
On proper extensions of
the conformal group

Ulisses Lakatos de Mello

Tese apresentada ao Instituto de Matemática
e Estatística da Universidade de São Paulo
para a obtenção do título deDoutor emCiências

Programa: Matemática Aplicada
Orientador: Fábio Armando Tal

Durante parte do desenvolvimento deste trabalho,
o autor recebeu auxílio financeiro do CNPq

São Paulo, junho de 2022





On proper extensions of
the conformal group

Ulisses Lakatos de Mello

Esta tese contém as correções e alterações
sugeridas pela comissão julgadora durante a
defesa, realizada em 15 de julho de 2022.

Comissão julgadora:
Prof. Dr. Alejandro Kocsard - IME / UFF
Prof. Dr. Alejandro Passeggi - Udelar
Prof. Dr. Bruno Santiago - IME / UFF
Prof. Dr. Fábio Armando Tal (orientador) - IME / USP
Prof. Dr. Sébastien Alvarez - Udelar



Ficha catalográfica elaborada com dados inseridos pelo(a) autor(a)
Biblioteca Carlos Benjamin de Lyra
Instituto de Matemática e Estatística

Universidade de São Paulo

Lakatos de Mello, Ulisses
On proper extensions of the conformal group / Ulisses Lakatos de

Mello; orientador, Fábio Armando Tal. - São Paulo, 2022.
101 f.: il.

Tese (Doutorado) - Programa de Pós-Graduação em
Matemática Aplicada / Instituto de Matemática e Estatística
/ Universidade de São Paulo.

Bibliografia
Versão corrigida

1. SISTEMAS DINÂMICOS. 2. VARIEDADES DE DIMENSÃO BAIXA.
3. GRUPOS TOPOLÓGICOS. 4. TOPOLOGIA GEOMÉTRICA. I. Tal,
Fábio Armando. II. Título.

Bibliotecárias do Serviço de Informação e Biblioteca
Carlos Benjamin de Lyra do IME-USP, responsáveis pela

estrutura de catalogação da publicação de acordo com a AACR2:
Maria Lúcia Ribeiro CRB-8/2766; Stela do Nascimento Madruga CRB 8/7534.



Literally every human enterprise, by American artist Ali Bati





Agradecimentos

No início da pós-graduação, achava pretensioso incluir em uma dissertação a seção de
agradecimentos. Para mim, tratava-se de demasiado peso dado ao cumprimento demais uma dentre
tantas “não mais do que obrigações’’. Hoje —- inacreditáveis seis anos e dez meses depois —
percebo que, fosse este texto mera obrigação, não teria chegado ao fim. E, independentemente da
relevância acadêmica que venha a ter, é gigante seu valor quando medido pelo número de pessoas
que contribuíram para o resultado — muitas vezes de maneira indireta, no melhor estilo “efeito
borboleta’’.

Antes de tudo, agradeço a meus pais Suzana e Fábio (in memoriam). Não só pelas razões
biológico-existenciais óbvias, mas, também, por seu apoio incondicional ao longo dos últimos 30
anos — muitas vezes às custas de grandes sacrifícios financeiros e, pressuponho, emocionais. Sou
da opinião que, quanto mais profundo e verdadeiro um sentimento, mais difícil é descrevê-lo
com palavras: paradoxalmente, qualquer analogia que se faça será ao mesmo tempo hiperbólica
e insuficiente. Assim, aposto na força dos atos e nos registros do tempo como expressão do meu
carinho e retribuição a tamanha dedicação. Em especial, sei que a quantidade desproporcional de
tempo gasto nas ilustrações desta tese são um sinal de que levo meu pai comigo, ainda que ele não
esteja mais aqui.

Em segundo lugar, agradeço ao Tal, a quem algumas vezes já consigo chamar de Fábio,
em vez de professor. Como orientador deste trabalho, também ele se enquadra na categoria dos
homenageados por motivos existenciais sine qua non. Porém, este é um detalhe acessório: há no
IME muitos professores capazes de orientar uma tese acadêmica. Mas, certamente, nenhum capaz
de oferecer aos alunos tamanha empatia e comprometimento. Obrigado por não ter desistido de
mim, apesar dos constantes atrasos!

Por fim, não posso deixar de agradecer a meu psiquiatra, Pedro Galvão Vianna Filho, cuja
contribuição foi crucial para resolver alguns problemas de perspectiva que fugiam ao escopo da
geometria projetiva.

As fórmulas para iniciar parágrafos de agradecimento tornam-se rapidamente escassas. Tendo
por ora esgotado minha criatividade dando à tese seus retoques finais, “agradeço...”

• a minhas avós Sílvia (in memoriam) e Marli, por terem contado a tanta gente que seu neto
seria doutor pela USP. Afinal, publicidade é a alma do negócio. Não só, agradeço também
por toda a torcida e todo o carinho.

• ao trio tánc — meus amigos Pedrinho e Laís. Nosso retrato e minha arvorezinha são
lembranças de que mesmo o caos apresenta alguma constância: alguém a quem podemos
recorrer mesmo durante as reviravoltas mais imprevisíveis.

• ao Pedro Marques, um dos inusitados amigos a quem a vida por sorte me apresentou e a
única pessoa do mundo com quem eu sou capaz de falar sobre absolutamente tudo, menos
sobre a tese.

i



ii

• à Panni, ao mesmo tempo analista e analisanda, o que nos coloca sobre uma inorientável
faixa de Möbius que deixaria até Lacan intrigado. Obrigado por me ouvir falar tanto sobre
este trabalho que é totalmente irrelevante para sua área de estudo e — ainda por cima —
fazer perguntas pertinentes depois! Eu mesmo ainda estou aprendendo a fazer isso.

• ao Gabriel Cozzella. Embora já tenhamos passado muito mais tempo juntos no passado,
nosso café anual é o ponto fixo mais estável a respeito do qual tenho notícia, e sem dúvida
o mais divertido.

• à Marisa Cantarino, uma inspiração em muitos níveis, do pessoal ao profissional:
Matemática Admirável, Realmente Incrível e Super Amiga.

• à Tereza, família Lacerda e, principalmente, Tia Auxiliadora, que pergunta sempre como
andam as coisas, apesar de não estarmos mais tão próximos.

• aos amigos do Pántlika — no qual eu ingressei mais ou menos ao mesmo tempo que
no doutorado — por pelo menos um dia na semana de diversão incondicional garantida.
Também à Alinka, minha professora favorita, amiga e a curiosa conexão entre esses dois
universos aparentemente disjuntos.

• à Sônia, cuja exposição clara e apaixonante da análise noℝ𝑛 me levou ao IME e com quem,
desde então, tive a sorte de trabalhar como monitor algumas vezes. Não poderia esquecer
também do Mané e sua utilíssima caixa de ferramentas de três itens: teorema de Pitágoras,
fórmula quadrática e soma de uma PG.

• à Luna, atualmente no IMPA, que talvez não se lembre de certa vez ter tomado comigo
um café que foi crucial para minha insistência na vida acadêmica, mas que certamente se
lembra de ter contribuído intensamente para meu apreço pelo lado docente da carreira.

• ao Bruno Santiago, da UFF, que incorpora todas as qualidades que eu sempre prezei na
vida acadêmica — idoneidade, receptividade, entusiasmo não competitivo e humanidade
— e que, talvez sem saber, foi imprescindível para dar um necessário impulso em minha
autoestima acadêmica.

• ao Séba, da Udelar, por ter me recebido com entusiasmo em Montevidéu, demonstrado
genuíno interesse por este trabalho e dado importantes sugestões para obter algumas cotas
uniformes.

• ao Alejandro Kocsard, da UFF, por ter feito perguntas no TopDin que me motivaram a
esboçar aqui a demonstração do teorema de Kerékjártó e Kolev.

• ao Salvador e ao André Salles, por ofertarem cursos daqueles que realmente mudam sua
forma de pensar nas coisas.

• ao Nelsera e ao Dedé, por tornarem minha última passagem pelo IMPA um pouco menos
sad e, também, pela parceria que se seguiu.

• ao Pips, que emdeterminadomomento ajudou a reavivarmeu entusiasmo pelamatemática.
• aoMichel e ao Lucas Colucci, amigos de IME, por uma de suasmuitas e sempre bem-vindas
(re) aparições surpresa: dessa vez, na minha defesa.

• à dinda Solange, pela torcida e pelo entusiasmo.
• aos membros da comissão julgadora—Alejandros, Bruno e Séba— todos matemáticos que
eu conheço e admiro. Foi uma grande honra, para mim, aceitarem o convite da banca.

• ao CNPq, pelo apoio financeiro e pelas constantes recordações das sanções legais e
financeiras às quais eu estaria sujeito em caso de desistência — um inegável estímulo ao
término deste trabalho.



Resumo

Neste ensaio, demonstra-se que qualquer grupo de difeomorfismos que preserve orientação
e aja na 2-esfera, estendendo propriamente o grupo conforme das transformações de Möbius,
precisa ser ao menos 4 transitivo ou, mais precisamente, 4-transitivo por arcos. Isso significa que
quaisquer duas listas ordenadas de quatro pontos distintos podem ser aplicadas uma sobre a outra
por alguma transformação do grupo, isotópica à identidade. Argumenta-se, também, que tais grupos
apresentam sempre um elemento de entropia topológica positiva, para o qual é dada uma descrição
como isotópico a um homeomorfismo pseudo-Anosov relativo da esfera 4-perfurada. Além disso,
apresenta-se uma caracterização elementar — em termos de transitividade — das transformações
de Möbius dentro do grupo total de difeomorfismos.

Palavras-chaves: transitividade; ação de grupos em superfícies; grupos topológicos; entropia
topológica
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Abstract

It is proven in this essay that any group of orientation preserving diffeomorphisms acting on
the 2-sphere and properly extending the conformal group of Möbius transformations must be at
least 4-transitive or, more precisely, arc 4-transitive. This means that any two ordered lists of four
distinct points can be mapped one onto the other via a transformation in the group, isotopic to the
identity. In addition, it is shown that any such group must always contain an element of positive
topological entropy, forwhich a description as isotopic to a relative pseudo-Anosov homeomorphism
of the 4-punctured sphere is provided. Furthermore, an elementary characterisation of the Möbius
transformations within the full group of sphere diffeomorphisms is given in terms of transitivity.

Keywords: transitivity; groups acting on surfaces; topological groups; topological entropy
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Chapter 1

Introduction

1.1 Overview

Let us approach the subjects of this thesis in two levels, one at a time. We here describe
in general lines some of the historical background and motivations that led us to this work, as
well as announce our contributions to the field. We then proceed to the more technical and prosy
Preliminaries Section 1.2, which a more experienced reader may glance at diagonally or skip, but
from which a reader less familiarised with the language may benefit from.

Letℳ be a closed and oriented topological manifold, which for all practical purposes may be
thought of as either the circle or some surface of genus≥ 0. If the set of all its orientation preserving
homeomorphisms – denoted by Homeo+(ℳ) – is endowed with the composition operation ∘, then
the usual uniform convergence metric turns it into a topological group, the subgroups of which one
can try to understand and classify.

Placed in this degree of generality this may be a hopelessly difficult program, so specific
approaches have been delimited. For instance, in an early 2000s’ survey, Ghys proposed such a
classification scheme for closed and transitive groups acting on the unit circle 𝕊1 (18, Problem
4.4). Here, closed refers to the uniform topology aforementioned, while transitive means that any
given point 𝑝 can be mapped onto another given point 𝑞 via some transformation in the group. The
corresponding result, discussed in Section 1.2.1, was later proven by Giblin and Markovic (19).

A relevant part of understanding closed subgroups of Homeo+(ℳ) is to deal not only with
their inclusions, but also with questions of maximality. In other words, determining whether or not
between a given subgroup and the full group of homeomorphisms onemay find proper intermediate
subgroups, up to their uniform closures.

For example, it was proven by Le Roux (33) that the (closed) subgroup of area preserving
homeomorphisms is always maximal in triangulable manifolds of dimension ≥ 2 – see Theorem
1.16 for the exact statement. In that same paper, Le Roux pointed out how the rich one-dimensional
theory contrasts with the yet to be developed higher dimensional setting, where mostly isolated
results are known.

Concurrently, Kwakkel and Tal derived a number of specialised results concerning the unit
sphere 𝕊2. Their findings are communicated in a preprint available at the ArXiv repository (30), not
submitted for publication due to an irreconcilable difference of opinion between its authors on the
presentation of the subject. While their paper is a strong source of technical inspiration, this thesis
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is self-contained. In particular, no result of ours makes direct use of results therein.
Among others, Kwakkel, Tal and Le Roux asked the question of whether the Möbius group

Möb(𝕊2) – consisting of all orientation preserving conformal diffeomorphisms of the 2-sphere – is
maximal within the full group of homeomorphisms. In other words, whether there are no uniformly
closed groups of homeomorphisms properly contained between Möb(𝕊2) and Homeo+(𝕊2).

This question is a direct parallel to a conjecture made by de la Harpe with respect to the
unit circle 𝕊1 (apud (6), Q4.1), and which was proven to be true by Giblin and Markovic in their
already mentioned 2006 paper. The milestone of the proof presented therein is that (some form of)
4-transitivity implies transitivity of any order. In this work, we provide the following insight – from
the transitivity viewpoint – into extensions of the Möbius group.

TheoremA. Let𝐺 ⊂ Diff 1+(𝕊2) be a group properly extendingMöb(𝕊2). Then, its identity component
𝐺0 is arc 4-transitive. In particular, 𝐺 is at least 4-transitive.

Above, the stronger concept of arc transitivity was introduced. Albeit more precisely defined
in the following text, it essentially means that not only ordered lists (𝑝1,… , 𝑝4) and (𝑞1,… , 𝑞4) of
distinct points can be mapped one onto another by a single transformation in the group𝐺, each 𝑞𝑖 is
actually the endpoint of 𝑝𝑖’s trajectory under an isotopy in𝐺 starting at the identity map, as pictured
in Figure 1.1. Although the set of homeomorphisms is represented there as a flat and bounded piece
of cardboard, it is actually to be thought of as a “huge” space – bigger than an infinite dimensional
Lie group.

Figure 1.1 – A cartoon of arc transitivity: a continuous curve 𝑡 ∈ [0, 1] ↦ 𝑓𝑡 ∈ Homeo+(ℳ) starting at the
identity (that is, an isotopy) gives rise to curves onℳ connecting points to their images under the terminal
map 𝑓1.

Homeo+(ℳ)
idℳ

�1

p

�1(�)

 ��

��(�)

�

ℳ

It should be noticed that, if a subgroup 𝐺 of Homeo+(ℳ) happens to be 𝑘-transitive for every
𝑘 ∈ ℕ, then an argument of separability implies its uniform closure to be the whole of Homeo+(ℳ),
yielding maximality. The natural step after Theorem A would thus be deriving higher orders of
transitivity from 4-transitivity. Unfortunately, the argument used by Giblin and Markovic to do so
presents no obvious generalization to higher dimensions, for it strongly relies on the complement of
a finite set in the circle being composed of disjoint open intervals.

Theorem A would therefore be a mere curiosity, hadn’t it – or rather its proof – had an
interesting dynamical implication: the constructions used to derive it also allow one to deduce
the presence of an element having positive topological entropy in any such proper extension 𝐺 ⊂
Diff 1+(ℳ) of the Möbius group, as described below.

Theorem B. Let 𝐺 be as in Theorem A. Then, 𝐺 contains an element 𝑓 fixing at least four distinct
points and such that its restriction to their complement is isotopic to a pseudo-Anosov map relative to
those 4 points. In particular, 𝑓 has strictly positive topological entropy.
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In a certain sense, Theorems A and B when put together tell that the Möbius group is largely
“enriched” by any extension of it, for:

• no individual element of Möb(𝕊2) presents interesting dynamical behaviour – their full
description is summarised in Section 1.2;

• being 3-transitive is a defining property of the Möbius group in the transitive setting – a
slightly vague statement that is made precise by Theorem C of Chapter 2.

These are clues that suggest an affirmative answer to the question of Kwakkel, Tal and Le Roux.
However, as of the submission of this essay, the subject remains prone to further research.

1.2 Preliminaries

Let us now review some of the important concepts upon which this work is based. Our
primary goal is to establish terminology, notation and a few instrumental results. Curiously enough,
some of them are folklore for which explicit proofs — and sometimes even complete statements
— are nowhere to be found in the (known to the author extent of the) standard literature. For this
section not to become too clutched, some such results are collected in Appendix A, where they are
presented in a “primer” fashion in hopes of providing a useful read on the subject. Consequently,
some redundancy between contents here and there may be present. In particular, we start with a
definition summing up the contents of Section A.1.

1.1 Definition. Letℳ be a closed and oriented topological manifold. We denote by Homeo+(ℳ)
the topological group of its orientation preserving homeomorphisms endowed with the uniform
convergence topology and the composition operation.

In other words, if 𝑑 is some (chosen and fixed)metric generating themanifold’s topology, then
the uniform distance between two maps 𝑓 and 𝑔 is given by 𝑑∞(𝑓, 𝑔) = sup{𝑑(𝑓(𝑝), 𝑔(𝑝)) ∶ 𝑝 ∈ ℳ}.
In particular, 𝑓 and 𝑔 are said to be 𝜀-close if 𝑑∞(𝑓, 𝑔) ≤ 𝜀. A full discussion on what does it mean for
a homeomorphism to preserve orientation is left to Appendix A, while specialised interpretations in
dimensions 1 and 2 are postponed to subsequent sections, as they play no role for now.

Throughout this essay,ℳ is typically a Riemannian manifold endowed with some canonical
smooth structure, case in which 𝑑 is the usual infimum of arc length metric induced accordingly.
We then may also consider the subgroup Diff 1+(ℳ) ⊂ Homeo+(𝑀), consisting of all orientation
preserving diffeomorphisms of class 𝐶1(ℳ), and its finer 𝐶1 topology, on occasion also referred to as
the Whitney weak topology (24). This topology is generated by a class of subbasic neighbourhoods.
Each such neighbourhood is specified by the following ingredients:

• a diffeomorphism 𝑓 ∈ Diff 1+(𝑀);
• a coordinate chart (𝑈,𝛷);
• a compact set 𝐾 ⊂ 𝑈 ;
• a coordinate chart (𝑉, 𝛹) such that 𝑓(𝐾) ⊂ 𝑉 ;
• and a real number 𝜀 > 0.

The corresponding subbasic neighbourhood is denoted by

[1.1] ℬ(𝑓 ; (𝑈,𝛷), 𝐾, (𝑉, 𝛹) ; 𝜀) ,
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and consists of all the orientation preserving diffeomorphisms 𝑔 such that 𝑔(𝐾) ⊂ 𝑉 and:

[1.2] max{ || ̂𝑓(𝑧) − ̂𝑔(𝑧)|| , ‖D ̂𝑔(𝑧) − D ̂𝑓(𝑧)‖ } ≤ 𝜀 for every 𝑧 ∈ 𝛷(𝐾) ,

where ̂𝑓 = 𝛹 ∘𝑓 ∘𝛷−1 and ̂𝑔 = 𝛹 ∘𝑔 ∘𝛷−1 are the local expressions of 𝑓 and 𝑔 in coordinates and ‖⋅‖
is the usual operator norm for linear transformations of Euclidean space. Then, a set𝒲 is declared
to be a neighbourhood of 𝑓 ∈ Diff+1 (ℳ) if it contains a finite intersection of sets of the form [1.1].

The 𝐶1 topology conveys the idea that two diffeomorphisms are close if both their local
expressions and the respective differentials are uniformly close on compact sets. However, it is not
always practical for computations, as they usually require chopping a compact set and its image in
pieces subordinate to covers by coordinate domains. An alternative description is given in Section
A.2, and used therein to establish the following key facts.

1.2 Proposition. Let ℳ be a closed and oriented smooth manifold. Then, the 𝐶1 topology in
Diff+1 (ℳ) is metrisable and turns this set, endowed with the composition operation ∘, into a
topological group such that the inclusionmorphism (Diff 1+(ℳ), 𝐶1 topology) ↪ (Homeo+(ℳ), 𝑑∞)
is continuous.

In the differentiable context, the understanding of diffeomorphism groups is largely addressed
by the so-called Zimmer program. Originally revolving around finitely generated subgroups of
Diff 1(ℳ), broader problems such as constraining possible actions of groups on ℳ, determining
subgroups of Diff 1(ℳ) beyond the “large” (in the sense of Labourie (31)) examples already known
and further exploring analogies to Lie group theory may be understood as a part of it as well. The
current état de l’art on the subject is often surveyed and communicated by Fisher (13, 14).

These aspects are addressed to some degree in this thesis forℳ = 𝕊2, with its diffeomorphism
groups being considered up to uniform closure. The underlying context is that of transitivity — that
is, the possibility to map prescribed elements ofℳ onto each other via transformations in the group,
as precisely stated below.

1.3 Definition. Given 𝑘 ∈ ℕ, the action of a subgroup 𝐺 ⊂ Homeo+(ℳ) is said to be 𝑘-transitive if
for every pair of 𝑘-tuples (𝑝1,… , 𝑝𝑘) and (𝑞1,… , 𝑞𝑘)— each of them consisting of mutually distinct
points — there exists some transformation 𝑔 ∈ 𝐺 such that

𝑞𝑖 = 𝑔(𝑝𝑖) for each 𝑖 ∈ {1,… , 𝑘} .

When such a transformation is unique, the group is said to be sharply 𝑘-transitive.

Most constructions in this essay are based upon isotopies, here understood in a very broad sense as
jointly continuous maps 𝑓 ∶ 𝐼 ×ℳ →ℳ, where:

• 𝐼 ⊆ ℝ is a (possibly unbouded) real interval, and
• for every 𝑡 ∈ 𝐼, the function 𝑓𝑡 ∶ ℳ → ℳ defined by 𝑓𝑡(𝑝) = 𝑓(𝑡, 𝑝) is an orientation
preserving homeomorphism of the (not necessarily compact) oriented manifoldℳ.

As stressed in (37), wheneverℳ is metrisable and compact we can either prescribe the jointly
continuous rule 𝑓 or a family (𝑓𝑡)𝑡∈𝐼 for which 𝑡 ∈ 𝐼 ↦ 𝑓𝑡 ∈ Homeo+(ℳ) is continuous with
respect to 𝑑∞. When the real interval 𝐼 in question is the standard unit interval [0, 1]— as it is often
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the case in the context of homotopies — we denote it by 𝕀. In the following remark, we solve a small
ambiguity that may arise at some point.

1.4 Remark. It will often be the case thatℳ is a closed and smoothmanifold such that𝑓𝑡 ∈ Diff 1+(ℳ)
for every 𝑡 ∈ 𝐼, yet the mapping 𝑡 ↦ 𝑓𝑡 can only be assured to be continuous with respect to
𝑑∞. Those shall be referred to simply as isotopies, according to the previous terminology. When
𝑡 ∈ 𝐼 ↦ 𝑓𝑡 ∈ Diff 1(ℳ) can actually be ensured to be continuous with respect to the 𝐶1 topology, we
shall name (𝑓𝑡)𝑡∈𝐼 a diffeotopy.

Let us now specialise in the relation between groups and isotopies. To do so, we borrow
notations from (2) and from the theory of flows to define a handful of concepts.

1.5 Definition. Let 𝐺 ⊂ Homeo+(ℳ) be a subgroup. An isotopy (𝑓𝑡)𝑡∈𝐼 such that 0 ∈ 𝐼, 𝑓0 = id
and 𝑓𝑡 ∈ 𝐺 for every 𝑡 ∈ 𝐼 will be referred to as an ℐ𝐺-isotopy. Given a point 𝑝 ∈ ℳ, we define its
trajectory under 𝑓 as

𝛾𝑓(𝑝) ≝ {𝑓𝑡(𝑝) ∶ 𝑡 ∈ 𝐼} .

Although this is a priori just a set, it will often be thought of as a curve oriented according to its
natural direction of travel, determined by increasing values of 𝑡. If 𝐼 is unbounded above, we further
define the 𝜔-limit as the following (possibily empty) set of accumulation points:

𝜔𝑓(𝑝) ≝ {𝑞 ∈ ℳ ∶ there exists some sequence 𝑡𝑛 ↗ +∞ such that 𝑓𝑡𝑛(𝑝) → 𝑞} .

There is an analogous notion of 𝛼-limit when 𝐼 is unbounded below:

𝛼𝑓(𝑝) ≝ {𝑞 ∈ ℳ ∶ there exists some sequence 𝑡𝑛 ↘ −∞ such that 𝑓𝑡𝑛(𝑝) → 𝑞} .

Lastly, 𝐺 is said to be arc 𝑘-transitive if for every pair of 𝑘-tuples as in Definition 1.3 there exists an
ℐ𝐺-isotopy (𝑔𝑡)𝑡∈𝕀 such that 𝑔1(𝑝𝑖) = 𝑞𝑖 for each 𝑖 ∈ {1,… , 𝑘}.

Despite analogies between isotopy trajectories and flows being very limited, such suggestive
terminologies prove themselves pictorially useful in subsequent chapters. The reason is the concept
that we now develop, which plays vaguely the same role as that of the semigroup property for flows.

1.6 Definition. For a fixed a subgroup 𝐺 ⊂ Homeo+(ℳ) and given 𝑝, 𝑞 ∈ ℳ, we agree that

[1.3] 𝑝 ∼𝐺 𝑞 ⟺ there exists an ℐ𝐺-isotopy (𝑓𝑡)𝑡∈𝕀 such that 𝑓1(𝑝) = 𝑞.

The set of all points 𝑞 such that 𝑝 ∼𝐺 𝑞 is referred to as the set of points accessible from 𝑝 (in 𝐺), and
denoted by 𝒜𝐺(𝑝).

1.7 Lemma. The relation ∼𝐺 presented in [1.3] is an equivalence relation inℳ.

Proof. For it to be an equivalence relation, ∼𝐺 must verify the subsequently listed properties.
Reflexive: for every 𝑝 ∈ ℳ, 𝑝 ∼𝐺 𝑝.

Indeed, it suffices to consider the constant ℐ𝐺-isotopy 𝑓𝑡 = idℳ , 0 ≤ 𝑡 ≤ 1.
Symmetric: for every 𝑝, 𝑞 ∈ ℳ, 𝑝 ∼𝐺 𝑞 implies 𝑞 ∼𝐺 𝑝.

If 𝑝 ∼𝐺 𝑞, let (𝑓𝑡)𝑡∈𝕀 be as in [1.3], and define ℎ𝑡 = 𝑓−1𝑡 for each 𝑡 ∈ 𝕀. Then, (ℎ𝑡)𝑡∈𝕀 is an
ℐ𝐺-isotopy satisfying ℎ1(𝑞) = 𝑓−11 (𝑞) = 𝑓−11 (𝑓1(𝑝)) = 𝑝.
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Transitive: for every 𝑝, 𝑞, 𝑟 ∈ ℳ, 𝑝 ∼𝐺 𝑞 and 𝑞 ∼𝐺 𝑟 imply 𝑝 ∼𝐺 𝑟.
The definition in [1.3] yields ℐ𝐺-isotopies (𝑓𝑡)𝑡∈𝕀 and (ℎ𝑡)𝑡∈𝕀 such that 𝑓1(𝑝) = 𝑞 and ℎ1(𝑞) = 𝑟.

Consider

𝑘𝑡 ≝ {
𝑓2𝑡 if 0 ≤ 𝑡 ≤ 1

2 ,

ℎ2𝑡−1 ∘ 𝑓1 if 12 ≤ 𝑡 ≤ 1 .

By the topological group property, the two proposed expressions for 𝑘𝑡 are continuous with respect
to 𝑡 and coincide when 𝑡 = 1/2. The family (𝑘𝑡)𝑡∈𝕀 thus defines a continuous curve in 𝐺 (this kind
of concatenation argument will often be employed from now on without further explicit mention).
We have 𝑘0 = 𝑓0 = idℳ and 𝑘1(𝑝) = ℎ1(𝑓1(𝑝)) = ℎ1(𝑞) = 𝑟, so 𝑝 ∼𝐺 𝑟 follows. ▨

The equivalence relation just defined partitions the manifoldℳ into sets of points mutually
accessible under trajectories of isotopies lying in the identity component of a given subgroup 𝐺 ⊂
Homeo+(ℳ). We now present a practical accessibility criterion.

1.8 Lemma. Let (𝑓𝑡)𝑡∈𝐼 and (ℎ𝑡)𝑡∈𝐽 be ℐ𝐺-isotopies, where 𝐼 and 𝐽 are intervals of any kind. Then,
for any two 𝑝, 𝑞 ∈ ℳ such that 𝛾𝑓(𝑝) ∩ 𝛾ℎ(𝑞) ≠ ∅ we have 𝒜𝐺(𝑝) = 𝒜𝐺(𝑞).

Proof. Suppose that 𝑓𝑎(𝑝) = ℎ𝑏(𝑞), for some 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐽. Given 𝑟 ∈ 𝒜𝐺(𝑞), there exists an
ℐ𝐺-isotopy (𝑔𝑡)𝑡∈𝕀 such that 𝑔1(𝑞) = 𝑟. Then,

𝑘𝑡 =

⎧
⎪
⎨
⎪
⎩

𝑓3𝑎𝑡 if 0 ≤ 𝑡 ≤ 1
3 ,

ℎ(3𝑡−2)𝑏 ∘ ℎ−1𝑏 ∘ 𝑓𝑎 if 13 ≤ 𝑡 ≤ 2
3 ,

𝑔3𝑡−2 ∘ ℎ−1𝑏 ∘ 𝑓𝑎 if 23 ≤ 𝑡 ≤ 1 ,

is an ℐ𝐺-isotopy, satisfying:

𝑘1(𝑝) = (𝑔1 ∘ ℎ−1𝑏 ∘ 𝑓𝑎) (𝑝) = 𝑔1(ℎ−1𝑏 (𝑓𝑎(𝑝))) = 𝑔1(ℎ−1𝑏 (ℎ𝑏(𝑞))) = 𝑔1(𝑞) = 𝑟 .

This shows that 𝒜𝐺(𝑞) ⊂ 𝒜𝐺(𝑝), and the converse inclusion follows by the symmetry of ∼𝐺. ▨

Before pursuing other subjects, we finish this section stating an elementary yet instrumental
result for further reference. On it, as in the rest of this essay, “planar” is a purposely broad term
which may refer to ℝ2 or ℂ, depending on the context, question which is immaterial when it comes
to purely topological considerations.

1.9 Lemma. Let (𝑓𝑡)𝑡∈𝕀 be a planar isotopy such that the origin 𝟎 is a fixed point for every 𝑡. Then,
given 𝜀 > 0 there exits 𝜂 > 0 such that |𝑧| < 𝜂 implies |𝑓𝑡(𝑧)| < 𝜀 for every 𝑡 ∈ 𝕀.

Proof. Of course, one notices that the open manifold ℳ = ℝ2 is not compact, so let us use the
characterisation of 𝑓 as a jointly continuous function of (𝑡, 𝑧).

By hypothesis, |𝑓(𝑡, 𝟎)| = 𝟎 for every 𝑡 ∈ 𝕀. Thus, there exist 𝛿𝑡 > 0 and 𝜂𝑡 > 0 such that
|𝑠 − 𝑡| < 𝛿𝑡 and |𝑧| < 𝜂𝑡 imply |𝑓(𝑠, 𝑧)| < 𝜀. By compacity, 𝕀 = ⋃𝑛

𝑖=1(𝑡𝑗 − 𝛿𝑗 , 𝑡𝑗 + 𝛿𝑗) ∩ 𝕀, for some
𝑡1,… , 𝑡𝑛 ∈ 𝕀 and their respective 𝛿𝑗 ≝ 𝛿𝑡𝑗 . If we thus consider 𝜂 = min1≤𝑖≤𝑛 𝜂𝑡𝑗 , the proposed
statement is readily seen to hold. ▨
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1.2.1 The circle case

Consider the unit circle ℳ = 𝕊1, which is the only closed one-dimensional topological
manifold. The most widespread ways of realising it are as the set 𝑇 of complex numbers at unit
distance from the origin — endowed with the topology induced by the ambient space — or as the
abstract quotient space ℝ ∕ ℤ = {𝑥 + ℤ ∶ 𝑥 ∈ ℝ}, obtained upon identifying each point on the real
line with its integer translations.

The set𝑇 ismore concrete geometrically, but is not practical for calculations,mostly due to the
nuisances involving angle functions. The space ℝ ∕ ℤ, in turn, is more convenient algebraically, for
it inherits an additive group structure, and also due to the usage of lifts of circle maps, a procedure
soon to be described. Identification between the two viewpoints is provided by the homeomorphism
𝑥 + ℤ ↦ 𝘦2𝜋𝒾𝑥, usually interpreted as (a factor of) “wrapping” the real line around the (geometric)
circle.

If 𝜋 ∶ ℝ → ℝ ∕ ℤ denotes the quotient map, one sees that the interval [0, 1) is a fundamental
domain. It is thus usual to choose its element 𝑥 − ⌊𝑥⌋ as the canonical representative of the class
𝑥+ℤ, and also to think of the unit circle as the unit interval with identified endpoints. In particular,
𝑑(𝑥 + ℤ, 𝑦 + ℤ) ≝ {|𝑥 − 𝑦|, 1 − |𝑥 − 𝑦|} for 𝑥, 𝑦 ∈ [0, 1) defines a metric in ℝ ∕ ℤ which is equivalent
to the quotient topology, for its open balls lift under 𝜋 to countable unions of open intervals. This
allows one to also consider the Borelian probability Leb, which is given, for 𝐵 ⊂ ℝ ∕ ℤ, by the usual
Lebesgue measure on the real line of the set 𝜋−1(𝐵) ∩ [0, 1).

It turns out that 𝜋 is not only a quotient map, but rather a covering map. Any 𝑓 ∈ Homeo (𝕊1)
can thus be lifted to a homeomorphism 𝐹 ∶ ℝ → ℝ of the real line satisfying 𝜋 ∘ 𝐹 = 𝑓 ∘ 𝜋. Any two
such lifts differ by a constant integer, and each of them satisfies 𝐹(𝑥 + 1) = 𝐹(𝑥) + 𝑑, where 𝑑 = ±1
is the degree of 𝑓. In particular, we may define a circle homeomorphism to be orientation preserving
if it lifts to increasing homeomorphisms of the real line or, equivalently, if it has degree 1. Summing
up, one may either prescribe 𝑓 ∈ Homeo+(𝕊1) or 𝐹 ∈ Homeo (ℝ) such that 𝐹(𝑥 + 1) = 𝐹(𝑥) + 1.

These facts, along with the full dynamical characterisation of each 𝑓 ∈ Homeo+(𝕊1) in terms
of the so-called Poincaré rotation number, are a fundamental component of the dynamical systems
framework, being addressed by essentially any textbook on the subject (cf. e.g. (8), Sec. 7.1). Let us
now present yet another form of seeing the unit circle, as the Alexandrov compactification ℝ ∪ {∞}
of the real line.

To do so, consider the set 𝑇 sitting in the complex plane and fix a privileged point, say 𝒾.
Then, stereographic projection 𝛹 ∶ 𝕊1 ⧵ {𝒾} → ℝ from this point onto the real axis extends to the
sought homeomorphism, the point at infinity being identified with the projection’s basepoint 𝒾. For
concreteness, the formulae are:

𝛹(𝑧) = 𝑢
1 − 𝑣 if 𝑧 = 𝑢 + 𝒾𝑣 and 𝛹−1(𝑡) = 1

𝑡2 + 1 [2𝑡 + 𝒾(𝑡2 − 1)] .

Having settled the context, let us present two important subgroups of Homeo+(𝕊1)which act
on the unit circle. The first is the group Rot(𝕊1) = {𝑟𝛼 ∶ 0 ≤ 𝛼 < 1} of rotations, given additively as
𝑟𝛼(𝑥) = 𝑥 + 𝛼modℤ for 𝑥 ∈ [0, 1). If one recalls the special orthogonal group SO2(ℝ) of real 2 × 2
orthogonal matrices of unit determinant, for each such matrix 𝐴 there exists an unique 𝛼 ∈ [0, 1)
such that𝐴𝑧 = 𝘦2𝜋𝒾𝛼 𝑧. In view of the identification betweenℝ∕ℤ and𝑇 provided by the exponential,
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this yields an isomorphism of topological groups between Rot(𝕊1) and SO2(ℝ).
Since the latter is a very well known compact Lie group, Rot(𝕊1) is also compact. As it turns

out, any compact subgroup 𝐺 of Homeo+(𝕊1) is actually conjugate to a subgroup of the rotations.
The argument is based on averaging its Haar measure—which always exist for compact topological
groups— to conclude that𝐺 preserves in𝕊1 a Borelian probability equivalent to Leb. Since rotations
lift to translations, and translations are the only mappings that preserve both Lebesguemeasure and
orientation, the conclusion follows. The details of the proof, as well as a thorough discussion on the
Lie groups that do act on 𝕊1 may be found in the first chapter of the book by Navas (41).

Recall now the real projective special linear group PSL2(ℝ), obtained from the special linear
group SL2(ℝ) of 2 × 2 matrices of unit determinant upon declaring 𝐴 and −𝐴 as equivalent. This
group acts on the extended real line by linear fractional transformations:

𝜑 ∶ (±[𝑎 𝑏
𝑐 𝑑

] , 𝑡) ∈ PSL2(ℝ) × ℝ ∪ {∞} ↦ 𝑎𝑡 + 𝑏
𝑐𝑡 + 𝑑 ∈ ℝ ∪ {∞} .

Via conjugation under 𝛹 , the above gives rise to an orientation preserving action on the unit circle,
which we shall name theMöbius action, realised by a subgroup Möb(𝕊1) ⊂ Homeo+(𝕊1).

In particular, when 𝐴 is an orthogonal matrix there exists an unique 0 < 𝛽 ≤ 1 ⁄ 2 such
that either 𝐴 or −𝐴 is represented by 𝘦2𝜋𝒾𝛽. Then, a lengthy yet elementary calculation shows that
𝛹−1 ∘ 𝜑(𝐴,𝛹(𝑧)) = 𝘦2𝜋𝒾(1−2𝛽)𝑧. In other words, Rot(𝕊1) is realised by PSO2(ℝ) as a subgroup of
Möb(𝕊1), although its representation as such is not the same as by the orthogonal group itself.

The subgroups of Möb(𝕊2) are fully characterised — up to conjugacy by an element of
Homeo+(𝕊1) — as the so-called convergence groups. This is a pivotal milestone of the theory,
established by the works of Hinkkanen (23) and Gabai (16).

Lastly, recollect that the unit circle admits a 𝑘-fold cover 𝜋𝑘 by itself, which reads 𝑥 ↦
𝑘𝑥modℤ in additive notation. One verifies that the deck transformations consist in the cyclic group
generated by the corresponding rotation of finite order, 𝑟𝑘(𝑥) ≝ (𝑥 + 1 ⁄ 𝑘)modℤ. Clearly, each
point in 𝕊1 has 𝑘 preimages on its fiber, and thus each continuous circle map admits 𝑘 distinct lifts
commuting with the deck transformations. For a given subgroup 𝐺 ⊂ Homeo+(𝑓), the set of all
such lifts thus defines a new group 𝐺(𝑘), which is called a cyclic cover of 𝐺, for it projects onto 𝐺
and has the same cyclic group of finite rotations as its deck transformations. Of course, 𝐺(1) = 𝐺. A
prototypical situation is shown in Figure 1.2.

Figure 1.2 – A hyperbolic Möbius transformation 𝑓 and its three lifts in the cyclic cover Möb(3)(𝕊1). Notice
that 𝐺(𝑘) typically has no explicit representation whatsoever in terms of the base group 𝐺.

f
0 1 0 1 0 1

0 1
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In his already mentioned essay on groups acting on the circle (18), Ghys posed the question
of whether any closed and transitive subgroup 𝐺 of Homeo+(𝕊1) would be conjugate to one of the
following: Rot(𝕊1), Möb(𝑘)(𝕊1) or Homeo+, (𝑘)(𝕊1). The conjecture was motivated by an extremely
similar result available to the case of Lie groups, and roughly states that the circle supports only
Euclidean and projective geometries as its intrinsic symmetries.

The corresponding result was proven a few years later by Giblin and Markovic (19). However,
to do so, a new hypothesis was introduced: the group𝐺 in question must also contain a nonconstant
isotopy. The following was then established.

1.10 First Giblin &Markovic Classification Theorem. Let𝐺 ⊂ Homeo+(𝕊1) be a transitive group
containing a nonconstant isotopy. Then, one, and only one, of the following holds:

1) 𝐺 ≃ Rot(𝕊1);
2) 𝐺 ≃ Möb(𝕊1);
3) 𝐺 is such that. for every 𝑓 ∈ Homeo+(𝕊1) and every finite number of points 𝑥1,… , 𝑥𝑛 ∈

𝕊1, there exists 𝑔 ∈ 𝐺 satisfying 𝑓(𝑥𝑖) = 𝑔(𝑥𝑖) for each 𝑖 ∈ {1,… , 𝑛};
4) 𝐺 ≃ Möb(𝑘)(𝕊1) for some 𝑘 > 1;
5) 𝐺 ≃ 𝐻(𝑘) for some 𝑘 > 1, where 𝐻 is a subgroup of Homeo+(𝕊1) satisfying condition 3).

Here, ≃ denotes conjugation in Homeo+(𝕊1).

It is interesting to notice that a full classification theorem is actually possible without the
hypothesis of 𝐺 being closed, which just further simplifies the description. Condition 3) above is a
kind of 𝑛-transitivity for every 𝑛: the homeomorphism 𝑓, which doesn’t have anything to do with
the group 𝐺, is there to ensure that this transitivity respects what the authors define as matching
orientations. In other words, one is only allowed to map (𝑥1,… , 𝑥𝑛) onto (𝑦1,… , 𝑦𝑛) if both 𝑛-uples
are cyclically ordered in the same fashion.

Most of the constructions in the paper are based upon a concept of continuous transitivity
which is slightly stronger than what we called arc 𝑛-transitivity in Definition 1.5: 𝐺 is said to be
continuously 𝑛-transitive if for every pair of paths (𝑥1(𝑡),…𝑥𝑛(𝑡)) and (𝑦1(𝑡),… 𝑦𝑛(𝑡)) such that their
orientations match for every 𝑡 ∈ 𝕀, there exists an ℐ𝐺-isotopy (𝑔𝑡)𝑡∈𝕀 satisfying 𝑔𝑡(𝑥𝑖(𝑡)) = 𝑦𝑖(𝑡).
The presence of a nonconstant isotopy is then used to establish the bridge between continuous
transitivity and ordinary transitivity.

If𝐺 is further required to be closed, condition 3) yields the whole group of homeomorphisms,
since for a fixed enumeration {𝑞𝑚 ∶ 𝑚 ∈ ℕ} of ℚ ∩ [0, 1) and each given 𝑓 ∈ Homeo+(𝕊1) one may
obtain 𝑔𝑛 ∈ 𝐺 such that 𝑔𝑛(𝑞𝑖) = 𝑓(𝑞𝑖) for each 𝑖 ∈ {1,… , 𝑛}, thus producing a sequence (𝑔𝑛)𝑛∈ℕ in
𝐺 that converges uniformly to 𝑓. This establishes the following.

1.11 Second Giblin & Markovic Classification Theorem. Let 𝐺 ⊂ Homeo+(𝕊1) be a closed and
transitive group containing a nonconstant isotopy. Then, one, and only one, of the following holds:

1) 𝐺 ≃ Rot(𝕊1)
2) 𝐺 ≃ Möb(𝑘)(𝕊1) for some 𝑘 ≥ 1.
3) 𝐺 ≃ Homeo+, (𝑘)(𝕊1)

In particular, Möb(𝕊2) is maximal in Homeo+(𝕊2).

The conclusion ofmaximality follows from the fact that elements inMöb(𝕊1) can have atmost
two fixed points — as such points (in ℝ ∪ {∞}) must be the solutions to a second degree polynomial
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equation—while the cyclic covers in the statement of the theorem admit maps with more than two
fixed points, as shown by Figure 1.2.

1.2.2 Specific context

Let us consider now the unit sphereℳ = 𝕊2, which is the closed and orientable surface of
genus 0. It can be thought of either as the set 𝕊2 = {𝑃 ∈ ℝ3 ∶ |𝑃| = 1} of points in Euclidean 3-
space at unit distance from the origin or as the Alexandrov compactification ℂ∪ {∞} of the complex
plane. In the latter case, identification is provided by stereographic projection from the North Pole
𝘕 ≝ (0, 0, 1).

For the sake of completeness we remember that stereographic projection is a map 𝛹𝘕 from
𝕊2 ⧵ {𝘕} onto the Euclidean plane, which sends 𝑃 to the intersection point between the line passing
through 𝑃 and 𝘕 with the 𝑥𝑦-plane. If 𝑃 = (𝑋, 𝑌, 𝑍), it is given explicitly as

𝛹𝘕 (𝑃) =
𝑋 + 𝒾𝑌
1 − 𝑍 .

Notice that 𝕊2 is an embedded Riemmanian submanifold of its ambient space ℝ3 — the
metric ⟨⋅, ⋅⟩𝑃 at a point 𝑃 being given by restriction of the usual Euclidean inner product to 𝑇𝑃𝕊2.
With respect to this structure, 𝛹𝘕 turns out to be a conformal diffeomorphism between the open
submanifold𝕊2⧵{𝘕} and the plane. Here, conformalmeans that angles between differentiable curves
are preserved.

It is readily seen that𝛹𝘕 is not defined at the North Pole itself. This pole is sent to the “point at
infinity”, thus establishing a homeomorphism between the sphere and ℂ ∪ {∞}. Consequently, any
sphere mapping fixing∞ defines, by conjugation with stereographic projection, a planar mapping
having the same degree of regularity, which is often denoted by the same letter. We stress that the
converse procedure — from the plane to the sphere — is slightly more delicate.

Typically,we shall confoundpoints in the plane and their stereographic imageswithout notice,
using the same letters to label them. Thus, 𝑧 = (𝑥, 𝑦) ∈ ℝ2, which is naturally identified with the
complex number 𝑧 = 𝑥 + 𝒾𝑦, may also denote the point

𝛹−1
𝘕 (𝑧) = ( 2𝑥

𝑥2 + 𝑦2 + 1 ,
2𝑦

𝑥2 + 𝑦2 + 1 ,
𝑥2 + 𝑦2 − 1
𝑥2 + 𝑦2 + 1) ∈ 𝕊2 .

We also fix two other reference points that play a key role in the arguments to follow:
• 𝟎 is the South Pole, and corresponds under 𝛹𝘕 to the plane’s origin;
• 𝟏 is the point (1, 0, 0), which corresponds under 𝛹𝘕 to its counterpart on the real axis.

There is also an analogously defined stereographic projection 𝛹𝘚 from the South Pole, so that
{(𝛹𝘕, 𝕊2 ⧵ {∞}), (𝛹𝘚, 𝕊2 ⧵ {𝟎})} becomes a (smooth) conformal atlas for the sphere.

Some subsets of 𝕊2 are given special names: parallels are the circles obtained by intersection
of the sphere with horizontal planes, whilstmeridians are the circles obtained by intersection of the
sphere with vertical planes containing the origin. More generally, an intersection of the sphere with
a plane through the origin is called a great circle, and divides the sphere into two open connected
components called hemispheres.

In particular, themeridian through𝟎, 𝟏 and∞—which is the stereographic image of the (real)
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𝑥-axis — is denoted by 𝛤 . To an observer external to the sphere’s surface, this meridian defines on
its right an eastern hemisphereℋ+, corresponding to the upper half-plane, and on its left an eastern
hemisphereℋ−, corresponding to the lower half-plane.

It is widely known that, with respect to the Euclidean structure already discussed, maximal
geodesics on the sphere have great circles as images. Therefore, one may explicitly compute the
corresponding round distance 𝑑(𝑃, 𝑄) between two points 𝑃,𝑄 ∈ 𝕊2 as the length of the shortest arc
determined by them on a great circle containing both 𝑃 and 𝑄. Such great circle can be obtained as
the intersection of a plane containing 𝑃,𝑄 and the origin of ℝ3 with the sphere. It is thus unique
unless 𝑃,𝑄 are antipodal, that is 𝑄 = −𝑃.

Meanwhile, for 𝑧, 𝑤 in the planewe define their chordal distance ̂𝑑 to be the Euclidean distance
between their stereographic images, which is explicitly given by:

[1.4] ̂𝑑(𝑧, 𝑤) ≝ 2 |𝑧 − 𝑤|
√1 + |𝑧|2√1 + |𝑤|2

.

Then, upon setting
̂𝑑(𝑧,∞) ≝ 2

√1 + |𝑧|2

one induces on the sphere a metric that is equivalent to the round metric, with 2−1𝑑 ≤ ̂𝑑 ≤ 2𝑑.
These two distances, whose relation is pictured in Figure 1.3, may thus be used interchangeably
whenever convenient. One sees that stereographic projection preserves angles at the expense of
heavily distorting distances and areas.

Figure 1.3 – The chordal distance ̂𝑑 between planar points 𝑧, 𝑤 is given by the Euclidean distance between
their stereographic images, and is equivalent to their round distance 𝑑, measured along great circles.
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In order to discuss some symmetries of the spherical setting, we first mention a theorem
by Belliart (5), which states that a Lie group 𝐺 admits a faithful and fixed-point free action by
homeomorphisms of 𝕊2 if, and only if, it has SO3(ℝ), PSL3(ℝ) or PSL2(ℂ) as a quotient. Here, fixed-
point free means that no point of 𝕊2 is kept fixed by all elements of 𝐺 simultaneously. Although
informative for the purposes of classification, this result does not reveal anything about the actual
representation of 𝐺: it only tells that a surjective morphism does exist from 𝐺 onto one such group.

It turns out that each of these groups is indeed canonically linked to a certain orientation
preserving symmetry of the 2-sphere: PSL2(ℂ) relates to the preservation of circles and PSL3(ℝ)
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relates to the preservation of geodesics, while SO3(ℝ) relates to the previous two and also to
isometries and preservation of area. The connection is established by their realisations as certain
subgroups of Diff 1+(𝕊2)which we now introduce, along with some other canonical groups featuring
in the paper byKwakkel andTal (30).We then briefly review some of their results in order tomotivate
and introduce ours.

The rotation group

On the one hand, it is widely known that the isometries of Euclidean space ℝ𝑛+1 are affine
transformations of the form 𝑃 ↦ 𝐴𝑃 + 𝑏, where 𝐴 ∈ O𝑛+1(ℝ) is an orthogonal matrix and
𝑏 is a fixed vector. If one such transformation is required to preserve orientation, then actually
𝐴 ∈ SO𝑛+1(ℝ) = {𝐴 ∶ 𝐴 is orthogonal and of determinant 1}. If it is further required to preserve 𝕊𝑛

as a set, then 𝑏 = 0. In particular, one thus obtains SO3(ℝ) as the compact Lie group of isometries
of the round 2-sphere.

On the other hand, denote by 𝑅𝜃(𝒏) the anticlockwise rotation of angle 𝜃 around the axis
positively oriented by the unit vector 𝒏. Then, there exists a matrix 𝐴 ∈ SO3(ℝ) such that 𝐴𝑉 =
𝑅𝜃(𝒏) (𝑉) for every 𝑉 . Conversely, given 𝐴 ∈ SO3(ℝ) one may find an unit vector 𝒏 and an angle
𝜃 ∈ [0, 𝜋] such that this identity holds. Namely, the solutions of 𝐴𝒏 = 𝒏 and 1 + 2 cos 𝜃 = tr𝐴
subject to |𝒏| = 1. Furthermore, 𝒏 is unique when 0 < 𝜃 < 𝜋, while 𝑅𝜋(𝒏) = 𝑅𝜋(−𝒏) and 𝑅0(⋅) = id
no matter which axis is chosen — cf. Vvedensky and Evans (48) for the actual calculations.

This allows one to define a continuous and surjective parameterisation of SO3(ℝ) on the closed
ball 𝔹𝜋(𝑂) ⊂ ℝ3, by sending the origin 𝑂 to id and each point of the form 𝜃𝒏— where 0 < 𝜃 ≤ 𝜃
and 𝒏 is of unit length — to 𝑅𝜃(𝒏). This is the so-called axis-angle representation, and it is injective
except for the ball’s spherical surface, on which antipodal points become identified, as suggested by
Figure 1.4.

Figure 1.4 – Rotations can be naturally identified with points in the ball𝔹𝜋(𝑂)with antipodal surface points
identified, which is the space ℝℙ3. The orange segment running across the ball is a noncontractible loop in
this space.
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A solid ball with its surface’s antipodal points identified is amodel for the projective spaceℝℙ3,
so the above parametrisation descends to a homeomorphism between ℝℙ3 and SO3(ℝ), implying
the latter to have the same topology as that of three-dimensional projective space. In particular, it
is orientable and connected, but not simply connected, since a loop running inside the ball while
connecting antipodal points on the surface cannot be continuously shrunken to a point.

For the geometric reasons just discussed, we denote by Rot(𝕊2) the subgroup of Homeo+(𝕊2)



13

induced by the action of SO3(ℝ), and name it the rotation group. A handful other ways exist to
understand and represent rotations, the parameterisation by Euler angles and usage of the unit
quaternions 𝕊3 being worth of mention (cf. e.g. (1)).

Clearly, Rot(𝕊2) is transitive: given two distinct and non antipodal points 𝑃,𝑄 ∈ 𝕊2, let 𝛱 be
the unique plane through the origin containing them. Then,𝛱∩𝕊2 is a great circle upon which 𝑃,𝑄
both lie and subtend an arc of length 𝜃 < 𝜋. Fixed such arc, let 𝜃 be the angle of rotation, and choose
as the axis 𝒏 the vector 𝑂𝑃 × 𝑂𝑄 normalised. Then, 𝑄 = 𝑅𝜃(𝒏) (𝑃). When 𝑃,𝑄 are antipodal, any
rotation of angle 𝜋 around an axis orthogonal to any of the infinitely many planes containing both
points and the origin maps 𝑃 to𝑄. Furthermore, Rot(𝕊2) is closed, for it is compact. Our goal is now
to clarify the following statement by Kwakkel and Tal (30):

The rotation group isminimal among closed and transitive subgroups of Homeo+(𝕊2).

More precisely, we shall establish that any compact and transitive group of orientation preserving
sphere homeomorphisms must be conjugate to the whole rotation group. To do so, we first recall a
few terminologies.

Let 𝐺 be a Lie group acting smoothly on a manifoldℳ. If the action is transitive, thenℳ is
said to be a homogeneous 𝐺-space. For a given set 𝑆 ⊂ ℳ, the stabiliser of 𝑆 in 𝐺 is

Stab𝐺 𝑆 ≝ {𝑔 ∈ 𝐺 ∶ 𝑔 ⋅ 𝑝 = 𝑝 for every 𝑝 ∈ 𝑆} ,

where ⋅ denotes the action. It is always a (topologically) closed subgroup of 𝐺, and hence a Lie
subgroup on its own. As it turns out, homogeneous 𝐺-spaces can be canonically described in terms
of stabilisers, as conveyed below. Chapter 21 of the book by Lee (35) contains the relevant statements
in full generality along with the pertinent arguments.

1.12 Proposition. Assume thatℳ is a homogeneous 𝐺-space and let 𝑝 ∈ ℳ be any given point.
Then,𝐺∕Stab𝐺{𝑝} admits a unique smoothmanifold structure such that it is also a homogeneous𝐺-
space under leftmultiplication. Furthermore, thismanifold is diffeomorphic toℳ via an equivariant
map explicitly given by 𝑔 ⋅ Stab𝐺{𝑝} ↦ 𝑔 ⋅ 𝑝.

Clearly, 𝕊2 is a homogeneous SO3(ℝ)-space. If we wish to realise it in the fashion described
by Proposition 1.12, we must characterize the stabiliser of one of its points, say 𝟏 for concreteness.
From the axis-angle parameterisation, these must be the matrices representing rotations around the
𝑋-axis. Explicitly,

[1.5] StabSO3(ℝ){𝟏} =
⎧
⎨
⎩

⎡
⎢
⎢
⎣

1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

⎤
⎥
⎥
⎦
∶ 0 ≤ 𝜃 < 2𝜋

⎫
⎬
⎭
.

All the relevant information is contained in the right bottom square block of such matrices,
which consists of prescribing the angle of rotation on one (and hence all) of the invariant circles
orthogonal to the 𝑋-axis that foliate 𝕊2 ⧵ {±𝟏} and are shown in Figure 1.5. These blocks, in turn, are
naturally identified with SO2(ℝ), so it is usual to write 𝕊2 ≅ SO3(ℝ) ∕ SO2(ℝ).

Now, let𝐺 ⊂ SO3(ℝ) be a closed subgroupwhich also acts transitively on𝕊2. Then, Stab𝐺{𝟏} is
a subgroup of [1.5], being thus identified with a subgroup of SO2(ℝ). However, further recalling that



14

Figure 1.5 – A rotation around the 𝑋-axis (or any axis, for that matter) fixes an antipodal pair and induces
planar rotations of the same angle 𝜃 in all of the invariant parallel circles obtained by intersection of the sphere
with planes orthogonal to the axis.

1�

matrices of SO2(ℝ) can be represented as multiplication by 𝘦𝒾𝜃, one sees that Stab𝐺{𝟏} is isomorphic
— as a topological group— to amultiplicative subgroup of the (complex) unit circle. However, such
subgroups are widely known to be either finite cyclic or dense.

Since 𝐺 was assumed to act transitively on the sphere, in particular its restriction to the
invariant circles shown in Figure 1.5 is also transitive, so it cannot be cyclic of finite order. It must
thus contain a dense set of possible rotation angles. However, as 𝐺 was also assumed closed, it must
actually contain all angles. In other words, Stab𝐺{𝟏} ≃ SO2(ℝ) as well. Proposition 1.12 then implies
𝐺 to be the whole of SO3(ℝ).

The sought conclusion can therefore be drawn from a result first announced by Hungarian
mathematician Kerékjártó (26), according to which every compact subgroup 𝐻 of Homeo (𝕊2)
is topologically conjugate to a closed subgroup of Rot(𝕊2). A modern treatise on the proof was
published by Kolev (27). Broadly, the idea is to build up from compact subgroups of Homeo (𝕊1)
to Homeo (𝕊2), passing through Homeo (𝔻2) halfway. The proof ends with an analysis of several
possibilities for the group 𝐻, one of which is when it preserves orientation and acts transitively.

Curiously, this is the case that occupiedmost ofKerékjártó’swork, but is now the one of shorter
exposition, due to all the Riemannian geometry machinery developed ever since. Of course, this
does not mean that the result has become simpler, only that many of the toilsome parts are now
systematically conveyed in standard textbooks on the subject. For this reason, we now sum up the
above discussion along with a specialised sketch of the argument.

1.13 Theorem [Kerékjártó, Kolev]. Let𝐺 ⊂ Homeo+(𝕊2) be a compact and transitive group. Then,
𝐺 is conjugate to Rot(𝕊2).

Sketch of proof. We resort to the fact that — by Gleason’s solution to Hilbert’s fifth problem (20, 47)
and an estimate due to Newman ((27), Sec. 5)— any compact subgroup of Homeo (𝕊2) (transitive or
not) is actually a Lie group. That said, in particular the action of 𝐺 turns 𝕊2 into a 𝐺-homogeneous
space, diffeomorphic to the abstract surface ℳ ≝ 𝐺 ∕ Stab𝐺{𝟏}. Since this surface is compact, it
admits a𝐺-invariant Riemannianmetric, say ⟨⟨⋅, ⋅⟩⟩, and this metric has constant scalar curvature (cf.
e.g. (34), Corollary 3.18 and Exercise 8.24). However, in the particular case of a surface, the scalar
curvature determines the Gaussian curvature as well. Since we know that 𝜒(ℳ) = 2, this curvature
must be positive. Therefore, some positive constant 𝑐 exists such that 𝑐⟨⟨⋅, ⋅⟩⟩ has constant Gaussian
curvature 1, while remaining 𝐺-invariant. The Killing-Hopf theorem thus yields a Riemannian
isometry 𝛷 ∶ (ℳ, 𝑐⟨⟨⋅, ⋅⟩⟩) ⥲ (𝕊2, ⟨⋅, ⋅⟩), which in turn induces an conjugation between 𝐺 and a
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closed and transitive subgroup of SO3(ℝ). By the arguments precedent to this theorem’s statement,
the latter must actually be the full group SO3(ℝ). ▨

For the reasons presented in this section, Kwakkel and Tal named Rot(𝕊2) as the kernel
subgroup, its extensions as homogeneous groups and posed the following.

The kernel subgroup problem. Classify all homogeneous subgroups of Homeo+(𝕊2) and / or all
homogeneous subgroups of Diff 1+(𝕊2) up to their uniform closures.

We now turn our attention to some such groups.

Area preserving actions

Letℳ be a compact manifold, possibly with boundary, and call good a nonatomic Borelian
probability 𝜇 of full support onℳ. Then, we have the following.

1.14 Remark. Ifℳ is a compact manifold and a transitive subgroup 𝐺 ⊂ Homeo (ℳ) preserves a
Borelian probability 𝜇, then 𝜇must be good.

Proof. Suppose first that 𝜇 has an atom {𝑝}. Then, we may fix infinitely distinct points {𝑝𝑛}𝑛∈ℕ inℳ
and, for each of them, obtain by transitivity 𝑔𝑛 ∈ 𝐺 such that 𝑝𝑛 = 𝑔𝑛(𝑝). Since 𝜇 is preserved by 𝐺,
this implies 𝜇({𝑝𝑛}𝑛∈ℕ) = ∑𝑛∈ℕ 𝜇{𝑝} = +∞, a contradiction. On the other hand, suppose that there
is a topological ball 𝐵 ⊂ ℳ of null measure. By transitivity of 𝐺 and compacity ofℳ, one obtains
finitelymanymaps 𝑔1,… , 𝑔𝑘 ∈ 𝐺 such thatℳ = ⋃𝑘

𝑗=1 𝑔𝑗(𝐵). Consequently, 1 = 𝜇(ℳ) ≤ 𝑘𝜇(𝐵) = 0,
another contradiction. ▨

Consequently, good probabilites are the only ones that may be preserved in the transitive
setting. The following result, which Fathi claims (on p. 53 of (12)) to be proven in Section II of (43),
states that it is enough to study only one suchmeasure as a model. We briefly remark that— in their
more general contexts of origin — good measures may be defined in manifolds with boundary, but
since such spaces cannot support transitive groups of homeomorphism, we do not bother to include
the relevant statements.

1.15 The Oxtoby-Ulam Theorem. Letℳ be a closed manifold. If 𝜇 and 𝜈 are two good Borelian
probabilities onℳ, then there exists a homeomorphism 𝛷 ∶ ℳ →ℳ such that 𝜇 = 𝛷∗𝜈. Moreover
(33), 𝛷 can be assumed to be isotopic to the identity.

In the case of a Riemannian manifold, the natural choice of a good probability is the
normalised volume form yielded by the metric. Albeit its explicit form is nowhere used, the area
form corresponding to the round metric in 𝕊2 is

𝑍 d𝑋 ∧ d𝑌 − 𝑌 d𝑋 ∧ d𝑍 + 𝑋 d𝑌 ∧ d𝑍 .

The above 2-form pulls back under the usual parameterisation (cos 𝜃 sin𝜙 , sin 𝜃 sin𝜙 , cos𝜙) of 𝕊2

by spherical coordinates (𝜃, 𝜙) ∈ [0, 2𝜋]×[0, 𝜋] to the familiar expression sin𝜙 d𝜃d𝜙. We shall thus
refer from now on to the Borelian probability 𝜆, with density given by d𝜆 = (4𝜋)−1 sin𝜙 d𝜃d𝜙, as
the Lebesgue measure on 𝕊2.
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Lastly, for any given Borelian probability 𝜇 on a manifold ℳ and any subgroup 𝐺 of
Homeo (ℳ), let us denote by 𝐺𝜇 the subgroup of 𝐺 consisting of those maps preserving 𝜇. Since
integration commutes with uniform convergence, this is always a closed subgroup. In the setting of
good probabilities, it turns out to be maximal as well, a result proven by Le Roux (33) which we now
quote.

1.16 Theorem [Le Roux]. Letℳ be a triangulable topological manifold of dimension ≥ 2, which
is not assumed to be oriented and may or may not have boundary. Then, for every good Borelian
probability 𝜇 onℳ, the group Homeo𝜇,0(ℳ) is maximal in Homeo0(ℳ).

Above, as in the rest of this essay, the subscript 0 indicates the identity component of a
topological group, andmay the replaced by+ in the orientable case. In particular, whenℳ = 𝕊2 one
readily sees that Homeo𝜆,+(𝕊2) is a maximal homogeneous group. We remark that an independent
proof of this result is given by Kwakkel and Tal for the 2-sphere. This result strongly opposes to the
one by Giblin and Markovic, because

• HomeoLeb,+(𝕊1) coincides with Rot(𝕊1), while Homeo𝜆,+(𝕊2) extends Rot(𝕊2) properly, a
prototypical example being the time 1 flow of a conservative vector field;

• HomeoLeb,+(𝕊1) is properly contained in the larger Möb(𝕊1), which in turn is maximal and
possesses elements that do not preserve Lebesgue measure (for example, the one pictured
in Figure 1.2).

Theorem 1.16 yields a machinery to produce subgroups of Homeo+(𝕊2) that are not closed. For
instance, ⟨Homeo+,𝜆(𝕊2)∪ {ℎ}⟩— the group generated upon adjunction of some ℎ ∈ Diff 1+(ℳ) that
does not preserve area to the area preserving maps.

Antipodal actions

Projective geometry has its roots in the studies of perspective conduced by Dürer in the 16th

century, and is related to the study of the properties of a figure that are preserved under projection on
a screen, from the point of view of an observer seating at the origin of the space. For that reason, each
line through the origin𝑂 ∈ ℝ3 is called a projective point, and interpreted as a light beam emanating
from it (7). Since each such line is uniquely determined by a nonzero direction vector 𝒗, and any two
direction vectors for the same line are scalar multiples of each other, one arrives at the definition of
the projective plane as:

ℝℙ2 ≝ {[𝒗] ∶ 𝒗 ∈ ℝ3 ⧵ {𝟎}} ,

where the equivalence classes [𝒗] are determined by the relation 𝒗 ∼ 𝒘 if, and only if, 𝒘 = 𝜆𝒗
for some 𝜆 ≠ 0. Projective figures are then defined as subsets of ℝℙ2. In particular, projective lines
are defined as planes of 3-space containing the origin — or rather, their images under the natural
projection 𝜋 ∶ ℝ3 ↠ ℝℙ2, as Figure 1.6 suggests. This projection is used to topologise ℝℙ2, thus
yielding a Hausdorff and second countable space.

In Figure 1.6, the chosen “screen” was the plane {𝑧 = 1}. This is the so-called standard
embedding plane, for it allows one to identify all of ℝℙ2 with a subset of the Euclidean plane, except
for the projective line {𝑧 = 0} parallel to the embedding plane, the so-called ideal line. This actually
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Figure 1.6 – In projective geometry, Euclidean lines become points and figures are determined by beams of
Euclidean lines. In particular, Euclidean planes containing the origin become projective lines.
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amounts to prescribe a coordinate chart {𝑈𝑧, 𝛷𝑧} in ℝℙ2, where

𝑈𝑧 = {[𝑥, 𝑦, 𝑧] ∶ 𝑧 ≠ 0} and 𝛷𝑧 ∶ [𝑥, 𝑦, 𝑧] ↦ (𝑥𝑧 ,
𝑦
𝑧) .

Analogous procedures for the 𝑥 and 𝑦 variables yield a smooth atlas, turning ℝℙ2 into a smooth
manifold.

Consider now the group PSL3(ℝ), obtained from the general linear group SL3(ℝ) of 3 × 3
real matrices of unit determinant upon declaring each 𝐴 and −𝐴 as equivalent. Then, the following
action via projective transformations is well defined:

[1.6] (±𝐴, [𝒗]) ∈ PSL3(ℝ) × ℝℙ2 ↦ [𝐴𝒗] ∈ ℝℙ2 .

This action gives rise to a group of homeomorphisms Lin(ℝℙ2) ⊂ Homeo (ℝℙ2). To explain
how it is related to the 2-sphere, we first observe that each Euclidean line through the origin of ℝ3

meets𝕊2 at a pair of antipodal points, thus defining a 2:1 smooth coveringmap 𝓅 ∶ 𝕊2 ↠ ℝℙ2 which
identifies antipodal points. A fundamental domain for it is the sphere’s northern hemisphere, along
with the equator with antipodal points identified, as shown in Figure 1.7. From it, one sees thatℝℙ2

is not orientable, for a Möbius band may be found within it.

Figure 1.7 – A spherical model for the projective plane: on it, projective lines correspond to great circles,
which are arcs of geodesics.

Clearly, the group of deck transformations for 𝓅 is {± id𝕊2} ≃ ℤ2. Each map in Homeo (ℝℙ2)
therefore has two lifts to 𝕊2, only one of which is orientation preserving. We thus define Ant(𝕊2)
to be the subgroup of Homeo+(𝕊2) consisting of all orientation preserving lifts of projective
homeomorphisms. The defining property for 𝑓 ∈ Homeo+(𝕊2) to be in this group is, of course,
that 𝑓(−𝑃) = −𝑓(𝑃) holds for every 𝑃 ∈ 𝕊2. As a consequence, the group Lin(ℝℙ2) just defined lifts
to a subgroup Lin(𝕊2) of Ant(𝕊2).
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In the spherical model, projective lines lift to great circles, since those are precisely the
intersections of 𝕊2 with planes containing the origin. Therefore, Lin(𝕊2)must permute such circles,
thus establishing the aforementioned connection between PSL3(ℝ) and preservation of geodesics.
In particular, Lin(𝕊2) is homogeneous, with the action of Rot(𝕊2) descending to the action [1.6] of
PSO3(ℝ) as the maximal compact subgroup of PSL3(ℝ).

These groups play in the spherical setting the same role as the cyclic covers did in 𝕊1. Some
of the results announced by Kakkel and Tal concerning them ((30), Lemma 2.3, Theorems 5 and 6)
are that Lin𝜆(𝕊2) coincides with Rot(𝕊2) and that Ant𝜆(𝕊2) is maximal in Ant(𝕊2).

The Möbius action

Consider the group PSL2(ℂ) obtained from SL2(ℂ) upon declaring 𝐴 and −𝐴 as equivalent. If
𝐴 = [ 𝑎 𝑏

𝑐 𝑑 ] ∈ SL2(ℂ), it acts on the extended complex plane by fractional linear transformations as
follows:

(±𝐴, 𝑧) ∈ PSL2(ℂ) × ℂ ∪ {∞} ↦ 𝑀𝐴(𝑧) ≝
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ∈ ℂ ∪ {∞} .

Each𝑀𝐴 is a homemomorphism of the extended plane, and thus induces by conjugation with
𝛹𝘕 a map in Homeo (𝕊2). This yields the subgroup Möb(𝕊2) ofMöbius transformations.

Möbius transformations are ubiquitous in several fields of Mathematics and have been
thoroughly studied, so we provide here just a small glance at the aspects relevant to forthcoming
arguments. The first important result we mention is their characterisation as conformal maps.

1.17 Theorem. Möb(𝕊2) consists of the orientation preserving and conformal diffeomorphisms
of the 2-sphere. More precisely, Möbius transformations are the conformal automorphisms of the
Riemann sphere.

Above, Riemann sphere means that the underlying set 𝕊2 is being given the structure of a
complex one-dimensionalmanifold, with the stereographic projections comprising the holomorphic
atlas. In this setting, conformal automorphism becomes synonym to biholomorphic bijection, and
this is how such result is usually stated and proven a regular Complex Analysis course. Very
rigorously, to make sense out of the first sentence in Theorem 1.17 above, one would need to further
evoke the notorious Uniformization Theorem, for it implies all Riemannian metrics on the (a priori
only topological and real) orientedmanifold 𝕊2 to be conformally equivalent— cf. (25), Sections 2.3,
3.11 and 4.4.

Möbius transformation are known for mapping circles into circles. If one restricts to the
complex plane, some of these circles might actually be lines, which correspond stereographically to
circles on 𝕊2 passing through∞. This stems from the fact that each Möbius transformation can be
decomposed into a sequence of simpler transformations— translations, homotheties and inversions.
Enlightening proofs may be found in Chapter 3 of (42).

We further remark that the following implies Möb(𝕊2) to be homogeneous.



19

1.18 A result by Gauss [1819]. Amap 𝑅 ∶ 𝕊2 → 𝕊2 is a rotation of the Riemann sphere if, and only
if, 𝑅 is a Möbius transformation induced by a matrix in

PSU2(ℂ) = {±[ 𝑎 𝑏
−𝑏∗ 𝑎∗

] ∶ 𝑎, 𝑏 ∈ ℂ and |𝑎|2 + |𝑏|2 = 1 } ,

which is the maximal compact subgroup of PSL2(ℂ).

The fixed points of a Möbius transformations are solutions to the quadratic equation𝑀𝐴(𝑧) =
𝑧 over the fieldℂ (plus the point at infinity), so they always exist and either collapse to a single point
or come in pairs. Actually, a full classification is possible in terms of the matrix 𝐴 and a handful of
prototypical transformations, of which we now remember:

• 𝑧 ↦ 𝘦𝒾𝛼𝑧, where 𝛼 ∈ ℝ, is an elliptical transformation: on the sphere, it is a rotation around
the 𝑍-axis, thus leaving the poles fixed, parallels invariant and permuting meridians.

• 𝑧 ↦ 𝜌𝑧, where 𝜌 ∈ ℝ ⧵ {0, 1}, is a hyperbolic transformation: on the sphere, it leaves
the poles fixed, meridians invariant and permutes parallels. If 𝜌 > 1, points are dragged
monotonically from the South to the North Pole over meridians. If 0 < 𝜌 < 1, the opposite
holds.

• 𝑧 ↦ 𝜌𝘦𝒾𝛼𝑧, where 𝜌 and 𝛼 are as above, is a loxodromic transformation. It is actually
a combination of the two previous types, so both meridians and parallels form invariant
families, but neither are fixed— instead, invariant curves spiral from one (fixed) pole to the
other.

• 𝑧 ↦ 𝑧 + 𝑏 is a parabolic transformation. It has∞ as its single fixed point, and its invariant
curves are circles passing through ∞ and sharing a common tangent parallel to 𝑏 at that
point, a configuration known as horocyclic.

These transformations are illustrated in Figure 1.8.

Figure 1.8 – The four prototypical Möbius transformations
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 � ↦ ����, � > 0 � ↦ ��, � > 1  � ↦ �����, � > 1, � > 0 � ↦ � + �, � ∈ ℂ

We are now ready to provide the mentioned classification. An attempt to solve the equation
yielding the fixed points shows that their multiplicity depends essentially on the absolute value of
the trace of 𝐴, which is a well-defined quantity in PSL2(ℂ). In particular, unless |tr𝐴| = 2,𝑀𝐴 has
two distinct fixed points, 𝜉+ and 𝜉−. Then, 𝐻 ∈ Möb(𝕊2) exists such that 𝐻(𝜉+) = 𝟎, 𝐻(𝜉−) = ∞
and𝐻 ∘𝑀𝐴 ∘ 𝐻−1 (𝑧) = 𝔪𝑧. The complex number thus obtained is themultiplier of𝑀𝐴, and can be
computed in a number of ways. Namely,
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• as𝑀′
𝐴(𝜉+) = 𝔪 = [𝑀′

𝐴(𝜉−)]−1 in terms of the complex function𝑀𝐴, or
• as the solutions to𝔪2 + (2 − tr2 𝐴)𝔪 + 1 = 0 in terms of the matrix 𝐴.

Lastly, if |tr𝐴| = 2, then 𝑀𝐴 has a single fixed point 𝜉. This time, 𝐻 ∈ Möb(𝕊2) exists such that
𝐻(𝜉) = ∞ and 𝐻 ∘ 𝑀𝐴 ∘ 𝐻−1 (𝑧) = 𝑧 + 𝜏, for some 𝜏 ∈ ℂ. In this case, the multiplier is agreed to be
1. Each Möbius transformation is then named after the prototypical map to which it is conjugate, as
summarised in Table 1.1.

Table 1.1 – Classification of a Möbius transformation𝑀𝐴 represented by a non trivial matrix 𝐴 ∈ PSL2(ℂ).
According to its class,𝑀𝐴 is either conjugate to a translation (parabolic case) or to 𝑧 ↦ 𝔪𝑧.

Trace of 𝐴 Multipliers𝔪 Class
tr𝐴 ∈ ℝ and |tr𝐴| < 2 𝘦±𝒾𝛼, 𝛼 ∈ ℝ ⧵ {0} Elliptic.

tr𝐴 = ±2 1 Parabolic.

tr𝐴 ∈ ℝ and |tr𝐴| > 2 𝜌, 𝜌−1 ∈ ℝ ⧵ {0, 1} Hyperbolic.

tr𝐴 ∈ ℂ ⧵ ℝ (𝜌𝘦𝒾𝛼)±1; 𝛼, 𝜌 as above Loxodromic.

A notorious and widely known property of Möb(𝕊2) is being a sharply 3-transitive group. As
it turns out, this property completely determines theMöbius group among homogeneous subgroups
of Diff 1+(𝕊2). This is established along Section 3.4 of the paper by Kwakkel and Tal. In this thesis,
we offer a new— yet somewhat similar in spirit — proof of this fact in Chapter 2. Another relevant
result derived by Kwakkel and Tal concerning Möbius transformations is that both Möb𝜆(𝕊2) and
Möb(𝕊2) ∩ Ant(𝕊2) reduce to Rot(𝕊2).

For they play a prominent role in subsequent chapters, we establish some further properties
of Möbius transformations that shall be needed. In order to so, for any group 𝐺 ∈ Homeo (𝕊2) we
introduce the following notations for stabilizers:

[1.7] 𝐺1 ≝ Stab𝐺{∞} , 𝐺2 ≝ Stab𝐺{𝟎,∞} and 𝐺3 ≝ Stab𝐺{𝟎, 𝟏,∞} .

1.19Lemma. Given finite andnonzero points 𝑧, 𝑤, we let𝑀[𝑧,𝑤] ∈ Möb2(𝕊2) be theuniqueMöbius
transformation fixing the poles and mapping 𝑧 to 𝑤. Also, we denote �̂�[𝑧] ≝ 𝑀[𝑧, 𝟏]. Then,

1) The association (𝑥, 𝑦) ↦ 𝑀[𝑥, 𝑦] is continuous.
2) If𝒦 ⊂ 𝕊2 is a nonempty compact set bounded away from 𝟎 and �̂�[𝑥] ≝ 𝑀[𝑥, 𝟏], the sets

�̂�[𝑥](𝒦) converge to {∞} in the Hausdorff distance as 𝑥 → 𝟎.

Proof. For 𝑧 ∈ ℂ, one has𝑀[𝑥, 𝑦](𝑧) = 𝑦𝑧 ⁄ 𝑥.
Notice that𝑀[𝑥, 𝑦]−1 = 𝑀[𝑦, 𝑥], and also that the following relation to complex inversion holds:

[1.8] 𝑀[𝑥, 𝑦](𝑧) = (𝑀[𝑦, 𝑥](𝑧−1))−1 .

Let ((𝑥𝑛, 𝑦𝑛))𝑛∈ℕ be a sequence in ℂ∗ × ℂ∗ converging to (𝑥0, 𝑦0) ∈ ℂ∗ × ℂ∗, and let𝑀𝑛,𝑀0 be the
respective transformations. Since they all fix 𝟎 and∞, consider finite nonzero 𝑧 ∈ ℂ.
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On the one hand, if 0 < |𝑧| ≤ 1, then [1.4] yields:

̂𝑑(𝑀𝑛(𝑧),𝑀0(𝑧)) =
2 |𝑀𝑛(𝑧) − 𝑀0(𝑧)|

√1 + |𝑀𝑛(𝑧)|2√1 + |𝑀0(𝑧)|2

< 2 |𝑀𝑛(𝑧) − 𝑀0(𝑧)| = 2 |||
𝑦𝑛𝑧
𝑥𝑛

− 𝑦0𝑧
𝑥0

||| ≤ 2 |||
𝑦𝑛
𝑥𝑛

− 𝑦0
𝑥0
||| .

On the other hand, if 1 < |𝑧| < +∞, by [1.8] and because complex inversion is an isometry of
the Riemann sphere, the above calculation yields:

̂𝑑(𝑀𝑛(𝑧),𝑀0(𝑧)) = ̂𝑑([𝑀−1
𝑛 (𝑧−1)]−1, [𝑀−1

0 (𝑧−1)]−1) = ̂𝑑(𝑀−1
𝑛 (𝑧−1),𝑀−1

0 (𝑧−1)) < 2 |||
𝑥𝑛
𝑦𝑛

− 𝑥0
𝑦0
||| .

Putting together the possibilities, one obtains:

𝑑∞(𝑀𝑛,𝑀0) < 2max{ |||
𝑥𝑛
𝑦𝑛

− 𝑥0
𝑦0
||| ,
|||
𝑦𝑛
𝑥𝑛

− 𝑦0
𝑥0
|||} .

But the right-hand side of the above estimate tends to zero as 𝑛 → +∞, so𝑀𝑛 tends to𝑀0 in
Homeo (𝕊2), establishing the desired continuity.

Turning to the second claim, let 𝑑ℋ(𝐴, 𝐵) denote the Hausdorff distance between two
nonempty compact sets of 𝕊2. When 𝐵 = {∞} is a singleton, it reduces to 𝑑ℋ(𝐴, {∞}) =
max{𝑑(𝑎,∞) ∶ 𝑎 ∈ 𝐴}. Thus, given a compact set 𝒦 such that |𝑧| ≥ 𝜌 > 0 for every 𝑧 ∈ 𝒦
and some positive 𝜌, if one lets 𝐴 = �̂�[𝑥](𝒦), then each 𝑎 ∈ 𝐴 takes the form 𝑎 = 𝑧 ⁄ 𝑥, where
𝑧 ∈ 𝒦. Therefore,

[1.9] 𝑑(𝑎,∞) ≤ 2 ̂𝑑( 𝑧𝑥 ,∞) = 4
√1 + |𝑧/𝑥|2

≤ 4
|𝑧 ⁄ 𝑥| = 4 ||

𝑥
𝑧
|| ≤

4 |𝑥|
𝜌 .

Since 𝜌 depends only on𝒦 given, taking the limit as 𝑥 → 𝟎 on the rightmost side of [1.9] yields the
claimed convergence. ▨

Next,given a, b ∈ {𝟎, 𝟏,∞}, let 𝑇ab ∈ Möb𝕊2 be the uniqueMöbius transformation permuting
a and b and fixing the remaining special point. In symbols,

𝑇ab(a) = b , 𝑇ab(b) = a and 𝑇ab{𝟎, 𝟏,∞} = {𝟎, 𝟏,∞} .

Note that the possibility a = b, and consequently 𝑇ab = id𝕊2 , is not being excluded, and that
each suchmapping is idempotent, satisfying 𝑇−1ab = 𝑇ba = 𝑇ab. Albeit not explicitly used, a summary
of these transformations is given in Table 1.2.

Table 1.2 – A brief description of the mappings 𝑇ab for 𝑎, 𝑏 ∈ {𝟎, 𝟏,∞}.

Mapping In ℂ On the sphere

𝑇𝟎∞ = 𝑇∞𝟎 𝑧 ↦ 1
𝑧

Rotation of angle 𝜋 around the 𝑋-axis.

𝑇𝟎𝟏 = 𝑇𝟏𝟎 𝑧 ↦ 1 − 𝑧 Elliptic transformation with fixed points 𝜉− = ∞
and 𝜉+ = (0.8, 0, −0.6) of multiplier𝔪 = −1.

𝑇𝟏∞ = 𝑇∞𝟏 𝑧 ↦ 𝑧
𝑧 − 1

Elliptic transformation with fixed points 𝜉− =
(0.8, 0, 0.6) and 𝜉+ = 𝟎 of multiplier𝔪 = 1.
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In particular, one readily sees from their real coefficients that all of them preserve 𝛤 .
Lastly, given three finite, nonzero and distinct points 𝑎, 𝑏, 𝑐 on the plane, let �̂�[𝑎, 𝑏, 𝑐] be the

unique Möbius transformation mapping 𝑎 to 𝟎, 𝑏 to 𝟏 and 𝑐 to ∞. It is widely known that this
transformation is given by the cross-ratio

[1.10] �̂�[𝑎, 𝑏, 𝑐](𝑧) = (𝑧 − 𝑎)(𝑏 − 𝑐)
(𝑧 − 𝑐)(𝑏 − 𝑎) .

The association (𝑎, 𝑏, 𝑐) ↦ �̂�[𝑎, 𝑏, 𝑐] is continuous for finite, nonzero and mutually distinct
points. This may be seen either from its matrix form or from the rather clutered yet clearly
continuous expression

[1.11] �̂�[𝑎, 𝑏, 𝑐] =
𝑇𝟏∞ ∘ �̂�[𝑇𝟏∞ ∘ �̂�[𝑇𝟎𝟏 ∘ �̂�[𝑎](𝑏)] ∘ 𝑇𝟎𝟏 ∘ �̂�[𝑎](𝑐)] ∘ 𝑇𝟏∞ ∘ �̂�[𝑇𝟎𝟏 ∘ �̂�[𝑎](𝑏)] ∘ 𝑇𝟎𝟏 ∘ �̂�[𝑎] .

The structure of homogeneous groups

In this section we summarise some of the results announced by Kwakkel and Tal upon their
work on the kernel subgroup problem, in order to arrive at our driving problem. To do so, let us
first agree that a homogeneous group 𝐺 has the property P according to whether all of its elements
preserve Distance, Lebesgue measure, Great circles, Antipodal points or Circles. For example,
Rot(𝕊2) has all the properties, whilst Ant𝜆(𝕊2) has properties A and L, but none of the others.

Then, given two homogeneous groups 𝐻 ⊂ 𝐺, a proper extension edge of the form 𝐻 𝐺∗

connecting themmeans that, for every propertyP that𝐻 has but𝐺 has not, the extension ismaximal
with respect to P in the following sense: for every group 𝐾 not having property P and such that
𝐻 ⊂ 𝐾 ⊆ 𝐺, the uniform closure of both 𝐾 and 𝐺 coincide. For example, Theorem 1.16 by LeRoux
may be restated as Homeo+,𝜆(𝕊2) Homeo+(𝕊2)∗ . With that in mind, one has the following ((30),
Theorems A and C, Proposition 3.4).

1.20 The Kwakkel & Tal Classification Theorem. Let 𝐺 ⊂ Diff 1+(𝕊2) be a homogeneous
group. Then, the alternatives listed below are all mutually exclusive and exhaust the 𝑘-transitivity
possibilities for 1 ≤ 𝑘 ≤ 3.

1) If 𝐺 is 1-transitive, but not 𝑘-transitive for any other 𝑘, then 𝐺 ⊂ Ant(𝕊2).
Furthermore,

1.i if it acts 1-transitively but not 2-transitively on ℝℙ2, then 𝐺 = Rot(𝕊2).
1.ii If it acts 2-transitively on ℝℙ2, then

1.ii.a either 𝐺 = Lin(𝕊2), or
1.ii.b (𝐺2)0 is nontrivial.

2) If 𝐺 is 3-transitive, then
2.i either 𝐺 = Möb(𝕊2), or
2.ii (𝐺3)0 is nontrivial.
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Lastly, the following holds:

[1.12]

Möb(𝕊2)

Homeo𝜆,+(𝕊2)

Rot(𝕊2) Ant𝜆(𝕊2) Homeo+(𝕊2)

Ant(𝕊2)

Lin(𝕊2)

∗

∗

∗

∗

∗ ∗

Furthermore, the diagram contains all possible intersections between any two groups depicted on
it.

It is unknown whether diagram [1.12] exhausts all homogeneous subgroups of Diff 1+(𝕊2) (or
evenDiff∞+ (𝕊2), for thatmatter). Also,within it some extensions remainedunresolved, thus resulting
in the following.

Question [Kwakkel, Tal, Le Roux]. Are the extensions

Lin(𝕊2) Ant(𝕊2) , Lin(𝕊2) Homeo+(𝕊2) andMöb(𝕊2) Homeo+(𝕊2)

maximal in the sense previously described?

In this essay we provide insight — from the transitivity viewpoint — into the last of the above
extensions, as we shall now describe in general lines. Before doing so, we remark that Theorem B
could in principle be derived from Theorem A along with an abstract and slightly foggy result of
Kwakkel and Tal (namely, Theorem B in (30), along with its Corollary). However, we favour the
more explicit construction presented here, since in the end of the day both rely on Nielsen-Thurston
classification theory.

1.3 Outline

In Section 2.1, we state and derive TheoremC, which is a characterisation of theMöbius group
in terms of transitivity. First, a purely topological argument shows that, if 𝐺 is a sharply 3-transitive
and homogeneous group of homeomorphisms, then 𝐺2 must permute parallels. This fact, when
combined with differentiability, yields conformality – first at the poles, and then at every point.

In the sequence, we focus on groups properly extending Möb(𝕊2). Given one such subgroup
𝐺, we consider its subgroups 𝐺𝑘, 1 ≤ 𝑘 ≤ 3, as defined in [1.7]. Our final goal is to conclude that 𝐺3

is (one) transitive, following the steps summarised in Figure 1.9.
We begin with an Extension Lemma 2.10 at the end of Section 2.2, stating that 𝐺2 must

contain an isotopy between the identity and a map having a hyperbolic saddle point at the (fixed)
South Pole. This is achieved by starting with a nonconformal map and continuously parameterising
rotations andhomotheties in such away as to create eigendirections andmodulate the corresponding
eigenvalues.
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From this starting point, we fix the privileged reference meridian 𝛤 and promote two parallel
processes. On the one hand, in Chapter 3 we prove our main result, the Fundamental Lemma 3.10.
It states that any point outside of 𝛤 admits a full time ℐ𝐺3-isotopy having any given pair of points in
{𝟎, 𝟏,∞} as 𝛼 and 𝜔-limits.

On the other hand, in Section 4.1 we prove that there exists a finite time ℐ𝐺3-isotopy for
which some point on 𝛤 starts at one side of it and ends at the other side. In particular, any point
in 𝛤 ⧵ {𝟎, 𝟏,∞} can then be moved out of 𝛤 by ℐ𝐺3-isotopies

In Sections 4.2 and 4.3 at the end of Chapter 4, we show our main theorems. Theorem A
is derived upon combining isotopies of the types previously described and concluding that all but
three points of the sphere are actually arc connected in the sense of Definition 1.5, yielding the
arc transitivity of 𝐺3. Theorem B is also derived by convenient combinations of segments of such
isotopies, but to produce a “topological figure 8”, a device that implies positive entropy due to the
Nielsen-Thurston classification theory.
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Figure 1.9 – Outline of the key steps towards theorems A and B, along with their interdependencies.

Input: A proper
group extension

Möb(𝕊2) ⊊ 𝐺 ⊆ Diff 1+(𝕊2).

Lemma 2.9: Extract
̂𝑔 ∈ Stab𝐺{𝟎,∞}

having a saddle at 𝟎.

The Extension Lemma
2.10: Construct an isotopy
(𝑔𝑡)𝑡∈[0,1] in Stab𝐺{𝟎,∞}

from the identity to a saddle.

The Fundamental Lemma
3.10: Construct a family
of isotopies {(𝐼𝑧𝑡 )𝑡≥0}𝑧∉𝛤 in
Stab𝐺{𝟎, 𝟏,∞} for which
𝑧 has ∞ as 𝜔-limit.

The 4-Point Lemma
4.3: Construct an isotopy
(𝑘𝑡)𝑡∈[0,1] in Stab𝐺{𝟎, 𝟏,∞}
starting at the identity and
such that |𝛤 ∩ 𝑘1(𝛤)| = 4.

Corollary 3.11: Extract a
family of full time isotopies

{(𝐼𝑧ab(𝑡, ⋅))𝑡∈ℝ}𝑧∉𝛤
for which 𝑧 has the two
points a, b ∈ {𝟏, 𝟎,∞}
as 𝛼 and 𝜔-limits.

The Crossing Lemma 4.6:
Obtain a point 𝑤 on the
hemisphere to the left of 𝛤
and an isotopy (𝐽𝑡)𝑡∈[0,1] in
Stab𝐺{𝟎, 𝟏,∞} such that 𝐽𝜀(𝑤)
lies on the hemisphere to the
right of 𝛤 for some 𝜀 > 0.

Theorem A: The
group 𝐺 is 4-transitive

(actually, arc 4-transitive).

Theorem B: The identity
component 𝐺0 of 𝐺

contains a map of positive
topological entropy

Hypothesis

Continuous deformations
by loxodromic transformations

Uniform cone distortion
arguments and properties of
Möbius transformations

Symmetry arguments

Stability of transversal
intersections

Elementary continuity
and connectedness arguments

Concatenations
at the levels of maps
and of space

Connect any two given points
by arcs of trajectories of
isotopies in Stab𝐺{𝟎, 𝟏,∞}.

The Nielsen-Thurston
Classification Theorem

Section 2.2 of Chapter 2 | Chapter 3 | Section 4.1 of Chapter 4 |

Section 4.2 of Chapter 4 | Section 4.3 of Chapter 4 & Appendix B
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Chapter 2

Möbius and its extensions

2.1 A characterization of the conformal group

This section is devoted to understand how sharp 3-transitivity is a defining property of the
Möbius group among homogeneous groups of diffeomorphisms. More precisely, we shall establish
the following.

Theorem C. Let 𝐺 ⊂ Diff 1+(𝕊2) be a homogeneous group. If 𝐺 is sharply 3-transitive, then 𝐺 =
Möb(𝕊2).

We reinforce that this is not a new result, and could be deduced from Section 3.4 in (30).
However, for completeness — and given that the cited work has not been published — we also
present herein a new simple, and in our opinion rather enjoyable, proof of this fact. Before
proceeding to the actual argument, we quickly recall some elementary equivalences of conformality
from linear algebra.

2.1 Lemma. Let 𝐴 be a 2 × 2 real matrix of positive determinant. The following are equivalent:
(i) 𝐴 is conformal.
(ii) 𝐴 = 𝜆𝑅, where 𝑅 is a rotation matrix and 𝜆 > 0.
(iii) 𝐴(𝕊1) is a circle.

Proof. This result relies on the fact that the invertible matrix 𝐴 has a polar decomposition 𝐴 = 𝑈𝑃,
where

• 𝑈 is orthogonal and
• 𝑃 is positive – meaning it admits an orthonormal frame of eigenvectors, all of which are
associated to positive eigenvalues.

In particular, if {𝑢, 𝑣} is an orthonormal frame such that 𝑃𝑢 = 𝜆𝑢 and 𝑃𝑢 = 𝜇𝑣, with 𝜆, 𝜇 > 0, then
the vectors 𝑢 + 𝑣 and 𝑢 − 𝑣 are also mutually orthogonal, as well as 𝑈(𝑢) and 𝑈(𝑣). If we further
assume (i), 𝐴(𝑢 + 𝑣) and 𝐴(𝑢 − 𝑣)must also be mutually orthogonal, yielding

0 = ⟨𝐴(𝑢 + 𝑣), 𝐴(𝑢 − 𝑣)⟩ = 𝜆2 − 𝜇2 = (𝜆 − 𝜇)(𝜆 + 𝜇) .

This implies 𝜇 = 𝜆 > 0 and 𝑃 = 𝜆 id. Since det𝐴 > 0, 𝑈 is an orthogonal matrix of positive
determinant, meaning it is a rotation. This proves that (i) implies (ii).

27
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Ifwe nowassume (ii), since𝕊1 is invariant under rotations,𝐴(𝕊1) is a circle of radius 𝜆, proving
that it implies (iii). Since (ii) straightforwardly implies (i), all that is left to verify is that (iii) implies
(ii).

But, if 𝜆 > 0 is such that 𝐴(𝕊1) = {𝑤 ∶ |𝑤 − 𝑤0| = 𝜆}, it must be the case that 𝑤0 = 0. Indeed,
since 𝑧 ∈ 𝕊1 if, and only if, −𝑧 ∈ 𝕊1, |𝐴𝑧 − 𝑤0|2 = |𝐴𝑧 + 𝑤0|2 must hold for every 𝑧 ∈ 𝕊1, which,
in turn, implies ⟨𝐴𝑧, 𝑤0⟩ = 0 for every 𝑧 ∈ 𝕊1 and, consequently, 𝑤0 = 0. Thus, for every 𝑧 ∈ 𝕊1,
|𝐴𝑧| = 𝜆. In particular, 𝐴/𝜆 is an orientation preserving planar isometry fixing the origin. In other
words, a rotation. This establishes (ii). ▨

It will be important – in this and all the constructions that follow – to consider rotations of a
special kind: for 𝜃 ∈ (−𝜋, 𝜋), let 𝑅𝜃 ∈ Rot2(𝕊2) denote the rotation of angle 𝜃 around the 𝑍 axis.
Its expression in coordinates, relative to the chart given by stereographic projection from the North
Pole, coincides with the planar rotation of the same angle:

[2.1] 𝛹𝘕 ∘ 𝑅𝜃 ∘ 𝛹−1
𝘕 (𝑧) = 𝘦𝒾𝜃𝑧 .

For this reason, both 𝑅𝜃 and its planar counterpart are denoted equally and referred to without
distinction. Also, any given planar rotation may be though of as a mapping in Rot2(𝕊2), induced by
the relation [2.1], as illustrated in Figure 2.1.

Figure 2.1 – Rotations around the 𝑍 axis are naturally identified with their planar counterparts, as well as
D𝑅𝜃(𝟎).
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Even more, if the (round) sphere 𝕊2 is considered as an embedded submanifold of ℝ3, its
tangent plane 𝑇𝟎𝕊2 at the South Pole is horizontal and generated by the ambient space tangent
vectors {𝜕/𝜕𝑋 |(0,0,−1) , 𝜕/𝜕𝑌 |(0,0,−1)}, being naturally identified with the subspace ℝ2 × {0} ≃ ℝ2. In
stereographic coordinates, it is isomorphic to ℝ2 via D𝛹𝘕(𝟎), under which

[2.2] D𝛹𝘕(𝟎)(𝜕/𝜕𝑋 |(0,0,−1)) =
1
2
𝜕/𝜕𝑥 and D𝛹𝘕(𝟎)(𝜕/𝜕𝑌 |(0,0,−1)) =

1
2
𝜕/𝜕𝑦 .

The differentials of a diffemorphism 𝑓 fixing 𝟎 thus act identically – up to a mere homothety – both
on the plane and on 𝑇𝟎𝕊2. In particular, D𝑅𝜃(𝟎) acts as a rotation of the same angle 𝜃, so we may
write, in a slight abuse of notation, D𝑅𝜃(𝟎) = 𝑅𝜃.

2.2 Lemma. The mapping 𝑡 ∈ (−𝜋, 𝜋) ↦ 𝑅𝑡 is continuous with respect to the 𝐶1 topology of
Diff 1+(𝕊2).
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Proof. Wewill verify first that𝑅𝑡 → id as 𝑡 → 0. To do so, notice that any compact subset𝐾 ⊂ 𝕊2may
be decomposed into two compact pieces, one of which is contained within 𝕊2 ⧵ {∞} and the other
of which is contained within 𝕊2 ⧵ {𝟎}. Since 𝑅𝑡 fixes the poles, we may thus prove convergence over
compacts in each of the charts (𝕊2 ⧵ {∞}, 𝛹𝘕) and (𝕊2 ⧵ {𝟎}, 𝛹𝘚) separately. By [2.1], these further
reduce to verify ordinary 𝐶1 convergence over compact sets of the plane.

But this is simple, since 𝘦𝒾𝑡 → 1 as 𝑡 → 0 and, also, the rotation matrix of 𝑅𝑡 converges to the
identity as 𝑡 → 0. Lastly, upon noticing that 𝑅𝜃+𝑡 = 𝑅𝑡 ∘ 𝑅𝜃 and recalling that composition with a
fixed element is continuous in Diff 1+(𝕊2), it is seen that 𝑅𝜃+𝑡 → 𝑅𝜃 as 𝑡 → 0, which amounts to the
desired continuity at an arbitrary 𝜃 ∈ (−𝜋, 𝜋). ▨

Now, the first step towards proving Theorem C is to show that the subgroup 𝐺2 fixing the
poles possesses a property known, a priori, to hold for the actual Möb2(𝕊2): it permutes parallels.
This argument does not depend on differentiability, being actually purely topological, andwill follow
from the two remarks ahead.

To set the context up, we recall that a Jordan curve 𝜆 is a simple and closed path. The Jordan
Curve Theorem states that, given one such path on the plane, it divides the space into two disjoint,
open and connected components, its interior int 𝜆 and its exterior ext 𝜆, both of which share (the
image of) 𝜆 as their common boundary. Also, the first of them is bounded, whilst the second is
unbounded.

2.3 Remark. Let 𝜆 be a planar Jordan curve which is not a circle. Then, it cannot properly contain a
circle either.

Proof. Let 𝛾 be a circle such that 𝛾 ⊂ 𝜆, properly. Then, 𝜆𝘤 ⊂ 𝛾𝘤, properly. More precisely,

𝜆𝘤 = int 𝜆 ⊔ ext 𝜆 ⊂ int 𝛾 ⊔ ext 𝛾 = 𝛾𝘤 ,

implying ext 𝜆 ⊂ ext 𝛾, for an unbounded connected component cannot be fully contained within a
bounded one.

Now, if 𝛾 is centred at 𝑝0, by compacity we may fix 𝑝𝑚 and 𝑝𝑀 in 𝜆 such that |𝑝𝑚| =
min𝑝∈𝜆|𝑝 − 𝑝0| and |𝑝𝑀| = max𝑝∈𝜆|𝑝 − 𝑝0|. Thus, at least one among 𝑝𝑚 or 𝑝𝑀 does not belong to
𝛾, or 𝜆 itself would be a circle.

Suppose that 𝑝𝑚 ∉ 𝛾. Then, |𝑝𝑚 − 𝑝0| < |𝑝 − 𝑝0|, for every 𝑝 ∈ 𝛾. In particular, 𝑝𝑚 ∈ int 𝛾.
But then, int 𝛾 would be an open set containing the boundary point 𝑝𝑚 ∈ 𝜆, yielding a forbidden
intersection between int 𝛾 and ext 𝜆. The case 𝑝𝑀 ∉ 𝛾 is handled similarly. ▨

2.4 Remark. Let 𝜆 be a planar Jordan curve which is not a circle and such that 𝟎 ∈ int 𝜆. Then, there
exists a rotation 𝑅 such that 𝑅(𝜆) ∩ 𝜆 ≠ ∅, but 𝑅(𝜆) ≠ 𝜆.

Proof. Let 𝑝𝑚 and 𝑝𝑀 in 𝜆 be such that |𝑝𝑚| = min𝑝∈𝜆|𝑝| and |𝑝𝑀| = max𝑝∈𝜆|𝑝|. We notice that the
hypothesesmade upon 𝜆 imply 0 < |𝑝𝑚| < |𝑝𝑀|. For each angle 0 ≤ 𝜃 < 2𝜋, consider the semiradius
⃑𝑟𝜃 ≝ {𝑡𝘦𝒾𝜃 ∶ 𝑡 ≥ 0}. Then, each ⃑𝑟𝜃 intercepts 𝜆 in a compact set 𝜆𝜃, bounded away from the origin,
in such a way that 𝜆 = ⨆

0≤𝜃<2𝜋
𝜆𝜃, as conveyed in Figure 2.2.

It is claimed that, for some 𝜃0, it must be the case that |𝑝| < |𝑝𝑀| for every 𝑝 ∈ 𝜆𝜃0 . Indeed,
negating this would imply 𝜆 (properly) containing a circle of radius |𝑝𝑀|, contradicting Remark 2.3.
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Figure 2.2 – Each positive semiradius intercepts a Jordan curve leaving the origin in its interior on a compact
set, which is contained within a closed annulus.
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On the other hand, we may also fix 𝜃𝑀 such that 𝑝𝑀 ∈ 𝜃𝑀 . Let 𝑅 be a planar rotation applying ⃑𝑟𝜃𝑀
onto ⃑𝑟𝜃0 . Then,𝑅(𝑝𝑀) ∈ ⃑𝑟𝜃𝑀 is a point in𝑅(𝜆) that cannot belong to 𝜆, for thatwould imply a point of
norm |𝑝𝑀| in 𝜆𝜃0 . Thus,𝑅(𝜆) ≠ 𝜆. More than that, we can actually say that𝑅(𝑝𝑀) ∈ 𝑅(𝜆)∩ext 𝜆 ≠ ∅.
Now, since 𝟎 ∈ int 𝜆, we see that 𝔻|𝑝𝑚|(𝟎) ⊂ int 𝜆. Equivalently,

ext 𝜆 = (int 𝜆)
𝘤
⊂ {𝑧 ∶ |𝑧| > |𝑝𝑚|} .

It thus cannot be the case that 𝑅(𝜆) is fully contained within ext 𝜆, for it contains a point 𝑅(𝑝𝑚) of
norm |𝑝𝑚|, so 𝑅(𝜆) ∩ int 𝜆 ≠ ∅ as well. These yield an intersection 𝑅(𝜆) ∩ 𝜆 ≠ ∅. ▨

2.5 Proposition. Let 𝐺 ⊂ Homeo (𝕊2) be a sharply 3-transitive and homogeneous group. Then, 𝐺2

permutes parallels.

Proof. Recalling that 𝐺2 is the subgroup of 𝐺 fixing 𝟎 and ∞, 𝑔 ∈ 𝐺2 translates to an orientation
preserving planar homeomorphism that fixes the origin, for which it must be proven that circles
centred at the origin are mapped onto circles centred at the origin.

Let 𝛾 be such a circle and suppose, for the sake of contradiction, that the conclusion of the
proposition does not hold. Then, 𝜆 ≝ 𝑔(𝛾) is a Jordan curve which is not a circle, having 𝟎 in its
interior. Remark 2.4 yields a rotation such that 𝑅(𝜆) ∩ 𝜆 ≠ ∅ but 𝑅(𝜆) ≠ 𝜆. Since 𝐺 is homogeneous,
𝑅 ∈ 𝐺2.

The fact that 𝑅(𝜆)∩𝜆 ≠ ∅ implies the existence of points 𝑝, 𝑞 in 𝛾 such that 𝑅(𝑔(𝑝)) = 𝑔(𝑞) or,
in other words, (𝑔−1 ∘ 𝑅 ∘ 𝑔)(𝑝) = 𝑞. Since 𝑝,𝑞 lie at the same circle 𝛾, there exists a planar rotation
𝑈 such that 𝑝 = 𝑈(𝑞). But then, 𝑔−1 ∘ 𝑅 ∘ 𝑔 ∘ 𝑈 defines an element of 𝐺2 fixing 𝑞. Since 𝑞 ∉ {𝟎,∞},
this map fixes three distinct points of the sphere. By the sharp 3-transitivity of 𝐺, this amounts to
𝑔−1 ∘ 𝑅 ∘ 𝑔 ∘ 𝑈 = id.

In particular, (𝑔−1 ∘ 𝑅 ∘ 𝑔 ∘ 𝑈)(𝛾) = 𝛾. Since the planar rotation 𝑈 leaves 𝛾 invariant, this
implies 𝑅(𝑔(𝛾)) = 𝑔(𝛾), leading to 𝑅(𝜆) = 𝜆, a contradiction. Therefore, the proposed statement
must hold. ▨

When differentiability is added to the previous proposition, conformality at the poles follows,
for the differentials there will have to preserve circles as well.
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2.6 Corollary. Let 𝐺 ⊂ Homeo (𝕊2) be a sharply 3-transitive and homogeneous group of
diffeomorphisms. Then, every 𝑔 ∈ 𝐺2 is conformal at the poles.

Proof. Given 𝑔 ∈ 𝐺2, it is known from the previous proposition that it maps parallels onto parallels.
Consider first the chart (𝕊2 ⧵ {∞}, 𝛹𝘕). In these coordinates, 𝑔 may be thought of as a planar
diffeomorphism fixing 𝟎 and permuting circles centred at the origin. Given the linear isomorphism
𝐴 = D𝑔(𝟎), there exist points 𝑧𝑚 and 𝑧𝑀 in 𝕊1 such that

0 < |𝐴𝑧𝑚| = min
𝑧∈𝕊1

|𝐴𝑧| ≤ max
𝑧∈𝕊1

|𝐴𝑧| = |𝐴𝑧𝑀| .

Since 𝑔maps circles into circles, we must have |𝑔(𝑡𝑧𝑚)| ∕ |𝑔(𝑡𝑧𝑀)| = 1, for every 0 < 𝑡 ≤ 1. But
we may write 𝑔(𝑧) = 𝐴𝑧 + 𝑟(𝑧), where the remainder term satisfies 𝑟 ∈ 𝑜(|𝑧|), obtaining:

1 = |𝑔(𝑡𝑧𝑚)|
|𝑔(𝑡𝑧𝑀)|

= |𝐴(𝑡𝑧𝑚) + 𝑟(𝑡𝑧𝑚)|
|𝐴(𝑡𝑧𝑀) + 𝑟(𝑡𝑧𝑀)|

=
|||𝐴𝑧𝑚 + 𝑟(𝑡𝑧𝑚)

𝑡
|||

|||𝐴𝑧𝑀 + 𝑟(𝑡𝑧𝑀)
𝑡

|||
.

Taking the limit as 𝑡 → 0+ in the above expression yields |𝐴𝑧𝑚| ∕ |𝐴𝑧𝑀| = 1, which amounts to
say that 𝐴(𝕊1) is a circle. From Lemma 2.1, conformality of 𝐴 follows. If we consider in 𝕊2 ⧵ {𝟎}
the chart given by stereographic projection from the South Pole, an analogous reasoning applies to
D𝑔(∞), finishing the proof. ▨

To conclude, an auxiliary remark concerning 2-transitivity is needed. It might be seen, at first
glance, as an underuse of the 3-transitivity hypothesis. However, Proposition 3.4 in (30) states that,
if 𝐺 is 2-transitive and homogeneous, then it is also 3-transitive, so we are not actually wasting any
information.

2.7 Remark. Let 𝐺 ⊂ Diff 1+(𝕊2) be a 2-transitive and homogeneous group. Then, given 0 < 𝛿 < 𝜋,
there exists ℎ𝛿 ∈ 𝐺 such that

• ℎ𝛿 fixes 𝟎, but not∞;
• ℎ𝛿 and Dℎ𝛿(𝟎) are both 𝛿-close to the identity.

Proof. By 2-transitivity, we may fix ℎ ∈ 𝐺 such that ℎ(𝟎) = 𝟎 and ℎ(∞) = 𝟏. Then, for each 𝑡, we
consider 𝑅𝑡 ∈ Rot2(𝕊2) and define ℎ𝑡 = ℎ−1 ∘ 𝑅𝑡 ∘ ℎ. Each ℎ𝑡 fixes 𝟎 but, as long as 0 < |𝑡| < 𝜋,
ℎ𝑡(∞) ≠ ∞. Indeed, if that was not the case, we would have 𝑅𝑡(𝟏) = 𝟏, a contradiction, since 𝑅𝑡(𝟏)
is some other point on the equator, distinct from 𝟏.

ByLemma2.2, the association 𝑡 ↦ ℎ𝑡 is continuouswith respect to the compact-open topology.
Since ℎ0 = id𝕊2 , given 𝛿 > 0 we may obtain 0 < ̂𝑡 < 𝛿 sufficiently small so that

ℎ ̂𝑡 ∈ ℬ(id𝕊2 ; (𝕊2 ⧵ {∞}, 𝛹𝘕) , 𝕊2 ⧵ 𝔻𝛿(∞) , (𝕊2 ⧵ {∞}, 𝛹𝘕) ; 𝛿) .

In particular, since 𝟎 ∉ 𝔻𝛿(∞), the proposed conclusions hold for ℎ𝛿 ≝ ℎ ̂𝑡. ▨

It should be noticed that the mapping ℎ𝛿 just obtained can be actually made (uniformly) 𝐶1

𝛿-close to the identity with respect to any given cover of𝕊2 by charts, although that would be slightly
convoluted to express in terms of basic neighbourhoods.



32

The proof of Theorem C

Let 𝐺 homogeneous and sharply 3-transitive be given. If 𝐺 is not contained in Möb(𝕊2), there
exist at least one ̃𝑔 ∈ 𝐺 and a point ̃𝑧 ∈ 𝕊2 such that D ̃𝑔( ̃𝑧) is nonconformal. Let 𝑈, 𝑅 ∈ Rot(𝕊2) be
such that 𝑈(𝟎) = ̃𝑧 and 𝑅( ̃𝑔( ̃𝑧)) = 𝟎. Then, 𝑔 ≝ 𝑅 ∘ ̃𝑔 ∘ 𝑈 ∈ 𝐺 is such that 𝑔 fixes 𝟎, but D𝑔(𝟎) is
nonconformal.

Let 𝐴 ≝ D𝑔(𝟎). Nonconformality implies the existence of unit vectors 𝑢0, 𝑣0 such that,

if 𝛼 = ⟨𝑢0, 𝑣0⟩ and 𝛽 = ⟨ 𝐴𝑢0|𝐴𝑢0|
, 𝐴𝑣0|𝐴𝑣0|

⟩ , then 𝛽 ≠ 𝛼 .

If we now consider the uniformly continuous function (𝑢, 𝑣) ∈ 𝕊1 × 𝕊1 ↦ ⟨𝑢, 𝑣⟩, given
𝜀 = |𝛽 − 𝛼|/2 > 0 we may obtain 𝛿 > 0 such that

[2.3] |𝑢 − 𝑤| ≤ 𝛿 and |𝑣 − 𝑧| ≤ 𝛿 imply |⟨𝑢, 𝑣⟩ − ⟨𝑤, 𝑧⟩| < 𝜀 .

With respect to 𝛿 as above, Remark 2.7 yields ℎ𝛿 ∈ 𝐺 such that ℎ𝛿(𝟎) = 𝟎, ℎ𝛿(∞) ≝ 𝑝𝛿 ≠ ∞
and both ℎ𝛿 and its differential 𝐶𝛿 ≝ Dℎ𝛿(𝟎) are 𝛿/2-close to the identity. Since 𝐺 is 3-transitive, we
may fix 𝑓𝛿 ∈ 𝐺2 such that 𝑓𝛿 (𝑔(∞)) = 𝑝𝛿. By Corollary 2.6, 𝐵 ≝ D𝑓𝛿(𝟎)must be conformal. If we
lastly define ̂𝑔 ≝ ℎ𝛿 ∘ 𝑓𝛿 ∘ 𝑔 ∈ 𝐺, then ̂𝑔 also fixes the poles and thus 𝐷 ≝ D ̂𝑔(𝟎)must be conformal.
By the Chain Rule,

D ̂𝑔(𝟎) = Dℎ𝛿( 𝑓𝛿(𝑔(𝟎)) ) ∘ D𝑓𝛿(𝑔(𝟎)) ∘ D𝑔(𝟎) = Dℎ𝛿(𝟎) ∘ D𝑓𝛿(𝟎) ∘ D𝑔(𝟎)

or, in other words, 𝐷 = 𝐶𝛿𝐵𝐴. Since 𝐶𝛿 is 𝛿/2-close to the identity, for every 𝑤0 ∈ 𝕊2:

|||
𝐶𝛿𝑤0
|𝐶𝛿𝑤0|

− 𝑤0
||| =

|||𝐶𝛿𝑤0 − 𝑤0 +
1 − |𝐶𝛿𝑤0|
|𝐶𝛿𝑤0|

𝐶𝛿𝑤0
|||

≤ |𝐶𝛿𝑤0 − 𝑤0| + ||1 − |𝐶𝛿𝑤0|||
= |𝐶𝛿𝑤0 − 𝑤0| + |||𝑤0| − |𝐶𝛿𝑤0|||
≤ 2|𝐶𝛿𝑤0 − 𝑤0|
≤ 2‖𝐶𝛿 − id‖ ≤ 𝛿 .

In particular, for 𝑤0 = 𝐵𝐴𝑢0/|𝐵𝐴𝑢0|:

|||
𝐶𝛿(𝐵𝐴𝑢0)
|𝐶𝛿(𝐵𝐴𝑢0)|

− 𝐵𝐴𝑢0
|𝐵𝐴𝑢0|

||| =
|
|
|
|

𝐶𝛿(𝐵𝐴𝑢0 ∕ |𝐵𝐴𝑢0|)
||𝐶𝛿(𝐵𝐴𝑢0 ∕ |𝐵𝐴𝑢0|)||

− 𝐵𝐴𝑢0
|𝐵𝐴𝑢0|

|
|
|
|
≤ 𝛿 .

Analogously, we obtain
|||
𝐶𝛿(𝐵𝐴𝑣0)
|𝐶𝛿(𝐵𝐴𝑣0)|

− 𝐵𝐴𝑣0
|𝐵𝐴𝑣0|

||| ≤ 𝛿 .

From [2.3], the pair of inequalities above imply

[2.4] ||| ⟨
𝐶𝛿(𝐵𝐴𝑢0)
|𝐶𝛿(𝐵𝐴𝑢0)|

, 𝐶𝛿(𝐵𝐴𝑣0)
|𝐶𝛿(𝐵𝐴𝑣0)|

⟩ − ⟨ 𝐵𝐴𝑢0|𝐵𝐴𝑢0|
, 𝐵𝐴𝑣0|𝐵𝐴𝑣0|

⟩ ||| < 𝜀 .



33

But now, since 𝐵 is conformal,

⟨ 𝐵𝐴𝑢0|𝐵𝐴𝑢0|
, 𝐵𝐴𝑣0|𝐵𝐴𝑣0|

⟩ = ⟨ 𝐴𝑢0|𝐴𝑢0|
, 𝐴𝑣0|𝐴𝑣0|

⟩ = 𝛽 .

Thus, recognising 𝐷 = 𝐶𝛿𝐴𝐵 in [2.4], it yields

|||⟨
𝐷𝑢0
|𝐷𝑢0|

, 𝐷𝑣0|𝐷𝑣0|
⟩ − 𝛽||| < 𝜀 .

From the choice of 𝜀, ⟨𝐷𝑢0 ∕ |𝐷𝑢0|, 𝐷𝑣0 ∕ |𝐷𝑣0|⟩ ≠ 𝛼 follows. But this, in turn, implies 𝐷
nonconformal, a contradiction.

We conclude that a nonconformal ̃𝑔 ∈ 𝐺 could not exist in the first place, and therefore
𝐺 ⊂ Möb(𝕊2). But now, given 𝑀 ∈ Möb(𝕊2), by 3-transitivity there exists ℎ ∈ 𝐺 such that
ℎ(𝟎) = 𝑀(𝟎), ℎ(𝟏) = 𝑀(𝟏) and ℎ(∞) = 𝑀(∞). Since ℎ is aMöbius transformation agreeing with𝑀
in three points, it must be the transformation𝑀. Since𝑀 was arbitrary, 𝐺 = Möb(𝕊2). This finishes
the proof of Theorem C. ▨

2.2 An extension lemma

We shall now address the question of what kinds of transformations are expected to be found
in proper extensions of the Möbius group. More precisely, we shall prove that any such extension
must contain a transformation having an hyperbolic fixed point. For completeness, we include the
relevant definition.

2.8 Definition. Letℳ be a Riemannian manifold and consider 𝑓 ∈ Diff (ℳ). A fixed point 𝑥0 of
𝑓 is said to be hyperbolic if the tangent space 𝑇𝑥0ℳ admits a splitting into two subspaces, both of
which are invariant under the self-map D𝑓(𝑥0), say 𝑇𝑥0ℳ = 𝘌𝚜𝑥0 ⊕ 𝘌𝚞𝑥0 , and such that D𝑓(𝑥0)↾𝘌𝚜𝑥0
and D(𝑓−1)(𝑥0)↾𝘌𝚞𝑥0 are contraction maps.

Above, we did not exclude the possibility that one of the subspaces is trivial. In our simple
two-dimensional setting, we shall append the adjective saddle to the prototypical case in which the
differential has one contracting eigendirection and one expanding eigendirection.

As in Section 2.1, we start with some elementary linear algebra preliminaries, followed by the
description of yet another convenient identification between spherical and planar mappings. Then,
we proceed to the actual development of the Lemma.

We start by considering a real 2 × 2 defective matrix 𝐴, meaning it has one single eigenvalue
𝜆 ≠ 0 of geometrical multiplicity one and geometrical multiplicity two. It is widely known that it
admits a chain {𝑢, 𝑤} of generalised eigenvectors, satisfying 𝐴𝑢 = 𝜆𝑢 and 𝐴𝑤 = 𝑢 + 𝜆𝑤. It may be
assumed that |𝑢| = 1. Let 𝑤⟂ = 𝑤 − ⟨𝑢,𝑤⟩ 𝑢. Then, ⟨𝑤⟂, 𝑢⟩ = 0 and:

𝐴𝑤⟂ = 𝐴(𝑤 − ⟨𝑢,𝑤⟩ 𝑢) = (𝑢 + 𝜆𝑤) − ⟨𝑢,𝑤⟩(𝜆𝑢)
= 𝑢 + 𝜆(𝑤 − ⟨𝑢,𝑤⟩ 𝑢) = 𝑢 + 𝜆𝑤⟂ .

This means that, upon swapping 𝑤 by 𝑤⟂, a chain of generalised eigenvectors may always be
supposed orthogonal (although not orthonormal).
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Next, for a given 𝜌 > 0, let 𝐻𝜌 denote the planar homothety 𝐻𝜌(𝑧) = 𝜌𝑧 and, also, the
hyperbolic mapping in Möb2(𝕊2) induced accordingly. Upon considering [2.2], we write D𝐻𝜌(𝟎) =
𝜌 id, whether in ℝ2 or in 𝑇𝟎𝕊2.

Lastly, let 𝐺 ⊂ Diff 1+(𝕊2) be a group properly extending Möb(𝕊2). This means that there exist
at least one transformation ℎ̃ ∈ 𝐺 and a point ̃𝑧 ∈ 𝕊2 for which Dℎ̃( ̃𝑧) ∶ 𝑇 ̃𝑧𝕊2 → 𝑇 ̃ℎ( ̃𝑧)𝕊2 is
nonconformal.

Let 𝑀1 ∈ Möb(𝕊2) and 𝑀2 ∈ Möb(𝕊2) be such that 𝑀1(𝟎) = ̃𝑧, 𝑀1(∞) = ℎ̃
−1
(∞),

𝑀2(ℎ̃( ̃𝑧)) = 𝟎 and 𝑀2(∞) = ∞. Then, ℎ̂ ≝ 𝑀2 ∘ ℎ̃ ∘ 𝑀1 is a mapping in 𝐺2 such that Dℎ̂(𝟎) is
nonconformal. This will be the starting point of the constructions to follow.

2.9 Lemma. Let𝐺 ⊂ Diff 1+(𝕊2) be a proper extension ofMöb𝕊2. Then, there exists ̂𝑔 ∈ 𝐺2 for which
𝟎 is a hyperbolic saddle point. More precisely, D ̂𝑔(𝟎) = diag[𝜆, 𝜆−1] with respect to the canonical
basis, where 0 < 𝜆 < 1.

Proof. Let ℎ̂ ∈ 𝐺2 be such that 𝐴 ≝ Dℎ̂(𝟎) is nonconformal. Then, there exist a pair of unit vectors
𝑢 and 𝑣 such that 𝛼 ≝ ang(𝑢, 𝑣) ≠ ang(𝐴𝑢, 𝐴𝑣) ≝ 𝛽. Now, if ang(𝑢, 𝐴𝑢) = 𝜃 ∈ [0, 𝜋], it is uniquely
determined by the relation cos 𝜃 = ⟨𝑢, 𝐴𝑢⟩ ⁄ |𝐴𝑢|. Lagrange’s identity implies, in turn, the expression
sin 𝜃 = ||det[𝑢|𝐴𝑢]|| ⁄ |𝐴𝑢| for its sine. But writing 𝑢 = [ 𝑎𝑏 ] and 𝐴𝑢 = [ 𝑎′𝑏′ ] in coordinates, one has, for
a given angle 𝛼:

⟨𝑅𝛼(𝐴𝑢), 𝑢⟩
|𝑅𝛼(𝐴𝑢)|

= (𝑎′ cos𝛼 − 𝑏′ sin𝛼) 𝑎 + (𝑎′ sin𝛼 + 𝑏′ cos𝛼) 𝑏
|𝐴𝑢|

= 𝑎𝑎′ + 𝑏𝑏′
|𝐴𝑢| cos𝛼 − 𝑎𝑏′ − 𝑏𝑎′

|𝐴𝑢| sin𝛼

= cos 𝜃 cos𝛼 − det[𝑢|𝐴𝑢]
|𝐴𝑢| sin𝛼 .[2.5]

Thus, upon defining

𝑅 ≝ {
𝑅−𝜃 if det[𝑢|𝐴𝑢] > 0 ,
𝑅𝜃 if det[𝑢|𝐴𝑢] ≤ 0 ,

and 𝐵 ≝ 𝑅𝐴, the parity of the trigonometric functions along with [2.5] imply

⟨𝐵𝑢, 𝑢⟩
||𝐵𝑢||

=
⟨𝑅(𝐴𝑢), 𝑢⟩
||𝑅(𝐴𝑢)||

= 1 .

In other words, ang(𝐵𝑢, 𝑢) = 0, meaning that 𝐵𝑢 = 𝜇𝑢, where 𝜇 > 0. Thus, 𝐵 is a linear map having
at least one positive eigenvalue, associatedwith the unit eigenvector 𝑢, as pictured in Figure 2.3. This
leaves two possibilities for 𝐵.
i) 𝐵 has a defective matrix.

As discussed prior to the Lemma’s statement, we may fix an orthogonal chain of generalised
eigenvectors {𝑢, 𝑤} satisfying 𝐵𝑢 = 𝜇𝑢, 𝐵𝑤 = 𝑢+𝜇𝑤 and ⟨𝑢, 𝑤⟩ = 0. For each angle 𝜙 ∈ [0, 𝜋/2], we
define

𝑥𝜙 = cos𝜙 𝑢 + sin𝜙 𝑤
|𝑤| and 𝑦𝜙 = − sin𝜙 𝑢 + cos𝜙 𝑤

|𝑤| ,
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Figure 2.3 – Post-composing 𝐴 with a convenient rotation yields a positive eigendirection.
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This yields an orthonormal frame {𝑥𝜙, 𝑦𝜙} of 𝑇𝟎𝕊2, for which we consider the continuous
function 𝜉(𝜙) = ⟨𝐵𝑥𝜙, 𝐵 𝑦𝜙⟩ ∕ ||𝐵𝑥𝜙|| ||𝐵𝑦𝜙||. Then, on the one hand

𝜉(0) =
⟨𝐵𝑥0, 𝐵𝑦0⟩
|𝐵𝑥0| |𝐵𝑦0|

=
⟨𝐵𝑢, 𝐵 (𝑤 ⁄ |𝑤|)⟩
||𝐵𝑢|| ||𝐵 (𝑤 ⁄ |𝑤|)||

=
⟨𝐵𝑢, 𝐵𝑤⟩
|𝐵𝑢| |𝐵𝑤| =

⟨𝜇𝑢, 𝑢 + 𝜇𝑤⟩
𝜇 |𝑢 + 𝜇𝑤| = 1

|𝑢 + 𝜇𝑤|

and, on the other hand,

𝜉(𝜋2 ) =
⟨𝐵𝑥𝜋⁄2, 𝐵𝑦𝜋⁄2⟩
|𝐵𝑥𝜋⁄2| |𝐵𝑦𝜋⁄2|

=
⟨𝐵 (𝑤 ⁄ |𝑤|), 𝐵 (−𝑢)⟩
||𝐵 (𝑤 ⁄ |𝑤|)|| ||𝐵 (−𝑢)||

= −
⟨𝐵𝑤, 𝐵𝑢⟩
|𝐵𝑤| |𝐵𝑢| = − 1

|𝑢 + 𝜇𝑤| = −𝜉(0) .

Therefore, it must be the case that 𝜉( ̂𝜙) = 0 for some 0 < ̂𝜙 < 𝜋 ⁄ 2. This means that, if ̂𝑥 = 𝑥 ̂𝜙
and ̂𝑦 = 𝑥 ̂𝜙, then 𝐵 ̂𝑥 and 𝐵 ̂𝑦 are orthogonal, as pictured in Figure 2.4. In particular, the orthonormal
frame {𝐵 ̂𝑥 ⁄ |𝐵 ̂𝑥|, 𝐵 ̂𝑦 ⁄ |𝐵 ̂𝑦|} can be applied onto { ̂𝑥, ̂𝑦} by a certain planar rotation𝑈 , since 𝐵 preserves
orientation. Thus, 𝑈(𝐵 ̂𝑥) = 𝜈1 ̂𝑥 and 𝑈(𝐵 ̂𝑦) = 𝜈2 ̂𝑦, where 𝜈1, 𝜈2 > 0 (explicitely, 𝜈1 = |𝐵 ̂𝑥| and
𝜈2 = |𝐵 ̂𝑦|).

Figure 2.4 – The orthonormal frame { ̂𝑥, ̂𝑦} — obtained from {𝑢, 𝑤} by a rotation and normalization — is
applied by 𝐵 onto a pair of orthogonal vectors.
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It is claimed that 𝜈1 ≠ 𝜈2. Indeed, let us assume for the sake of contradiction that 𝜈1 = 𝜈2 = 𝜈.
Then, since { ̂𝑥, ̂𝑦} is a basis, this would imply 𝑈𝐵 = 𝜈 id. Recalling that 𝐵 = 𝑅𝐴, 𝐴 = 𝜈𝑅−1𝑈−1

would be conformal, contradicting the choice of ℎ̂.
Let 𝐶 ≝ 𝑈𝐵 and suppose, without loss of generality, that 0 < 𝜈1 < 𝜈2. If 𝜌 ≝ 1 ∕ √𝜈1𝜈2 and

𝜆 ≝ √𝜈1 ∕ 𝜈2, then 0 < 𝜆 < 1,

(𝜌𝐶) ̂𝑥 = 𝜌 (𝜈1 ̂𝑥) = 𝜈1
√𝜈1𝜈2

̂𝑥 = √
𝜈1
𝜈2

̂𝑥 = 𝜆 ̂𝑥 and (𝜌𝐶) ̂𝑦 = 𝜈2
√𝜈1𝜈2

̂𝑦 = √
𝜈2
𝜈1

̂𝑦 = 𝜆−1 ̂𝑦 .
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Now, let 𝑃 be a rotation such that 𝑃−1 ̂𝑥 = 𝜕/𝜕𝑥. Since { ̂𝑥, ̂𝑦} and {𝜕/𝜕𝑥, 𝜕/𝜕𝑦} are both orthonormal
frames, 𝑃−1 ̂𝑦 = 𝜀 𝜕/𝜕𝑦, where 𝜀 = ±1, depending on the relative orientation of both bases.

Lastly, consider ̂𝐴 ≝ 𝜌 𝑃−1𝐶𝑃. We have

̂𝐴(𝜕/𝜕𝑥) = 𝜌𝑃−1𝐶𝑃 (𝜕/𝜕𝑥) = 𝑃−1((𝜌𝐶) ̂𝑥) = 𝑃−1(𝜆 ̂𝑥) = 𝜆 𝜕/𝜕𝑥 and
̂𝐴(𝜕/𝜕𝑦) = 𝜌𝑃−1𝐶𝑃 (𝜕/𝜕𝑦) = 𝑃−1((𝜌𝐶)(𝜀 ̂𝑦)) = 𝜀 𝑃−1(𝜆−1 ̂𝑦) = 𝜀2𝜆−1 𝜕/𝜕𝑦 .

In short, with respect to the canonical basis, ̂𝐴 = diag[𝜆, 𝜆−1]. But if

̂𝑔 ≝ 𝐻𝜌 ∘ 𝑃−1 ∘ 𝑈 ∘ 𝑅 ∘ ℎ̂ ∘ 𝑃 ∈ 𝐺2 ,

the Chain Rule — along with the identifications made between rotations and homothethies with
their differentials at the poles — yields

D ̂𝑔(𝟎) = (𝜌 id) 𝑃−1𝑈 𝑅Dℎ̂(𝟎) 𝑃 = 𝜌(𝑃−1𝑈 (𝑅𝐴) 𝑃) = 𝜌(𝑃−1 (𝑈 𝐵) 𝑃) = 𝜌(𝑃−1 𝐶 𝑃) = ̂𝐴 .

This establishes the Lemma in this case.

ii) 𝐵 has a second eigenvalue 𝜈 ∈ ℝ.
We first notice that 𝜈 ≠ 𝜇. Indeed, if that was not the case, as previously argued 𝐵 = 𝜇 id would

hold, what is incompatible with 𝐴 nonconformal. Thus, we may fix a second unit eigenvector 𝑤
associated with 𝜈. In particular, {𝑣, 𝑤} is a linearly independent set, and the orthogonal complement
𝑤⟂ = 𝑤 − ⟨𝑤, 𝑢⟩ 𝑢 is nonzero. Therefore,

𝑥𝜙 = cos𝜙 𝑢 + sin𝜙 𝑤⟂

|𝑤⟂| and 𝑦𝜙 = − sin𝜙 𝑢 + cos𝜙 𝑤⟂

|𝑤⟂|

define, for each 𝜙 ∈ [0, 𝜋 ⁄2], an orthonormal frame {𝑥𝜙, 𝑦𝜙} of 𝑇𝟎𝕊2. As made in case i), we consider
the continuous function 𝜉(𝜙) = ⟨𝐵𝑥𝜙, 𝐵 𝑦𝜙⟩ ∕ ||𝐵𝑥𝜙|| ||𝐵𝑦𝜙||.

If we let 𝑐 = ⟨𝑤, 𝑢⟩ to ease notation, then 𝐵𝑥0 = 𝐵𝑢 = 𝜇𝑢,

𝐵(𝑦0) = 𝐵( 𝑤
⟂

|𝑤⟂|) =
1

|𝑤⟂|𝐵(𝑤 − 𝑐𝑢) = 1
|𝑤⟂| (𝜈𝑤 − 𝑐𝜇𝑢)

= 1
|𝑤⟂| (𝜈(𝑤

⟂ + 𝑐𝑢) − 𝑐𝜇𝑢) = 𝑐(𝜈 − 𝜇)
|𝑤⟂| 𝑢 + 𝜈 𝑤

⟂

|𝑤⟂|

and, consequently,

𝜉(0) =
⟨𝐵𝑥𝜙, 𝐵 𝑦𝜙⟩
|𝐵𝑥0| |𝐵𝑦0|

=
𝜇 𝑐 (𝜈 − 𝜇)

|𝑤⟂|

𝜇 √𝑐
2(𝜈 − 𝜇)2 + 𝜈2|𝑤⟂|2

|𝑤⟂|

= 𝑐 (𝜈 − 𝜇)
√𝑐2(𝜈 − 𝜇)2 + 𝜈2|𝑤⟂|2

.

Analogously, 𝑥𝜋⁄2 = 𝑤⟂ ⁄ |𝑤⟂|, 𝑦𝜋⁄2 = −𝑢. Thus, the calculations above yield

[2.6] 𝜉(𝜋2 ) = − 𝑐 (𝜈 − 𝜇)
√𝑐2(𝜈 − 𝜇)2 + 𝜈2|𝑤⟂|2

= −𝜉(0) .

We notice that, if 𝑐 = 0, {𝑢, 𝑤} was already an orthonormal frame from the start. If, on the other
hand, 𝑐 ≠ 0, [2.6] above implies the existence of some 0 < ̂𝜙 < 𝜋 ⁄ 2 such that 𝜉( ̂𝜙) = 0.
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Either way, we may fix ̂𝜙 ∈ [0, 𝜋 ⁄ 2) such that if ̂𝑥 = 𝑥 ̂𝜙 and ̂𝑦 = 𝑦 ̂𝜙, then ang(𝐵 ̂𝑥, 𝐵 ̂𝑦) = ang( ̂𝑥, ̂𝑦) =
𝜋 ∕ 2. In particular, since 𝐵 preserves orientation, the orthonormal frame {𝐵 ̂𝑥 ⁄ |𝐵 ̂𝑥|, 𝐵 ̂𝑦 ⁄ |𝐵 ̂𝑦|} can
be applied onto { ̂𝑥, ̂𝑦} by a certain planar rotation 𝑈 — possibly the identity. From here, the proof
follows exactly as in case i), by defining the 𝜈𝑖, 𝜌, 𝜆 and 𝑃 exactly as before. ▨

The basic idea of the above proof—post-composing a given nonconformalmapwith rotations
to generate eigendirections andwith homotheties tomodulate the corresponding eigenvalues— can
actually be implemented in a 𝐶1 continuous fashion, yielding a diffeotopy connecting the identity to
a transformation for which the South Pole is a hyperbolic fixed point, whilst keeping the poles fixed
throughout the process. This is the content of our Extension Lemma to follow.

2.10 The Extension Lemma. Let 𝐺 ⊂ Diff 1+(𝕊2) be a proper extension of Möb(𝕊2). Then, there
exists an ℐ𝐺2 diffeotopy (𝑔𝑡)𝑡∈𝕀 such that:

1) for every 𝑡 > 0, the differential D𝑔𝑡(𝟎) is a hyperbolic saddle, having the tangent line 𝑇𝟎𝛤
as its stable direction,

2) D𝑔1(𝟎) = diag[𝜆, 𝜆−1] with respect to the canonical basis of 𝑇𝟎𝕊2.

Proof. By Lemma 2.9 above, we may fix ̂𝑔 ∈ 𝐺2 such that ̂𝐴 ≝ D ̂𝑔(𝟎) = diag[𝜇, 𝜇−1] with respect
to the canonical basis {𝜕/𝜕𝑥, 𝜕/𝜕𝑦} of 𝑇𝟎𝕊2, where 0 < 𝜇 < 1. For 𝑠 ∈ [0, 𝜋 ⁄ 2], let 𝐵𝑠 = ̂𝐴−1 𝑅𝑠 ̂𝐴 and
𝑣𝑠 ≝ 𝐵𝑠(𝜕/𝜕𝑥) = [ cos 𝑠

𝜇2 sin 𝑠 ]. Then, |𝑣𝑠| < 1 for 𝑠 > 0.
We now consider the continuous function 𝜃 ∶ [0, 𝜋 ⁄ 2] → [0, 𝜋] given as the angle between 𝑣𝑠

and 𝜕/𝜕𝑥:

𝜃(𝑠) = ang(𝑣𝑠, 𝜕/𝜕𝑥) = arccos[cos 𝑠|𝑣𝑠|
] .

If we then let 𝐶𝑠 ≝ 𝑅−𝜃(𝑠) 𝐵𝑠, the canonical vector 𝜕/𝜕𝑥 defines a contracting direction for 𝐶𝑠, of rate
|𝑣𝑠| < 1. Indeed, in coordinates:

[2.7] 𝐶𝑠(𝜕/𝜕𝑥) = 𝑅−𝜃(𝑠)(𝐵𝑠(𝜕/𝜕𝑥)) = 𝑅−𝜃(𝑠)𝑣𝑠 = [𝜇
2 sin 𝑠 sin 𝜃(𝑠) + cos 𝑠 cos 𝜃(𝑠)
𝜇2 sin 𝑠 cos 𝜃(𝑠) − cos 𝑠 sin 𝜃(𝑠)

] .

But the identity sin2 𝜃(𝑠) = 1 − cos2 𝜃(𝑠) yields

sin2 𝜃(𝑠) = 1 − cos2 𝑠
|𝑣𝑠|

2 = |𝑣𝑠|
2 − cos2 𝑠
|𝑣𝑠|

2 =
(cos2 𝑠 + 𝜇4 sin2 𝑠) − cos2 𝑠

|𝑣𝑠|
2 = 𝜇4 sin2 𝑠

|𝑣𝑠|
2 .

Since the sine function is positive over the considered range, sin 𝜃(𝑠) = 𝜇2 sin 𝑠 ∕ |𝑣𝑠| follows.
This implies

𝜇2 sin 𝑠 sin 𝜃(𝑠) + cos 𝑠 cos 𝜃(𝑠) = |𝑣𝑠| sin2 𝜃(𝑠) + |𝑣𝑠| cos2 𝜃(𝑠) and

𝜇2 sin 𝑠 cos 𝜃(𝑠) − cos 𝑠 sin 𝜃(𝑠) = |𝑣𝑠| sin 𝜃(𝑠) cos 𝜃(𝑠) − |𝑣𝑠| cos 𝜃(𝑠) sin 𝜃(𝑠) = 0 .

Comparison with [2.7] yields 𝐶𝑠(𝜕/𝜕𝑥) = [ |𝑣𝑠|0 ] = |𝑣𝑠| 𝜕/𝜕𝑥, as claimed. In particular, when 𝑠 = 𝜋 ⁄ 2,
𝜃(𝜋 ⁄ 2) = 𝜋 ⁄ 2, and thus |𝑣𝑠| = 𝜇2. Or, in other words, 𝐶𝜋⁄2(𝜕/𝜕𝑥) = 𝜇2 𝜕/𝜕𝑥. Furthermore, for every
𝑠 > 0, 𝐶𝑠 is a saddle matrix, in the following sense:

det𝐶𝑠 = det[𝑅−𝜃(𝑠) ̂𝐴−1 𝑅𝑠 ̂𝐴] = det[𝑅−𝜃(𝑠)] det[ ̂𝐴−1] det𝑅𝑠 det ̂𝐴 = (det ̂𝐴)−1 det ̂𝐴 = 1 ,
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and therefore 𝐶𝑠 has |𝑣𝑠|−1 > 1 as its other (real) eigenvalue.
In general, we cannot ensure that 𝐶𝑠 is diagonal (with respect to the canonical basis). But,

when 𝑠 = 𝜋 ⁄ 2, we may explicitly compute 𝐶𝜋⁄2(𝜕/𝜕𝑦) = [ 0
𝜇−2 ] = 𝜇−2 𝜕/𝜕𝑦. In other words, if we let

𝜆 ≝ 𝜇2 < 1, then 𝐶𝜋⁄2 = diag[𝜆, 𝜆−1].
Lastly, since 𝜃(⋅) is a continuous function, the expression

𝑔𝑡 = 𝑅−𝜃(𝜋𝑡2 )
∘ ̂𝑔−1 ∘ 𝑅𝜋𝑡

2
∘ ̂𝑔 ∈ 𝐺2 , 0 ≤ 𝑡 ≤ 1 ,

defines a diffeotopy (𝑔𝑡)𝑡∈𝕀, by Lemma 2.2. Furthermore, the Chain Rule yields D𝑔𝑡(𝟎) = 𝐶𝜋𝑡⁄2.
Recalling that the 𝑥-axis corresponds to 𝛤 on the sphere — the direction generated by 𝜕/𝜕𝑥 being
identified with 𝑇𝟎𝛤 — the considerations previously made translate into the statements of the
Lemma, completing the proof. ▨



Chapter 3

A fundamental lemma

If we let 𝐺 ⊂ Diff 1+(𝕊2) be a group properly extending Möb(𝕊2), this section is devoted to
characterise special kinds of isotopies in 𝐺, which form the basis of all our subsequent arguments.
For this reason, the corresponding result is called – in the context of this work – the Fundamental
Lemma. In the spirit of hyperbolic dynamics, we start by focusing on cones and how isotopies such
as the ones defined in the Extension Lemma 2.10 act on them.

Given an angle 𝛼 ∈ (0, 𝜋 ⁄ 2), by the 𝛼-cone we shall refer to the subset of the plane described
in polar coordinates as follows:

𝒞𝛼 = {𝑟𝘦𝒾 𝜃 ∶ 𝑟 ≥ 0 and either |𝜃| ≤ 𝛼 or |𝜃 − 𝜋| ≤ 𝛼} .

We remark that, for 0 < 𝜆 < 1, any cone is “broadened” under the action of the hyperbolic
matrix 𝐴 = diag[𝜆, 𝜆−1] or, yet, every vector “moves away” from the 𝑥-axis. More precisely, consider
𝕊1 parameterized by the counter-clockwise polar angle 𝜃 that each direction of space makes with
the 𝑥-axis. Then, the action of 𝐴 induces a monotone circle dynamics ̃𝐴 – by radial projection – such
that ̃𝐴 has repelling fixed points at 0 and 𝜋 and attracting fixed points at 𝜋 ⁄ 2 and 3𝜋 ⁄ 2, as pictured
in Figure 3.1.

Figure 3.1 – The projective action of a saddle matrix on the lines through the origin.
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This behaviour has implications on how a diffeomorphism 𝑔 having 𝐴 as differential at a
hyperbolic fixed point relates (locally) to compositions with rotations. To see how, we first record
two elementary yet instrumental remarks steaming from plane geometry.

3.1 Remark. Let 𝑝, 𝑞 be two points on the plane such that 𝑞 ∈ 𝔻𝑅(𝑝) for some 𝑅 > 0. If |𝑝| > 𝑅 or,
in other words, if the origin is external to the disk, then ang(𝑝, 𝑞) < 𝜋 ⁄ 2.

39
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Proof. This geometrically intuitive fact, suggested by figure 3.2, is a straightforward consequence of
the following polarisation formula:

⟨𝑝, 𝑞⟩ = 1
2 (|𝑞|

2⏟
≥0

+ |𝑝|2 − |𝑝 − 𝑞|2⏟⎵⎵⎵⏟⎵⎵⎵⏟
strictly positive

) > 0 . ▨

Figure 3.2 – Two points lying in a closed disk to which the origin is external make an angle < 𝜋/2.
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3.2 Remark. Let 𝑝, 𝑞 be two nonzero distinct points on the plane. Then, the following estimate holds:

[3.1] |𝑝 − 𝑞| ≥ min{|𝑝|, |𝑞|} sin[ang(𝑝, 𝑞)2 ] .

Proof. Assumewithout loss of generality that |𝑝| ≤ |𝑞|, and let 𝑟 = (|𝑝|/|𝑞|) 𝑞. The triangle inequality
yields

|𝑝 − 𝑟| ≤ |𝑝 − 𝑞| + |𝑞 − 𝑟| = |𝑝 − 𝑞| + (|𝑞| − |𝑝|) ≤ 2|𝑝 − 𝑞| .

But |𝑝 − 𝑟| is the length of the chord subtending 𝜃 = ang(𝑝, 𝑞) on the circle of radius |𝑝| centred at
the origin, as suggested by figure 3.3. Therefore, it is known from elementary plane geometry that
|𝑝 − 𝑟| = 2 |𝑝| sin(𝜃 ∕ 2). Comparison of the two formulae gives the desired result when the points
are not collinear. In the latter case the angle between them – and thus its sine – is zero, and [3.1]
holds trivially. ▨

Figure 3.3 – Relation between points on the plane and the chord subtending their angle.
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These allow us to conclude that, for diffeomorphisms, the differential provides not only a
numerical approximation to the action of 𝑔, but also angular, as stated below. This might not be
true for maps that are only differentiable, as the differential may squish a cone onto a segment.

3.3 Lemma. Let 𝑔 be a planar diffeomorphism fixing the origin. Then, given 0 < 𝜀 < 𝜋 there exists
𝛿 > 0 such that ang(𝑔(𝑧), D𝑔(𝟎)𝑧) ≤ 𝜀 whenever 0 < |𝑧| < 𝛿.
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Proof. Let 𝐴 ≝ D𝑔(𝟎). Given 𝜀 > 0, by the differentiability of 𝑔 at the origin we obtain 𝛿 > 0
satisfying:

0 < |𝑧| < 𝛿 implies |𝑔(𝑧) − 𝐴𝑧| ≤ 𝑐𝑟 sin( 𝜀2) |𝑧| , where 𝑟 =
1

1 + sin(𝜀 ⁄ 2)

and 𝑐 > 0 has the property that |𝐴𝑣| ≥ 𝑐|𝑣| for every 𝑣. It should be noticed that 1 ⁄2 < 𝑟 < 1, because
0 < 𝜀 ⁄ 2 < 𝜋 ⁄ 2, and that 𝑐 indeed exists, because 𝐴 is a linear isomorphism.

Now, given any such 𝑧, the triangle inequality along with the definition of 𝑐 yield:

|𝑔(𝑧)| ≥ |𝐴𝑧| − |𝑔(𝑧) − 𝐴𝑧|

≥ |𝐴𝑧| − 𝑐𝑟 sin( 𝜀2) |𝑧|

≥ 𝑐|𝑧| − 𝑐𝑟 sin( 𝜀2) |𝑧|

= 𝑐[1 − 𝑟 sin( 𝜀2)] |𝑧| .

Keeping in mind the bounds on 𝑟, the rightmost side of this inequality is seen to be strictly
positive. This allows us to reach the following conclusions:

• By the aforementioned differentiability, 𝑔(𝑧) lies in a closed disk centred at𝐴𝑧 and of radius
𝑐𝑟 sin(𝜀 ⁄ 2) |𝑧|.

• The origin is an external point to this disk, due to the second line’s positiveness.
• In particular, by Remark 3.1, ang(𝑔(𝑧), 𝐴𝑧) < 𝜋 ⁄ 2.
• Also, the following holds:

min{|𝑔(𝑧)|, |𝐴𝑧|} ≥ 𝑐[1 − 𝑟 sin( 𝜀2)] |𝑧| > 0 ,

both because of the previous estimate and because subtracting a positive quantity from 𝑐|𝑧|
only makes it smaller.

Considering these along with Remark 3.2 imply:

sin[ang(𝑔(𝑧), 𝐴𝑧, )2 ] ≤ |𝑔(𝑧) − 𝐴𝑧|
min{|𝑔(𝑧)|, |𝐴𝑧|} ≤

𝑐𝑟 sin(𝜀 ⁄ 2) |𝑧|
𝑐[1 − 𝑟 sin(𝜀 ⁄ 2)] |𝑧| =

𝑟 sin(𝜀 ⁄ 2)
1 − 𝑟 sin(𝜀 ⁄ 2) = sin( 𝜀2) .

Since none of the angles above exceed 𝜋 ⁄ 2, these calculations allow us to conclude that, as long as
0 < |𝑧| < 𝛿, ang(𝑔(𝑧), 𝐴𝑧) ≤ 𝜀. ▨

Using the approximation described above, the cone-broadening property of a hyperbolic
saddle can be seen to propagate locally to the diffeomorphism 𝑔 itself, in a precise sense described
by the following result.

3.4 Lemma. Let 𝑔 be a planar diffeomorphism for which the origin is a hyperbolic fixed point
satisfying D𝑔(𝟎) = diag[𝜆, 𝜆−1], where 0 < 𝜆 < 1. Then, for a given 0 < 𝛼 < 𝜋 ⁄ 2, there exist
𝜏 > 0 and 𝛿 > 0 such that:

0 < |𝑧| < 𝛿 and 𝑧 ∉ 𝒞𝛼 imply 𝑅𝜔(𝑔(𝑧)) ∉ 𝒞𝛼 whenever |𝜔| < 𝜏 .

Proof. First, notice that the set 𝒞𝛼 intercepts 𝕊1 at a pair of disjoint arcs, one with endpoints 2𝜋 − 𝛼
and 𝛼, the other with endpoints 𝜋 − 𝛼 and 𝜋 + 𝛼. Thus,if we let 𝐴 ≝ D𝑔(𝟎) and consider the circle
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dynamics ̃𝐴 induced accordingly, 𝜏 ≝ 1
2
[ ̃𝐴(𝛼) − 𝛼] is such that 0 < 2𝜏 < 𝜋 ⁄ 2. Furthermore, by the

symmetry suggested in Figure 3.4,

2𝜏 = (𝜋 − 𝛼) − ̃𝐴(𝜋 − 𝛼) = ̃𝐴(𝜋 + 𝛼) − (𝜋 + 𝛼) = (2𝜋 − 𝛼) − ̃𝐴(2𝜋 − 𝛼) ,

meaning that the action of ̃𝐴 broadens the arcs determined by 𝒞𝛼 by ±2𝜏 at each endpoint.

Figure 3.4 – The action of the cyrcle dynamics ̃𝐴 induced by the saddle matrix 𝐴 = diag[𝜆, 𝜆−1], broadening
any cone to which the unstable direction is external.
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Let 𝜃 ∈ 𝕊1 ⧵ 𝒞𝛼. Without loss of generality, we address the case 𝛼 < 𝜃 < 𝜋 − 𝛼. Due to the
induced dynamics monotonicity, ̃𝐴(𝛼) < ̃𝐴(𝜃) < ̃𝐴(𝜋 − 𝛼), and thus:

̃𝐴(𝜃) + 2𝜏 < ̃𝐴(𝜋 − 𝛼) + 2𝜏 = ̃𝐴(𝜋 − 𝛼) + ((𝜋 − 𝛼) − ̃𝐴(𝜋 − 𝛼)) = 𝜋 − 𝛼 ,
̃𝐴(𝜃) − 2𝜏 > ̃𝐴(𝛼) − 2𝜏 = ̃𝐴(𝛼) − ( ̃𝐴(𝛼) − 𝛼) = 𝛼 .

Putting together the extremes of the above inequalities it is possible to conclude that

𝛼 < ̃𝐴(𝜃) − 2𝜏 < ̃𝐴(𝜃) + 2𝜏 < 𝜋 − 𝛼 .

In other words, if 𝑣 is any nonzero vector of such a polar angle 𝜃, then 𝑅±2𝜏(𝐴𝑣) ∉ 𝒞𝛼, due to
the fact that the diagram below commutes:

𝑣 ∈ ℝ2 ⧵ {𝟎} 𝐴𝑣 𝑅±𝜏(𝐴𝑣)

𝜃 ∈ 𝕊1 ̃𝐴(𝜃) ̃𝐴(𝜃) ± 𝜏

polar angle

saddle rotation

polar angle

source-sink translation

Now, Lemma 3.3 applies, yielding 𝛿 > 0 with the property that ang(𝑔(𝑧), 𝐴𝑧) ≤ 𝜏 whenever
0 < |𝑧| < 𝛿. If 𝑧 furthermore satisfies 𝛼 < 𝜃(𝑧) < 𝜋 − 𝛼, then the following two are true
simultaneously:

𝜃(𝐴𝑧) − 𝜏 ≤ 𝜃(𝑔(𝑧)) ≤ 𝜃(𝐴𝑧) + 𝜏 and

𝛼 < 𝜃(𝐴𝑧) − 2𝜏 < 𝜃(𝐴𝑧) + 2𝜏 < 𝜋 − 𝛼 .

Together they imply 𝛼 < 𝜃(𝑔(𝑧)) − 𝜏 < 𝜃(𝑔(𝑧)) + 𝜏 < 𝜋 − 𝛼. This is enough to conclude that
𝑅±𝜏(𝑔(𝑧)) ∉ 𝒞𝛼 whenever 𝑧 ∉ 𝒞𝛼 also belongs to the upper half plane. An analogous reasoning
applies to the case in which 𝑧 lies on the lower half plane, thus yielding the desired result. ▨
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3.5 Scholium. Under the hypotheses of Lemma 3.4, 𝑔𝑘(𝑧) ∉ 𝒞𝛼 for every 𝑘 ∈ ℕ such that the orbit
{𝑧, 𝑔(𝑧),… , 𝑔𝑘−1(𝑧)} remains in 𝔻𝛿(𝟎).

Moving on to a different approach, we now investigate how diffeotopies as a whole act on
cones when a certain internal invariant direction is kept fixed throughout.

3.6 Lemma. Let (𝑔𝑡)𝑡∈𝕀 be a planar diffeotopy such that the origin is a fixed point and D𝑔𝑡(𝟎) has
the 𝑥-axis as an invariant direction for every 𝑡. Then, given 0 < 𝛼 < 𝜋 ⁄ 2, there exist 0 < 𝛽 < 𝛼 and
𝜌 > 0 such that:

𝑧 ∈ 𝔻𝜌(𝟎) and 𝑧 ∉ 𝒞𝛼 imply 𝑔𝑡(𝑧) ∉ 𝒞𝛽 for every 𝑡 ∈ 𝕀 .

Proof. For a fixed 𝑡 ∈ 𝕀, let 𝐴𝑡 ≝ D𝑔𝑡(𝟎) and consider 𝑣𝛼 = [ cos𝛼sin𝛼 ] and 𝑣∗𝛼 = [ cos𝛼
− sin𝛼 ], unit vectors of

angle 𝛼 and 2𝜋 − 𝛼, respectively, whose spans delimit 𝒞𝛼. Given that 𝐴𝑡 preserves orientation and
that the 𝑥-axis is invariant under its action, one has that𝐴𝑡𝑣𝛼 lies to the left and𝐴𝑡𝑣∗𝛼 lies to the right
of the 𝑥-axis, since 𝑣𝛼 and 𝑣∗𝛼 do so.

Notice that at least one among ang(𝐴𝑡𝑣𝛼, 𝜕/𝜕𝑥) and ang(𝐴𝑡𝑣∗𝛼, 𝜕/𝜕𝑥) has to be smaller than 𝜋 ⁄ 2.
Indeed, if that was not the case, 𝐴𝑡 would either revert orientation of the ordered basis {𝑣𝛼, 𝑣∗𝛼}
or rupture its linear independence, contradicting the fact that it is an orientation-preserving linear
isomorphism. It is claimed that, upon letting

[3.2] 𝛽𝑡 ≝ min{𝛼 , ang(𝐴𝑡𝑣𝛼, 𝜕/𝜕𝑥) , ang(𝐴𝑡𝑣∗𝛼, 𝜕/𝜕𝑥)} ,

we have 0 < 𝛽𝑡 ≤ 𝛼, and also 𝐴𝑡𝑣 ∉ 𝒞𝛽𝑡 holds whenever 𝑣 ∉ 𝒞𝛼.
Indeed, by preservation of orientation, the exterior of 𝒞𝛼 is mapped onto the exterior of the set

𝐴𝑡(𝒞𝛼)which, in turn, is delimited by ⟨𝐴𝑡𝑣𝛼⟩ ∪ ⟨𝐴𝑡𝑣∗𝛼⟩ (because 𝜕𝒞𝛼 = ⟨𝑣𝛼⟩ ∪ ⟨𝑣∗𝛼⟩), and contains the
𝑥-axis. Thus, by the choice of 𝛽𝑡 in [3.2], 𝒞𝛽𝑡 ⊆ 𝐴𝑡(𝒞𝛼). It follows that the complement of 𝐴𝑡(𝒞𝛼) is
contained in the complement of 𝒞𝛽𝑡 , as suggested by Figure 3.5.

Figure 3.5 – Boundaries and exteriors of cones are preserved under the action of an orientation-preserving
linear isomorphism.
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This reasoning yields a global solution to the associated linear problem. Once it is done, let

𝜀𝑡 = 𝑟𝑡𝑐𝑡 sin(
𝛽𝑡
4 ) |𝑧| , where 𝑟𝑡 =

1
1 + sin(𝛽𝑡 ⁄ 4)

,

and 𝑐𝑡 > 0 has the property that |𝐴𝑡𝑣| ≥ 𝑐𝑡|𝑣| for every 𝑣.
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Having this choice in mind, given that 𝑔𝑡 is differentiable at 𝟎 it is possible to find 𝜌𝑡 > 0 such that

[3.3] |𝑔𝑡(𝑧) − 𝐴𝑡𝑧| ≤
𝜀𝑡
2 |𝑧| whenever 0 < |𝑧| < 𝜌𝑡 .

With respect to the compact-open topology in global charts, we consider the following subbasic
neighbourhood ℬ𝑡 of 𝑔𝑡:

ℬ𝑡 ≝ ℬ(𝑔𝑡 ; 𝔻𝜌𝑡(𝟎) ; 𝜀𝑡 ⁄ 2) = {𝑓 ∈ Diff 1(ℝ2) ∶ sup
𝔻𝜌𝑡 (𝟎)

|𝑓 − 𝑔𝑡| ≤
𝜀𝑡
2 and sup

𝔻𝜌𝑡 (𝟎)
‖D𝑓 − D𝑔𝑡‖ ≤

𝜀𝑡
2 } .

Since 𝑡 ↦ 𝑔𝑡 defines a continuous path of diffeomorphisms with respect to this topology, there exists
𝛿𝑡 > 0 with the following property:

[3.4] 𝑠 ∈ 𝕀 and |𝑠 − 𝑡| < 𝛿𝑡 imply 𝑔𝑠 ∈ ℬ𝑡 .

Thus, when |𝑠 − 𝑡| < 𝛿𝑡 and |𝑧| < 𝜌𝑡 simultaneously,

|𝑔𝑠(𝑧) − 𝐴𝑡𝑧| ≤ |𝑔𝑠(𝑧) − 𝑔𝑡(𝑧)| + |𝑔𝑡(𝑧) − 𝐴𝑡𝑧| = |(𝑔𝑠 − 𝑔𝑡)(𝑧)| + |𝑔𝑡(𝑧) − 𝐴𝑡𝑧|

≤ ( sup
𝔻𝜌𝑡 (𝟎)

‖D(𝑔𝑠 − 𝑔𝑡)‖) |𝑧| +
𝜀𝑡
2 |𝑧| ≤ 𝜀𝑡 |𝑧| ,

where the Mean Value Inequality was applied in the compact convex set 𝔻𝜌𝑡(𝟎) to the continuously
differentiable function (𝑔𝑠 − 𝑔𝑡), along with [3.3] and [3.4]. So, by the triangle inequality,

|𝑔𝑠(𝑧)| ≥ |𝐴𝑡𝑧| − 𝜀𝑡|𝑧| ≥ (𝑐𝑡 − 𝜀𝑡) |𝑧| .

But, since 0 < 𝛽𝑡 < 𝜋 ⁄ 2, we have 1/2 < 𝑟𝑡 < 1, ensuring that 𝑐𝑡 − 𝜀𝑡 > 0. This implies 𝑔𝑠(𝑧)
lying in a closed disk of center 𝐴𝑡𝑧 and radius 𝜀𝑡|𝑧|, to which the origin is an external point, as in
Remark 3.1. Thus, ang(𝑔𝑠(𝑧), 𝐴𝑡𝑧) < 𝜋 ⁄ 2.

The estimate in Remark 3.2 – along with calculations identical to those made in the proof of
Lemma 3.3 – yield:

sin[ang(𝑔𝑠(𝑧), 𝐴𝑡𝑧)
2 ] ≤ |𝑔𝑠(𝑧) − 𝐴𝑡𝑧|

(𝑐𝑡 − 𝜀𝑡) |𝑧|

≤ 𝜀𝑡|𝑧|
(𝑐𝑡 − 𝜀𝑡) |𝑧|

= 𝑟𝑡𝑐𝑡 sin(𝛽𝑡 ⁄ 4)
𝑐𝑡 − 𝑟𝑡𝑐𝑡 sin(𝛽𝑡 ⁄ 4)

= sin(𝛽𝑡4 ) .

These calculations allow us to conclude that ang(𝑔𝑠(𝑧), 𝐴𝑡𝑧) ≤ 𝛽𝑡 ⁄ 2, as long as |𝑠− 𝑡| < 𝛿𝑡 and
0 < |𝑧| < 𝜌𝑡. If also 𝑧 ∉ 𝒞𝛼, we know from the linear case that 𝐴𝑡𝑧 ∉ 𝒞𝛽𝑡 . In other words,

[3.5] either 𝛽𝑡 < 𝜃(𝐴𝑡𝑧) < 𝜋 − 𝛽𝑡 or 𝜋 + 𝛽𝑡 < 𝜃(𝐴𝑡𝑧) < 2𝜋 − 𝛽𝑡 ,

where 𝜃(⋅) is the usual anti-clockwise polar angle. On the other hand, as suggested by Figure 3.6,

[3.6] 𝜃(𝐴𝑡𝑧) −
𝛽𝑡
2 ≤ 𝜃(𝑔𝑠(𝑧)) ≤ 𝜃(𝐴𝑡𝑧) +

𝛽𝑡
2 .

Putting [3.5] and [3.6] together, 𝑔𝑠(𝑧) ∉ 𝒞𝛽𝑡 ⁄2 follows, as long as 𝑧 ∉ 𝒞𝛼, 0 < |𝑧| < 𝜌𝑡 and |𝑠−𝑡| < 𝛿𝑡.



45

Figure 3.6 – Angular interval around 𝐴𝑡𝑧 on which 𝑔𝑠(𝑧) is allowed to lie.
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Lastly, by compactness there exist 𝑡1,… , 𝑡𝑛 such that 𝕀 = ⋃𝑛
𝑗=1(𝑡𝑗 − 𝛿𝑡𝑗 , 𝑡𝑗 + 𝛿𝑡𝑗) ∩ 𝕀. Thus, the

desired conditions are satisfied if we consider

𝜌 ≝ min
1≤𝑗≤𝑛

𝜌𝑡𝑗 and 𝛽 ≝ min
1≤𝑗≤𝑛

𝛽𝑡𝑗
2 . ▨

3.7 Corollary (The Cone Lemma). Let (𝑔𝑡)𝑡∈𝕀 be a planar diffeotopy such that the origin is a fixed
point and D𝑔𝑡(𝟎) has the 𝑥-axis as an invariant direction for every 𝑡. Then, given 0 < 𝛼 < 𝜋/2, there
exist 0 < 𝛽− < 𝛽+ < 𝛼 and 𝜌 > 0 such that:

1) 𝑧 ∈ 𝔻𝜌(𝟎) and 𝑧 ∉ 𝒞𝛼 imply 𝑔𝑡(𝑧) ∉ 𝒞𝛽+ for every 𝑡 ∈ 𝕀;
2) 𝑧 ∈ 𝔻𝜌(𝟎) and 𝑧 ∈ 𝒞𝛽− imply 𝑔𝑡(𝑧) ∈ 𝒞𝛽+ for every 𝑡 ∈ 𝕀.

Proof. Given 𝛼, Lemma 3.6 yields 0 < 𝛽+ < 𝛼 and 𝜌+ > 0 such that 𝑧 ∈ 𝔻𝜌+(𝟎) and 𝑧 ∉ 𝒞𝛼 imply
𝑔𝑡(𝑧) ∉ 𝒞𝛽+ for every 𝑡 ∈ 𝕀. But, looking at the isotopy (ℎ𝑡)𝑡∈𝕀 defined by the inverses ℎ𝑡 ≝ 𝑔−1𝑡 , we
notice that it satisfies exactly the same hypotheses as those listed in Lemma 3.6. So, for this isotopy
and the angle 𝛽+ just encountered, we obtain a radius 𝜌− > 0 and a smaller angle 0 < 𝛽− < 𝛽+ such
that𝑤 ∈ 𝔻𝜌−(𝟎) and𝑤 ∉ 𝒞𝛽+ imply ℎ𝑡(𝑤) ∉ 𝒞𝛽− for every 𝑡 ∈ 𝕀. Let 𝜂 > 0 be such that |𝑔𝑡(𝑧)| < 𝜌−

for every 𝑡 ∈ 𝕀, whenever |𝑧| < 𝜂, as described in Lemma 1.9. Then, by setting 𝜌 as min{𝜂, 𝜌+}, we
have the proposed statements satisfied.

Indeed, condition 1) follows from the choice of 𝛽+. Suppose for the sake of contradiction that
2) does not hold. Then, 𝑔𝑠(𝑧) ∉ 𝒞𝛽+ for some 𝑠 ∈ 𝕀 and some 𝑧 ∈ 𝒞𝛽− ∩𝔻𝜌(0). But in this case, since
|𝑧| < 𝜂, the point 𝑤 ≝ 𝑔𝑠(𝑧) would satisfy 𝑤 ∈ 𝔻𝜌−(𝟎) and 𝑤 ∉ 𝒞𝛽+ . This, in turn, would imply
ℎ𝑠(𝑤) ∉ 𝒞𝛽− , whilst

ℎ𝑠(𝑤) = ℎ𝑠(𝑔𝑠(𝑧)) = 𝑔−1𝑠 (𝑔𝑠(𝑧)) = 𝑧 ∈ 𝒞𝛽− ,

a contradiction. Thus, 𝜌, 𝛽− and 𝛽+ as obtained above must satisfy both of the listed properties. ▨

Before moving on to our Fundamental Lemma, let us recall an important theorem about
hyperbolic fixed points of diffeomorphisms, as presented in Chapter 6 of (3), and extract an
elementary consequence in the form of a remark.

3.8 The Hadarmard-Perron Theorem. Let 𝑥0 be an hyperbolic fixed point of 𝑓 ∈ Diff 1(ℝ𝑚). Then
there exists an open neighbourhood 𝑈 of 𝑥0 such that the local stable set:

W𝚜
𝑥0 ≝ {𝑥 ∈ 𝑈 ∶ 𝑓𝑛(𝑥) → 𝑥0 as 𝑛 → +∞}

is a submanifold of class 𝐶1, whose tangent space at 𝑥0 is the differential’s stable space 𝘌𝚜𝑥0 .
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In particular,W𝚜
𝑥0 is the graph of a Lipschitz function around 𝑥0. Also, the following holds:

𝑓𝑛(𝑥) ∈ 𝑈 for every 𝑛 ∈ ℕ if and only if 𝑥 ∈ W𝚜
𝑥0 .

3.9 Remark. In the conditions the Hadamard-Perron Theorem 3.8 above, let 𝐵 be an open ball such
that 𝐵 ⊂ 𝑈 and 𝒦 ⊂ 𝐵 be a compact set not intercepting the stable set. Then, there exists 𝑛0 ∈ ℕ
such that if 𝑛𝑥 ≝ min{𝑛 ∈ ℕ ∶ 𝑔𝑛(𝑥) ∉ 𝐵}, then 𝑛𝑥 ≤ 𝑛0 for every 𝑥 ∈ 𝒦.

Proof. First notice that, by the characterisation of the stable set as consisting of the only points
which remain in 𝑈 upon iteration, such 𝑛𝑥 is well-defined and finite. Now, suppose for the sake
of contradiction that the opposite holds: for every 𝑁 ∈ ℕ there exists 𝑥𝑁 ∈ 𝒦 such that 𝑛𝑥𝑁 > 𝑁.

Since𝒦 is compact, switching to a subsequence if necessary it can be assumed that 𝑥𝑁 → ̄𝑥 ∈
𝒦. Let 𝑁0 = 𝑛�̄�. Then, 𝑔𝑁0( ̄𝑥) ∈ (𝐵)𝘤, which is an open set. If 𝑉 is a neighbourhood of 𝑔𝑁0( ̄𝑥) fully
contained within (𝐵)𝘤, 𝑔−𝑁0(𝑉)∩𝒦 is an open neighbourhood of ̄𝑥 in𝒦 and thus contains infinitely
many 𝑥𝑁 of the sequence.

Discarding the trivial case in which𝒦 consists of a finite number of isolated points, these 𝑥𝑁
may be supposed all distinct. In particular, for some sufficiently large𝑀 > 𝑁0 one has that 𝑥𝑀 lies in
this neighbourhood. Therefore, 𝑔𝑁0(𝑥𝑀) ∉ 𝐵, a contradiction, since 𝑛𝑥𝑀 > 𝑀 > 𝑁0 was supposed
to be minimal with the property that 𝑔𝑛𝑥𝑀 (𝑥𝑀) ∉ 𝐵. ▨

3.10 The Fundamental Lemma. Let 𝐺 ⊂ Diff 1+(𝕊2) be a proper extension of Möb(𝕊2). Then, for
a given point 𝑧0 not on the meridian 𝛤 there exists an ℐ𝐺3 isotopy (𝐼𝑧0𝑡 )𝑡≥0, depending on 𝑧0, such
that:

1) the trajectory of 𝑧0 under 𝐼𝑧0 does not intercept 𝛤 , and
2) the 𝜔-limit of 𝑧0 satisfies 𝜔𝐼𝑧0 (𝑧0) = {∞}.

Proof. Given 𝑧0 ∉ 𝛤 , we assume for concreteness that its planar counterpart lies on the upper half-
plane, and is thus given in polar coordinates as 𝑧0 = 𝑅0 𝘦𝒾𝜃0 , 0 < 𝜃0 < 𝜋.

Let (𝑔𝑡)𝑡∈𝕀 be as in the Extension Lemma 2.10. Since∞ is fixed throughout, it can be thought
of as a planar ℐ𝐺1-isotopy such that D𝑔𝑡(𝟎) has the 𝑥-axis as an invariant direction for every 𝑡 and
D𝑔1(𝟎) = diag[𝜆, 𝜆−1], 0 < 𝜆 < 1. To ease notation, we write 𝑔 ≝ 𝑔1 and 𝐴 ≝ D𝑔(𝟎).

Fix some 0 < 𝛼 < 𝜋/2 such that the direction through 𝜃0 is external to 𝒞2𝛼.With respect to 𝛼,
let 𝛿 > 0 and 𝜏 > 0 be as described in Lemma 3.4:

[3.7] 0 < |𝑧| < 𝛿 and 𝑧 ∉ 𝒞𝛼 imply 𝑅𝜔(𝑔(𝑧)) ∉ 𝒞𝛼 whenever |𝜔| < 𝜏 .

Regarding this same 𝛼 – and also the isotopy (𝑔𝑡)𝑡∈𝕀 – the Cone Lemma 3.7 yields a radius
𝜌 > 0 and angles 0 < 𝛽− < 𝛽+ < 𝛼 such that, for 𝑧 ∈ 𝔻𝜌(𝟎) and every 𝑡 ∈ 𝕀:

𝑧 ∉ 𝒞𝛼 implies 𝑔𝑡(𝑧) ∉ 𝒞𝛽+ ,
𝑧 ∈ 𝒞𝛽− implies 𝑔𝑡(𝑧) ∈ 𝒞𝛽+ .

[3.8]

Lastly, the Hadamard-Perron Theorem 3.8 is used to characterise the stable manifold of 𝑔,
denoted simply byW𝚜. Since 𝘌𝚜𝟎 is the 𝑥-axis, by shrinking𝑈 if necessaryW𝚜may be assumed to be a
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Lipschitz graph of the form 𝑦 = 𝑦(𝑥). So, for the angles 𝜏 and 𝛽− as obtained above and a sufficiently
small radius 𝜎 > 0, we may assume that

[3.9] W𝚜 ∩ 𝔻𝜎(𝟎) ⊂ 𝒞min{𝜏,𝛽−} .

Let 0 < 𝜌0 < min{𝛿, 𝜌, 𝜎, 1}. Then, in the disk 𝔻𝜌0(𝟎), which shall be denoted simply by 𝔻0,
conditions [3.7] through [3.9] are mutually satisfied, as pictorially suggested by Figure 3.7.

Figure 3.7 – Inside the disk 𝔻0 the isotopy path of points 𝑧 outside of the 𝛼-cone never enter the 𝛽+-cone,
while the stable manifold of 𝑔 is a Lipschitz graph fully contained within the min{𝜏, 𝛽−}-cone.
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Once these choices are made, fix a positive real number 0 < 𝑟1 < min{𝜌0, 𝜌0 ⁄ 𝑅0} and let
𝜌1 = 𝑟1𝑅0 and𝒦0 = 𝜕𝔻𝜌1(𝟎) ⧵ 𝒞𝛼. Then,𝒦0 is a two-component compact set contained in 𝔻0, not
containing 𝟎 nor intercepting the stable manifold. In particular, by Remark 3.9 there exists 𝑛0 ∈ ℕ
such that 𝑛𝑥 ≤ 𝑛0 for every 𝑥 ∈ 𝒦0, where 𝑛𝑥 = min{𝑛 ∈ ℕ ∶ 𝑔𝑛(𝑥) ∉ 𝔻0}.

Notice that 𝑟1 < 𝜌0. So, by the graph characterisation of W𝚜 and by [3.9], for some 𝜏1 with
|𝜏1| ≤ min{𝜏, 𝛽−} we have 𝑟1𝘦𝒾𝜏1 ∈ W𝚜, as suggested by figure 3.8.

Figure 3.8 – Since the stable manifold is locally given as a Lipschitz graph 𝑦 = 𝑦(𝑥) it can be reached from
the 𝑥-axis through an uniformly bounded rotation.
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3.10.1 Claim. Define𝑀1(𝑧) = 𝑟1𝘦𝒾𝜏1 𝑧. Then, the mapping𝑀1 has the following properties:

(i) 𝑀1 ∈ Möb2(𝕊2); (ii) 𝑣1 ≝ 𝑀1(𝟏) ∈ W𝚜; (iii) 𝑤1 ≝ 𝑀1(𝑧0) ∈ 𝒦0.

Proof of Claim. Item (i) follows from the form of𝑀1 and (ii) follows from the choice of 𝜏1 depicted
in Figure 3.8. With respect to (iii), consider 𝑤1 = 𝑀1(𝑧0) = 𝘦𝒾𝜏1𝑟1 𝑧0. Since 𝑟1𝑧0 has the same polar
angle 𝜃0 as 𝑧0, we have 𝜃(𝑤1) = 𝜃0 + 𝜏1. But 𝛼 was chosen such that 2𝛼 < 𝜃0 < 𝜋 − 2𝛼, so the
following holds:

|𝜏1| ≤ 𝛽− < 𝛼 < min{𝜃02 , 𝜋 − 𝜃0
2 } .
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Thus,
𝜃0 + |𝜏1| < 𝜃0 +

𝜋 − 𝜃0
2 = 𝜃0 + 𝜋

2 ≤ (𝜋 − 2𝛼) + 𝜋
2 = 𝜋 − 𝛼 and

𝜃0 − |𝜏1| > 𝜃0 −
𝜃0
2 = 𝜃0

2 > 𝛼 .

Since 𝜃0− |𝜏1| ≤ 𝜃0+𝜏1 ≤ 𝜃0+ |𝜏1|, we conclude that 𝛼 < 𝜃0+𝜏1 < 𝜋−𝛼 or, equivalently,𝑤1 ∉ 𝒞𝛼.
Furthermore, |𝑤1| = |𝑟1𝑧0| = 𝑟1 𝑅0 = 𝜌1, yielding 𝑤1 ∈ 𝒦0. □

In particular, 𝑛1 ≝ 𝑛𝑤1 is well-defined.

3.10.2 Claim. Given 0 < 𝑡 ≤ 𝑛1, consider 𝑓𝑡 = 𝑔𝑡−⌊𝑡⌋ ∘ 𝑔⌊𝑡⌋ ∘ 𝑀1. Then, 𝑡 ↦ 𝑓𝑡 is an isotopy satisfying

𝑓𝑡(𝑧0) ∉ 𝒞𝛽+ and 𝑓𝑡(𝟏) ∈ 𝒞𝛽+ for every 𝑡 ∈ (0, 𝑛1] .

Proof. On the one hand, 𝑓𝑡(𝑧0) = 𝑔𝑡−⌊𝑡⌋ (𝑔⌊𝑡⌋(𝑤1)). Since 𝑤1 ∉ 𝒞𝛼, as long as 𝑡 < 𝑛1 each 𝑔⌊𝑡⌋(𝑤1)
does not belong to 𝒞𝛼 either, as observed in Scholium 3.5. On the other hand, they do belong to 𝔻0.
Therefore, the Cone Lemma implies 𝑔𝑠 (𝑔⌊𝑡⌋(𝑤1)) ∉ 𝒞𝛽+ for every 𝑠 = 𝑡 − ⌊𝑡⌋ ∈ 𝕀.
On the other hand, 𝑓𝑡(𝟏) = 𝑔𝑡−⌊𝑡⌋(𝑔⌊𝑡⌋(𝑣1)). But since 𝑣1 ∈ W𝚜, each 𝑔⌊𝑡⌋(𝑣1) belongs to W𝚜 ∩ 𝔻0,
which is contained in 𝒞𝛽− , by [3.9]. Therefore, 𝑔𝑠(𝑔⌊𝑡⌋(𝑣1)) ∈ 𝒞𝛽+ for every 𝑠 = 𝑡 − ⌊𝑡⌋ ∈ [0, 1], also
by the Cone Lemma. □

This setting is illustrated in figure 3.9, where the following points were introduced:

[3.10] 𝑧1 ≝ 𝑓𝑛1(𝑧0) = 𝑔𝑛1(𝑤1) ∉ 𝒞𝛼 and 𝑢1 ≝ 𝑓𝑛1(𝟏) = 𝑔𝑛1(𝑣1) ∈ W𝚜 .

Figure 3.9 – 𝑓𝑡 promotes two parallel processes: “macroscopically”, points in𝒦0 are successively dragged out
of 𝔻0 without entering the 𝛽+-cone, while “microscopically” the images of 𝟏 are dragged towards the origin
over the stable manifold.
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By the choice of 𝑛1, |𝑧1| > 𝜌0. Let 𝑟2 ≝ 𝜌1/|𝑧1| < 1 and notice that, since the product by 𝑟2 does
not change angles:

• |𝑟2𝑧1| = 𝜌1 and, given that 𝑧1 ∉ 𝒞𝛼, one has 𝑟2 𝑧1 ∈ 𝒦0.
• Also, 𝑟2𝑢1 ∈ 𝔻0 ∩ 𝒞min{𝜏,𝛽−}, because 𝑢1 ∈ W𝚜 ⊂ 𝔻0 ∩ 𝒞min{𝜏 , 𝛽−}.

In particular, by the second bullet above, the graph characterisation of W𝚜 and [3.9], one has
𝘦𝒾𝜏2(𝑟2𝑢1) ∈ W𝚜, for some 𝜏2 with |𝜏2| ≤ min{𝜏, 𝛽−} .
3.10.3 Claim. Define𝑀2(𝑧) = 𝑟2𝘦𝒾𝜏2 𝑧. Then, the mapping𝑀2 has the following properties:

(i) 𝑀2 ∈ Möb2(𝕊2), (ii) 𝑣2 ≝ 𝑀2(𝑢1) ∈ W𝚜, (iii) 𝑤2 ≝ 𝑀2(𝑧1) ∈ 𝒦0.

Proof. Item (i) is immediate from the form of𝑀2, while (ii) is a consequence of the very own choice
of 𝜏2.
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As for (iii), recall from [3.10] that 𝑧1 ∉ 𝒞𝛼. It follows that 𝑟2 𝑧1 does not belong to𝒞𝛼 aswell – because
it is obtained from 𝑧1 through an homothety – but it does belong to 𝔻0. So [3.7] implies

𝛼 < 𝜃(𝑟2𝑧1) − |𝜏2| ≤ 𝜃(𝑟2𝑧1) + 𝜏2⏟⎵⎵⏟⎵⎵⏟
=𝜃(𝑤2)

≤ 𝜃(𝑟2𝑧1) + |𝜏2| < 𝜋 − 𝛼 ,

where it was used that |𝜏2| ≤ 𝜏. This allows one to conclude that 𝑤2 ∉ 𝒞𝛼. Furthermore, |𝑤2| =
|𝑟2𝑧1| = 𝜌1, establishing that 𝑤2 ∈ 𝐾0. □

In particular, 𝑛2 ≝ 𝑛𝑤2 is well-defined. For 𝑛1 < 𝑡 ≤ 𝑛1 + 𝑛2, consider now the expression
𝑓𝑡 = 𝑔𝑡−⌊𝑡⌋ ∘ 𝑔⌊𝑡⌋−𝑛1 ∘ 𝑀2 ∘ 𝑓𝑛1 . By arguments analogous to the ones developed previously, 𝑡 ↦ 𝑓𝑡 is
seen to be continuous (with respect to 𝑑∞) over the interval (𝑛1, 𝑛1 + 𝑛2]. Also, 𝑓𝑡(𝑧0) ∉ 𝒞𝛽+ and
𝑓𝑡(𝟏) ∈ 𝒞𝛽+ , for every 𝑡 ∈ (𝑛1, 𝑛1 + 𝑛2]. In a similar fashion, we define inductively, for 𝑘 ≥ 0:

𝑓𝑡 = {
id if 𝑡 = 0 ,
𝑔𝑡−⌊𝑡⌋ ∘ 𝑔⌊𝑡⌋−𝑁𝑘 ∘ 𝑀𝑘+1 ∘ 𝑓𝑁𝑘 over the interval 𝑁𝑘 < 𝑡 ≤ 𝑁𝑘+1 ,

where 𝑁0 = 0, 𝑁𝑘 = ∑𝑘
𝑖=1 𝑛𝑖 and the numbers 𝑛𝑘 and the mappings𝑀𝑘 are determined as follows:

• 𝑀𝑘+1 ∈ Möb2(𝕊2) is a transformation of the form
𝑀𝑘+1(𝑧) = 𝑟𝑘+1𝘦𝒾𝜏𝑘+1𝑧 ,

which maps 𝑧𝑘 ≝ 𝑓𝑁𝑘(𝑧0) ∉ 𝔻0 to a point 𝑤𝑘+1 ∈ 𝒦0 and 𝑢𝑘 ≝ 𝑓𝑁𝑘(𝟏) ∈ W𝚜 to a point
𝑣𝑘+1 ∈ W𝚜, via an homothety of scaling factor 𝑟𝑘+1 = 𝜌1 ⁄ |𝑧𝑘| < 1 and a rotation of angle
|𝜏𝑘+1| ≤ min{𝜏, 𝛽−};

• 𝑛𝑘 ≝ 𝑛𝑤𝑘 = min{𝑛 ∈ ℕ ∶ 𝑔𝑛(𝑤𝑘) ∉ 𝔻0} ≤ 𝑛0.
The following properties hold, by construction:

(i) 𝑓𝑡 ∈ 𝐺2 for every 𝑡 ≥ 0,
(ii) 𝑡 ↦ 𝑓𝑡 is 𝑑∞-continuous over each interval of the form (𝑁𝑘, 𝑁𝑘+1],
(iii) 𝑓𝑡(𝑧0) ∉ 𝒞𝛽+ and 𝑓𝑡(𝟏) ∈ 𝒞𝛽+ for every 𝑡 ≥ 0.

3.10.4 Claim. For 𝑡 ≥ 0, let

𝐼𝑧0𝑡 = �̂�[𝑓𝑡(𝟏)] ∘ 𝑓𝑡 ,

where �̂�[⋅] is as in Lemma 1.19. Then, (𝐼𝑧0𝑡 )𝑡≥0 is an ℐ𝐺3-isotopy.

Proof. Since 𝑓𝑡 ∈ 𝐺2 for every 𝑡 ≥ 0, it is clear that 𝐼𝑧0𝑡 ∈ 𝐺3 for every 𝑡 ≥ 0. It is left to verify
that 𝑡 ↦ 𝐼𝑧0𝑡 defines a 𝑑∞-continuous curve of homeomorphisms. By Lemma 1.19, the mappings
𝑡 ↦ �̂�[𝑓𝑡(𝟏)] – and thus 𝑡 ↦ 𝐼𝑧0𝑡 – are a priori as continuous as 𝑡 ↦ 𝑓𝑡.
In other words, over the intervals (𝑁𝑘, 𝑁𝑘+1]. Thus, all that is needed to check is continuity from
the right at their left endpoints. Now, for each 0 < ℎ < 1:

𝐼𝑧0𝑁𝑘+ℎ = �̂�[𝑓𝑁𝑘+ℎ(𝟏)] ∘ 𝑓𝑁𝑘+ℎ

= �̂�[𝑔ℎ ∘ 𝑔0 ∘ 𝑀𝑘+1 ∘ 𝑓𝑁𝑘(𝟏)] ∘ 𝑔ℎ ∘ 𝑔0 ∘ 𝑀𝑘+1 ∘ 𝑓𝑁𝑘

= �̂�[𝑔ℎ(𝑀𝑘+1(𝑢𝑘))] ∘ 𝑔ℎ ∘ 𝑀𝑘+1 ∘ 𝑓𝑁𝑘

= �̂�[𝑔ℎ(𝑣𝑘+1)] ∘ 𝑔ℎ ∘ 𝑀𝑘+1 ∘ 𝑓𝑁𝑘 .
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But, notice that

[3.11] �̂�[𝑢𝑘] ∘ 𝑀−1
𝑘+1 ∘ 𝑀[𝑔ℎ(𝑣𝑘+1), 𝑣𝑘+1]

is a Möbius transformation fixing the poles and mapping 𝑔ℎ(𝑣𝑘+1) to 𝟏. By sharp 3-transitivity, it
must be the transformation �̂�[𝑔ℎ(𝑣𝑘+1)]. Since 𝑔ℎ

𝑑∞−−→ id as ℎ → 0+, the continuity described in
Lemma 1.19 applied to the expression [3.11] above yields:

�̂�[𝑔ℎ(𝑣𝑘+1)]
𝑑∞−−→ �̂�[𝑢𝑘] ∘ 𝑀−1

𝑘+1 ∘ 𝑀[𝑣𝑘+1, 𝑣𝑘+1]⏟⎵⎵⎵⏟⎵⎵⎵⏟
=id

= �̂�[𝑢𝑘] ∘ 𝑀−1
𝑘+1 as ℎ → 0+ .

Consequently,

𝐼𝑧0𝑁𝑘+ℎ
𝑑∞−−→ �̂�[𝑢𝑘] ∘ 𝑀−1

𝑘+1 ∘ 𝑔0 ∘ 𝑀𝑘+1⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
=id

∘𝑓𝑁𝑘 = �̂�[𝑢𝑘] ∘ 𝑓𝑁𝑘 = �̂�[𝑓𝑁𝑘(𝟏)] ∘ 𝑓𝑁𝑘 = 𝐼𝑧0𝑁𝑘
as 𝑡 → 0+ ,

thus proving the desired continuity at the instants 𝑁𝑘. □

3.10.5 Claim. 𝛾𝐼𝑧0 (𝑧0) ∩ 𝛤 = ∅ .

Proof. Notice that, since 𝑓𝑡(𝟏) ∈ 𝒞𝛽+ for every 𝑡 ≥ 0, the transformation �̂�[𝑓𝑡(𝟏)]may be explicitly
written as �̂�[𝑓𝑡(𝟏)](𝑧) = |𝑓𝑡(𝟏)|−1 𝘦𝒾𝜓 𝑧, for some |𝜓| ≤ 𝛽+. Consequently,

𝐼𝑧0𝑡 (𝑧0) = |𝑓𝑡(𝟏)|−1 𝘦𝒾𝜓 𝑓𝑡(𝑧0) .

But it is also known that 𝑓𝑡(𝑧0) ∉ 𝒞𝛽+ for every 𝑡 ≥ 0. Thus, 𝑓𝑡(𝑧0) = |𝑓𝑡(𝑧0)| 𝘦𝒾𝜃, where either
𝛽+ < 𝜃 < 𝜋 − 𝛽+ or 𝜋 + 𝛽+ < 𝜃 < 2𝜋 − 𝛽+. Therefore, −𝛽+ ≤ 𝜓 ≤ 𝛽+ implies 𝜃 + 𝜓 ∉ {0, 𝜋, 2𝜋}.
Since

𝐼𝑧0𝑡 (𝑧0) = |𝑓𝑡(𝑧0)||𝑓𝑡(𝟏)|
−1 𝘦𝒾 (𝜃+𝜓) .

we conclude that 𝜃(𝐼𝑧0𝑡 (𝑧0)) ∉ {0, 𝜋, 2𝜋} for every 𝑡 ≥ 0. In other words, the trajectory 𝛾𝐼𝑧0 (𝑧0)
remains on the upper half-plane without ever touching the 𝑥-axis or – equivalently – remains on the
left hemisphere of the sphere without ever touching the meridian 𝛤 . This proves 1). □

3.10.6 Claim. 𝑓𝑡(𝟏) → 𝟎 as 𝑡 → +∞.

Proof. Further shrinking 𝔻0 if necessary, we may assume that |𝑔(𝑧)| < |𝑧| for every 𝑧 ∈ W𝚜. Then,
since |𝑢𝑘| = |𝑔𝑛𝑘(𝑣𝑘)| < |𝑣𝑘| and |𝑣𝑘+1| = 𝑟𝑘+1|𝑢𝑘|,

|𝑣𝑘+1| ≤ (𝜌1 ∕ 𝜌0)
𝑘+1 .

But on each interval (𝑁𝑘, 𝑁𝑘+1], we have 𝑓𝑡(𝟏) = 𝑔𝑡−⌊𝑡⌋ ∘ 𝑔⌊𝑡⌋−𝑁𝑘(𝑣𝑘+1). As 𝑡 ranges through this
interval, the quantity 𝑡 − ⌊𝑡⌋ ranges over the interval [0, 1], and the quantity ⌊𝑡⌋ −𝑁𝑘 ranges through
{0,… , 𝑛𝑘+1} ⊂ {0,… , 𝑛0}. Thus,

[3.12] sup{|𝑓𝑡(𝟏)| ∶ 𝑡 > 𝑁𝑘} ≤ max{||𝑔𝑖𝑠(𝑧)|| ∶ 𝑠 ∈ 𝕀 , 1 ≤ 𝑖 ≤ 𝑛0 and 𝑧 ∈ 𝔻(𝜌1 ⁄𝜌0)𝑘+1(𝟎)} ,

where the right-hand side is seen to be a finite positive number, by compacity of all the sets involved
along with the isotopy’s joint continuity.
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Let 𝜀 > 0 be given. Since each (𝑔𝑖𝑡)𝑡∈𝕀 is an isotopy fixing the origin, Lemma 1.9 yields 𝜂 > 0 such that
|𝑔𝑖𝑠(𝑧)| < 𝜀 for every 𝑠 ∈ 𝕀 and 1 ≤ 𝑖 ≤ 𝑛0, whenever |𝑧| < 𝜂. Consequently, if 𝑘0 ∈ ℕ is so large that
(𝜌1 ⁄ 𝜌0)𝑘0+1 < 𝜂, [3.12] implies |𝑓𝑡(𝟏)| < 𝜀 whenever 𝑡 > 𝑁𝑘0 , establishing the claimed limit. □

We are, now, ready to finish the proof of the Fundamental Lemma. We know that 𝑓𝑡(𝑧0) =
𝑔𝑡−⌊𝑡⌋ ∘ 𝑔⌊𝑡⌋−𝑁𝑘(𝑤𝑘+1) on each interval (𝑁𝑘, 𝑁𝑘+1], where 𝑤𝑘 ∈ 𝒦0 for every 𝑘 ∈ ℕ. Observing the
same ranges as in the proof of Claim 3.10.6 above we see that, for every 𝑡 ≥ 0,

𝑓𝑡(𝑧0) ∈ 𝒦 ≝ {𝑔𝑖𝑠(𝑧) ∶ 𝑠 ∈ 𝕀 , 1 ≤ 𝑖 ≤ 𝑛0 and 𝑧 ∈ 𝒦0} .

Therefore, the segments of the trajectory 𝛾𝐼𝑧0 (𝑧0) corresponding to large instants 𝑡 are contained
within the corresponding �̂�[𝑓𝑡(𝟏)](𝒦) sets. However,𝒦 is a compact set bounded away from 𝟎, by
the injectivity of the diffeomorphisms 𝑔𝑖𝑠. Since 𝑓𝑡(𝟏) → 𝟎 as 𝑡 → +∞, these sets are dragged towards
infinity in the Hausdorff distance as 𝑡 → +∞, as described by Lemma 1.19. Consequently, the only
point in the trajectory’s accumulation can be∞, proving 2). ▨

As important as the Fundamental Lemma itself is the following Corollary, which states that
isotopies can be build in the subgroup𝐺3 accumulating at any given pair a, b ∈ {𝟎, 𝟏,∞} of reference
points.

3.11 Corollary. Let 𝐺 ⊂ Diff 1+(𝕊2) be a proper extension of Möb(𝕊2). Then, for each 𝑧0 not on
the meridian 𝛤 and each pair of distinct points a, b ∈ {𝟎, 𝟏,∞} there exists a full-time ℐ𝐺3 isotopy
(𝐼𝑧0ab (𝑡, ⋅))𝑡∈ℝ such that:

1) the trajectory of 𝑧0 under 𝐼𝑧0ab does not intercept 𝛤 ,
2) the 𝛼 and 𝜔 limits of 𝑧0 satisfy 𝛼𝐼𝑧0ab (𝑧0) = {a} and 𝜔

𝐼𝑧0ab
(𝑧0) = {b}.

Proof. Let 𝑧0 ∉ 𝛤 and a, b ∈ {𝟎, 𝟏,∞} be given. Upon recalling Table 1.2, we see that neither
𝑇∞b(𝑧0) nor 𝑇∞a(𝑧0) lie on 𝛤 , so the Fundamental Lemma 3.10 can be applied to both of them,
yielding ℐ𝐺3 isotopies (𝐼𝑇∞b(𝑧0)

𝑡 )
𝑡≥0

and (𝐼𝑇∞a(𝑧0)
𝑡 )

𝑡≥0
as described therein, from which we define

𝐼𝑧0ab ∶ ℝ × 𝕊2 → 𝕊2 as:

𝐼𝑧0ab (𝑡, 𝑧) = {
𝑇∞b ∘ 𝐼𝑇∞b(𝑧0)

𝑡 ∘ 𝑇∞b (𝑧) if 𝑡 ≥ 0 ,

𝑇∞b ∘ 𝐼𝑇∞a(𝑧0)
−𝑡 ∘ 𝑇∞b (𝑧) if 𝑡 ≤ 0 .

Now, each mapping 𝐼𝑧0ab↾[0,+∞)×𝕊2 and 𝐼𝑧0ab↾(−∞,0]×𝕊2 is itself an isotopy, and they agree in the
common slice {0} × 𝕊2, both being equal to id𝕊2 there. Consequently, 𝐼𝑧0𝑎𝑏 defines a global jointly
continuous function of the variables (𝑡, 𝑧) ∈ ℝ × 𝕊2. The statements then follow from the
Fundamental Lemma, recalling that each 𝑇ab preserves 𝛤 , and also that reversion of time turns the
𝜔-limit into the 𝛼-limit. ▨
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Chapter 4

Transitivity and entropy

4.1 A crossing lemma

The Fundamental Lemma 3.10 and its Corollary 3.11 gave us insight on how points in 𝕊2 ⧵ 𝛤
can be moved under the action of the stabilising subgroup 𝐺3 of a proper extension 𝐺 ⊂ Diff 1+(𝕊2)
of Möb(𝕊2). We now wish to understand how this same subgroup acts on 𝛤 . Our ultimate goal is to
prove that it can take points “from one side of 𝛤 to the other”. To make this idea precise, we start by
recalling some elementary facts about the stability of transverse intersections.

4.1 Lemma. Let C be an embedded planar curve of class 𝐶1. If 𝜆 ∶ 𝕀 → ℝ is a given 𝐶1(𝕀, ℝ2) path
that intersects C transversally at 𝜆(𝑡0), then there exist 𝜀 > 0 and 𝛿 > 0 such that, for every path 𝛽
that is 𝐶1 𝜀-close to 𝜆,

||𝛽((𝑡0 − 𝛿, 𝑡0 + 𝛿)) ∩ C|| = 1 .

Furthermore, this unique intersection is transversal as well. Above:
• transversal means that the directions of the velocity vector 𝜆′(𝑡0) and of the (one-
dimensional) tangent space 𝑇𝜆(𝑡0)C are linearly independent;

• 𝐶1 𝜀-close means that both 𝛽 and 𝛽′ are 𝜀-close to 𝜆 and 𝜆′, in the following sense:

[4.1] |𝛽(𝑡) − 𝜆(𝑡)| ≤ 𝜀 and |𝛽′(𝑡) − 𝜆′(𝑡)| ≤ 𝜀 for every 𝑡 ∈ 𝕀 .

Proof. By the local characterisation of embedded submanifolds, C admits a slice-chart (𝑊,𝛷)
around 𝜆(𝑡0). That is to say, a 𝐶1 diffeomorphism 𝛷 ∶ 𝑊 → 𝛷(𝑊) from an open set onto its image
such that 𝛷(𝜆(𝑡0)) = (0, 0) and 𝛷(C ∩𝑊) = {(0, 𝑦) ∶ 𝑦 ∈ ℝ} ∩ 𝛷(𝑊).

Let 𝐽 be the connected component of 𝜆−1(𝑊) containing 𝑡0. It may be assumed to be an open
interval of 𝕀, containing 𝑡0 in its interior. Thus, by letting ̃𝜆 ≝ 𝛷 ∘ 𝜆 ∶ 𝐽 → �̃� one obtains a 𝐶1 path,
of components ̃𝜆 = ( ̃𝜆1, ̃𝜆2).

Since D𝛷(𝜆(𝑡0)) is a linear isomorphism, it preserves linear independence and, consequently,
transversality. Given that C corresponds under 𝛷 to a vertical segment, this translates to ̃𝜆′1(𝑡0) ≠ 0.
Say, without loss of generality, that ̃𝜆1(𝑡0) = 0 and ̃𝜆1′(𝑡0) = 𝑐 < 0. Upon looking at the continuously
differentiable real function ̃𝜆1 ∶ 𝐽 → ℝ, it is then possible to find – as suggested by Figure 4.1 – some
𝛿 > 0 such that [𝑡0 − 𝛿, 𝑡0 + 𝛿] ⊂ 𝐽,

[4.2] ̃𝜆1(𝑡0 − 𝛿) = 𝑎 > 0 , ̃𝜆1(𝑡0 + 𝛿) = 𝑏 < 0 and max
[𝑡0−𝛿,𝑡0+𝛿]

̃𝜆′1 =
𝑐
2 < 0 .
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Figure 4.1 – A slice chart rectifies 𝐶 and turns 𝜆 into a path whose horizontal component is monotone on a
small neighbourhood of the instant 𝑡0, yielding stability of the transversal intersection.
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Given such 𝛿, 𝐿 ≝ 𝜆([𝑡0 − 𝛿, 𝑡0 + 𝛿]) is a compact subset of the open set𝑊 , and thus admits a
neighbourhood fully contained within𝑊 , say 𝐿𝜌 ≝ {𝑞 ∶ dist(𝑞, 𝐿) ≤ 𝜌} ⊂ 𝑊 . Let ̃𝜀 = min{𝑎, |𝑏|, |𝑐|} ⁄
2 > 0. Since D𝛷 is uniformly continuous on the compact set 𝐿𝜌, we may fix 𝜂 > 0 such that

[4.3] ‖D𝛷(𝑧) − D𝛷(𝑤)‖ < ̃𝜀
2𝑚 whenever 𝑧, 𝑤 ∈ 𝐿𝜌 and |𝑧 − 𝑤| < 𝜂 , where𝑚 = max

[𝑡0−𝛿,𝑡0+𝛿]
|𝜆′| > 0 .

Also, we have𝑀 ≝ max𝐿𝜌‖D𝛷‖ < +∞.
It is claimed that, upon defining 𝜀 = min{𝜌, 𝜂, ̃𝜀 ⁄ (2𝑀)} > 0, if 𝛽 is 𝐶1 𝜀-close to 𝜆, then

̃𝛽 ≝ 𝛷 ∘ 𝛽↾𝐽 is 𝐶1 ̃𝜀-close to ̃𝜆 in [𝑡0 − 𝛿, 𝑡0 + 𝛿]. Indeed, on the one hand the Mean Value Inequality
yields:

|| ̃𝛽(𝑡) − ̃𝜆(𝑡)|| = |𝛷(𝛽(𝑡)) − 𝛷(𝜆(𝑡))| ≤ ( max
[𝜆(𝑡),𝛽(𝑡)]

‖D𝛷‖)|𝛽(𝑡) − 𝜆(𝑡)| .

But, since |𝛽(𝑡) − 𝜆(𝑡)| ≤ 𝜀 ≤ 𝜌, the segment [𝜆(𝑡), 𝛽(𝑡)] is contained in 𝐿𝜌. Therefore:

|| ̃𝛽(𝑡) − ̃𝜆(𝑡)|| = |𝛷(𝛽(𝑡)) − 𝛷(𝜆(𝑡))| ≤ 𝑀𝜀 ≤ 𝑀( ̃𝜀
2𝑀) = ̃𝜀

2 .

On the other hand, as long as 𝑡 ∈ [𝑡0 − 𝛿, 𝑡0 + 𝛿]:

|| ̃𝛽′(𝑡) − ̃𝜆′(𝑡)|| = ||D𝛷(𝛽(𝑡))(𝛽′(𝑡)) − D𝛷(𝜆(𝑡))(𝜆′(𝑡))||
≤ ||D𝛷(𝛽(𝑡))(𝛽′(𝑡)) − D𝛷(𝛽(𝑡))(𝜆′(𝑡))|| + ||D𝛷(𝛽(𝑡))(𝜆′(𝑡)) − D𝛷(𝜆(𝑡))(𝜆′(𝑡))||
≤ ‖D𝛷(𝛽(𝑡))‖ ||𝛽′(𝑡) − 𝜆′(𝑡)|| + ‖D𝛷(𝛽(𝑡)) − D𝛷(𝜆(𝑡))‖ ||𝜆′(𝑡)||
≤ 𝑀 ||𝛽′(𝑡) − 𝜆′(𝑡)|| + ‖D𝛷(𝛽(𝑡)) − D𝛷(𝜆(𝑡))‖𝑚 ,

where the Mean Value Inequality was once again used, along with the fact that 𝛽(𝑡) ∈ 𝐿𝜌. Since
||𝛽(𝑡) − 𝜆(𝑡)|| ≤ 𝜀 ≤ 𝜂, one can plug the estimate from [4.3] in the above inequality, along with the
fact that ||𝛽′(𝑡) − 𝜆′(𝑡)|| ≤ 𝜀 ≤ ̃𝜀 ⁄ (2𝑀), to obtain:

|| ̃𝛽′(𝑡) − ̃𝜆′(𝑡)|| ≤ 𝑀( ̃𝜀
2𝑀) + ( ̃𝜀

2𝑚)𝑚 = ̃𝜀
2 +

̃𝜀
2 = ̃𝜀 .

Since 𝑡 ∈ [𝑡0−𝛿, 𝑡0+𝛿]was arbitrary, this establishes the desired𝐶1 ̃𝜀-closeness, fromwhich follows

̃𝛽1(𝑡0 + 𝛿) ≤ ̃𝜆1(𝑡0 + 𝛿) + ̃𝜀 = 𝑏 + ̃𝜀 ≤ 𝑎 + (−𝑏2) =
𝑏
2 < 0 .
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Analogously, ̃𝛽1(𝑡0 − 𝛿) > 0. Therefore, there exists at least one ̄𝑡 ∈ (𝑡0 − 𝛿, 𝑡0 + 𝛿) such that
̃𝛽1( ̄𝑡) = 0. However, the last condition in [4.2] ensures that ̃𝜆′1 is never zero on this interval, from

which it follows that such ̄𝑡 is unique.
Since ̃𝜆1( ̄𝑡) = 0 is equivalent to ̃𝜆( ̄𝑡) in the vertical segment 𝛷(C), and ̃𝜆′1( ̄𝑡) ≠ 0 is equivalent

to say that this intersection is transversal, the result just obtained translates under𝛷−1 to a (unique)
transversal intersection between C and 𝛽, at ̄𝑡 ∈ (𝑡0 − 𝛿, 𝑡0 + 𝛿). ▨

Given 𝑟 > 0, we let 𝛾𝑟 ∶ 𝕀 → ℝ be the path 𝛾𝑟(𝜃) = 𝑟𝘦2𝜋𝒾𝜃 and denote its image – the circle of
radius 𝑟 centred at the origin – by 𝑆𝑟 = 𝛾𝑟(𝕀) . In particular, when 𝑟 = 1, 𝑆1 is the unit circle 𝕊1. If
𝑔 ∈ Diff 1(ℝ) is a planar diffeomorphism fixing the origin, then

[4.4] 𝑔 ∘ 𝛾𝑟
𝑟

𝐶1(𝕀,ℝ2)
−−−−−−→ D𝑔(𝟎) ∘ 𝛾1 as 𝑟 → 0+ ,

where the above 𝐶1(𝕀, ℝ2) convergence refers to [4.1]. Indeed, for each 𝜃 ∈ 𝕀:

(𝑔 ∘ 𝛾𝑟𝑟 )(𝜃) =
𝑔(𝑟𝘦2𝜋𝒾𝜃)

𝑟 and (D𝑔(𝟎) ∘ 𝛾1)(𝜃) = D𝑔(𝟎)(𝘦2𝜋𝒾𝜃) .

Thus, using basic linearity properties of the derivative:

(𝑔 ∘ 𝛾𝑟𝑟 )
′
(𝜃) = 2𝜋D𝑔(𝑟𝘦2𝜋𝒾𝜃)(𝒾𝘦2𝜋𝒾𝜃) and (D𝑔(𝟎) ∘ 𝛾1)

′(𝜃) = 2𝜋D𝑔(𝟎)(𝒾𝘦2𝜋𝒾𝜃) .

If we let 𝜀 > 0 be given,
• by differentiability, we obtain 𝜂1 > 0 such that |𝑔(𝑧) − D𝑔(𝟎)(𝑧)|

|𝑧| < 𝜀 for 0 < |𝑧| < 𝜂1;

• by 𝐶1 regularity, we obtain 𝜂2 > 0 such that ‖D𝑔(𝑧) − D𝑔(𝟎)‖ < 𝜀
2𝜋 when |𝑧| < 𝜂2.

Let us define 𝜂 ≝ min{𝜂1, 𝜂2}. When 0 < 𝑟 < 𝜂, any point of of the form 𝑧 = 𝛾𝑟(𝜃) satisfies the above
conditions. Therefore, uniformly for 𝜃 ∈ 𝕀:

||(
𝑔 ∘ 𝛾𝑟
𝑟 )(𝜃) − (D𝑔(𝟎) ∘ 𝛾1)(𝜃)|| =

||𝑔(𝑟𝘦2𝜋𝒾𝜃) − D𝑔(𝟎)(𝑟𝘦2𝜋𝒾𝜃)||
𝑟 = |𝑔(𝑧) − D𝑔(𝟎)(𝑧)|

|𝑧| < 𝜀

and
|||(
𝑔 ∘ 𝛾𝑟
𝑟 )

′
(𝜃) − (D𝑔(𝟎) ∘ 𝛾1)

′(𝜃)||| = ||2𝜋D𝑔(𝑟𝘦2𝜋𝒾𝜃)(𝒾𝘦2𝜋𝒾𝜃) − 2𝜋D𝑔(𝟎)(𝒾𝘦2𝜋𝒾𝜃)||

≤ 2𝜋‖‖D𝑔(𝑟𝘦2𝜋𝒾𝜃) − D𝑔(𝟎)‖‖ ||𝒾𝘦2𝜋𝒾𝜃||

= 2𝜋‖D𝑔(𝑧) − D𝑔(𝟎)‖ < 2𝜋( 𝜀2𝜋) = 𝜀 ,

establishing [4.4]. If we further assume that the fixed point is a hyperbolic saddle, the routine
calculations above yield a description of the curves 𝑔(𝑆𝑟) for small values of the parameter 𝑟, as
summarised by the following Lemma.

4.2 Lemma. Let 𝑔 ∈ Diff 1+(ℝ2) be a planar diffeomorphism fixing the origin such that D𝑔(𝟎) is a
hyperbolic saddle. Then, for any sufficiently small 𝑟 > 0, 𝑆𝑟 ∩ 𝑔(𝑆𝑟) consists of exactly four points.

Proof. Given that D𝑔(𝟎) is a hyperbolic saddle matrix, D𝑔(𝟎)(𝑆1) is an ellipse having semi-major
axis of length strictly smaller than one and semi-minor axis of length strictly greater than one. Thus,
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||𝑆1 ∩ D𝑔(𝟎)(𝑆1)|| = 4, and all four intersections are non-tangential or, equivalently, transversal, as
pictured in Figure 4.2.

Figure 4.2 – An ellipse centred at the origin for which none of the axis have unit length meets the unit circle
transversely in four points.
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Under the usual parameterisation 𝛾1 of 𝑆1, each such intersection point 𝑝𝑗 , 1 ≤ 𝑗 ≤ 4, is
correspondent to a transversal intersection of the 𝐶∞ path 𝜆 ≝ D𝑔(𝟎) ∘ 𝛾1 with the embedded
curve C = 𝑆1 at 𝑝𝑗 = 𝜆(𝑡𝑗), for some 𝑡1,… , 𝑡4 ∈ 𝕀. Thus, we may use Lemma 4.1 finitely many
times to obtain 𝜀 > 0 and 𝛿 > 0 such that, for every path 𝛽 which is 𝐶1 𝜀-close to 𝜆, we have
||𝛽((𝑡𝑗 − 𝛿, 𝑡𝑗 + 𝛿)) ∩ 𝑆1|| = 1.

Let𝒦 ≝ 𝕀⧵(⋃4
𝑗=1(𝑡𝑗 −𝛿𝑗 , 𝑡𝑗 +𝛿𝑗)). The set𝒦 is compact, and so is its image 𝜆(𝒦). Also, since

𝜆(𝒦) ∩ 𝑆1 = ∅, the distance between these two nonempty compact sets is positive, say 𝜌 > 0.
In otherwords, 𝑧 ∈ 𝜆(𝒦) and |𝑤−𝑧| < 𝜌 simultaneously imply𝑤 ∉ 𝑆1. Let 𝜀0 ≝ min{𝜀, 𝜌} > 0.

By [4.4] there exists 𝑟0 such that (𝑔 ∘ 𝛾𝑟) ∕ 𝑟 is 𝐶1 𝜀0-close to D𝑔(𝟎) ∘ 𝛾1 = 𝜆 for every 0 < 𝑟 < 𝑟0.
Therefore:

• since 𝜀0 ≤ 𝜀, each path 𝑔 ∘ 𝛾𝑟 has a single intersection point with 𝑆1 at each one of the
intervals (𝑡𝑗 − 𝛿, 𝑡𝑗 + 𝛿), for 1 ≤ 𝑗 ≤ 4;

• since 𝜀0 ≤ 𝜌, the path (𝑔 ∘ 𝛾𝑟) ∕ 𝑟 does not intercept 𝑆1 for instants in𝒦, since its image is at
distance at most 𝜀0 from the image of 𝜆.

Figure 4.3 – Disjoint compact segments can be isolated from the circle by tubular neighbourhoods, while
the intersection number remains stable around the intersection points.
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These two facts are pictorially conveyed in Figure 4.3. Putting them together, we see that:

|||(
𝑔 ∘ 𝛾𝑟
𝑟 )(𝕀) ∩ 𝑆1

||| = 4 or, equivalently, ||(𝑔 ∘ 𝛾𝑟)(𝕀) ∩ 𝑟𝑆1|| = 4 ,

since 𝑧 ↦ 𝑟0𝑧 is a bijection of the plane. But 𝑟𝑆1 = 𝑆𝑟 and (𝑔 ∘ 𝛾𝑟)(𝕀) = 𝑔(𝛾𝑟(𝕀)) = 𝑔(𝑆𝑟0), so the
desired result follows. ▨
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When the previous Lemma 4.2 is combined with the Extension Lemma 2.10, it yields a first
glance at the action of 𝐺3 on 𝛤 , as described below.

4.3 The 4-point Lemma. Let 𝐺 ⊂ Diff 1+(𝕊2) be a proper extension of Möb(𝕊2). Then, there exists
an ℐ𝐺3 isotopy (𝑘𝑡)𝑡∈𝕀 such that ||𝑘1(𝛤) ∩ 𝛤|| = 4.

Proof. By the Extension Lemma 2.10, it is known that there exists an ℐ𝐺2-isotopy (𝑔𝑡)𝑡∈𝕀 such that
𝑔 ≝ 𝑔1 has a hyperbolic saddle fixed point at 𝟎. Moving to the plane ℝ2 ≃ 𝕊2 ⧵ {∞}, we may fix a
sufficiently small 0 < 𝑟0 < 1 such that ||𝑆𝑟0 ∩ 𝑔(𝑆𝑟0)|| = 4, by Lemma 4.2.

Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑆𝑟0 be four consecutive points in the usual anticlockwise cyclic order, and such
that 𝑆𝑟0∩𝑔(𝑆𝑟0) = {𝑔(𝑎), 𝑔(𝑏), 𝑔(𝑐), 𝑔(𝑑)}. Then,wemay consider the unique𝑀0 ∈ Möb(𝕊2)mapping
the ordered triple (𝟎, 𝟏,∞) onto (𝑎, 𝑏, 𝑐). Notice that 𝑀0 = �̂�[𝑎, 𝑏, 𝑐]−1 and that 𝑀0(𝛤) = 𝑆𝑟0 , as
pictured in Figure 4.4. Let

𝑘𝑡 ≝ �̂�[𝑔𝑡(𝑎), 𝑔𝑡(𝑏), 𝑔𝑡(𝑐)] ∘ 𝑔𝑡 ∘ 𝑀0 , 0 ≤ 𝑡 ≤ 1 .

Figure 4.4 – Given that the Möbius group is sharply 3-transitive and preserves both circles and orientation,
𝑀0 takes the meridian 𝛤 onto the circle 𝑆𝑟0 , in an order-preserving way.
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By the continuity described in [1.11], we obtain an ℐ𝐺3-isotopy (𝑘𝑡)𝑡∈𝕀. Since𝑀0 is a bijection of the
sphere:

||𝑘1(𝛤) ∩ 𝛤|| = ||𝑀0(𝑘1(𝛤) ∩ 𝛤)||
= ||𝑀0(𝑘1(𝛤)) ∩ 𝑀0(𝛤)||
= ||𝑀0 ∘ �̂�[𝑔(𝑎), 𝑔(𝑏), 𝑔(𝑐)] ∘ 𝑔 ∘ 𝑀0(𝛤) ∩ 𝑀0(𝛤)||
= ||(𝑀0 ∘ �̂�[𝑔(𝑎), 𝑔(𝑏), 𝑔(𝑐)]) ∘ 𝑔(𝑀0(𝛤)) ∩ 𝑀0(𝛤)||
= ||𝑔(𝑆𝑟0) ∩ 𝑆𝑟0 || = 4 . ▨

Even more important than the 4-point Lemma 4.3 is its Corollary 4.5, which we shall present
now. Before doing so, however, we introduce some useful notations to easily describe the geometry
of the meridian 𝛤 in a familiar fashion.

4.4 Definition. Consider finite points 𝑎, 𝑏 on the meridian 𝛤 to be identified with their real
counterparts on the 𝑥-axis, and the natural ordering induced accordingly. Whenever 𝑎 ≤ 𝑏 with
respect to this order,
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• [𝑎∶𝑏] denotes the arc of 𝛤 with endpoints 𝑎, 𝑏 and not containing ∞, which corresponds
under stereographic projection𝛹𝘕 to the compact segment of the 𝑥-axis with the associated
endpoints;

• [𝑏∶𝑎] denotes the arc of 𝛤 with endpoints 𝑎, 𝑏 and containing∞, which projects under 𝛹𝘕

onto (−∞, 𝑎] ∪ [𝑏, +∞).
If 𝑏 = ∞, then the corresponding arcs are defined via stereographic projection as

[∞∶𝑎] = 𝛹−1
𝘕 ((−∞, 𝑎]) ∪ {∞} and [𝑎∶∞] = 𝛹−1

𝘕 ([𝑎, +∞)) ∪ {∞} .

Lastly, open and half-open arcs of 𝛤 are defined accordingly by deletion of the suitable endpoints
from the corresponding closed arcs.

4.5 Corollary. Let 𝐺 ⊂ Diff 1+(𝕊2) be a proper extension of Möb(𝕊2). Then, for a given 𝑧0 ∈
𝛤 ⧵ {𝟎, 𝟏,∞} there exists an ℐ𝐺3-isotopy (ℎ𝑡)𝑡∈𝕀 (depending on 𝑧0) such that ℎ1(𝑧0) ∉ 𝛤 .

Proof. In the language of the previous 4-point Lemma 4.3, let 𝑘1(𝛤) ∩ 𝛤 = {𝟎, 𝟏,∞,𝑤0}. If 𝑘1(𝑧0) ≠
𝑤0, it suffices to consider ℎ𝑡 = 𝑘𝑡 for every 0 ≤ 𝑡 ≤ 1. Otherwise, assume for concreteness that
𝑧0 ∈ ]𝟎∶𝟏[ — analogous reasonings apply to the other cases. Let 𝑀 ∈ Möb(𝕊2) be such that
𝑀(𝟎) = 𝟏, 𝑀(𝟏) = ∞ and 𝑀(∞) = 𝟎. Upon defining ℎ𝑡 ≝ 𝑀−1 ∘ 𝑘𝑡 ∘ 𝑀, where 𝑘𝑡 is as given
in the 4-point Lemma 4.3 for 0 ≤ 𝑡 ≤ 1, we obtain a new ℐ𝐺3 isotopy (ℎ𝑡)𝑡∈𝕀.

Notice that 𝑀 leaves 𝛤 invariant, and 𝑀↾𝛤 acts as an interval exchange transformation free
of fixed points. In particular, ̃𝑧0 ≝ 𝑀(𝑧0) ≠ 𝑧0, and thus 𝑘1( ̃𝑧0) ∉ 𝛤 . Consequently, ℎ1(𝑧0) =
𝑀−1(𝑘1( ̃𝑧0)) ∉ 𝛤 as well. ▨

We are, now, ready to prove our Crossing Lemma, a key step towards establishing connectivity
within the subgroup𝐺3. Once it is done, we can proceed to the proofs of this essay’s main theorems.

4.6 The Crossing Lemma. Let 𝐺 ⊂ Diff 1+(𝕊2) be a proper extension of Möb(𝕊2). Then, there exist
a point ̂𝑧 on the open segment ]𝟎∶𝟏[ of 𝛤 and an ℐ𝐺3-isotopy (𝐽𝑡)𝑡∈[−1,1] such that:

1) the trajectory of ̂𝑧 under 𝐽 only intercepts 𝛤 on the arc ]𝟎∶𝟏[,
2) 𝐽−1( ̂𝑧) ∈ ℋ− and 𝐽1( ̂𝑧) ∈ ℋ+.

Proof. By Corollary 4.5, we may fix an ℐ𝐺3-isotopy (ℎ𝑡)𝑡∈𝕀 and a point 𝑧0 ∈ 𝛤 such that ℎ1(𝑧0) ∉ 𝛤 .
Suppose first that ℎ1(𝑧0) ∈ ℋ+, and let 𝐷 be a disk centred at ℎ1(𝑧0), contained withinℋ+. Then,
ℎ−11 (𝐷) is an open neighbourhood of 𝑧0 ∈ 𝛤 = 𝜕ℋ− and thus contains a point 𝑢0 ∈ ℎ−11 (𝐷) ∩ℋ−.

Consider the continuous path 𝛾 ∶ 𝕀 → 𝕊2 given by 𝛾(𝑡) ≝ ℎ𝑡(𝑢0), that describes the
trajectory of 𝑢0 under the isotopy ℎ. This path has the following properties: 𝛾(0) = 𝑢0 ∈ ℋ− and
𝛾(1) = ℎ1(𝑢0) ∈ ℋ+. It therefore intercepts the common boundary 𝜕ℋ− = 𝜕ℋ+ = 𝛤 at least once.
In particular, the three sets 𝛾−1(ℋ−), 𝛾−1(𝛤) and 𝛾−1(ℋ+) are all nonempty and form a partition of
𝕀. Let

𝑡− ≝ sup {𝛾−1(ℋ−)} and 𝑡+ ≝ inf {𝛾−1(ℋ+) ∩ [𝑡−, 1]} .

4.6.1 Claim. 0 < 𝑡− ≤ 𝑡+ < 1, and [𝑡−, 𝑡+] ⊂ 𝛾−1(𝛤) or, in other words, 𝛾([𝑡−, 𝑡+]) ⊂ 𝛤 .

Proof. Since 𝛾−1(ℋ−) is open in 𝕀 and 0 ∈ 𝛾−1(ℋ−), certainly 𝑡− = sup{𝛾−1(ℋ−)} > 0. On the other
hand, since 1 ∈ 𝛾−1(ℋ+), which is an open set in 𝕀 disjoint from 𝛾−1(ℋ−), we must have 𝑡− < 1.
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In particular, 𝛾−1(ℋ+)∩[𝑡−, 1] is nonempty and bounded from below by 𝑡−, thus admitting a certain
infimum 𝑡+, which must be ≥ 𝑡− (by definition) and strictly smaller than 1 (by the openness of
𝛾−1(ℋ+)).
Lastly, we notice that:
• 𝑡 > 𝑡− implies 𝑡 ∉ 𝛾−1(ℋ−), which in turn implies 𝛾(𝑡) ∈ ℋ+;
• 𝑡− < 𝑡 < 𝑡+ implies 𝑡 ∉ 𝛾−1(ℋ+), which in turn implies 𝛾(𝑡) ∈ ℋ−.
In other words, 𝛾(𝑡) ∈ ℋ+ ∩ ℋ− = 𝛤 for every 𝑡 ∈ (𝑡−, 𝑡+), meaning that (𝑡−, 𝑡+) ⊂ 𝛾−1(𝛤). But
𝛾−1(𝛤) is a closed subset of 𝕀, so [𝑡−, 𝑡+] ⊂ 𝛾−1(𝛤) follows. □

Now, since the image of 𝛾 cannot intercept {𝟎, 𝟏,∞}, the set 𝛾([𝑡−, 𝑡+]) must be a compact
arc contained within one of the three connected components of 𝛤 ⧵ {𝟎, 𝟏,∞}. In particular, it is at
a positive distance 𝜌 > 0 from those three points. Given such 𝜌, by continuity of 𝛾 we may obtain
𝛿 > 0 with the following properties:

[4.5]
𝑠 ∈ 𝕀 and |𝑠 − 𝑡−| < 𝛿 imply 𝑑(𝛾(𝑠), 𝛾(𝑡−)) < 𝜌 ;
𝑠 ∈ 𝕀 and |𝑠 − 𝑡+| < 𝛿 imply 𝑑(𝛾(𝑠), 𝛾(𝑡+)) < 𝜌 .

But then, by the definitions of supremum and infimum we may find points of the form 𝑡− − 𝛿− ∈
𝛾−1(ℋ−) and 𝑡+ + 𝛿+ ∈ 𝛾−1(ℋ+) satisfying 𝑡− − 𝛿 < 𝑡− − 𝛿− < 𝑡− ≤ 𝑡+ < 𝑡+ + 𝛿+ < 𝑡+ + 𝛿, as
conveyed in Figure 4.5.

Figure 4.5 – After leaving the eastern hemisphere, the isotopy path of 𝑢0 under ℎmay remain trapped on a
compact segment of 𝛤 ⧵ {𝟎, 𝟏,∞} before entering the western hemisphere.
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Let 𝜎 ∶ [−1, 1] → [𝑡− − 𝛿−, 𝑡+ + 𝛿+] be any increasing homeomorphism such that 𝜎(0)
is the midpoint of the interval [𝑡−, 𝑡+], say piecewise linear for concreteness. Upon defining ̃𝐽 ∶
[−1, 1] × 𝕊2 → 𝕊2 as

̃𝐽 (𝑡, 𝑧) = ̃𝐽𝑡(𝑧) ≝ ℎ𝜎(𝑡) ∘ ℎ−1𝜎(0) (𝑧) ,

we readily see that ( ̃𝐽)𝑡∈[−1,1] is an ℐ𝐺3-isotopy. Furthermore, letting ̃𝑧 = 𝛾(𝜎(0)) = ℎ𝜎(0)(𝑢0) ∈ 𝛤 ,
we have ̃𝐽1( ̃𝑧) = 𝛾(𝑡+ + 𝛿+) ∈ ℋ+ and ̃𝐽−1( ̃𝑧) = 𝛾(𝑡− − 𝛿−) ∈ ℋ−.
Lastly, observing the range of 𝜎 we may describe the trajectory of ̃𝑧 under ̃𝐽 as:

𝛾 ̃𝐽( ̃𝑧) = { ̃𝐽𝑡( ̃𝑧) ∶ −1 ≤ 𝑡 ≤ 1} = {ℎ𝜎(𝑡)(𝑢0) ∶ −1 ≤ 𝑡 ≤ 1}
= {ℎ𝑠(𝑢0) ∶ 𝑡− − 𝛿− ≤ 𝑠 ≤ 𝑡+ + 𝛿+}
= {𝛾(𝑠) ∶ 𝑡− − 𝛿− ≤ 𝑠 ≤ 𝑡+ + 𝛿+} = 𝛾([𝑡− − 𝛿−, 𝑡+ + 𝛿+]) .



60

In particular, the choice of 𝜌 along with [4.5] implies that any point in 𝛾 ̃𝐽( ̃𝑧)∩𝛤 must lie in the same
connected component of 𝛤⧵{𝟎, 𝟏,∞} as the one containing the segment 𝛾([𝑡−, 𝑡+]), which is, in turn,
precisely the one containing ̃𝑧.

If this component happens to be ]𝟎∶𝟏[, as already pictured in Figure 4.5, we may let 𝐽 = ̃𝐽 and
̂𝑧 = ̃𝑧 to accomplish the Lemma’s statement. Otherwise, consider 𝛤 endowed with its cyclic order
induced by the real line. If ̃𝑧 ∈ ]a∶b[ and {c} = {𝟎, 𝟏,∞} ⧵ {a, b},let �̂�[a, b, c] be the unique Möbius
transformation performing the associations described in [1.10], where now a, b, c were allowed to
be 𝟎, 𝟏 or∞ as well. Then, since �̂�[a, b, c] applies ]a∶b[ onto ]𝟎∶𝟏[ in an orientation-preserving way,
we may let

̂𝑧 ≝ �̂�[a, b, c]( ̃𝑧) and 𝐽 ≝ �̂�[a, b, c] ∘ ̃𝐽𝑡 ∘ �̂�[a, b, c]−1

to obtain the sought point and isotopy. Lastly, if we had ℎ1(𝑧0) ∈ ℋ− instead, the same reasoning
would apply, with the roles of 𝛾−1(ℋ−) and 𝛾−1(ℋ+) reversed on the construction of ̃𝐽. ▨

4.2 The proof of Theorem A

From now on, a proper extension 𝐺 ⊂ Diff 1+(𝕊2) of Möb(𝕊2) is fixed throughout, and we let
the point ̂𝑧 ∈ 𝛤 and the ℐ𝐺3-isotopy (𝐽𝑡)𝑡∈[−1,1] be as in the Crossing Lemma 4.6. Upon denoting
̂𝑧− ≝ 𝐽−1( ̂𝑧) and ̂𝑧+ ≝ 𝐽1( ̂𝑧), we define the set

[4.6] 𝜒 ≝ 𝛾𝐼�̂�− ( ̂𝑧−) ∪ 𝛾𝐽( ̂𝑧) ∪ 𝛾𝐼�̂�+ ( ̂𝑧+) ,

where 𝐼 ̂𝑧− and 𝐼 ̂𝑧+ are the isotopies yielded by the Fundamental Lemma 3.10 when considering the
points ̂𝑧− ∈ ℋ− and ̂𝑧+ ∈ ℋ+.

On the sphere, 𝜒 is a continuum. Indeed, 𝛾𝐼�̂�− ( ̂𝑧−) ∪ 𝛾𝐽( ̂𝑧) ∪ 𝛾𝐼�̂�+ ( ̂𝑧+) is connected, as the
union of (connected) curves with points in common, while its closure is automatically compact on
the compact space 𝕊2, and consists of adjoining {∞} to this union, as suggested in Figure 4.6.

Figure 4.6 – The continuum 𝜒 is constructed by gluing together isotopy trajectories with points in common,
one of which is bounded away from∞ and two of which are known to accumulate at∞, and then taking their
closure.
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Wewill nowderive an important separating property for𝜒. The argument relies on the folklore
fact that, given a path 𝛼 ∶ 𝕀 → ℝ𝑛 connecting two distinct points, one may obtain another path
𝛽 ∶ 𝕀 → ℝ𝑛 which is simple, connects the same pair of points and such that 𝛽(𝕀) ⊆ 𝛼(𝕀)1.

1This is stated as Lemma 3.1 in the book (10), on fractals. A patch up of the proof presented therein is provided by Prof.
Lee Mosher as an answer to Question 857066 at the Mathematics Stack Exchange portal.
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4.7 Lemma. The set 𝜒 defined in [4.6] is a continuum separating the open arcs ]∞∶𝟎[ and ]𝟏∶∞[
in the following sense: whenever 𝛼 ∶ 𝕀 → 𝕊2 is a path such that 𝛼(0) ∈ ]∞∶𝟎[ and 𝛼(1) ∈ ]𝟏∶∞[,
we have 𝛼(𝕀) ∩ 𝜒 ≠ ∅.

Proof. If ∞ ∈ 𝛼(𝕀) there is nothing to prove. Otherwise, suppose that 𝛼 never passes through ∞.
Since we shall look for intersections, the argument in the previous paragraph allows us to assume
that 𝛼 is simple. By the hypothesis made upon its endpoints, the following are well-defined:

[4.7]
𝑡− ≝ sup 𝛼−1(]∞∶𝟎]) = sup{𝑡 ∈ 𝕀 ∶ 𝛼(𝑡) ∈ ]∞∶𝟎]} and

𝑡+ ≝ inf {𝑡 ∈ (𝑡−, 1] ∶ 𝛼(𝑡) ∈ [𝟏∶∞[} .

Recalling that the supremum and infimum of a set are limit points of the set, continuity of 𝛼
implies 𝛼(𝑡−) ∈ ]∞∶𝟎] and 𝛼(𝑡+) ∈ [𝟏∶∞[. In particular, 𝑡+ > 𝑡−, for their images belong to disjoint
arcs. We further notice that any intersection between 𝛼((𝑡−, 𝑡+)) and 𝛤 takes place in the open arc
]𝟎∶𝟏[, by the very own definition of 𝑡− and 𝑡+.

Equippedwith this data,we define on the plane a continuousmapping ℓ ∶ ℝ → ℝ2 as pictured
in Figure 4.7, and explicitly given by:

ℓ(𝑡) =
⎧
⎪
⎨
⎪
⎩

1 − 𝑡
1 − 𝑡− (𝛼(𝑡−) − ̂𝑧) + ̂𝑧 if 𝑡 ≤ 𝑡− ,

𝛼(𝑡) if 𝑡− < 𝑡 < 𝑡+ ,
1 + 𝑡
1 + 𝑡+ (𝛼(𝑡+) − ̂𝑧) + ̂𝑧 if 𝑡 ≥ 𝑡+ .

Figure 4.7 – The segment of 𝛼 comprehended between the instant it leaves ]∞∶𝟎] and the instant it enters
[𝟏∶∞[ can be glued to 𝛤 – traversed the usual way – to generate a line ℓ.
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4.7.1 Claim. The mapping ℓ is a line or, in other words, a simple and proper path.

Proof. To see that ℓ is simple, notice first that since 𝛼(𝑡−) ∈ ]∞∶𝟎], 𝛼(𝑡+) ∈ [𝟏∶∞[ and ̂𝑧 ∈ ]𝟎∶𝟏[ all
lie in disjoint segments, both (𝛼(𝑡−) − ̂𝑧) and (𝛼(𝑡+) − ̂𝑧) are nonzero. Thus, the restrictions ℓ↾𝑡≤𝑡−
and ℓ↾𝑡≥𝑡+ are injective. Furthermore, ℓ↾(𝑡−,𝑡+) = 𝛼↾(𝑡−,𝑡+) is injective as well, for 𝛼 was assumed
simple.
Next, suppose for the sake of contradiction that ℓ( ̄𝑡) = ℓ( ̄𝑠) for some ̄𝑠 ≤ 𝑡− and 𝑡− < ̄𝑡 < 𝑡+.
Thinking of 𝛤 as the 𝑥-axis, as described in Definition 4.4, we have 𝛼(𝑡−) ≤ 𝟎 < ̂𝑧, from which
follows 𝛼(𝑡−) − ̂𝑧 negative. But, since (1 − ̄𝑠) ⁄ (1 − 𝑡−) ≥ 1, it must be the case that ℓ( ̄𝑠) ≤ 𝛼(𝑡−) ≤ 𝟎.
In particular, ℓ( ̄𝑠) ∈ 𝛤 , so ℓ( ̄𝑡) ∈ 𝛤 as well. But then:

ℓ( ̄𝑠) = ℓ( ̄𝑡) = 𝛼( ̄𝑡) > 𝟎 ≥ ℓ( ̄𝑠) ,

a contradiction. Analogous reasonings show that ℓ( ̄𝑠) = ℓ( ̄𝑡) cannot happen for ̄𝑠 ≥ 𝑡+ and
𝑡− < ̄𝑡 < 𝑡+ both holding simultaneously either.
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Lastly, ℓ((−∞, 𝑡−]) ⊂ ]∞∶𝟎] and ℓ([𝑡+, +∞)) ⊂ [𝟏∶∞[, which are disjoint subsets of the plane. It
must therefore be the case that ℓ is simple.
To see that ℓ is proper, notice first that

lim
𝑡→−∞

1 − 𝑡
1 − 𝑡− = lim

𝑡→+∞
1 + 𝑡
1 + 𝑡+ = +∞ ,

so that, for 𝑡 ≥ 𝑡+,
||ℓ(𝑡)|| ≥ 1 + 𝑡

1 + 𝑡+⏟⎵⏟⎵⏟
→+∞

|𝛼(𝑡+) − ̂𝑧|⏟⎵⎵⏟⎵⎵⏟
nonzero, fixed

− | ̂𝑧| → +∞ as 𝑡 → +∞

and, similarly, ||ℓ(𝑡)|| → +∞ as 𝑡 → −∞. □
As it is usually done for lines, the mapping ℓ and its trace will be confounded without notice,

and endowedwith the natural orientation inherited fromℝ, which in this case is compatiblewith the
intrinsic orientation of𝛤 . Due to the usuallymisquoted and oftenmisunderstood Jordan-Schoenflies
Theorem2, this automatically divides 𝕊2 — and thus the plane — into two open and connected
components, the right 𝘙(ℓ) and the left 𝘓(ℓ) of ℓ, plus their common boundary ℓ.

Consider the compact set 𝛼([𝑡−, 𝑡+]), and fix some closed disk 𝐷 ⊂ ℝ2 fully containing it.
Then, it must be the case that [𝟎∶𝟏] ⊂ 𝐷. Indeed, since 𝐷 is convex it must contain the segment
[𝛼(𝑡−), 𝛼(𝑡+)]. But from [4.7] we know that 𝛼(𝑡−) ≤ 𝟎 and 𝛼(𝑡+) ≥ 𝟏, which imply [𝟎∶𝟏] ⊂
[𝛼(𝑡−), 𝛼(𝑡+)].

Thus, if we now consider the open set 𝒪 = ℝ2 ⧵ 𝐷, we see from the expression of ℓ that
ℓ ∩ 𝒪 = 𝛤 ∩ 𝒪. Also, ℓ traverses this intersection with the same orientation as 𝛤 . Consequently,
𝘓(ℓ) ∩ 𝒪 = 𝘓(𝛤) ∩ 𝒪 = ℋ+ ∩ 𝒪 and 𝘙(ℓ) ∩ 𝒪 = 𝘙(𝛤) ∩ 𝒪 = ℋ− ∩ 𝒪, as suggested by Figure 4.8.

Figure 4.8 – Sufficiently close to∞, the line ℓ follows the meridian 𝛤 , and its left is fully contained within
the upper half-plane (western hemisphere).
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From the Fundamental Lemma 3.10, 𝛾𝐼�̂�+ ( ̂𝑧+) is fully contained withinℋ+ and accumulates
at {∞}. Since 𝒪 defines a neighbourhood of ∞ in the sphere, 𝛾𝐼�̂�+ ( ̂𝑧+) ∩ 𝘓(ℓ) ≠ ∅ follows.
Analogously, 𝛾𝐼�̂�− ( ̂𝑧−) ∩ 𝘙(ℓ) ≠ ∅. This translates to 𝜒 ∩ 𝘓(ℓ) ≠ ∅ and 𝜒 ∩ 𝘙(ℓ) ≠ ∅. Since 𝜒
is connected, these imply 𝜒∩ 𝜕𝘓(ℓ) = 𝜒∩ 𝜕𝘓(ℓ) ≠ ∅. In other words, ℓ intercepts the continuum 𝜒.

Let ̄𝑡 ∈ ℝ be such that ℓ( ̄𝑡) ∈ 𝜒. Then, it must be the case that ̄𝑡 ∈ (𝑡−, 𝑡+). Indeed, on the
one hand, ℓ( ̄𝑡) ∈ [𝟏∶∞[ if ̄𝑡 ≥ 𝑡+ and ℓ( ̄𝑡) ∈ ]∞∶𝟎] if ̄𝑡 ≤ 𝑡−. On the other hand, any intersection
between 𝜒 and 𝛤 must take place on the open segment ]𝟎∶𝟏[, by the Fundamental Lemma 3.10 and
the Crossing Lemma 4.6. But 𝑡− < ̄𝑡 < 𝑡+ means that ℓ( ̄𝑡) = 𝛼( ̄𝑡), yielding an intersection between
𝛼(𝕀) and 𝜒, as claimed. ▨

2As stated in (45, 44), see also (46)
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Consider the accessibility relation ∼𝐺3 as described in Definition 1.6. Clearly, 𝒜𝐺3(𝟎) = {𝟎},
𝒜𝐺3(𝟏) = {𝟏} and 𝒜𝐺3(∞) = {∞}. Our goal is now to show that 𝑧0 ∈ 𝒜𝐺3( ̂𝑧) for any given
𝑧0 ∈ 𝕊2 ⧵ {𝟎, 𝟏,∞}. Notice that by Corollary 4.5 it suffices to consider only the case 𝑧0 ∉ 𝛤 , as
done next.

4.8 Lemma. If 𝑧0 ∉ 𝛤 , then 𝑧0 ∈ 𝒜𝐺3( ̂𝑧).

Proof. Let 𝜒 be as in [4.6]. Given that 𝟎, 𝟏 ∉ 𝜒, we may fix 𝑟 > 0 such that 𝔻𝑟(𝟎) ∩ 𝜒, 𝔻𝑟(𝟏) ∩ 𝜒 and
𝔻𝑟(𝟎) ∩ 𝔻𝑟(𝟏) are all empty, and also such that both closed disks are simultaneously disjoint from
{𝑧0} and {∞}.

Given 𝑧0, consider the ℐ𝐺3-isotopy 𝐼𝑧0𝟎𝟏 yielded by Corollary 3.11. Then, the continuous path
𝑡 ↦ 𝐼𝑧0𝟎𝟏 (𝑡, 𝑧0) accumulates at {𝟎} for arbitrarily negative times, and at {𝟏} for arbitrarily positive
times. Thus, using supremum and infimum arguments analogous to those previously encountered
in the proofs of Lemmas 4.6 and 4.7, we encounter 𝑆 < 0 maximal such that 𝐼𝑧0𝟎𝟏 (𝑆, 𝑧0) ∈ 𝜕𝔻𝑟(𝟎)
and 𝑇 > 0minimal such that 𝐼𝑧0𝟎𝟏 (𝑇, 𝑧0) ∈ 𝜕𝔻𝑟(𝟏). We define a new continuous path 𝛼 ∶ 𝕀 → ℝ2 as:

[4.8] 𝛼(𝑡) ≝

⎧⎪⎪
⎨⎪⎪
⎩

4𝑡 𝐼𝑧0𝟎𝟏 (𝑆, 𝑧0) − (1 − 4𝑡) 𝑟2 if 0 ≤ 𝑡 ≤ 1
4 ,

𝐼𝑧0𝟎𝟏(2𝑡(𝑇 − 𝑆) + 3𝑆 − 𝑇
2 , 𝑧0) if 14 ≤ 𝑡 ≤ 3

4 ,

(4 − 4𝑡) 𝐼𝑧0𝟎𝟏 (𝑇, 𝑧0) + (4𝑡 − 3) (𝟏 + 𝑟
2) if 34 ≤ 𝑡 ≤ 1 .

Geometrically, 𝛼 departs from the point 𝛼(0) ∈ ]∞∶𝟎[ ∩ 𝔻𝑟(𝟎) and follows on a straight line
until it reaches a certain point of 𝑧0’s trajectory in the disk’s boundary. This intersection point is
such that 𝑧0’s trajectory returns to this first disk at most finitely many times in the future. From it,
the path 𝛼 follows 𝑧0’s isotopy trajectory until it first reaches the boundary of the disk 𝔻𝑟(𝟏). Then,
𝛼moves on a straight line until it reaches the point 𝛼(1) ∈ ]𝟏∶∞[ ∩ 𝔻𝑟(𝟏). This process is conveyed
in Figure 4.9.

Figure 4.9 – After leaving a compact neighbourhood of 𝟎 disjoint of 𝜒 and before entering a neighbourhood
of 𝟏 disjoint from 𝜒, the path of 𝑧0 under 𝐼𝑧0𝟎𝟏 must cross the continuum 𝜒.

0 1

Γ

z0

χ–r/2 1+r/2

I01(T,z0)
z0

∞

∞

z^

I01(S,z0)
z0

χ ∩ γ  ≠ ∅I01
z0

In particular, 𝛼(0) ∈ ]∞∶𝟎[, 𝛼(1) ∈ ]𝟏∶∞[ and 𝛼(𝕀) ⊂ 𝕊2 ⧵ {∞}. Thus, by Lemma 4.7, 𝛼 must
intercept 𝜒 ⧵ {∞}. But, since the segments 𝛼([0, 1 ⁄ 4]) and 𝛼([3 ⁄ 4, 1]) are contained within disks
disjoint from 𝜒, we must have 𝛼((1 ⁄ 4, 3 ⁄ 4)) ∩ (𝜒 ⧵ {∞}) ≠ ∅.
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However, it is seen from [4.8] that 𝛼((1 ⁄ 4, 3 ⁄ 4)) ⊂ 𝛾𝐼𝑧0𝟎𝟏 (𝑧0). By Lemma 1.8, this is readily seen to
imply 𝑧0 ∈ 𝒜𝐺3( ̂𝑧). ▨

This is enough to derive the (arc) 4-transitivity of 𝐺0 for, if (𝑝0, 𝑝1, 𝑝2, 𝑝3) and (𝑞0, 𝑞1, 𝑞2, 𝑞3)
are two given lists of mutually distinct points on the sphere, let 𝑧0 = �̂�[𝑝1, 𝑝2, 𝑝3](𝑝0) and 𝑤0 =
�̂�[𝑞1, 𝑞2, 𝑞3]−1(𝑞0). Then, neither 𝑧0 nor 𝑤0 belong to {𝟎, 𝟏,∞} and thus, by Lemma 4.8 above, both
𝑧0 and𝑤0 belong to𝒜𝐺3( ̂𝑧). This implies that there is some ℐ𝐺3-isotopy (𝑓𝑡)𝑡∈𝕀 such that𝑓1(𝑧0) = 𝑤0.
Since Möb(𝕊2) is a path connected group, in particular �̂�[𝑞1, 𝑞2, 𝑞3]−1 ∘ 𝑓1 ∘ �̂�[𝑝1, 𝑝2, 𝑝3] lies in 𝐺0

and maps (𝑝0, 𝑝1, 𝑝2, 𝑝3) onto (𝑞0, 𝑞1, 𝑞2, 𝑞3). Therefore, the arc 4-transitivity definition is seen to be
satisfied, and Theorem A is proven.

4.3 The proof of Theorem B

Before proceeding to the actual proof, we introduce a handful of auxiliary terminology in order
to make some pictorial arguments slightly more precise.

4.9 Definition. Let 𝑃 be a fixed subset of a manifoldℳ. Given two paths 𝛼, 𝛽 ∶ 𝕀 → ℳ, we shall use
the notation 𝛼 ≃ 𝛽 rel𝑃 to indicate that 𝛼, 𝛽 are homotopic – with fixed endpoints 𝛼(0) = 𝛽(0) and
𝛼(1) = 𝛽(1) – in the setℳ ⧵ 𝑃.

In other words, 𝛼 ≃ 𝛽 rel𝑃 whenever 𝛼 and 𝛽 are two paths joining the same pair of points,
and can be continuously deformed one onto another in such a way that none of the intermediate
paths meet the distinguished set 𝑃, while the endpoints are kept fixed throughout. This, just like
ordinary homotopy with fixed endpoints, is an equivalence relation.

In particular, we may consider loops based at a certain point and the associated (relative)
fundamental group equipped with its usual operations, which are well-defined in homotopy classes:

• 𝛽 ∗ 𝛼 denotes concatenation: first 𝛼 and then 𝛽 are traversed, each twice as fast as their
original parameterisations;

• �̅� denotes inversion: the image of 𝛼 is traversed in the opposite direction, via the
reparameterisation 𝑡 ↦ 1 − 𝑡.

These may be used to define the prototype of what we shall call a topological figure 8.

4.10 Definition. Let {𝑝0,… , 𝑝3} be four distinguished points of 𝕊2. A loop 𝛼 ∶ 𝕀 → 𝕊2 based at 𝑝0
shall be named a topological figure 8 (relative to the {𝑝𝑖}) if

𝛼 ≃ 𝜁2 ∗ ̅𝜁1 rel {𝑝1, 𝑝2, 𝑝3} ,

where each 𝜁𝑖 ∈ 𝜋1(𝕊2 ⧵ {𝑝1, 𝑝2, 𝑝3}, 𝑝0) is a Jordan curve that leaves 𝑝𝑖 on its left and separates it
from the remaining two points,

The importance of a topological figure 8 lies in the folklore fact that, if such an object is
realised as the trajectory of 𝑝0 under an ℐ-isotopy fixing the remaining distinguished points, then
the terminal homeomorphism must possess positive topological entropy. This can be argued to be a
consequence of the classification theory due to Nielsen and Thurston. Such connection is outlined
in Appendix B, where the relevant concepts are introduced and developed.
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Notice that wheneverwe consider𝑝3 as the point at infinity and stereographically project from
it, a topological figure 8 translates into a curve (relatively) homotopic to the prototypical planar figure
8, consisting of the wedge of two circles based at (the image of) 𝑝0, each of them traversed once
with contrary orientations, whilst leaving (the images of) 𝑝1 and 𝑝2 in opposite components of their
complements. This setting is pictured in Figure 4.10, and is the configuration that we shall be aiming
at in the constructions to follow.

Figure 4.10 – A topological figure 8 on the surface of the sphere and its planar projection. Notice that
stereographic projection may reverse the orientation with which loops are traversed to an external observer.
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As in Section 4.2, fix a proper group extension 𝐺 ⊂ Diff 1+(𝕊2) of Möb(𝕊2) and consider the
continuum 𝜒 as defined in [4.6]. We start by observing that 𝜒 ⧵ {∞} can be realised as the trajectory
of the point ̂𝑧 under a certain ℐ𝐺3-isotopy (𝐾𝑡)𝑡∈ℝ , which is given explicitly as:

[4.9] 𝐾𝑡 ≝
⎧⎪
⎨⎪
⎩

𝐼 ̂𝑧−
−1−𝑡 ∘ 𝐽−1 if 𝑡 ≤ −1 ,
𝐽𝑡 if − 1 ≤ 𝑡 ≤ 1 ,
𝐼 ̂𝑧+
−1+𝑡 ∘ 𝐽1 if 𝑡 ≥ 1 ,

where the isotopy 𝐽 and the family of points ̂𝑧± = 𝐽±1( ̂𝑧) are described in details in the Crossing
Lemma 4.6, while the isotopies 𝐼 are as in the Fundamental Lemma.

We can also use such descriptions, along with the property of preserving circles possessed by
Möbius transformations, to derive yet another full-time isotopy having a trajectory which plays the
part of a “symmetric” to 𝜒, in the sense described by the following Lemma 4.11 and suggested by
Figure 4.11.

Figure 4.11 – The trajectory of ̂𝑦 under 𝐿 has properties analogous to those of 𝜒, but relative to the arc ]𝟏∶∞[
and the accumulation point 𝟎.
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4.11 Lemma. There exist a point ̂𝑦 in the open segment ]𝟏∶∞[ and a full-time ℐ𝐺3-isotopy (𝐿𝑡)𝑡∈ℝ
such that:

1) {𝐿𝑡( ̂𝑦) ∶ 𝑡 ≥ 1} ⊂ ℋ− and {𝐿𝑡( ̂𝑦) ∶ 𝑡 ≤ −1} ⊂ ℋ+,
2) the trajectory 𝛾𝐿( ̂𝑦) only intersects the meridian 𝛤 at points on the open arc ]𝟏∶∞[,
3) 𝜔𝐿( ̂𝑦) = 𝛼𝐿( ̂𝑦) = {𝟎}.

Proof. Let (𝐾𝑡)𝑡∈ℝ be as in [4.9], and consider 𝐿𝑡 ≝ 𝑇𝟎∞ ∘𝐾𝑡 ∘𝑇𝟎∞ and ̂𝑦 = 𝑇𝟎∞( ̂𝑧). Notice first that ̂𝑦
indeed lies in ]𝟏∶∞[, since 𝑇𝟎∞ keeps the meridian 𝛤 invariant, acting on it as an interval exchange
transformation. Also, it switchesℋ+ andℋ−, as conveyed in Figure 4.12

Figure 4.12 – The action of 𝑇𝟎∞, which on the sphere amounts to a rotation of 𝜋 around the 𝑋-axis.
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In particular, when 𝑡 ≥ 1 we have 𝑠 = −1 + 𝑡 ≥ 0, and thus 𝐿𝑡( ̂𝑦) = 𝑇𝟎∞(𝐼
̂𝑧+

𝑠 ( ̂𝑧+)) ∈
𝑇𝟎∞(ℋ+) = ℋ−, for ̂𝑧+ ∈ ℋ+ by the Crossing Lemma 4.6 and the trajectory {𝐼 ̂𝑧+

𝑠 ∶ 𝑠 ≥ 0} remains
inℋ+ by the Fundamental Lemma 3.10. Analogously, 𝐿𝑡( ̂𝑦) ∈ ℋ+ for every 𝑡 ≤ −1, establishing 1).

Due to 1), if 𝐿𝑡( ̂𝑦) ∈ 𝛤 , then necessarily |𝑡| < 1. Under this circumstance, 𝐿𝑡( ̂𝑦) ∈ 𝛤 or,
explicitly, 𝑇𝟎∞ ∘ 𝐽𝑡 ∘ 𝑇𝟎∞( ̂𝑦) ∈ 𝛤 . But this is equivalent to 𝐽𝑡( ̂𝑧) ∈ 𝑇𝟎∞(𝛤) = 𝛤 . By the first item in
the Crossing Lemma 4.6, this implies 𝐽𝑡( ̂𝑧) ∈ ]𝟎∶𝟏[ and thus – equivalently – 𝐿𝑡( ̂𝑦) ∈ 𝑇𝟎∞(]𝟎∶𝟏[) =
]𝟏∶∞[. This proves 2).

Lastly, 3) is implied by the fact that, for arbitrarily large values of 𝑡, 𝐾𝑡( ̂𝑧) accumulates at {∞}
and thus 𝐿𝑡( ̂𝑦) accumulates at 𝑇𝟎∞({∞}) = {𝟎}. A similar reasoning applies to arbitrarily negative
times. ▨

4.12 Lemma. There exist a point �̂� ∈ ]𝟎∶𝟏[ and an ℐ𝐺3-isotopy (𝜑𝑡)𝑡∈𝕀 such that 𝛾𝜑(�̂�) ≃
𝜉1 rel {𝟎, 𝟏,∞}, where 𝜉1(𝑠) = 𝟏 + |�̂� − 𝟏| 𝘦−2𝜋𝒾(𝑠−1⁄2), 0 ≤ 𝑠 ≤ 1, describes a circle passing through
�̂� traversed once clockwise while leaving 𝟏 on its right and both 𝟎,∞ on its left. In particular, �̂� is
fixed by 𝜑1.

Proof. Let (𝐿𝑡)𝑡∈ℝ and ̂𝑦 ∈ ]𝟏∶∞[ be as in Lemma 4.11 above, and let us denote by 𝜆(𝑡) ≝ 𝐿𝑡( ̂𝑦)
the curve describing the trajectory of the point ̂𝑦 under the isotopy 𝐿. By itens 1) and 2) of such
Lemma, 𝜆−1(𝛤) is a compact subset of the open interval (−1, 1), so we may consider its minimum
̃𝑡 ≝ min 𝜆−1(𝛤) > −1 and look at the restricted path ̃𝜆 = 𝜆↾(−∞, ̃𝑡].

Recall the continuum 𝜒 from [4.6]. Since 𝟎 ∉ 𝜒, item 3) of Lemma 4.11 implies that ̃𝜆(𝑡𝑛)
lies in the same (open) path connected component of 𝜒𝘤 as 𝟎 for some very large negative values of
𝑡𝑛 < 0. In particular, a construction identical to the one described described in [4.8]may be used to
conclude – from the fact that𝜒 separates ]∞∶𝟎[ from ]𝟏∶∞[ – that ̃𝜆must intercept𝜒.More precisely,
{𝑡 < ̃𝑡 ∶ 𝐿𝑡( ̂𝑦) ∈ 𝜒} ≠ ∅, so its maximum 𝑡− < ̃𝑡 is well-defined. Also, it satisfies 𝐿𝑡−( ̂𝑦) ∈ ℋ+.
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In an analogous fashion, but looking at max 𝜆−1(𝛤) < 1 and to the part of item 3) in Lemma
4.11 concerning arbitrarily large values of time,wemay also obtain 𝑡+ > 0 such that𝐿𝑡+( ̂𝑦) ∈ 𝜒∩ℋ−,
as suggested by Figure 4.13.

Figure 4.13 – The instants 𝑡− < 0 < 𝑡+ are obtained in such away that 𝐿𝑡−( ̂𝑦) ∈ 𝜒∩ℋ+ and 𝐿𝑡+( ̂𝑦) ∈ 𝜒∩ℋ−.

0 1 Γ
y^

χ

Lt−(y)
^

Lt+(y)
^

Lastly, let (𝐾𝑡)𝑡∈ℝ be the isotopy in [4.9]. Then, there are real parameters 𝑎 ≤ −1 and 𝑏 ≥ 1
such that 𝐿𝑡−( ̂𝑦) = 𝐾𝑏( ̂𝑧) and 𝐿𝑡+( ̂𝑦) = 𝐾𝑎( ̂𝑧), since ̂𝑧 describes 𝜒 under 𝐾. In particular, 𝐾𝑐( ̂𝑧) ∈ 𝛤
for some intermediate 𝑎 < 𝑐 < 𝑏. Even more, the Crossing Lemma 4.6 implies 𝐾𝑐( ̂𝑧) ∈ ]𝟎∶𝟏[. We
set �̂� ≝ 𝐾𝑐( ̂𝑧), and finally:

𝜑𝑡 =

⎧⎪⎪
⎨⎪⎪
⎩

𝐾𝑐+3𝑡 (𝑏−𝑐) ∘ 𝐾−1
𝑐 if 0 ≤ 𝑡 ≤ 1

3 ,

𝐿2𝑡−−𝑡++3𝑡 (𝑡+−𝑡−) ∘ 𝐿−1𝑡− ∘ 𝐾𝑏 ∘ 𝐾−1
𝑐 if 13 ≤ 𝑡 ≤ 2

3 ,

𝐾3𝑎−2𝑐+3𝑡 (𝑐−𝑎) ∘ 𝐾−1
𝑎 ∘ 𝐿𝑡+ ∘ 𝐿−1𝑡− ∘ 𝐾𝑏 ∘ 𝐾−1

𝑐 if 23 ≤ 𝑡 ≤ 1 .

The family (𝜑𝑡)𝑡∈𝕀 is readily seen to form an ℐ𝐺3-isotopy. Also,

𝜑1(�̂�) = 𝐾𝑐 ∘ 𝐾−1
𝑎 ∘ 𝐿𝑡+ ∘ 𝐿−1𝑡− ∘ 𝐾𝑏 ∘ 𝐾−1

𝑐 (�̂�)
= 𝐾𝑐 ∘ 𝐾−1

𝑎 ∘ 𝐿𝑡+ ∘ 𝐿−1𝑡− ∘ 𝐾𝑏 ( ̂𝑧) (for �̂� = 𝐾𝑐( ̂𝑧))
= 𝐾𝑐 ∘ 𝐾−1

𝑎 ∘ 𝐿𝑡+ ( ̂𝑦) (for 𝐾𝑏( ̂𝑧) = 𝐿𝑡+( ̂𝑦))
= 𝐾𝑐 ( ̂𝑧) = �̂� (for 𝐿𝑡+( ̂𝑦) = 𝐾𝑎( ̂𝑧))

Thus, the path 𝛾(𝑠) ≝ 𝜑𝑠(�̂�) describing the trajectory of the point �̂� is indeed a closed loop based at
�̂�. We now must prove that 𝛾 ≃ 𝜉1 rel {𝟎, 𝟏,∞}. To do so, we distinguish four special points along 𝛾:

• the starting and terminal point �̂� = 𝛾(0) = 𝛾(1) ∈ ]𝟎∶𝟏[,
• the point 𝛾(1 ⁄ 3) = 𝐾𝑏( ̂𝑧) = 𝐿𝑡−( ̂𝑦) ∈ ℋ+,
• the point ̂𝑦 ∈ ]𝟏∶∞[, which is of the form ̂𝑦 = 𝛾( ̄𝑠), for some 1 ⁄ 3 < ̄𝑠 < 2 ⁄ 3, and
• the point 𝛾(2 ⁄ 3) = 𝐿𝑡+( ̂𝑦) = 𝐾𝑎( ̂𝑧) ∈ ℋ−.
Consider first the subpath 𝛾↾[0,1⁄3]. Since 𝛾(0) ∈ ]𝟎∶𝟏[ and 𝛾(1 ⁄ 3) ∈ ℋ+, we may obtain

𝑠1 = max{𝑠 ≤ 1 ⁄ 3 ∶ 𝛾(𝑠) ∈ ]𝟎∶𝟏[}. Let ℓ1(𝑠) = �̂� + (𝛾(𝑠1) − �̂�) 𝑠 ⁄ 𝑠1 be the standard parameterisaton
of the (oriented) arc [�̂�∶𝛾(𝑠1)] ⊂ ]𝟎∶𝟏[ over the real interval [0, 𝑠1]. Then,

𝜅 ∶ (𝑡, 𝑠) ∈ 𝕀 × [0, 𝑠1] ↦ (1 − 𝑡) 𝛾(𝑠) + 𝑡 ℓ1(𝑠)

defines a (straight line) planar homotopy between 𝛾↾[0,𝑠1] and ℓ1, with fixed endpoints �̂� and 𝛾(1 ⁄ 3).
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4.12.1 Claim. When thought of as a sphere-valued function, 𝜅 is a homotopy relative to {𝟎, 𝟏,∞}.

Proof. Consider first a ∈ {𝟎, 𝟏}. If 𝜅(𝑡, 𝑠) = a for some 0 ≤ 𝑡 ≤ 1 and 0 ≤ 𝑠 ≤ 𝑠1, then

(1 − 𝑡) 𝛾(𝑠) + 𝑡 ℓ1(𝑠) = a or, equivalently,

𝛾(𝑠) − ℓ1(𝑠) = (1 − 𝑡)−1⏟⎵⏟⎵⏟
scalar ≥1

(a − ℓ1(𝑠)) .

Consequently, 𝛾(𝑠) ∈ 𝛤 and also 𝑑(𝛾(𝑠), ℓ1(𝑠)) > 𝑑(a, ℓ1(𝑠)). In particular, 𝛾(𝑠) ∉ ]𝟎∶𝟏[, as
represented in Figure 4.14.

Figure 4.14 – The ruling out of 𝜅(𝑡, 𝑠) = a for a = 𝟎 (left) and a = 𝟏 (right).

a=0 1 Γ

ℓ1(s)γ(s)
0 a=1 Γ

ℓ1(s) γ(s)

a−ℓ1(s)

γ(s)−ℓ1(s) γ(s)−ℓ1(s)

a−ℓ1(s)

But this is a contradiction, since 𝛾([0, 1 ⁄ 3]) = {𝜑𝑡(�̂�) ∶ 0 ≤ 𝑡 ≤ 1 ⁄ 3} = {𝐾𝑢( ̂𝑧) ∶ 𝑐 ≤ 𝑢 ≤ 𝑏} ⊂ 𝜒
and 𝜒 ∩ 𝛤 ⊂ ]𝟎∶𝟏[. This reasoning shows that 𝜅 is a homotopy with fixed endpoints relative to
{𝟎, 𝟏}. However, since all isotopies under consideration are in𝐺3, for each 𝑡 the path 𝜅(𝑡, ⋅) is defined
entirely in terms of points known to be finite. Thus, 𝜅 is actually a homotopy with fixed endpoints
relative to {𝟎, 𝟏,∞}. □

Now, since by choice of 𝑠1 one has 𝛾(𝑠) ∈ ℋ+ for every 𝑠1 < 𝑠 < 1 ⁄ 3, and also
ℓ1([0, 𝑠1]) = [𝛾(0)∶𝛾(𝑠1)] ⊂ ]𝟎∶𝟏[, the path 𝛾↾[𝑠1,1⁄3] ∗ ℓ1 can be straight line homotoped into the
path𝓂1 ∶ 𝕀 → 𝕊2 ⧵ {𝟎, 𝟏,∞} ≅ ℝ2 ⧵ {𝟎, 𝟏} describing the line segment from 𝛾(𝟎) = �̂� to 𝛾(1 ⁄ 3), with
fixed endpoints and relative to {𝟎, 𝟏,∞}, as described in Figure 4.15. Thus:

𝛾↾[0,1⁄3] ≃ 𝛾↾[𝑠1,1⁄3] ∗ 𝛾↾[1⁄3,𝑠1] ≃ 𝛾↾[𝑠1,1⁄3] ∗ ℓ1 ≃ 𝓂1 rel {𝟎, 𝟏,∞} .

Figure 4.15 – The subpath 𝛾↾[0,1⁄3] can be deformed with fixed endpoints and relative to {𝟎, 𝟏,∞} into a
straight line by juxtaposition of at most two straight line homotopies.

γ(1/3)

0 1ŵ Γ

�1

0 1

w=γ(0)
γ(1/3)

^

Γℓ1 γ(s1) ℓ1

 ≃
γ(s1)

Analogous reasonings involving the juxtaposition of two straight line homotopies at a time
further yield the following equivalences:

𝛾↾[1⁄3, ̄𝑠] ≃ 𝓂2 , 𝛾↾[ ̄𝑠,2⁄3] ≃ 𝓂3 and 𝛾↾[2⁄3,1] ≃ 𝓂4 rel {𝟎, 𝟏,∞} ,

where each 𝓂𝑗 describes the line segment connecting the endpoints of the corresponding subpath
of 𝛾, in the same direction.
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Thus, 𝛾 ≃ 𝓂4 ∗ 𝓂3 ∗ 𝓂2 ∗ 𝓂1 rel {𝟎, 𝟏,∞}. But the oriented polygonal𝓂4 ∗ … ∗ 𝓂1 is clearly
homotopic to 𝜉1 with fixed endpoints relative to {𝟎, 𝟏,∞}, as suggested by Figure 4.16. By transitivity,
the Lemma follows. ▨

Figure 4.16 – The path 𝛾 describing the trajectory of �̂� under 𝜑 is homotopic to an oriented polygonal which,
in turn, is homotopic to the circle 𝜉1.

0 1
w=γ(0)

γ(1/3)

γ(2/3)

y^ ^ ŵ �1

Γ
Γ

�4

�1 �2

�3

 ≃

4.13 Corollary. Let �̂� be as in Lemma 4.12. Then, there exists an ℐ𝐺3-isotopy (𝜓𝑡)𝑡∈𝕀 such that
𝛾𝜓(�̂�) ≃ 𝜉2 rel {𝟎, 𝟏,∞}, where 𝜉2(𝑠) = |�̂�| 𝘦2𝜋𝒾𝑠, 0 ≤ 𝑠 ≤ 1, describes a circle passing through �̂�
traversed once anticlockwise while leaving 𝟎 on its left and both 𝟏,∞ on its right.

Proof. Consider �̂� and (𝜑𝑡)𝑡∈𝕀 as yielded by Lemma 4.12, and let �̂�′ ≝ 𝑇𝟎𝟏(�̂�), which is also a point
in the open arc ]𝟎∶𝟏[. By TheoremA, there exists ℎ in (𝐺3)0 such that ℎ(�̂�′) = �̂�. For each 0 ≤ 𝑡 ≤ 1,
we set 𝜚𝑡 = ℎ ∘ 𝑇𝟎𝟏 ∘ 𝜑𝑡.

Then, (𝜚𝑡)𝑡∈𝕀 is an ℐ𝐺3-isotopy satisfying 𝜚1(�̂�) = �̂�. Thus, the path describing the trajectory
of �̂� under 𝜚 is indeed a closed loop based at �̂�, explicitly given by 𝑠 ∈ 𝕀 ↦ ℎ( ̃𝛾(𝑠)), where ̃𝛾 = 𝑇𝟎𝟏 ∘ 𝛾
and 𝛾 is the path describing the trajectory of �̂� under𝜑, as defined in Lemma 4.12. From that Lemma,
we know that 𝛾 ≃ 𝜉1 rel {𝟎, 𝟏,∞}. Since 𝑇𝟎𝟏 leaves the set {𝟎, 𝟏,∞} invariant, ̃𝛾 ≃ 𝑇𝟎𝟏 ∘ 𝜉1 rel {𝟎, 𝟏,∞}
follows.

Now, since Möbius transformations preserve circles and orientation, 𝑇𝟎𝟏 ∘ 𝜉1 is a circle,
traversed once, clockwise, while leaving 𝟎 on its right and both 𝟏,∞ on its left, as pictured in Figure
4.17.

Figure 4.17 – The path ̃𝛾 is homotopic with fixed endpoint �̂�′ to a clockwise traversed circle leaving 𝟎 on its
interior, relative to {𝟎, 𝟏,∞}.

w’^

0 1

�01∘�1

γ~

Γ

Let us consider ℎ ∘ (𝑇𝟎𝟏 ∘ 𝜉1). Since ℎ is an orientation preserving homeomorphism fixing
{𝟎, 𝟏,∞}, the former is a Jordan curve, also traversed clockwise while leaving 𝟎 on its right and both
𝟏,∞ on its left. However, it is nowa loop based at �̂�, forwhichwehaveℎ∘(𝑇𝟎𝟏∘𝜉1) ≃ ℎ∘ ̃𝛾 rel {𝟎, 𝟏,∞}.
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Lastly, for each 𝑡 ∈ 𝕀we let 𝜓𝑡 ≝ 𝜚1−𝑡. Then, the trajectories 𝛾𝜚(�̂�) and 𝛾𝜓(�̂�) coincide as sets,
but the latter is described by ℎ ∘ ̃𝛾, since the direction of travel is reversed. Consequently,

ℎ ∘ (𝑇𝟎𝟏 ∘ 𝜉1) ≃ ℎ ∘ ̃𝛾 rel {𝟎, 𝟏,∞} .

But ℎ ∘ (𝑇𝟎𝟏 ∘ 𝜉1) ≃ 𝜉2 rel {𝟎, 𝟏,∞} (say via a radial retraction, for concreteness), and the
Corollary is thus established. ▨

Equipped with Lemma 4.12 and its Corollary 4.13, we are ready to finish our argument, for
setting

𝐹𝑡 =
⎧
⎨
⎩

𝜑2𝑡 if 0 ≤ 𝑡 ≤ 1
2 ,

𝜓2𝑡−1 ∘ 𝜑1 if 12 ≤ 𝑡 ≤ 1 ,

yields an ℐ𝐺3-isotopy(𝐹𝑡)𝑡∈𝕀 under which

𝛾𝐹(�̂�) = 𝛾𝜓(�̂�) ∗ 𝛾𝜑(�̂�) ≃ 𝜉2 ∗ 𝜉1 rel {𝟎, 𝟏,∞} ,

whilst 𝜉2 ∗ 𝜉1 is a prototypical planar figure 8, translating to a topological figure 8 on the surface
of the sphere, based at �̂� and relative to {𝟎, 𝟏,∞}. This is enough to guarantee that the terminal
homeomorphism 𝐹1 ∈ (𝐺3)0 has positive topological entropy as claimed in Theorem B, finishing its
proof.



Appendix A

Review on groups of transformations

A.1 Groups of homeomorphisms

Let (𝑋, 𝑑) be a compact metric space, and consider the set of all its self homeomorphisms, Homeo (𝑋).
On the one hand, it can be endowed with the following uniform convergence metric:

[A.1] 𝑑∞(𝑓, 𝑔) ≝ max{𝑑(𝑓(𝑝), 𝑔(𝑝)) ∶ 𝑝 ∈ 𝑋} ,

which is well-defined due to the compacity of 𝑋 . Its name is justified by the elementary fact that a sequence
(𝑓𝑛)𝑛∈ℕ converges uniformly to a map 𝑓 if, and only if, 𝑑∞(𝑓𝑛, 𝑓) → 0 as 𝑛 → +∞.

On the other hand, Homeo (𝑋) can also be endowed with a group structure under the composition
operation (𝑓, 𝑔) ↦ 𝑓 ∘ 𝑔. Then, the identity map id𝑋 plays the role of the identity element and the inverse
function 𝑓−1 plays the role of the inverse element of 𝑓. As it turns out, the topological structure defined by
[A.1] is compatible with this group structure, in the precise sense described below.

A.1 Proposition. Let 𝑋 be a compact metric space. Then, Homeo (𝑋) is a topological group. More precisely,
the maps

(𝑓, 𝑔) ∈ Homeo (𝑋) ×Homeo (𝑋) ↦ 𝑓 ∘ 𝑔 ∈ Homeo (𝑋) and

𝑓 ∈ Homeo (𝑋) ↦ 𝑓−1 ∈ Homeo (𝑋)

are continuous with respect to 𝑑∞ and the corresponding product topology.

Proof. It suffices to show that (𝑓, 𝑔) ↦ 𝑓 ∘ 𝑔−1 is continuous (p. 143 of (40)). To do so, let (𝑓𝑛)𝑛∈ℕ and (𝑔𝑛)𝑛∈ℕ
be two sequences in Homeo (𝑋) such that 𝑑∞(𝑓𝑛, 𝑓) → 0 and 𝑑∞(𝑔𝑛, 𝑔) → 0 as 𝑛 → +∞ for some fixed
pair 𝑓, 𝑔 ∈ Homeo (𝑋). We first establish an intermediate result: given 𝛿 > 0, there exists 𝑛1 ∈ ℕ such that
𝑑∞(𝑔−1𝑛 , 𝑔−1) ≤ 𝛿 for every 𝑛 ≥ 𝑛1.

Indeed, since 𝑋 is compact, the self map 𝑔−1 is uniformly continuous, so we may fix 𝜂 > 0 such
that 𝑑(𝑔−1(𝑝), 𝑔−1(𝑞)) < 𝛿 whenever 𝑑(𝑝, 𝑞) < 𝜂. But then, uniform convergence yields 𝑛1 ∈ ℕ such that
𝑑∞(𝑔𝑛, 𝑔) < 𝜂 for every 𝑛 ≥ 𝑛1. In particular, for a fixed 𝑞 ∈ 𝑋 and any 𝑛 ≥ 𝑛1:

𝑑(𝑔−1 ∘ 𝑔𝑛 (𝑞), 𝑞) = 𝑑(𝑔−1(𝑔𝑛(𝑞)) , 𝑔−1(𝑔(𝑞))) < 𝛿 .

The above implies 𝑑∞(𝑔−1 ∘ 𝑔𝑛, id𝑋) ≤ 𝛿 for every 𝑛 ≥ 𝑛1, whilst

𝑑∞(𝑔−1 ∘ 𝑔𝑛, id𝑋) = max{𝑑(𝑔−1(𝑔𝑛(𝑝)), 𝑔−1𝑛 (𝑔𝑛(𝑝))) ∶ 𝑝 ∈ 𝑋}

= max{𝑑(𝑔−1(𝑞), 𝑔−1𝑛 (𝑞)) ∶ 𝑞 ∈ 𝑋} = 𝑑∞(𝑔−1, 𝑔−1𝑛 ) ,

since each 𝑔𝑛 ∶ 𝑋 → 𝑋 is a bijection. This proves the claimed intermediate result.
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Lastly, given 𝜀 > 0, since 𝑓 ∶ is uniformly continuous as well, there exists 𝛿 > 0 such that 𝑑(𝑝, 𝑞) < 𝛿
implies 𝑑(𝑓(𝑝), 𝑓(𝑞)) < 𝜀⁄2. For this 𝛿 > 0, we let 𝑛1 ∈ ℕ be as above and 𝑛0 ≥ 𝑛1 be such that 𝑑∞(𝑓𝑛, 𝑓) < 𝜀⁄2
for every 𝑛 ≥ 𝑛0. Then, for each 𝑝 ∈ 𝑋 and 𝑛 ≥ 𝑛0:

𝑑(𝑓𝑛(𝑔−1𝑛 (𝑝)), 𝑓(𝑔−1(𝑝))) ≤ 𝑑(𝑓𝑛(𝑔−1𝑛 (𝑝)), 𝑓(𝑔−1𝑛 (𝑝))) + 𝑑(𝑓(𝑔−1𝑛 (𝑝)), 𝑓(𝑔−1(𝑝)))

< 𝑑∞(𝑓𝑛, 𝑓) + 𝜀 ⁄ 2 < 𝜀 .

In other words, given 𝜀 > 0 we obtained 𝑛0 ∈ ℕ such that 𝑑∞(𝑓𝑛 ∘ 𝑔−1𝑛 , 𝑓 ∘ 𝑔−1) ≤ 𝜀 for every 𝑛 ≥ 𝑛0, which
amounts to the sought convergence. ▨

Let nowℳ be a topological manifoldℳ. This means — by definition — thatℳ is a topological space
which is Hausdorff, second countable and locally Euclidean of dimension 𝑚. In particular, it is completely
metrisable (17), so we may fix some complete metric 𝑑(⋅, ⋅) generating its topology. Ifℳ further happens to
be compact1 and connected, then it is called a closed manifold and, in light of Proposition A.1 above, we may
consider the topological group Homeo (ℳ) corresponding to the metric space (ℳ, 𝑑).

Orientation preserving actions

Often, a closedmanifoldℳ can also be oriented, and onewishes to further specialise in the elements of
Homeo (ℳ) which are orientation preserving. However, in a purely topological setting it may not be entirely
clear at first glance what does it mean for a manifold to be orientable, let alone for a nondifferentiable
homeomorphism to preserve orientation. A precise definition is given in terms of relative homology groups.
Let us quickly review the general theory, and then particularise it.

Let𝑋 be a topological space. Given𝑘 ∈ ℕ0, a singular𝑘-simplex in𝑋 is a continuous function𝜎 ∶▵𝑘→ 𝑋
defined on the standard k-simplex ▵𝑘, which is the convex hull of the origin 𝒆0 alongwith the vectors 𝒆1,… , 𝒆𝑘
comprising the canonical basis of ℝ𝑘. This fact is summarised by the alternative notation ▵𝑘= [𝒆0, 𝒆1,… , 𝒆𝑘],
which highlights the natural orientation provided to the simplex by the canonical basis. A singular 𝑘-chain in
𝑋 is a (finite) formal sum of the form∑𝛼 𝑛𝛼𝜎𝛼, where each 𝜎𝛼 is a singular 𝑘-simplex and the coefficients 𝑛𝛼
are integers. The free abelian group consisting of all such sums is denoted by 𝘊𝑘(𝑋).

For 𝑘 ≥ 1 and 0 ≤ 𝑖 ≤ 𝑘, we let [𝒆0,… , 𝒆𝑖,… , 𝒆𝑘] ∶▵𝑘−1→▵𝑘 denote the so-called 𝑖-th facemapping: it is
theunique affine transformation orderlymapping the𝑘−1 vertices of▵𝑘−1 onto the𝑘 vertices of▵𝑘 but the 𝑖-th.
As a set,⋃𝑘

𝑖=0[𝒆0,… , 𝒆𝑖,… , 𝒆𝑘](▵𝑘−1) describes the topological boundary of▵𝑘. A finer description is provided
algebraically by the corresponding boundary operators, which are the morphisms 𝜕𝑘 ∶ 𝘊𝑘(𝑋) → 𝘊𝑘−1(𝑋)
defined on generators as:

[A.2] 𝜕𝑘𝜎 ≝
𝑘
∑
𝑖=1
(−1)𝑖 𝜎 ∘ [𝒆0,… , 𝒆𝑖,… , 𝒆𝑘] .

If the coefficients of a chain are interpreted as a prescription of the net number of times that
the corresponding simplex is to be traversed — negative signs meaning “reverse orientation” — then the
alternating signs in [A.2] are seen to be chosen so that, in the particular case 𝜎 = id▵𝑘 , the singular (𝑘 − 1)-
simplexes that add up to the boundary are oriented coherently with the higher dimensional 𝑘-simplex▵𝑘 that
their images bound topologically.

In general, 𝘊𝑘(𝑋) is a very large object both as a set and as a group: each generator 𝜎 is required to
be nothing more than a continuous mapping, the term “singular” being attached to it as a remainder that its
image must not resemble the corresponding standard simplex at all. The group of 𝑘-chains itself is thus not
directly studied, but rather a certain quotient of it.

1Actually, any compact, Hausdorff and locally Euclidean space is automaticallymetrisable, but noncompactmanifolds
shall appear from time to time, so we also embed second countability in the definition.
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The starting point is the well-known and purely algebraic observation that 𝜕𝑘 ∘ 𝜕𝑘+1 ≡ 0 for every
𝑘 ∈ ℕ0, where 𝜕0 is agreed to be trivial by definition. Thus, the set img 𝜕𝑘+1 of boundaries is always a
(normal) subgroup of the group ker 𝜕𝑘 of the so-called k-cycles. This setting, called a chain complex, allows
for the definition of the 𝑘-th (singular) homology group of 𝑋 as the quotient 𝘏𝑘(𝑋) ≝ ker 𝜕𝑘 ∕ img 𝜕𝑘+1, which
trivialises cycles that are boundaries of higher dimensional chains. We recall some basic properties:

1) Homology groups are topological invariants or, more precisely, homotopy invariants. In particular,
if the space 𝑋 can be deformation retracted onto a subspace 𝑌 via 𝑟, then the induced map over
singular simplices 𝜎 ↦ 𝑟 ∘ 𝜎 descends to a homology isomorphism 𝑟∗ ∶ 𝘏𝑘(𝑋) ⥲ 𝘏𝑘(𝑌).

2) Of all homology groups, there is one that can always be readily computed: if 𝑋 = ⨆𝛼 𝑋𝛼 is
decomposed into its path-connected components,𝘏0(𝑋) ≃ ⨁𝛼 ℤ, where each copy ofℤ is generated
by a chosen point 𝑝𝛼 ∈ 𝑋𝛼 or, in other words, a singular 0-simplex.

3) If 𝑋 consists of a single point, then 𝘏0(𝑋) ≃ ℤ and 𝘏𝑘(𝑋) is trivial for every other 𝑘 ∈ ℕ. As a
consequence of 1), the same holds for any contractible space.

Having recollected some facts about absolute homology, let us consider relative homology, which trivialises a
given and fixed subspace 𝐴 of 𝑋 . A prototypical situation is pictured in Figure A.1.

A.2Definition. For𝐴 ⊆ 𝑋 , the 𝑘-th relative (singular) homology group𝘏𝑘(𝑋, 𝐴) consists of all the equivalence
classes [𝜎] such that:

1) 𝜎 is a relative k-cycle, meaning that 𝜎 ∈ 𝘊𝑘(𝑋) is a 𝑘-chain in 𝑋 whose boundary 𝜕𝑘𝜎 ∈ 𝘊𝑘−1(𝐴) is
a (𝑘 − 1)-cycle in 𝐴,

2) [𝜎] is declared to be trivial if, and only if, 𝜎 ∈ 𝘊𝑘(𝐴) + img 𝜕𝑘+1, meaning that 𝜎 consists of chains
already in the subspace which is being trivialised plus some absolute boundary from the ambient
space.

Figure A.1 – If 𝑋 = ℝ3 and 𝐴 is (the usual embedding of) the 2-torus, 𝜎 is a relative 2-cycle which is trivial
in 𝘏2(𝑋), but not in 𝘏2(𝑋, 𝐴).
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There are two important results concerning relative homology which, when put together, lead to a
topological definition of orientation. The first relates the absolute and relative groups. To state it, we first
recall that a sequence (𝜙𝑘+1 ∶ 𝐺𝑘+1 → 𝐺𝑘)𝑘∈ℕ0 of groups 𝐺𝑘 and homomorphisms 𝜙𝑘 is said to be exact if
ker𝜙𝑘 = img𝜙𝑘+1. Then, purely algebraic considerations lead to the following.

A.3 Proposition. For 𝑘 ∈ ℕ there exist morphisms 𝜕′𝑘 ∶ 𝘏𝑘(𝑋, 𝐴) → 𝘏𝑘−1(𝐴) such that

… 𝘏𝑘(𝐴) 𝘏𝑘(𝑋) 𝘏𝑘(𝑋, 𝐴) 𝘏𝑘−1(𝐴) … 𝘏0(𝑋, 𝐴) {0}
𝜕′𝑘+1 (𝑖𝑘)∗ (𝑗𝑘)∗ 𝜕′𝑘 (𝑖𝑘−1)∗ (𝑗0)∗ 𝜕′0

is an exact sequence, where:
• each (𝑖𝑘)∗ is induced by the inclusion map 𝑖𝑘 ∶ 𝘊𝑘(𝐴) ↪ 𝘊𝑘(𝑋),
• each (𝑗𝑘)∗ is induced by the quotient map 𝑗𝑘 ∶ 𝑐 ∈ 𝘊𝑘(𝑋) ↦ 𝑐 + 𝘊𝑘(𝐴),
• each 𝜕′𝑘 maps [𝜎] ∈ 𝘏𝑘(𝑋, 𝐴) to the homology class of 𝜕𝑘𝜎 in 𝘏𝑘−1(𝐴).

The second relevant result, on the other hand, is related to the possibility of deleting or— in the jargon
— excising a smaller subspace in order to enable computations. Its proof is involved: loosely, it relies on the
possibility of subdividing a chain in a way that is subordinate to a given open cover, via iterated barycentric
subdivisions. After the theorem, we present two classical and elementary consequences of it.
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A.4 The Excision Theorem. Let 𝑍 and 𝐴 be subspaces of 𝑋 such that 𝑍 ⊂ 𝐴𝚘. Then, the inclusion map
𝜄 ∶ 𝑋 ⧵ 𝑍 ↪ 𝑋 induces an isomorphism 𝜄∗ ∶ 𝘏𝑘(𝑋 ⧵ 𝑍, 𝐴 ⧵ 𝑍) ⥲ 𝘏𝑘(𝑋, 𝐴) for every 𝑘 ∈ ℕ0.

A.5 Lemma. Given 𝑛 ∈ ℕ0, let 𝕊𝑛 denote the 𝑛-sphere in ℝ𝑛+1. Then, for 𝑛 ∈ ℕ:

𝘏𝑘(𝕊𝑛) ≃ {
ℤ if 𝑘 ∈ {0, 𝑛} ,
{0} otherwise.

If 𝑛 = 0, then 𝘏0(𝕊0) ≃ ℤ ⊕ ℤ and 𝘏𝑘(𝕊0) is trivial otherwise.

Proof. Notice first that, for 𝑛 ∈ ℕ, 𝕊𝑛−1 includes homeomorphically into 𝕊𝑛 as the equator 𝕊𝑛 ∩ {𝑥𝑛+1 = 0} =
𝕊𝑛−1 × {0}. Consider now 𝐻𝑛

+ ≝ 𝕊𝑛 ∩ {𝑥𝑛+1 ≥ 0} and 𝐻𝑛
− ≝ 𝕊𝑛 ∩ {𝑥𝑛+1 ≤ 0}. Each of these hemispheres is

homeomorphic to the closed unit ball𝔹𝑛 ⊂ ℝ𝑛 via the projection prj ∶ ℝ𝑛+1 → ℝ𝑛 onto the𝑛 first coordinates.
We then consider 𝐴 = 𝐻𝑛

+ and 𝑍 = prj−1(𝐵), where 𝐵 is an open ball centred at the origin of radius slightly
smaller than 1. When 𝑛 ∈ {1, 2}, 𝑍 is just a cap slightly smaller than the northern hemisphere, as pictured in
Figure A.2. The Excision Theorem A.4 then yields an isomorphism 𝘏𝑘(𝕊𝑛 ⧵ 𝑍,𝐻𝑛

+ ⧵ 𝑍) ≃ 𝘏𝑘(𝕊𝑛, 𝐻𝑛
+).

Figure A.2 – A sphere from which an (open) spherical cap is deleted may be deformation retracted onto its
equator, which is homeomorphic to the one lesser-dimensional sphere.
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However, as suggested by Figure A.2, the set 𝕊𝑛 ⧵ 𝑍 can be deformation retracted onto 𝐻𝑛
− in such a

way that 𝐻𝑛
+ ⧵ 𝑍 is retracted onto the equator 𝕊𝑛−1. This retraction thus descends to an isomorphism

𝘏𝑘(𝕊𝑛 ⧵ 𝑍,𝐻𝑛
+ ⧵ 𝑍) ≃ 𝘏𝑘(𝐻𝑛

−, 𝕊𝑛−1) between relative homologies. Collecting the available isomorphisms:

[A.3] 𝘏𝑘(𝕊𝑛, 𝐻𝑛
+) ≃ 𝘏𝑘(𝐻𝑛

−, 𝕊𝑛−1) .

Let us analyze each of these groups separately, using the long exact sequence property from Proposition A.3.
First, for any 𝑘 ∈ ℕ we consider the segment

… 𝘏𝑘(𝐻𝑛
+) 𝘏𝑘(𝕊𝑛) 𝘏𝑘(𝕊𝑛, 𝐻𝑛

+) 𝘏𝑘−1(𝐻𝑛
+) 𝘏𝑘−1(𝕊𝑛) … .

𝜕′𝑘+1 (𝑖𝑘)∗ (𝑗𝑘)∗ 𝜕′𝑘 (𝑖𝑘−1)∗ (𝑗𝑘−1)∗

Fix 𝑝0 ∈ ∩𝑚≥0𝕊𝑚 = 𝕊0. Since 𝑝0 is a point in the equator of every sphere — and hence in the
contractible space𝐻𝑛

+ — for every 𝑛 ∈ ℕ there exists a (deformation) retraction 𝑟𝑛 ∶ 𝐻𝑛
+ → {𝑝0}. Consider the

constant map 𝜙 ∶ 𝕊𝑛 → {𝑝0}, which is automatically continuous. Then, if 𝑖 ∶ 𝐻𝑛
+ ↪ 𝕊𝑛 denotes inclusion:

𝐻𝑛
+ 𝕊𝑛

{𝑝0}
𝑟𝑛

𝑖

𝜙 at the level of spaces induces
𝘏𝑘(𝐻𝑛

+) 𝘏𝑘(𝕊𝑛)

𝘏𝑘({𝑝0})
(𝑟𝑛)∗

≃

(𝑖𝑘)∗

𝜙∗ in homology.

In particular, (𝑖𝑘)∗ admits a left inverse and is thus injective for every 𝑘 ∈ ℕ0. Exactness then implies
img 𝜕′𝑘 = ker (𝑖𝑘−1)∗ = {0} for every 𝑘 ∈ ℕ. Since 𝐻𝑛

+ is contractible, all of its homology groups are trivial
for 𝑘 ∈ ℕ, so we can extract the short exact sequence

{0} 𝘏𝑘(𝕊𝑛) 𝘏𝑘(𝕊𝑛, 𝐻𝑛
+) 𝘏𝑘−1(𝐻𝑛

+) ,
(𝑖𝑘)∗ (𝑗𝑘)∗ 𝜕′𝑘≡0

which allows one to conclude:

𝘏𝑘(𝕊𝑛) ≃ 𝘏𝑘(𝕊𝑛, 𝐻𝑛
+) for every 𝑘 ∈ ℕ .[A.4]
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We are now left to analyze

… 𝘏𝑘(𝕊𝑛−1) 𝘏𝑘(𝐻𝑛
−) 𝘏𝑘(𝐻𝑛

−, 𝕊𝑛−1) 𝘏𝑘−1(𝕊𝑛−1) 𝘏𝑘−1(𝐻𝑛
−) … .

𝜕′𝑘+1 (𝑖𝑘)∗ (𝑗𝑘)∗ 𝜕′𝑘 (𝑖𝑘−1)∗ (𝑗𝑘−1)∗

To do so, reset notation so that 𝑖 now denotes the inclusion 𝑖 ∶ 𝕊𝑛−1 ↪ 𝐻𝑛
− and 𝑟𝑛 denotes the

deformation retraction 𝑟𝑛 ∶ 𝐻𝑛
− → {𝑝0}. We also let 𝑗 be the inclusion {𝑝0} ↪ 𝕊𝑛−1. Then, at the level of

spaces, 𝑟𝑛 ∘ 𝑖 ∘ 𝑗 = id{𝑝0} holds. Thus, at any homology level (𝑖𝑘)∗ ∘ 𝑗∗ = (𝑟𝑛)−1∗ is an isomorphism, implying
(𝑖𝑘)∗ surjective. Consequently, (𝑗𝑘)∗ is trivial for every 𝑘 ∈ ℕ0. In particular, since𝐻𝑛

− is contractible, for each
𝑘 ∈ ℕ we may extract the following short exact sequence:

{0} 𝘏𝑘(𝐻𝑛
−, 𝕊𝑛−1) 𝘏𝑘−1(𝕊𝑛−1) 𝘏𝑘−1(𝐻𝑛

−) 𝘏𝑘−1(𝐻𝑛
−, 𝕊𝑛−1)

(𝑗𝑘)∗ 𝜕′𝑘 (𝑖𝑘−1)∗ (𝑗𝑘−1)∗≡0 ,

which, in turn, implies 𝘏𝑘−1(𝐻𝑛
−) ≃ 𝘏𝑘−1(𝕊𝑛−1) ∕ 𝘏𝑘(𝐻𝑛

−, 𝕊𝑛−1). Considering [A.3] and [A.4],

[A.5]
𝘏𝑘−1(𝕊𝑛−1)
𝘏𝑘(𝕊𝑛)

≃ 𝘏𝑘−1(𝔹𝑛)

follows. Since 𝔹𝑛 is contractible for every 𝑛 ∈ ℕ, all its homology groups but 𝘏0(𝔹𝑛) ≃ ℤ are trivial. Also,
upon writing 𝕊0 = {−1}⊔{1}we see that the proposed result holds for it. Then, backward substitution in [A.5]
yields the remaining sought results. ▨

A.6 Corollary. Let ℳ be a topological manifold of dimension 𝑚 ≥ 1 and 𝑝 ∈ ℳ be a given point. Then,
𝘏𝑘(ℳ,ℳ ⧵ {𝑝}) ≃ ℤ is a free abelian group in one generator if 𝑘 = 𝑚, or trivial otherwise.

Proof. Let (𝑈,𝛷) be a coordinate chart around 𝑝 with 𝛷(𝑈) = ℝ𝑚 and 𝛷(𝑝) = 𝟎, where 𝟎 is the origin
of Euclidean space. The Excision Theorem A.4 applied to 𝑋 = ℳ, 𝐴 = ℳ ⧵ {𝑝} and 𝑍 = ℳ ⧵ 𝑈
yields 𝘏𝑘(ℳ,ℳ ⧵ {𝑝}) ≃ 𝘏𝑘(𝑈,𝑈 ⧵ {𝑝}) for every 𝑘 ∈ ℕ0, whilst the isomorphism induced by 𝛷 yields
𝘏𝑘(𝑈,𝑈 ⧵ {𝑝}) ≃ 𝘏𝑘(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}), so it suffices to characterise the latter group.

Refer to the long exact sequence in Proposition A.3.We notice first thatℝ𝑚may always be deformation
retracted onto some point in ℝ𝑚 ⧵ {𝟎}, implying (𝑖𝑘)∗ surjective for every 𝑘 ∈ ℕ0, as already argued during
the proof of the preceding Lemma A.5. Exactness then implies ker (𝑗𝑘)∗ = img (𝑖𝑘)∗ = 𝘏𝑘(ℝ𝑚) or, in other
words, (𝑗𝑘)∗ trivial. Thus ker 𝜕′𝑘 = img (𝑗𝑘)∗ = {0}, meaning that each 𝜕′𝑘 is injective, for every 𝑘 ∈ ℕ0.

In particular, since 𝜕′0 is the trivial morphism, 𝘏0(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}) ≃ {0} must be trivial as well. Also,
since ℝ𝑚 is contractible, we obtain the following short exact sequences for 𝑘 ≥ 2:

{0} 𝘏𝑘(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}) 𝘏𝑘−1(ℝ𝑚 ⧵ {𝟎}) {0}
(𝑗𝑘)∗ 𝜕′𝑘 (𝑖𝑘−1)∗ ,

which, in turn, imply 𝜕′𝑘 surjective and thus an isomorphism. Since ℝ𝑚 ⧵ {𝟎} can be (radially) deformation
retracted onto 𝕊𝑚−1, we obtain:

[A.6] 𝘏𝑘(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}) ≃ 𝘏𝑘−1(𝕊𝑚−1) for every 𝑘 ≥ 2 .

Now, sinceℝ𝑚 is path-connected, 𝘏0(ℝ𝑚) ≃ ℤ, whilst surjectivity of (𝑖0)∗ along with the isomorphism
theorem yield

ℤ ≃
𝘏0(𝕊𝑚−1)

𝘏1(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}) ≃ {
ℤ ∕ 𝘏1(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}) if𝑚 ≥ 2 ,
ℤ⊕ ℤ ∕ 𝘏1(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}) if𝑚 = 1 ,

in a slight abuse of notation due to the injectivity of 𝜕′1. But since all groups involved are free abelian,
comparison of ranks implies 𝘏1(ℝ𝑚, ℝ𝑚 ⧵ {𝟎}) trivial if𝑚 ≥ 2 and 𝘏1(ℝ,ℝ ⧵ {0}) ≃ ℤ. This, along with [A.6]
and the previous Lemma A.5 yield the sought result. ▨
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Each of the two possible choices of a generator for 𝘏𝑚(ℳ,ℳ ⧵ {𝑝}) is called a local orientation at 𝑝.
The proof of Corollary A.6 above conveys the geometrical information making it a reasonable nomenclature.

Indeed, recall that 𝘏𝑚(ℝ𝑚 ⧵ {𝟎}) is identified with 𝘏𝑚(𝕊𝑚−1) via radial projection, and consider first
the slightly more complicated case 𝑚 = 1. Then, the isomorphism 𝘏0(𝕊0) ≃ ℤ ⊕ ℤ consists of choosing the
two points {−1, 1} as generators: (𝑎, 𝑏) ↔ 𝑎 [1]+𝑏 [−1]. Since both are also points in the real line, in which any
two 0-simplices are equivalent, the inclusion induced homomorphism reads (𝑖0)∗ ∶ (𝑎, 𝑏) ↦ 𝑎+𝑏. Therefore,
img 𝜕′1 = ker(𝑖0)∗ = ⟨(−1, 1)⟩. Since 𝜕′1 was seen to be injective, 𝘏1(ℝ,ℝ ⧵ {0}) ≃ ⟨(−1, 1)⟩, which admits two
generators, (+1, −1) and (−1, +1). Each such choice basically amounts to prescribe a positive sign to the right
side of 0 and a negative sign to the left side or vice-versa.

When 𝑚 = 2, the aforementioned proof implied 𝜕′2 to be an isomorphism, so we may look directly
at the generators of 𝘏1(𝕊1). These are loops traversing the circle once, as may be seen from the Hurewicz
homomorphism2, which connects homology to the fundamental group. This same homomorphism shows
that changing the direction of travel amounts to a change of sign in homology, so a choice of generator for
𝘏2(ℝ2, ℝ2 ⧵ {𝟎}) boils down to a choice between clockwise and anticlockwise.

More generally, it can be shown using degree theory that any choice of generator for 𝘏𝑚−1(𝕊𝑚−1) is
preserved under rotations and has its sign reversed under reflections — properties which may be taken as
reasonable axioms for orientation. Clearly, a local orientation at 𝟎 can be transported to any other point of
ℝ𝑚, and thus defines a global orientation. In the case of a general manifold, a global orientation consists of
local orientations chosen in such a way that a certain local consistency property holds, as we describe below
and picture in Figure A.3.

A.7 Definition. Letℳ be a topological manifold without boundary of dimension 𝑚 ≥ 1. A choice of local
orientations 𝑝 ↦ 𝛼𝑝 is said to be continuous if for every 𝑝 ∈ ℳ there exist

• a coordinate chart (𝑈𝑝, 𝛷) around 𝑝 with 𝛷(𝑈𝑝) = ℝ𝑚 and 𝛷(𝑝) = 𝟎;
• a ball 𝐵 ⊂ ℝ𝑚 centred at 𝟎;
• and a generator 𝛼𝐵 of 𝘏𝑚(ℳ,ℳ ⧵ 𝛷−1(𝐵))

such that, for every 𝑞 ∈ 𝛷−1(𝐵),
𝛼𝑞 = (𝑖𝑞)∗(𝛼𝐵) ,

where (𝑖𝑞)∗ ∶ 𝘏𝑚(ℳ,ℳ ⧵ 𝛷−1(𝐵)) → 𝘏𝑚(ℳ,ℳ ⧵ {𝑝}) is the isomorphism induced by the natural inclusion
𝑖𝑞 ∶ ℳ ⧵ 𝛷−1(𝐵) ↪ ℳ ⧵ {𝑞}. Lastly,ℳ is orientable if it admits a continuous choice of local orientations.

A.8 Remark. For the above definition to make sense, we quickly remark that 𝑖𝑞 leaves the subspaceℳ ⧵ {𝑞}
invariant and also that 𝘏𝑚(ℳ,ℳ ⧵ 𝛷−1(𝐵)) ≃ 𝘏𝑚(ℝ𝑚, ℝ𝑚 ⧵ 𝐵) is isomorphic to ℤ for every𝑚 ≥ 1, by radial
retraction arguments analogous to those in the proof of Corollary A.6. In particular, it is naturally isomorphic
to 𝘏𝑚−1(𝕊𝑚−1) when𝑚 ≥ 2.

Figure A.3 – A manifold is orientable if a continuous choice of local orientations is possible — in other
words, if small (𝑚−1)-chains can be consistently oriented within a neighbourhood of every point via a single
chart.
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2In this case, isomorphism, cf. (36), pp. 351–355
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Once a continuous choice of local orientations 𝑝 ↦ 𝛼𝑝 is made, ℳ is said to be oriented. Then,
𝑓 ∈ Homeo (ℳ) is orientation-preserving if the induced isomorphism 𝑓∗ in homology satisfies 𝑓∗(𝛼𝑝) = 𝛼𝑓(𝑝)
for every 𝑝 ∈ ℳ. Since induced isomorphisms respect composition, we readily see that Homeo+(ℳ) forms a
group. We summarise this conclusion below and stretch it a little further without going into details.

A.9 Proposition. Letℳ be a closed and oriented topological manifold. Then, the set Homeo+(ℳ) of all its
orientation-preserving homeomorphisms is a closed subgroup of Homeo (𝑀).

Sketch of proof. Let (𝑓𝑛)𝑛∈ℕ be a sequence of orientation-preserving maps, converging uniformly to 𝑓. We
argue that 𝑓 must be orientation-preserving as well. To do so, we first notice that if 𝜎 is a singular 𝑘-simplex,
then (𝑓𝑛 ∘ 𝜎)𝑛∈ℕ converges uniformly to 𝑓 ∘ 𝜎 over the compact set ▵𝑘 for every 𝑘 ∈ ℕ0.

We fix 𝑝 inℳ, and confound a coordinate neighbourhood of 𝑓(𝑝) with Euclidean space, thus letting
𝐵 be a ball centred at 𝟎 = 𝑓(𝑝) such that 𝛼𝑦 = (𝑖𝑦)∗(𝛼𝐵) for every 𝑦 ∈ 𝐵, as in Definition A.7. Then, we may
choose for 𝛼𝑝 a representative 𝜎 fully contained in 𝑓−1(𝐵). This means that 𝑓∗𝛼𝑝 is represented by the𝑚-chain
𝛽 ≝ 𝑓 ∘ 𝜎 in 𝐵, whose boundary is a (compact) (𝑚 − 1)-cycle not meeting 𝟎.

If 𝛽𝑛 ≝ 𝑓𝑛 ∘ 𝜎, each 𝛽𝑛 is a representative of (𝑓𝑛)∗𝛼𝑝. By the uniform convergence property described
earlier, we may fix a smaller ball 𝐵′ centred at 𝟎 and 𝑛′ ∈ ℕ such that 𝑥𝑛 ≝ 𝑓𝑛(𝑝) ∈ 𝐵′ and both 𝜕𝑚𝛽, 𝜕𝑚𝛽𝑛
are (𝑚 − 1)-cycles in ℝ𝑚 ⧵ 𝐵′, for every 𝑛 ≥ 𝑛′.

Let us denote classes in 𝘏𝑚(ℝ𝑚, ℝ𝑚 ⧵ {𝑥}) by [⋅]𝑥, and classes in 𝘏𝑚(ℝ𝑚, ℝ𝑚 ⧵ 𝐵′) by [⋅]′. Whenever
𝑛 ≥ 𝑛′, the inclusion ℝ𝑚 ⧵ 𝐵′ ⊂ ℝ𝑚 ⧵ {𝑥𝑛} holds. Since each 𝑓𝑛 is orientation-preserving, we thus have the
following diagram:

𝛼𝑝 [𝛽𝑛]′ [𝛽𝑛]𝑥𝑛 = (𝑓𝑛)∗𝛼𝑝 𝛼𝐵
injection (𝑖𝑥𝑛 )∗ .

In particular, [𝛽𝑛]′ = [𝛽𝑠]′whenever 𝑛, 𝑠 ≥ 𝑛′. RecallingDefinitionA.2, thismeans that 𝛽𝑛−𝛽𝑠 ∈ 𝘊𝑚(ℝ𝑚⧵𝐵′).
Since ℝ𝑚 ⧵ 𝐵′ is a closed set, taking the pointwise limit as 𝑠 → ∞ implies 𝛽𝑛 − 𝛽 ∈ 𝘊𝑚(ℝ𝑚 ⧵ 𝐵′). Hence,
[𝛽]′ = [𝛽𝑛]′ for every 𝑛 ≥ 𝑛′, as suggested in Figure A.4.

Figure A.4 – The important information in relative homology is actually encoded by the boundaries, which
become equivalent modulo a bounded neighbourhood of 𝑓(𝑝) for large 𝑛.
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Let now 𝑟𝑥 denote radial projection from 𝑥 ∈ 𝐵′ onto 𝜕𝐵′. Then, it determines a deformation retraction from
ℝ𝑚⧵{𝑥} ontoℝ𝑚⧵𝐵′, thus descending to an isomorphism in relative homology groups. Sinceℝ𝑚⧵𝐵 ⊂ ℝ𝑚⧵𝐵′,
the following diagram commutes for every 𝑛 ≥ 𝑛′:

𝘏𝑚(ℝ𝑚, ℝ𝑚 ⧵ {𝑥𝑛})

𝘏𝑚(ℝ𝑚, ℝ𝑚 ⧵ 𝐵) 𝘏𝑚(ℝ𝑚, ℝ𝑚 ⧵ 𝐵′)

𝘏𝑚(ℝ𝑚, ℝ𝑚 ⧵ {𝟎})

(𝑖𝑥𝑛 )∗

(𝑖𝟎)∗

≃
(𝑟𝑥𝑛 )∗

≃
(𝑟𝟎)∗

Lastly, [𝛽]′ = [𝛽𝑛]′ and [𝛽𝑛]𝑥𝑛 = [𝛼𝐵]𝑥𝑛 imply [𝛽]𝟎 = [𝛼𝐵]𝟎, which translates to 𝑓∗𝛼𝑝 = (𝑖𝑓(𝑝))∗(𝛼𝐵). ▨
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Although the considerations made so far settle the meaning of the group Homeo+(ℳ), no concrete
instances of it are available yet. Indeed, very few examples — if any — can be given of orientable topological
manifolds from Definition A.7 alone. In a regular Algebraic Topology course, the subject is further developed
by the introduction of a new manifold ℳ̃, whose underlying set consists of all local orientations of ℳ,
topologised in such a way that 𝛼𝑝 ↦ 𝑝 is a double sheeted covering map. Then, global orientations — if
they exist — arise as continuous sections in Γ(ℳ, ℳ̃). This is a framework well-suited to prove Proposition
A.9, for then it is simply the statement that convergent sequences assuming discrete values are eventually
constant.

Nevertheless, even the classical textbook theorems on the subject yield as orientable topological
manifolds essentially those which are simply-connected or products of manifolds known to be orientable,
apart from a plethora of necessary conditions or specialised results given as exercises — cf. e.g. Sec. 3.3 of (22)
and Ch. VII §2 of (9).

Although topological manifolds not admitting a differentiable structure do exist, much more familiar
orientability criteria are available for smooth manifolds (29): the existence of an atlas for which the transition
functions have positive Jacobian determinant; the existence of a continuous volume formor even the existence
of a continuous normal field for a realisation of the manifold as a hypersurface of Euclidean space, among
others.

A.2 Groups of diffeomorphisms

Let ℳ be a smooth manifold. In other words, a topological manifold for which an atlas {(𝑈𝛼, 𝛷𝛼)}𝛼
presenting smooth transition functions exists. Then, the Whitney weak topology — introduced via subbasic
neighbourhoods for diffeomorphisms — can actually be used to topologise the entire set 𝐶1(ℳ) of functions
ℳ →ℳ of class𝐶1. To do so, the subbasic neighbourhoodsℬ(𝑓 ; (𝑈,𝛷), 𝐾, (𝑉, 𝛹) ; 𝜀) are defined in the exact
same way, only now its elements (𝑓 included) are taken from the whole of 𝐶1(ℳ). As mentioned earlier, this
topology is not very convenient for computations. An alternative description is given by jets, a generalisation
of the Taylor polynomial that we now recall.

A.10Definition. Letℳ be a smoothmanifold, and consider the following equivalence relation inℳ×𝐶1(ℳ):

(𝑝, 𝑓) ∼ (𝑞, 𝑔) ⟺ 𝑞 = 𝑝 , 𝑓(𝑝) = 𝑔(𝑝) and D𝑓(𝑝) = D𝑔(𝑝) .

The jet of 𝑓 at 𝑝 is the equivalence class 𝑗𝑝𝑓 of (𝑝, 𝑓) under this relation, while the space of jets is the quotient
𝐽ℳ ≝ ℳ × 𝐶1(ℳ)∕ ∼= {𝑗𝑝𝑓 ∶ 𝑝 ∈ ℳ and 𝑓 ∈ 𝐶1(ℳ)}.

A.11 Remark. Clearly, two jets 𝑗𝑝𝑓 and 𝑗𝑞𝑔 agree if, and only if, 𝑞 = 𝑝 and for every pair of coordinate
charts (𝑈,𝛷) around 𝑝 and (𝑉, 𝛹) around 𝑓(𝑝) such that both 𝑓(𝑈) and 𝑔(𝑈) are cointaned in 𝑉 , the local
representations ̂𝑓 and ̂𝑔 have the same first order Taylor polynomial at 𝛷(𝑝) ∈ ℝ𝑚.

The set 𝐽ℳ can be topologised as to become itself a manifold, a process that can be canonically carried
out as long as reasonable candidates for local charts are available — cf. e.g. Lee (35, Lemma 1.35). In this
particular case, if {(𝑈𝛼, 𝛷𝛼)}𝛼 is an atlas of ℳ, let 𝒱𝛼𝛽 denote the set of jets 𝑗𝑝𝑓 such that 𝑝 ∈ 𝑈𝛼 and
𝑓(𝑝) ∈ 𝑈𝛽. Then, consider

𝛩𝛼𝛽 ∶ 𝒱𝛼𝛽 → 𝛷(𝑈𝛼) × 𝛷(𝑈𝛽) × GL𝑚(ℝ)

𝑗𝑝𝑓 ↦ (𝛷𝛼(𝑝), 𝑓𝛼𝛽(𝛷𝛼(𝑝)) , D𝑓𝛼𝛽(𝛷𝛼(𝑝)) )
,

where 𝑓𝛼𝛽 = 𝛷𝛽 ∘ 𝑓 ∘ 𝛷−1
𝛼 is the local expression of 𝑓 between suitable open sets of Euclidean 𝑚-space. Due

to Remark A.11, the above yields a well-defined bijection between 𝒱𝛼𝛽 and an open subset of ℝ𝑚 × ℝ𝑚 ×
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GL𝑚(ℝ) ≃ ℝ2𝑚+𝑚2 . Upon checking that the collection {𝒱𝛼𝛽}𝛼,𝛽 inherits fromℳ Hausdorffness and second
countability, 𝐽ℳ is made into a (2𝑚 +𝑚2)-dimensional topological manifold by the charts {𝒱𝛼𝛽, 𝛩𝛼𝛽}𝛼,𝛽.

For each 𝑓 ∈ 𝐶1(ℳ), one may thus consider the so-called prolongation 𝑗𝑓 ∶ ℳ → 𝐽ℳ, mapping
𝑝 ∈ ℳ to (𝑗𝑓)(𝑝) ≝ 𝑗𝑝𝑓. These are continuous as functions of 𝑝, for a local expression is 𝑧 ∈ 𝛷𝛼(𝑈𝛼) ⊂
ℝ𝑚 ↦ (𝑧, 𝑓𝛼𝛽(𝑧) , D𝑓𝛼𝛽(𝑧) ). Therefore, each 𝑗𝑓 lies in the set Γ(ℳ, 𝐽ℳ) of continuous sections of the bundle
𝐽ℳ ℳ . Even more, 𝑗 is actually an injection of 𝐶1(ℳ) into Γ(ℳ, 𝐽ℳ) , for 𝑗𝑓 = 𝑗𝑔 implies 𝑓(𝑝) = 𝑔(𝑝)
for every 𝑝 ∈ ℳ.

The set Γ(ℳ, 𝐽ℳ), in turn, carries the compact-open topology, which is also specified by a subbasis.
Namely, the one comprising neighbourhoods of the form𝒩(𝐾,𝒱) = {𝜎 ∶ 𝜎(𝐾) ⊂ 𝒱}, where 𝐾 is compact and
𝒱 is open. In particular, this subbasis pulls back under 𝑗 to a subbasis of some topology in 𝐶1(ℳ), say a “jets
topology”. With respect to it, we have the following.

A.12 Lemma. The “jets topology” and the Whitney weak topology in 𝐶1(ℳ) actually coincide.

Proof. Let 𝑓 ∈ 𝐶1(ℳ) be such that 𝑗𝑓 ∈ 𝒩(𝐾, 𝒱). Then, one may fix finitely many open sets 𝐵1,… , 𝐵𝑛 such
that 𝐾 ⊂ ⋃𝑛

𝑖=1 𝐵𝑖 and each 𝐵𝑖 is contained in some coordinate neighbourhood 𝑈𝛼𝑖 satisfying 𝑓(𝑈𝛼𝑖 ) ⊂ 𝑈𝛽𝑖 ,
where 𝑈𝛽𝑖 is some other coordinate neighbourhood. Clearly, each 𝛩𝛼𝑖𝛽𝑖 (𝒱𝛼𝑖𝛽𝑖 ∩ 𝒱) is an open set containing
the compact set𝐾𝑖 ≝ 𝛩𝛼𝑖𝛽𝑖[𝑗𝑓(𝐵𝑖)]. Thus, onemay fix 𝜀 > 0 such that {𝑤 ∶ dist(𝑤, 𝐾𝑖) ≤ 𝜀} ⊂ 𝛩𝛼𝑖𝛽𝑖 (𝒱𝛼𝑖𝛽𝑖 ∩ 𝒱)
for every 𝑖 ∈ {1,… , 𝑛}. We claim the following:

𝑗𝑔(𝐾) ⊂ 𝒱 whenever 𝑔 ∈
𝑛

⋂
𝑖=1

ℬ (𝑓 ; (𝑈𝛼𝑖 , 𝛷𝛼𝑖 ), 𝐵𝑖, (𝑈𝛽𝑖 , 𝛷𝛽𝑖 ) ; 𝜀) .[A.7]

Indeed, given such 𝑔, it is known by definition that 𝑔(𝐵𝑖) ⊂ 𝑈𝛽𝑖 for each 𝑖, so for a point 𝑝 ∈ 𝐾 ∩ 𝐵𝑖 it makes
sense to compute

𝛩𝛼𝑖𝛽𝑖 (𝑗𝑝𝑔) = (𝛷𝛼𝑖 (𝑝) , 𝑔𝛼𝑖𝛽𝑖 (𝛷𝛼𝑖 (𝑝)) , D𝑔𝛼𝑖𝛽𝑖 (𝛷𝛼𝑖 (𝑝)) ) ∈ 𝛷𝛼𝑖 (𝑈𝛼𝑖 ) × 𝛷𝛽𝑖 (𝑈𝛽𝑖 ) × ℝ𝑚2 .

Since 𝛩𝛼𝑖𝛽𝑖 (𝑗𝑝𝑓) ∈ 𝐾𝑖 for 𝑝 ∈ 𝐵𝑖 ∩ 𝐾, condition [1.2] yields dist(𝛩𝛼𝑖𝛽𝑖 (𝑗𝑝𝑔), 𝐾𝑖) ≤ 𝜀, say with respect to the
maximum norm. The choice of 𝜀 then implies 𝛩𝛼𝑖𝛽𝑖 (𝑗𝑝𝑔) ∈ 𝛩𝛼𝑖𝛽𝑖 (𝒱𝛼𝑖𝛽𝑖 ∩ 𝒱) for every 𝑝 ∈ 𝐵𝑖 ∩ 𝐾, or yet
𝑗𝑔(𝐵𝑖 ∩ 𝐾) ⊂ 𝒱𝛼𝑖𝛽𝑖 ∩ 𝒱 for each 𝑖 ∈ {1,… , 𝑛}, which is enough to establish the claim.
Claim [A.7] above states that the “jets topology” is coarser than the Whitney weak topology. The converse
inclusion is simpler: if 𝑔 ∈ ℬ(𝑓 ; (𝑈𝛼, 𝛷𝛼), 𝐾, (𝑈𝛽, 𝛷𝛽) ; 𝜀) then 𝑗𝑔 ∈ 𝒩(𝐾, 𝒱), where

𝒱 = 𝛩−1
𝛼𝛽 (𝛷𝛼(𝑈𝛼) × (𝐾𝜀 ∩ [𝛷𝛽(𝑈𝛽) × ℝ𝑚2] ) )

and 𝐾𝜀 is an open 2𝜀-neighbourhood of the compact set (𝑓𝛼𝛽 × D𝑓𝛼𝛽) (𝛷𝛼(𝐾)). ▨

Lemma A.12 above has key implications to the 𝐶1 topology, as the compact-open topology is textbook
material (§46 of (40)):

• First, when the target space is metric, the compact-open topology is equivalent to that of uniform
convergence over compact sets. This implies the injection of 𝐶1(ℳ) to be a closed subspace of
Γ(ℳ, 𝐽ℳ), asmay be seen upon resorting to convex balls compactly contained in coordinate domains
and standard Real Analysis results on the uniform convergence of a sequence of functions and their
derivatives.

• Second, when the source spaceℳ is compact, the compact-open topology further simplifies to the
(metrisable) topology of uniform convergence, thus confirming that convergence in the 𝐶1 topology
implies convergence in the metric 𝑑∞ defined in [A.1]. This also attaches a meaning to expressions
such as “𝐶1 close”. Once a finite atlas is fixed, one may even consider the “𝐶1 norm” of a function,
an expression often found in the literature.
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• Lastly, sinceℳ and 𝐽ℳ are both manifolds, the first is locally compact with countable base, whilst
the second is completely metrisable. The compact-open topology in Γ(ℳ, 𝐽ℳ) is thus completely
metrisable as well (Theorem 4.1 in (24)). This allows one to use sequential criteria for continuity, as
in Proposition A.13 ahead.

A.13 Proposition. Letℳ be a smooth manifold, not necessarily compact. Then, Diff 1(ℳ) endowed with the
𝐶1-topology and the composition operation is a topological group.

Proof. Let (𝑓𝑛)𝑛∈ℕ and (𝑔𝑛)𝑛∈ℕ be two sequences in Diff
1(ℳ) such that 𝑗𝑓𝑛 → 𝑗𝑓 and 𝑗𝑔𝑛 → 𝑗𝑔 with respect

to the compact-open topology. The goal is to prove that 𝑗(𝑓𝑛 ∘ 𝑔𝑛) converges uniformly to 𝑗(𝑓 ∘ 𝑔) on compact
sets ofℳ. Let thus 𝐾 ⊂ ℳ be a given compact set.

For every 𝑝 ∈ 𝐾, there exist coordinate neighbourhoods 𝑈𝛼 and 𝑈𝛽 — both depending on 𝑝— such
that 𝑝 ∈ 𝑈𝛼 and (𝑓 ∘ 𝑔) (𝑈𝛼) ⊂ 𝑈𝛽. Also, there exists a coordinate neighbourhood 𝑈𝛾 such that 𝑔(𝑝) ∈ 𝑈𝛾.
Thus, 𝑔(𝑝) belongs to the open set 𝑈𝛾 ∩ 𝑓−1(𝑈𝛽). Hence, one may fix an open set 𝐵𝑝 around 𝑝 such that 𝐵𝑝 is
a compact subset of 𝑈𝛼 satisfying 𝑔(𝐵𝑝) ⊂ 𝑈𝛾 ∩ 𝑓−1(𝑈𝛽). In particular, 𝑗𝑔(𝐵𝑝) ⊂ 𝒱𝛼𝛾, 𝑗(𝑓 ∘ 𝑔)(𝐵𝑝) ⊂ 𝒱𝛼𝛽 and
𝑗𝑓[𝑔(𝐵𝑝)] ⊂ 𝒱𝛾𝛽. Given this setting, we establish an intermediate local result before concluding.

A.13.1 Claim. Let 𝐵 ⊂ ℝ𝑚 be a bounded open set and let ( ̂𝑔𝑛)𝑛∈ℕ, ( ̂𝑓𝑛)𝑛∈ℕ be sequences of functions of class
𝐶1 such that:

• ( ̂𝑔𝑛)𝑛∈ℕ and their differentials converge uniformly on 𝐵 to a function 𝑔;
• ( ̂𝑓𝑛)𝑛∈ℕ and their differentials converge uniformly to a function 𝑓 on compact sets.

Then, ( ̂𝑓𝑛 ∘ ̂𝑔𝑛)𝑛∈ℕ and their differentials converge uniformly to ̂𝑓 ∘ ̂𝑔 on 𝐵.

Proof. Since the uniform convergence ̂𝑓𝑛 ∘ ̂𝑔𝑛 → ̂𝑓 ∘ ̂𝑔 is standard Real Analysis, let us only verify uniform
convergence of the differentials. To do so, we switch to the prime notation D𝑓(𝑥) = 𝑓′(𝑥). For 𝑥 ∈ 𝐵:

‖
‖ ̂𝑓′𝑛( ̂𝑔𝑛(𝑥)) ∘ ̂𝑔′𝑛(𝑥) − ̂𝑓′( ̂𝑔(𝑥)) ∘ ̂𝑔′(𝑥) ‖‖ ≤

‖
‖ ̂𝑓′𝑛( ̂𝑔𝑛(𝑥)) − ̂𝑓′( ̂𝑔𝑛(𝑥)) ‖‖ ‖ ̂𝑔′𝑛(𝑥) ‖

+ ‖
‖ ̂𝑓′( ̂𝑔𝑛(𝑥)) − ̂𝑓′( ̂𝑔(𝑥)) ‖‖ ‖ ̂𝑔′𝑛(𝑥) ‖

+ ‖ ̂𝑓′( ̂𝑔(𝑥)) ‖ ‖ ̂𝑔′𝑛(𝑥) − ̂𝑔′(𝑥) ‖ .

The sought convergence then follows from the uniform boundedness of (𝑔′𝑛)𝑛∈ℕ and the fact that ̂𝑓′ ∘ ̂𝑔𝑛
converges uniformly to ̂𝑓′ ∘ ̂𝑔 on 𝐵 as well. □

Now, there are finitely many points 𝑝1,… , 𝑝𝑘 such that the sets 𝐵𝑖 ≝ 𝐵𝑝𝑖 cover 𝐾. Thus, for every
sufficiently large 𝑛 one is allowed to compute both 𝛩𝛼𝑖𝛾𝑖 ∘ 𝑗𝑔𝑛 and 𝛩𝛼𝑖𝛽𝑖 ∘ 𝑗(𝑓𝑛 ∘ 𝑔𝑛) on each set 𝐵𝑖, as well as
𝛩𝛾𝑖𝛽𝑖 ∘ 𝑗𝑓𝑛 ∘ 𝑔𝑛. Since 𝑗𝑔𝑛 converges uniformly to 𝑗𝑔 on 𝐵𝑖 and 𝑗𝑓𝑛 converges uniformly to 𝑗𝑓 on 𝑔(𝐵𝑖), Claim
A.13.1 above applies to 𝐵 = 𝐵𝑖, ̂𝑔𝑛 = 𝛷𝛾𝑖 ∘ 𝑔𝑛 ∘ 𝛷−1

𝛼𝑖 , ̂𝑓𝑛 = 𝛷𝛽𝑖 ∘ 𝑓𝑛 ∘ 𝛷−1
𝛾𝑖 and ̂𝑔, ̂𝑓 defined accordingly. But

̂𝑓𝑛 ∘ ̂𝑔𝑛 = (𝛷𝛽𝑖 ∘ 𝑓𝑛 ∘ 𝛷−1
𝛾𝑖 ) ∘ (𝛷𝛾𝑖 ∘ 𝑔𝑛 ∘ 𝛷−1

𝛼𝑖 ) = 𝛷𝛽𝑖 ∘ (𝑓𝑛 ∘ 𝑔𝑛) ∘ 𝛷−1
𝛼𝑖 .

Therefore, the uniform convergence of ( ̂𝑓𝑛∘ ̂𝑔𝑛)𝑛∈ℕ and its derivatives on𝐵𝑖 amounts to that of𝛩𝛼𝑖𝛽𝑖 ∘𝑗(𝑓𝑛 ∘ 𝑔𝑛).
This implies 𝑗(𝑓𝑛 ∘ 𝑔𝑛) to converge uniformly to 𝑗(𝑓 ∘ 𝑔) on each 𝐵𝑖, and thus on 𝐾. Since 𝐾 was arbitrary,
continuity of composition is proven. It now remains to prove continuity of inversion.

Given that continuity of composition in Diff 1(ℳ) is established, it suffices to show that 𝑓 ∘𝑓−1𝑛 → idℳ
under the assumption that 𝑓𝑛 → 𝑓, all convergences being with respect to the 𝐶1-topology. But, if 𝐾 ⊂ ℳ is a
compact set contained in the domains of two charts (𝑈,𝛷) and (𝑉, 𝛹), in coordinates one has:

||( ̂𝑓 ∘ ̂𝑓−1𝑛 )(𝑥) − 𝑥|| = || ̂𝑓( ̂𝑓−1𝑛 (𝑥)) − ̂𝑓𝑛( ̂𝑓−1𝑛 (𝑥))|| ≤ sup
𝑦∈𝛷(𝐾)

|| ̂𝑓(𝑦) − ̂𝑓𝑛(𝑦)|| ,

which tends to zero as 𝑛 → ∞. Convergence of the differentials then follows from the identity D( ̂𝑓−1𝑛 )(𝑥) =
[D ̂𝑓𝑛 ( ̂𝑓−1𝑛 (𝑥)) ]−1, along with the continuity of matrix inversion. ▨



Appendix B

Thurston classification and the figure 8

This appendix is devoted to shed some light into the reasons why the presence of a topological
figure 8, as defined during the proof of Theorem B and depicted in Figure 4.10, implies the presence
of positive topological entropy in 𝐺0. This is a generally accepted fact in the Dynamical Systems
lore, and we by no means intend to give here a mathematically correct proof of it. Instead, we give a
general idea of why such must hold, and point out some of the subtleties involved.

In order to do so, we must first remember the concept of a pseudo-Anosov homeomorphism
— or rather, a relative pseudo-Anosov. For that, we follow (15).

B.1 Definition. Let 𝒮 be a closed smooth surface and 𝑃 be a finite set. Then, a homeomorphism
𝑓 ∶ 𝒮 → 𝒮 is said to be pseudo-Anosov relative to 𝑃 if it leaves invariant two mutually transverse
measured singular foliations (ℱ𝚜, 𝜇𝚜) and (ℱ𝚞, 𝜇𝚞) such that:

1) 𝑓∗𝜇𝚜 = 𝛽−1𝜇𝚜 and 𝑓∗𝜇𝚞 = 𝛽𝜇𝚞 for some 𝛽 > 1,
2) a singularity in Sing(ℱ𝚜) = Sing(ℱ𝚞) is a 1-prong if, and only if, it lies in 𝑃. In particular, 𝑃

is permuted under 𝑓.
When 𝑃 = ∅ or— in other words— the foliations present 𝑘-prongs only for 𝑘 ≥ 3, 𝑓 is called simply
pseudo-Anosov.

Let us briefly clarify the terminologies introduced above, for the sake of completeness. First,
recall that a singular foliation ℱ is a partition of a closed surface 𝒮 into a set {𝜙𝑥}𝑥∈𝒮 of lesser
dimensional submanifolds called leaves, along with the prescription of a finite set of singularities
Sing(ℱ) such that:

• for every nonsingular point 𝑝 ∈ 𝒮 ⧵ Singℱ there exists a coordinate chart (𝑈𝑝, 𝛹) around
𝑝 such that 𝛹(𝑝) = 𝟎 and, for every leaf 𝜙 ∈ ℱ intercepting 𝑈𝑝, the set 𝜙 ∩ 𝑈𝑝 corresponds
under 𝛹 to some horizontal line segment;

• for every singular point 𝑝 ∈ Sing(ℱ) there exists exists a coordinate chart (𝑈𝑝, 𝛹) around 𝑝
such that 𝛹(𝑝) = 𝟎 and, for every leaf 𝜙 ∈ ℱ intercepting 𝑈𝑝, the set 𝜙 ∩ 𝑈𝑝 corresponds
under 𝛹 to some level set of Im(𝑧𝑘⁄2), where 𝑘 ∈ ℕ ⧵ {2}.

This extensive definition is conveyed in Figure B.1. A singular point is named a 𝑘-prong after the
number 𝑘 figuring in the second bullet above, while the charts around nonsingular points are called
flow boxes.

We can now assign meaning to transversality: an arc 𝛼 ∶ 𝕀 → 𝒮 is ℱ-transverse if its image
does not intercept Sing(ℱ) and every point in 𝛼(𝕀𝚘) admits a flow box in which 𝛼 corresponds to a
curve transverse to the foliation by horizontal lines in the usual sense of the complex plane.
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Figure B.1 – Charts around points of a closed surface 𝒮 endowed with a singular foliation ℱ: a 1-prong, a
flow box and a 3-prong, respectively.
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Now, a pair (ℱ, 𝜇) is said to be a measured foliation if 𝜇 is a real valued function defined on
the set of all ℱ-transverse arcs and such that:

• if 𝛽 is homotopic to 𝛼 along ℱ, then 𝜇(𝛼) = 𝜇(𝛽);
• every nonsingular point of ℱ admits a flow box in which the measure of transverse arcs
pushes forward to the vertical Lebesgue measure |d𝑦|.

Once more, a handful of terms asking for a precise definition were introduced, but we rather just
illustrate them in Figure B.2.

Figure B.2 – The conditions on a measured foliation: pushing-forward to the vertical Lebesgue measure in
flow boxes and assigning the samemeasure to transverse arcs that can be slided onto each other over the same
leaves.
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In light of the above, we can now make sense of Definition B.1. First, to say that the two
measured foliations (ℱ𝚜, 𝜇𝚜) and (ℱ𝚞, 𝜇𝚞) are transverse means that they share the same set of
singularities and, furthermore, around every point of 𝒮 there exists a chart under which these
foliations correspond to mutually orthogonal families of curves in the usual sense of the complex
plane. The prototypical situations for a nonsingular point and a 3-prong are shown in Figure B.3.

Figure B.3 – Prototypical models for a flow box and a 3-prong of a pair of transverse foliations ℱ𝚞 and ℱ𝚜.

ℱ�
ℱ�

Now, it may not be clear at first glance what condition 1) implies, for the measures are a priori
defined in arcs transverse to the given foliations:measured foliations are to be thought of as providing
an “intrinsic” arc length function to transverse arcs. Thus, 𝜇𝚞 provides a way to measure arcs of the
stable foliation and vice-versa.
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In this case, 1) reads for an arc 𝛼 of stable foliation:

𝜇𝚞(𝑓(𝛼)) = 𝛽−1 (𝑓∗𝜇𝚞)(𝑓(𝛼)) = 𝛽−1 𝜇𝚞(𝛼) .

Since 𝛽 > 1, we see at once that the leaves of the stable foliation are contracted under the
action of 𝑓, whilst the leaves of the unstable foliation are stretched. For this reason, the number 𝛽
is called the stretching factor of 𝑓. This is to be seen as a generalisation of the concept of Anosov
diffeomorphisms — that is, diffeomorphisms which are uniformly hyperbolic. In that case, actual
stable and unstable manifolds are available, and their lengths are indeed contracted and stretched
accordingly.

Let us not bother with condition 2) for now, and consider instead ordinary pseudo-Anosov
maps, for which a very broad and well developed theory is available from the Dynamical Systems
viewpoint. For example, it is known that

• the periodic orbits for 𝑓 are dense in 𝒮, and actually form a residual set;
• 𝑓 has strictly positive topological entropy;

and, furthermore, some form of these properties carry over to a map 𝑔 that is only isotopic to a
pseudo-Anosov. More specifically, Theorem 2 in (21) by Handel establishes the existence of a closed
and 𝑔-invariant subset 𝑌 ⊂ 𝒮 on which the dynamics of 𝑔 has the dynamics of 𝑓 as a factor. In
particular, this implies 𝑔 to have strictly positive topological entropy as well.

As it turns out, all of the above holds for relative pseudo-Anosov homeomorphisms as well.
The idea is a little roundabout, for it consists in blowing up the points in𝑃 into boundary components
of a new surface 𝒮′, in such a way that 𝑓 induces on this new surface an actual pseudo-Anosov map.
Then, this new map factors over the original one via collapsing these components into points. How
thismay be carried out in general is hinted at in p. 559 of (28), while (38) does it a littlemore explicitly
for the case in which 𝑃 is a periodic orbit of a surface diffeomorphism, fitting us rather well.

Of course, one notices that we first defined a pseudo-Anosov map on a closed surface.
Fortunately, surfaces with boundary are comprised by the available theory as well, but some further
restrictionsmust bemade. Namely, one asks the usual Definition B.1 to hold in 𝒮⧵𝜕𝒮 and also for 𝜕𝒮
to decompose into components that are both stable and unstable leaves at the same time, in such a
way that their singularities alternate and are all 3-prongs. Once again, we don’t bother making these
precise, referring instead to Figure B.4 and to Chapters 4 through 7 of (4) for an exposition aimed at
graduate students.

Figure B.4 – On a surface with boundary, each segment of a boundary component is a stable and unstable
leaf.

� ∈ Sing(ℱ�) � ∈ Sing(ℱ�)
��

ℱ� ℱ�

We are now ready to state the (presently classical) Nielsen-Thurston Classification Theorem.
Several forms of it became available in the literature since its consolidation in 1978. We present the
one given in Section 5 of (39), for it allows one to locate the periodic points of a given map at once.
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B.2 The Nielsen-Thurston Classification Theorem. Let 𝒮 be a compact surface and 𝑔 ∶ 𝒮 → 𝒮 be
a homeomorphism for which a (possibly empty) finite set 𝑃 ⊂ 𝒮 ⧵ 𝜕𝒮 of distinguished fixed points
is given. Then, another homeomorphism 𝑓 ∶ 𝒮 → 𝒮 exists such that 𝑔 ≃ 𝑓 rel𝑃 and:

1) either 𝑓 is periodic, meaning that 𝑓𝑚 = id𝒮 for some𝑚 ∈ ℕ;
2) or 𝑓 is pseudo-Anosov relative to 𝑃;
3) or there exists a 𝑓-invariant system of simple loops {𝛾1,… , 𝛾𝑟}— called reducing curves—

with the following properties:
• each connected component of the punctured surface obtained upon deleting 𝑃
from 𝒮 ⧵⋃𝑟

𝑖=1 𝛾𝑖 has negative Euler characteristic, and
• each reducing curve comes equipped with a 𝑓-invariant tubular neighbourhood
𝒰(𝛾𝑖), disjoint from 𝑃, such that if𝒩 is a connected component of 𝒮⧵⋃𝑟

𝑖=1𝒰(𝛾𝑖),
then 𝑓↾𝒩 is either periodic or pseudo-Anosov relative to 𝑃 ∩𝒩.

A few comments are in order concerning the above theorem. First, the requirement of 𝑃 being
composed of fixed points is artificial: in principle it could be any finite 𝑔-invariant set, to the effect
that powers of 𝑓 would figure in 3) instead. Second, the notation 𝑔 ≃ 𝑓 rel𝑃 means that 𝑔 and 𝑓
are isotopic in the usual sense, say via (𝑔𝑡)𝑡∈𝕀 such that 𝑔0 = 𝑔 and 𝑔1 = 𝑓, but with the further
requirement that 𝑔𝑡↾𝑃 = 𝑔↾𝑃 for every 𝑡.

Lastly, the classification theorem is to be understood as a sort of recursive algorithm. Once it
finishes running and spits out 𝑓 and {𝛾1,… , 𝛾𝑟}, the original surface 𝒮 is separated by the reducing
curves into invariant components — restricted to which 𝑓 presents regions of either extremely
regular (periodic) or extremely chaotic (pseudo-Anosov) behaviour. The tubular neighbourhoods
function as “transition” areas, about which nothing can be said in principle. Running the isotopy
backwards then yields information about the homeomorphism 𝑔 which was given as input, thanks
to results such as the aforementioned one due to Handel.

Having that in mind, let 𝐺 ⊂ Homeo (𝕊2) be a given subgroup, and assume that (𝑔𝑡)𝑡∈𝕀 is
an ℐ𝐺3-isotopy under which a certain point �̂� has as its trajectory a topological figure 8 relative
to {𝟎, 𝟏,∞}. Let us argue informally that this implies 𝐺 to have an element of positive topological
entropy.

To do so, we feed into the classification theorem the homeomorphism 𝑔 ≝ 𝑔1, along with the
set of fixed points 𝑃 = {𝟎, 𝟏,∞, �̂�}, thus obtaining 𝑓 as described there. The first thing we want to
do is discard possibility 1).

Since we are working within a group, we may take powers to suppose at once that 𝑓 = id𝕊2 .
Then, concatenation with the isotopy between 𝑔 and 𝑓 implies any simple loop 𝛼 avoiding 𝑃 to be
freely homotopic to its image 𝑔(𝛼) relative to 𝑃. In particular, this must hold for a simple loop 𝛼
separating {𝟎, �̂�} from {𝟏,∞}, such as the one depicted in the left of Figure B.5. We would like to
prove that this cannot hold, and that is exactly the delicate part of the argument.

Intuitively, this can be seen upon unfolding the isotopy (𝑔𝑡)𝑡∈𝕀 in the mapping torus 𝑀𝑔, as
pictured in the centre of Figure B.5. When one tries to slide 𝛼 onto its image 𝑔(𝛼)—which is naively
sketched on the right of Figure B.5 — without breaking 𝛼 open nor crossing the strings, this seems
impossible.
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Figure B.5 – An isotopy determines a braid in the mapping torus𝑀𝑔 ≝ (𝕊2 × 𝕀) ∕ {(𝑝, 0) ∼ (𝑔(𝑝), 1)}.
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Since such arguments are usually misleading and prone to ingenious counterexamples, a
rigorous proof is due. One possible approach would indeed be to look at braid types (39). Another
one would be to unwrap the curves in the universal cover of the four-punctured sphere and lift the
isotopies, along the lines of Bers’ proof of the classification theorem. Be as it may, let us move on.

If 2) holds, we are done. Otherwise, we assume that no simple loop 𝛼 such as the ones
depicted in Figure B.6 — separating {�̂�, a} from the remaining two points in {𝟎, 𝟏,∞} ⧵ {a} — is
freely homotopic to 𝑔(𝛼) relative to 𝑃.

FigureB.6 – Possibleways for a simple loop𝛼 to separate �̂� and another point a ∈ {𝟎, 𝟏,∞} from {𝟎, 𝟏,∞}⧵{a}
— recall that there is a point at infinity.
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If 3) holds, there can be only one reducing curve 𝛾 determining two topological disks within
which the points of 𝑃 lie in pairs, due to the condition on the Euler characteristics. If we thus let𝒩
be the connected component of 𝕊2 ⧵𝒰(𝛾) containing �̂� and one point a ∈ {𝟎, 𝟏,∞}, then 𝑓↾𝒩 must
be a pseudo-Anosov relative to {�̂�, a}, by the same argument that we used to dismiss case 1). Also,
the same must hold in the other component, by symmetry. The classification theorem then implies
Theorem B as it is stated in the Outline, bringing this essay to its tombstone.

The care that must be taken here is that a simple loop 𝛼 enclosing {�̂�, a} in a component of
𝕊2⧵𝒰(𝛾) definitely must not look at all like any of the ones in Figure B.6! Indeed, the reducing curve
𝛾— and consequently the interior of the disk it bounds — typically may wind quite badly around
the surface: we refer to Figure 1 in (11).

We close by remarking that an alternative andmore direct proof of the positive entropy part of
Theorem B is very likely possible using the forcing techniques recently introduced by Le Calvez and
Tal (32), a gain in clarity at the expense of a more explicit (yet not particularly useful) description of
the involved maps’ “anatomy”.
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