂14 +
𝑚𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 and 𝑘14 = 𝜇 + 𝑡∗𝑇 𝑑𝑇 + 𝜂∗11 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷.

The basic reproduction number obtained is

ℜ𝑇
0 = 𝜌(𝐹𝑇𝑉 −1

𝑇 ) =
𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝛽∗𝑝𝑇𝑘12𝑘13)

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘12𝑘13𝑘14
,

(2.12)

where 𝜌(𝐹𝑇𝑉 −1
𝑇 ) indicate the spectral radius of 𝐹𝑇𝑉 −1

𝑇 . We have the following lemma
[80]:

Lemma 2.3.1. The disease-free equilibrium point 𝜖𝑇0 is locally asymptotically stable when
ℜ𝑇

0 < 1 and unstable when ℜ𝑇
0 > 1.

Proof. The Jacobian matrix of the submodel (2.11) at 𝜖𝑇0 is

𝐽 (𝜖𝑇0 ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(𝜇 + 𝛼𝐻 + 𝛼𝐷) 0
−𝑀𝑇𝛼∗

𝑁𝑇 (𝜇 + 𝛼𝐻 + 𝛼𝐷)
−𝑀𝑇𝛼∗

𝑁𝑇 (𝜇 + 𝛼𝐻 + 𝛼𝐷)
−𝑀𝑇𝛼∗

𝑁𝑇 (𝜇 + 𝛼𝐻 + 𝛼𝐷)
0

0 −𝑘11
𝑀𝑇𝛼∗

𝑁𝑇 (𝜇 + 𝛼𝐻 + 𝛼𝐷)
𝑀𝑇𝛼∗

𝑁𝑇 (𝜇 + 𝛼𝐻 + 𝛼𝐷)
𝑀𝑇𝛼∗

𝑁𝑇 (𝜇 + 𝛼𝐻 + 𝛼𝐷)
0

0 (1 − 𝛽∗)𝜂 −𝑘12 0 0 0
0 (1 − 𝑝𝑇 )𝛽∗𝜂 𝑙𝑇 −𝑘13 0 0
0 𝑝𝑇𝛽∗𝜂 0 𝜂14 −𝑘14 0
0 0 𝜂11 𝑚𝑇 𝜂∗11 −(𝜇 + 𝛼𝐻 + 𝛼𝐷)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Trace[𝐽 (𝜖𝑇0 )]=−2(𝛼𝐻 + 𝛼𝐷 + 𝜇) − 𝑘11 − 𝑘12 − 𝑘13 − 𝑘14 < 0,
and its determinant is
Det[𝐽 (𝜖𝑇0 )]= −(𝛼𝐻 + 𝛼𝐷 + 𝜇)2(

𝑀𝑇 𝛼∗𝜂
(𝛼𝐻+𝛼𝐷+𝜇)((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 +

𝜂14) + 𝛽∗𝑝𝑇𝑘12𝑘13) − 𝑘11𝑘12𝑘13𝑘14) > 0.
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If,
(𝛼𝐻 + 𝛼𝐷 + 𝜇)𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝛽∗𝑝𝑇𝑘12𝑘13)

𝑁𝑇
<

(𝛼𝐻 + 𝛼𝐷 + 𝜇)2𝑘11𝑘12𝑘13𝑘14, then

𝑀𝑇𝛼∗𝜂((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝛽∗𝑝𝑇𝑘12𝑘13)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘12𝑘13𝑘14

< 1.

Thus ℜ𝑇
0 < 1, which means that the solution of Det[𝐽 (𝜖𝑇0 ) − 𝜆𝐼 ]=0 (𝐼 is the Identity

matrix) have negative real parts, implying that 𝜖𝑇0 is locally asymptotically stable whenever
ℜ𝑇

0 < 1 and unstable if ℜ𝑇
0 > 1.

Now, we list two conditions that if met, also guarantee the global asymptotic stability
of the disease-free equilibrium point. Following [38], we rewrite the model (2.11) as

𝑑𝑆
𝑑𝑡

= 𝐹(𝑆, 𝐼 ),

𝑑𝐼
𝑑𝑡

= 𝐺(𝑆, 𝐼 ), 𝐺(𝑆, 0) = 0, (2.13)

where 𝑆 ∈ ℝ2
+ is the vector whose components are the number of uninfected and recovered

individuals (𝑆𝑇 , 𝑅𝑇 ) and 𝐼 ∈ ℝ4
+ denotes the number of infected individuals including the

latent and the infectious (𝐸𝑇 , 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝑇3).
The disease-free equilibrium is now denoted by 𝐸𝑇

0 = (𝑆𝑇∗0 , 0) where 𝑆𝑇∗0 = (𝑆𝑇0 , 0),

𝑆𝑇0 = (
𝑀𝑇

𝜇 + 𝛼𝐻 + 𝛼𝐷
, 0).

The conditions that must be fulfilled to guarantee the global asymptotic stability of 𝐸𝑇
0

are,

(𝐻1) ∶ For
𝑑𝑆
𝑑𝑡

= 𝐹(𝑆, 0), 𝑆𝑇∗0 is globally asymptotically stable,

(𝐻2) ∶ 𝐺(𝑆, 𝐼 ) = 𝐴𝐼 − 𝐺∗(𝑆, 𝐼 ), 𝐺∗(𝑆, 𝐼 ) ≥ 0, for (𝑆, 𝐼 ) ∈ 𝐷1,

where 𝐴 = 𝐷𝐼𝐺(𝑆𝑇∗0 , 0) (𝐷𝐼𝐺(𝑆𝑇∗0 , 0) is the Jacobian of 𝐺 at (𝑆𝑇∗0 , 0)) and 𝐷1 is the region
where the model makes biological sense (biologically feasible region).

If model (2.11) satisfies the conditions (𝐻1) and (𝐻2), then the following result holds
[80].

Lemma 2.3.2. The fixed point 𝐸𝑇
0 is a globally asymptotically stable equilibrium of model

(2.11) provided that ℜ𝑇
0 < 1 and that the conditions (𝐻1) and (𝐻2) are satisfied.
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Proof. Let

𝐹(𝑆, 0) = (
𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷)𝑆𝑇

0 ) .

As 𝐹(𝑆, 0) is a linear equation, we have that 𝑆𝑇∗0 is globally stable, hence 𝐻1 is satisfied.
Let’s

𝐴 = 𝐷𝐼𝐺(𝑆∗𝑇 , 0) =

⎛
⎜
⎜
⎜
⎜
⎝

−𝑘11 𝛼∗ 𝛼∗ 𝛼∗

(1 − 𝛽∗)𝜂 −𝑘12 0 0
(1 − 𝑝𝑇 )𝛽∗𝜂 𝑙𝑇 −𝑘13 0

𝑝𝑇𝛽∗𝜂 0 𝜂14 −𝑘14

⎞
⎟
⎟
⎟
⎟
⎠

,

𝐼 = (𝐸𝑇 , 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝑇3) ,

𝐺∗(𝑆, 𝐼 ) = 𝐴𝐼 𝑇 − 𝐺(𝑆, 𝐼 ),

𝐺∗(𝑆, 𝐼 ) =

⎛
⎜
⎜
⎜
⎜
⎝

𝐺∗
1(𝑆, 𝐼 )

𝐺∗
2(𝑆, 𝐼 )

𝐺∗
3(𝑆, 𝐼 )

𝐺∗
4(𝑆, 𝐼 )

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝛼∗(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3)(1 −
𝑆𝑇 + 𝛽′

1𝑅𝑇

𝑁𝑇 )
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Since 𝑆𝑇 + 𝛽′

1𝑅𝑇 is always less than or equal to 𝑁𝑇 ,
𝑆𝑇 + 𝛽′

1𝑅𝑇

𝑁𝑇
≤ 1. Thus, 𝐺∗(𝑆, 𝐼 ) ≥ 0

for all (𝑆, 𝐼 ) ∈ 𝐷1 and 𝐸𝑇
0 is a globally asymptotically stable.

The proof of the local and global stability at the infection-free equilibrium point can
be found in [80].

Using the threshold quantity, ℜ𝑇
0 , in (2.12), we want to study the impact of resistance to

tuberculosis treatment on the dynamics of the disease in a population and find conditions
that characterize these effects. Parameters 𝑙𝑇 and 𝜂14 associated with MDR-TB and XDR-TB
are between 0 and 1 by definition. Now, we are going to study the possible combinations
in the behavior of these parameters based on the limits. We have

lim
𝑙𝑇→0
𝜂14→0

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)𝑘013𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘012𝑘14 + 𝛽∗𝑝𝑇𝑘012𝑘013)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘012𝑘013𝑘14

, (2.14)

where 𝑘012 is 𝑘12 for 𝑙𝑇 = 0 and 𝑘013 is 𝑘13 for 𝜂14 = 0. Then, in practice 𝑙𝑇 → 0 and 𝜂14 → 0
means zero resistance, i.e. elimination of resistance to tuberculosis treatment. If the limit
(2.14) is greater than unity, then when 𝑙𝑇 → 0 and 𝜂14 → 0 it has a negative impact on TB
transmission control. That is, if

𝛼∗𝜂𝑀𝑇

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
>

𝑘11𝑘012𝑘013𝑘14
(1 − 𝛽∗)𝑘013𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘012𝑘14 + 𝛽∗𝑝𝑇𝑘012𝑘013

. (2.15)

Now, we study the case when 𝑙𝑇 → 1 and 𝜂14 → 0. We have

lim
𝑙𝑇→1
𝜂14→0

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘013𝑘14 + 𝑘14) + (1 − 𝑝𝑇 )𝛽∗𝑘112𝑘14 + 𝛽∗𝑝𝑇𝑘112𝑘013)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘112𝑘013𝑘14

, (2.16)
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where 𝑘112 is 𝑘12 for 𝑙𝑇 = 1. Then, if the limit (2.16) is greater than unity, then when 𝑙𝑇 → 1
and 𝜂14 → 0 it means a negative impact on TB transmission control. That is, when

𝛼∗𝑀𝑇

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
>

𝑘11𝑘112𝑘013𝑘14
(1 − 𝛽∗)(𝑘013𝑘14 + 𝑘14) + (1 − 𝑝𝑇 )𝛽∗𝑘112𝑘14 + 𝛽∗𝑝𝑇𝑘112𝑘013

. (2.17)

In the case of 𝑙𝑇 → 0 and 𝜂14 → 1, follows that

lim
𝑙𝑇→0
𝜂14→1

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)𝑘14𝑘113 + (1 − 𝑝𝑇 )𝛽∗𝑘012(𝑘14 + 1) + 𝑘012𝑘113𝛽∗𝑝𝑇)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘012𝑘113𝑘14

, (2.18)

where 𝑘113 is 𝑘13 for 𝜂14 = 1 and 𝑘113 = 𝑘013 + 1. If the limit (2.18) is greater than unity, then
when 𝑙𝑇 → 0 and 𝜂14 → 1 it has a negative impact on TB transmission control. That is,
if:

𝛼∗𝑀𝑇

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
>

𝑘11𝑘012𝑘113𝑘14
(1 − 𝛽∗)𝑘14𝑘113 + (1 − 𝑝𝑇 )𝛽∗𝑘012(𝑘14 + 1) + 𝑘012𝑘113𝛽∗𝑝𝑇

. (2.19)

For 𝑙𝑇 → 1 and 𝜂14 → 1, we have

lim
𝑙𝑇→1
𝜂14→1

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘14𝑘113 + (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘112(𝑘14 + 1) + 𝑘112𝑘113𝛽∗𝑝𝑇)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘112𝑘113𝑘14

.

(2.20)
If the limit (2.20) is greater than unity, then when 𝑙𝑇 → 1 and 𝜂14 → 1 it has a negative

impact on TB transmission control. That is, when

𝛼∗𝑀𝑇

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
>

𝑘11𝑘112𝑘113𝑘14
(1 − 𝛽∗)(𝑘14𝑘113 + (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘′

12(𝑘14 + 1) + 𝑘112𝑘113𝛽∗𝑝𝑇
.

(2.21)
Let us define the following expressions:

Δ𝑇 =
𝛼∗𝑀𝑇

𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)
, (2.22)

Δ𝑇1 =
𝑘11𝑘012𝑘013𝑘14

(1 − 𝛽∗)𝑘013𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘012𝑘14 + 𝛽∗𝑝𝑇𝑘012𝑘013
, (2.23)

Δ𝑇2 =
𝑘11𝑘112𝑘013𝑘14

(1 − 𝛽∗)(𝑘013𝑘14 + 𝑘14) + (1 − 𝑝𝑇 )𝛽∗𝑘112𝑘14 + 𝛽∗𝑝𝑇𝑘112𝑘013
, (2.24)

Δ𝑇3 =
𝑘11𝑘012𝑘113𝑘14

(1 − 𝛽∗)𝑘14𝑘113 + (1 − 𝑝𝑇 )𝛽∗𝑘012(𝑘14 + 1) + 𝑘012𝑘113𝛽∗𝑝𝑇
, (2.25)

Δ𝑇4 =
𝑘11𝑘112𝑘113𝑘14

(1 − 𝛽∗)(𝑘14𝑘113 + (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘′
12(𝑘14 + 1) + 𝑘112𝑘113𝛽∗𝑝𝑇

. (2.26)

We have the following lemma:

Lemma 2.3.3. 1. The impact when 𝑙𝑇 → 0 and 𝜂14 → 0 is positive in reducing TB
transmission in this subpopulation only if Δ𝑇 < Δ𝑇1 , no impact if Δ𝑇 = Δ𝑇1 and a
negative impact if Δ𝑇 > Δ𝑇1 .
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2. The impact when 𝑙𝑇 → 1 and 𝜂14 → 0 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇2 , no impact if Δ𝑇 = Δ𝑇2 and a negative impact if
Δ𝑇 > Δ𝑇2 .

3. The impact when 𝑙𝑇 → 0 and 𝜂14 → 1 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇3 , no impact if Δ𝑇 = Δ𝑇3 and a negative impact if
Δ𝑇 > Δ𝑇3 .

4. The impact when 𝑙𝑇 → 1 and 𝜂14 → 1 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇4 , no impact if Δ𝑇 = Δ𝑇4 and a negative impact if
Δ𝑇 > Δ𝑇4 .

Now, we study the relationship between resistance and recovery parameters. The
treatment aims to avoid resistance and for patients to recover. First, we analyze the
relationship between the MDR-TB parameter (𝑙𝑇 ) and the recovery parameter (𝜂11), because
we want to avoid MDR-TB so it is necessary that the patient recovers before having this
resistance. We have the following limits:

lim
𝑙𝑇→0
𝜂11→1

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)𝑘13𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘0112(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘0112𝑘13)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘0112𝑘13𝑘14

, (2.27)

where 𝑘0112 represents 𝑘12 when 𝑙𝑇 → 0 and 𝜂11 → 1.

lim
𝑙𝑇→1
𝜂11→0

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘13𝑘14 + (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘1012(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘1012𝑘13)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘1012𝑘13𝑘14

,

(2.28)
where 𝑘1012 represents 𝑘12 when 𝑙𝑇 → 1 and 𝜂11 → 0.

lim
𝑙𝑇→1
𝜂11→1

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘13𝑘14 + (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘1112(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘1112𝑘13)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘1112𝑘13𝑘14

,

(2.29)
where 𝑘1112 represents 𝑘12 when 𝑙𝑇 → 1 and 𝜂11 → 1.

lim
𝑙𝑇→0
𝜂11→0

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)𝑘13𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘0012(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘0012𝑘13)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘0012𝑘13𝑘14

, (2.30)

where 𝑘0012 represents 𝑘12 when 𝑙𝑇 → 0 and 𝜂11 → 0.
Let us denote:

Δ𝑇5 =
𝑘11𝑘0012𝑘13𝑘14

(1 − 𝛽∗)𝑘13𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘0012(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘0012𝑘13
, (2.31)

Δ𝑇6 =
𝑘11𝑘0112𝑘13𝑘14

(1 − 𝛽∗)𝑘13𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘0112(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘0112𝑘13
, (2.32)

Δ𝑇7 =
𝑘11𝑘1012𝑘13𝑘14

(1 − 𝛽∗)(𝑘13𝑘14 + (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘1012(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘1012𝑘13
, (2.33)
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Δ𝑇8 =
𝑘11𝑘1112𝑘13𝑘14

(1 − 𝛽∗)(𝑘13𝑘14 + (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘1112(𝑘14 + 𝜂14) + 𝑝𝑇𝛽∗𝑘1112𝑘13
. (2.34)

We have the following lemma:

Lemma 2.3.4. 1. The impact when 𝑙𝑇 → 0 and 𝜂11 → 0 is positive in reducing TB
transmission in this subpopulation only if Δ𝑇 < Δ𝑇5 , no impact if Δ𝑇 = Δ𝑇5 and a
negative impact if Δ𝑇 > Δ𝑇5 .

2. The impact when 𝑙𝑇 → 0 and 𝜂11 → 1 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇6 , no impact if Δ𝑇 = Δ𝑇6 and a negative impact if
Δ𝑇 > Δ𝑇6 .

3. The impact when 𝑙𝑇 → 1 and 𝜂11 → 0 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇7 , no impact if Δ𝑇 = Δ𝑇7 and a negative impact if
Δ𝑇 > Δ𝑇7 .

4. The impact when 𝑙𝑇 → 1 and 𝜂11 → 1 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇8 , no impact if Δ𝑇 = Δ𝑇8 and a negative impact if
Δ𝑇 > Δ𝑇8 .

Now, we examine the relationship between the XDR-TB parameter (𝜂14) and recovery
after reporting as XDR-TB (𝑚𝑇 ). The aim, in this case, is to have a patient recover before
reporting as XDR-TB. We show the relationships between these parameters with respect
to ℜ𝑇

0 . We have

lim
𝜂14→0
𝑚𝑇→1

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘0113𝑘14 + 𝑙𝑇𝑘14) + (1 − 𝑝𝑇 )𝛽∗𝑘12𝑘14 + 𝑝𝑇𝛽∗𝑘12𝑘0113)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘12𝑘0113𝑘14

, (2.35)

where 𝑘0113 represents 𝑘13 when 𝜂14 → 0 and 𝑚𝑇 → 1.

lim
𝜂14→1
𝑚𝑇→0

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘1013𝑘14 + 𝑙𝑇 (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 1) + 𝑝𝑇𝛽∗𝑘12𝑘1013)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘12𝑘1013𝑘14

,

(2.36)
where 𝑘1013 represents 𝑘13 when 𝜂14 → 1 and 𝑚𝑇 → 0.

lim
𝜂14→1
𝑚𝑇→1

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘1113𝑘14 + 𝑙𝑇 (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 1) + 𝑝𝑇𝛽∗𝑘12𝑘1113)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘12𝑘1113𝑘14

,

(2.37)
where 𝑘1113 represents 𝑘13 when 𝜂14 → 1 and 𝑚𝑇 → 1.

lim
𝜂14→0
𝑚𝑇→0

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘0013𝑘14 + 𝑙𝑇𝑘14) + (1 − 𝑝𝑇 )𝛽∗𝑘12𝑘14 + 𝑝𝑇𝛽∗𝑘12𝑘0013)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘12𝑘0013𝑘14

, (2.38)

where 𝑘0013 represents 𝑘13 when 𝜂14 → 0 and 𝑚𝑇 → 0.



30

2 | A MATHEMATICAL MODEL FOR THE STUDY OF EFFECTIVENESS IN THERAPY IN TUBERCULOSIS

Let us consider the following expressions:

Δ𝑇9 =
𝑘11𝑘12𝑘0013𝑘14

(1 − 𝛽∗)(𝑘1113𝑘14 + 𝑙𝑇𝑘14) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 1) + 𝑝𝑇𝛽∗𝑘12𝑘0013
, (2.39)

Δ𝑇10 =
𝑘11𝑘12𝑘0113𝑘14

(1 − 𝛽∗)(𝑘0113𝑘14 + 𝑙𝑇𝑘14) + (1 − 𝑝𝑇 )𝛽∗𝑘12𝑘14 + 𝑝𝑇𝛽∗𝑘12𝑘0113
, (2.40)

Δ𝑇11 =
𝑘11𝑘12𝑘1013𝑘14

(1 − 𝛽∗)(𝑘1013𝑘14 + 𝑙𝑇 (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 1) + 𝑝𝑇𝛽∗𝑘12𝑘1013
, (2.41)

Δ𝑇12 =
𝑘11𝑘12𝑘1113𝑘14

(1 − 𝛽∗)(𝑘1113𝑘14 + 𝑙𝑇 (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 1) + 𝑝𝑇𝛽∗𝑘12𝑘1113
. (2.42)

We obtain the following lemma:

Lemma 2.3.5. 1. The impact when 𝜂14 → 0 and 𝑚𝑇 → 0 is positive in reducing TB
transmission in this subpopulation only if Δ𝑇 < Δ𝑇9 , no impact if Δ𝑇 = Δ𝑇9 and a
negative impact if Δ𝑇 > Δ𝑇9 .

2. The impact when 𝜂14 → 0 and 𝑚𝑇 → 1 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇10 , no impact if Δ𝑇 = Δ𝑇10 and a negative impact if
Δ𝑇 > Δ𝑇10 .

3. The impact when 𝜂14 → 1 and 𝑚𝑇 → 0 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇11 , no impact if Δ𝑇 = Δ𝑇11 and a negative impact if
Δ𝑇 > Δ𝑇11 .

4. The impact when 𝜂14 → 1 and 𝑚𝑇 → 1 is positive in reducing TB transmission in
this subpopulation only if Δ𝑇 < Δ𝑇12 , no impact if Δ𝑇 = Δ𝑇12 and a negative impact if
Δ𝑇 > Δ𝑇12 .

Studying the resistance parameters (𝑙𝑇 , 𝜂14) in conjunction with the recovery parameters
(𝜂11, 𝑚𝑇 ). We present two cases, (1) when the resistance parameters tend to unity and the
recovery parameters tend to zero, (2) the opposite case:

lim
𝑙𝑇→1
𝜂14→1
𝜂11→0
𝑚𝑇→0

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)(𝑘1013𝑘14 + (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘1012(𝑘14 + 1) + 𝑝𝑇𝛽∗𝑘1012𝑘1013)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘1012𝑘1013𝑘14

,

(2.43)

lim
𝑙𝑇→0
𝜂14→0
𝜂11→1
𝑚𝑇→1

ℜ𝑇
0 =

𝛼∗𝑀𝑇𝜂((1 − 𝛽∗)𝑘0113𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘0112𝑘14 + 𝑝𝑇𝛽∗𝑘0112𝑘0113)
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘0112𝑘0113𝑘14

, (2.44)

and if we define

Δ𝑇13 =
𝑘11𝑘1012𝑘1013𝑘14

(1 − 𝛽∗)(𝑘1013𝑘14 + (𝑘14 + 1)) + (1 − 𝑝𝑇 )𝛽∗𝑘1012(𝑘14 + 1) + 𝑝𝑇𝛽∗𝑘1012𝑘1013
, (2.45)

Δ𝑇14 =
𝑘11𝑘0112𝑘0113𝑘14

(1 − 𝛽∗)𝑘0113𝑘14 + (1 − 𝑝𝑇 )𝛽∗𝑘0112𝑘14 + 𝑝𝑇𝛽∗𝑘0112𝑘0113
, (2.46)

we obtain the following lemma:
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Lemma 2.3.6. 1. The impact of the resistance parameters when they tend to unity
(𝑙𝑇 , 𝜂14 → 1) with respect to the recovery parameters when they tend to zero (𝜂11, 𝑚𝑇 → 0)
is positive in reducing tuberculosis transmission in this subpopulation only if Δ𝑇 < Δ𝑇13 ,
no impact if Δ𝑇 = Δ𝑇13 and a negative impact if Δ𝑇 > Δ𝑇13 .

2. The impact of the recovery parameters recovery parameters when they tend to unity
(𝜂11, 𝑚𝑇 → 1) with respect to the recovery parameters when they tend to zero (𝑙𝑇 , 𝜂14 → 0)
is positive in reducing tuberculosis transmission in this subpopulation only if Δ𝑇 < Δ𝑇14 ,
no impact if Δ𝑇 = Δ𝑇14 and a negative impact if Δ𝑇 > Δ𝑇14 .

Endemic Equilibrium Point

To find the endemic equilibrium point of TB-Only submodel (2.11), we solve the
following system of equations,

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆𝑇 ) 0 0 0 0 0
𝜆𝑇 −𝑘11 0 0 0 𝛽′

1𝜆𝑇
0 (1 − 𝛽∗)𝜂 −𝑘12 0 0 0
0 (1 − 𝑝𝑇 )𝛽∗𝜂 𝑙𝑇 −𝑘13 0 0
0 𝑝𝑇𝛽∗𝜂 0 𝜂14 −𝑘14 0
0 0 𝜂11 𝑚𝑇 𝜂∗11 −(𝜇 + 𝛽′

1𝜆𝑇 + 𝛼𝐻 + 𝛼𝐷)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑆∗𝑇
𝐸∗
𝑇

𝐼 ∗𝑇1
𝐼 ∗𝑇2
𝐼 ∗𝑇3
𝑅∗
𝑇

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑀𝑇
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, the endemic equilibrium point is 𝜖𝑇∗ = (𝑆∗𝑇 , 𝐸∗
𝑇 , 𝐼 ∗𝑇1 , 𝐼

∗
𝑇2 , 𝐼

∗
𝑇3 , 𝑅

∗
𝑇 ), where:

𝑆∗𝑇 =
𝑀𝑇

𝜆∗𝑇 + 𝛼𝐻 + 𝛼𝐷 + 𝜇
, 𝐸∗

𝑇 =
𝑀𝑇𝜆∗𝑇𝑘12𝑘13𝑘14(𝛼𝐻 + 𝛼𝐷 + 𝛽′

1𝜆∗𝑇 + 𝜇)
𝐴1

,

𝐼 ∗𝑇1 =
𝑀𝑇 (1 − 𝛽∗)𝜂𝜆∗𝑇𝑘13𝑘14(𝛼𝐻 + 𝛼𝐷 + 𝛽′

1𝜆∗𝑇 + 𝜇)
𝐴1

,

𝐼 ∗𝑇2 =
𝑀𝑇𝜆∗𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝛽′

1𝜆∗𝑇 + 𝜇)(𝑘12𝑘14𝛽∗𝜂(1 − 𝑝𝑇 ) + 𝑘14𝑙𝑇 (1 − 𝛽∗)𝜂)
𝐴1

,

𝐼 ∗𝑇3 =
𝑀𝑇𝜆∗𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝛽′

1𝜆∗𝑇 + 𝜇)(𝑙𝑇𝜂14(1 − 𝛽∗)𝜂 + 𝑘12𝛽∗𝜂𝜂14(1 − 𝑝𝑇 ) + 𝑘12𝑘13𝛽∗𝜂𝑝𝑇 )
𝐴1

,

𝑅∗
𝑇 =

𝑀𝑇𝜆∗𝑇 ((1 − 𝛽∗)𝜂(𝑘13𝑘14𝜂11 + 𝑙𝑇 (𝑘14𝑚𝑇 + 𝜂∗11𝜂14) + (1 − 𝑝𝑇 )𝑘12𝛽∗𝜂(𝑘14𝑚𝑇 + 𝜂∗11𝜂14)
𝐴1

+𝑘12𝑘13𝜂𝜂∗11𝛽∗𝑝𝑇 )
𝐴1

, (2.47)

and 𝐴1 = (𝛼𝐻 + 𝛼𝐷 + 𝜇+ 𝜆∗𝑇 )(𝛼𝐻 + 𝛼𝐷 + 𝜇+ 𝛽∗
1𝜆∗𝑇 )𝑘11𝑘12𝑘13𝑘14 − (𝛼𝐻 + 𝛼𝐷 + 𝜇+ 𝜆∗𝑇 )𝛽

′

1𝜆∗𝑇 ((1 −
𝑝𝑇 )𝑘12𝛽∗𝜂(𝑘14𝑚𝑇 + 𝜂∗11𝜂14) + (1 − 𝛽∗)𝜂(𝑘13𝑘14𝜂11 + 𝑙𝑇 (𝑘14𝑚𝑇 + 𝜂∗11𝜂14) + 𝑘12𝑘13𝛽∗𝜂𝜂∗11𝑝𝑇 ).

Substituting equations (2.47) into the TB-infection rate for this submodel

(𝜆𝑇 = 𝛼∗ 𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3
𝑁𝑇 ), we have that

𝜆∗𝑇 =
𝛼∗𝑀𝑇𝜆∗𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝛽′

1𝜆∗𝑇 + 𝜇)((1 − 𝛽∗)𝜂(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14) + (1 − 𝑝𝑇 )𝑘12𝛽∗𝜂(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝜂𝑝𝑇 )
𝑁𝑇𝐴1

,

which reduces to

𝜆∗𝑇(
𝛼∗𝑀𝑇𝜆∗𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝛽′

1𝜆∗𝑇 + 𝜇)((1 − 𝛽∗)𝜂(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14) + (1 − 𝑝𝑇 )𝑘12𝛽∗𝜂(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝜂𝑝𝑇 ))
𝑁𝑇𝐴1
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−
(𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝜆∗𝑇 )(𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝛽∗

1𝜆∗𝑇 )(𝑘11𝑘12𝑘13𝑘14 + 𝛽′

1𝜆∗𝑇 ((1 − 𝑝𝑇 )𝑘12𝛽∗𝜂(𝑘14𝑀𝑇 𝜂∗11𝜂14))
𝐴1

+
(𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝜆∗𝑇 )(𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝛽∗

1𝜆∗𝑇 )((1 − 𝛽∗)𝜂(𝑘13𝑘14𝜂11 + 𝑙𝑇 (𝑘14𝑚𝑇 + 𝜂∗11𝜂14) + 𝑘12𝑘13𝛽∗𝜂𝜂∗11𝑝𝑇 )
𝐴1 ) = 0,

where 𝜆∗𝑇 = 0 corresponds to the disease-free equilibrium and 𝜆∗𝑇 ≠ 0 means the existence
of endemic equilibrium. For a disease to spread, the force of infection (𝜆∗𝑇 ) should be
positive.

So for 𝜆∗𝑇 to be positive, we need the following inequality to be satisfied.

𝛼∗𝑀𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)((1 − 𝛽∗)𝜂(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14) + (1 − 𝑝𝑇 )𝑘12𝛽∗𝜂(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝜂𝑝𝑇 )
𝑁𝑇

−

(𝛼𝐻 + 𝛼𝐷 + 𝜇)2𝑘11𝑘12𝑘13𝑘14 > 0,

and

𝛼∗𝑀𝑇 ((1 − 𝛽∗)𝜂(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14) + (1 − 𝑝𝑇 )𝑘12𝛽∗𝜂(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝜂𝑝𝑇 )
𝑁𝑇 (𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑘11𝑘12𝑘13𝑘14

> 1,

which implies that ℜ𝑇
0 > 1.

Then, we have the following lemma:

Lemma 2.3.7. The TB-Only submodel (2.11) has a unique endemic equilibrium point 𝜖𝑇∗ ,
whenever ℜ𝑇

0 > 1.

TB-HIV/AIDS Submodel

The submodel that relates TB to HIV/AIDS is when 𝑆𝐷 = 𝑆𝑇 = 𝐸𝐷 = 𝐸𝑇 = 𝐼𝐷1 = 𝐼𝐷2 =
𝐼𝑇1 = 𝐼𝑇2 = 𝐼𝑇3 = 𝑅𝑇 = 𝐼𝐷3 = 𝑅𝐷 = 0 and is given by

𝑑𝑆𝐻
𝑑𝑡

= 𝑀𝐻 − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝜔𝐻𝜆𝐻 )𝑆𝐻 ,

𝑑𝐸𝐻

𝑑𝑡
= 𝜔𝐻𝜆𝐻 (𝑆𝐻 + 𝛽

′

1𝑅𝐻 ) − (𝜖∗𝐻𝜂 + 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷)𝐸𝐻 ,

𝑑𝐼𝐻1

𝑑𝑡
= (1 − 𝛽∗)𝜖∗𝐻𝜂𝐸𝐻 − (𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 + 𝜂12 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻1 ,

𝑑𝐼𝐻2

𝑑𝑡
= (1 − 𝑝𝐻 )𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + 𝑙𝐻 𝐼𝐻1 − (𝑚𝐻 + 𝜇 + 𝜇𝐻 + 𝑡

′

𝐻𝑑𝑇𝐻 + 𝜂15 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻2 ,

𝑑𝐼𝐻3

𝑑𝑡
= 𝑝𝐻𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + 𝜂15𝐼𝐻2 − (𝜂∗12 + 𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻3 ,

𝑑𝑅𝐻

𝑑𝑡
= 𝑚𝐻 𝐼𝐻2 + 𝜂12𝐼𝐻1 + 𝜂∗12𝐼𝐻3 − (𝜇 + 𝜇𝐻 + 𝛽

′

1𝜔𝐻𝜆𝐻 + 𝛼𝐻𝐷)𝑅𝐻 , (2.48)

with non-negative initial conditions and

𝜆𝐻 = 𝛼∗ 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3)
𝑁𝐻

,
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where 𝑁𝐻 = 𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3 + 𝑅𝐻 .
Considering biological constraints, the system (2.48) will be studied in the following

region:

𝐷2 =
{
(𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐻3 , 𝑅𝐻 ) ∈ ℝ6

+ ∶ 𝑁𝐻 (𝑡) ≤
𝑀𝐻

𝜇

}
.

It can be easily shown that the solutions (𝑆𝐻 (𝑡), 𝐸𝐻 , 𝐼𝐻1(𝑡), 𝐼𝐻2(𝑡), 𝐼𝐻3(𝑡), 𝑅𝐻 (𝑡)) of the
system are bounded and positively invariant.

The disease-free equilibrium point, 𝜖𝐻0 , is given by 𝜖𝐻0 = (𝑆𝐻0 , 0, 0, 0, 0, 0), where

𝑆𝐻0 =
𝑀𝐻

𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻
.

The matrices for the new infection terms, 𝐹𝐻 and the other terms, 𝑉𝐻 are given respec-
tively, by:

𝐹𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
𝑀𝐻𝛼∗𝜔𝐻𝜖𝐻
𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻

𝑀𝐻𝛼∗𝜔𝐻𝜖𝐻
𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻

𝑀𝐻𝛼∗𝜔𝐻𝜖𝐻
𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

𝑉𝐻 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑘21 0 0 0
−(1 − 𝛽∗)𝜖∗𝐻𝜂 𝑘22 0 0

−(1 − 𝑝𝐻 )𝛽∗𝜖∗𝐻𝜂 −𝑙𝐻 𝑘23 0
−𝛽∗𝑝𝐻𝜖∗𝐻𝜂 0 −𝜂15 𝑘24

⎤
⎥
⎥
⎥
⎥
⎦

,

where 𝑘21 = 𝛼𝐻𝐷 + 𝜖∗𝐻𝜂 + 𝜇 + 𝜇𝐻 , 𝑘22 = 𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 + 𝜂12 + 𝑡𝐻𝐷𝛼𝐻𝐷, 𝑘23 = 𝜇 + 𝜇𝐻 +
𝑡 ′𝐻𝑑𝑇𝐻 + 𝜂15 +𝑚𝐻 + 𝑡𝐻𝐷𝛼𝐻𝐷 and 𝑘24 = 𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 + 𝜂∗12 + 𝑡𝐻𝐷𝛼𝐻𝐷. In this way, the basic
reproduction number is given by

ℜ𝐻
0 = 𝜌(𝐹𝐻𝑉 −1

𝐻 ) =
𝛼∗𝜖𝐻𝜔𝐻𝑀𝐻𝜖∗𝐻𝜂((1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15) + 𝛽∗𝑝𝐻𝑘22𝑘23)

𝑁𝐻 (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 )𝑘21𝑘22𝑘23𝑘24
.

(2.49)

We define (𝐻1) and (𝐻2) as in the submodel (2.11) and using the same idea from the
demonstration, we get the following lemmas:

Lemma 2.3.8. The disease-free equilibrium 𝜖𝐻0 is asymptotically stable when ℜ𝐻
0 < 1 and is

unstable whenever ℜ𝐻
0 > 1.

Lemma 2.3.9. The fixed point 𝐸𝐻
0 = (𝑆𝐻∗

0 , 0, 0, 0, 0) where 𝑆𝐻∗
0 = (

𝑀𝐻

𝜇 + 𝛼𝐻𝐷 + 𝜇𝐻
, 0) is a

globally asymptotically stable equilibrium of submodel (TB-HIV/AIDS) if ℜ𝐻
0 < 1 and the

assumption (𝐻1) and (𝐻2) are satisfied.
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We make a procedure analogous to the model (2.11) for 𝑙𝐻 and 𝜂15 (MDR-TB and
XDR-TB parameters for TB-HIV/AIDS submodel) and we obtain the limit:

lim
𝑙𝐻→0
𝜂15→0

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖𝐻𝜖∗𝐻𝜂((1 − 𝛽∗)𝑘023𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘022𝑘24 + 𝛽∗𝑝𝐻𝑘022𝑘023)
𝑁𝐻 (𝜇𝐻 + 𝛼𝐻𝐷 + 𝜇)𝑘21𝑘022𝑘023𝑘24

, (2.50)

where 𝑘022 is 𝑘22 for 𝑙𝐻 = 0 and 𝑘023 is 𝑘23 for 𝜂15 = 0. Then, in practice 𝑙𝐻 → 0 and
𝜂15 → 0 means zero resistance, i.e. elimination of resistance to tuberculosis treatment in
this subpopulation. If the limit (2.50) is greater than unity, then when 𝑙𝐻 , 𝜂15 → 0, it has a
negative impact on TB transmission control. That is, when

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝜂𝑀𝐻

𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)
>

𝑘21𝑘022𝑘023𝑘24
(1 − 𝛽∗)𝑘023𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘022𝑘24 + 𝛽∗𝑝𝐻𝑘022𝑘023

. (2.51)

Now, we study the case when 𝑙𝐻 → 1 and 𝜂15 → 0. We get the limit

lim
𝑙𝐻→1
𝜂15→0

ℜ𝐻
0 =

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻𝜂((1 − 𝛽∗)(𝑘023𝑘24 + 𝑘24) + (1 − 𝑝𝐻 )𝛽∗𝑘122𝑘24 + 𝛽∗𝑝𝐻𝑘122𝑘023)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘122𝑘023𝑘24

,

(2.52)
where 𝑘122 is 𝑘22 for 𝑙𝐻 = 1. Then if the limit (2.52) is greater than unity, then when 𝑙𝐻 → 1
and 𝜂15 → 0 it has a negative impact on TB transmission control. That is, whereas

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻

𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)
>

𝑘21𝑘122𝑘023𝑘24
(1 − 𝛽∗)(𝑘023𝑘24 + 𝑘24) + (1 − 𝑝𝐻 )𝛽∗𝑘122𝑘24 + 𝛽∗𝑝𝐻𝑘122𝑘023

. (2.53)

In the case when 𝑙𝐻 → 0 and 𝜂15 → 1. We have

lim
𝑙𝐻→0
𝜂15→1

ℜ𝐻
0 =

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻𝜂((1 − 𝛽∗)𝑘24𝑘123 + (1 − 𝑝𝐻 )𝛽∗𝑘022(𝑘24 + 1) + 𝑘022𝑘123𝛽∗𝑝𝐻)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘022𝑘123𝑘24

> 0,

(2.54)
where 𝑘123 is 𝑘23 for 𝜂15 = 1 and 𝑘123 = 𝑘023 + 1. If the limit (2.54) is greater than unity, then
𝑙𝐻 → 0 and 𝜂15 → 1 means a negative impact on TB transmission control. That is, if we
have

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻

𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)
>

𝑘21𝑘022𝑘123𝑘24
(1 − 𝛽∗)𝑘24𝑘123 + (1 − 𝑝𝐻 )𝛽∗𝑘022(𝑘24 + 1) + 𝑘022𝑘123𝛽∗𝑝𝐻

. (2.55)

For 𝑙𝐻 → 1 and 𝜂15 → 1, we have

lim
𝑙𝐻→1
𝜂15→1

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖𝐻𝜖∗𝐻𝜂((1 − 𝛽∗)(𝑘24𝑘123 + (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘122(𝑘24 + 1) + 𝑘122𝑘123𝛽∗𝑝𝐻)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘122𝑘123𝑘24

.

(2.56)
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If the limit (2.56) is greater than unity, then when 𝑙𝐻 → 1 and 𝜂15 → 1 has a negative
impact on TB transmission control, if

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻

𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)
>

𝑘21𝑘122𝑘123𝑘24
(1 − 𝛽∗)(𝑘24𝑘123 + (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘122(𝑘24 + 1) + 𝑘122𝑘123𝛽∗𝑝𝐻

.

(2.57)
We consider the following expressions:

Δ𝐻 =
𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻

𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)
, (2.58)

Δ𝐻1 =
𝑘21𝑘022𝑘023𝑘24

(1 − 𝛽∗)𝑘023𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘022𝑘24 + 𝛽∗𝑝𝐻𝑘022𝑘023
, (2.59)

Δ𝐻2 =
𝑘21𝑘122𝑘023𝑘24

(1 − 𝛽∗)(𝑘023𝑘24 + 𝑘24) + (1 − 𝑝𝐻 )𝛽∗𝑘122𝑘24 + 𝛽∗𝑝𝐻𝑘122𝑘023
, (2.60)

Δ𝐻3 =
𝑘21𝑘022𝑘123𝑘24

(1 − 𝛽∗)𝑘24𝑘123 + (1 − 𝑝𝐻 )𝛽∗𝑘022(𝑘24 + 1) + 𝑘022𝑘123𝛽∗𝑝𝐻
, (2.61)

Δ𝐻4 =
𝑘21𝑘122𝑘123𝑘24

(1 − 𝛽∗)(𝑘24𝑘123 + (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘122(𝑘24 + 1) + 𝑘122𝑘123𝛽∗𝑝𝐻
. (2.62)

Then, we obtain the following lemma:

Lemma 2.3.10. 1. The impact when 𝑙𝐻 → 0 and 𝜂15 → 0 is positive in reducing TB
transmission in this subpopulation only if Δ𝐻 < Δ𝐻1 , no impact if Δ𝐻 = Δ𝐻1 and a
negative impact if Δ𝐻 > Δ𝐻1 .

2. The impact when 𝑙𝑇 → 1 and 𝜂15 → 0 is positive in reducing TB transmission in this
subpopulation only if Δ𝐻 < Δ𝐻2 , no impact if Δ𝐻 = Δ𝐻2 and a negative impact if
Δ𝐻 > Δ𝐻2 .

3. The impact when 𝑙𝐻 → 0 and 𝜂15 → 1 is positive in reducing TB transmission in this
subpopulation only if Δ𝐻 < Δ𝐻3 , no impact if Δ𝐻 = Δ𝐻3 and a negative impact if
Δ𝐻 > Δ𝐻3 .

4. The impact when 𝑙𝐻 → 1 and 𝜂15 → 1 is positive in reducing TB transmission in this
subpopulation only if Δ𝐻 < Δ𝐻4 , no impact if Δ𝐻 = Δ𝐻4 and a negative impact if
Δ𝐻 > Δ𝐻4 .

We apply the same procedure as for the previous submodel to study the relationships
for 𝑙𝐻 and 𝜂12. We have the following limits:

lim
𝑙𝐻→0
𝜂12→1

ℜ𝐻
0 =

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻𝜂((1 − 𝛽∗)𝑘23𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘0122(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘0122𝑘23)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘0122𝑘23𝑘24

,

(2.63)
where 𝑘0122 represents 𝑘22 when 𝑙𝐻 → 0 and 𝜂12 → 1.

lim
𝑙𝐻→1
𝜂12→0

ℜ𝐻
0 =

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻𝜂((1 − 𝛽∗)(𝑘23𝑘24 + (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘1022(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘1022𝑘23)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘1022𝑘23𝑘24

,

(2.64)
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where 𝑘1022 represents 𝑘22 when 𝑙𝐻 → 1 and 𝜂12 → 0.

lim
𝑙𝐻→1
𝜂12→1

ℜ𝐻
0 =

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻𝜂((1 − 𝛽∗)(𝑘23𝑘24 + (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘1122(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘1122𝑘23)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘1122𝑘23𝑘24

,

(2.65)
where 𝑘1122 represents 𝑘22 when 𝑙𝐻 → 1 and 𝜂12 → 1.

lim
𝑙𝐻→0
𝜂12→0

ℜ𝐻
0 =

𝛼∗𝜔𝐻𝜖𝐻𝜖∗𝐻𝑀𝐻𝜂((1 − 𝛽∗)𝑘23𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘0022(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘0022𝑘23)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘0022𝑘23𝑘24

,

(2.66)
where 𝑘0022 represents 𝑘22 when 𝑙𝐻 → 0 and 𝜂12 → 0.

Let us define the following expressions:

Δ𝐻5 =
𝑘21𝑘0022𝑘23𝑘24

(1 − 𝛽∗)𝑘23𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘0022(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘0022𝑘23
, (2.67)

Δ𝐻6 =
𝑘21𝑘0122𝑘23𝑘24

(1 − 𝛽∗)𝑘23𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘0122(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘0122𝑘23
, (2.68)

Δ𝐻7 =
𝑘21𝑘1022𝑘23𝑘24

(1 − 𝛽∗)(𝑘23𝑘24 + (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘1022(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘1022𝑘23
, (2.69)

Δ𝐻8 =
𝑘21𝑘1122𝑘23𝑘24

(1 − 𝛽∗)(𝑘23𝑘24 + (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘1122(𝑘24 + 𝜂15) + 𝑝𝐻𝛽∗𝑘1122𝑘23
. (2.70)

We obtain the following lemma:

Lemma 2.3.11. 1. The impact when 𝑙𝐻 → 0 and 𝜂12 → 0 is positive in reducing TB
transmission in TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻5 , no impact if Δ𝐻 = Δ𝐻5

and a negative impact if Δ𝐻 > Δ𝐻5 .

2. The impact when 𝑙𝐻 → 0 and 𝜂12 → 1 is positive in reducing TB transmission in
TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻6 , no impact if Δ𝐻 = Δ𝐻6 and a negative
impact if Δ𝐻 > Δ𝐻6 .

3. The impact when 𝑙𝐻 → 1 and 𝜂12 → 0 is positive in reducing TB transmission in
TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻7 , no impact if Δ𝐻 = Δ𝐻7 and a negative
impact if Δ𝐻 > Δ𝐻7 .

4. The impact when 𝑙𝐻 → 1 and 𝜂12 → 1 is positive in reducing TB transmission in
TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻8 , no impact if Δ𝐻 = Δ𝐻8 and a negative
impact if Δ𝐻 > Δ𝐻8 .

Now, we study the relationships between the parameters associated with XDR-TB (𝜂15)
and recovery after MDR-TB (𝑚𝐻 ). We have the following limits:

lim
𝜂15→0
𝑚𝐻→1

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖∗𝐻𝜖𝐻𝜂((1 − 𝛽∗)(𝑘0123𝑘24 + 𝑙𝐻𝑘24) + (1 − 𝑝𝐻 )𝛽∗𝑘22𝑘24 + 𝑝𝐻𝛽∗𝑘22𝑘0123)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘22𝑘0123𝑘24

,

(2.71)
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where 𝑘0123 represents 𝑘23 when 𝜂15 → 0 and 𝑚𝐻 → 1.

lim
𝜂15→1
𝑚𝐻→0

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖∗𝐻𝜖𝐻𝜂((1 − 𝛽∗)(𝑘1023𝑘24 + 𝑙𝐻 (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 1) + 𝑝𝐻𝛽∗𝑘22𝑘1023)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘22𝑘1023𝑘24

,

(2.72)
where 𝑘1023 represents 𝑘23 when 𝜂15 → 1 and 𝑚𝐻 → 0.

lim
𝜂15→1
𝑚𝐻→1

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖∗𝐻𝜖𝐻𝜂((1 − 𝛽∗)(𝑘1123𝑘24 + 𝑙𝐻 (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 1) + 𝑝𝐻𝛽∗𝑘22𝑘1123)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘11𝑘22𝑘1123𝑘24

,

(2.73)
where 𝑘1123 represents 𝑘23 when 𝜂15 → 1 and 𝑚𝐻 → 1.

lim
𝜂15→0
𝑚𝐻→0

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖∗𝐻𝜖𝐻𝜂((1 − 𝛽∗)(𝑘0023𝑘24 + 𝑙𝐻𝑘24) + (1 − 𝑝𝐻 )𝛽∗𝑘22𝑘24 + 𝑝𝐻𝛽∗𝑘22𝑘0023)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘11𝑘22𝑘0023𝑘24

,

(2.74)
where 𝑘0023 represents 𝑘23 when 𝜂15 → 0 and 𝑚𝐻 → 0.

We define the following expressions:

Δ𝐻9 =
𝑘21𝑘22𝑘0023𝑘24

(1 − 𝛽∗)(𝑘1123𝑘24 + 𝑙𝐻𝑘24) + (1 − 𝑝𝐻 )𝛽∗𝑘22𝑘24 + 𝑝𝐻𝛽∗𝑘22𝑘0023
, (2.75)

Δ𝐻10 =
𝑘21𝑘22𝑘0123𝑘24

(1 − 𝛽∗)(𝑘0123𝑘24 + 𝑙𝐻𝑘24) + (1 − 𝑝𝐻 )𝛽∗𝑘22𝑘24 + 𝑝𝐻𝛽∗𝑘22𝑘0123
, (2.76)

Δ𝐻11 =
𝑘21𝑘22𝑘1023𝑘24

(1 − 𝛽∗)(𝑘1023𝑘24 + 𝑙𝐻 (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 1) + 𝑝𝐻𝛽∗𝑘22𝑘1023
, (2.77)

Δ𝐻12 =
𝑘21𝑘22𝑘1123𝑘24

(1 − 𝛽∗)(𝑘1123𝑘24 + 𝑙𝐻 (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 1) + 𝑝𝐻𝛽∗𝑘22𝑘1123
. (2.78)

Then, we have the following lemma:

Lemma 2.3.12. 1. The impact when 𝜂15 → 0 and 𝑚𝐻 → 0 is positive in reducing TB
transmission in TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻9 , no impact if Δ𝐻 = Δ𝐻9

and a negative impact if Δ𝐻 > Δ𝐻9 .

2. The impact when 𝜂15 → 0 and 𝑚𝐻 → 1 is positive in reducing TB transmission in
TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻10 , no impact if Δ𝐻 = Δ𝐻10 and a negative
impact if Δ𝐻 > Δ𝐻10 .

3. The impact when 𝜂15 → 1 and 𝑚𝐻 → 0 is positive in reducing TB transmission in
TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻11 , no impact if Δ𝐻 = Δ𝐻11 and a negative
impact if Δ𝐻 > Δ𝐻11 .

4. The impact when 𝜂15 → 1 and 𝑚𝐻 → 1 is positive in reducing TB transmission in
TB-HIV/AIDS subpopulation only if Δ𝐻 < Δ𝐻12 , no impact if Δ𝐻 = Δ𝐻12 and a negative
impact if Δ𝐻 > Δ𝐻12 .
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We studied the relationships between resistance (𝑙𝐷, 𝜂16) and recovered (𝜂12, 𝑚𝐻 ) pa-
rameters. We have that:

lim
𝑙𝐻→1
𝜂15→1
𝜂12→0
𝑚𝐻→0

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖∗𝐻𝜖𝐻𝜂((1 − 𝛽∗)(𝑘1023𝑘24 + (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘1022(𝑘24 + 1) + 𝑝𝐻𝛽∗𝑘1022𝑘1023)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘1022𝑘1023𝑘24

,

(2.79)

lim
𝑙𝐻→0
𝜂15→0
𝜂12→1
𝑚𝐻→1

ℜ𝐻
0 =

𝛼∗𝑀𝐻𝜔𝐻𝜖∗𝐻𝜖𝐻𝜂((1 − 𝛽∗)𝑘0123𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘0122𝑘24 + 𝑝𝐻𝛽∗𝑘0122𝑘0123)
𝑁𝐻 (𝛼𝐻𝐷 + 𝜇𝐻 + 𝜇)𝑘21𝑘0122𝑘0123𝑘24

. (2.80)

We define the following expressions:

Δ𝐻13 =
𝑘21𝑘1022𝑘1023𝑘24

(1 − 𝛽∗)(𝑘1023𝑘24 + (𝑘24 + 1)) + (1 − 𝑝𝐻 )𝛽∗𝑘1022(𝑘24 + 1) + 𝑝𝐻𝛽∗𝑘1022𝑘1023
, (2.81)

Δ𝐻14 =
𝑘21𝑘0122𝑘0123𝑘24

(1 − 𝛽∗)𝑘0123𝑘24 + (1 − 𝑝𝐻 )𝛽∗𝑘0122𝑘24 + 𝑝𝐻𝛽∗𝑘0122𝑘0123
. (2.82)

We obtain the following lemma:

Lemma 2.3.13. 1. The impact of the resistance parameters when they tend to unity
(𝑙𝐻 , 𝜂15 → 1) with respect to the recovery parameters when they tend to zero (𝜂12, 𝑚𝐻 →
0) is positive in reducing tuberculosis transmission in TB-HIV/AIDS subpopulation only
if Δ𝐻 < Δ𝐻13 , no impact if Δ𝐻 = Δ𝐻13 and a negative impact if Δ𝐻 > Δ𝐻13 .

2. The impact of the recovery parameters recovery parameters when they tend to unity
(𝜂12, 𝑚𝐻 → 1) with respect to the recovery parameters when they tend to zero (𝑙𝐻 , 𝜂15 →
0) is positive in reducing tuberculosis transmission in TB-HIV/AIDS subpopulation only
if Δ𝐻 < Δ𝐻14 , no impact if Δ𝐻 = Δ𝐻14 and a negative impact if Δ𝐻 > Δ𝐻14 .

Endemic Equilibrium Point

To find the endemic equilibrium point, the subsystem (2.48) is transformed into the
following system of equations:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷 + 𝜆𝐻 ) 0 0 0 0 0
𝜔𝐻𝜆𝐻 −𝑘21 0 0 0 𝛽′

1𝜔𝐻𝜆𝐻
0 (1 − 𝛽∗)𝜖∗𝐻𝜂 −𝑘22 0 0 0
0 (1 − 𝑝𝐻 )𝜖∗𝐻𝛽∗𝜂 𝑙𝐻 −𝑘23 0 0
0 𝑝𝐻𝛽∗𝜖∗𝐻𝜂 0 𝜂15 −𝑘24 0
0 0 𝜂12 𝑚𝐻 𝜂∗12 −(𝜇 + 𝜇𝐻 + 𝛽′

1𝜔𝐻𝜆𝐻 + 𝛼𝐻𝐷)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑆∗𝐻
𝐸∗
𝐻

𝐼 ∗𝐻1

𝐼 ∗𝐻2

𝐼 ∗𝐻3

𝑅∗
𝐻

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑀𝐻
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Then, the endemic quilibrium point is 𝜖𝐻∗ = (𝑆∗𝐻 , 𝐸∗
𝐻 , 𝐼 ∗𝐻1

, 𝐼 ∗𝐻2
, 𝐼 ∗𝐻3

, 𝑅∗
𝐻 ), where:

𝑆∗𝐻 =
𝑀𝐻

𝜔𝐻𝜆∗𝐻 + 𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻
, 𝐸∗

𝐻 =
𝑀𝐻𝜔𝐻𝜆∗𝐻𝑘22𝑘23𝑘24(𝛼𝐻𝐷 + 𝜔𝐻𝛽

′

1𝜆∗𝐻 + 𝜇 + 𝜇𝐻 )
𝐴2

,

𝐼 ∗𝐻1
=

𝑀𝐻 (1 − 𝛽∗)𝜖∗𝐻𝜂𝜔𝐻𝜆∗𝐻𝑘23𝑘24(𝛼𝐻𝐷 + 𝜔𝐻𝛽
′

1𝜆∗𝐻 + 𝜇 + 𝜇𝐻 )
𝐴2

,

𝐼 ∗𝐻2
=

𝑀𝐻𝜔𝐻𝜆∗𝐻 (𝛼𝐻𝐷 + 𝜔𝐻𝛽
′

1𝜆∗𝐻 + 𝜇 + 𝜇𝐻 )(𝑘22𝑘24𝜖∗𝐻𝛽∗𝜂(1 − 𝑝𝐻 ) + 𝑘24𝑙𝐻 (1 − 𝛽∗)𝜖∗𝐻𝜂)
𝐴2

,

𝐼 ∗𝐻3
=

𝑀𝐻𝜔𝐻𝜆∗𝐻 (𝛼𝐻𝐷 + 𝜔𝐻𝛽
′

1𝜆∗𝐻 + 𝜇 + 𝜇𝐻 )(𝑙𝐻𝜂15(1 − 𝛽∗)𝜖∗𝐻𝜂 + 𝑘12𝛽∗𝜖∗𝐻𝜂𝜂15(1 − 𝑝𝐻 ) + 𝑘22𝑘23𝛽∗𝜖∗𝐻𝜂𝑝𝐻 )
𝐴2

,

𝑅∗
𝐻 =

𝑀𝐻𝜔𝐻𝜆∗𝐻 ((1 − 𝛽∗)𝜖∗𝐻𝜂)(𝑘23𝑘24𝜂12 + 𝑙𝑇 (𝑘24𝑚𝐻 + 𝜂∗12𝜂15) + (1 − 𝑝𝐻 )𝑘22𝛽∗𝜖∗𝐻𝜂(𝑘24𝑚𝐻 + 𝜂∗12𝜂15)
𝐴2

+𝑘22𝑘23𝛽∗𝜖∗𝐻𝜂𝜂∗12𝑝𝐻 )
𝐴2

, (2.83)

and 𝐴2 = (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝜔𝐻𝜆∗𝐻 )(𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝜔𝐻𝛽∗
1𝜆∗𝐻 )𝑘21𝑘22𝑘23𝑘24 − (𝛼𝐻𝐷 + 𝜇 +

𝜔𝐻𝜆∗𝐻 )𝛽
′

1𝜔𝐻𝜆∗𝐻 ((1−𝑝𝐻 )𝑘22𝛽∗𝜖∗𝐻𝜂(𝑘24𝑚𝐻+𝜂∗12𝜂15)+(1−𝛽∗)𝜖∗𝐻𝜂(𝑘23𝑘24𝜂12+𝑙𝐻 (𝑘24𝑚𝐻+𝜂∗12𝜂12)+
𝑘22𝑘23𝛽∗𝜖∗𝐻𝜂𝜂∗12𝑝𝐻 ).

Proceeding analogously to the TB-Only submodel (2.11), we obtain the following
theorem:

Theorem 2.3.14. The TB-HIV/AIDS submodel (2.48) has a unique endemic equilibrium point
𝜖𝐻∗ , whenever ℜ𝐻

0 > 1.

TB-Diabetes Submodel

The submodel that relates TB to diabetes is obtained when 𝑆𝐻 = 𝑆𝑇 = 𝐸𝐻 = 𝐸𝑇 = 𝐼𝐻1 =
𝐼𝐻2 = 𝐼𝑇1 = 𝐼𝑇2 = 𝐼𝐻3 = 𝑅𝐻 = 𝐼𝑇3 = 𝑅𝑇 = 0 and is given by the system:

𝑑𝑆𝐷
𝑑𝑡

= 𝑀𝐷 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝜔𝐷𝜆𝐷)𝑆𝐷,

𝑑𝐸𝐷

𝑑𝑡
= 𝜔𝐷𝜆𝐷(𝑆𝐷 + 𝛽

′

1𝑅𝐷) − (𝜂 + 𝜇 + 𝜇𝐷 + 𝛼𝐻 )𝐸𝐷,

𝑑𝐼𝐷1

𝑑𝑡
= (1 − 𝛽∗)𝜖∗𝐷𝜂𝐸𝐷 − (𝑙𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝑑𝑇𝐷 + 𝜂13)𝐼𝐷1 ,

𝑑𝐼𝐷2

𝑑𝑡
= (1 − 𝑝𝐷)𝜖∗𝐷𝛽

∗𝜂𝐸𝐷 + 𝑙𝐷𝐼𝐷1 − (𝑡𝐻𝛼𝐻 + 𝑚𝐷 + 𝜇 + 𝜇𝐷 + 𝑡
′

𝐷𝑑𝑇𝐷 + 𝜂16)𝐼𝐷2 ,

𝑑𝐼𝐷3

𝑑𝑡
= 𝑝𝐷𝛽∗𝜖∗𝐷𝜂𝐸𝐷 + 𝜂16𝐼𝐷2 − (𝜂∗13 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷)𝐼𝐷3 ,

𝑑𝑅𝐷

𝑑𝑡
= 𝑚𝐷𝐼𝐷2 + 𝜂13𝐼𝐷1 + 𝜂∗13𝐼𝐷3 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝛽

′

1𝜔𝐷𝜆𝐷)𝑅𝐷, (2.84)

with non-negative initial conditions and

𝜆𝐷 = 𝛼∗ 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3)
𝑁𝐷

,
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where 𝑁𝐷 = 𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3 + 𝑅𝐷.
The system (2.84) will be studied in the following region biologically feasible:

𝐷3 =
{
(𝑆𝐷, 𝐸𝐷, 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝐷3 , 𝑅𝐷) ∈ ℝ6

+ ∶ 𝑁𝐷(𝑡) ≤
𝑀𝐷

𝜇

}
.

It can be easily shown that solutions (𝑆𝐷(𝑡), 𝐼𝐷1(𝑡), 𝐼𝐷2(𝑡), 𝐼𝐷3(𝑡), 𝑅𝐷(𝑡)) of the system are
bounded and positively invariant.

The disease-free equilibrium point, 𝜖𝐷0 , is given by 𝜖𝐷0 = (𝑆𝐷0 , 0, 0, 0, 0, 0), where

𝑆𝐷0 =
𝑀𝐷

𝜇 + 𝜇𝐷 + 𝛼𝐻
.

The matrices for the new infection terms, 𝐹𝐷 and the other terms, 𝑉𝐷 are given by:

𝐹𝐷 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
𝑀𝐷𝛼∗𝜔𝐷𝜖𝐷
𝛼𝐻 + 𝜇 + 𝜇𝐷

𝑀𝐷𝛼∗𝜔𝐷𝜖𝐷
𝛼𝐻 + 𝜇 + 𝜇𝐷

𝑀𝐷𝛼∗𝜔𝐷𝜖𝐷
𝛼𝐻 + 𝜇 + 𝜇𝐷

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

𝑉𝐷 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑘31 0 0 0
−(1 − 𝛽∗)𝜖∗𝐷𝜂 𝑘32 0 0

−(1 − 𝑝𝐷)𝜖∗𝐷𝛽∗𝜂 −𝑙𝐷 𝑘33 0
−𝑝𝐷𝜖∗𝐷𝛽∗𝜂 0 −𝜂16 𝑘34

⎤
⎥
⎥
⎥
⎥
⎦

,

where 𝑘31 = 𝛼𝐻 + 𝜖∗𝐷𝜂+ 𝜇 + 𝜇𝐷, 𝑘32 = 𝑙𝐷 + 𝜇 + 𝑑𝑇𝐷 + 𝜂13 + 𝑡𝐻𝛼𝐻 + 𝜇𝐷, 𝑘33 = 𝜇 + 𝑡 ′𝐷𝑑𝑇𝐷 + 𝜂16 +
𝑚𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇𝐷, and 𝑘34 = 𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷 + 𝜂∗13 + 𝑡𝐻𝛼𝐻 .

The basic reproduction number is given by

ℜ𝐷
0 = 𝜌(𝐹𝐻𝑉 −1

𝐻 ) =
𝛼∗𝜖𝐷𝜔𝐷𝑀𝐷((1 − 𝛽∗)𝜖∗𝐷𝜂(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝜖∗𝐷𝛽∗𝜂𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝜖∗𝐷𝛽∗𝜂𝑝𝐷)

𝑁𝐷(𝛼𝐻 + 𝜇 + 𝜇𝐷)𝑘31𝑘32𝑘33𝑘34
.

(2.85)

We define (𝐻1) and (𝐻2) as in the previous submodels (2.11) and (2.48) and using the same
idea from the demonstration, we have the following lemmas:

Lemma 2.3.15. The disease-free equilibrium 𝜖𝐷0 is asymptotically stable when ℜ𝐷
0 < 1 and

is unstable whenever ℜ𝐷
0 > 1.

Lemma 2.3.16. The fixed point 𝐸𝐷
0 = (𝑆𝐷∗

0 , 0, 0, 0, 0) where 𝑆𝐷∗
0 = (

𝑀𝐷

𝜇 + 𝛼𝐻 + 𝜇𝐷
, 0) is a

globally asymptotically stable equilibrium of submodel (TB-Diabetes) if ℜ𝐷
0 < 1 and the

assumption (𝐻1) and (𝐻2) are satisfied.

We make a procedure analogous to the previous submodels for 𝑙𝐷 and 𝜂16 (MDR-TB and
XDR-TB parameters for TB-Diabetes submodel) and we obtain the following limits:

lim
𝑙𝐷→0
𝜂16→0

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖𝐷𝜖∗𝐷𝜂((1 − 𝛽∗)𝑘033𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘032𝑘34 + 𝛽∗𝑝𝐷𝑘032𝑘033)
𝑁𝐷(𝜇𝐷 + 𝛼𝐻 + 𝜇)𝑘31𝑘032𝑘033𝑘34

, (2.86)
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where 𝑘032 is 𝑘32 for 𝑙𝐷 = 0 and 𝑘033 is 𝑘33 for 𝜂16 = 0. Then, in practice 𝑙𝐷 → 0 and
𝜂16 → 0 imply zero resistance, i.e. elimination of resistance to tuberculosis treatment. If
the limit (2.86) are greater than unity, then when 𝑙𝐷, 𝜂16 → 0 has a negative impact on TB
transmission control. That is, if we have

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝜂𝑀𝐷

𝑁𝐷(𝛼ℎ + 𝜇𝐷 + 𝜇)
>

𝑘31𝑘032𝑘033𝑘34
(1 − 𝛽∗)𝑘033𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘032𝑘34 + 𝛽∗𝑝𝐷𝑘032𝑘033

. (2.87)

Now, we study the case when 𝑙𝐷 → 1 and 𝜂16 → 0. Then, we have that

lim
𝑙𝐷→1
𝜂16→0

ℜ𝐷
0 =

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷𝜂((1 − 𝛽∗)(𝑘033𝑘34 + 𝑘34) + (1 − 𝑝𝐷)𝛽∗𝑘132𝑘34 + 𝛽∗𝑝𝐷𝑘132𝑘033)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘132𝑘033𝑘34

, (2.88)

where 𝑘132 is 𝑘32 for 𝑙𝐷 = 1. Then, if the limit (2.88) are greater than unity, then when 𝑙𝐷 → 1
and 𝜂16 → 0 has a negative impact on TB transmission control. That is, if we have

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷

𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)
>

𝑘31𝑘132𝑘033𝑘34
(1 − 𝛽∗)(𝑘033𝑘34 + 𝑘34) + (1 − 𝑝𝐷)𝛽∗𝑘132𝑘34 + 𝛽∗𝑝𝐷𝑘132𝑘033

. (2.89)

In the case when 𝑙𝐷 → 0 and 𝜂16 → 1. We have

lim
𝑙𝐷→0
𝜂16→1

ℜ𝐷
0 =

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷𝜂((1 − 𝛽∗)𝑘34𝑘133 + (1 − 𝑝𝐷)𝛽∗𝑘032(𝑘34 + 1) + 𝑘032𝑘133𝛽∗𝑝𝐷)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘032𝑘133𝑘34

, (2.90)

where 𝑘133 is 𝑘33 for 𝜂16 = 1 and 𝑘133 = 𝑘033 + 1. If the limit (2.90) are greater than unity, then
when 𝑙𝐷 → 0 and 𝜂16 → 1 has a negative impact on TB transmission control. That is, if we
have

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷

𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)
>

𝑘31𝑘032𝑘133𝑘34
(1 − 𝛽∗)𝑘34𝑘133 + (1 − 𝑝𝐷)𝛽∗𝑘032(𝑘34 + 1) + 𝑘032𝑘133𝛽∗𝑝𝐷

. (2.91)

For 𝑙𝐷 → 1 and 𝜂16 → 1. We have that

lim
𝑙𝐷→1
𝜂16→1

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖𝐷𝜖∗𝐷𝜂((1 − 𝛽∗)(𝑘34𝑘133 + (𝑘34 + 1)) + (1 − 𝑝𝐷)𝛽∗𝑘132(𝑘34 + 1) + 𝑘132𝑘133𝛽∗𝑝𝐷)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘132𝑘133𝑘34

.

(2.92)
If the limit (2.92) are greater than unity, then when 𝑙𝐷 → 1 and 𝜂16 → 1 has a negative

impact on TB transmission control. That is, if we have

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷

𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)
>

𝑘31𝑘132𝑘133𝑘34
(1 − 𝛽∗)(𝑘34𝑘133 + (𝑘34 + 1))(1 − 𝑝𝐷)𝛽∗𝑘132(𝑘34 + 1) + 𝑘132𝑘133𝛽∗𝑝𝐷

.

(2.93)
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Let us consider the following expressions:

Δ𝐷 =
𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷

𝑁𝐷(𝛼𝐷 + 𝜇𝐷 + 𝜇)
, (2.94)

Δ𝐷1 =
𝑘21𝑘022𝑘023𝑘24

(1 − 𝛽∗)𝑘033𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘032𝑘34 + 𝛽∗𝑝𝐷𝑘032𝑘033
, (2.95)

Δ𝐷2 =
𝑘31𝑘132𝑘033𝑘34

(1 − 𝛽∗)(𝑘033𝑘34 + 𝑘34) + (1 − 𝑝𝐷)𝛽∗𝑘132𝑘34 + 𝛽∗𝑝𝐷𝑘132𝑘033
, (2.96)

Δ𝐷3 =
𝑘31𝑘032𝑘133𝑘34

(1 − 𝛽∗)𝑘34𝑘133 + (1 − 𝑝𝐷)𝛽∗𝑘032(𝑘34 + 1) + 𝑘032𝑘133𝛽∗𝑝𝐷
, (2.97)

Δ𝐷4 =
𝑘31𝑘132𝑘133𝑘34

(1 − 𝛽∗)(𝑘34𝑘133 + (𝑘34 + 1))(1 − 𝑝𝐷)𝛽∗𝑘132(𝑘34 + 1) + 𝑘132𝑘133𝛽∗𝑝𝐷
. (2.98)

We have the following lemma:

Lemma 2.3.17. 1. The impact when 𝑙𝐷 → 0 and 𝜂16 → 0 is positive in reducing TB
transmission in this subpopulation only if Δ𝐷 < Δ𝐷1 , no impact if Δ𝐻 = Δ𝐷1 and a
negative impact if Δ𝐻 > Δ𝐷1 .

2. The impact when 𝑙𝐻 → 1 and 𝜂16 → 0 is positive in reducing TB transmission in this
subpopulation only if Δ𝐷 < Δ𝐷2 , no impact if Δ𝐷 = Δ𝐷2 and a negative impact if
Δ𝐷 > Δ𝐷2 .

3. The impact wheN 𝑙𝐷 → 0 and 𝜂16 → 1 is positive in reducing TB transmission in this
subpopulation only if Δ𝐷 < Δ𝐷3 , no impact if Δ𝐷 = Δ𝐷3 and a negative impact if
Δ𝐷 > Δ𝐷3 .

4. The impact when 𝑙𝐷 → 1 and 𝜂16 → 1 is positive in reducing TB transmission in this
subpopulation only if Δ𝐷 < Δ𝐷4 , no impact if Δ𝐷 = Δ𝐷4 and a negative impact if
Δ𝐷 > Δ𝐷4 .

We will study the relationship between resistance and recovery parameters. First, we
start with the relationship between 𝑙𝐷 and 𝜂13. We obtain the following limits:

lim
𝑙𝐷→0
𝜂13→1

ℜ𝐷
0 =

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷𝜂((1 − 𝛽∗)𝑘33𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘0132(𝑘34 + 𝜂16) + 𝑝𝐷𝛽∗𝑘0132𝑘33)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘0132𝑘33𝑘34

, (2.99)

where 𝑘0132 represents 𝑘32 when 𝑙𝐷 → 0 and 𝜂13 → 1.

lim
𝑙𝐷→1
𝜂13→0

ℜ𝐷
0 =

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷𝜂((1 − 𝛽∗)(𝑘33𝑘34 + (𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘1032(𝑘34 + 𝜂16) + 𝑝𝐷𝛽∗𝑘1032𝑘33)
𝑁𝐷(𝛼𝐷 + 𝜇𝐷 + 𝜇)𝑘31𝑘1032𝑘33𝑘34

,

(2.100)
where 𝑘1032 represents 𝑘32 when 𝑙𝐷 → 1 and 𝜂13 → 0.

lim
𝑙𝐷→1
𝜂13→1

ℜ𝐷
0 =

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷𝜂((1 − 𝛽∗)(𝑘33𝑘34 + (𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘1132(𝑘34 + 𝜂16) + 𝑝𝐷𝛽∗𝑘1132𝑘33)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘1132𝑘33𝑘34

,

(2.101)
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where 𝑘1132 represents 𝑘32 when 𝑙𝐷 → 1 and 𝜂13 → 1.

lim
𝑙𝐷→0
𝜂13→0

ℜ𝐷
0 =

𝛼∗𝜔𝐷𝜖𝐷𝜖∗𝐷𝑀𝐷𝜂((1 − 𝛽∗)𝑘33𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘0032(𝑘34 + 𝜂16) + 𝑝𝐷𝛽∗𝑘3132𝑘33)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘0032𝑘33𝑘34

,

(2.102)
where 𝑘0032 represents 𝑘32 when 𝑙𝐷 → 0 and 𝜂13 → 0.

Let us consider the following expressions:

Δ𝐷5 =
𝑘31𝑘0032𝑘33𝑘34

(1 − 𝛽∗)𝑘33𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘0032𝑘34 + 𝑝𝐷𝛽∗𝑘0032𝑘33
, (2.103)

Δ𝐷6 =
𝑘31𝑘0132𝑘33𝑘34

(1 − 𝛽∗)𝑘33𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘0132(𝑘34 + 𝜂16) + 𝑝𝐷𝛽∗𝑘0132𝑘33
, (2.104)

Δ𝐷7 =
𝑘31𝑘1032𝑘33𝑘34

(1 − 𝛽∗)(𝑘33𝑘34 + (𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘1032(𝑘34 + 𝜂16) + 𝑝𝐷𝛽∗𝑘1032𝑘33
, (2.105)

Δ𝐷8 =
𝑘31𝑘1132𝑘33𝑘34

(1 − 𝛽∗)(𝑘33𝑘34 + (𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘1132(𝑘34 + 𝜂16 + 𝑝𝐷𝛽∗𝑘1132𝑘33
. (2.106)

We have the following lemma:

Lemma 2.3.18. 1. The impact when 𝑙𝐷 → 0 and 𝜂13 → 0 is positive in reducing TB
transmission in TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷5 , no impact if Δ𝐷 = Δ𝐷5

and a negative impact if Δ𝐷 > Δ𝐷5 .

2. The impact when 𝑙𝐷 → 0 and 𝜂13 → 1 is positive in reducing TB transmission in
TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷6 , no impact if Δ𝐷 = Δ𝐷6 and a negative
impact if Δ𝐷 > Δ𝐷6 .

3. The impact when 𝑙𝐷 → 1 and 𝜂13 → 0 is positive in reducing TB transmission in
TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷7 , no impact if Δ𝐷 = Δ𝐷7 and a negative
impact if Δ𝐷 > Δ𝐷7 .

4. The impact when 𝑙𝐷 → 1 and 𝜂13 → 1 is positive in reducing TB transmission in
TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷8 , no impact if Δ𝐷 = Δ𝐷8 and a negative
impact if Δ𝐷 > Δ𝐷8 .

Now, we study the relationship between the XDR-TB parameter (𝜂16) and recovery
(𝑚𝐷). We have the following limits:

lim
𝜂16→0
𝑚𝐷→1

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖∗𝐷𝜖𝐷𝜂((1 − 𝛽∗)(𝑘0133𝑘34 + 𝑙𝐷𝑘34) + (1 − 𝑝𝐷)𝛽∗𝑘32𝑘34 + 𝑝𝐷𝛽∗𝑘32𝑘0133)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘32𝑘0133𝑘34

,

(2.107)
where 𝑘0133 represents 𝑘33 when 𝜂16 → 0 and 𝑚𝐷 → 1.

lim
𝜂16→1
𝑚𝐷→0

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖∗𝐷𝜖𝐷𝜂((1 − 𝛽∗)(𝑘1033𝑘34 + 𝑙𝐷(𝑘34 + 1)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 1) + 𝑝𝐷𝛽∗𝑘32𝑘1033)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘32𝑘1033𝑘34

,

(2.108)
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where 𝑘1033 represents 𝑘33 when 𝜂16 → 1 and 𝑚𝐷 → 0.

lim
𝜂15→1
𝑚𝐷→1

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖∗𝐷𝜖𝐷𝜂((1 − 𝛽∗)(𝑘1133𝑘34 + 𝑙𝐷(𝑘34 + 1)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 1) + 𝑝𝐷𝛽∗𝑘32𝑘1133)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘32𝑘1133𝑘34

,

(2.109)
where 𝑘1133 represents 𝑘33 when 𝜂16 → 1 and 𝑚𝐷 → 1.

lim
𝜂15→0
𝑚𝐷→0

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖∗𝐷𝜖𝐷𝜂((1 − 𝛽∗)𝑘0033𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘32𝑘34 + 𝑝𝐷𝛽∗𝑘32𝑘0033)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘32𝑘0033𝑘34

, (2.110)

where 𝑘0033 represents 𝑘33 when 𝜂16 → 0 and 𝑚𝐷 → 0.
Let us define the following expressions:

Δ𝐷9 =
𝑘31𝑘32𝑘0033𝑘34

(1 − 𝛽∗)𝑘0033𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘32𝑘34 + 𝑝𝐷𝛽∗𝑘32𝑘0033
, (2.111)

Δ𝐷10 =
𝑘31𝑘32𝑘0133𝑘34

(1 − 𝛽∗)(𝑘0133𝑘34 + 𝑙𝐷𝑘34) + (1 − 𝑝𝐷)𝛽∗𝑘32𝑘34 + 𝑝𝐷𝛽∗𝑘32𝑘0133
, (2.112)

Δ𝐷11 =
𝑘31𝑘32𝑘1033𝑘34

(1 − 𝛽∗)(𝑘1033𝑘34 + 𝑙𝐷(𝑘34 + 1)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 1) + 𝑝𝐷𝛽∗𝑘32𝑘1033
, (2.113)

Δ𝐷12 =
𝑘31𝑘32𝑘1133𝑘34

(1 − 𝛽∗)(𝑘1133𝑘34 + 𝑙𝐷(𝑘34 + 1)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 1) + 𝑝𝐷𝛽∗𝑘32𝑘1133
. (2.114)

We obtain the following lemma:

Lemma 2.3.19. 1. The impact when 𝜂16 → 0 and 𝑚𝐷 → 0 is positive in reducing TB
transmission in TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷9 , no impact if Δ𝐷 = Δ𝐷9

and a negative impact if Δ𝐷 > Δ𝐷9 .

2. The impact when 𝜂16 → 0 and 𝑚𝐷 → 1 is positive in reducing TB transmission in
TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷10 , no impact if Δ𝐷 = Δ𝐷10 and a negative
impact if Δ𝐷 > Δ𝐷10 .

3. The impact when 𝜂16 → 1 and 𝑚𝐷 → 0 is positive in reducing TB transmission in
TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷11 , no impact if Δ𝐷 = Δ𝐷11 and a negative
impact if Δ𝐷 > Δ𝐷11 .

4. The impact when 𝜂16 → 1 and 𝑚𝐷 → is positive in reducing TB transmission in TB-
Diabetes subpopulation only if Δ𝐷 < Δ𝐷12 , no impact if Δ𝐷 = Δ𝐷12 and a negative
impact if Δ𝐷 > Δ𝐷12 .

Studying the resistance parameters (𝑙𝐷, 𝜂16) respect to the recovery parameters (𝜂13, 𝑚𝐷).
We have:

lim
𝑙𝐷→1
𝜂16→1
𝜂13→0
𝑚𝐷→0

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖∗𝐷𝜖𝐷𝜂((1 − 𝛽∗)(𝑘1033𝑘34 + (𝑘34 + 1)) + (1 − 𝑝𝐷)𝛽∗𝑘1032(𝑘34 + 1) + 𝑝𝐷𝛽∗𝑘1032𝑘1033)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘1032𝑘1033𝑘34

,

(2.115)
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lim
𝑙𝐷→0
𝜂16→0
𝜂13→1
𝑚𝐷→1

ℜ𝐷
0 =

𝛼∗𝑀𝐷𝜔𝐷𝜖∗𝐷𝜖𝐷𝜂((1 − 𝛽∗)𝑘0133𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘0132𝑘34 + 𝑝𝐷𝛽∗𝑘0132𝑘0133)
𝑁𝐷(𝛼𝐻 + 𝜇𝐷 + 𝜇)𝑘31𝑘0132𝑘0133𝑘34

. (2.116)

Let us consider:

Δ𝐷13 =
𝑘31𝑘1032𝑘1033𝑘34

(1 − 𝛽∗)(𝑘1033𝑘34 + (𝑘34 + 1)) + (1 − 𝑝𝐷)𝛽∗𝑘1032(𝑘34 + 1) + 𝑝𝐷𝛽∗𝑘1032𝑘1033
, (2.117)

Δ𝐷14 =
𝑘31𝑘0132𝑘0133𝑘34

(1 − 𝛽∗)𝑘0133𝑘34 + (1 − 𝑝𝐷)𝛽∗𝑘0132𝑘34 + 𝑝𝐷𝛽∗𝑘0132𝑘0133
. (2.118)

We obtain the following lemma:

Lemma 2.3.20. 1. The impact of the resistance parameters when 𝑙𝐷, 𝜂16 → 1 with respect
to the recovery parameters when 𝜂13, 𝑚𝐷 → 0 is positive in reducing tuberculosis
transmission in TB-Diabetes subpopulation only if Δ𝐷 < Δ𝐷13 , no impact if Δ𝐷 = Δ𝐷13

and a negative impact if Δ𝐷 > Δ𝐷13 .

2. The impact of the recovery parameters recovery parameters when they tend to unity
(𝜂13, 𝑚𝐷 → 1) with respect to the recovery parameters when they tend to zero (𝑙𝐷, 𝜂16 →
0) is positive in reducing tuberculosis transmission in TB-Diabetes subpopulation only
if Δ𝐷 < Δ𝐷14 , no impact if Δ𝐷 = Δ𝐷14 and a negative impact if Δ𝐷 > Δ𝐷14 .

Endemic Equilibrium Point

To find the endemic equilibrium point the subsystem (2.84) is transformed into the
following system of equations:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(𝜇 + 𝜇𝐻 + 𝛼𝐻 + 𝜆𝐷) 0 0 0 0 0
𝜆𝐷 −𝑘31 0 0 0 𝛽′

1𝜔𝐷𝜆𝐷
0 (1 − 𝛽∗)𝜖∗𝐷𝜂 −𝑘32 0 0 0
0 (1 − 𝑝𝐷)𝜖∗𝐷𝛽∗𝜂 𝑙𝐷 −𝑘33 0 0
0 𝑝𝐷𝛽∗𝜖∗𝐷𝜂 0 𝜂16 −𝑘34 0
0 0 𝜂13 𝑚𝐷 𝜂∗13 −(𝜇 + 𝜇𝐷 + 𝛽′

1𝜔𝐷𝜆𝐷 + 𝛼𝐻 )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑆∗𝐷
𝐸∗
𝐷

𝐼 ∗𝐷1

𝐼 ∗𝐷2

𝐼 ∗𝐷3

𝑅∗
𝐷

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑀𝐷
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, the endemic quilibrium point is 𝜖𝐷∗ = (𝑆∗𝐷, 𝐸∗
𝐷, 𝐼 ∗𝐷1

, 𝐼 ∗𝐷2
, 𝐼 ∗𝐷3

, 𝑅∗
𝐷), where:

𝑆∗𝐷 =
𝑀𝐷

𝜔𝐷𝜆∗𝐷 + 𝛼𝐻 + 𝜇 + 𝜇𝐷
, 𝐸∗

𝐷 =
𝑀𝐷𝜔𝐷𝜆∗𝐷𝑘32𝑘33𝑘34(𝛼𝐻 + 𝜔𝐷𝛽

′

1𝜆∗𝐷 + 𝜇 + 𝜇𝐷)
𝐴3

,

𝐼 ∗𝐷1
=

𝑀𝐷(1 − 𝛽∗)𝜖∗𝐷𝜂𝜔𝐷𝜆∗𝐷𝑘33𝑘34(𝛼𝐻 + 𝜔𝐷𝛽
′

1𝜆∗𝐷 + 𝜇 + 𝜇𝐷)
𝐴3

,

𝐼 ∗𝐷2
=

𝑀𝐷𝜔𝐷𝜆∗𝐷(𝛼𝐻 + 𝜔𝐷𝛽
′

1𝜆∗𝐷 + 𝜇 + 𝜇𝐷)(𝑘32𝑘34𝜖∗𝐷𝛽∗𝜂(1 − 𝑝𝐷) + 𝑘34𝑙𝐷(1 − 𝛽∗)𝜖∗𝐷𝜂)
𝐴3

,

𝐼 ∗𝐷3
=

𝑀𝐷𝜔𝐷𝜆∗𝐷(𝛼𝐻 + 𝜔𝐷𝛽
′

1𝜆∗𝐷 + 𝜇 + 𝜇𝐷)(𝑙𝐷𝜂16(1 − 𝛽∗)𝜖∗𝐷𝜂 + 𝑘32𝛽∗𝜖∗𝐷𝜂𝜂16(1 − 𝑝𝐷) + 𝑘32𝑘33𝛽∗𝜖∗𝐷𝜂𝑝𝐷)
𝐴3

,

𝑅∗
𝐷 =

𝑀𝐷𝜔𝐷𝜆∗𝐷((1 − 𝛽∗)𝜖∗𝐷𝜂)(𝑘33𝑘34𝜂13 + 𝑙𝐷(𝑘34𝑚𝐷 + 𝜂∗13𝜂16) + (1 − 𝑝𝐷)𝑘32𝛽∗𝜖∗𝐷𝜂(𝑘34𝑚𝐷 + 𝜂∗13𝜂16)
𝐴3

+𝑘32𝑘33𝛽∗𝜖∗𝐷𝜂𝜂∗13𝑝𝐷)
𝐴3

, (2.119)
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and𝐴3 = (𝛼𝐻+𝜇+𝜇𝐷+𝜔𝐷𝜆∗𝐷)(𝛼𝐻+𝜇+𝜇𝐷+𝜔𝐷𝛽∗
1𝜆∗𝐷)𝑘31𝑘32𝑘33𝑘34−(𝛼𝐻+𝜇+𝜔𝐷𝜆∗𝐷)𝛽

′

1𝜔𝐷𝜆∗𝐷((1−
𝑝𝐷)𝑘32𝛽∗𝜖∗𝐷𝜂(𝑘34𝑚𝐷+𝜂∗13𝜂16)+(1−𝛽∗)𝜖∗𝐷𝜂(𝑘33𝑘34𝜂13+ 𝑙𝐷(𝑘34𝑚𝐷+𝜂∗13𝜂13)+𝑘32𝑘33𝜖∗𝐷𝛽∗𝜂𝜂∗13𝑝𝐷).

Analogous to the procedure applied to the previous submodel (2.11), we can obtain the
following theorem:

Theorem 2.3.21. The Diabetes-TB submodel (2.84) has a unique endemic equilibrium point
𝜖𝐷∗ , whenever ℜ𝐷

0 > 1.

Persistence

In previous sections, we worked with 𝛼∗ (effective contact rate) as a constant for a
given situation. In many situations, we can see it as depending on the situation/region
and it takes different values. In general, 𝛼∗ relates to the level of contagion/propagation
of the disease. Now, to study persistence we will consider 𝛼∗ as dependent on 𝑁𝐷 (total
population) and a particular case 𝑡𝐻 = 1.

Firstly, we will normalize the model with respect to 𝑁𝐷. Then, 𝑥1 =
𝑆𝐷
𝑁𝐷

, 𝑥2 =
𝐸𝐷

𝑁𝐷
,

𝑥3 =
𝐼𝐷1

𝑁𝐷
, 𝑥4 =

𝐼𝐷2

𝑁𝐷
, 𝑥5 =

𝐼𝐷3

𝑁𝐷
, 𝑥6 =

𝑅𝐷

𝑁𝐷
and express (2.84) in these terms, as followed:

𝑁𝐷 = 𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3 + 𝑅𝐷,
𝑑𝑁𝐷

𝑑𝑡
= 𝑀𝐷 − (𝜇 + 𝜇𝐷 + 𝛼𝐻 )𝑁𝐷 − 𝑑𝑇𝐷(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5)𝑁𝐷,

𝑑𝑥1
𝑑𝑡

=
𝑀𝐷

𝑁𝐷
(1 − 𝑥1) − 𝜔𝐷𝜖𝐷𝛼∗(𝑥3 + 𝑥4 + 𝑥5)𝑥1 + 𝑑𝑇𝐷(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5)𝑥1,

𝑑𝑥2
𝑑𝑡

= 𝜔𝐷𝜖𝐷𝛼∗(𝑥3 + 𝑥4 + 𝑥5)(𝑥1 + 𝛽
′

1𝑥6) −(
𝑀𝐷

𝑁𝐷
− 𝜖∗𝐷𝜂)𝑥2 + 𝑑𝑇𝐷(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5)𝑥2,

𝑑𝑥3
𝑑𝑡

= (1 − 𝛽∗)𝜖∗𝐷 −(𝑙𝐷 + 𝜂13 +
𝑀𝐷

𝑁𝐷 )
𝑥4 + 𝑑𝑇𝐷(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5 − 1)𝑥3,

𝑑𝑥4
𝑑𝑡

= (1 − 𝑝𝐷)𝛽∗𝜖∗𝐷 −(𝑚𝐷 + 𝜂16 +
𝑀𝐷

𝑁𝐷 )
𝑥4 + 𝑑𝑇𝐷(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5 − 𝑡
′

𝐷)𝑥4,

𝑑𝑥5
𝑑𝑡

= 𝑝𝐷𝛽∗𝜖∗𝐷 −(𝜂
∗
13 +

𝑀𝐷

𝑁𝐷 )
𝑥4 + 𝑑𝑇𝐷(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5 − 𝑡∗𝐷)𝑥5,

𝑑𝑥6
𝑑𝑡

= 𝑚𝐷𝑥4 + 𝜂13𝑥3 + 𝜂∗13𝑥5 − 𝜔𝐷𝜖𝐷𝛼∗(𝑁𝐷)(𝑥3 + 𝑥4 + 𝑥5)𝑥6 −
𝑀𝐷

𝑁𝐷
𝑥6 + 𝑑𝑇𝐷(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5)𝑥6.

(2.120)

We have that 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 = 1. The manifold 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 = 1,
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0, is forward invariant, under solution flow of system (2.120), which
has a global solution that satisfies (2.84). Now, let’s find the conditions under which the
disease and host subpopulation will persist.

Theorem 2.3.22. Let 𝛼∗(0) = 0, 𝑁 (0) > 0. Then, the population is uniformly persistent, that
is,

lim
𝑡→∞

inf 𝑁 (𝑡) ≥ 𝜖, (2.121)

where 𝜖 > 0 does not depend on the initial data.



2.3 | BASIC REPRODUCTION NUMBER STUDY

47

Proof. We have to demonstrate that the set

𝑋1 =
{
𝑁 = 0, 𝑥𝑖 ≥ 0, 𝑖 = 1, ..., 6,

6

∑
𝑖=1

𝑥𝑖 = 1
}
,

is uniform strong repeller for

𝑋2 =
{
𝑁 > 0, 𝑥𝑖 ≥ 0, 𝑖 = 1, ..., 6,

6

∑
𝑖=1

𝑥𝑖 = 1
}
.

The following results are presented and proved in [30, 117, 107] and are used to demostrate
the conditions of persistence.

Theorem 2.3.23. Let 𝕏 be a locally compact metric space with metric 𝑑. Let 𝕏 be the disjoint
union of two sets 𝑋1 and 𝑋2 such that 𝑋2 is compact. Let 𝜙 be a continuous semiflow on 𝑋1.
Then 𝑋2 is a uniform strong repeller for 𝑋1.

Theorem 2.3.24. Let 𝐷 be a bounded interval in ℝ and 𝑔 ∶ (𝑡0,∞) × 𝐷 → ℝ be bounded
and uniformly continuous. Further, let 𝑥 ∶ (𝑡0,∞) → 𝐷 be a solution of �̇� = 𝑔(𝑡, 𝑥), which is
defined on the whole interval (𝑡0,∞). Then there exist sequences 𝑠𝑛, 𝑡𝑛 → ∞ such that

lim
𝑛→∞

𝑔(𝑠𝑛, 𝑥∞) = 0 = lim
𝑛→∞

𝑔(𝑡𝑛, 𝑥∞). (2.122)

Lemma 2.3.25. If the assumptions of Theorem (2.3.24) are satisfied, then

1.
lim
𝑡→inf

inf 𝑔(𝑡, 𝑥∞) ≥ 0 ≥ lim
𝑡→∞

sup 𝑔(𝑡, 𝑥∞), (2.123)

2.
lim
𝑡→inf

inf 𝑔(𝑡, 𝑥∞) ≥ 0 ≥ lim
𝑡→∞

sup 𝑔(𝑡, 𝑥∞). (2.124)

We have that the assumptions of Theorem (2.3.23) are satisfed, it suffices to show that
𝑋2 is a uniform weak repulsive for 𝑋1. We define

𝑟 = 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6. (2.125)

Then,

𝑟
′
= 𝜔𝐷𝜖𝐷𝛼∗(𝑁𝐷)(𝑥3 + 𝑥4 + 𝑥5)𝑥1 −

𝑀𝐷

𝑁𝐷
𝑟 + 𝑑𝑇𝐷((𝑟 − 1)(𝑥3 + 𝑡

′

𝐷𝑥4 + 𝑡∗𝐷𝑥5)). (2.126)

Using that 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≤ 1, we have

𝑀𝐷

𝑁∞
𝐷

+ 𝑑𝑇𝐷(1 − 𝑟∞)(1 + 𝑡
′

𝐷 + 𝑡∗𝐷) ≤ 3𝜔𝐷𝜖𝐷𝛼∗(𝑁𝐷) (2.127)

⟹ 𝛼∗(𝑁𝐷) ≥
𝑀𝐷

3𝜔𝐷𝜖𝐷𝑁∞
𝐷

+
𝑑𝑇𝐷(1 − 𝑟∞)(1 + 𝑡 ′𝐷 + 𝑡∗𝐷)

3𝜔𝐷𝜖𝐷
. (2.128)
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From the equation of 𝑁𝐷 in (2.120), we obtain

lim
𝑡→∞

inf
1
𝑁𝐷

𝑑𝑁𝐷

𝑑𝑡
≥

𝑀𝐷

𝑁∞
𝐷
−(𝜇+𝑑𝑇𝐷(𝑥∞

3 +𝑡
′

𝐷𝑥
∞
4 +𝑡

∗
𝐷𝑥

∞
5 )) ≥

𝑀𝐷

𝑁∞
𝐷
+(𝜇+𝑑𝑇𝐷(1+𝑡

′

𝐷+𝑡
∗
𝐷)𝑟

∞). (2.129)

As 𝑁𝐷 increase exponentially,

𝑀𝐷

𝑁∞
𝐷

≤ 𝜇 + 𝑑𝑇𝐷(1 + 𝑡
′

𝐷 + 𝑡∗𝐷)𝑟
∞, (2.130)

that is
1

𝑑𝑇𝐷(1 + 𝑡 ′𝐷 + 𝑡∗𝐷)(
𝑀𝐷

𝑁∞
𝐷

− 𝜇) ≤ 𝑟∞. (2.131)

Combining (2.128) and (2.131), we have

𝛼∗(𝑁∞
𝐷 ) ≥

1
3𝜔𝐷𝜖𝐷((

𝑀𝐷

𝑁∞
𝐷

− 𝜇)(
𝑀𝐷

3𝜔𝐷𝜖𝐷𝑁∞
𝐷 (1 + 𝑡 ′𝐷 + 𝑡∗𝐷)

− 1) + 𝑑𝑇𝐷(1 + 𝑡
′

𝐷 + 𝑡∗𝐷)). (2.132)

As 𝛼∗(0) = 0 and 𝛼∗(𝑁𝐷) is continuous at 0, 𝑁∞
𝐷 ≥ 𝜖 > 0 whit 𝜖 not depending on the

initial data. From (2.132), we see that we can relax 𝛼∗(0) = 0 and require that:

𝛼∗(0) <
1

3𝜔𝐷𝜖𝐷((
𝑀𝐷

𝑁∞
𝐷

− 𝜇)(
𝑀𝐷

3𝜔𝐷𝜖𝐷𝑁∞
𝐷 (1 + 𝑡 ′𝐷 + 𝑡∗𝐷)

− 1) + 𝑑𝑇𝐷(1 + 𝑡
′

𝐷 + 𝑡∗𝐷)). (2.133)

This conclude the proof.

With this result, we proved the persistence of tuberculosis in this subpopulation.
Therefore, it is necessary to apply control strategies to reduce and eradicate the disease in
the community.

Full Model Study

The model (2.5) has a disease-free equilibrium, given by

𝜖𝐺0 = (𝑆𝑇0 , 𝑆
𝐻
0 , 𝑆

𝐷
0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

We computed the basic reproduction number as in the previous submodels by next-
generation matrix method. The dominant eigenvalues of the next-generation matrix are
ℜ𝑇

0 , ℜ𝐻
0 and ℜ𝐷

0 . Therefore, the basic reproduction number of the model (2.5) is

ℜ0 = max{ℜ𝑇
0 ,ℜ

𝐻
0 ,ℜ

𝐷
0 }.

Using the analytical results of the TB-Only, TB-HIV/AIDS and TB-Diabetes submodels,
we have conditions for which the MDR-TB and XDR-TB parameters have a positive impact
on the reduction of TB transmission for the full model [80].
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Global Stability

Now, we list two conditions that if satisfied, also guarantee the global asymptotic
stability of the disease-free equilibrium point. Following [38], we can rewrite the model
(2.5) as

𝑑𝑆
𝑑𝑡

= 𝐹(𝑆, 𝐼 ),

𝑑𝐼
𝑑𝑡

= 𝐺(𝑆, 𝐼 ), 𝐺(𝑆, 0) = 0, (2.134)

where 𝑆 ∈ ℝ6
+ is the vector whose components are the number of uninfected and recovered

and 𝐼 ∈ ℝ12
+ denotes the number of infected individuals including the latent and the

infectious (the other variables of the model (2.5)).
The disease-free equilibrium is now denoted by 𝐸𝐺

0 = (𝑆∗0 , 0), 𝑆∗0 = (𝑆0, 0, 0, 0), 𝑆0 =

(𝑆𝑇0 , 𝑆𝐻0 , 𝑆𝐷0 ) where 𝑆𝑇0 =
𝑀𝑇

𝜇 + 𝛼𝐻 + 𝛼𝐷
, 𝑆𝐻0 =

𝑀𝐻

𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷
and 𝑆𝐷0 =

𝑀𝐷

𝜇 + 𝜇𝐷 + 𝛼𝐻
.

The conditions (𝐻1) and (𝐻2) below must be satisfied to guarantee the global asymptotic
stability of 𝐸𝐺

0 .

(𝐻1) ∶ For
𝑑𝑆
𝑑𝑡

= 𝐹(𝑆, 0), 𝑆∗0 is globally asymptotically stable,

(𝐻2) ∶ 𝐺(𝑆, 𝐼 ) = 𝐴𝐼 − 𝐺∗(𝑆, 𝐼 ), 𝐺∗(𝑆, 𝐼 ) ≥ 0, for (𝑆, 𝐼 ) ∈ Ω,

where 𝐴 = 𝐷𝐼𝐺(𝑆∗0 , 0) (𝐷𝐼𝐺(𝑆∗0 , 0) is the Jacobian of 𝐺 at (𝑆∗0 , 0)) is a M-matrix (the off-
diagonal elements of 𝐴 are non-negative) and Ω is the biologically feasible region.

We have de following theorem:

Theorem 2.3.26. The fixed point 𝐸𝐺
0 is a globally asymptotically stable equilibrium of model

(2.5) provided that ℜ0 < 1 and that the conditions (𝐻1) and (𝐻2) are satisfied.

Proof. Let

𝐹(𝑆, 0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷)𝑆𝑇
𝑀𝐻 − (𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷)𝑆𝐻
𝑀𝐷 − (𝜇 + 𝜇𝐷 + 𝛼𝐻 )𝑆𝐷

0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As 𝐹(𝑆, 0) is a linear equation, we obtain that 𝑆∗0 is globally asymptotic stable, thus 𝐻1 is
satisfied.
Let’s, 𝐀 = [𝐀𝟏 ∣ 𝐀𝟐], where
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𝐀𝟏 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑘11 0 0 𝛼∗ 𝛼∗ 𝛼∗𝜖𝐻
𝛼𝐻 −𝑘21 𝛼𝐻 𝜔𝐻𝛼∗ 𝜔𝐻𝛼∗ 𝜔𝐻𝛼∗𝜖𝐻
𝛼𝐷 𝛼𝐻𝐷 −𝑘31 𝜔𝐷𝛼∗ 𝜔𝐷𝛼∗ 𝜔𝐷𝛼∗𝜖𝐻

(1 − 𝛽∗)𝜂 0 0 −𝑘12 0 0
(1 − 𝑝𝑇 )𝛽∗𝜂 0 0 𝑙𝑇 −𝑘13 0

0 (1 − 𝛽∗)𝜖∗𝐻𝜂 0 𝑡𝐻𝛼𝐻 0 −𝑘22
0 (1 − 𝑝𝐻 )𝛽∗𝜖∗𝐻𝜂 0 0 𝑡𝐻𝛼𝐻 𝑙𝐻
0 0 (1 − 𝛽∗)𝜖∗𝐷𝜂 𝑡𝐷𝛼𝐷 0 𝑡𝐻𝐷𝛼𝐻𝐷
0 0 (1 − 𝑝𝐷)𝛽∗𝜖∗𝐷𝜂 0 𝑡𝐷𝛼𝐷 0

𝑝𝑇𝛽∗𝜂 0 0 0 𝜂14 0
0 𝑝𝐻𝜖∗𝐻𝛽∗𝜂 0 0 0 0
0 0 𝑝𝐷𝜖∗𝐷𝛽∗𝜂 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

𝐀𝟐 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼∗𝜖𝐻 𝛼∗𝜖𝐷 𝛼∗𝜖𝐷 𝛼∗ 𝛼∗𝜖𝐻 𝛼∗𝜖𝐷
𝜔𝐻𝛼∗𝜖𝐻 𝜔𝐻𝛼∗𝜖𝐷 𝜔𝐻𝛼∗𝜖𝐷 𝜔𝐻𝛼∗ 𝜔𝐻𝛼∗𝜖𝐻 𝜔𝐻𝛼∗𝜖𝐷
𝜔𝐷𝛼∗𝜖𝐻 𝜔𝐷𝛼∗𝜖𝐷 𝜔𝐷𝛼∗𝜖𝐷 𝜔𝐷𝛼∗ 𝜔𝐷𝛼∗𝜖𝐻 𝜔𝐷𝛼∗𝜖𝐷

0 0 0 0 0 0
0 0 0 0 0 0
0 𝑡𝐻𝛼𝐻 0 0 0 0

−𝑘23 0 𝑡𝐻𝛼𝐻 0 0 0
0 −𝑘32 0 0 0 0

𝑡𝐻𝐷𝛼𝐻𝐷 𝑙𝐷 −𝑘33 0 0 0
0 0 0 −𝑘14 0 0
𝜂15 0 0 𝑡𝐻𝛼𝐻 −𝑘24 𝑡𝐻𝛼𝐻
0 0 𝜂16 𝑡𝐷𝛼𝐷 𝑡𝐻𝐷𝛼𝐻𝐷 −𝑘34

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

𝐈 = ( 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 ) ,

𝐺∗(𝑆, 𝐼 ) = 𝐴𝐼 𝑇 − 𝐺(𝑆, 𝐼 ),

𝐺∗(𝑆, 𝐼 ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐺∗
1(𝑆, 𝐼 )

𝐺∗
2(𝑆, 𝐼 )

𝐺∗
3(𝑆, 𝐼 )

𝐺∗
4(𝑆, 𝐼 )

𝐺∗
5(𝑆, 𝐼 )

𝐺∗
6(𝑆, 𝐼 )

𝐺∗
7(𝑆, 𝐼 )

𝐺∗
8(𝑆, 𝐼 )

𝐺∗
9(𝑆, 𝐼 )

𝐺∗
10(𝑆, 𝐼 )

𝐺∗
11(𝑆, 𝐼 )

𝐺∗
12(𝑆, 𝐼 )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼∗(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))(1 −
𝑆𝑇 + 𝛽′

1𝑅𝑇

𝑁 )

𝜔𝐻𝛼∗(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))(1 −
𝑆𝐻 + 𝛽′

1𝑅𝐻

𝑁 )

𝜔𝐷𝛼∗(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))(1 −
𝑆𝐷 + 𝛽′

1𝑅𝐷

𝑁 )
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since 𝑆𝑇 +𝛽′

1𝑅𝑇 , 𝑆𝐻 +𝛽′

1𝑅𝐻 and 𝑆𝐷+𝛽′

1𝑅𝐷 are always less than or equal to 𝑁 ,
𝑆𝑇 + 𝛽′

1𝑅𝑇

𝑁
≤ 1,

𝑆𝐻 + 𝛽′

1𝑅𝐻

𝑁
≤ 1 and

𝑆𝐷 + 𝛽′

1𝑅𝐷

𝑁
≤ 1. Thus, 𝐺∗(𝑆, 𝐼 ) ≥ 0 for all (𝑆, 𝐼 ) ∈ 𝐷, the 𝐸𝐺

0 is a globally



2.4 | SENSITIVE ANALYSIS

51

asymptotically stable.

Analogous proofs of this theorem can be found in the bibliographic references [97, 98].
After analyzing the basic reproduction number, the infection-free equilibrium points,

and the endemic equilibrium points, we have the following conclusions:

• if ℜ0 = max{ℜ𝑇
0 ,ℜ𝐻

0 ,ℜ𝐷
0 } < 1, then 𝜖𝑇0 , 𝜖𝐻0 , 𝜖𝐷0 exist and are globally asymptotically

stable (Lemmas (2.3.2), (2.3.9) and (2.3.16)) and 𝜖𝐺0 is globally asymptotically stable
(Theorem (2.3.26)).

• if ℜ0 = max{ℜ𝑇
0 ,ℜ𝐻

0 ,ℜ𝐷
0 } > 1, and we suppose that ℜ0 = ℜ𝑇

0 then 𝜖𝐺0 is unstable and
we will study 3 possible cases:

1. ℜ0 = ℜ𝑇
0 andℜ𝐻

0 ,ℜ𝐷
0 < 1, then 𝜖𝑇0 is unstable (Lemma (2.3.1)), 𝜖𝐻0 , 𝜖𝐷0 are globally

asymptotically stable (Lemmas (2.3.9) and (2.3.16)) and exists 𝜖𝑇∗ (Lemma (2.3.7)).

2. ℜ0 = ℜ𝑇
0 and ℜ𝐻

0 > 1,ℜ𝐷
0 < 1, then 𝜖𝑇0 and 𝜖𝐻0 are unstable (Lemmas (2.3.1) and

(2.3.8)), 𝜖𝐷0 is globally asymptotically stable (Lemma (2.3.16)) and exist 𝜖𝑇∗ and
𝜖𝐻∗ (Lemmas (2.3.7) and (2.3.14)).

3. ℜ0 = ℜ𝑇
0 and ℜ𝐻

0 ,ℜ𝐷
0 > 1, then 𝜖𝑇0 , 𝜖𝐻0 𝜖𝐷0 are unstable (Lemmas (2.3.1), (2.3.8)

and (2.3.15) and exist 𝜖𝑇∗ , 𝜖𝐻∗ and 𝜖𝐷∗ (Lemmas (2.3.7), (2.3.14) and (2.3.21)).

2.4 Sensitive Analysis
In this section, we study the impact of the parameters on the threshold quantity,ℜ0. The

sensitivity analysis of the basic reproduction number determines the relative importance
of the parameters present in the basic reproduction number, such as the parameters of
transmission, resistance, recovery, among others. The sensitivity index can be defined
using the partial derivatives, provided that the variable be differentiable with respect to
the parameter under study. Sensitivity analysis also helps to identify the transcendence of
the parameter values in the predictions using the model [86, 40, 122].

Definition 2.4.1. ([122]) The normalized forward sensitivity index of a variable, 𝑣, that
depends differentiability on a parameter 𝑝 is defined as:

Υ𝑣
𝑝 ∶=

𝜕𝑣
𝜕𝑝

×
𝑝
𝑣
. (2.135)

We can characterize the sensitivity index as follows:

• A positive value of the sensitivity index implies that an increase in the parameter
value causes an increase in the basic reproduction number.

• A negative value of the sensitivity index implies that an increase of the parameter
value causes a decrease of the basic reproduction number.

We will study the sensitivity index specifically for parameters associated with TB
transmission, resistance, and recovery. We obtain the following expressions:
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Υℜ0
𝑀𝑇

=
{
+1, if ℜ0 = ℜ𝑇

0 ,
0, Otherwise.

Sensitivity index expressions for 𝛽∗, 𝛼∗ and 𝜂 are:

Υℜ0
𝛽∗ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛽∗(−𝑘13𝑘14 − 𝑙𝑇 (𝑘14 + 𝜂14) + (1 − 𝑝𝑇 )𝑘12(𝑘14 + 𝜂14) + 𝑘12𝑘13𝑝𝑇 )
(1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝑝𝑇

, if ℜ0 = ℜ𝑇
0 ,

𝛽∗(−𝑘23𝑘24 − 𝑙𝐻 (𝑘24 + 𝜂15) + (1 − 𝑝𝐻 )𝑘22(𝑘24 + 𝜂15) + 𝑘22𝑘23𝑝𝐻 )
(1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15) + 𝑘22𝑘23𝛽∗𝑝𝐻

, if ℜ0 = ℜ𝐻
0 ,

𝛽∗(−𝑘33𝑘34 − 𝑙𝐷(𝑘34 + 𝜂16) + (1 − 𝑝𝐷)𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝑝𝐷)
(1 − 𝛽∗)(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝛽∗𝑝𝐷

, if ℜ0 = ℜ𝐷
0 .

Υℜ0
𝛼∗ = Υℜ0

𝜂 = +1.

Sensitivity index expressions for parameters associated with resistance are:

Υℜ0
𝑙𝑇 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑙𝑇 ((1 − 𝛽∗)(𝑘14((1 − 𝑡 ′𝑇 )𝑑𝑇 + (𝜂11 −𝑀𝑇 ) + 𝜂14(1 − 𝑡∗𝑇 )𝑑𝑇 + (𝜂11 − 𝜂∗11)))
𝑘12((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝑝𝑇 )

, if ℜ0 = ℜ𝑇
0 ,

0, Otherwise.

Υℜ0
𝑙𝐻 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑙𝐻((1 − 𝛽∗)(𝑘24((1 − 𝑡 ′𝐻 )𝑑𝑇𝐻 + (𝜂12 −𝑀𝐻 ) + 𝜂15(1 − 𝑡∗𝐻 )𝑑𝑇𝐻 + (𝜂12 − 𝜂∗12)))
𝑘22((1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15) + 𝑘22𝑘23𝛽∗𝑝𝐻)

, if ℜ0 = ℜ𝐻
0 ,

0, Otherwise.

Υℜ0
𝑙𝐷 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑙𝐷((1 − 𝛽∗)(𝑘34((1 − 𝑡 ′𝐷)𝑑𝑇𝐷 + (𝜂13 −𝑀𝐷) + 𝜂16(1 − 𝑡∗𝐷)𝑑𝑇𝐷 + (𝜂13 − 𝜂∗13)))
𝑘32((1 − 𝛽∗)(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝛽∗𝑝𝐷)

, if ℜ0 = ℜ𝐷
0 ,

0, Otherwise.

Υℜ0
𝜂14 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜂14(((1 − 𝛽∗) + 𝑘12𝛽∗(1 − 𝑝𝑇 ))((𝑡
′

𝑇 − 𝑡∗𝑇 )𝑑𝑇 + (𝑀𝑇 − 𝜂∗11)))
𝑘13((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝑝𝑇 )

, if ℜ0 = ℜ𝑇
0 ,

0, Otherwise.

Υℜ0
𝜂15 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜂15(((1 − 𝛽∗) + 𝑘22𝛽∗(1 − 𝑝𝐻 ))((𝑡
′

𝐻 − 𝑡∗𝐻 )𝑑𝑇𝐻 + (𝑚𝐻 − 𝜂∗12)))
𝑘23((1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15) + 𝑘22𝑘23𝛽∗𝑝𝐻)

, if ℜ0 = ℜ𝐻
0 ,

0, Otherwise.

Υℜ0
𝜂16 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝜂16(((1 − 𝛽∗) + 𝑘32𝛽∗(1 − 𝑝𝐷))((𝑡
′

𝐷 − 𝑡∗𝐷)𝑑𝑇𝐷 + (𝑀𝐷 − 𝜂∗13)))
𝑘33((1 − 𝛽∗)(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝛽∗𝑝𝐷)

, if ℜ0 = ℜ𝐷
0 ,

0, Otherwise.

Sensitivity index expressions for parameters associated with recovery are:

Υℜ0
𝜂11 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝜂11((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14))

𝑘12((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝑝𝑇 )
, if ℜ0 = ℜ𝑇

0 ,

0, Otherwise.
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Υℜ0
𝜂12 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝜂12((1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15))

𝑘22((1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15) + 𝑘22𝑘23𝛽∗𝑝𝐻)
, if ℜ0 = ℜ𝐻

0 ,

0, Otherwise.

Υℜ0
𝜂13 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝜂13((1 − 𝛽∗)(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16))

𝑘32((1 − 𝛽∗)(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝛽∗𝑝𝐷)
, if ℜ0 = ℜ𝐷

0 ,

0, Otherwise.

Υℜ0
𝑚𝑇

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝑚𝑇 ((1 − 𝛽∗)𝑙𝑇 (𝑘14 + 𝜂14 + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14))

𝑘13((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝑝𝑇 )
, if ℜ0 = ℜ𝑇

0 ,

0, Otherwise.

Υℜ0
𝑚𝐻

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝑚𝐻((1 − 𝛽∗)𝑙𝐻 (𝑘24 + 𝜂15 + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15))

𝑘23((1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15) + 𝑘22𝑘23𝛽∗𝑝𝐻)
, if ℜ0 = ℜ𝐻

0 .

0, Otherwise.

Υℜ0
𝑚𝐷

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝑚𝐷((1 − 𝛽∗)𝑙𝐷(𝑘34 + 𝜂16 + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 𝜂16))

𝑘33((1 − 𝛽∗)(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝛽∗𝑝𝐷)
, if ℜ0 = ℜ𝐻

0 ,

0, Otherwise.

Υℜ0
𝜂∗11

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝜂∗11(𝜂14(𝑙𝑇 (1 − 𝛽∗) + (1 − 𝑝𝑇 )𝑘12𝛽∗) + 𝑘12𝑘13𝛽∗𝑝𝑇 )

𝑘13((1 − 𝛽∗)(𝑘13𝑘14 + 𝑙𝑇 (𝑘14 + 𝜂14)) + (1 − 𝑝𝑇 )𝛽∗𝑘12(𝑘14 + 𝜂14) + 𝑘12𝑘13𝛽∗𝑝𝑇 )
, if ℜ0 = ℜ𝑇

0 ,

0, Otherwise.

Υℜ0
𝜂∗12

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝜂∗12(𝜂15(𝑙𝐻 (1 − 𝛽∗) + (1 − 𝑝𝐻 )𝑘22𝛽∗) + 𝑘22𝑘23𝛽∗𝑝𝐻)

𝑘23((1 − 𝛽∗)(𝑘23𝑘24 + 𝑙𝐻 (𝑘24 + 𝜂15)) + (1 − 𝑝𝐻 )𝛽∗𝑘22(𝑘24 + 𝜂15) + 𝑘22𝑘23𝛽∗𝑝𝐻)
, if ℜ0 = ℜ𝐻

0 ,

0, Otherwise.

Υℜ0
𝜂∗13

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−
𝜂∗13(𝜂16(𝑙𝐷(1 − 𝛽∗) + (1 − 𝑝𝐷)𝑘32𝛽∗) + 𝑘32𝑘33𝛽∗𝑝𝐷)

𝑘33((1 − 𝛽∗)(𝑘33𝑘34 + 𝑙𝐷(𝑘34 + 𝜂16)) + (1 − 𝑝𝐷)𝛽∗𝑘32(𝑘34 + 𝜂16) + 𝑘32𝑘33𝛽∗𝑝𝐷)
, if ℜ0 = ℜ𝐷

0 ,

0, Otherwise.

Using the conditions of the parameters in our study, we have that:

• The sensitivity index of parameters 𝑀𝑇 , 𝛼∗ and 𝜂 are positive or null this means that
a growth in these parameters leads to a growth in the basic reproduction number.

• The sensitivity index of parameters associated with recovery (𝑚𝑇 , 𝑚𝐻 , 𝑚𝐷, 𝜂1𝑙, 𝜂∗1𝑙, 𝑙 =
1, 2, 3) are negative or null, which implies that an increase in these parameters leads
to a decrease in the basic reproduction number.

• The sensitivity index of the other parameters studied depends on the scenario where
the model is applied.

We can characterize the sensitivity index of ℜ0 with respect to 𝛽∗ with the following
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lemma:

Lemma 2.4.1. The sensitivity index of the basic reproduction number with respect to the 𝛽∗

parameter is greater than zero if:

((1 − 𝑝𝑇 )𝑘12 − 𝑙𝑇 )(𝑘14 + 𝜂14)
𝑘13(𝑘14 − 𝑘12𝑝𝑇 )

> 1, for ℜ0 = ℜ𝑇
0 , (2.136)

((1 − 𝑝𝐻 )𝑘22 − 𝑙𝐻 )(𝑘24 + 𝜂15)
𝑘23(𝑘24 − 𝑘22𝑝𝐻 )

> 1, for ℜ0 = ℜ𝐻
0 , (2.137)

((1 − 𝑝𝐷)𝑘32 − 𝑙𝐷)(𝑘34 + 𝜂16)
𝑘33(𝑘34 − 𝑘32𝑝𝐷)

> 1, for ℜ0 = ℜ𝐷
0 . (2.138)

2.5 Numerical Results

For the numerical simulations, we use a set of parameters extracted from [35, 78, 122,
107, 36, 37, 64, 61, 5, 41] with illustrative purposes and to support the analytical results,
see Tables (2.2)-(2.3) and we use the fourth-order Runge–Kutta numerical scheme coded in
MATLAB programming language. The initial conditions for the TB-Only and TB-Diabetes
subpopulations are taken from [35], and the values for the subpopulation of TB-HIV/AIDS
are assumed and do not represent a specific demographic area, but fall within the range
of actual achievable data, see Table (2.2). The parameter values and initial conditions
assumed were discussed and validated by specialists. Numerical simulations of Model (2.5)
for another scenario can be found in the work referenced as [80].

Variable Value Variable Value Variable Value
𝑆𝑇 (0) 8741400 𝑆𝐻 (0) 111000 𝑆𝐷(0) 200000
𝐸𝑇 (0) 565600 𝐸𝐻 (0) 5000 𝐸𝐷(0) 8500
𝐼𝑇1(0) 20000 𝐼𝐻1(0) 1400 𝐼𝐷1(0) 1800
𝐼𝑇2(0) 1300 𝐼𝐻2(0) 400 𝐼𝐷2(0) 550
𝐼𝑇3(0) 700 𝐼𝐻3(0) 210 𝐼𝐷3(0) 250
𝑅𝑇 (0) 8800 𝑅𝐻 (0) 500 𝑅𝐷(0) 300

Table 2.2: Numerical values for the initial conditions of model (2.5).
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Parameter Value Reference
𝑀𝑇 , 𝑀𝐻 , 𝑀𝐷 667685, 10000, 50000 [78, 35], Assumed, Assumed
𝛼∗ 9.5 [35, 78, 122]
𝛼𝐻 , 𝛼𝐷 0.0075, 0.009 Assumed, [78, 35]
𝜔𝐻 , 𝜔𝐷 1.22, 1.10 [78, 35, 107]
𝛼𝐻𝐷 0.00173 [36]
𝜖𝐻 , 𝜖𝐷 1.3, 1.1 Assumed, [78, 35]
𝜇, 𝜇𝐻 , 𝜇𝐷 1/53.5, 0.045, 0.03 [78, 35, 107], Assumed
𝜂, 𝛽∗ 0.05, 0.04 [78, 35, 107, 37, 64]
𝑑𝑇 , 𝑑𝑇𝐻 , 𝑑𝑇𝐷 0.0275, 0.033, 1.5 ∗ 𝑑𝑇 [78, 35, 107]
𝜖∗𝐻 , 𝜖∗𝐷 1.3, 1.1 [107], Assumed
𝑡 ′𝑇 , 𝑡

′

𝐻 , 𝑡
′

𝐷 1, 1.01, 1 Assumed
𝑡∗𝑇 , 𝑡∗𝐻 , 𝑡∗𝐷 1.01, 1.02, 1.01 Assumed
𝛽′

1 0.9 [107]
𝑙𝑇 , 𝑙𝐻 , 𝑙𝐷 0.0018, 0.0022, 0.0048 [122, 61, 5, 41], Assumed
𝑚𝑇 , 𝑚𝐻 , 𝑚𝐷 0.6266,0.45,0.4054 [78, 35], Assumed
𝜂14, 𝜂15, 𝜂16 0.013, 0.022, 0.026 [122, 61, 5, 41], Assumed
𝜂11, 𝜂12, 𝜂13 0.7372, 0.55, 0.7372 [78, 35], Assumed
𝑝𝑇 , 𝑝𝐻 , 𝑝𝐷 0.00225,0.0035,0.0041 [122, 37, 64], Assumed
𝜂∗11, 𝜂∗12, 𝜂∗13 0.4006,0.255,0.3317 [78, 35], Assumed
𝑡𝐻 , 𝑡𝐷, 𝑡𝐻𝐷 1.01, 1.01, 1.01 Assumed

Table 2.3: Numerical values for the parameters of model (2.5).

The values of the basic reproduction numbers for the values of the Table (2.3) are
ℜ𝑇

0 = 1.3156, ℜ𝐻
0 = 0.1182 and ℜ𝐷

0 = 0.2101, then ℜ0 = max{𝑅𝑇
0 , 𝑅𝐻

0 , 𝑅𝐷
0 } = 1.3156 > 1.

We study the behavior of ℜ0 with respect to the effective contact rate (𝛼∗) and the
parameters associated with MDR-TB and XDR-TB. For the variation of 𝛼∗, we have that the
ℜ𝐷

0 is in the interval [0.0995, 0.3317],ℜ𝑇
0 is in [0.6232, 2.0773] and ℜ𝐻

0 is in [0.0560, 0.1866].
We can observe that the basic reproduction number for TB-HIV/AIDS and TB-Diabetes
subpopulations is less than unity. This implies a decrease in the number of contagions
if there is a reduction in the effective contact rate, see Figure (2.2). For the TB-Only
subpopulation, ℜ𝑇

0 takes values greater and less than unity, this means that for certain
values of 𝛼∗ the infection will be able to start spreading in this subpopulations, and for
others there will be a decline in the number of cases.

In Figure (2.3), we analyze the response of ℜ0 when the parameters that represent MDR-
TB and XDR-TB are varying. For Figure (2.3a), we vary 𝑙𝑇 , 𝑙𝐻 and 𝑙𝐷 to study what happens
with the basic reproduction number with respect to these parameters that represent the
MDR-TB. The ℜ𝐷

0 ∈ [0.2095, 0.2217], ℜ𝑇
0 ∈ [1.3153, 1.3311] and ℜ𝐻

0 ∈ [0.1181, 0.1205]. In
Figure (2.3b), we varied 𝜂14, 𝜂15 and 𝜂16 (parameters associated with the XDR-TB) and we
obtain that ℜ𝐷

0 ∈ [0.2099, 0.2103], ℜ𝑇
0 ∈ [1.3151, 1.3177] and ℜ𝐻

0 ∈ [0.1181, 0.1184].
In both cases, the ℜ0 of the TB-Only subpopulation remains greater than unity, demon-

strating that growth in the parameters associated with MDR-TB and XDR-TB negatively
affects this community and in the TB-HIV/AIDS and TB-Diabetes subpopulations, the
opposite occurs. The greatest difficulty of control is found in the TB-Only subpopulation.
However, to control the epidemic it is necessary to control it in all subpopulations.
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Figure 2.2: Behavior of ℜ0 with respect to effective contact rate, 𝛼∗, for the different subpopulations
and 𝛼∗ ∈ [4.5, 15].
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Figure 2.3: (a) Graphical behavior of ℜ0 with respect to the variation of the MDR-TB parameters
(𝑙𝑇 , 𝑙𝐻 , 𝑙𝐷), for 𝑙𝑇 ∈ [0.0005, 0.065], 𝑙𝐻 ∈ [0.001, 0.075] and 𝑙𝐷 ∈ [0.001, 0.0855]. (b) Graphical behavior
of ℜ0 with respect to the variation of the XDR-TB parameters (𝜂14, 𝜂15, 𝜂16) for 𝜂14 ∈ [0.001, 0.065],
𝜂15 ∈ [0.001, 0.075] and 𝜂16 ∈ [0.001, 0.085].

The following Table (2.4) presents the application of the Lemmas (2.3.3)-(2.3.6) to the
scenario under study:
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Value Values Inequalities Results
Δ𝑇 = 0.0894 Δ𝑇1 = 0.0680 Δ𝑇 > Δ𝑇1 Using the result (2.3.3), we have that any variation of 𝑙𝑇

Δ𝑇2 = 0.0627 Δ𝑇 > Δ𝑇2 and 𝜂14 negatively affects ℜ𝑇
0 .

Δ𝑇3 = 0.0671 Δ𝑇 > Δ𝑇3
Δ𝑇4 = 0.0533 Δ𝑇 > Δ𝑇4

Δ𝑇 = 0.0894 Δ𝑇5 = 0.0056 Δ𝑇 > Δ𝑇5 For the variations of 𝑙𝑇 and 𝜂11 using the Lemma (2.3.4),
Δ𝑇6 = 0.0889 Δ𝑇 > Δ𝑇6 we have that any variation negatively affects ℜ𝑇

0 .
Δ𝑇7 = 0.0375 Δ𝑇 > Δ𝑇7
Δ𝑇8 = 0.0710 Δ𝑇 > Δ𝑇8

Δ𝑇 = 0.0894 Δ𝑇9 = 0.0459 Δ𝑇 > Δ𝑇9 Analogously, variations of 𝜂14 and 𝑚𝑇 using Lemma
Δ𝑇10 = 0.0691 Δ𝑇 > Δ𝑇10 (2.3.5) negatively affect ℜ𝑇

0 .
Δ𝑇11 = 0.0647 Δ𝑇 > Δ𝑇11
Δ𝑇12 = 0.0678 Δ𝑇 > Δ𝑇12

Δ𝑇 = 0.0894 Δ𝑇13 = 0.0231 Δ𝑇 > Δ𝑇13 For 𝑙𝑇 , 𝜂14 tending to unity and 𝜂11, 𝑚𝑇 tending to zero,
Δ𝑇14 = 0.0909 Δ𝑇 < Δ𝑇14 the ℜ𝑇

0 is negatively affected and in the opposite case it
is not affected, using Lemma (2.3.6).

Table 2.4: Study of the ℜ𝑇
0 .

Figures (2.4a) and (2.4b) show the behavior of ℜ𝑇
0 when we vary 𝑙𝑇 and 𝜂14. We can

see that in this case, any variation of these parameters affects negatively the ℜ𝑇
0 since the

ℜ𝑇
0 > 1.

Figures (2.4c) and (2.4d) show the behavior of ℜ𝑇
0 when we vary 𝑙𝑇 and 𝜂11. In this case,

it is always greater than unity and presents the highest value of the whole study when
𝑙𝑇 and 𝜂11 tend to zero. We recommend paying attention to the joint behavior of these
parameters and their relationship with other parameters.

Figures (2.4e) and (2.4f) show the variation of the parameters 𝜂14 and 𝑚𝑇 in ℜ𝑇
0 . The ℜ𝑇

0
is always greater than unity, so it is evident that the epidemic in the submodel will persist.

We show that variations of the resistance and recovery parameters (in pairs) in this
scenario negatively affect ℜ𝑇

0 and in these cases ℜ𝑇
0 is always greater than unity.

The following Table (2.5) shows the application of the Lemmas (2.3.10)-(2.3.13) to the
scenario under study.

Value Values Inequalities Results
Δ𝐻 = 0.0076 Δ𝐻1 = 0.0025 Δ𝐻 > Δ𝐻1 The variations of the parameters 𝑙𝐻 and 𝜂15

Δ𝐻2 = 0.0178 Δ𝐻 < Δ𝐻2 result (2.3.10) do not negatively affect ℜ𝐻
0

Δ𝐻3 = 0.0201 Δ𝑇 < Δ𝐻3 using the except when 𝑙𝐻 and 𝜂15 tend to zero.
Δ𝐻4 = 0.1745 Δ𝐻 < Δ𝐻4

Δ𝐻 = 0.0076 Δ𝐻5 = 3.9350𝑒 − 04 Δ𝐻 > Δ𝐻5 For the variations of 𝑙𝐻 and 𝜂12 tending to zero
Δ𝐻6 = 0.0047 Δ𝐻 > Δ𝐻6 and 𝑙𝐻 tending to zero and 𝜂12 tending to unity
Δ𝐻7 = 0.0128 Δ𝐻 < Δ𝐻7 negatively affect ℜ𝐻

0 and other cases not affect
Δ𝐻8 = 0.0251 Δ𝐻 < Δ𝐻8 ℜ𝐻

0 , using the Lemma (2.3.11).
Δ𝐻 = 0.0076 Δ𝐻9 = 1.0036𝑒 − 04 Δ𝐻 > Δ𝐻9 The variations of 𝜂15 and 𝑚𝐻 tending to zero

Δ𝐻10 = 0.0098 Δ𝐻 < Δ𝐻10 affect ℜ𝐻
0 and the other cases do not affect it

Δ𝐻11 = 0.0105 Δ𝐻 < Δ𝐻11 negatively, using the Lemma (2.3.12).
Δ𝐻12 = 0.0366 Δ𝐻 < Δ𝐻12

Δ𝐻 = 0.0076 Δ𝐻13 = 0.0746 Δ𝐻 < Δ𝐻13 For 𝑙𝐻 , 𝜂15 tending to zero and 𝜂12, 𝑚𝐻 tending
Δ𝐻14 = 0.0168 Δ𝐻 < Δ𝐻14 to unity and the opposite case it is not affected

the ℜ𝐻
0 using (2.3.13).

Table 2.5: Study of the ℜ𝐻
0 .
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For the variation of the parameters in their respective intervals, the ℜ𝐻
0 is always less

than unity, see Figures (2.5a)-(2.5f).
When we vary 𝑙𝐻 and 𝜂12, the worst results are obtained when they are tending to zero

and when 𝑙𝐻 tends to zero and 𝜂12 tends to unity, see Figures (2.5c) and (2.5d). We can
verify the theoretical result presented in Lemma (2.3.11) applied to this scenario.

Figures (2.5e) and (2.5f) show the variation of 𝜂15 and 𝑚𝐻 in ℜ𝐻
0 , in this case, we see

that the negative influence is observed when the parameters tend to zero (theoretical result
verified) but also the highest values are reached when 𝜂15 tends to zero and 𝑚𝐻 tends to
unity. We observed that the difference between Δ𝐻 and Δ𝐻10 is smaller with respect to the
combinations of the parameters that do not have a negative influence. We recommend to
pay attention to this case because the system can be influenced by other parameters.

The following Table (2.6) shows the theoretical results (2.3.17)-(2.3.20) applied to this
scenario.

Value Values Inequalities Results
Δ𝐷 = 0.0174 Δ𝐷1 = 0.0039 Δ𝐷 > Δ𝐷1 The variation of 𝑙𝐷 and 𝜂16 tend to zero negatively

Δ𝐷2 = 0.0257 Δ𝐷 < Δ𝐷2 affects ℜ𝐷
0 and the other cases does not affect,

Δ𝐷3 = 0.0359 Δ𝐷 < Δ𝐷3 using the Lemma (2.3.17).
Δ𝐷4 = 0.2499 Δ𝐷 < Δ𝐷4

Δ𝐷 = 0.0174 Δ𝐷5 = 4.6227𝑒 − 04 Δ𝐷 > Δ𝐷5 When 𝑙𝐷 and 𝜂13 tend to unity it does not negatively
Δ𝐷6 = 0.0059 Δ𝐷 > Δ𝐷6 affects ℜ𝐷

0 and the other cases affect negatively to
Δ𝐷7 = 0.0167 Δ𝐷 > Δ𝐷7 ℜ𝐷

0 , using the Lemma (2.3.18).
Δ𝐷8 = 0.0329 Δ𝐷 < Δ𝐷8

Δ𝐷 = 0.0174 Δ𝐷9 = 1.8483𝑒 − 04 Δ𝐷 > Δ𝐷9 For 𝜂16 and 𝑚𝐷 tending to zero, negatively affected
Δ𝐷10 = 0.0185 Δ𝐷 < Δ𝐷10 to ℜ𝐷

0 and in the other cases, it is not affected,
Δ𝐷11 = 0.0200 Δ𝐷 < Δ𝐷11 using Lemma (2.3.19).
Δ𝐷12 = 0.0695 Δ𝐷 < Δ𝐷12

Δ𝐷 = 0.0174 Δ𝐷13 = 0.0981 Δ𝐷 < Δ𝐷13 For 𝑙𝐷 and 𝜂16 tending to zero and 𝜂13 and 𝑚𝐷 tending
Δ𝐷14 = 0.0243 Δ𝐷 < Δ𝐷14 to unity and 𝑙𝐷 and 𝜂16 tending to unity and 𝜂13, 𝑚𝐷

tending to zero, using (2.3.20) the ℜ𝐷
0 is not affected.

Table 2.6: Study of the ℜ𝐷
0 .

The variation of the parameters 𝑙𝐷 and 𝜂16, the ℜ𝐷
0 is always less than unity, see Figures

(2.6a) and (2.6b).
For the variation of 𝑙𝐷 and 𝜂13, we have that ℜ𝐷

0 takes values greater and less than
unity. When 𝑙𝐷 and 𝜂16 tend to zero, the highest value of ℜ𝐷

0 are achieved (Δ𝐷 > Δ𝐷5) and
when 𝑙𝐷 tends to zero and 𝜂16 tends to unity (Δ𝐷 > Δ𝐷6), verifying the theoretical results
presented in the Table 2.6. When 𝜂13 tends to unity and 𝜂16 tends to zero, we find values
for which ℜ𝐷

0 is greater and less than unity so we must take into account the relationship
with other parameters. We recommend to apply control strategies to the behavior of these
parameters, see Figures (2.6c) and (2.6d).

When we vary 𝜂16 and 𝑚𝐷 together, the ℜ𝐷
0 always remains less than unity. The worst

results are reached when 𝜂15 and 𝑚𝐷 are tending to zero which is when these parameters
according to the theoretical results (Δ𝐷 > Δ𝐷9) affect negatively ℜ0, see Figures (2.6e) and
(2.6f).

In the two-by-two variations in the different basic reproduction numbers the highest
values were obtained for ℜ𝑇

0 corresponding to the TB-Only submodel, as the general model
has the basic reproduction number defined as ℜ0 = max{ℜ𝑇

0 ,ℜ𝐻
0 ,ℜ𝐷

0 } then, we can extend
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the results to the general model (2.5).
These results allow us to know how the variations of these parameters (resistance and

recovery) affect the transmission of tuberculosis in the different submodels and general
model, using the basic reproduction numbers.
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Figure 2.4: Variations of the resistance and recovery parameters in ℜ𝑇
0 , for 𝑙𝑇 ∈ [0.0005, 0.065],

𝜂14 ∈ [0.001, 0.065], 𝜂11 ∈ [0.01, 0.75] and 𝑚𝑇 ∈ [0.01, 0.85].
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Figure 2.5: Variations of the resistance and recovery parameters in ℜ𝐻
0 , for 𝑙𝐻 ∈ [0.001, 0.075],

𝜂15 ∈ [0.001, 0.075], 𝜂12 ∈ [0.01, 0.65] and 𝑚𝐻 ∈ [0.01, 0.85].
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Figure 2.6: Variations of the resistance and recovery parameters in ℜ𝐷
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The Table (2.7) shows the sensitivity index of the parameters with respect to the basic
reproduction number. They are calculated knowing that for the values of the simulations
the ℜ0 = ℜ𝑇

0 . The inequality (2.136) is 1.3156 > 1 so we have that 𝛽∗ has a positive
sensitivity index and the increase in its value causes an increase in the basic reproduction
number.

Parameter Value
𝑀𝑇 +1
𝛼∗ +1
𝜂 +1
𝛽∗ +0.0068
𝑙𝑇 +0.0029
𝜂14 +0.0123
𝜂11 −0.8664
𝑚𝑇 −0.0378
𝜂∗11 −7.4598𝑒 − 4

Table 2.7: Sensitivity index of the parameters in the scenario under study.

Now, we will present the behavior of the resistant and recovered, comparing the
subpopulations for 10 years.

In the study of MDR-TB cases, we found that the highest number of cases was reported
by the TB-Only subpopulation followed by the TB-Diabetes subpopulation, see Figures
(2.7a) and (2.7b). This shows that diabetics are more prone to this type of resistance
compared to HIV/AIDS. Here, we can mention the influence of antiretroviral treatment
and medical follow-up on HIV-positive people because TB represents an opportunistic
disease in this subpopulation.
An important fact is that when we compare the TB-Only and TB-HIV/AIDS subpopu-
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Figure 2.7: Behavior of MDR-TB cases over time.

lations, despite the fact that TB-HIV/AIDS presented the lowest number of cases at the
beginning of the study, at approximately 6 months, it surpasses TB-Only (which presents
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the largest population), see Figure (2.8d). The XDR-TB in the TB-Only subpopulation,
throughout the study, maintained a decreasing behavior. The TB-Diabetes subpopulation
throughout the study maintained an increasing character in the number of cases. In
practice, we recommend special attention to this subpopulation, as diabetic XDR-TB cases
outnumber all resistant infected compartments. The TB-HIV/AIDS subpopulation initially
has a decreasing number of cases but after approximately 5 years this situation is reversed.
We recommend for this subpopulation to take advantage of the decrease in the number of
cases at the beginning and to apply control strategies to avoid the growth in the number
of cases.

When, we study the compartments of infected by subpopulation, we obtain the follow-
ing results:

• Drug-sensitive cases outnumber resistance cases except for TB-Diabetes subpopula-
tion. In practice, we have that the epidemic has a greater behavior of being sensitive
to treatment than resistant, see Figure (2.9).

• In the TB-Only and TB-HIV/AIDS subpopulations, MDR-TB cases outnumber XDR-
TB cases throughout the study, see Figures (2.9a) and (2.9c). This implies that XDR-TB
has a lower incidence in this subpopulation. Here, we can in particular note the
influence of the follow-up of cases with TB-HIV/AIDS co-infection which among
other things controls for non-adherence to treatment.

• In the TB-Diabetes subpopulation, MDR-TB initially outnumbered XDR-TB, but at
approximately 1 study time, it began to outpace not only MDR-TB in this subpopu-
lation but also all resistant compartments, see Figures (2.9) and (2.9f). This implies
that XDR-TB has a strong incidence in the TB-Diabetes subpopulation.

In the study of the recoveries, the highest number was in the TB-Only subpopulation, see
Figure (2.10a). This was followed by the TB-Diabetes subpopulation, which outnumbered
the TB-HIV/AIDS, see Figure (2.10b). In practice, although diabetics have a higher incidence
of resistance, mainly to XDR-TB, they also have a higher number of recoveries. We
recommend to control the resistance in this subpopulation to increase the number of
recoveries.
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in the TB-Diabetes subpopulation, 10 years.
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Figure 2.9: Comparison of the infected over time.
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Figure 2.10: Behavior of the recovered over time.

2.6 Partial Conclusions
In this chapter:

• We proposed a new mathematical model for the study of resistance to treatment
for tuberculosis in the presence of diabetes and HIV/AIDS. Our main objective is to
evaluate the role of diabetes and HIV/AIDS in resistance to TB treatment.

• A mathematical and epidemiology analysis of the model has been presented.

• We computed the basic reproduction number of the model and obtained results that
show its relationship with the resistance and recovery parameters.

• We found the sensitivity index of the parameters associated with the transmission,
resistance, and recovery with respect to the basic reproduction number. We have
that the sensitivity index for the recovered parameters are null or negative, this
implies that it may not influence on the basic reproduction number or that its growth
causes a decrease in the basic reproduction number.

• We validated our model with data and parameters from the bibliography, in an
biologically feasible scenario. Among the results, we obtained that:

– If we analyze the basic reproduction number with respect to the resistance
parameters independently, we have that the basic reproduction number of
the TB-Only submodel is greater than unity and for the other submodels it
is less than unity. In this case, the basic reproduction number general (ℜ0 =
max{ℜ𝑇

0 ,ℜ𝐻
0 ,ℜ𝐷

0 }) is greater than unity and the epidemic will grow and not
disappear, see Figure (2.3). If we analyze the ℜ0 with respect to the resistance
parameters together it is greater than unity, see Figures (2.4a-2.4b). This is
evidence of the need to apply control strategies in all subpopulations.

– The MDR-TB cases in all subpopulations have an analogous asymptotic behav-
ior where they initially decrease and then increase, see Figure (2.7). Given this
situation, it is recommended to apply control measures from the beginning in
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these compartments to avoid future growth in the number of cases.

– The XDR-TB cases in the TB-Only subpopulation decreased throughout the
study. The number of XDR-TB cases in HIV/AIDS subpopulation, initially de-
creases and then tends to increase. Attention needs to be paid to the TB-Diabetes
subpopulation because XDR-TB cases outnumber all resistant compartments,
see Figure (2.8). We propose to pay attention to the TB-Diabetes subpopulation
because XDR-TB cases outnumber all resistant compartments. Given the re-
sults obtained, we propose to monitor the entry into the compartments of the
diabetic subpopulation, due to the growth of XDR-TB cases, using strategies
such as increasing specialized medical consultations to achieve permanence in
treatment, and diabetes testing in the different subpopulations.
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Chapter 3

Optimal Control Strategy for the
Effectiveness of TB Treatment

3.1 Introduction

Optimal control theory has been used to study the transmission dynamics of TB in
[67, 108, 64, 106]. For example, Kim et al. [67] proposed optimal control strategies to
reduce the number of patients at high risk for latent and infectious tuberculosis with
minimal intervention costs. Numerical simulation with data from the Philippines showed
that distancing control is the most efficient control strategy when a single intervention is
performed. Jung et al. [64] applied optimal control theory to a two-strain tuberculosis model
with aim to reduce the latent and infectious groups with resistant-strain tuberculosis, where
the controls are two types of treatments. Bowong [31] proposed an optimal control problem
for the transmission dynamics of tuberculosis with controls as a term on chemoprophylaxis
to reduce the number of individuals with active TB. Silva et al. [106] incorporated time
delays on the diagnosis and beginning of treatment of TB active in a TB model and
studied the optimal control problem where controls represent the effort on early detection
and the application of chemotherapy or post-exposure vaccine to persistent latent cases.
Moualeu et al. [79] proposed an optimal control problem based on the education, diagnosis
campaign, and chemoprophylaxis of latent infected with the aim of minimizing the amount
of money the Cameroonian government spends on TB control. Silva and Torres [108]
applied optimal control theory to a tuberculosis model with the objective of minimizing the
cost of interventions, considering reinfection and post-exposure interventions. Lambura
et al. [70] presented a mathematical model for the transmission and control of helminth-
TB co-interaction, and showed that sanitation is the most effective strategy to control
helminth-Mtb co-infection. Liu et al. [73] proposed an optimal control problem to minimize
the total number of infectious individuals with the lowest cost and suggested an optimal
strategy aiming at exposed and infected populations.

The problems of HIV/AIDS control and TB-HIV/AIDS co-infection with different
techniques have become a problem that has been extensively studied by researchers in
recent years. For example, Ngina et al. [85] applied optimal control theory to investigate
the key roles played by the various HIV treatment strategies and showed that an optimal
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controlled treatment strategy would ensure a significant reduction in viral load and HIV
transmission in the population and that the protease inhibitor plays a key role in virus
suppression. Marsudi et al. [20] incorporated in an HIV model, human education campaign,
screening and treatment of infected humans as controls with the goal of minimizing the
infected population and slow down the epidemic outbreak of HIV. Tahir et al. [113]
extended a mathematical model of TB-HIV/AIDS co-infection to study the optimal control
problem, and defined different schemes to minimize and control infection in any population.
Boukhouima et al. [6] proposed a fractional epidemic model with a general incidence in
order to describe the dynamics of HIV-AIDS infection and formulated a fractional optimal
control system to minimize the spread of the disease into the population. Qin et al. [101]
presented and solved the optimal control problem for the age-structured HIV model and
found the necessary condition for minimization of the viral level and the cost of drug
treatment. Agusto and Adekunle [4] used optimal control theory and demonstrated that the
application of the combined strategy of prevention of treatment failure in drug-sensitive
TB infected individuals and treatment of individuals with drug-resistant TB is the most
cost-effective control strategy. Silva and Torres [107] formulated a population model for
TB-HIV/AIDS co-infection that considers antiretroviral therapy for HIV infection and
treatments for latent and active TB, and used the theory of optimal control to reduce
the number of individuals with active TB and AIDS. Awoke and Kassa [27] presented
a mathematical model for transmission of TB-HIV/AIDS co-infection that incorporates
the change in the prevalence in the population and treatment, proposed optimal control
problem to minimize the aggregate cost of the infections and the control efforts, and
showed that the treatment control is more effective than the preventive controls.

The study of diabetes control and its relationship to TB has increased in recent decades.
For example, Kouidere et al. [26] proposed conducting awareness campaigns based on
the severity of complications of diabetes, the importance of a balanced lifestyle, and the
correct use of treatment as an optimal control strategy. Chávez et al. [39] formulated a
control system for optimal insulin delivery in type I diabetic patients using the linear
and quadratic control problem theory. The linear model is used for the glucose-insulin
dynamics and the non-linear for the evaluation of the regulatory controller. Kouidere et al.
[8] proposed to study an optimal control with delay in state and control variables in the
model presented for the authors in [7] where the delay represents the measuring of the
extent of interaction with the means of treatment or awareness campaigns.

The aim of this chapter is to present and solve the optimal control problem to reduce
TB treatment resistance, taking into account the influence of HIV/AIDS and diabetes.
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3.2 Model with Controls, Optimal Control Problem
and Analysis

Definition of Controls and its Policy

Our aim with the help of the optimal control theory is to decrease the total number of
patients with MDR-TB and XDR-TB during a period of time [𝑡0, 𝑡𝑓 ]. The control strategy is
decomposed in four controls 𝑢0, 𝑢11, 𝑢12 and 𝑢13 defined as follows:

• 𝑢0(𝑡) (control over reinfection/reactivation)- this refers to preparing patients recov-
ering from TB to avoid possible reinfection/reactivation of the bacteria, scheduling
medical consultations and lab tests periodically. Control the entry of new genotypes
of TB in the population. Also, to inform patients on how to maintain an active
immune system, particularly immunocompromised patients (HIV/AIDS) with ad-
herence to antiretroviral treatment, stimulation of a good (healthy) diet, physical
exercise, among others.

• 𝑢11(𝑡) (control for TB-Only)- this includes personal respiratory protection, educa-
tional programs for public health, and activities that ensure treatment completion to
reduce relapse following treatment. Patients receiving treatment for MDR-TB should
be monitored to ensure the completion of the treatment. Otherwise, TB infection
may become resistant. As part of this control, it is needed to check blood glucose
levels and make HIV tests to determine if the person is diabetic and/or HIV positive.

• 𝑢12(𝑡) (control for HIV/AIDS cases)- the control will be based on clinical follow-up
(we assume all cases are diagnosed), and we consider all cases are using antiretroviral
therapy and have a follow-up on their CD4 count and viral load. In particular, from
the beginning of treatment for TB, the return of the patient should occur in up to
15 days. Monthly consultations until the end of the TB treatment. Consultations
by other members of the multi-professional team, with the objective of promoting
treatment adherence and identifying interoccurrences that may interfere with the
correct use of TB drugs and antiretrovirals. Another important element is to check
blood glucose levels and determine if the person is diabetic.

• 𝑢13(𝑡) (control for diabetics cases)- the control is focused on monitoring glycemic
parameters throughout TB treatment, and promoting adherence to treatment, identi-
fying interoccurrences that may interfere with the efficacy of TB treatment. Another
important factor is to make HIV tests to control the exits of this subpopulation.

In particular, 𝑢11(𝑡) is the control in the entrance to compartments 𝐼𝑇2 , 𝐼𝑇3 , 𝑢12(𝑡) is the control
in the entrance to compartments 𝐼𝐻2 , 𝐼𝐻3 , 𝑢13(𝑡) is the control in the entrance to compartment
𝐼𝐷2 , 𝐼𝐷3 , 𝑢0(𝑡) is the control in the entrance to compartments 𝐸𝑇 , 𝐸𝐻 and 𝐸𝐷 compartments
by reinfection/reactivation and (1−𝑢0), (1−𝑢11), (1−𝑢12) and (1−𝑢13) represent the effort
that prevents failure of the treatment. System (3.1) shows the incorporation of the controls
in the compartments of model (2.5). The Figure (3.1) shows the control dynamics.
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Figure 3.1: Schematic representation of model with controls, the arrows (discontinued) and boxes red
represents the inputs and compartments to be controlled.
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𝑑𝑡
= 𝑓5 = 𝜔𝐻𝜆(𝑆𝐻 + (1 − 𝑢0)𝛽

′

1𝑅𝐻 ) + 𝛼𝐻 (𝐸𝑇 + 𝐸𝐷) − (𝜖∗𝐻𝜂 + 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷)𝐸𝐻 ,

𝑑𝐸𝐷

𝑑𝑡
= 𝑓6 = 𝜔𝐷𝜆(𝑆𝐷 + (1 − 𝑢0)𝛽

′

1𝑅𝐷) + 𝛼𝐻𝐷𝐸𝐻 + 𝛼𝐷𝐸𝑇 − (𝛼𝐻 + 𝜖∗𝐷𝜂 + 𝜇 + 𝜇𝐷)𝐸𝐷,

𝑑𝐼𝑇1
𝑑𝑡

= 𝑓7 = (1 − 𝛽∗)𝜂𝐸𝑇 − ((1 − 𝑢11)𝑙𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑑𝑇 + 𝜂11)𝐼𝑇1 ,

𝑑𝐼𝑇2
𝑑𝑡

= 𝑓8 = (1 − 𝑝𝑇 )𝛽∗𝜂𝐸𝑇 + (1 − 𝑢11)𝑙𝑇 𝐼𝑇1 − (𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝑚𝑇 + 𝜇 + 𝑡
′

𝑇 𝑑𝑇 + (1 − 𝑢11)𝜂14)𝐼𝑇2 ,

𝑑𝐼𝐻1

𝑑𝑡
= 𝑓9 = 𝑡𝐻𝛼𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − 𝛽∗)𝜖∗𝐻𝜂𝐸𝐻 − ((1 − 𝑢12)𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 + 𝜂12 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻1 ,

𝑑𝐼𝐻2

𝑑𝑡
= 𝑓10 = 𝑡𝐻𝛼𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝐻 )𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + (1 − 𝑢12)𝑙𝐻 𝐼𝐻1 − (𝑚𝐻 + 𝜇 + 𝜇𝐻 + 𝑡

′

𝐻𝑑𝑇𝐻

+ (1 − 𝑢12)𝜂15 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻2 ,
𝑑𝐼𝐷1

𝑑𝑡
= 𝑓11 = 𝑡𝐷𝛼𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻1 + (1 − 𝛽∗)𝜖∗𝐷𝜂𝐸𝐷 − ((1 − 𝑢13)𝑙𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝑑𝑇𝐷 + 𝜂13 + 𝜇𝐷)𝐼𝐷1 ,

𝑑𝐼𝐷2

𝑑𝑡
= 𝑓12 = 𝑡𝐷𝛼𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝐷)𝜖∗𝐷𝛽

∗𝜂𝐸𝐷 + (1 − 𝑢13)𝑙𝐷𝐼𝐷1 − (𝑚𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝑡
′

𝐷𝑑𝑇𝐷+

(1 − 𝑢13)𝜂16 + 𝜇𝐷)𝐼𝐷2 ,
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𝑑𝐼𝑇3
𝑑𝑡

= 𝑓13 = 𝑝𝑇𝛽∗𝜂𝐸𝑇 + (1 − 𝑢11)𝜂14𝐼𝑇2 − (𝜂∗11 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑡∗𝑇 𝑑𝑇 )𝐼𝑇3 ,

𝑑𝐼𝐻3

𝑑𝑡
= 𝑓14 = 𝑝𝐻𝛽∗𝜖∗𝐻𝜂𝐸𝐻 + (1 − 𝑢12)𝜂15𝐼𝐻2 + 𝑡𝐻𝛼𝐻 (𝐼𝑇3 + 𝐼𝐷3) − (𝜂∗12 + 𝑡𝐻𝐷𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 )𝐼𝐻3 ,

𝑑𝐼𝐷3

𝑑𝑡
= 𝑓15 = 𝑝𝐷𝛽∗𝜖∗𝐷𝜂𝐸𝐷 + (1 − 𝑢13)𝜂16𝐼𝐷2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝐷𝐼𝑇3 − (𝑡𝐻𝛼𝐻 + 𝜂∗13 + 𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷)𝐼𝐷3 ,

𝑑𝑅𝑇

𝑑𝑡
= 𝑓16 = 𝑚𝑇 𝐼𝑇2 + 𝜂11𝐼𝑇1 + 𝜂∗11𝐼𝑇3 − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + (1 − 𝑢0)𝛽

′

1𝜆)𝑅𝑇 ,

𝑑𝑅𝐻

𝑑𝑡
= 𝑓17 = 𝑚𝐻 𝐼𝐻2 + 𝜂12𝐼𝐻1 + 𝜂∗12𝐼𝐻3 + 𝛼𝐻 (𝑅𝑇 + 𝑅𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + (1 − 𝑢0)𝛽

′

1𝜔𝐻𝜆)𝑅𝐻 ,

𝑑𝑅𝐷

𝑑𝑡
= 𝑓18 = 𝑚𝐷𝐼𝐷2 + 𝜂13𝐼𝐷1 + 𝜂∗13𝐼𝐷3 + 𝛼𝐷𝑅𝑇 + 𝛼𝐻𝐷𝑅𝐻 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + (1 − 𝑢0)𝛽

′

1𝜔𝐷𝜆)𝑅𝐷.

(3.1)

Optimal Control Problem and its Analysis
Our objective functional to be minimized is

𝐽 (𝑢0, 𝑢11, 𝑢12, 𝑢13) =∫
𝑡𝑓

𝑡0
(𝐸𝑇 (𝑡) + 𝐸𝐻 (𝑡) + 𝐸𝐷(𝑡)) + (𝐼𝑇2(𝑡) + 𝐼𝐻2(𝑡) + 𝐼𝐷2(𝑡)) + (𝐼𝑇3(𝑡) + 𝐼𝐻3(𝑡) + 𝐼𝐷3(𝑡))

+
1
2(

𝐵0𝑢20(𝑡) + (𝐵1 + 𝐵4)𝑢211(𝑡) + (𝐵2 + 𝐵5)𝑢212(𝑡) + (𝐵3 + 𝐵6)𝑢213(𝑡))𝑑𝑡.

The structure of our functional is consistent with recent works (see [67, 108, 64, 106,
113, 4, 57]).
The coefficients 𝐵𝑚, 𝑚 = 0, 1, ..., 6 represent the constant weight associated with the relative
costs of implementing the respective control strategies on a finite time horizon [𝑡0, 𝑡𝑓 ]
(where the initial time is 𝑡0 = 0 and the final time is 𝑡𝑓 = 10 in years) and consists in the
cost induced by the efforts of the four different types of controls. The 𝐵1, 𝐵2 and 𝐵3 are
associated with the implementation of control on the MDR-TB and 𝐵4, 𝐵5 and 𝐵6 to the
XDR-TB. Given the characteristics of resistance to tuberculosis and its treatment, which in
some cases may include hospitalization, high drug costs, the use of other drugs to stimulate
the immune system, among others, let’s assume that 𝐵1 < 𝐵4, 𝐵2 < 𝐵5 and 𝐵3 < 𝐵6 and
these constants cannot be neither zeros nor very large (realistic values). The cost involved
in the control about the compartments 𝐼𝑇2 , 𝐼𝐻2 and 𝐼𝐷2 is taken as ∫ 𝑡𝑓

𝑡0
𝐵1𝑢211
2 , ∫ 𝑡𝑓

𝑡0
𝐵2𝑢212
2 , ∫ 𝑡𝑓

𝑡0
𝐵3𝑢213
2 ,

for 𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 are ∫ 𝑡𝑓
𝑡0

𝐵4𝑢211
2 , ∫ 𝑡𝑓

𝑡0
𝐵5𝑢212
2 , ∫ 𝑡𝑓

𝑡0
𝐵6𝑢213
2 , for 𝐸𝑇 , 𝐸𝐻 and 𝐸𝐷 are ∫ 𝑡𝑓

𝑡0
𝐵0𝑢20
2 . We seek to find

the optimal controls 𝑢∗0, 𝑢∗11, 𝑢∗12 and 𝑢∗13 that satisfy

𝐽 (𝑢∗0, 𝑢
∗
11, 𝑢

∗
12, 𝑢

∗
13) = min

𝑈𝑎𝑑
𝐽 (𝑢0, 𝑢11, 𝑢12, 𝑢13), (3.2)

where 𝑈𝑎𝑑 = {(𝑢0, 𝑢11, 𝑢12, 𝑢13)| 𝑢0, 𝑢11, 𝑢12, 𝑢13, Lebesgue measurable, 0 ≤ 𝑢𝑘 ≤
1, 𝑘 = 0, 11, 12, 13, ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ]}.

The necessary and sufficient conditions of optimal control

We will study the sufficient conditions for the existence of an optimal control for our
control system using the conditions in Theorem (4.1) and its corresponding Corollary in
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[59]. After that, we will characterize the optimal control functions by using Pontryagin’s
Maximum Principle and then we derive the necessary conditions for our control problem.
We have that solutions of the control system are bounded and non-negative for finite time
interval in the biologically feasible region. These results are important to establish the
existence of an optimal control.

We denote the vector of states 𝑥 = [𝑆𝑇 , 𝑆𝐻 , 𝑆𝐷, 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 ,
𝑅𝑇 , 𝑅𝐻 , 𝑅𝐷]𝑇 and the controls vector �⃗� = [𝑢0, 𝑢11, 𝑢12, 𝑢13]𝑇 .

Theorem 3.2.1. There is an optimal control 𝑢∗ = (𝑢∗0, 𝑢∗11, 𝑢∗12, 𝑢∗13) to problem

min 𝐽 (𝑢0, 𝑢11, 𝑢12, 𝑢13) subject to model (2.5) with controls

where
𝑢∗ ∈ 𝑈𝑎𝑑 .

Proof. We use the requirements of Theorem (4.1) and Corollary (4.1) in [59] to prove the
Theorem (3.2.1). Let 𝑙(𝑡, 𝑥, �⃗�) as the right-hand of (2.5) with controls. We will show that
the following requirements are satisfied:

I. 𝑙 is of class 𝐶1 and there is a constant 𝐶 such that
|𝑙(𝑡, 0, 0)| ≤ 𝐶, |𝑙𝑥(𝑡, 𝑥, �⃗�)| ≤ 𝐶(1 + |�⃗�|), |𝑙𝑢(𝑡, 𝑥, �⃗�)| ≤ 𝐶.

II. The admissible set 𝔽 of all solutions to system (2.5) with controls (3.1) in 𝑈𝑎𝑑 is non
empty;

III. 𝑙(𝑡, 𝑥, �⃗�) = 𝑎1(𝑡, 𝑥) + 𝑎2(𝑡, 𝑥)�⃗�;

IV. The control set 𝑈 = [0, 1] × [0, 1] × [0, 1] is closed, convex and compact;

V. The integrand of the objective functional is convex in 𝑈 .

We can write system (2.5) with controls as

𝑙(𝑡, 𝑥, �⃗�) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆)𝑆𝑇
𝑀𝐻 + 𝛼𝐻 (𝑆𝑇 + 𝑆𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝜔𝐻𝜆)𝑆𝐻
𝑀𝐷 + 𝛼𝐻𝐷𝑆𝐻 + 𝛼𝐷𝑆𝑇 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝜔𝐷𝜆)𝑆𝐷
𝜆(𝑆𝑇 + (1 − 𝑢0)𝛽

′

1𝑅𝑇 ) − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝜂)𝐸𝑇
𝜔𝐻𝜆(𝑆𝐻 + (1 − 𝑢0)𝛽

′

1𝑅𝐻 ) + 𝛼𝐻 (𝐸𝑇 + 𝐸𝐷) − (𝜖∗𝐻𝜂 + 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷)𝐸𝐻
𝜔𝐷𝜆(𝑆𝐷 + (1 − 𝑢0)𝛽

′

1𝑅𝐷) + 𝛼𝐻𝐷𝐸𝐻 + 𝛼𝐷𝐸𝑇 − (𝛼𝐻 + 𝜖∗𝐷𝜂 + 𝜇 + 𝜇𝐷)𝐸𝐷
(1 − 𝛽∗)𝜂𝐸𝑇 − ((1 − 𝑢11)𝑙𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑑𝑇 + 𝜂11)𝐼𝑇1

(1 − 𝑝𝑇 )𝛽∗𝜂𝐸𝑇 + (1 − 𝑢11)𝑙𝑇 𝐼𝑇1 − (𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝑚𝑇 + 𝜇 + 𝑡 ′𝑇 𝑑𝑇 + (1 − 𝑢11)𝜂14)𝐼𝑇2
𝑡𝐻𝛼𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − 𝛽∗)𝜖∗𝐻𝜂𝐸𝐻 − ((1 − 𝑢12)𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 + 𝜂12 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻1

𝑡𝐻𝛼𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝐻 )𝜖∗𝐻𝛽∗𝜂𝐸𝐻 + (1 − 𝑢12)𝑙𝐻 𝐼𝐻1 − (𝑚𝐻 + 𝜇 + 𝜇𝐻 + 𝑡 ′𝐻𝑑𝑇𝐻 + (1 − 𝑢12)𝜂15 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻2

𝑡𝐷𝛼𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻1 + (1 − 𝛽∗)𝜖∗𝐷𝜂𝐸𝐷 − ((1 − 𝑢13)𝑙𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝑑𝑇𝐷 + 𝜂13)𝐼𝐷1

𝑡𝐷𝛼𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝐷)𝜖∗𝐷𝛽∗𝜂𝐸𝐷 + (1 − 𝑢13)𝑙𝐷𝐼𝐷1 − (𝑚𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝑡 ′𝐷𝑑𝑇𝐷 + (1 − 𝑢13)𝜂16)𝐼𝐷2

𝑝𝑇 𝜂𝐸𝑇 + (1 − 𝑢11)𝜂14𝐼𝑇2 − (𝜂∗11 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑡∗𝑇 𝑑𝑇 )𝐼𝑇3
𝑝𝐻𝜖∗𝐻𝜂𝐸𝐻 + (1 − 𝑢12)𝜂15𝐼𝐻2 + 𝑡𝐻𝛼𝐻 (𝐼𝑇3 + 𝐼𝐷3) − (𝜂∗12 + 𝑡𝐻𝐷𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 )𝐼𝐻3

𝑝𝐷𝜖∗𝐷𝜂𝐸𝐷 + (1 − 𝑢13)𝜂16𝐼𝐷2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝐷𝐼𝑇3 − (𝑡𝐻𝛼𝐻 + 𝜂∗13 + 𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷)𝐼𝐷3

𝑚𝑇 𝐼𝑇2 + 𝜂11𝐼𝑇1 + 𝜂∗11𝐼𝑇3 − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + (1 − 𝑢0)𝛽
′

1𝜆)𝑅𝑇
𝑚𝐻 𝐼𝐻2 + 𝜂12𝐼𝐻1 + 𝜂∗12𝐼𝐻3 + 𝛼𝐻 (𝑅𝑇 + 𝑅𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + (1 − 𝑢0)𝛽

′

1𝜔𝐻𝜆)𝑅𝐻
𝑚𝐷𝐼𝐷2 + 𝜂13𝐼𝐷1 + 𝜂∗13𝐼𝐷3 + 𝛼𝐻𝑅𝑇 + 𝛼𝐻𝐷𝑅𝐻 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + (1 − 𝑢0)𝛽

′

1𝜔𝐷𝜆)𝑅𝐷

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, we have that 𝑙(𝑡, 𝑥, �⃗�) is of class 𝐶1 by the model construction. Let’s
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|𝑙𝑢(𝑡, 𝑥, �⃗�)| =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0

−𝛽′

1𝜆𝑅𝑇 0 0 0
−𝛽′

1𝜔𝐻𝜆𝑅𝐻 0 0 0
−𝛽′

1𝜔𝐷𝜆𝑅𝐷 0 0 0
0 𝑙𝑇 𝐼𝑇1 0 0
0 −𝑙𝑇 𝐼𝑇1 + 𝜂14𝐼𝑇2 0 0
0 0 𝑙𝐻 𝐼𝐻1 0
0 0 −𝑙𝐻 𝐼𝐻1 + 𝜂15𝐼𝐻2 0
0 0 0 𝑙𝐷𝐼𝐷1

0 0 0 −𝑙𝐷𝐼𝐷1 + 𝜂16𝐼𝐷2

0 −𝜂14𝐼𝑇2 0 0
0 0 −𝜂15𝐼𝐻2 0
0 0 0 −𝜂16𝐼𝐷2

𝛽′

1𝜆𝑅𝑇 0 0 0
𝛽′

1𝜔𝐻𝜆𝑅𝐻 0 0 0
𝛽′

1𝜔𝐷𝜆𝑅𝐷 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

𝑙𝑥(𝑡, 𝑥, �⃗�) = [𝐀 ∣ 𝐁], where
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𝐀
=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

−
𝑘 1

0
0

0
0

0
0

−
𝑐 1

−
𝑐 1

−
𝜖 𝐻

𝑐 1
−
𝜖 𝐻

𝑐 1
𝛼 𝐷

−
𝑘 2

0
𝛼 𝐷

0
0

0
−
𝑐 2

−
𝑐 2

−
𝜖 𝐻

𝑐 2
−
𝜖 𝐻

𝑐 2
𝛼 𝐻

𝛼 𝐻
𝐷

−
𝑘 3

0
0

0
0

−
𝑐 3

−
𝑐 3

−
𝜖 𝐻

𝑐 3
−
𝜖 𝐻

𝑐 3
𝜆

0
0

−
𝑘 1

1
0

0
𝑐 4

𝑐 4
𝜖 𝐻

𝑐 4
𝜖 𝐻

𝑐 4
0

𝜔
𝐻
𝜆

0
𝛼 𝐷

−
𝑘 2

1
𝛼 𝐷

𝑐 5
𝑐 5

𝜖 𝐻
𝑐 5

𝜖 𝐻
𝑐 5

0
0

𝜔
𝐷
𝜆

𝛼 𝐻
𝛼 𝐻

𝐷
−
𝑘 3

1
𝑐 6

𝑐 6
𝜖 𝐻

𝑐 6
𝜖 𝐻

𝑐 6
0

0
0

(1
−
𝛽∗
)𝜂

0
0

−
𝑘𝑐 12

0
0

0
0

0
0

(1
−
𝑝 𝑇
)𝛽

∗ 𝜂
0

0
(1

−
𝑢 1

1)
𝑙 𝑇

−
𝑘𝑐 13

0
0

0
0

0
0

(1
−
𝛽∗
)𝜖

∗ 𝐻
𝜂

0
𝑡 𝐻
𝛼 𝐻

0
−
𝑘𝑐 22

0
0

0
0

0
(1

−
𝑝 𝑇
)𝜖

∗ 𝐻
𝛽∗
𝜂

0
0

𝑡 𝐻
𝛼 𝐻

(1
−
𝑢 1

2)
𝑙 𝐻

−
𝑘𝑐 23

0
0

0
0

0
(1

−
𝛽∗
)𝜖

∗ 𝐷
𝜂

0
0

𝑡 𝐻
𝐷
𝛼 𝐻

𝐷
0

0
0

0
0

0
(1

−
𝑝 𝐷

)𝜖
∗ 𝐷
𝛽∗
𝜂

0
𝑡 𝐻
𝛼 𝐻

0
𝑡 𝐻

𝐷
𝛼 𝐻

𝐷
0

0
0

𝑝 𝑇
𝛽∗
𝜂

0
0

0
(1

−
𝑢 1

1)
𝜂 1

4
0

0
0

0
0

0
𝑝 𝐻

𝛽∗
𝜖∗ 𝐻

𝜂
0

0
0

0
(1

−
𝑢 1

2)
𝜂 1

5
0

0
0

0
0

𝑝 𝐷
𝛽∗
𝜖∗ 𝐷
𝜂

0
0

0
0

0
0

0
0

0
0

𝜂 1
1
−
(𝑐

4
−
𝑐 1
)

𝑀
𝑇
−
(𝑐

4
−
𝑐 1
)

−
𝜖 𝐻

(𝑐
4
−
𝑐 1
)

−
𝜖 𝐻

(𝑐
4
−
𝑐 1
)

0
0

0
0

0
0

−
(𝑐

5
−
𝑐 2
)

−
(𝑐

5
−
𝑐 2
)

𝜂 1
2
−
𝜖 𝐻

(𝑐
5
−
𝑐 2
)

𝑚
𝐻
−
𝜖 𝐻

(𝑐
5
−
𝑐 2
)

0
0

0
0

0
0

−
(𝑐

6
−
𝑐 3
)

−
(𝑐

6
−
𝑐 3
)

−
𝜖 𝐻

(𝑐
6
−
𝑐 3
)

−
𝜖 𝐻

(𝑐
6
−
𝑐 3
)

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠,
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𝐁
=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

−
𝜖 𝐷
𝑐 1

−
𝜖 𝐷
𝑐 1

−
𝑐 1

−
𝜖 𝐻

𝑐 1
−
𝜖 𝐷
𝑐 1

0
0

0
−
𝜖 𝐷
𝑐 2

−
𝜖 𝐷
𝑐 2

−
𝑐 2

−
𝜖 𝐻

𝑐 2
−
𝜖 𝐷
𝑐 2

0
0

0
−
𝜖 𝐷
𝑐 3

−
𝜖 𝐷
𝑐 3

−
𝑐 3

−
𝜖 𝐻

𝑐 3
−
𝜖 𝐷
𝑐 3

0
0

0
𝜖 𝐷
𝑐 4

𝜖 𝐷
𝑐 4

𝑐 4
𝜖 𝐻

𝑐 4
𝜖 𝐷
𝑐 4

(1
−
𝑢 0
)𝛽

′ 1𝜆
0

0
𝜖 𝐷
𝑐 5

𝜖 𝐷
𝑐 5

𝑐 5
𝜖 𝐻

𝑐 5
𝜖 𝐷
𝑐 5

0
(1

−
𝑢 0
)𝛽

′ 1𝜔
𝐻
𝜆

0
𝜖 𝐷
𝑐 6

𝜖 𝐷
𝑐 6

𝑐 6
𝜖 𝐻

𝑐 6
𝜖 𝐷
𝑐 6

0
0

(1
−
𝑢 0
)𝛽

′ 1𝜔
𝐷
𝜆

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

𝑡 𝐻
𝛼 𝐻

0
0

0
0

0
0

0
0

𝑡 𝐻
𝛼 𝐻

0
0

0
0

0
0

−
𝑘𝑐 32

0
0

0
0

0
0

0
(1

−
𝑢 1

3)
𝑙 𝐷

−
𝑘𝑐 33

0
0

0
0

0
0

0
0

−
𝑘 1

4
0

0
0

0
0

0
0

𝑡 𝐻
𝛼 𝐻

−
𝑘 2

4
𝑡 𝐻
𝛼 𝐻

0
0

0
0

(1
−
𝑢 1

3)
𝜂 1

6
𝑡 𝐷
𝛼 𝐷

𝑡 𝐻
𝐷
𝛼 𝐻

𝐷
−
𝑘 3

4
0

0
0

−
𝜖 𝐷
(𝑐

4
−
𝑐 1
)

−
𝜖 𝐷
(𝑐

4
−
𝑐 1
)

𝜂∗ 11
−
(𝑐

4
−
𝑐 1
)

−
𝜖 𝐻

(𝑐
4
−
𝑐 1
)

−
𝜖 𝐷
(𝑐

4
−
𝑐 1
)

−
𝑘 4

0
0

0
−
𝜖 𝐷
(𝑐

5
−
𝑐 2
)

−
𝜖 𝐷
(𝑐

5
−
𝑐 2
)

−
(𝑐

5
−
𝑐 2
)

𝜂∗ 12
−
𝜖 𝐻

(𝑐
5
−
𝑐 2
)

−
𝜖 𝐷
(𝑐

5
−
𝑐 2
)

𝛼 𝐻
−
𝑘 5

0
𝛼 𝐻

𝜂 1
3
−
𝜖 𝐷
(𝑐

6
−
𝑐 3
)

𝑚
𝐷
−
𝜖 𝐷
(𝑐

6
−
𝑐 3
)

−
(𝑐

6
−
𝑐 3
)

−
𝜖 𝐻

(𝑐
6
−
𝑐 3
)

𝜂∗ 13
−
𝜖 𝐷
(𝑐

6
−
𝑐 3
)

𝛼 𝐷
𝛼 𝐻

𝐷
−
𝑘 6

0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠,
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where 𝑐1 =
𝛼∗𝑆𝑇
𝑁

, 𝑐2 =
𝜔𝐻𝛼∗𝑆𝐻

𝑁
, 𝑐3 =

𝜔𝐷𝛼∗𝑆𝐷
𝑁

, 𝑐4 = 𝑐1 +
(1 − 𝑢0)𝛽

′

1𝛼∗𝑅𝑇

𝑁
,

𝑐5 = 𝑐2 +
(1 − 𝑢0)𝛽

′

1𝜔𝐻𝛼∗𝑅𝐻

𝑁
, 𝑐6 = 𝑐3 +

(1 − 𝑢0)𝛽
′

1𝜔𝐷𝛼∗𝑅𝐷

𝑁
, 𝑘10 = 𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆,

𝑘20 = 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷 + 𝜔𝐻𝜆, 𝑘30 = 𝜇 + 𝜇𝐷 + 𝛼𝐻 + 𝜔𝐷𝜆, 𝑘40 = 𝜇 + 𝛼𝐻 + 𝛼𝐷 + (1 − 𝑢0)𝛽
′

1𝜆,
𝑘50 = 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷 + (1 − 𝑢0)𝛽

′

1𝜔𝐻𝜆, 𝑘60 = 𝜇 + 𝜇𝐷 + 𝛼𝐻 + (1 − 𝑢0)𝛽
′

1𝜔𝐷𝜆. The 𝑘𝑐12, 𝑘𝑐13,
𝑘𝑐22, 𝑘𝑐23, 𝑘𝑐32 and 𝑘𝑐33 represent the 𝑘12, 𝑘13, 𝑘22, 𝑘23, 𝑘32 and 𝑘33, with the respective control
expressions. We have that |𝑙(𝑡, 0, 0)| = | (𝑀𝑇 , 𝑀𝐻 , 𝑀𝐷, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

𝑇
|.

All the variables of the model are positive and bounded by definition of the Ω

(biologically feasible region). Remember that, Ω =
{
(𝑆𝑖, 𝐸𝑖, 𝐼𝑖1 , 𝐼𝑖2 , 𝐼𝑖3 , 𝑅𝑖) ∈ ℝ18

+ , 𝑖 = 𝑇 , 𝐻 , 𝐷 ∶

𝑁 (𝑡) ≤
𝑀𝑇 +𝑀𝐻 +𝑀𝐷

𝜇

}
, where 𝑁 (𝑡) is the total population. Then, there is a constant 𝐶

such that |𝑙(𝑡, 0, 0)| ≤ 𝐶, |𝑙𝑥(𝑡, 𝑥, �⃗�)| ≤ 𝐶(1 + |�⃗�|), |𝑙𝑢(𝑡, 𝑥, �⃗�)| ≤ 𝐶. Thus condition I. is
satisfied.

By the construction of the model and the condition I., system (2.5) with controls has a
unique solution for constant controls, this implies that condition II. is satisfied.

We can write the system (2.5) with controls as

𝑙(𝑡, 𝑥, �⃗�) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑀𝑇 − (𝜇 + 𝛼𝐻 + 𝛼𝐷 + 𝜆)𝑆𝑇
𝑀𝐻 + 𝛼𝐻 (𝑆𝑇 + 𝑆𝐷) − (𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝜔𝐻𝜆)𝑆𝐻
𝑀𝐷 + 𝛼𝐻𝐷𝑆𝐻 + 𝛼𝐷𝑆𝑇 − (𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝜔𝐷𝜆)𝑆𝐷

𝜆(𝑆𝑇 + 𝛽′

1𝑅𝑇 ) − (𝛼𝐻 + 𝛼𝐷 + 𝜇 + 𝜂)𝐸𝑇
𝜔𝐻𝜆(𝑆𝐻 + 𝛽′

1𝑅𝐻 ) + 𝛼𝐻 (𝐸𝑇 + 𝐸𝐷) − (𝜖∗𝐻𝜂 + 𝜇 + 𝜇𝐻 + 𝛼𝐻𝐷)𝐸𝐻
𝜔𝐷𝜆(𝑆𝐷 + 𝛽′

1𝑅𝐷) + 𝛼𝐻𝐷𝐸𝐻 + 𝛼𝐷𝐸𝑇 − (𝛼𝐻 + 𝜖∗𝐷𝜂 + 𝜇 + 𝜇𝐷)𝐸𝐷
(1 − 𝛽∗)𝜂𝐸𝑇 − (𝑙𝑇 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑑𝑇 + 𝜂11)𝐼𝑇1

(1 − 𝑝𝑇 )𝛽∗𝜂𝐸𝑇 + 𝑙𝑇 𝐼𝑇1 − (𝜂14 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝑚𝑇 + 𝜇 + 𝑡 ′𝑇 𝑑𝑇 )𝐼𝑇2
𝑡𝐻𝛼𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − 𝛽∗)𝜖∗𝐻𝜂𝐸𝐻 − (𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 + 𝜂12 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻1

𝑡𝐻𝛼𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝐻 )𝜖∗𝐻𝛽∗𝜂𝐸𝐻 + 𝑙𝐻 𝐼𝐻1 − (𝜂15 + 𝑚𝐻 + 𝜇 + 𝜇𝐻 + 𝑡 ′𝐻𝑑𝑇𝐻 + 𝑡𝐻𝐷𝛼𝐻𝐷)𝐼𝐻2

𝑡𝐷𝛼𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻1 + (1 − 𝛽∗)𝜖∗𝐷𝜂𝐸𝐷 − (𝑙𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝑑𝑇𝐷 + 𝜂13)𝐼𝐷1

𝑡𝐷𝛼𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝐷)𝜖∗𝐷𝛽∗𝜂𝐸𝐷 + 𝑙𝐷𝐼𝐷1 − (𝜂16 + 𝑚𝐷 + 𝑡𝐻𝛼𝐻 + 𝜇 + 𝜇𝐷 + 𝑡 ′𝐷𝑑𝑇𝐷)𝐼𝐷2

𝑝𝑇 𝜂𝐸𝑇 + 𝜂14𝐼𝑇2 − (𝜂∗11 + 𝑡𝐻𝛼𝐻 + 𝑡𝐷𝛼𝐷 + 𝜇 + 𝑡∗𝑇 𝑑𝑇 )𝐼𝑇3
𝑝𝐻𝜖∗𝐻𝜂𝐸𝐻 + 𝑡𝐻𝛼𝐻 (𝐼𝑇3 + 𝐼𝐷3) + 𝜂15𝐼𝐻2 − (𝜂∗12 + 𝑡𝐻𝐷𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 )𝐼𝐻3

𝑝𝐷𝜖∗𝐷𝜂𝐸𝐷 + 𝑡𝐻𝐷𝛼𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝐷𝐼𝑇3 + 𝜂16𝐼𝐷2 − (𝑡𝐻𝛼𝐻 + 𝜂∗13 + 𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷)𝐼𝐷3

𝑚𝑇 𝐼𝑇2 + 𝜂11𝐼𝑇1 + 𝜂∗11𝐼𝑇3 − (𝛽′

1𝜆 + 𝛼𝐻 + 𝛼𝐷 + 𝜇)𝑅𝑇
𝑚𝐻 𝐼𝐻2 + 𝜂12𝐼𝐻1 + 𝜂∗12𝐼𝐻3 + 𝛼𝐻 (𝑅𝑇 + 𝑅𝐷) − (𝛽′

1𝜔𝐻𝜆 + 𝛼𝐻𝐷 + 𝜇 + 𝜇𝐻 )𝑅𝐻
𝑚𝐷𝐼𝐷2 + 𝜂13𝐼𝐷1 + 𝜂∗13𝐼𝐷3 + 𝛼𝐻𝑅𝑇 + 𝛼𝐻𝐷𝑅𝐻 − (𝛽′

1𝜔𝐷𝜆 + 𝛼𝐻 + 𝜇 + 𝜇𝐷)𝑅𝐷

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎1(𝑡,𝑥)

+ 𝑙𝑢(𝑡, 𝑥, �⃗�)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎2(𝑡,𝑥)

×
⎛
⎜
⎜
⎜
⎝

𝑢0
𝑢11
𝑢12
𝑢13

⎞
⎟
⎟
⎟
⎠

⏟⏞⏞⏟⏞⏞⏟
�⃗�

.

Then, 𝑙(𝑡, 𝑥, �⃗�) = 𝑎1(𝑡, 𝑥) + 𝑎2(𝑡, 𝑥)�⃗�.
This means that condition III. holds. By construction the sets 𝑈 is closed, convex and

compact and condition IV. is satisfied.
Now, we are going to prove the convexity of the integrand in the objective functional

𝑓 (𝑡, 𝑥, �⃗�) =𝐸𝑇 (𝑡) + 𝐸𝐻 (𝑡) + 𝐸𝐷(𝑡) + 𝐼𝑇2(𝑡) + 𝐼𝐻2(𝑡) + 𝐼𝐷2(𝑡) + 𝐼𝑇3(𝑡) + 𝐼𝐻3(𝑡) + 𝐼𝐷3(𝑡) +
𝐵0𝑢20(𝑡)

2
+

(𝐵1 + 𝐵4)𝑢211(𝑡)
2

+
(𝐵2 + 𝐵5)𝑢212(𝑡)

2
+
(𝐵3 + 𝐵6)𝑢213(𝑡)

2
,
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this implies proving that

(1 − 𝑞)𝑓 (𝑡, 𝑥, �⃗�) + 𝑞𝑓 (𝑡, 𝑥, 𝑣) ≥ 𝑓 (𝑡, 𝑥, (1 − 𝑞)�⃗� + 𝑞𝑣),

where �⃗�, 𝑣 are two control vectors with 𝑞 ∈ [0, 1].
It follows that

(1 − 𝑞)𝑓 (𝑡, 𝑥, �⃗�) + 𝑞𝑓 (𝑡, 𝑥, 𝑣) =

(1 − 𝑞)(𝐸𝑇 + 𝐸𝐻 + 𝐸𝐷 + 𝐼𝑇2 + 𝐼𝐻2 + 𝐼𝐷2 + 𝐼𝑇3 + 𝐼𝐻3 + 𝐼𝐷3 +
𝐵0𝑢20
2

+
(𝐵1 + 𝐵4)𝑢211

2
+
(𝐵2 + 𝐵5)𝑢212

2
+

(𝐵3 + 𝐵6)𝑢213
2 ) + 𝑞(𝐸𝑇 + 𝐸𝐻 + 𝐸𝐷 + 𝐼𝑇2 + 𝐼𝐻2 + 𝐼𝐷2 + 𝐼𝑇3 + 𝐼𝐻3 + 𝐼𝐷3 +

𝐵0𝑣20
2

+
(𝐵1 + 𝐵4)𝑣211

2
+
(𝐵2 + 𝐵5)𝑣212

2
+

(𝐵3 + 𝐵6)𝑣213
2 ) = 𝐸𝑇 + 𝐸𝐻 + 𝐸𝐷 + 𝐼𝑇2 + 𝐼𝐻2 + 𝐼𝐷2 + 𝐼𝑇3 + 𝐼𝐻3 + 𝐼𝐷3 +(

𝐵0(𝑞𝑣20 + (1 − 𝑞)𝑢20)
2

+

(𝐵1 + 𝐵4)(𝑞𝑣211 + (1 − 𝑞)𝑢211)
2

+
(𝐵2 + 𝐵5)(𝑞𝑣212 + (1 − 𝑞)𝑢212)

2
+
(𝐵3 + 𝐵6)(𝑞𝑣213 + (1 − 𝑞)𝑢213)

2 ),

and

𝑓 (𝑡, 𝑥, (1 − 𝑞)�⃗� + 𝑞𝑣) = (𝐸𝑇 + 𝐸𝐻 + 𝐸𝐷 + 𝐼𝑇2 + 𝐼𝐻2 + 𝐼𝐷2 + 𝐼𝑇3 + 𝐼𝐻3 + 𝐼𝐷3 +
𝐵0

2 [(1 − 𝑞)𝑢0 + 𝑞𝑣0]

2

+

(𝐵1 + 𝐵4)
2 [(1 − 𝑞)𝑢11 + 𝑞𝑣11]

2

+
(𝐵2 + 𝐵5)

2 [(1 − 𝑞)𝑢12 + 𝑞𝑣12]

2

+
(𝐵3 + 𝐵6)

2 [(1 − 𝑞)𝑢13 + 𝑞𝑣13]

2

.

Then, we have

(1 − 𝑞)𝑓 (𝑡, 𝑥, �⃗�) + 𝑞𝑓 (𝑡, 𝑥, 𝑣) − 𝑓 (𝑡, 𝑥, (1 − 𝑞)�⃗� + 𝑞𝑣) =
𝐵0

2 ((1 − 𝑞)𝑢20 + 𝑞𝑣20 − ((1 − 𝑞)𝑢0 + 𝑞𝑣0)2) +
(𝐵1 + 𝐵4)

2 ((1 − 𝑞)𝑢211 + 𝑞𝑣211 − ((1 − 𝑞)𝑢11 + 𝑞𝑣11)2)+

(𝐵2 + 𝐵5)
2 ((1 − 𝑞)𝑢212 + 𝑞𝑣212 − ((1 − 𝑞)𝑢12 + 𝑞𝑣12)2) +

(𝐵3 + 𝐵6)
2 ((1 − 𝑞)𝑢213 + 𝑞𝑣213 − ((1 − 𝑞)𝑢13 + 𝑞𝑣13)2) =

𝐵0

2 [
√
𝑞(1 − 𝑞)𝑢0 −

√
𝑞(1 − 𝑞)𝑣0]

2

+
(𝐵1 + 𝐵4)

2 [
√
𝑞(1 − 𝑞)𝑢11 −

√
𝑞(1 − 𝑞)𝑣11]

2

+

(𝐵2 + 𝐵5)
2 [

√
𝑞(1 − 𝑞)𝑢12 −

√
𝑞(1 − 𝑞)𝑣12]

2

+
(𝐵3 + 𝐵6)

2 [
√
𝑞(1 − 𝑞)𝑢13 −

√
𝑞(1 − 𝑞)𝑣13]

2

≥ 0.

with this, we prove the requirement V. and the proof of the theorem is complete.

The Pontryagin’s Maximum Principle, provides the necessary conditions an optimal
control must satisfy. Firstly, the Hamiltonian for the control problem is defined by

𝐻 = 𝐸𝑇 (𝑡) + 𝐸𝐻 (𝑡) + 𝐸𝐷(𝑡) + 𝐼𝑇2(𝑡) + 𝐼𝐻2(𝑡) + 𝐼𝐷2(𝑡) + 𝐼𝑇3(𝑡) + 𝐼𝐻3(𝑡) + 𝐼𝐷3(𝑡) +
𝐵0𝑢20(𝑡)

2
+
(𝐵1 + 𝐵4)𝑢211(𝑡)

2
+

(𝐵2 + 𝐵5)𝑢212(𝑡)
2

+
(𝐵3 + 𝐵6)𝑢213(𝑡)

2
+

18

∑
𝑛=1

𝜆𝑛𝑓𝑛, (3.3)
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where 𝜆1, 𝜆2, ⋯, 𝜆18 are the adjoint variables.
Now, we are going to prove the following theorem:

Theorem 3.2.2. Given an optimal controls 𝑢∗0, 𝑢∗11, 𝑢∗12, 𝑢∗13 and associated solutions 𝑆∗∗𝑇 ,
𝑆∗∗𝐻 , 𝑆∗∗𝐷 , 𝐸∗∗

𝑇 , 𝐸∗
𝐻 , 𝐸∗∗

𝐷 , 𝐼 ∗∗𝑇1 , 𝐼 ∗∗𝑇2 , 𝐼 ∗∗𝐻1
, 𝐼 ∗∗𝐻2

, 𝐼 ∗∗𝐷1
, 𝐼 ∗∗𝐷2

, 𝐼 ∗∗𝑇3 , 𝐼 ∗∗𝐻3
, 𝐼 ∗∗𝐷3

, 𝑅∗∗
𝑇 , 𝑅∗∗

𝐻 and 𝑅∗∗
𝐷 , that minimizes

𝐽 (𝑢0, 𝑢11, 𝑢12, 𝑢13) over the domain 𝑈𝑎𝑑 , there exists adjoint function, 𝜆𝑛(𝑡), 𝑛 = 1, .., 18 that
satisfy:

𝑑𝜆𝑛
𝑑𝑡

= −
𝜕𝐻
𝜕𝑥𝑖

, 𝑛 = 1, ..., 18,

where 𝑥𝑖 = 𝑆𝑇 , 𝑆𝐻 , 𝑆𝐷, 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 ,𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 , 𝑅𝑇 , 𝑅𝐻 , 𝑅𝐷. In association
with the transversality conditions 𝜆𝑛(𝑡𝑓 ) = 0 for 𝑛 = 1, 2, ..., 18. Moreover, the following
characterization holds

𝑢∗0 = min
{
max

{
0,
𝛽′

1𝜆((𝜆4 − 𝜆16)𝑅𝑇 + 𝜔𝐻 (𝜆5 − 𝜆17)𝑅𝐻 + 𝜔𝐷(𝜆6 − 𝜆18)𝑅𝐷)
𝐵0

}
, 1
}
,

𝑢∗11 = min
{
max

{
0,
𝑙𝑇 𝐼𝑇1(𝜆8 − 𝜆7) + 𝜂14𝐼𝑇2(𝜆13 − 𝜆8)

𝐵1 + 𝐵4

}
, 1
}
,

𝑢∗12 = min
{
max

{
0,
𝑙𝐻 𝐼𝐻1(𝜆10 − 𝜆9) + 𝜂15𝐼𝐻2(𝜆14 − 𝜆10)

𝐵2 + 𝐵5

}
, 1
}
,

𝑢∗13 = min
{
max

{
0,
𝑙𝐷𝐼𝐷1(𝜆12 − 𝜆11) + 𝜂16𝐼𝐷2(𝜆15 − 𝜆12)

𝐵3 + 𝐵6

}
, 1
}
. (3.4)

Proof. Using Pontryagin’s Maximum Principle [100], the adjoint equations are obtained:

𝑑𝜆1
𝑑𝑡

= −
𝜕𝐻
𝜕𝑆𝑇

= 𝛼𝐻 (𝜆1 − 𝜆3) + 𝛼𝐷(𝜆1 − 𝜆2) + 𝜆(𝜆1 − 𝜆4) + 𝜇𝜆1,

𝑑𝜆2
𝑑𝑡

= −
𝜕𝐻
𝜕𝑆𝐻

= 𝛼𝐻𝐷(𝜆2 − 𝜆3) + 𝜔𝐻𝜆(𝜆2 − 𝜆5) + (𝜇 + 𝜇𝐻 )𝜆2,

𝑑𝜆3
𝑑𝑡

= −
𝜕𝐻
𝜕𝑆𝐷

= 𝛼𝐻 (𝜆3 − 𝜆2) + 𝜔𝐷𝜆(𝜆3 − 𝜆6) + (𝜇 + 𝜇𝐷)𝜆3,

𝑑𝜆4
𝑑𝑡

= −
𝜕𝐻
𝜕𝐸𝑇

= −1 + 𝛼𝐻 (𝜆4 − 𝜆6) + 𝛼𝐷(𝜆4 − 𝜆5) + 𝜂((𝜆4 − 𝜆7) + 𝛽∗((𝜆7 − 𝜆8) + 𝑝𝑇 (𝜆8 − 𝜆13))) + 𝜇𝜆4,

𝑑𝜆5
𝑑𝑡

= −
𝜕𝐻
𝜕𝐸𝐻

= −1 + 𝛼𝐻𝐷(𝜆5 − 𝜆6) + 𝜂𝜖∗𝐻 ((𝜆5 − 𝜆9) + 𝛽∗((𝜆9 − 𝜆10) + 𝑝𝐻 (𝜆10 − 𝜆14))) + (𝜇 + 𝜇𝐻 )𝜆5,

𝑑𝜆6
𝑑𝑡

= −
𝜕𝐻
𝜕𝐸𝐷

= −1 + 𝛼𝐻 (𝜆6 − 𝜆5) + 𝜂𝜖∗𝐷((𝜆6 − 𝜆11) + 𝛽∗((𝜆11 − 𝜆12) + 𝑝𝐷(𝜆12 − 𝜆15))) + (𝜇 + 𝜇𝐷)𝜆6,

𝑑𝜆7
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝑇1

= −1 + 𝑡𝐻𝛼𝐻 (𝜆7 − 𝜆9) + 𝑡𝐷𝛼𝐷(𝜆7 − 𝜆11) + 𝜂11(𝜆7 − 𝜆16) + (1 − 𝑢11)𝑙𝑇 (𝜆7 − 𝜆8)+

𝛼∗

𝑁 ((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽
′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + (𝜇 + 𝑑𝑇 )𝜆7,
𝑑𝜆8
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝑇2

= −1 + (1 − 𝑢11)𝜂14(𝜆8 − 𝜆13) + 𝑡𝐻𝛼𝐻 (𝜆8 − 𝜆10) + 𝑡𝐷𝛼𝐷(𝜆8 − 𝜆12) + 𝑚𝑇 (𝜆8 − 𝜆16)+

𝛼∗

𝑁 ((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽
′

1(𝑅𝑇 (𝜆16 − 𝜆4)+
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𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + (𝜇 + 𝑡
′

𝑇 𝑑𝑇 )𝜆8,
𝑑𝜆9
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝐻1

= −1 + (1 − 𝑢12)𝑙𝐻 (𝜆9 − 𝜆10) + 𝜂12(𝜆9 − 𝜆17) + 𝑡𝐻𝐷𝛼𝐻𝐷(𝜆9 − 𝜆11)+

𝛼∗

𝑁
𝜖𝐻((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + (𝜇 + 𝜇𝐻 + 𝑑𝑇𝐻 )𝜆9,
𝑑𝜆10
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝐻2

= −1 +
𝛼∗

𝑁
𝜖𝐻((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + 𝑡𝐻𝐷𝛼𝐻𝐷(𝜆10 − 𝜆12) + 𝑚𝐻 (𝜆10 − 𝜆17) + (1 − 𝑢11)𝜂15(𝜆10−

𝜆14) + (𝜇 + 𝜇𝐻 + 𝑡
′

𝐻𝑑𝑇𝐻 )𝜆10,
𝑑𝜆11
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝐷1

= −1 +
𝛼∗

𝑁
𝜖𝐷((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + (1 − 𝑢13)𝑙𝐷(𝜆11 − 𝜆12) + 𝜂13(𝜆11 − 𝜆18)+

𝑡𝐻𝛼𝐻 (𝜆11 − 𝜆9) + (𝜇 + 𝜇𝐷 + 𝑑𝑇𝐷)𝜆11,
𝑑𝜆12
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝐷2

= −1 +
𝛼∗

𝑁
𝜖𝐷((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + 𝑡𝐻𝛼𝐻 (𝜆12 − 𝜆10) + 𝑚𝐷(𝜆12 − 𝜆18)+

(1 − 𝑢13)𝜂16(𝜆12 − 𝜆15) + (𝜇 + 𝜇𝐷 + 𝑡
′

𝐷𝑑𝑇𝐷)𝜆12,
𝑑𝜆13
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝑇3

= −1 +
𝛼∗

𝑁 ((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽
′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + 𝜂∗11(𝜆13 − 𝜆16) + 𝑡𝐷𝛼𝐷(𝜆13 − 𝜆15)+

𝑡𝐻𝛼𝐻 (𝜆13 − 𝜆14) + (𝜇 + 𝑡∗𝑇 𝑑𝑇 )𝜆13,
𝑑𝜆14
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝐻3

= −1 +
𝛼∗

𝑁
𝜖𝐻((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + 𝜂∗12(𝜆14 − 𝜆17) + 𝑡𝐻𝐷𝛼𝐻𝐷(𝜆14 − 𝜆15)+

(𝜇 + 𝜇𝐻 + 𝑡∗𝐻𝑑𝑇𝐻 )𝜆14,
𝑑𝜆15
𝑑𝑡

= −
𝜕𝐻
𝜕𝐼𝐷3

= −1 +
𝛼∗

𝑁
𝜖𝐷((𝜆1 − 𝜆4)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆2 − 𝜆5) + 𝜔𝐷𝑆𝐷(𝜆3 − 𝜆6) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆16 − 𝜆4)+

𝜔𝐻𝑅𝐻 (𝜆17 − 𝜆5) + 𝜔𝐷𝑅𝐷(𝜆18 − 𝜆6))) + 𝜂∗13(𝜆15 − 𝜆18) + 𝑡𝐻𝛼𝐻 (𝜆15 − 𝜆14)+

(𝜇 + 𝜇𝐷 + 𝑡∗𝐷𝑑𝑇𝐷)𝜆15,
𝑑𝜆16
𝑑𝑡

= −
𝜕𝐻
𝜕𝑅𝑇

= (1 − 𝑢0)𝛽
′

1𝜆(𝜆16 − 𝜆4) + 𝛼𝐻 (𝜆16 − 𝜆18) + 𝛼𝐷(𝜆16 − 𝜆17) + 𝜇𝜆16,

𝑑𝜆17
𝑑𝑡

= −
𝜕𝐻
𝜕𝑅𝐻

= (1 − 𝑢0)𝛽
′

1𝜆𝜔𝐻 (𝜆17 − 𝜆5) + 𝛼𝐻𝐷(𝜆17 − 𝜆18) + (𝜇 + 𝜇𝐻 )𝜆17,

𝑑𝜆18
𝑑𝑡

= −
𝜕𝐻
𝜕𝑅𝐷

= (1 − 𝑢0)𝛽
′

1𝜆𝜔𝐷(𝜆18 − 𝜆6) + 𝛼𝐻 (𝜆18 − 𝜆17) + (𝜇 + 𝜇𝐷)𝜆18. (3.5)

Optimality is when the equations
𝜕𝐻
𝜕𝑢𝑘

= 0 at 𝑢∗𝑘 for 𝑘 = 0, 11, 12, 13. Then,

𝜕𝐻
𝜕𝑢0

= 𝐵0𝑢0 + 𝛽
′

1𝜆((𝜆16 − 𝜆4)𝑅𝑇 + 𝜔𝐻 (𝜆17 − 𝜆5)𝑅𝐻 + 𝜔𝐷(𝜆18 − 𝜆6)𝑅𝐷) = 0,

which implies that

𝑢∗0 =
𝛽′

1𝜆((𝜆4 − 𝜆16)𝑅𝑇 + 𝜔𝐻 (𝜆5 − 𝜆17)𝑅𝐻 + 𝜔𝐻 (𝜆6 − 𝜆18)𝑅𝐷)
𝐵0

,
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on the set {𝑡 ∶ 0 < 𝑢∗0(𝑡) < 1}.

𝜕𝐻
𝜕𝑢11

= (𝐵1 + 𝐵4)𝑢11 + 𝑙𝑇 𝐼𝑇1(𝜆7 − 𝜆8) + 𝜂14𝐼𝑇2(𝜆8 − 𝜆13)𝑅𝐷 = 0,

which implies that

𝑢∗11 =
𝑙𝑇 𝐼𝑇1(𝜆8 − 𝜆7) + 𝜂14𝐼𝑇2(𝜆13 − 𝜆8)

𝐵1 + 𝐵4
,

on the set {𝑡 ∶ 0 < 𝑢∗11(𝑡) < 1}.
Analogously, for the optimal control 𝑢∗12, we have

𝜕𝐻
𝜕𝑢12

= (𝐵2 + 𝐵5)𝑢12 + 𝑙𝐻 𝐼𝐻1(𝜆9 − 𝜆10) + 𝜂15𝐼𝐻2(𝜆8 − 𝜆14)𝑅𝐻 = 0.

Therefore,

𝑢∗12 =
𝑙𝐻 𝐼𝐻1(𝜆10 − 𝜆9) + 𝜂15𝐼𝐻2(𝜆14 − 𝜆10)

𝐵2 + 𝐵5
,

on the set {𝑡 ∶ 0 < 𝑢∗12(𝑡) < 1}. For the control 𝑢∗13, we obtain

𝜕𝐻
𝜕𝑢13

= (𝐵3 + 𝐵6)𝑢13 + 𝑙𝐷𝐼𝐷1(𝜆11 − 𝜆12) + 𝜂16𝐼𝐷2(𝜆12 − 𝜆15) = 0,

and this implies that

𝑢∗13 =
𝑙𝐷𝐼𝐷1(𝜆12 − 𝜆11) + 𝜂16𝐼𝐷2(𝜆15 − 𝜆12)

𝐵3 + 𝐵6
,

on the control set {𝑡 ∶ 0 < 𝑢∗13(𝑡) < 1}.
Note that the optimality conditions only hold on the interior of the control set.

The second derivative respect to 𝑢𝑘, 𝑘 = 0, 11, 12, 13 are:

𝜕2𝐻
𝜕𝑢20

= 𝐵0 > 0,
𝜕2𝐻
𝜕𝑢211

= 𝐵1 + 𝐵3 > 0,
𝜕2𝐻
𝜕𝑢212

= 𝐵2 + 𝐵4 > 0 and
𝜕2𝐻
𝜕𝑢213

= 𝐵3 + 𝐵6 > 0.

3.3 Numerical Results
The aim of this section is to simulate the application of the controls in the population.

First, the optimality system is numerically solved using the iterative method with the
Runge-Kutta fourth-order scheme. We use the forward-backward sweep method for finding
the solution of the optimality system which has the state equation (2.5) with controls,
adjoint equation (3.5), control chraterization (3.4) and initial/final condition (initial and
tranversality conditions). The method starts with initial values for the optimal control and
we solve the state system forward in time using Runge-Kutta method of the fourth-order.
Following, we solve the adjoint equation backward in time with Runge-Kutta of the fourth-
order using the state variables, initial control guess and transversality conditions. The
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controls 𝑢0(𝑡), 𝑢11(𝑡), 𝑢12(𝑡) and 𝑢13(𝑡) are updated and used to solve the state and adjoint
system respectively. This iterative process continues until that current state, adjoint, and
control values converge [4, 71].
For the numerical simulations, we use the values of Tables (2.2)-(2.3). We assume that
𝐵0 = 200, 𝐵1 = 50, 𝐵2 = 150, 𝐵3 = 75, 𝐵4 = 100, 𝐵5 = 250 and 𝐵6 = 150 and the control is
always applied in the TB-HIV/AIDS subpopulation because tuberculosis is classified as
an opportunistic disease and HIV/AIDS cases are monitored by the use of antiretroviral
therapy. Also, reinfection/reactivation of TB is always controlled in all strategies because
of its impact on treatment resistance. Then, our control strategies are defined as:

• Strategy I. We activate all controls (𝑢0(𝑡) > 0, 𝑢11(𝑡) > 0, 𝑢12(𝑡) > 0, 𝑢13(𝑡) > 0).

• Strategy II. Combination of 𝑢0(𝑡), 𝑢11(𝑡), 𝑢12(𝑡) while setting 𝑢13(𝑡) = 0
(𝑢0(𝑡) > 0, 𝑢11(𝑡) > 0, 𝑢12(𝑡) > 0 and 𝑢13(𝑡) = 0).

• Strategy III. Combination of 𝑢0(𝑡), 𝑢12(𝑡), 𝑢13(𝑡) while setting 𝑢11(𝑡) = 0 (𝑢0(𝑡) >
0, 𝑢12(𝑡) > 0, 𝑢13(𝑡) > 0 and 𝑢11(𝑡) = 0).

We are going to study how we start the control process, with highly efficient control (type
I) and with minimum value (type II).
Figure (3.2) shows the profiles of the resistance controls (𝑢11(𝑡), 𝑢12(𝑡), 𝑢13(𝑡)) over time for
the different strategies and control types.

Strategy I. In this strategy all controls are active (𝑢0(𝑡) > 0, 𝑢11(𝑡) > 0, 𝑢12(𝑡) > 0
and 𝑢13(𝑡) > 0). In other words, reinfection/reactivation and resistance are controlled.
We show the behavior of the controls over time (3.2a) for control type I and (3.2b) for
control type II. It is observed that when this control strategy is implemented, there is
a significant decrease in the number of TB resistant compared with the model without
control, see Figure (3.3). In the case of MDR-TB, in the different subpopulations before
the study year, a decrease in the number of reported cases was observed, see Figures
(3.3a)-(3.3c). In the case of XDR-TB, the reduction in the number of cases will occur
over a longer period time, but this reduction is significant, mainly in XDR-TB diabetics,
which have a strong incidence in the dynamic, see Figure (3.3d)-(3.3f). In the case of
MDR-TB and XDR-TB in the TB-HIV/AIDS subpopulation, the control manages to avoid
the growth of the number of cases because in the dynamic these compartments tend
to decrease initially and then grow. This strategy takes advantage of the decrease in
the number of cases and avoids an future growth. The type I control showed better
results so it is recommended to start with a high control efficacy and this evolves over time.

Strategy II. Here, we activate the controls 𝑢0(𝑡) > 0, 𝑢11(𝑡) > 0 and 𝑢12(𝑡) > 0 and
𝑢13(𝑡) = 0, this means that we control resistance in the TB-HIV/AIDS and TB-Only
subpopulations and reinfection/reactivation TB in the full model. The behavior of the
controls is shown in Figure (3.2c)-(3.2d). This strategy succeeds in reducing the number of
resistant cases, but this reduction is lower than that of strategy I. It is important to keep in
mind that the largest number of resistant cases are XDR-TB diabetics and this strategy
reduces this compartment but not sufficiently. It is recommended to maintain control over
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diabetic resistant compartments, due to their impact on resistance dynamic, mainly of
XDR-TB. The XDR-TB in the TB-HIV/AIDS and TB-Diabetes subpopulations, the controls
decreased the number of cases but did not take advantage of the decrease in the number
of cases and the asymptotic behavior was maintained. The type I control was more effective.

Strategy III. This strategy does not control resistance in the TB-Only subpopulation.
As in the previous strategies, the objective of reducing resistance in the dynamic is met.
Controls applied for XDR-TB cases in HIV/AIDS and diabetic patients reduced the number
of cases and asymptotic behavior was maintained, but the results were better than strategy
II for the different types of controls. This strategy also failed to take advantage of the
decrease in the number of cases, reducing the number of cases but not avoiding future
asymptotic growth, see Figures (3.5a), (3.5e) and (3.5f). Here too, controls of type I achieved
better results.

In general, all strategies and types of controls met the objective of reducing the number
of cases of MDR-TB and XDR-TB. The most efficient strategy was the strategy I with
type I controls. In addition to significantly reducing the number of cases in all resistance
compartments, it also takes advantage of the decrease in dynamic and prevents the future
growth of cases. In all strategies, type I control showed better results, so it is recommended
to start with a high control efficiency. The numerical results in the Subsection (2.5) show
the need to reduce XDR-TB in diabetics due to the growth in the number of cases that
occurs in this subpopulation, so strategy II does not meet significantly this objective.
The strategy II is not recommended because it fails to significantly reduce resistance in
diabetics and diabetes is a risk factor for adherence to TB treatment.
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(a) Controls profiles, strategy I, type I.
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(b) Controls profiles, strategy I, type II.
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(c) Controls profiles, strategy II, type I.
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(d) Controls profiles, strategy II, type II.
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(e) Controls profiles, strategy III, type I.
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(f) Controls profiles, strategy III, type II.

Figure 3.2: The profiles of the controls associated with resistance in the different strategies and for the
different types of controls.
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Figure 3.3: Comparison in the resistance compartments between the types of controls for strategy I.
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study period 10 years.
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(d) XDR-TB cases in the TB-Only subpopulation, study
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Figure 3.4: Comparison in the resistance compartments between the types of controls for strategy II.
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Figure 3.5: Comparison in the resistance compartments between the types of controls for strategy III.
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3.4 Partial Conclusions
In this chapter:

• We studied the optimal control problem to achieve better adherence to treatment,
taking into account the influence of HIV/AIDS and diabetes and in order to avoid
MDR-TB and XDR-TB.

• The controls are defined as 𝑢0, 𝑢11, 𝑢12 and 𝑢13 and are based on avoiding reinfec-
tion/reactivation of the bacteria and on differentiated care and follow-up in cases
who do not suffer from HIV/AIDS neither diabetes, HIV/AIDS and diabetics.

• The optimal control theory was derived analytically by applying the Pontryagin’s
maximum principle and we demonstrated the existence of optimal control.

• For the computational simulations, we used a fourth-order Runge-Kutta for-
ward/backward scheme. We experimented different control strategies. We presented
the results of the resistance compartments (𝐼𝑇2 , 𝐼𝐻2 , 𝐼𝐷2 , 𝐼𝑇3 , 𝐼𝐻3 and 𝐼𝐷3).

• We concluded for our scenario that, all strategies with the different types of controls
met the objective of reducing the number of resistant cases. The strategy that
obtained the best results was the strategy I (activating all controls) with type I
controls (starting with high control efficiency), see Figure (3.3). Recommend keeping
all subpopulations under control and starting with a maximum control. However, if
we have to use only three control, we recommended to use the strategy III, because all
the resistance compartments and mainly the diabetic XDR-TB are reduced compared
with strategy II. We do not recommend the use of strategy II, since one of the main
factors of resistance to TB treatment is diabetes and this strategy did not manage to
reduce significantly the number of resistant cases to TB treatment in diabetics.
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Chapter 4

Mathematical Model using
Fractional-Order Derivatives

4.1 Introduction

In recent years, there has been an increase in the number of papers using fractional
order derivatives to epidemics model [23, 82, 22, 81, 119, 11, 120, 102, 55, 65, 96, 56, 34, 104,
103, 60, 105, 15]. For example, Naik et al. [23] developed a fractional-order model for HIV
with the impact of prostitution on the population. Naik et al. [82] proposed and studied a
fractional order model for HIV transmission with an exposed compartment and divided
the infected class of sex workers into conscious and unconscious infectees. Naik et al.
[22] using the Caputo and Atangana-Baleanu-Caputo operators presented and analyzed a
model for the transmission of the COVID-19 epidemic. Naik [81] studied a SIR structure
epidemic model with non-linear fractional-order with Crowley-Martin type functional
response and Holling type II treatment rate. Ullah et al. [119] studied the dynamics of
tuberculosis with a fractional-order model in the Caputo sense. Fatmawati et al. [11]
analyzed a Caputo and Atangana-Baleanu fractional model for tuberculosis dynamics
stratified in two age groups. Ullah et al. [120] explored a model for tuberculosis using the
Atangana-Baleanu fractional derivative [54].

In the study of TB and HIV/AIDS co-infection we have that, Farman et al. [55] proposed
a mathematical model of HIV/AIDS and TB co-infection using the Caputo and Caputo-
Fabrizo fractional derivative. Khan et al. explored a Mittag-Leffler fractional HIV/AIDS-TB
co-infection model and proved the existence of a unique set of model solutions and Hyers-
Ulam stability [54].

In the study of HIV/AIDS we have that, Pinto and Carvalho [96] introduced a fractional-
order model for HIV infection, which includes latently infected cells, macrophages, and
CTLs. Fatmawati et al. [56] presented a Caputo-derived model for the propagation of
HIV/AIDS disease in a sex-stratified population and studied HIV and HCV (hepatitis C
virus) co-infection. Carvalho et al. [34] proposed a fractional-order model for the HIV/HCV
co-infection dynamics [54].

For the dynamics of diabetes we have that, Saleem et al. [104] presented a fractional-
order nonlinear model using the Caputo-Fabrizio derivative for the treatment with insulin
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in diabetics. Sakulrang et al. [103] proved that fractional-order differential equation mo-
dels could give better fits than integer order models with respect to continuous glucose
monitoring data from patients with type 1 diabetes [54]. Carvalho et al. [35] developed
a non-integer order model for the study of tuberculosis, the impact of diabetes, and
multidrug-resistant strains and showed that diabetic individuals with multidrug-resistant
tuberculosis require extreme attention due to their rapid growth.

For other epidemics such as Dengue and Ebola, Hamdana and Kilicmana [60] proposed
a model of dengue transmission using a fractional-order derivative as the generalization
of an integer order model. Shah et al. [105] investigated epidemic model of dengue fever
disease with Caputo-Fabrizio fractional derivative. Area et al. [15] presented an Ebola
epidemic model using classical and fractional-order derivatives and its comparison with
real data [54].

The aim of this chapter is to study the model (2.5) with fractional-order derivatives,
taking advantage of the benefits provided by this modeling technique.

4.2 Model Formulation

For this model, the definitions of the variables and parameters of the model (2.5) are
maintained. The transmission dynamics is analogous to model (2.5). According to [46], the
fractional derivative operator 𝑐𝔻𝛼

𝑡 has a dimension time−𝛼 instead of time−1, so that, due
to dimensional analysis, on the right-hand side of the model all parameters of dimension
𝑦𝑟−1 will have power 𝛼. Then, the effectiveness of the TB treatment with the presence of
HIV/AIDS and diabetes using Caputo’s operator derivative can be expressed as:

𝑐𝔻𝛼
𝑡 𝑆𝑇 =𝑀

𝛼
𝑇 − (𝜇𝛼 + 𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 + 𝜆𝛼)𝑆𝑇 ,

𝑐𝔻𝛼
𝑡 𝑆𝐻 =𝑀𝛼

𝐻 + 𝛼𝛼
𝐻 (𝑆𝑇 + 𝑆𝐷) − (𝛼𝛼

𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝜔𝐻𝜆𝛼)𝑆𝐻 ,
𝑐𝔻𝛼

𝑡 𝑆𝐷 =𝑀𝛼
𝐷 + 𝛼𝛼

𝐻𝐷𝑆𝐻 + 𝛼𝛼
𝐷𝑆𝑇 − (𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝜔𝐷𝜆𝛼)𝑆𝐷,
𝑐𝔻𝛼

𝑡 𝐸𝑇 =𝜆𝛼(𝑆𝑇 + 𝛽
′

1𝑅𝑇 ) − (𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜂𝛼)𝐸𝑇 ,
𝑐𝔻𝛼

𝑡 𝐸𝐻 =𝜔𝐻𝜆𝛼(𝑆𝐻 + 𝛽
′

1𝑅𝐻 ) + 𝛼𝛼
𝐻 (𝐸𝑇 + 𝐸𝐷) − (𝜖∗𝐻𝜂

𝛼 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝛼𝛼
𝐻𝐷)𝐸𝐻 ,

𝑐𝔻𝛼
𝑡 𝐸𝐷 =𝜔𝐷𝜆𝛼(𝑆𝐷 + 𝛽

′

1𝑅𝐷) + 𝛼𝛼
𝐻𝐷𝐸𝐻 + 𝛼𝛼

𝐷𝐸𝑇 − (𝛼𝛼
𝐻 + 𝜖∗𝐷𝜂

𝛼 + 𝜇𝛼 + 𝜇𝛼𝐷)𝐸𝐷,
𝑐𝔻𝛼

𝑡 𝐼𝑇1 =(1 − (𝛽∗)𝛼)𝜂𝛼𝐸𝑇 − (𝑙𝛼𝑇 + 𝑡𝐷𝛼𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼 + 𝑑𝛼𝑇 + 𝜂𝛼11)𝐼𝑇1 ,
𝑐𝔻𝛼

𝑡 𝐼𝑇2 =(1 − 𝑝𝛼
𝑇 )(𝛽

∗)𝛼𝜂𝛼𝐸𝑇 + 𝑙𝛼𝑇 𝐼𝑇1 − (𝑡𝐷𝛼𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝑚𝛼
𝑇 + 𝜇𝛼 + 𝑡

′

𝑇 𝑑
𝛼
𝑇 + 𝜂𝛼14)𝐼𝑇2 ,

𝑐𝔻𝛼
𝑡 𝐼𝐻1 =𝑡𝐻𝛼

𝛼
𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂

𝛼𝐸𝐻 − (𝑙𝛼𝐻 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑑𝛼𝑇𝐻 + 𝜂𝛼12 + 𝑡𝐻𝐷𝛼𝛼
𝐻𝐷)𝐼𝐻1 ,

𝑐𝔻𝛼
𝑡 𝐼𝐻2 =𝑡𝐻𝛼

𝛼
𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝛼

𝐻 )𝜖
∗
𝐻 (𝛽

∗)𝛼𝜂𝛼𝐸𝐻 + 𝑙𝛼𝐻 𝐼𝐻1 − (𝑚𝛼
𝐻 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡

′

𝐻𝑑
𝛼
𝑇𝐻 + 𝜂𝛼15 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷)𝐼𝐻2 ,
𝑐𝔻𝛼

𝑡 𝐼𝐷1 =𝑡𝐷𝛼
𝛼
𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻1 + (1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂
𝛼𝐸𝐷 − (𝑙𝛼𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝑑𝛼𝑇𝐷 + 𝜂𝛼13)𝐼𝐷1 ,
𝑐𝔻𝛼

𝑡 𝐼𝐷2 =𝑡𝐷𝛼
𝛼
𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝛼
𝐷)𝜖

∗
𝐷(𝛽

∗)𝛼𝜂𝛼𝐸𝐷 + 𝑙𝛼𝐷𝐼𝐷1 − (𝑚𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡
′

𝐷𝑑
𝛼
𝑇𝐷 + 𝜂𝛼16)𝐼𝐷2 ,

𝑐𝔻𝛼
𝑡 𝐼𝑇3 =𝑝

𝛼
𝑇 (𝛽

∗)𝛼𝜂𝛼𝐸𝑇 + 𝜂𝛼14𝐼𝑇2 − ((𝜂∗11)
𝛼 + 𝑡𝐷𝛼𝛼

𝐷 + 𝑡𝐻𝛼𝛼
𝐻 + 𝜇𝛼 + 𝑡∗𝑇 𝑑

𝛼
𝑇 )𝐼𝑇3 ,

𝑐𝔻𝛼
𝑡 𝐼𝐻3 =𝑝

𝛼
𝐻 (𝛽

∗)𝛼𝜖∗𝐻𝜂
𝛼𝐸𝐻 + 𝜂𝛼15𝐼𝐻2 + 𝑡𝐻𝛼𝛼

𝐻 (𝐼𝑇3 + 𝐼𝐷3) − ((𝜂∗12)
𝛼 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡∗𝐻𝑑
𝛼
𝑇𝐻 )𝐼𝐻3 ,

𝑐𝔻𝛼
𝑡 𝐼𝐷3 =𝑝

𝛼
𝐷(𝛽

∗)𝛼𝜖∗𝐷𝜂
𝛼𝐸𝐷 + 𝜂𝛼16𝐼𝐷2 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝛼
𝐷𝐼𝑇3 − (𝑡𝐻𝛼𝛼

𝐻 + (𝜂∗13)
𝛼 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡∗𝐷𝑑

𝛼
𝑇𝐷)𝐼𝐷3 ,

𝑐𝔻𝛼
𝑡 𝑅𝑇 =𝑚𝛼

𝑇 𝐼𝑇2 + 𝜂𝛼11𝐼𝑇1 + (𝜂∗11)
𝛼𝐼𝑇3 − (𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 + 𝜇𝛼 + 𝛽

′

1𝜆
𝛼)𝑅𝑇 ,

𝑐𝔻𝛼
𝑡 𝑅𝐻 =𝑚𝛼

𝐻 𝐼𝐻2 + 𝜂𝛼12𝐼𝐻1 + (𝜂∗12)
𝛼𝐼𝐻3 + 𝛼𝛼

𝐻 (𝑅𝑇 + 𝑅𝐷) − (𝛼𝛼
𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝛽

′

1𝜔𝐻𝜆𝛼)𝑅𝐻 ,
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𝑐𝔻𝛼
𝑡 𝑅𝐷 =𝑚𝛼

𝐷𝐼𝐷2 + 𝜂𝛼13𝐼𝐷1 + (𝜂∗13)
𝛼𝐼𝐷3 + 𝛼𝛼

𝐷𝑅𝑇 + 𝛼𝛼
𝐻𝐷𝑅𝐻 − (𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝛽
′

1𝜔𝐷𝜆𝛼)𝑅𝐷,
(4.1)

where

𝜆𝛼 =
(𝛼∗)𝛼(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))

𝑁
,

with initial conditions:
𝑆𝑇 (0) > 0, 𝑆𝐻 (0) > 0, 𝑆𝐷(0) > 0, 𝐸𝑇 (0) > 0, 𝐸𝐻 (0) > 0, 𝐸𝐷(0) > 0, 𝐼𝑇1(0) > 0, 𝐼𝑇2(0) > 0,
𝐼𝐻1(0) > 0, 𝐼𝐻2(0) > 0, 𝐼𝐷1(0) > 0, 𝐼𝐷2(0) > 0, 𝐼𝑇3(0) > 0, 𝐼𝐻3(0) > 0, 𝐼𝐷3(0) > 0, 𝑅𝑇 (0) > 0,
𝑅𝐻 (0) > 0, 𝑅𝐷(0) > 0 and 𝛼 ∈ (0, 1].

Basic Properties of Model
Now, let us prove the existence and positivity of the solution of the system (4.1), and

let’s find the biologically feasible region. The following results and their proofs can be
found in [54].

Existence and Non-Negativity of Solutions
Let’s denominate

Ω𝐹 = {𝑥 =(𝑆𝑇 , 𝑆𝐻 , 𝑆𝐷, 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 , 𝑅𝑇 , 𝑅𝐻 , 𝑅𝐷) ∶
𝑆𝑇 , 𝑆𝐻 , 𝑆𝐷, 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 , 𝑅𝑇 , 𝑅𝐻 , 𝑅𝐷 ≥ 0}.

The following lemma and corollary will be used in the proof of Theorem (4.2.2) and
can be found in [89].

Lemma 4.2.1. (Generalized mean value theorem) Suppose that 𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝑐𝔻𝛼
𝑡 𝑓 ∈

𝐶[𝑎, 𝑏], for 𝛼 ∈ (0, 1]. Then, ∀𝑡 ∈ (𝑎, 𝑏], with 𝑎 ≤ 𝜖 ≤ 𝑡 we have

𝑓 (𝑡) = 𝑓 (𝑎) +
1

Γ(𝛼)
( 𝑐𝔻𝛼

𝑡 𝑓 )(𝜖)(𝑡 − 𝑎)𝛼 ,

where Γ(.) is the Gamma function.

Corollary 4.2.1.1. Consider that 𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝑐𝔻𝛼
𝑡 𝑓 ∈ 𝐶[𝑎, 𝑏], for 𝛼 ∈ (0, 1]. Then if

• 𝑐𝔻𝛼
𝑡 𝑓 (𝑡) ≥ 0, ∀𝑡 ∈ (𝑎, 𝑏), then 𝑓 (𝑡) is non-decreasing for each 𝑡 ∈ [𝑎, 𝑏],

• 𝑐𝔻𝛼
𝑡 𝑓 (𝑡) ≤ 0, ∀𝑡 ∈ (𝑎, 𝑏), then 𝑓 (𝑡) is non-increasing for each 𝑡 ∈ [𝑎, 𝑏].

Theorem 4.2.2. There is a unique solution 𝑥(𝑡) = (𝑆𝑇 , 𝑆𝐻 , 𝑆𝐷, 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 ,
𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 , 𝑅𝑇 , 𝑅𝐻 , 𝑅𝐷)𝑇 of the model (4.1) for 𝑡 ≥ 0 and the solution will remain in Ω𝐹 .

Proof. By Theorem (3.1) and Remark (3.2) of [72], we have that the solution in (0,∞) of
the initial value problem (4.1) exists and is unique. Now, we will prove the positivity of the
solution of the model (4.1). In order to do this, we need to prove that for every hyperplane
bounding the nonnegative orthant, the vector field points to Ω𝐹 . From model (4.1), we
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have:

𝑐𝔻𝛼
𝑡 𝑆𝑇 ||𝑆𝑇=0 =𝑀

𝛼
𝑇 > 0,

𝑐𝔻𝛼
𝑡 𝑆𝐻 ||𝑆𝐻=0 =𝑀

𝛼
𝐻 > 0,

𝑐𝔻𝛼
𝑡 𝑆𝐷||𝑆𝐷=0 =𝑀

𝛼
𝐷 > 0,

𝑐𝔻𝛼
𝑡 𝐸𝑇 ||𝐸𝑇=0 =𝜆

𝛼(𝑆𝑇 + 𝛽
′

1𝑅𝑇 ) ≥ 0,
𝑐𝔻𝛼

𝑡 𝐸𝐻 ||𝐸𝐻=0 =𝜔𝐻𝜆𝛼(𝑆𝐻 + 𝛽
′

1𝑅𝐻 ) + 𝛼𝛼
𝐻 (𝐸𝑇 + 𝐸𝐷) ≥ 0,

𝑐𝔻𝛼
𝑡 𝐸𝐷||𝐸𝐷=0 =𝜔𝐷𝜆𝛼(𝑆𝐷 + 𝛽

′

1𝑅𝐷) + 𝛼𝛼
𝐻𝐷𝐸𝐻 + 𝛼𝛼

𝐷𝐸𝑇 ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝑇1 ||𝐼𝑇1=0 =(1 − (𝛽∗)𝛼)𝜂𝛼𝐸𝑇 ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝑇2 ||𝐼𝑇2=0 =(1 − 𝑝𝛼
𝑇 )(𝛽

∗)𝛼𝜂𝛼𝐸𝑇 + 𝑙𝛼𝑇 𝐼𝑇1 ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝐻1
||𝐼𝐻1=0 =𝑡𝐻𝛼

𝛼
𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂

𝛼𝐸𝐻 ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝐻2
||𝐼𝐻2=0 =𝑡𝐻𝛼

𝛼
𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝛼

𝐻 )𝜖
∗
𝐻 (𝛽

∗)𝛼𝜂𝛼𝐸𝐻 + 𝑙𝛼𝐻 𝐼𝐻1 ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝐷1
||𝐼𝐷1=0 =𝑡𝐷𝛼

𝛼
𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻1 + (1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂
𝛼𝐸𝐷 ≥ 0,

𝑐𝔻𝛼
𝑡 𝐼𝐷2

||𝐼𝐷2=0 =𝑡𝐷𝛼
𝛼
𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝛼
𝐷)𝜖

∗
𝐷(𝛽

∗)𝛼𝜂𝛼𝐸𝐷 + 𝑙𝛼𝐷𝐼𝐷1 ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝑇3 ||𝐼𝑇3=0 =𝑝
𝛼
𝑇 (𝛽

∗)𝛼𝜂𝛼𝐸𝑇 + 𝜂𝛼14𝐼𝑇2 ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝐻3
||𝐼𝐻3=0 =𝑝

𝛼
𝐻 (𝛽

∗)𝛼𝜖∗𝐻𝜂
𝛼𝐸𝐻 + 𝜂𝛼15𝐼𝐻2 + 𝑡𝐻𝛼𝛼

𝐻 (𝐼𝑇3 + 𝐼𝐷3) ≥ 0,
𝑐𝔻𝛼

𝑡 𝐼𝐷3
||𝐼𝐷3=0 =𝑝

𝛼
𝐷(𝛽

∗)𝛼𝜖∗𝐷𝜂
𝛼𝐸𝐷 + 𝜂𝛼16𝐼𝐷2 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝛼
𝐷𝐼𝑇3 ≥ 0,

𝑐𝔻𝛼
𝑡 𝑅𝑇 ||𝑅𝑇=0 =𝑚

𝛼
𝑇 𝐼𝑇2 + 𝜂𝛼11𝐼𝑇1 + (𝜂∗11)

𝛼𝐼𝑇3 ≥ 0,
𝑐𝔻𝛼

𝑡 𝑅𝐻 ||𝑅𝐻=0 =𝑚
𝛼
𝐻 𝐼𝐻2 + 𝜂𝛼12𝐼𝐻1 + (𝜂∗12)

𝛼𝐼𝐻3 + 𝛼𝛼
𝐻 (𝑅𝑇 + 𝑅𝐷) ≥ 0,

𝑐𝔻𝛼
𝑡 𝑅𝐷||𝑅𝐷=0 =𝑚

𝛼
𝐷𝐼𝐷2 + 𝜂𝛼13𝐼𝐷1 + (𝜂∗13)

𝛼𝐼𝐷3 + 𝛼𝛼
𝐷𝑅𝑇 + 𝛼𝛼

𝐻𝐷𝑅𝐻 ≥ 0. (4.2)

Using the Corollary (4.2.1.1), we have that the solution will remain in Ω𝐹 [54].

Biologically Feasible Region
Now, let’s prove that Ω𝛼 is the biologically feasible region for the model (4.1).

Lemma 4.2.3. The closed set Ω𝛼 =
{
(𝑆𝑖, 𝐸𝑖, 𝐼𝑖1 , 𝐼𝑖2 , 𝐼𝑖3 , 𝑅𝑖) ∈ ℝ18

+ , 𝑖 = 𝑇 , 𝐻 , 𝐷 ∶ 𝑁 (𝑡) ≤

𝑀𝛼
𝑇 +𝑀𝛼

𝐻 +𝑀𝛼
𝐷

𝜇𝛼

}
is positively invariant with respect to model (4.1).

Proof. The fractional derivative in the Caputo sense of the total population is

𝑐𝔻𝛼
𝑡 𝑁 (𝑡) = 𝑐𝔻𝛼

𝑡 𝑆𝑇 (𝑡) +
𝑐𝔻𝛼

𝑡 𝑆𝐻 (𝑡) +
𝑐𝔻𝛼

𝑡 𝑆𝐷(𝑡) +
𝑐𝔻𝛼

𝑡 𝐸𝑇 (𝑡) + 𝑐𝔻𝛼
𝑡 𝐸𝐻 (𝑡) + 𝑐𝔻𝛼

𝑡 𝐸𝐷(𝑡) + 𝑐𝔻𝛼
𝑡 𝐼𝑇1(𝑡)+

𝑐𝔻𝛼
𝑡 𝐼𝑇2(𝑡) +

𝑐𝔻𝛼
𝑡 𝐼𝐻1(𝑡) +

𝑐𝔻𝛼
𝑡 𝐼𝐻2(𝑡) +

𝑐𝔻𝛼
𝑡 𝐼𝐷1(𝑡) +

𝑐𝔻𝛼
𝑡 𝐼𝐷2(𝑡) +

𝑐𝔻𝛼
𝑡 𝐼𝑇3(𝑡) +

𝑐𝔻𝛼
𝑡 𝐼𝐻3(𝑡)+

𝑐𝔻𝛼
𝑡 𝐼𝐷3(𝑡) +

𝑐𝔻𝛼
𝑡 𝑅𝑇 (𝑡) + 𝑐𝔻𝛼

𝑡 𝑅𝐻 (𝑡) + 𝑐𝔻𝛼
𝑡 𝑅𝐷(𝑡),

and we have that
𝑐𝔻𝛼

𝑡 𝑁 (𝑡) + 𝜇𝛼𝑁 (𝑡) ≤ 𝑀𝛼
𝑇 +𝑀𝛼

𝐻 +𝑀𝛼
𝐷. (4.3)
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To continue the proof, we use the following definitions:

Definition 4.2.1. The Laplace transform of the Caputo fractional derivatives of the function
𝜙(𝑡) with order 𝛼 > 0 is defined as

[ 𝑐𝔻𝛼
𝑡 𝜙(𝑡)] = 𝑠𝛼𝜙(𝑠) −

𝑛−1

∑
𝑣=0

𝜙𝑣(0)𝑠𝛼−𝑣−1. (4.4)

Definition 4.2.2. The Laplace transform of the function 𝑡𝛼1−1𝔼𝛼,𝛼1(±𝜆𝑡𝛼) is defined as

[𝑡𝛼1−1𝔼𝛼,𝛼1(±𝜆𝑡
𝛼)] =

𝑠𝛼−𝛼1

𝑠𝛼 ∓ 𝜆
, (4.5)

where 𝔼𝛼,𝛼1 is two-parameters Mittag-Leffler function 𝛼, 𝛼1 > 0. Futher, the Mittag-Leffler
function satisfies the fallowing equation:

𝔼𝛼,𝛼1(𝑓 ) = 𝑓 ⋅ 𝔼𝛼,𝛼+𝛼1(𝑓 ) +
1

Γ(𝛼1)
. (4.6)

Applying the Laplace transform to (4.3), we have

𝑠𝛼𝜙(𝑁 ) − 𝑠𝛼−1𝜙(0) ≤
𝑀𝛼

𝑇 +𝑀𝛼
𝐻 +𝑀𝛼

𝐷

𝑠
− 𝜇𝛼𝜙(𝑁 ), (4.7)

which further gives

𝜙(𝑁 ) ≤
𝑀𝛼

𝑇 +𝑀𝛼
𝐻 +𝑀𝛼

𝐷

𝑠(𝑠𝛼 + 𝜇𝛼)
+

𝑠𝛼−1

𝑠𝛼 + 𝜇𝛼
𝑁 (0). (4.8)

Using the equations (4.4)-(4.6), we assumed that (𝑆𝑇 (0), 𝑆𝐻 (0), 𝑆𝐷(0), 𝐸𝑇 (0), 𝐸𝐻 (0), 𝐸𝐷(0), 𝐼𝑇1(0),
𝐼𝑇2(0), 𝐼𝐻1(0), 𝐼𝐻2(0), 𝐼𝐷1(0), 𝐼𝐷2(0), 𝐼𝑇3(0), 𝐼𝐻3(0), 𝐼𝐷3(0), 𝑅𝑇 (0), 𝑅𝐻 (0), 𝑅𝐷(0)) ∈ ℝ18

+ , then

𝑁 (𝑡) ≤ (𝑀𝛼
𝑇 +𝑀𝛼

𝐻 +𝑀𝛼
𝐷)𝑡

𝛼𝔼𝛼,𝛼+1(−𝜇𝛼𝑡𝛼) + 𝑁 (0)𝔼𝛼,1(−𝜇𝛼𝑡𝛼). (4.9)

Using the asymptotic behavior of the Mittag-Leffler function presented in the back-

ground theorical (1.1.2), we can observed that 𝑁 (𝑡) →
𝑀𝛼

𝑇 +𝑀𝛼
𝐻 +𝑀𝛼

𝐷

𝜇𝛼
when 𝑡 → ∞.

The Ω𝛼 region is well established and all solutions with initial values that belong to Ω𝛼

remain in Ω𝛼 for each time 𝑡 > 0 [54].

Study of the Equilibrium Points and the Basic Reproduction
Number

In this subsection, we study the equilibrium points and their relation to the basic
reproduction number for the model with fractional-order derivatives. We study by
subpopulations and use the next-generation matrix method [51].
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TB-Only Submodel

The TB-Only submodel with fractional-order derivatives is:

𝑐𝔻𝛼
𝑡 𝑆𝑇 = 𝑀𝛼

𝑇 − (𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜆𝛼𝑇 )𝑆𝑇 ,
𝑐𝔻𝛼

𝑡 𝐸𝑇 = 𝜆𝛼𝑇 (𝑆𝑇 + 𝛽
′

1𝑅𝑇 ) − (𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜂𝛼 + 𝜇𝛼)𝐸𝑇 ,
𝑐𝔻𝛼

𝑡 𝐼𝑇1 = (1 − (𝛽∗)𝛼)𝜂𝛼𝐸𝑇 − (𝑙𝛼𝑇 + 𝑡𝐷𝛼𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼 + 𝑑𝛼𝑇 + 𝜂𝛼11)𝐼𝑇1 ,
𝑐𝔻𝛼

𝑡 𝐼𝑇2 = (1 − 𝑝𝛼
𝑇 )(𝛽

∗)𝛼𝜂𝛼𝐸𝑇 + 𝑙𝛼𝑇 𝐼𝑇1 − (𝑚𝛼
𝑇 + 𝜇𝛼 + 𝑡

′

𝑇 𝑑
𝛼
𝑇 + 𝜂𝛼14 + 𝑡𝐷𝛼𝛼

𝐷 + 𝑡𝐻𝛼𝛼
𝐻 )𝐼𝑇2 ,

𝑐𝔻𝛼
𝑡 𝐼𝑇3 = (𝛽∗)𝛼𝑝𝛼

𝑇 𝜂𝐸𝑇 + 𝜂𝛼14𝐼𝑇2 − ((𝜂∗11)
𝛼 + 𝜇𝛼 + 𝑡∗𝑇 𝑑

𝛼
𝑇 + 𝑡𝐷𝛼𝛼

𝐷 + 𝑡𝐻𝛼𝛼
𝐻 )𝐼𝑇3 ,

𝑐𝔻𝛼
𝑡 𝑅𝑇 = 𝑚𝛼

𝑇 𝐼𝑇2 + 𝜂𝛼11𝐼𝑇1 + (𝜂∗11)
𝛼𝐼𝑇3 − (𝜇𝛼 + 𝛽

′

1𝜆
𝛼
𝑇 + 𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 )𝑅𝑇 , (4.10)

with initial conditions:

𝑆𝑇 (0) > 0, 𝐸𝑇 (0) > 0, 𝐼𝑇1(0) > 0, 𝐼𝑇2(0) > 0, 𝐼𝑇3(0) > 0 and 𝑅𝑇 (0) > 0.

The TB-infection rate for this submodel is

𝜆𝛼𝑇 = (𝛼∗)𝛼 (
𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3)

𝑁𝑇
,

where
𝑁𝑇 = 𝑆𝑇 + 𝐸𝑇 + 𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝑅𝑇 .

We study the submodel (4.10) in the following region:

𝐷𝛼
1 =

{
(𝑆𝑇 , 𝐸𝑇 , 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝑇3 , 𝑅𝑇 ) ∈ ℝ6

+ ∶ 𝑁𝑇 (𝑡) ≤
𝑀𝛼

𝑇

𝜇𝛼

}
.

Using previous methodologies, we have that the solutions of the submodel (4.10),
(𝑆𝑇 (𝑡), 𝐸𝑇 (𝑡), 𝐼𝑇1(𝑡), 𝐼𝑇2(𝑡), 𝐼𝑇3(𝑡), 𝑅𝑇 (𝑡)) are bounded and positively invariant in 𝐷𝛼

1 (biologi-
cally feasible region) for all 𝛼 ∈ (0, 1].

Disease-Free Equilibrium Point

The disease-free equilibrium point of model (4.10) is given by

𝜖𝑇𝛼0 = (𝑆
𝑇𝛼
0 , 0, 0, 0, 0, 0),

where 𝑆𝑇𝛼0 =
𝑀𝛼

𝑇

𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻
.

The basic reproduction number is compute using next-generation matrix method
(analogous to the model with ordinary differential equations) and is defined as

ℜ𝑇𝛼
0 =

(𝛼∗)𝛼𝑀𝛼
𝑇 ((1 − (𝛽∗)𝛼)𝜂𝛼(𝑘𝛼13𝑘𝛼14 + 𝑙𝛼𝑇 (𝑘𝛼14 + 𝜂𝛼14)) + (1 − 𝑝𝛼

𝑇 )(𝛽∗)𝛼𝜂𝛼𝑘𝛼12(𝑘𝛼14 + 𝜂𝛼14) + 𝑘𝛼12𝑘𝛼13(𝛽∗)𝛼𝜂𝛼𝑝𝛼
𝑇 )

𝑁𝑇 (𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜇𝛼)𝑘𝛼11𝑘𝛼12𝑘𝛼13𝑘𝛼14
,

(4.11)
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where 𝑘𝛼11 = 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜂𝛼 + 𝜇𝛼 , 𝑘𝛼12 = 𝑙𝛼𝑇 + 𝑡𝐷𝛼𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼 + 𝑑𝛼𝑇 + 𝜂𝛼11, 𝑘𝛼13 = 𝜇𝛼 + 𝑡 ′𝑇 𝑑𝛼𝑇 +
𝜂𝛼14 + 𝑚𝛼

𝑇 + 𝑡𝐷𝛼𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 , and 𝑘𝛼14 = 𝜇𝛼 + 𝑡∗𝑇 𝑑𝛼𝑇 + (𝜂∗11)𝛼 + 𝑡𝐷𝛼𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 .

Lemma 4.2.4. (Theorem (2) of [115]) For any 𝑞, 𝑟 ∈ ℤ+, such that 𝑔𝑐𝑑(𝑞, 𝑟) = 1 Let 𝛼 =
𝑞
𝑟

and we define 𝑀 = 𝑟 , then the disease-free equilibrium is locally asymptotically stable if
| arg(𝜆)| >

𝜋
2𝑀

for all roots 𝜆 of the associated characteristic equation

𝐷𝑒𝑡(𝑑𝑖𝑎𝑔[𝜆𝑞𝜆𝑞𝜆𝑞𝜆𝑞𝜆𝑞𝜆𝑞] − 𝐽 (𝜖𝑇𝛼0 )) = 0, (4.12)

where 𝐽 (𝜖𝑇𝛼0 ) is the jacobian matrix of submodel at 𝜖𝑇𝛼0 . The disease-free equilibrium 𝜖𝑇𝛼0 is
unstable if ℜ𝑇𝛼

0 > 1.

Proof. The Jacobian of submodel at disease-free equilibrium is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 ) 0 0 0 0 0
0 −𝑘𝛼11 0 0 0 0
0 (1 − (𝛽∗)𝛼)𝜂𝛼 −𝑘𝛼12 0 0 0
0 (1 − 𝑝𝛼

𝑇 )(𝛽∗)𝛼𝜂𝛼 𝑙𝛼𝑇 −𝑘𝛼13 0 0
0 𝑝𝛼

𝑇 (𝛽∗)𝛼𝜂𝛼 0 𝜂𝛼14 −𝑘𝛼14 0
0 0 𝜂𝛼11 𝑚𝛼

𝑇 (𝜂∗11)𝛼 −(𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Expanding, 𝐷𝑒𝑡(𝜆𝑞𝐼6 − 𝐽 (𝜖𝑇𝛼0 )) = 0, where 𝐼6 is the identity matrix of order 6, we obtain
the following equation in terms of 𝜆:

(−𝛼𝛼
𝐷 − 𝛼𝛼

𝐻 − 𝜇𝛼 − 𝜆𝑞)2(𝜆4𝑞 + 𝑏1𝜆3𝑞 + 𝑏2𝜆2𝑞 + 𝑏3𝜆𝑞 + 𝑏4) = 0. (4.13)

The arguments of the roots of equation −𝛼𝛼
𝐷 − 𝛼𝛼

𝐻 − 𝜇𝛼 − 𝜆𝑞 = 0 are given by:

arg(𝜆𝑘) =
𝜋
𝑞
+ 𝑘

2𝜋
𝑞

>
𝜋
𝑀

>
𝜋
2𝑀

,

where 𝑘 = 0, 1, ..., (𝑞 − 1).
Now, the coefficients of 𝑝(𝜆) = 𝜆4𝑞 + 𝑏1𝜆3𝑞 + 𝑏2𝜆2𝑞 + 𝑏3𝜆𝑞 + 𝑏4 are

𝑏1 =𝑘𝛼11 + 𝑘𝛼12 + 𝑘𝛼13 + 𝑘𝛼14,

𝑏2 =𝑘𝛼11𝑘
𝛼
12 + 𝑘𝛼11𝑘

𝛼
13 + 𝑘𝛼11𝑘

𝛼
14 + 𝑘𝛼12𝑘

𝛼
14 + 𝑘𝛼13𝑘

𝛼
14 −

𝑀𝛼
𝑇 (𝛼∗)𝛼𝜂𝛼

𝑁𝑇 (𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 )
,

𝑏3 =𝑘𝛼11𝑘
𝛼
12𝑘

𝛼
13 + 𝑘𝛼11𝑘

𝛼
12𝑘

𝛼
14 + 𝑘𝛼11𝑘

𝛼
13𝑘

𝛼
14 + 𝑘𝛼12𝑘

𝛼
13𝑘

𝛼
14 −

𝑀𝛼
𝑇 (𝛼∗)𝛼𝜂𝛼

𝑁𝑇 (𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 )
((1 − (𝛽∗)𝛼)(𝑙𝛼𝑇 + 𝑘𝛼13)+

(1 − 𝑝𝛼
𝑇 )(𝛽

∗)𝛼𝜂𝛼14 + (𝛽∗)𝛼𝑝𝛼
𝑇 ((𝑡

′

𝑇 − 𝑡∗𝑇 )𝑑
𝛼
𝑇 + (𝑚𝛼

𝑇 − (𝜂∗11)
𝛼) + 𝜂𝛼14),

𝑏4 =𝑘𝛼11𝑘
𝛼
12𝑘

𝛼
13𝑘

𝛼
14 −

𝑀𝛼
𝑇 (𝛼∗)𝛼𝜂𝛼

𝑁𝑇 (𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 )
((1 − (𝛽∗)𝛼)(𝑘𝛼13𝑘

𝛼
14) + 𝑙𝛼𝑇 (𝑘

𝛼
14 + 𝜂𝛼14) + (1 − 𝑝𝛼

𝑇 )𝑘
𝛼
12(𝛽

∗)𝛼(𝑘𝛼14+

𝜂𝛼14) + 𝑘𝛼12𝑘
𝛼
13(𝛽

∗)𝛼𝑝𝛼
𝑇 ) = (1 −ℜ𝑇

0 ).

The function 𝑝(𝜆) has eigenvalues with negative real part if 𝑏1, 𝑏2, 𝑏3, 𝑏4 > 0 and
𝑏1𝑏2𝑏3 > 𝑏21𝑏4 + 𝑏23. All 𝑏𝑖’s are greater than zero if ℜ𝑇𝛼

0 < 1, and the conditions 𝑏1𝑏2𝑏3 >
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𝑏21𝑏4 + 𝑏23 ensure the stability of the disease-free case when ℜ𝑇𝛼
0 < 1. If ℜ𝑇𝛼

0 < 1, then the
necessary condition fulfill for all the roots of characteristics equation i.e.,| arg(𝜆)| >

𝜋
2𝑀

.

Thus, the infection-free equilibrium point is locally asymptotically stable if ℜ𝑇𝛼
0 < 1.

This proof can be found in [54].

Endemic Equilibrium Point

To find the endemic point, we apply a methodology analogous to the TB-Only submodel
with ODE (2.11). Then, the endemic equilibrium point is 𝜖𝑇𝛼∗ = (𝑆∗𝑇 𝛼 , 𝐸∗

𝑇 𝛼 , 𝐼 ∗𝑇 𝛼1 , 𝐼
∗
𝑇 𝛼2 , 𝐼

∗
𝑇 𝛼3 , 𝑅

∗
𝑇 𝛼)

where,

𝑆∗𝑇 𝛼 =
𝑀𝛼

𝑇
(𝜆𝛼𝑇 )∗ + 𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 + 𝜇𝛼

, 𝐸∗
𝑇 𝛼 =

𝑀𝛼
𝑇 (𝜆𝛼𝑇 )∗𝑘𝛼12𝑘𝛼13𝑘𝛼14(𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 + 𝛽′

1(𝜆𝛼𝑇 )∗ + 𝜇𝛼)
𝐴𝛼
1

,

𝐼 ∗𝑇 𝛼1 =
𝑀𝛼

𝑇 (1 − (𝛽∗)𝛼)𝜂𝛼(𝜆𝛼𝑇 )∗𝑘𝛼13𝑘𝛼14(𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝛽′

1(𝜆𝛼𝑇 )∗ + 𝜇𝛼)
𝐴𝛼
1

,

𝐼 ∗𝑇 𝛼2 =
𝑀𝛼

𝑇 (𝜆𝛼𝑇 )∗(𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝛽′

1(𝜆𝛼𝑇 )∗ + 𝜇𝛼)(𝑘𝛼12𝑘𝛼14(𝛽∗)𝛼𝜂𝛼(1 − 𝑝𝛼
𝑇 ) + 𝑘𝛼14𝑙𝛼𝑇 (1 − (𝛽∗)𝛼)𝜂𝛼)

𝐴𝛼
1

,

𝐼 ∗𝑇 𝛼3 =
𝑀𝛼

𝑇 (𝜆𝛼𝑇 )∗(𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝛽′

1(𝜆𝛼𝑇 )∗ + 𝜇𝛼)(𝑙𝛼𝑇 𝜂𝛼14(1 − (𝛽∗)𝛼)𝜂𝛼 + 𝑘𝛼12(𝛽∗)𝛼𝜂𝛼𝜂𝛼14(1 − 𝑝𝛼
𝑇 ) + 𝑘𝛼12𝑘𝛼13(𝛽∗)𝛼𝜂𝛼𝑝𝛼

𝑇 )
𝐴𝛼
1

,

𝑅∗
𝑇 𝛼 =

𝑀𝛼
𝑇 (𝜆𝛼𝑇 )∗((1 − (𝛽∗)𝛼)𝜂𝛼(𝑘𝛼13𝑘𝛼14𝜂𝛼11 + 𝑙𝛼𝑇 (𝑘𝛼14𝑚𝛼

𝑇 + (𝜂∗11)𝛼 + 𝜂𝛼14) + (1 − 𝑝𝛼
𝑇 )𝑘𝛼12(𝛽∗)𝛼𝜂𝛼(𝑘𝛼14𝑚𝛼

𝑇 + (𝜂∗11)𝛼(𝜂∗14)𝛼)+
𝐴𝛼
1

𝑘𝛼12𝑘𝛼13𝜂𝛼(𝜂∗11)𝛼(𝛽∗)𝛼𝑝𝛼
𝑇 )

𝐴𝛼
1

, (4.14)

and 𝐴𝛼
1 = (𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 + 𝜇𝛼 + (𝜆𝛼𝑇 )∗)(𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 + 𝜇𝛼 + 𝛽′

1(𝜆𝛼𝑇 )∗)𝑘𝛼11𝑘𝛼12𝑘𝛼13𝑘𝛼14 − (𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜇𝛼 +
(𝜆𝛼𝑇 )∗)𝛽

′

1(𝜆𝛼𝑇 )∗((1 − 𝑝𝛼
𝑇 )𝑘𝛼12(𝛽∗)𝛼𝜂𝛼(𝑘𝛼14𝑚𝛼

𝑇 + (𝜂∗11)𝛼𝜂𝛼14) + (1 − (𝛽∗)𝛼)𝜂𝛼(𝑘13𝑘𝛼14𝜂𝛼11 + 𝑙𝛼𝑇 (𝑘14𝑚𝛼
𝑇 +

𝜂𝛼11𝜂𝛼14) + 𝑘𝛼12𝑘𝛼13𝛽𝛼𝜂𝛼𝜂𝛼11𝑝𝛼
𝑇 ).

Applying the analogous methodology to the TB-Ony submodel with ODE (2.3), we have
the following lemma:

Lemma 4.2.5. The TB-Only submodel (4.10) has a unique endemic equilibrium point 𝜖𝑇𝛼∗ ,
whenever ℜ𝑇𝛼

0 > 1.

TB-HIV/AIDS Submodel

The TB-HIV/AIDS submodel (𝑆𝑇 = 𝑆𝐷 = 𝐸𝑇 = 𝐸𝐷 = 𝐼𝑇1 = 𝐼𝑇2 = 𝐼𝐷1 = 𝐼𝐷2 = 𝐼𝑇3 = 𝐼𝐷3 =
𝑅𝑇 = 𝑅𝐷 = 0) is determined by

𝑐𝔻𝛼
𝑡 𝑆𝐻 = 𝑀𝛼

𝐻 − (𝛼𝛼
𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝜔𝐻𝜆𝛼𝐻 )𝑆𝐻 ,

𝑐𝔻𝛼
𝑡 𝐸𝐻 = 𝜔𝐻𝜆𝛼𝐻 (𝑆𝐻 + 𝛽

′

1𝑅𝐻 ) − (𝜖∗𝐻𝜂
𝛼 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝛼𝛼

𝐻𝐷)𝐸𝐻 ,
𝑐𝔻𝛼

𝑡 𝐼𝐻1 = (1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂
𝛼𝐸𝐻 − (𝑙𝛼𝐻 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑑𝛼𝑇𝐻 + 𝜂𝛼12 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷)𝐼𝐻1 ,
𝑐𝔻𝛼

𝑡 𝐼𝐻2 = (1 − 𝑝𝛼
𝐻 )(𝛽

∗)𝛼𝜖∗𝐻𝜂
𝛼𝐸𝐻 + 𝑙𝛼𝐻 𝐼𝐻1 − (𝑚𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡
′

𝐻𝑑
𝛼
𝑇𝐻 + 𝜂𝛼15 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷)𝐼𝐻2 ,
𝑐𝔻𝛼

𝑡 𝐼𝐻3 = 𝑝𝛼
𝐻 (𝛽

∗)𝛼𝜖∗𝐻𝜂
𝛼𝐸𝐻 + 𝜂𝛼15𝐼𝐻2 − ((𝜂∗12)

𝛼 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡∗𝐻𝑑
𝛼
𝑇𝐻 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷)𝐼𝐻3 ,
𝑐𝔻𝛼

𝑡 𝑅𝐻 = 𝑚𝛼
𝐻 𝐼𝐻2 + 𝜂𝛼12𝐼𝐻1 + (𝜂∗12)

𝛼𝐼𝐻3 − (𝜇𝛼 + 𝜇𝛼𝐻 + 𝛽
′

1𝜔𝐻𝜆𝛼𝐻 + 𝛼𝛼
𝐻𝐷)𝑅𝐻 , (4.15)
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with non-negative initial conditions and

𝜆𝛼𝐻 = (𝛼∗)𝛼
𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3)

𝑁𝐻
,

where 𝑁𝐻 = 𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3 + 𝑅𝐻 .
The system (4.15) is studied in the following region:

𝐷𝛼
2 =

{
(𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐻3 , 𝑅𝐻 ) ∈ ℝ6

+ ∶ 𝑁𝐻 (𝑡) ≤
𝑀𝛼

𝐻

𝜇𝛼

}
.

It can be easily shown that te solutions (𝑆𝐻 (𝑡), 𝐸𝐻 (𝑡), 𝐼𝐻1(𝑡), 𝐼𝐻2(𝑡), 𝐼𝐻3(𝑡), 𝑅𝐻 (𝑡)) of the
system are bounded and positively invariant.

The infection-free equilibrium point is 𝜖𝐻𝛼
0 = (𝑆

𝐻𝛼
0 , 0, 0, 0, 0, 0) where 𝑆𝐻𝛼

0 =

𝑀𝛼
𝐻

𝜇𝛼 + 𝜇𝛼𝐻 + 𝛼𝛼
𝐷

, and

ℜ𝐻𝛼
0 =

(𝛼∗)𝛼𝜖𝐻𝜔𝐻𝑀𝛼
𝐻((1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼(𝑘𝛼23𝑘𝛼24 + 𝑙𝛼𝐻 (𝑘𝛼24 + 𝜂𝛼15)) + (1 − 𝑝𝛼

𝐻 )𝜖∗𝐻 (𝛽∗)𝛼𝜂𝛼𝑘𝛼22(𝑘𝛼24 + 𝜂𝛼15) + 𝑘𝛼22𝑘𝛼23𝜖∗𝐻 (𝛽∗)𝛼𝜂𝛼𝑝𝛼
𝐻)

𝑁𝐻 (𝛼𝛼
𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻 )𝑘𝛼21𝑘𝛼22𝑘𝛼23𝑘𝛼24

,

(4.16)

where 𝑘𝛼21 = 𝛼𝛼
𝐻𝐷 + 𝜖∗𝐻𝜂𝛼 + 𝜇𝛼 + 𝜇𝛼𝐻 , 𝑘𝛼22 = 𝑙𝛼𝐻 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑑𝛼𝑇𝐻 + 𝜂𝛼12 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷, 𝑘𝛼23 =
𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡 ′𝐻𝑑𝛼𝑇𝐻 + 𝜂𝛼15 + 𝑚𝛼

𝐻 + 𝑡𝐻𝐷𝛼𝛼
𝐻𝐷, and 𝑘𝛼24 = 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡∗𝐻𝑑𝛼𝑇𝐻 + (𝜂∗12)𝛼 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷.
Using an analogous procedure to the TB-Only submodel with FDE (4.10), we obtained

the following lemma:

Lemma 4.2.6. The infection-free equilibrium point, 𝜖𝐻𝛼
0 is asymptotically stable if ℜ𝐻𝛼

0 < 1
and unstable if ℜ𝐻𝛼

0 > 1.

The endemic equilibrium point is given by 𝜖𝐻𝛼
∗ = (𝑆∗𝐻𝛼 , 𝐸∗

𝐻𝛼 , 𝐼 ∗𝐻𝛼
1
, 𝐼 ∗𝐻𝛼

2
, 𝐼 ∗𝐻𝛼

3
, 𝑅∗

𝐻𝛼)
where,

𝑆∗𝐻𝛼 =
𝑀𝛼

𝐻
𝜔𝐻 (𝜆𝛼𝐻 )∗ + 𝛼𝛼

𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻
, 𝐸∗

𝐻𝛼 =
𝑀𝛼

𝐻𝜔𝐻 (𝜆𝛼𝐻 )∗𝑘𝛼22𝑘𝛼23𝑘𝛼24(𝛼𝛼
𝐻𝐷 + 𝜔𝐻𝛽

′

1(𝜆𝛼𝐻 )∗ + 𝜇𝛼 + 𝜇𝛼𝐻 )
𝐴𝛼
2

,

𝐼 ∗𝐻𝛼
1
=

𝑀𝛼
𝐻 (1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼𝜔𝐻 (𝜆𝛼𝐻 )∗𝑘𝛼23𝑘𝛼24(𝛼𝛼

𝐻𝐷 + 𝜔𝐻𝛽
′

1(𝜆𝛼𝐻 )∗ + 𝜇𝛼 + 𝜇𝛼𝐻 )
𝐴𝛼
2

,

𝐼 ∗𝐻𝛼
2
=

𝑀𝛼
𝐻𝜔𝐻 (𝜆𝛼𝐻 )∗(𝛼𝛼

𝐻𝐷 + 𝜔𝐻𝛽
′

1(𝜆𝛼𝐻 )∗ + 𝜇𝛼 + 𝜇𝛼𝐻 )(𝑘𝛼22𝑘𝛼24𝜖∗𝐻 (𝛽∗)𝛼𝜂𝛼(1 − 𝑝𝛼
𝐻 ) + 𝑘𝛼24𝑙𝛼𝐻 (1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼)

𝐴𝛼
2

,

𝐼 ∗𝐻𝛼
3
=

𝑀𝛼
𝐻𝜔𝐻 (𝜆𝛼𝐻 )∗(𝛼𝛼

𝐻𝐷 + 𝜔𝐻𝛽
′

1(𝜆𝛼𝐻 )∗ + 𝜇𝛼 + 𝜇𝛼𝐻 )(𝑙𝛼𝐻𝜂𝛼15(1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼 + 𝑘𝛼22(𝛽∗)𝛼𝜖∗𝐻𝜂𝛼𝜂𝛼15(1 − 𝑝𝛼
𝐻 ) + 𝑘𝛼22𝑘𝛼23(𝛽∗)𝛼𝜖∗𝐻𝜂𝛼𝑝𝛼

𝐻 )
𝐴𝛼
2

,

𝑅∗
𝐻𝛼 =

𝑀𝛼
𝐻𝜔𝐻 (𝜆𝛼𝐻 )∗((1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼)(𝑘𝛼23𝑘𝛼24𝜂𝛼12 + 𝑙𝛼𝑇 (𝑘𝛼24𝑚𝛼

𝐻 + (𝜂∗12)𝛼𝜂𝛼15) + (1 − 𝑝𝛼
𝐻 )𝑘𝛼22(𝛽∗)𝛼𝜖∗𝐻𝜂𝛼(𝑘𝛼24𝑚𝛼

𝐻 + (𝜂∗12)𝛼𝜂𝛼15)+
𝐴𝛼
2

𝑘𝛼22𝑘𝛼23(𝛽∗)𝛼𝜖∗𝐻𝜂𝛼(𝜂∗12)𝛼𝑝𝛼
𝐻 )

𝐴𝛼
2

, (4.17)

and 𝐴𝛼
2 = (𝛼𝛼

𝐻𝐷+𝜇𝛼+𝜇𝛼𝐻 +𝜔𝐻 (𝜆𝛼𝐻 )∗)(𝛼𝛼
𝐻𝐷+𝜇𝛼+𝜇𝛼𝐻 +𝜔𝐻 (𝛽

′)1(𝜆𝛼𝐻 )∗)𝑘𝛼21𝑘𝛼22𝑘𝛼23𝑘𝛼24−(𝛼𝛼
𝐻𝐷+𝜇𝛼+

𝜔𝐻 (𝜆𝛼𝐻 )∗)𝛽
′

1𝜔𝐻 (𝜆𝛼𝐻 )∗((1 − 𝑝𝛼
𝐻 )𝑘𝛼22(𝛽∗)𝛼𝜖∗𝐻𝜂𝛼(𝑘𝛼24𝑚𝛼

𝐻 + (𝜂∗12)𝛼𝜂𝛼15) + (1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼(𝑘𝛼23𝑘𝛼24𝜂𝛼12 +
𝑙𝛼𝐻 (𝑘𝛼24𝑚𝛼

𝐻 + (𝜂∗12)𝛼𝜂𝛼12) + 𝑘𝛼22𝑘𝛼23(𝛽∗)𝛼𝜖∗𝐻𝜂𝛼(𝜂∗12)𝛼𝑝𝛼
𝐻 ).

We apply an analogous procedure to the previous submodel, we have the following
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lemma:

Lemma 4.2.7. The TB-HIV/AIDS submodel (4.15) has a unique endemic equilibrium point
𝜖𝐻𝛼
∗ , whenever ℜ𝐻𝛼

0 > 1.

TB-Diabetes Submodel

The TB-Diabetes submodel is obtained when 𝑆𝐻 = 𝑆𝑇 = 𝐸𝐻 = 𝐸𝑇 = 𝐼𝐻1 = 𝐼𝐻2 = 𝐼𝑇1 =
𝐼𝑇2 = 𝐼𝐻3 = 𝑅𝐻 = 𝐼𝑇3 = 𝑅𝑇 = 0 and is defined as:

𝑐𝔻𝛼
𝑡 𝑆𝐷 = 𝑀𝛼

𝐷 − (𝛼𝛼
𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝜔𝐷𝜆𝛼𝐷)𝑆𝐷,

𝑐𝔻𝛼
𝑡 𝐸𝐷 = 𝜔𝐷𝜆𝛼𝐷(𝑆𝐷 + 𝛽

′

1𝑅𝐷) − (𝜂𝛼 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝛼𝛼
𝐻 )𝐸𝐷,

𝑐𝔻𝛼
𝑡 𝐼𝐷1 = (1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂

𝛼𝐸𝐷 − (𝑙𝛼𝐷 + 𝑡𝐻𝛼𝛼
𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝑑𝛼𝑇𝐷 + 𝜂𝛼13)𝐼𝐷1 ,

𝑐𝔻𝛼
𝑡 𝐼𝐷2 = (1 − 𝑝𝛼

𝐷)𝜖
∗
𝐷(𝛽

∗)𝛼𝜂𝛼𝐸𝐷 + 𝑙𝛼𝐷𝐼𝐷1 − (𝑡𝐻𝛼𝛼
𝐻 + 𝑚𝛼

𝐷 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡
′

𝐷𝑑
𝛼
𝑇𝐷 + 𝜂𝛼16)𝐼𝐷2 ,

𝑐𝔻𝛼
𝑡 𝐼𝐷3 = 𝑝𝛼

𝐷(𝛽
∗)𝛼𝜖∗𝐷𝜂

𝛼𝐸𝐷 + 𝜂𝛼16𝐼𝐷2 − ((𝜂∗13)
𝛼 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡∗𝐷𝑑
𝛼
𝑇𝐷)𝐼𝐷3 ,

𝑐𝔻𝛼
𝑡 𝑅𝐷 = 𝑚𝛼

𝐷𝐼𝐷2 + 𝜂𝛼13𝐼𝐷1 + (𝜂∗13)
𝛼𝐼𝐷3 − (𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝛽
′

1𝜔𝐷𝜆𝛼𝐷)𝑅𝐷 (4.18)

with non-negative initial conditions and

𝜆𝛼𝐷 = (𝛼∗)𝛼
𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3)

𝑁𝐷

where 𝑁𝐷 = 𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3 + 𝑅𝐷.
The system (4.18) will be studied in the following region biologically feasible:

𝐷𝛼
3 =

{
(𝑆𝐷, 𝐸𝐷, 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝐷3 , 𝑅𝐷) ∈ ℝ6

+ ∶ 𝑁𝐷(𝑡) ≤
𝑀𝛼

𝐷

𝜇𝛼

}
.

It can be easily shown that solutions (𝑆𝐷(𝑡), 𝐸𝐷(𝑡), 𝐼𝐷1(𝑡), 𝐼𝐷2(𝑡), 𝐼𝐷3(𝑡), 𝑅𝐷(𝑡)) of the system
are bounded and positively invariant.

The disease-free equilibrium point, 𝜖𝐷𝛼
0 , is given by:

𝜖𝐷𝛼
0 = (𝑆

𝐷𝛼
0 , 0, 0, 0, 0, 0),

where 𝑆𝐷𝛼
0 =

𝑀𝛼
𝐷

𝜇𝛼 + 𝜇𝛼2 + 𝛼𝛼
𝐻

.

The basic number reproduction is:

ℜ𝐷𝛼
0 =

(𝛼∗)𝛼𝜖𝐷𝜔𝐷𝑀𝛼
𝐷((1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂𝛼(𝑘𝛼33𝑘𝛼34 + 𝑙𝛼𝐷(𝑘𝛼34 + 𝜂𝛼16)) + (1 − 𝑝𝛼

𝐷)𝜖∗𝐷(𝛽∗)𝛼𝜂𝛼𝑘𝛼32(𝑘𝛼34 + 𝜂𝛼16) + 𝑘𝛼32𝑘𝛼33𝜖∗𝐷(𝛽∗)𝛼𝜂𝛼𝑝𝛼
𝐷)

𝑁𝐷(𝛼𝛼
𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷)𝑘𝛼31𝑘𝛼32𝑘𝛼33𝑘𝛼34

,

(4.19)

where 𝑘𝛼31 = 𝛼𝛼
𝐻 + 𝜖∗𝐷𝜂𝛼 + 𝜇𝛼 + 𝜇𝛼𝐷, 𝑘𝛼32 = 𝑙𝛼𝐷 + 𝜇𝛼 + 𝑑𝛼𝑇𝐷 + 𝜂𝛼13 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼𝐷, 𝑘𝛼33 = 𝜇𝛼 + 𝑡 ′𝐷𝑑𝛼𝑇𝐷 +
𝜂𝛼16 + 𝑚𝛼

𝐷 + 𝑡𝐻𝛼𝛼
𝐻 + 𝜇𝛼𝐷 and 𝑘𝛼34 = 𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡∗𝐷𝑑𝛼𝑇𝐷 + (𝜂∗13)𝛼 + 𝑡𝐻𝛼𝛼

𝐻 .
The following result is proved by applying the analogous methodology to the TB-Only

submodel (4.2).
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Lemma 4.2.8. The infection-free equilibrium point, 𝜖𝐷𝛼
0 is asymptotically stable if ℜ𝐷𝛼

0 < 1
unstable if ℜ𝐷𝛼

0 > 1.

For the TB-Diabetes submodel (4.18) we have the following endemic equilibrium point
𝜖𝐷𝛼
∗ = (𝑆∗𝐷𝛼 , 𝐸∗

𝐷𝛼 , 𝐼 ∗𝐷𝛼
1
, 𝐼 ∗𝐷𝛼

2
, 𝐼 ∗𝐷𝛼

3
, 𝑅∗

𝐷𝛼) where,

𝑆∗𝐷𝛼 =
𝑀𝛼

𝐷
𝜔𝐷(𝜆𝛼𝐷)∗ + 𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷
, 𝐸∗

𝐷𝛼 =
𝑀𝛼

𝐷𝜔𝐷(𝜆𝛼𝐷)∗𝑘𝛼32𝑘𝛼33𝑘𝛼34(𝛼𝛼
𝐻 + 𝜔𝐷𝛽

′

1(𝜆𝛼𝐷)∗ + 𝜇𝛼 + 𝜇𝛼𝐷)
𝐴𝛼
3

,

𝐼 ∗𝐷𝛼
1
=

𝑀𝛼
𝐷(1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼𝜔𝐷(𝜆𝛼𝐷)∗𝑘𝛼33𝑘𝛼34(𝛼𝛼

𝐻 + 𝜔𝐷𝛽
′

1(𝜆𝛼𝐷)∗ + 𝜇𝛼 + 𝜇𝛼𝐷)
𝐴𝛼
3

,

𝐼 ∗𝐷𝛼
2
=

𝑀𝛼
𝐷𝜔𝐷(𝜆𝛼𝐷)∗(𝛼𝛼

𝐻 + 𝜔𝐷𝛽
′

1(𝜆𝛼𝐷)∗ + 𝜇𝛼 + 𝜇𝛼𝐷)(𝑘𝛼32𝑘𝛼34(𝛽∗)𝛼𝜖∗𝐷𝜂𝛼(1 − 𝑝𝛼
𝐷) + 𝑘𝛼34𝑙𝛼𝐷(1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂𝛼)

𝐴𝛼
3

,

𝐼 ∗𝐷𝛼
3
=

𝑀𝛼
𝐷𝜔𝐷(𝜆𝛼𝐷)∗(𝛼𝛼

𝐻 + 𝜔𝐷𝛽
′

1(𝜆𝛼𝐷)∗ + 𝜇𝛼 + 𝜇𝛼𝐷)(𝑙𝛼𝐷𝜂𝛼16(1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂𝛼 + 𝑘𝛼22𝜖∗𝐷(𝛽∗)𝛼𝜂𝛼𝜂𝛼16(1 − 𝑝𝛼
𝐷) + 𝑘𝛼32𝑘𝛼33𝜖∗𝐻𝜂𝛼𝑝𝛼

𝐷)
𝐴𝛼
3

,

𝑅∗
𝐷𝛼 =

𝑀𝛼
𝐷𝜔𝐷(𝜆𝛼𝐷)∗((1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂𝛼(𝑘𝛼33𝑘𝛼34𝜂𝛼13 + 𝑙𝛼𝐷(𝑘𝛼34𝑚𝛼

𝐷 + (𝜂∗13)𝛼𝜂𝛼16) + (1 − 𝑝𝛼
𝐷)𝑘𝛼32𝜖∗𝐻 (𝛽∗)𝛼𝜂𝛼(𝑘𝛼34𝑚𝛼

𝐷 + (𝜂∗13)𝛼𝜂𝛼16)+
𝐴𝛼
3

𝑘𝛼32𝑘𝛼33𝜖∗𝐷(𝛽∗)𝛼𝜂𝛼(𝜂∗13)𝛼𝑝𝛼
𝐷)

𝐴𝛼
3

, (4.20)

and 𝐴𝛼
3 = (𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝜔𝐷(𝜆𝛼𝐷)∗)(𝛼𝛼
𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝜔𝐷𝛽

′

1(𝜆𝛼𝐷)∗)𝑘𝛼31𝑘𝛼32𝑘𝛼33𝑘𝛼34 − (𝛼𝛼
𝐻 + 𝜇𝛼 +

𝜔𝐷(𝜆𝛼𝐷)∗)𝛽
′

1𝜔𝐷(𝜆𝛼𝐷)∗((1 − 𝑝𝛼
𝐷)𝑘𝛼32(𝛽∗)𝛼𝜖∗𝐷𝜂𝛼(𝑘𝛼34𝑚𝛼

𝐷 + (𝜂∗13)𝛼𝜂𝛼16) + (1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂𝛼(𝑘𝛼33𝑘𝛼34𝜂𝛼13 +
𝑙𝛼𝐷(𝑘𝛼34𝑚𝛼

𝐷 + (𝜂∗13)𝛼𝜂𝛼13) + 𝑘𝛼32𝑘𝛼33𝜖∗𝐷(𝛽∗)𝛼𝜂𝛼(𝜂∗13)𝛼𝑝𝛼
𝐷).

Analogously, we obtain the following lemma:

Lemma 4.2.9. The TB-Diabetes submodel (4.18) has a unique endemic equilibrium point
𝜖𝐷𝛼
∗ , whenever ℜ𝐷𝛼

0 > 1.

Analysis of the Full Model

For the full model (4.1), infection-free equilibrium point is

𝜖𝐺𝛼
0 = (𝑆𝑇𝛼0 , 𝑆

𝐻𝛼
0 , 𝑆𝐷𝛼

0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and the basic reproduction number is calculated using next-generation matrix method.
The dominant eigenvalues of the next-generation matrix are ℜ𝑇𝛼

0 ,ℜ
𝐻𝛼
0 and ℜ𝐷𝛼

0 . Then, the
basic reproduction number of the model (4.1) is

ℜ𝛼
0 = max{ℜ𝑇𝛼

0 ,ℜ
𝐻𝛼
0 ,ℜ𝐷𝛼

0 }.

Global Stability

Now, using a methodology analogous to that applied to Model (2.5), we prove the
global stability of the infection-free equilibrium point. Following [38], we can rewrite the
model (4.1) as

𝑐𝔻𝛼
𝑡 𝑆 = 𝐹(𝑆, 𝐼 ),

𝑐𝔻𝛼
𝑡 𝐼 = 𝐺(𝑆, 𝐼 ), 𝐺(𝑆, 0) = 0, (4.21)
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where 𝑆 ∈ ℝ6
+ is the vector with uninfected and recovered and 𝐼 ∈ ℝ12

+ have the other
compartment of the model (4.1).

The disease-free equilibrium is now denoted by 𝐸𝐺𝛼
0 = (𝑆𝛼

0 , 0), 𝑆𝛼
0 = (𝑆0, 0, 0, 0), 𝑆0 =

(𝑆𝑇𝛼0 , 𝑆
𝐻𝛼
0 , 𝑆𝐷𝛼

0 ) where 𝑆𝑇𝛼0 =
𝑀𝛼

𝑇

𝜇𝛼 + 𝛼𝛼
𝐷 + 𝛼𝛼

𝐻
, 𝑆𝐻𝛼

0 =
𝑀𝛼

𝐻

𝜇𝛼 + 𝜇𝛼𝐻 + 𝛼𝛼
𝐻𝐷

and 𝑆𝐷𝛼
0 =

𝑀𝛼
𝐷

𝜇𝛼 + 𝜇𝛼𝐷 + 𝛼𝛼
𝐻

.

The conditions (𝐻 𝛼
1 ) and (𝐻 𝛼

2 ) below must be satisfied to guarantee the global asymptotic
stability of 𝐸𝐺

0 .

(𝐻 𝛼
1 ) ∶ For 𝑐𝔻𝛼

𝑡 𝑆 = 𝐹(𝑆, 0), 𝑆𝛼
0 is globally asymptotically stable,

(𝐻 𝛼
2 ) ∶ 𝐺(𝑆, 𝐼 ) = 𝐴𝐼 − 𝐺∗(𝑆, 𝐼 ), 𝐺∗(𝑆, 𝐼 ) ≥ 0, for (𝑆, 𝐼 ) ∈ Ω𝛼 ,

where 𝐴 = 𝐷𝐼𝐺(𝑆𝛼0 , 0) (𝐷𝐼𝐺(𝑆𝛼0 , 0) is the Jacobian of G at (𝑆𝛼0 , 0)) is a M-matrix (the off-
diagonal elements of 𝐴 are non-negative) and Ω𝛼 is the biologically feasible region.

The following results show the global stability of the infection-free equilibrium
point:

Theorem 4.2.10. The fixed point 𝐸𝐺𝛼
0 is a globally asymptotically stable equilibrium (g.a.s)

of model (4.1) provided that ℜ0 < 1 and that the conditions (𝐻 𝛼
1 ) and (𝐻 𝛼

2 ) are satisfied.

Proof. Let

𝐹(𝑆, 0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑀𝛼
𝑇 − (𝜇𝛼 + 𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 )𝑆𝑇

𝑀𝛼
𝐻 − (𝜇𝛼 + 𝜇𝛼𝐻 + 𝛼𝛼

𝐻𝐷)𝑆𝐻
𝑀𝛼

𝐷 − (𝜇𝛼 + 𝜇𝛼𝐷 + 𝛼𝛼
𝐻 )𝑆𝐷

0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As 𝐹(𝑆, 0) is a linear equation, then 𝑆𝛼0 is globally stable. Then, (𝐻 𝛼
1 ) is satisfied.

Let’s 𝐀 = [𝐁𝟏 ∣ 𝐁𝟐] where

𝐁𝟏 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑘𝛼11 0 0 (𝛼∗)𝛼 (𝛼∗)𝛼 (𝛼∗)𝛼𝜖𝐻
𝛼𝛼
𝐻 −𝑘𝛼21 𝛼𝛼

𝐻 𝜔𝐻 (𝛼∗)𝛼 𝜔𝐻 (𝛼∗)𝛼 𝜔𝐻 (𝛼∗)𝛼𝜖𝐻
𝛼𝛼
𝐷 𝛼𝛼

𝐻𝐷 −𝑘𝛼31 𝜔𝐷(𝛼∗)𝛼 𝜔𝐷(𝛼∗)𝛼 𝜔𝐷(𝛼∗)𝛼𝜖𝐻
(1 − (𝛽∗)𝛼)𝜂𝛼 0 0 −𝑘𝛼12 0 0

(1 − 𝑝𝛼
𝑇 )(𝛽∗)𝛼𝜂𝛼 0 0 𝑙𝛼𝑇 −𝑘𝛼13 0
0 (𝛽∗)𝛼𝜖∗𝐻𝜂𝛼 0 𝑡𝐻𝛼𝛼

𝐻 0 −𝑘𝛼22
0 (1 − 𝑝𝛼

𝐻 )(𝛽∗)𝛼𝜖∗𝐻𝜂𝛼 0 0 𝑡𝐻𝛼𝛼
𝐻 𝑙𝛼𝐻

0 0 (1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂𝛼 𝑡𝐷𝛼𝛼
𝐷 0 𝛼𝛼

𝐻𝐷
0 0 (1 − 𝑝𝛼

𝐷)(𝛽∗)𝛼𝜖∗𝐷𝜂𝛼 0 𝑡𝐷𝛼𝛼
𝐷 0

𝑝𝑇 (𝛽∗)𝛼𝜂𝛼 0 0 0 𝜂𝛼14 0
0 𝑝𝛼

𝐻𝜖∗𝐻 (𝛽∗)𝛼𝜂𝛼 0 0 0 0
0 0 𝑝𝛼

𝐷𝜖∗𝐷(𝛽∗)𝛼𝜂𝛼 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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𝐁𝟐 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝛼∗)𝛼𝜖𝐻 (𝛼∗)𝛼𝜖𝐷 (𝛼∗)𝛼𝜖𝐷 (𝛼∗)𝛼 (𝛼∗)𝛼𝜖𝐻 (𝛼∗)𝛼𝜖2
𝜔𝐻 (𝛼∗)𝛼𝜖𝐻 𝜔𝐻 (𝛼∗)𝛼𝜖𝐷 𝜔𝐻 (𝛼∗)𝛼𝜖𝐷 𝜔𝐻 (𝛼∗)𝛼 𝜔𝐻 (𝛼∗)𝛼𝜖𝐻 𝜔𝐻 (𝛼∗)𝛼𝜖𝐷
𝜔𝐷(𝛼∗)𝛼𝜖𝐻 𝜔𝐷(𝛼∗)𝛼𝜖𝐷 𝜔𝐷(𝛼∗)𝛼𝜖𝐷 𝜔𝐷(𝛼∗)𝛼 𝜔𝐷(𝛼∗)𝛼𝜖𝐻 𝜔𝐷(𝛼∗)𝛼𝜖𝐷

0 0 0 0 0 0
0 0 0 0 0 0
0 𝑡𝐻𝛼𝛼

𝐻 0 0 0 0
−𝑘𝛼23 0 𝑡𝐻𝛼𝛼

𝐻 0 0 0
0 −𝑘𝛼32 0 0 0 0

𝑡𝐻𝐷𝛼𝛼
𝐻𝐷 𝑙𝐷 −𝑘𝛼33 0 0 0

0 0 0 −𝑘𝛼14 0 0
𝜂𝛼15 0 0 𝑡𝐻𝛼𝛼

𝐻 −𝑘𝛼24 𝑡𝐻𝛼𝛼
𝐻

0 0 𝜂𝛼16 𝑡𝐷𝛼𝛼
𝐷 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷 −𝑘𝛼34

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

𝐈 = ( 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 ) ,

𝐺∗(𝑆, 𝐼 ) = 𝐴𝐼 𝑇 − 𝐺(𝑆, 𝐼 ),

𝐺∗(𝑆, 𝐼 ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐺∗
1(𝑆, 𝐼 )

𝐺∗
2(𝑆, 𝐼 )

𝐺∗
3(𝑆, 𝐼 )

𝐺∗
4(𝑆, 𝐼 )

𝐺∗
5(𝑆, 𝐼 )

𝐺∗
6(𝑆, 𝐼 )

𝐺∗
7(𝑆, 𝐼 )

𝐺∗
8(𝑆, 𝐼 )

𝐺∗
9(𝑆, 𝐼 )

𝐺∗
10(𝑆, 𝐼 )

𝐺∗
11(𝑆, 𝐼 )

𝐺∗
12(𝑆, 𝐼 )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(𝛼∗)𝛼(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))(1 −
𝑆𝑇 + 𝛽′

1𝑅𝑇

𝑁 )

𝜔𝐻 (𝛼∗)𝛼(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))(1 −
𝑆𝐻 + 𝛽′

1𝑅𝐻

𝑁 )

𝜔𝐷(𝛼∗)𝛼(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))(1 −
𝑆𝐷 + 𝛽′

1𝑅𝐷

𝑁 )
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Since 𝑆𝑇 +𝛽′

1𝑅𝑇 , 𝑆𝐻 +𝛽′

1𝑅𝐻 and 𝑆𝐷+𝛽′

1𝑅𝐷 are always less than or equal to 𝑁 ,
𝑆𝑇 + 𝛽′

1𝑅𝑇

𝑁
≤ 1,

𝑆𝐻 + 𝛽′

1𝑅𝐻

𝑁
≤ 1 and

𝑆𝐷 + 𝛽′

1𝑅𝐷

𝑁
≤ 1. Thus 𝐺∗(𝑆, 𝐼 ) ≥ 0 for all (𝑆, 𝐼 ) ∈ 𝐷. The 𝐸𝐺𝛼

0 is a globally

asymptotically stable.

This proof is in [54] and analogous proofs can be found in the bibliographical references
[97, 98].

4.3 Numerical Results
For the simulations, we use different fractional-orders (𝛼 = 0.3, 0.5, 0.7, 0.9, 1.0) to study

the behavior of the basic reproduction number and the resistance compartments. The
numerical results of the Caputo derivative are obtained by the predict-evaluate-correct-
correct-evaluate (PECE) method of Adams-Bashforth-Moulton type [48, 49, 50], presented
in the Subsection (1.1.2) of theoretical background. Here, we use 10 years for the time
horizon. The Tables (2.2)-(2.3) show the values used as the initial conditions and parameters
for these simulations.

We are going to study the basic reproduction number when we vary (𝛼∗)𝛼 and the
resistance parameters in the same intervals as in the ODE study in Section (2.5) for different
𝛼−values.

When we vary (𝛼∗)𝛼 (effective contact rate) in the basic reproduction numbers and
study the different 𝛼-values, we get that: for lower 𝛼-values we obtain lower ℜ𝑇𝛼

0 , ℜ𝐻𝛼
0

and ℜ𝐷𝛼
0 respectively, see Table (4.1) and Figures (4.1a)-(4.1c). In particular, the ℜ𝑇𝛼

0 for the
model with 𝛼 = 1.0 it reaches values greater and less than unity. For 𝛼 < 1.0, we have that
ℜ𝑇𝛼

0 will always be less than the unit. Therefore, we recommend to control the influence of
the (𝛼∗)𝛼 in order to keep ℜ𝑇𝛼

0 always less than unity. For ℜ𝐻𝛼
0 and ℜ𝐷𝛼

0 , varying (𝛼∗)𝛼 we
have that ℜ𝐻𝛼

0 < ℜ𝐷𝛼
0 for 𝛼 > 0.5, and for 𝛼 ≤ 0.5 the opposite situation occurs.

ℜ𝑇𝛼
0 ℜ𝐻𝛼

0 ℜ𝐷𝛼
0

𝛼-value min max min max min max
0.3 2.4314𝑒 − 05 3.4892𝑒 − 05 7.4907𝑒 − 05 1.0735𝑒 − 04 3.7999𝑒 − 05 5.4545𝑒 − 05
0.5 5.3385𝑒 − 04 9.7467𝑒 − 04 5.2741𝑒 − 04 9.6292𝑒 − 04 3.7494𝑒 − 04 6.8415𝑒 − 04
0.7 0.0099 0.0232 0.0038 0.0089 0.0039 0.0090
0.9 0.1601 0.4730 0.0235 0.0695 0.03006 0.0905
1.0 0.6232 2.0773 0.0560 0.1866 0.0995 0.3317

Table 4.1: Values of the basic reproduction numbers for different 𝛼-values varying (𝛼∗)𝛼 .



4.3 | NUMERICAL RESULTS

105

α
*

4 6 8 10 12 14 16

ℜ
T 0
-V

a
lu

e

0

0.5

1

1.5

2

2.5

Basic Reproduction Number (ℜT

0
)

α=1

α=0.9

α=0.7

α=0.5

α=0.3

(a) ℜ𝑇𝛼
0 values varying (𝛼∗)𝛼 for different 𝛼-values.

α
*

4 6 8 10 12 14 16

ℜ
H 0
-V

a
lu

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Basic Reproduction Number (ℜH

0
)

α=1

α=0.9

α=0.7

α=0.5

α=0.3

(b) ℜ𝐻𝛼
0 values varying (𝛼∗)𝛼 for different 𝛼-values.

α
*

4 6 8 10 12 14 16

ℜ
D 0
-V

a
lu

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Basic Reproduction Number (ℜD

0
)

α=1

α=0.9

α=0.7

α=0.5

α=0.3

(c) ℜ𝐷𝛼
0 values varying (𝛼∗)𝛼 for different 𝛼-values.

Figure 4.1: ℜ𝑇𝛼
0 , ℜ𝐻𝛼

0 , ℜ𝐷𝛼
0 values varying (𝛼∗)𝛼 for different 𝛼-values.

When we vary the parameters 𝑙𝛼𝑇 , 𝑙𝛼𝐻 , 𝑙𝛼𝐷, 𝜂𝛼14, 𝜂𝛼15 and 𝜂𝛼16 and study the basic reproduction
numbers for the different 𝛼-values, it happens analogous to when we vary (𝛼∗)𝛼 , see Table
(4.2) and (4.3) and Figures (4.2a)-(4.3c). But, we have that when 𝛼 = 1.0, ℜ𝑇𝛼

0 always takes
values greater than unity, the same conditions are fulfilled for ℜ𝐻𝛼

0 and ℜ𝐷
0 with respect

to 𝛼-values (for 𝛼 > 0.5 implies ℜ𝐷𝛼
0 > ℜ𝐻𝛼

0 and for 𝛼 ≤ 0.5 implies ℜ𝐷𝛼
0 < ℜ𝐻𝛼

0 ) and for
smaller 𝛼−values the basic reproduction numbers are smaller.

ℜ𝑇𝛼
0 ℜ𝐻𝛼

0 ℜ𝐷𝛼
0

𝛼-value min max min max min max
0.3 2.1596𝑒 − 05 2.1665𝑒 − 05 9.3579𝑒 − 05 9.3805𝑒 − 05 4.7477𝑒 − 05 4.7751𝑒 − 05
0.5 6.5121𝑒 − 04 6.5682𝑒 − 04 7.6577𝑒 − 04 7.7312𝑒 − 04 6.1631𝑒 − 04 6.2922𝑒 − 04
0.7 0.0155 0.0157 0.0064 0.0065 0.0069 0.0072
0.9 0.3080 0.3120 0.0461 0.0470 0.0606 0.0639
1.0 1.3153 1.3311 0.1181 0.1205 0.2095 0.2217

Table 4.2: Values of the basic reproduction numbers for different 𝛼-values varying 𝑙𝛼𝑖 , 𝑖 = 𝑇 , 𝐻 , 𝐷.
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Figure 4.2: ℜ0 values varying 𝑙𝛼𝑖 , 𝑖 = 𝑇 , 𝐻 , 𝐷 for different 𝛼-values.

ℜ𝑇
0 ℜ𝐻

0 ℜ𝐷
0

𝛼-value min max min max min max
0.3 2.1599𝑒 − 05 2.1615𝑒 − 05 9.3438𝑒 − 05 9.3710𝑒 − 05 4.7513𝑒 − 05 4.7561𝑒 − 05
0.5 6.5137𝑒 − 04 6.5237𝑒 − 04 7.5462𝑒 − 04 7.7689𝑒 − 04 5.3651𝑒 − 04 5.5168𝑒 − 04
0.7 0.0155 0.0156 0.0064 0.0065 0.0065 0.0066
0.9 0.3080 0.3086 0.0460 0.0462 0.0599 0.0602
1.0 1.3151 1.3177 0.1181 0.1184 0.2099 0.2103

Table 4.3: Values of the basic reproduction numbers for different 𝛼-values varying 𝜂𝛼1𝑟 , 𝑟 = 4, 5, 6.

In conclusion, in this case, we must pay attention to the behavior of the basic repro-
duction number due to its variation with respect to the different 𝛼-values and how it
influences the transmission of the epidemic. The Table (4.4) shows the values of the basic
reproduction numbers for the fractional-orders studied in this scenario, we can see that
the basic reproduction numbers increase for higher 𝛼-values. Figures (4.4a)-(4.4c) show the
graphical behavior of the basic reproduction numbers when we vary the fractional-order.
We have that for 𝛼 ∈ [0.9333, 1] the ℜ𝑇𝛼

0 ∈ [0.5043, 1.3156], which implies that from these
𝛼-values in the scenario under study we should pay attention to this behavior.
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Figure 4.3: ℜ0 values varying 𝜂𝛼1𝑟 , 𝑟 = 4, 5, 6 for different 𝛼-values.

𝛼-value ℜ𝑇𝛼
0 ℜ𝐻𝛼

0 ℜ𝐷𝛼
0

0.3 3.0424𝑒 − 05 9.3605𝑒 − 05 4.7543𝑒 − 05
0.5 7.7566𝑒 − 04 7.6631𝑒 − 04 5.4478𝑒 − 04
0.7 0.0167 0.0064 0.0066
0.9 0.3136 0.0461 0.0600
1.0 1.3156 0.1182 0.2101

Table 4.4: Values of ℜ𝛼
0 for the different 𝛼-values with the values of the parameters of the Table (2.3).

The following computational simulations for the resistant compartments and their
discussions can be found in [54].

For MDR-TB cases in all subpopulations at the beginning of the study, we have a
decrease in the number of cases reported. Initially, fewer cases are reported for the lower
𝛼-values (lower 𝛼-values imply fewer cases). At about the year of study (depending on
the subpopulation) behavior changes and higher 𝛼-values report lower numbers of cases,
see Figures (4.5b), (4.5d) and (4.5f). Then, a growth begins in all subpopulations of MDR-
TB and at the end of the study period, a higher number of cases was reported for the
highest 𝛼-values, see Figures (4.5a), (4.5c) and (4.5e). The highest number of MDR-TB cases
was reported by the TB-Only subpopulation followed by the TB-Diabetes subpopulation
throughout the study period and for the different 𝛼-values. Due to these results, it is
recommended to apply MDR-TB control in all subpopulations at the beginning of the
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Figure 4.4: Behavior of ℜ𝛼
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study period to control the growth in the number of cases [54].
The XDR-TB cases in the TB-Only subpopulation decreased throughout the study

period. At the beginning of the study, fewer cases were reported in less time for lower
𝛼-values but at the end of the study period, the opposite occurred (higher 𝛼-values reported
a lower number of cases). We must pay attention when 𝛼 = 1.0 because at the end of the
study there is a slight increase in the number of cases, see Figures (4.6a) and (4.6b) [54].

In the TB-HIV/AIDS subpopulation at the beginning of the study, there is a decrease
in the number of cases where lower 𝛼-values report fewer cases (up to approximately
one year of study). Over time, the decrease in the number of cases continues, but now
with higher 𝛼-values the number of cases is lower. Approximately 5 years into the study,
we have an increase in the number of cases for 𝛼 > 0.5 and at the end of the period of
study, we can distinguish results for the different 𝛼. For 𝛼 > 0.5, higher 𝛼-values reported
a higher number of cases. For 𝛼 ≤ 0.5, the opposite is true, at lower 𝛼-values the number
of reported cases is higher, see Figures (4.6c) and (4.6d). This event is important to take
into account for the application of an effective control strategy in this subpopulation. We
recommend applying control from the beginning of the study in order to avoid the growth
of cases taking advantage of the initial decrease in these compartments [54].

In the TB-Diabetes subpopulation, there is an increase in the number of cases during
the entire study period. At the beginning of the study, the highest number of cases was
reported for lower 𝛼-values, see Figure (4.6e). At the end of the study period, it happens
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Figure 4.5: Behavior of MDR-TB cases for different 𝛼-values over time.

that higher 𝛼- values report a higher number of cases, see Figure (4.6f). In general, the
highest number of XDR-TB cases was reported from the TB-Diabetes subpopulation. We
recommend applying an effective control strategy in this subpopulation with the objective
of reducing the number of XDR-TB cases due to the growth of cases throughout the study
period for all 𝛼-values [54].
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During the computational experimentation, we found that the MDR-TB compartments
have a decrease at the beginning of the study period and a growth at the end for the
different 𝛼-values, which allows us to design a control strategy with the objective of
avoiding the growth of the number of cases. For XDR-TB cases, we recommend paying
attention to the TB-HIV/AIDS and TB-Diabetes subpopulations due to the growing number
of cases. In particular to the diabetic XDR-TB cases because they report the highest number
of cases compared to all resistance compartments [54].
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Figure 4.6: Behavior of XDR-TB cases for different 𝛼-values over time.
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4.4 Partial Conclusions
• The innovative aspect of this chapter is the use of fractional-order derivatives in the

Caputo sense to the model presented in Chapter (2).

• We studied MDR-TB and XDR-TB in the different subpopulations TB-Only, TB-
HIV/AIDS, and TB-Diabetes and calculated and analyzed the equilibrium points of
the different subpopulations (using results of fractional analysis).

• For the computational simulations, we used a predict-evaluate-correct-correct-
evaluate (PECE) method in order to study the behavior of the different resistance
compartments over time for different 𝛼-values.

• Among the results of the simulations, we have that:

– For the MDR-TB at the beginning of the study, there is a decrease of cases in all
subpopulations. Then, the number of cases begins to grow and at the end of the
study period in MDR-TB, a higher number of cases is obtained for the higher
𝛼-values, see Figure (4.5). For MDR-TB control, we recommended controlling
from the beginning of the study to avoid the growth in the number of cases.

– Throughout the study, the number of XDR-TB cases in the TB-Only subpopu-
lation decreased. At the beginning of the study (before the year of study) for
lower 𝛼-values, fewer cases are reported, and later in the study, the higher
𝛼-values report fewer cases, see Figure (4.6a).

– The XDR-TB cases in the TB-HIV/AIDS subpopulation initially have a decrease
in the number of cases. Approximately 5 years into the study there is a growth
in the number of cases for 𝛼 > 0.5 and at the end of the study, there is a
differentiated behavior, for 𝛼 > 0.5 the higher 𝛼-values reported a higher
number of cases and for 𝛼 ≤ 0.5 the lower the 𝛼-values the higher number
of cases reported, see Figure (4.6c). This factor must be taken into account to
design an effective control strategy.

– In the TB-Diabetes subpopulation throughout the study period, there is an
increase in the number of XDR-TB cases. At the beginning for lower 𝛼-values
the number of cases is higher and at the end of the period, the opposite situation
occurs, see Figure (4.6e). The diabetics XDR-TB are the highest number of
resistance cases compared to all TB treatment resistance compartments. We
recommend paying special attention to the control in this compartment due to
its growth.

• Computer simulations provide information for an effective design of a control
strategy for tuberculosis (treatment resistance and transmission).
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Chapter 5

Optimal Control with
Fractional-Order Derivatives

5.1 Introduction

The optimal control problem with fractional-order derivatives used in epidemic control
has increased in the last decades, due to the advantages of this type of modeling. For
example, Bashir and Bilgehana [28] based on a mathematical model with fractional-order
derivative in the Caputo sense for COVID-19, formulated and solved a fractional opti-
mal control problem. Sweilam et al. [112] presented an optimal control problem with a
fractional-order mathematical model in the Caputo sense, with multiple-delays for the
co-infection of HIV/AIDS and malaria. Sweilam et al. [111] studied the optimal control
problem for a TB infection model with the presence of diabetes and resistant strains using
fractional-order derivatives in the Atangana-Baleanu-Caputo (ABC) sense and presented a
new numerical scheme to simulate an optimal fractional-order system with Mittag-Leffler
kernels. Rosa and Torres [102] formulated and solved a fractional optimal control problem
(FOCP) based on a Caputo fractional-order mathematical model for the transmission
of tuberculosis (TB) presented in [121]. Elal et al. [2] used two numerical methods to
study the nonlinear fractional optimal control problem for a HIV model. Wang et al. [14]
analyzed and designed an optimal control strategy for a Caputo-Fabrizio fractional-order
model of the HIV/AIDS epidemic. Kieri and Jafari [66] presented a fractional model for
HIV/AIDS with treatment and incorporate three control efforts (effective use of condoms,
ART treatment, and behavioral change control) and studied the optimal control problem
for different 𝛼-values (fractional-order). Sweilam et al. [110] presented a new fractional-
order Coronavirus (2019-nCov) mathematical model with modified parameters and an
optimal control problems for this model. Jajarmi et al. [62] formulated a new fractional
mathematical model using a non-singular derivative operator to study the relationship
between diabetes and TB, and introduced four controls in order to reduce the number of
infected individuals.

The purpose of this chapter is to present and solve an optimal control problem based on
the model (4.1). The novelty lies in the use of fractional order derivative in the model with
controls and to take advantage of the benefits of this type of modeling technique.
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5.2 Model with Controls, Optimal Control Problem
and Analysis

Now, we present the formulation of the problem of optimal control, with fractional-
order derivatives in the Caputo sense. We maintain the definition of the controls, coeffi-
cients 𝐵𝑚, 𝑚 = 0, 1, ..., 6 and the functional of the optimal control problem with ODE of the
Section (3).

𝐽 (𝑢0, 𝑢11, 𝑢12, 𝑢13) =∫
𝑡𝑓

𝑡0
𝐸𝑇 (𝑡) + 𝐸𝐻 (𝑡) + 𝐸𝐷(𝑡) + 𝐼𝑇2(𝑡) + 𝐼𝐻2(𝑡) + 𝐼𝐷2(𝑡) + 𝐼𝑇3(𝑡) + 𝐼𝐻3(𝑡) + 𝐼𝐷3(𝑡)+

1
2(

𝐵0𝑢20(𝑡) + (𝐵1 + 𝐵4)𝑢211(𝑡) + (𝐵2 + 𝐵5)𝑢212(𝑡) + (𝐵3 + 𝐵6)𝑢213(𝑡))𝑑𝑡.

(5.1)

The novelty of the formulation of this problem is that for the constraints, we use the
fractional-order derivatives in the Caputo sense and take advantage of all the benefits of
this formulation. So, the objective is to find the optimal controls 𝑢∗0, 𝑢∗11, 𝑢∗12 and 𝑢∗13 that
satisfy

𝐽 (𝑢∗0, 𝑢
∗
11, 𝑢

∗
12, 𝑢

∗
13) = min

𝑈𝑎𝑑
𝐽 (𝑢0, 𝑢11, 𝑢12, 𝑢13), (5.2)

where 𝑈𝑎𝑑 = {(𝑢0, 𝑢11, 𝑢12, 𝑢13)| 𝑢0, 𝑢11, 𝑢12, 𝑢13, Lebesgue measurable, 0 ≤ 𝑢𝑘 ≤
1, 𝑘 = 0, 11, 12, 13, ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ]}. In this section, we will work with an initial time
equal to zero.

The constraints of the control problem is the model (4.1) incorporating the controls
and is defined as follows:

𝑐𝔻𝛼
𝑡 𝑆𝑇 = 𝑓 𝛼

1 =𝑀𝛼
𝑇 − (𝜇𝛼 + 𝛼𝛼

𝐷 + 𝛼𝛼
𝐻 + 𝜆𝛼)𝑆𝑇 ,

𝑐𝔻𝛼
𝑡 𝑆𝐻 = 𝑓 𝛼

2 =𝑀𝛼
𝐻 + 𝛼𝛼

𝐻 (𝑆𝑇 + 𝑆𝐷) − (𝛼𝛼
𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝜔𝐻𝜆𝛼)𝑆𝐻 ,

𝑐𝔻𝛼
𝑡 𝑆𝐷 = 𝑓 𝛼

3 =𝑀𝛼
𝐷 + 𝛼𝛼

𝐻𝐷𝑆𝐻 + 𝛼𝛼
𝐷𝑆𝑇 − (𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + 𝜔𝐷𝜆𝛼)𝑆𝐷,
𝑐𝔻𝛼

𝑡 𝐸𝑇 = 𝑓 𝛼
4 =𝜆𝛼(𝑆𝑇 + (1 − 𝑢0)𝛽

′

1𝑅𝑇 ) − (𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜇𝛼 + 𝜂𝛼)𝐸𝑇 ,
𝑐𝔻𝛼

𝑡 𝐸𝐻 = 𝑓 𝛼
5 =𝜔𝐻𝜆𝛼(𝑆𝐻 + (1 − 𝑢0)𝛽

′

1𝑅𝐻 ) + 𝛼𝛼
𝐻 (𝐸𝑇 + 𝐸𝐷) − (𝜖∗𝐻𝜂

𝛼 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝛼𝛼
𝐻𝐷)𝐸𝐻 ,

𝑐𝔻𝛼
𝑡 𝐸𝐷 = 𝑓 𝛼

6 =𝜔𝐷𝜆𝛼(𝑆𝐷 + (1 − 𝑢0)𝛽
′

1𝑅𝐷) + 𝛼𝛼
𝐻𝐷𝐸𝐻 + 𝛼𝛼

𝐷𝐸𝑇 − (𝛼𝛼
𝐻 + 𝜖∗𝐷𝜂

𝛼 + 𝜇𝛼 + 𝜇𝛼𝐷)𝐸𝐷,
𝑐𝔻𝛼

𝑡 𝐼𝑇1 = 𝑓 𝛼
7 =(1 − (𝛽∗)𝛼)𝜂𝛼𝐸𝑇 − ((1 − 𝑢11)𝑙𝛼𝑇 + 𝑡𝐷𝛼𝛼

𝐷 + 𝑡𝐻𝛼𝛼
𝐻 + 𝜇𝛼 + 𝑑𝛼𝑇 + 𝜂𝛼11)𝐼𝑇1 ,

𝑐𝔻𝛼
𝑡 𝐼𝑇2 = 𝑓 𝛼

8 =(1 − 𝑝𝛼
𝑇 )(𝛽

∗)𝛼𝜂𝛼𝐸𝑇 + (1 − 𝑢11)𝑙𝛼𝑇 𝐼𝑇1 − (𝑡𝐷𝛼𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝑚𝛼
𝑇 + 𝜇𝛼 + 𝑡

′

𝑇 𝑑
𝛼
𝑇+

(1 − 𝑢11)𝜂𝛼14)𝐼𝑇2 ,
𝑐𝔻𝛼

𝑡 𝐼𝐻1 = 𝑓 𝛼
9 =𝑡𝐻𝛼𝛼

𝐻 (𝐼𝑇1 + 𝐼𝐷1) + (1 − (𝛽∗)𝛼)𝜖∗𝐻𝜂
𝛼𝐸𝐻 − ((1 − 𝑢12)𝑙𝛼𝐻 + 𝜇𝛼 + 𝜇𝛼𝐻 + 𝑑𝛼𝑇𝐻+

𝜂𝛼12 + 𝑡𝐻𝐷𝛼𝛼
𝐻𝐷)𝐼𝐻1 ,

𝑐𝔻𝛼
𝑡 𝐼𝐻2 = 𝑓 𝛼

10 =𝑡𝐻𝛼
𝛼
𝐻 (𝐼𝑇2 + 𝐼𝐷2) + (1 − 𝑝𝛼

𝐻 )𝜖
∗
𝐻 (𝛽

∗)𝛼𝜂𝛼𝐸𝐻 + (1 − 𝑢12)𝑙𝛼𝐻 𝐼𝐻1 − (𝑚𝛼
𝐻 + 𝜇𝛼+

𝜇𝛼𝐻 + 𝑡
′

𝐻𝑑
𝛼
𝑇𝐻 + (1 − 𝑢12)𝜂𝛼15 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷)𝐼𝐻2 ,
𝑐𝔻𝛼

𝑡 𝐼𝐷1 = 𝑓 𝛼
11 =𝑡𝐷𝛼

𝛼
𝐷𝐼𝑇1 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻1 + (1 − (𝛽∗)𝛼)𝜖∗𝐷𝜂
𝛼𝐸𝐷 − ((1 − 𝑢13)𝑙𝛼𝐷 + 𝑡𝐻𝛼𝛼

𝐻 + 𝜇𝛼+
𝜇𝛼𝐷 + 𝑑𝛼𝑇𝐷 + 𝜂𝛼13)𝐼𝐷1 ,

𝑐𝔻𝛼
𝑡 𝐼𝐷2 = 𝑓 𝛼

12 =𝑡𝐷𝛼
𝛼
𝐷𝐼𝑇2 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻2 + (1 − 𝑝𝛼
𝐷)𝜖

∗
𝐷(𝛽

∗)𝛼𝜂𝛼𝐸𝐷 + (1 − 𝑢13)𝑙𝛼𝐷𝐼𝐷1 − (𝑚𝛼
𝐷 + 𝑡𝐻𝛼𝛼

𝐻+
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𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡
′

𝐷𝑑
𝛼
𝑇𝐷 + (1 − 𝑢13)𝜂𝛼16)𝐼𝐷2 ,

𝑐𝔻𝛼
𝑡 𝐼𝑇3 = 𝑓 𝛼

13 =𝑝
𝛼
𝑇 (𝛽

∗)𝛼𝜂𝛼𝐸𝑇 + (1 − 𝑢11)𝜂𝛼14𝐼𝑇2 − ((𝜂∗11)
𝛼 + 𝑡𝐷𝛼𝛼

𝐷 + 𝑡𝐻𝛼𝛼
𝐻 + 𝜇𝛼 + 𝑡∗𝑇 𝑑

𝛼
𝑇 )𝐼𝑇3 ,

𝑐𝔻𝛼
𝑡 𝐼𝐻3 = 𝑓 𝛼

14 =𝑝
𝛼
𝐻 (𝛽

∗)𝛼𝜖∗𝐻𝜂
𝛼𝐸𝐻 + (1 − 𝑢12)𝜂𝛼15𝐼𝐻2 + 𝑡𝐻𝛼𝛼

𝐻 (𝐼𝑇3 + 𝐼𝐷3) − ((𝜂∗12)
𝛼 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻+
𝑡∗𝐻𝑑

𝛼
𝑇𝐻 )𝐼𝐻3 ,

𝑐𝔻𝛼
𝑡 𝐼𝐷3 = 𝑓 𝛼

15 =𝑝
𝛼
𝐷(𝛽

∗)𝛼𝜖∗𝐷𝜂
𝛼𝐸𝐷 + (1 − 𝑢13)𝜂𝛼16𝐼𝐷2 + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷𝐼𝐻3 + 𝑡𝐷𝛼𝛼
𝐷𝐼𝑇3 − (𝑡𝐻𝛼𝛼

𝐻 + (𝜂∗13)
𝛼 + 𝜇𝛼 + 𝜇𝛼𝐷+

𝑡∗𝐷𝑑
𝛼
𝑇𝐷)𝐼𝐷3 ,

𝑐𝔻𝛼
𝑡 𝑅𝑇 = 𝑓 𝛼

16 =𝑚
𝛼
𝑇 𝐼𝑇2 + 𝜂𝛼11𝐼𝑇1 + (𝜂∗11)

𝛼𝐼𝑇3 − (𝛼𝛼
𝐷 + 𝛼𝛼

𝐻 + 𝜇𝛼 + (1 − 𝑢0)𝛽
′

1𝜆
𝛼)𝑅𝑇 ,

𝑐𝔻𝛼
𝑡 𝑅𝐻 = 𝑓 𝛼

17 =𝑚
𝛼
𝐻 𝐼𝐻2 + 𝜂𝛼12𝐼𝐻1 + (𝜂∗12)

𝛼𝐼𝐻3 + 𝛼𝛼
𝐻 (𝑅𝑇 + 𝑅𝐷) − (𝛼𝛼

𝐻𝐷 + 𝜇𝛼 + 𝜇𝛼𝐻 + (1 − 𝑢0)𝛽
′

1𝜔𝐻𝜆𝛼)𝑅𝐻 ,
𝑐𝔻𝛼

𝑡 𝑅𝐷 = 𝑓 𝛼
18 =𝑚

𝛼
𝐷𝐼𝐷2 + 𝜂𝛼13𝐼𝐷1 + (𝜂∗13)

𝛼𝐼𝐷3 + 𝛼𝛼
𝐷𝑅𝑇 + 𝛼𝛼

𝐻𝐷𝑅𝐻 − (𝛼𝛼
𝐻 + 𝜇𝛼 + 𝜇𝛼𝐷 + (1 − 𝑢0)𝛽

′

1𝜔𝐷𝜆𝛼)𝑅𝐷,
(5.3)

with

𝜆𝛼 =
(𝛼∗)𝛼(𝐼𝑇1 + 𝐼𝑇2 + 𝐼𝑇3 + 𝜖𝐻 (𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3) + 𝜖𝐷(𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3))

𝑁
,

and initial conditions:
𝑆𝑇 (0) > 0, 𝑆𝐻 (0) > 0, 𝑆𝐷(0) > 0, 𝐸𝑇 (0) > 0, 𝐸𝐻 (0) > 0, 𝐸𝐷(0) > 0, 𝐼𝑇1(0) > 0, 𝐼𝑇2(0) > 0,
𝐼𝐻1(0) > 0, 𝐼𝐻2(0) > 0, 𝐼𝐷1(0) > 0, 𝐼𝐷2(0) > 0, 𝐼𝑇3(0) > 0, 𝐼𝐻3(0) > 0, 𝐼𝐷3(0) > 0, 𝑅𝑇 (0) > 0,
𝑅𝐻 (0) > 0, 𝑅𝐷(0) > 0 and 𝛼 ∈ (0, 1].

For this problem, the Hamiltonian is defined as:

𝐻 𝛼 =𝐸𝑇 (𝑡) + 𝐸𝐻 (𝑡) + 𝐸𝐷(𝑡) + 𝐼𝑇2(𝑡) + 𝐼𝐻2(𝑡) + 𝐼𝐷2(𝑡) + 𝐼𝑇3(𝑡) + 𝐼𝐻3(𝑡) + 𝐼𝐷3(𝑡) +
𝐵0𝑢20(𝑡)

2
+
(𝐵1 + 𝐵4)𝑢211(𝑡)

2
+

(𝐵2 + 𝐵5)𝑢212(𝑡)
2

+
(𝐵3 + 𝐵6)𝑢213(𝑡)

2
+

18

∑
𝑛=1

𝜆𝑛𝑓 𝛼
𝑛 , (5.4)

where 𝜆1, 𝜆2, ⋯, 𝜆18 are the adjoint variables.

Theorem 5.2.1. If 𝑢∗0, 𝑢∗11, 𝑢∗12 and 𝑢∗13 are controls of the optimal control problem (5.2), 𝑆∗∗𝑇 ,
𝑆∗∗𝐻 , 𝑆∗∗𝐷 , 𝐸∗∗

𝑇 , 𝐸∗∗
𝐻 , 𝐸∗∗

𝐷 , 𝐼 ∗∗𝑇1 , 𝐼 ∗∗𝑇2 , 𝐼 ∗∗𝐻1
, 𝐼 ∗∗𝐻2

, 𝐼 ∗∗𝐷1
, 𝐼 ∗∗𝐷2

, 𝐼 ∗∗𝑇3 , 𝐼 ∗∗𝐻3
, 𝐼 ∗∗𝐷3

𝑅∗∗
𝑇 , 𝑅∗∗

𝐻 and 𝑅∗∗
𝐷 , are corresponding

optimal paths, them there exists co-state variables 𝜆𝑛, 𝑛 = 1, ..., 18 such that, besides the
control system (5.3) is satisfied, the following conditions are satisfied:

I. co-state equations

𝑐𝔻𝛼
𝑡 𝜆1(𝑡

′
) = 𝛼𝛼

𝐷(𝜆3 − 𝜆1) + 𝛼𝛼
𝐻 (𝜆2 − 𝜆1) + 𝜆𝛼(𝜆4 − 𝜆1) − 𝜇𝛼𝜆1,

𝑐𝔻𝛼
𝑡 𝜆2(𝑡

′
) = 𝛼𝛼

𝐻𝐷(𝜆3 − 𝜆2) + 𝜔𝐻𝜆𝛼(𝜆5 − 𝜆2) − (𝜇𝛼 + 𝜇𝛼𝐻 )𝜆2,
𝑐𝔻𝛼

𝑡 𝜆3(𝑡
′
) = 𝛼𝛼

𝐻 (𝜆2 − 𝜆3) + 𝜔𝐷𝜆𝛼(𝜆6 − 𝜆3) − (𝜇𝛼 + 𝜇𝛼𝐷)𝜆3,
𝑐𝔻𝛼

𝑡 𝜆4(𝑡
′
) = 1 + 𝛼𝛼

𝐷(𝜆6 − 𝜆4) + 𝛼𝛼
𝐻 (𝜆5 − 𝜆4) + 𝜂𝛼((𝜆7 − 𝜆4) + (𝛽∗)𝛼((𝜆8 − 𝜆7) + 𝑝𝛼

𝑇 (𝜆13 − 𝜆8))) − 𝜇𝛼𝜆4,
𝑐𝔻𝛼

𝑡 𝜆5(𝑡
′
) = 1 + 𝛼𝛼

𝐻𝐷(𝜆6 − 𝜆5) + 𝜂𝛼𝜖∗𝐻 ((𝜆9 − 𝜆5) + (𝛽∗)𝛼((𝜆10 − 𝜆9) + 𝑝𝛼
𝐻 (𝜆14 − 𝜆10))) − (𝜇𝛼 + 𝜇𝛼𝐻 )𝜆5,

𝑐𝔻𝛼
𝑡 𝜆6(𝑡

′
) = 1 + 𝛼𝛼

𝐻 (𝜆5 − 𝜆6) + 𝜂𝛼𝜖∗𝐷((𝜆11 − 𝜆6) + (𝛽∗)𝛼((𝜆12 − 𝜆11) + 𝑝𝛼
𝐷(𝜆15 − 𝜆12))) − (𝜇𝛼 + 𝜇𝛼𝐷)𝜆6,

𝑐𝔻𝛼
𝑡 𝜆7(𝑡

′
) = 1 + 𝑡𝐷𝛼𝛼

𝐷(𝜆11 − 𝜆7) + 𝑡𝐻𝛼𝛼
𝐻 (𝜆9 − 𝜆7) + 𝜂𝛼11(𝜆16 − 𝜆7) + (1 − 𝑢11)𝑙𝛼𝑇 (𝜆8 − 𝜆7)+

(𝛼∗)𝛼

𝑁 ((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽
′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) − (𝜇𝛼 + 𝑑𝛼𝑇 )𝜆7,
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𝑐𝔻𝛼
𝑡 𝜆8(𝑡

′
) = 1 + (1 − 𝑢11)𝜂𝛼14(𝜆13 − 𝜆8) + 𝑡𝐷𝛼𝛼

𝐷(𝜆12 − 𝜆8) + 𝑡𝐻𝛼𝛼
𝐻 (𝜆10 − 𝜆8) + 𝑚𝛼

𝑇 (𝜆16 − 𝜆8)+
(𝛼∗)𝛼

𝑁 ((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽
′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) − (𝜇𝛼 + 𝑡
′

𝑇 𝑑
𝛼
𝑇 )𝜆8,

𝑐𝔻𝛼
𝑡 𝜆9(𝑡

′
) = 1 + (1 − 𝑢12)𝑙𝛼𝐻 (𝜆10 − 𝜆9) + 𝜂𝛼12(𝜆17 − 𝜆9) + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷(𝜆11 − 𝜆9) +
(𝛼∗)𝛼

𝑁
𝜖𝐻((𝜆4 − 𝜆1)𝑆𝑇+

𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽
′

1(𝑅𝑇 (𝜆4 − 𝜆16) + 𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17)

+ 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) − (𝜇𝛼 + 𝜇𝛼𝐻 + 𝑑𝛼𝑇𝐻 )𝜆9,

𝑐𝔻𝛼
𝑡 𝜆10(𝑡

′
) = 1 +

(𝛼∗)𝛼

𝑁
𝜖𝐻((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) + 𝑡𝐻𝐷𝛼𝛼
𝐻𝐷(𝜆12 − 𝜆10) + 𝑚𝛼

𝐻 (𝜆17 − 𝜆10) + (1 − 𝑢11)𝜂𝛼15(𝜆14−

𝜆10) − (𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡
′

𝐻𝑑
𝛼
𝑇𝐻 )𝜆10,

𝑐𝔻𝛼
𝑡 𝜆11(𝑡

′
) = 1 +

(𝛼∗)𝛼

𝑁
𝜖𝐷((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) + (1 − 𝑢13)𝑙𝛼𝐷(𝜆12 − 𝜆11) + 𝜂𝛼13(𝜆18 − 𝜆11)+

𝑡𝐻𝛼𝛼
𝐻 (𝜆9 − 𝜆11) − (𝜇𝛼 + 𝜇𝛼𝐷 + 𝑑𝛼𝑇𝐷)𝜆11,

𝑐𝔻𝛼
𝑡 𝜆12(𝑡

′
) = 1 +

(𝛼∗)𝛼

𝑁
𝜖𝐷((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) + 𝑡𝐻𝛼𝛼
𝐻 (𝜆10 − 𝜆12) + 𝑚𝛼

𝐷(𝜆18 − 𝜆12)+

(1 − 𝑢13)𝜂𝛼16(𝜆15 − 𝜆12) − (𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡
′

𝐷𝑑𝑇𝐷)𝜆12,

𝑐𝔻𝛼
𝑡 𝜆13(𝑡

′
) = 1 +

(𝛼∗)𝛼

𝑁 ((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽
′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) + (𝜂∗11)
𝛼(𝜆16 − 𝜆13) + 𝑡𝐷𝛼𝛼

𝐷(𝜆15 − 𝜆13)+

𝑡𝐻𝛼𝛼
𝐻 (𝜆14 − 𝜆13) − (𝜇𝛼 + 𝑡∗𝑇 𝑑

𝛼
𝑇 )𝜆13,

𝑐𝔻𝛼
𝑡 𝜆14(𝑡

′
) = 1 +

(𝛼∗)𝛼

𝑁
𝜖𝐻((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) + (𝜂∗12)
𝛼(𝜆17 − 𝜆14) + 𝑡𝐻𝐷𝛼𝛼

𝐻𝐷(𝜆15 − 𝜆14)−

(𝜇𝛼 + 𝜇𝛼𝐻 + 𝑡∗𝐻𝑑
𝛼
𝑇𝐻 )𝜆14,

𝑐𝔻𝛼
𝑡 𝜆15(𝑡

′
) = 1 +

(𝛼∗)𝛼

𝑁
𝜖𝐷((𝜆4 − 𝜆1)𝑆𝑇 + 𝜔𝐻𝑆𝐻 (𝜆5 − 𝜆2) + 𝜔𝐷𝑆𝐷(𝜆6 − 𝜆3) + (1 − 𝑢0)𝛽

′

1(𝑅𝑇 (𝜆4 − 𝜆16)+

𝜔𝐻𝑅𝐻 (𝜆5 − 𝜆17) + 𝜔𝐷𝑅𝐷(𝜆6 − 𝜆18))) + (𝜂∗13)
𝛼(𝜆18 − 𝜆15) + 𝑡𝐻𝛼𝛼

𝐻 (𝜆14 − 𝜆15)−

(𝜇𝛼 + 𝜇𝛼𝐷 + 𝑡∗𝐷𝑑
𝛼
𝑇𝐷)𝜆15,

𝑐𝔻𝛼
𝑡 𝜆16(𝑡

′
) = (1 − 𝑢0)𝛽

′

1𝜆
𝛼(𝜆4 − 𝜆16) + 𝛼𝛼

𝐷(𝜆18 − 𝜆16) + 𝛼𝛼
𝐻 (𝜆17 − 𝜆16) − 𝜇𝛼𝜆16,

𝑐𝔻𝛼
𝑡 𝜆17(𝑡

′
) = (1 − 𝑢0)𝛽

′

1𝜆
𝛼𝜔𝐻 (𝜆5 − 𝜆17) + 𝛼𝛼

𝐻𝐷(𝜆18 − 𝜆17) − (𝜇𝛼 + 𝜇𝛼𝐻 )𝜆17,
𝑐𝔻𝛼

𝑡 𝜆18(𝑡
′
) = (1 − 𝑢0)𝛽

′

1𝜆
𝛼𝜔𝐷(𝜆6 − 𝜆18) + 𝛼𝛼

𝐻 (𝜆17 − 𝜆18) − (𝜇𝛼 + 𝜇𝛼𝐷)𝜆18, (5.5)

with 𝑡 ′ = 𝑡𝑓 − 𝑡.

II. with transversality conditions

𝜆𝑛(𝑡𝑓 ) = 0, 𝑛 = 1, ..., 18. (5.6)

III. Optimalitity conditions:

𝐻 𝛼(𝑆∗∗𝑇 , 𝑆∗∗𝐻 , 𝑆∗∗𝐷 , 𝐸∗∗
𝑇 , 𝐸∗∗

𝐻 , 𝐸∗∗
𝐷 , 𝐼 ∗∗𝑇1 , 𝐼

∗∗
𝑇2 , 𝐼

∗∗
𝐻1
, 𝐼 ∗∗𝐻2

, 𝐼 ∗∗𝐷1
, 𝐼 ∗∗𝐷2

, 𝐼 ∗∗𝑇3 , 𝐼
∗∗
𝐻3
, 𝐼 ∗∗𝐷3

, 𝑅∗∗
𝑇 , 𝑅∗∗

𝐻 , 𝑅∗∗
𝐷 , 𝜆𝑛, 𝑢∗𝑘) =
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min
0≤𝑢𝑘≤1

𝐻 𝛼(𝑆∗∗𝑇 , 𝑆∗∗𝐻 , 𝑆∗∗𝐷 , 𝐸∗∗
𝑇 , 𝐸∗∗

𝐻 , 𝐸∗∗
𝐷 , 𝐼 ∗∗𝑇1 , 𝐼

∗∗
𝑇2 , 𝐼

∗∗
𝐻1
, 𝐼 ∗∗𝐻2

, 𝐼 ∗∗𝐷1
, 𝐼 ∗∗𝐷2

, 𝐼 ∗∗𝑇3 , 𝐼
∗∗
𝐻3
, 𝐼 ∗∗𝐷3

, 𝑅∗∗
𝑇 , 𝑅∗∗

𝐻 , 𝑅∗∗
𝐷 , 𝜆𝑛, 𝑢∗𝑘),

𝑛 = 1, ..., 18, 𝑘 = 0, 11, 12, 13. (5.7)

Furthermore, the control functions 𝑢∗𝑘, 𝑘 = 0, 11, 12, 13 are given by

𝑢∗0 = min
{
max

{
0,
𝛽′

1𝜆𝛼((𝜆4 − 𝜆16)𝑅𝑇 + 𝜔𝐻 (𝜆5 − 𝜆17)𝑅𝐻 + 𝜔𝐷(𝜆6 − 𝜆18)𝑅𝐷)
𝐵0

}
, 1
}
,

𝑢∗11 = min
{
max

{
0,
𝑙𝛼𝑇 𝐼𝑇1(𝜆8 − 𝜆7) + 𝜂𝛼14𝐼𝑇2(𝜆13 − 𝜆8)

𝐵1 + 𝐵4

}
, 1
}
,

𝑢∗12 = min
{
max

{
0,
𝑙𝛼𝐻 𝐼𝐻1(𝜆10 − 𝜆9) + 𝜂𝛼15𝐼𝐻2(𝜆14 − 𝜆10)

𝐵2 + 𝐵5

}
, 1
}
,

𝑢∗13 = min
{
max

{
0,
𝑙𝛼𝐷𝐼𝐷1(𝜆12 − 𝜆11) + 𝜂𝛼16𝐼𝐷2(𝜆15 − 𝜆12)

𝐵3 + 𝐵6

}
, 1
}
, (5.8)

where the stationary condition is
𝜕𝐻
𝜕𝑢𝑘

= 0, 𝑘 = 0, 11, 12, 13.

Proof. The existence of the optimal control (𝑢∗0, 𝑢∗11, 𝑢∗12, 𝑢∗13, ) and associated optimal so-
lution (𝑆∗∗𝑇 , 𝑆∗∗𝐻 , 𝑆∗∗𝐷 , 𝐸∗∗

𝑇 , 𝐸∗∗
𝐻 , 𝐸∗∗

𝐷 , 𝐼 ∗∗𝑇1 , 𝐼
∗∗
𝑇2 , 𝐼

∗∗
𝐻1
, 𝐼 ∗∗𝐻2

, 𝐼 ∗∗𝐷1
, 𝐼 ∗∗𝐷2

, 𝐼 ∗∗𝑇3 , 𝐼
∗∗
𝐻3
, 𝐼 ∗∗𝐷3

, 𝑅∗∗
𝑇 , 𝑅∗∗

𝐻 , 𝑅∗∗
𝐷 ) come from

the convexity of the integrand of the functional (5.1) (was proved in Chapter (3)) with re-
spect to the controls 𝑢𝑘 ∈ 𝑈𝑎𝑑 , 𝑘 = 0, 11, 12, 13 and the Lipschitz property of the state system
with respect to state variables (𝑆𝑇 , 𝑆𝐻 , 𝑆𝐷, 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 , 𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 , 𝑅𝑇 , 𝑅𝐻 , 𝑅𝐷).
According to the Pontryagin’s maximum principle, if 𝑢𝑘 ∈ 𝑈𝑎𝑑 , 𝑘 = 0, 11, 12, 13, is
an optimal for the problem (5.2)-(5.3) with the initial conditions and 𝑡𝑓 fixed, then
there is a nontrivial absolutely continuous mapping 𝜆 ∶ [0, 𝑡𝑓 ] ⟶ ℝ18, 𝜆(𝑡) =
(𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡), 𝜆5(𝑡), 𝜆6(𝑡), 𝜆7(𝑡), 𝜆8(𝑡), 𝜆9(𝑡), 𝜆10(𝑡), 𝜆11(𝑡), 𝜆12(𝑡), 𝜆13(𝑡), 𝜆14(𝑡),
𝜆15(𝑡), 𝜆16(𝑡), 𝜆17(𝑡), 𝜆18(𝑡)), called adjoint vector, such that

𝑐
𝑡𝔻

𝛼
𝑡𝑓 𝜆𝑛(𝑡) =

𝜕𝐻 𝛼

𝜕𝑥𝑙
, 𝑛 = 1,⋯ , 18, (5.9)

where 𝑥𝑙 = 𝑆𝑇 , 𝑆𝐻 , 𝑆𝐷, 𝐸𝑇 , 𝐸𝐻 , 𝐸𝐷, 𝐼𝑇1 , 𝐼𝑇2 , 𝐼𝐻1 , 𝐼𝐻2 , 𝐼𝐷1 , 𝐼𝐷2 ,𝐼𝑇3 , 𝐼𝐻3 , 𝐼𝐷3 , 𝑅𝑇 , 𝑅𝐻 , 𝑅𝐷 and 𝐻 𝛼 is
the Hamiltonian defined as (5.4). All conditions of (5.6) in [0, 𝑡𝑓 ] and the transversality
conditions (𝜆𝑛(𝑡𝑓 ) = 0, 𝑛 = 1, ..., 18) are satisfied. The system (5.5) is derived from (5.9) and
the optimal control (5.8) are obtained from the minimization condition (5.7).

5.3 Numerical Results
To numerically solve the optimal control problem, we use a predict-evaluate-correct-

correct-evaluate (PECE) method of Adams-Basforth-Moulton for case (0 < 𝛼 < 1)
analogous to the one used in Section (3.3) implemented in MATLAB. First, we solve the
system (5.3) using PECE with the initial conditions for the state variables presented in
Table (2.2) and a guess for the control in the time interval [0, 𝑡𝑓 ], and we obtain the values
of the state variables. We solve the system (5.5) and the transversality conditions (5.6)
with the PECE and the values of the co-state variables 𝜆𝑛, 𝑛 = 1, ..., 18 are obtained. The
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controls are updated using a convex combination of the previous control and the value
calculated by (5.7). This procedure is repeated iteratively until the stop condition is met,
which is that the values of the controls in the previous iteration are very close to those of
the current iteration. The case 𝛼 = 1.0 was confirmed using the basic scheme presented in
Chapter (3).

The values of the initial conditions and parameters are in Tables (2.2)-(2.3) and the
values of the control application costs 𝐵𝑚, 𝑚 = 0, ..., 6 are the same as in Section (3.3). We
use the same control strategies defined in Section (3.3) with the objective of studying them
with fractional-order derivatives and we apply type I controls because in the ODE control
problem presented in Section (3.3) it showed better results.

Strategy I: In the case of MDR-TB, the best results are achieved for 𝛼 = 1.0, and
the higher the 𝛼-value the more efficient the control behaves. In the case of 𝛼 = 0.9 at
the end of the period, it has a growth in the number of cases. In particular, in the case of
the TB-Only subpopulation, this achievement does not reach the results obtained with
𝛼 = 0.7, 0.5. For the case 𝛼 = 1.0 in the TB-Only subpopulation, besides showing the
best results, it also has a growth at the end of the study period. We recommend paying
attention to this behavior to avoid this growth in the number of cases, see Figures (5.1b),
(5.1d), and (5.1f).
In XDR-TB in the TB-Only and TB-HIV/AIDS subpopulations, the number of cases was
reduced and the future growth of cases was avoided. At the beginning of the study, the
best control results were reported for the lowest values of 𝛼−values but then the opposite
situation occurred (higher 𝛼−values reported a lower number of cases) until the end of
the study, see Figures (5.2b) and (5.2d).

For the XDR-TB in the TB-Diabetes subpopulation at the beginning of the study the
best results are achieved for the highest 𝛼−values and it is observed that the lowest of
𝛼−value under study (𝛼 = 0.3) achieves the best results, see Figure (5.2f). This strategy
showed a strong quantitative reduction in the number of cases in this compartment, which
is important due to its impact on the dynamic.

Strategy II: In the MDR-TB in the TB-Only subpopulation, the strategy at the beginning
and the end of the period achieves the best results for the lowest 𝛼−values. In this case,
the growth in the number of cases is not avoided and the worst results are achieved
for higher 𝛼−values at the end of the study, see Figure (5.3b). In the TB-HIV/AIDS and
TB-Diabetes subpopulations, the best result is achieved for 𝛼 = 1.0. In this subpopulations
the highest number of cases are reported for the highest 𝛼−values and for 𝛼 = 0.7, 0.9 in
these subpopulations it occurs that lower 𝛼-values will report higher number of cases,
see Figures (5.3c) and (5.3f). For all the MDR-TB compartments considering 𝛼 ≥ 0.5, we
have an increase at the end of the study. In the application of this control strategy, it
is recommended to pay attention to the behaviors 𝛼 = 0.9, 0.7 due to the growth in the
number of cases at the end of the study.

For XDR-TB in TB-Only at the beginning of the study the reduction of cases was
not significant, but for lower 𝛼−values better results were achieved, and at the end of
the period the opposite occurred. This control strategy in this compartment manages
to avoid growth at the end of the period for 𝛼 = 1.0, 0.9, see Figures (5.4a) and (5.4b). In
the XDR-TB in the TB-HIV/AIDS subpopulation, the increase in the number of cases
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for 𝛼 = 0.7, 0.9, 1.0 is not avoided. The best results at the end of the period are achieved
for 𝛼 = 0.7, 0.5 and for 𝛼 ≤ 0.5, the higher the 𝛼−values, the lower the number of cases
reported (compared to model without control), see Figures (5.4c) and (5.4d). In TB-Diabetes
the asymptotic behavior of the model without control is maintained, but although for
all 𝛼-values the number of cases is reduced, this reduction is not transcendent because
a significant number of diabetic XDR-TB cases are still reported, see Figures (5.4e) and (5.4f).

Strategy III: In this strategy, MDR-TB cases behaved asymptotically as in strategy
II, but strategy II reduced further the number of cases reported for all 𝛼−values, see
Figures (5.5a-5.5f). In XDR-TB the opposite is the case, this strategy does not prevent
future growth in the number of cases, but manages to reduce the number of XDR-TB
more than strategy II, see figures (5.6a-5.6f). In particular for diabetic XDR-TB showed
greater effectiveness which is important because this behavior has a great impact on the
dynamics of TB resistance and transmission, see Figure (5.6f).

In summary, all strategies succeed in reducing the number of resistant cases for all
𝛼-values compared to the model without controls. The most effective strategy is the
strategy I because it reduces the number of resistant cases with respect to the other
strategies, avoids future growth of resistant cases, and in particular, significantly reduces
diabetic XDR-TB which has a strong impact on the resistance and TB transmission. For
all compartments, the best results are achieved for higher 𝛼-values, except for diabetic
XDR-TB. Strategy II is not recommended for any 𝛼-value because it continues to report a
large number of XDR-TB cases in the TB-Diabetes subpopulation.
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(a) MDR-TB cases in TB-Only with and without con-
trols for different 𝛼−values. Strategy I.
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rent 𝛼−values. Strategy I.
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(c) MDR-TB cases in TB-HIV/AIDS with and without
controls for different 𝛼−values. Strategy I.
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(d) MDR-TB cases in TB-HIV/AIDS with controls for
different 𝛼−values. Strategy I.
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(e) MDR-TB cases in TB-Diabetes with and without
controls for different 𝛼−values. Strategy I.
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Figure 5.1: Behavior of MDR-TB cases for different 𝛼-values over time. Strategy I.
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(a) XDR-TB cases in TB-Only with and without con-
trols for different 𝛼−values. Strategy I.
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(b) XDR-TB cases in TB-Only with controls for diffe-
rent 𝛼−values. Strategy I.
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(c) XDR-TB cases in TB-HIV/AIDS with and without
controls for different 𝛼−values. Strategy I.
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(d) XDR-TB cases in TB-HIV/AIDS with and without
controls for different 𝛼−values. Strategy I.

Time

0 1 2 3 4 5 6 7 8 9 10

X
D

R
-T

B
 C

a
s
e
s
 (

T
h
o
u
s
a
n
d
 p

e
o
p
le

)

0

2

4

6

8

10

12

14

16

18

20
XDR-TB (TB-Diabetes), Strategy I

α=0.3

α=0.5

α=0.7

α=0.9

α=1.0

(e) XDR-TB cases in TB-Diabetes with and without
controls for different 𝛼−values. Strategy I.
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Figure 5.2: Behavior of XDR-TB cases for different 𝛼-values over time. Strategy I.
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(a) MDR-TB cases in TB-Only with and without con-
trols for different 𝛼−values. Strategy II.
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(c) MDR-TB cases in TB-HIV/AIDS with and without
controls for different 𝛼−values. Strategy II.
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(d) MDR-TB cases in TB-HIV/AIDS with controls for
different 𝛼−values. Strategy II.

Time

0 1 2 3 4 5 6 7 8 9 10

M
D

R
-T

B
 C

a
s
e
s
 (

T
h
o
u
s
a
n
d
 p

e
o
p
le

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
MDR-TB (TB-Diabetes), Strategy II

α=0.3

α=0.5

α=0.7

α=0.9

α=1.0

(e) MDR-TB cases in TB-Diabetes with and without
controls for different 𝛼−values. Strategy II.

Time

0 1 2 3 4 5 6 7 8 9 10

M
D

R
-T

B
 C

a
s
e
s
 (

T
h
o
u
s
a
n
d
 p

e
o
p
le

)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
MDR-TB (TB-Diabetes), Strategy II

α=0.3

α=0.5

α=0.7

α=0.9

α=1.0

(f) MDR-TB cases in TB-Diabetes with controls for
different 𝛼−values. Strategy II.

Figure 5.3: Behavior of MDR-TB cases for different 𝛼-values over time. Strategy II.
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Figure 5.4: Behavior of XDR-TB cases for different 𝛼-values over time. Strategy II.
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Figure 5.5: Behavior of MDR-TB cases for different 𝛼-values over time. Strategy III.
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Figure 5.6: Behavior of XDR-TB cases for different 𝛼-values over time. Strategy III.
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5.4 Partial Conclusions
In this chapter, we presented a study of an optimal control problem for a model

with fractional-order control in the Caputo sense. We presented three control strategies
analogous to the optimal control problem with ODE presented in the Subsection (5.2) and
studied the different fractional-orders (0.3, 0.5, 0.7, 0.9, and 1.0). We compared the results
with respect to the model without control. The strategy that showed the best results is
when all controls are activated due to the reduction in all compartments, it manages to
avoid future growth in the number of MDR-TB and XDR-TB cases in the TB-Only and
TB-HIV/AIDS subpopulations and significantly reduced XDR-TB in diabetic patients, see
Figures (5.1a)-(5.2f).
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Chapter 6

Conclusions

We presented a new mathematical model for the study of TB treatment efficacy consi-
dering the influence of diabetes and HIV/AIDS. Our aim is to examine the impact of diabetes
and HIV/AIDS on treatment resistance and transmission of tuberculosis. Based on this
model, we studied the optimal control problem to obtain a better adherence to treatment
and thus avoid MDR-TB and XDR-TB. The controls are focused on reinfection/reactivation
of TB, MDR-TB, and XDR-TB. In order to take advantage of the fractional-order derivative,
we studied this model with fractional-order derivatives in the Caputo sense and as a
consequence, we used this system as a constraint in the fractional optimal control problem.

We found the basic reproduction number using the next-generation matrix method
for the ODE and FDE models. We studied the basic properties of the models such as the
existence, uniqueness, and positivity of the solution, and found the biologically feasible
regions. Using the respective ODE and FDE techniques, we studied the local stability of
the respective infection-free equilibrium points related to the basic reproduction numbers.
We proved the global stability of the infection-free equilibrium point. We showed the
existence of endemic equilibrium points if the basic reproduction numbers are greater
than unity. For the model with ordinary differential equations, we presented results that
allow us to know the behavior of the basic reproduction number by submodel (TB-Only,
TB-HIV/AIDS and TB-Diabetes), and general model, based on the different joint variations
of the resistance and recovery parameters.

We carried out a study of the sensitivity of the parameters with respect to the basic
reproduction number, in particular the parameters associated with tuberculosis. We ob-
tained that the recruitment rate and the effective contact rate always have a positive effect
on the basic reproduction number and we presented a lemma characterizing the impact of
𝛽∗ on the basic reproduction number. For the TB-Diabetes submodel in a particular case,
we studied the persistence of TB and evidenced the need to apply control strategies.

The optimal control theory for these models is derived analytically by applying Pon-
tryagin’s maximum principle and we demonstrated the existence of optimal controlS.

We studied in the numerical simulations the variation of the basic reproduction number
concerning the effective contact rate, and we concluded that we must pay attention to this
variation in the TB-Only submodel because we can find situations where it can be greater
than unity. For the variation with respect to the resistance parameters, it is always greater
than unity. This implies that, we should pay attention to tuberculosis transmission in this
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subpopulation.
In the numerical simulations of the different resistance compartments, we observed

the strong influence that diabetes has on the dynamics and in particular on the XDR-TB
so that any control strategy that is applied must comply with the reduction of diabetic
XDR-TB given the impact of these cases.

In the optimal control problem, we evaluated different strategies but the one that
showed the greatest efficacy was when we activated all the controls (reactivation/reinfec-
tion, MDR-TB, and XDR-TB) and starting with high control effectiveness as it reduces all
the resistance compartments, avoids future growth of cases, and controls the impact of
diabetic XDR-TB.

For the fractional-order model, we studied the basic reproduction number for the
different 𝛼−values. The computational simulations allowed us to observe the behavior
of the different compartments for the different 𝛼−values and this helps us in making
decisions for future controls. We can see that for any 𝛼−values the diabetic XDR-TB has a
strong impact on the epidemic.

With the study of fractional optimal control problem in the Caputo sense, using the
same strategies of the optimal control problem with ODE, we found that for the different
𝛼−values the most effective strategy is when we activated all the controls because it meets
all the objectives (to reduce the resistance MDR-TB and XDR-TB and avoid future growth
of cases) but paying attention to the case when 𝛼 = 0.9 due to its behavior.

This work allows us to study the treatment and transmission of tuberculosis with the
presence of diabetes and HIV/AIDS, which are subpopulations vulnerable to infection. It
helps to design control strategies and decide how to initiate the control process to reduce
the impact of tuberculosis and increase the effectiveness of treatment.

In future work, we will perform parameter estimation using current techniques and
computational simulations for real scenarios and study the control problem with 𝛼−level
controls.
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