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Resumo

ESCOBAR, FIESCO G. F. Sobre órbitas periódicas de orden finito para un homeomor-

fismo del toro dos dimensional. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e

Estat́ıstica, Universidade de São Paulo, São Paulo, 2010.

Neste trabalho, para um espećıfico homeomorfismo do toro isotópico à identidade, dado um

vetor de rotação racional v = k
n(p1, p2) no interior do conjunto de rotação, nós caracterizamos as

órbitas periódicas de ordem finita com vetor de rotação v e sua representação simbólica sob certas

restrições.

Palavras-chave: Órbitas periódicas de ordem finita, vetores de rotação, grupo de classes de iso-

topia.
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Abstract

ESCOBAR, FIESCO G. F. On finite order periodic orbits for a homeomorphism in the

two-dimensional torus. 2019. 50 f. Tese (Doutorado) - Instituto de Matemática e Estat́ıstica,

Universidade de São Paulo, São Paulo, 2010.

In this work, for a specific torus homeomorphism isotopic to the identity, given a rational rota-

tion vector v = k
n(p1, p2) in the interior of the rotation set, we characterize under certain restrictions

the finite order periodic orbits with rotation vector v and their symbolic representation.

Keywords: Finite order periodic orbits, rotation vectors, isotopy mapping class group.
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Chapter 1

Introduction

In this thesis we study the dynamics of finite order periodic orbits for a particular homeomor-
phism in the two-dimensional torus isotopic to identity. Using the Nielsen-Thurston classification
theorem we will work with periodic orbits which have the property that the isotopy class keeping
the orbit invariant as a set is of finite order.

For homeomorphisms in the annulus isotopic to identity, this orbits were called by Boyland in
[Boy92] monotone periodic orbits. Now, if f is a torus homeomorphism isotopic to the identity,
Franks proved in [Fra89] that given a rational vector in the interior of rotation set there is a point
with this rotation vector, and later Parwani showed in [Par05] that for a rational rotation vector
v = (pq ,

r
q ) the homeomorphism f has a topologically monotone periodic orbit with rotation vector

v. In other words, he proved that there is at least a periodic orbit with rotation vector v which is
dynamically similar to a rigid rotation induced by the translation v.

This work focuses on finding the largest set of finite order periodic orbits with rational rotation
vector in the interior of the rotation set for the torus homeomorphism define in [BdCH16]. Although
Parwani’s theorem guarantees us the existence of finite order periodic orbits, there is no literature
how to find them, or, how many orbits share the same rotation vector. In this proposal under
certain restrictions, we present a symbolic way to find the set of finite order periodic orbits (fopos).
The fopos set that we will describe corresponds to a simplification of the complete problem. We use
the horizontal and vertical projections in the universal cover R2 of the torus to know the relative
position of the points of a periodic orbit, we will only consider orbits with points in regions that
under the action of the homeomorphism f , preserve their “orientation”. Although it is not difficult
to find fopos in the general case, since the orbits also have points in regions where f reverses
orientation, we can not generalize the ideas to define a common set of properties to guarantee
finite order.

Our study of finite order periodic orbits is organized as follows: In Chapter 2, we present some
preliminaries concepts of rotation theory, mapping class group, among others. In Section 2.4, we
introduce some known results of curves in surfaces, and a classification theorem for finite order
torus homeomorphism, [GLM91]. Chapter 3 contains the description of the torus homeomorphism
which we are going work, and its rotation set. In particular, the Section 3.3 contains a first idea
that supports the direction of our work. For a torus homeomorphism isotopic to the identity, we
will see (Theorem 3.3.2) that a necessary and sufficient condition to determinate a fopo is to find a
simple closed curve that contains the orbit, which is invariant up to isotopy relative to the periodic
orbit. This will be our tool to represent many different fopos for a fixed rotation vector.

Finally in Chapter 4 we define the way to find finite order periodic orbits. In the Section
4.1, we describe the orbits of our work. For this, as consequence of the equivalence in 3.3, we will
consider the set of periodic orbits contained in simple closed curves with the property that the orbit
under the action of f is “compatible” with a rotation. Since the pre-images points of any orbit are
contained in a circle (we can suppose equidistant between them), we will choice periodic orbits for
which the action of the homeomorphism induce a rigid rotation in the circle. This property will

1



2 INTRODUCTION 1.0

be a necessary condition, but it is not sufficient since we can find examples where a periodic orbit
is compatible with a rotation, but the f -image of the curve that contains their points cannot be
deformed continuously relative to the orbit until it return to the original curve. From this set we
will find the fopos subset, that is, those orbits where the relative isotopy is possible. This raises the
need to impose some type of additional condition to ensure isotopy of the curve. The Sections 4.2,
4.3 contain the mathematics that we consider necessary to guarantee the relative isotopy. In 4.4,
we demonstrate what we consider our main results. The penultimate section contains the summary
of the symbolic description of the periodic orbits considered. As a comment, our description also
contains the fopos for rational rotation vectors v = (p1q ,

p2
q ), q = p1 + 2p2 in the hypotenuse of the

rotation triangle.

In the last section, we will show the design of the computational program to list the finite
order periodic orbits of a given rotation vector. Our construction (Chapter 4) allow us to define an
algorithm to find the number of periodic orbits and fopos associated to a rotation vector.



Chapter 2

Preliminaries

In this chapter we present the concepts that we will use subsequent chapters. In the Section
2.1 we will give some basic notations. We present in Section 2.2 some preliminary aspects of
homeomorphisms rotation theory. In the Section 2.3 we will define what a finite order periodic
orbit means. In 2.4 Section we present some definitions about fibered surface. Finally in 2.5, we
will present two results that will allow us to understand the construction of the next chapter.

2.1 Terminology and notations

A surface is a 2-dimensional manifold. By a closed curve in a surface S we will mean a continuous
map S1 → S. A closed curve in S is simple if it is embedded, that is, if the map S1 → S is injective.
A simple closed arc will be an embedding from [0, 1] → S. We will denote the curves and arcs by
greek letters as γ, η, α, β, ξ, ζ.

A closed topological disk D in a surface S is the image under a topological embedding of a closed
unit disk in R2. If dist(·, ·) represent the distance function in S, for ε > 0 small and some p ∈ S we
denote por Dε = {x ∈ S | dist(x, p) ≤ ε}.

We will write f ' g(rel. A), to say that the surface homeomorphisms f and g are isotopic
relative to the set A. This is, there exist a continuous map K : S × [0, 1] → S such that for
all t ∈ [0, 1], K(x, t) is a homeomorphism, furthermore K(x, 0) = f(x), K(x, 1) = g(x), and
K(x, t) = f(x) = g(x) for all x in A. Two simple closed curves γ and η will be isotopic if there is
a homotopy K : S1 × [0, 1]→ S such that the closed curve K(S1 × {t}) is simple for each t ∈ [0, 1].

We will denote the torus homeomorphisms by letters f , g, h and their lifts by f̃ , g̃, h̃. The map
projection will be written as π : T2 → T2/(∼), and the canonical projections in the plane R2 on
the first and second factor by πx, πy.

A point x is called a periodic point for a torus homeomorphism f , if there exist a n ∈ N
such that fn(x) = x. The least n satisfying the previous equation is called the period. The set of
periodic points will be denote by Per(f). The orbit of a periodic point x, denoted by O is the set
{fk(x); k = 0, 1, ..., n− 1}.

For a simple closed curve γ in the two-torus, we will denote its homology as Hom(γ) = (p1, p2)
such that pi ∈ Z, i = 1, 2. It is known that the torus first homology group is given by H1(T2,Z) =
Z× Z.

2.2 Rotation sets of torus homeomorphisms

Denote by Homeo0(T2) the set the homeomorphism of T2 homotopic to the identity. Suppose
that f ∈Homeo0(T2) and f̃ : R2 −→ R2 be a lift.

3



4 PRELIMINARIES 2.4

Definition 2.2.1 ([MZ89]). Let x ∈ T2. The pointwise rotation set is given by

ρp(f̃) =
⋃
x̃∈R2

{
ρ(f̃ , x̃) : lim

n→∞

f̃n(x̃)− x̃
n

= ρ(f̃ , x̃)

}
.

The Misiurewics-Ziemian rotation set

ρ(f̃) =

{
lim
k→∞

f̃nk(x̃k)− x̃k
nk

: xk ∈ R2, nk −→∞

}

=
⋂
n>1

⋃
m>n

{
f̃m(x̃)− x̃

m
: x̃ ∈ R2

}

=
⋂
n>1

⋃
m>n

{
f̃m(x̃)− x̃

m
: x̃ ∈ [0, 1]2

}
In particular, ρ(f̃) is compact and convex.

Theorem 2.2.2 ([Fra89]). If v is a rotation vector of rational coordinates in the interior of ρ(f̃),

then there is a point x̃ ∈ R2 such that x = π(x̃) ∈ T2 is a periodic point for f and v = lim
n→∞

f̃n(x̃)−x̃
n .

2.3 Finite order periodic orbits

Let S be a surface. We will denote by Sg,n a surface of genus g with n punctures and empty
boundary, and by Homeo+(S) the group of orientation-preserving homeomorphism of S.

Definition 2.3.1. Let S be a surface. Define the mapping class group of S, denoted Mod(S) as
follow

Mod(S) = π0(Homeo+(S)).

Theorem 2.3.2 (Nielsen-Thurston classification). Let g, n > 0. Each f ∈ Mod(Sg,n) is either
periodic, reducible, or pseudo-Anosov.

Given a periodic orbit, we will introduce them as marked points in the surface and use the
Nilsen-Thurston classification theorem to study the isotopy class relative to the periodic orbit.

Definition 2.3.3 (Finite order periodic orbit). It will be said that a f -periodic orbit is of finite
order (or fopo) if the isotopy class of f , relative to the periodic orbit is of finite order.

2.4 Fibered surfaces

In this section we introduce some definitions about fibered surface (see [FM93, BH95, dCH01]).
Fibered surface is understood as compact surface S which can be decomposed in arcs on strips or
topological disk. In particular, a fibered surface S contains a compact subsurface obtained from a
graph X in which each point has been thickened up, either to a disk or an arc. More precisely,

Definition 2.4.1. A thick graph is a pair (S,X), where S is a closed orientable surface with a
fixed metric compatible with its topology and X

1. Each decomposition element of X is either a leaf homeomorphic to [0, 1], or a junction home-
omorphic to D (the unit disk in R2).

2. The boundary in X of each junction is a finite number of disjoint arcs: if there are k such
arcs, then the disk is called a k-junction.

3. The set of k-junctions with k 6= 2 is finite.
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4. Each decomposition element which is not in the accumulation of a sequence of distinct 2-
junctions is contained in a chart as depicted in Figure 2.1.

5. Each component of S\X is an open disk.

Figure 2.1: Charts in a thick graph

If (S,X) is a thick graph, let ∼ be the equivalence relation on X given by x ∼ y if and only
if x and y lie in the same decomposition element. Then X = X/(∼) is a graph, whose vertices
correspond to the junctions of X. The vertex set of X will be denoted V , and the union of the
junctions of X will be denoted V: thus V = π−1(V ). The components of X \ V are called strips:
each strip is therefore homeomorphic to (0, 1)× [0, 1].

If (S,X) is a thick graph and f : (S,X) −→ (S,X) is a homeomorphism (i.e., a homeomorphism
f : S −→ S with f(X) ⊂ X) under which the image of each decomposition element of X is contained
in a decomposition element, then f |X induces a graph endomorphism F : X −→ X such that
π ◦ f |X= F ◦ π.

Definition 2.4.2. A thick graph map of (S,X) is an orientation-preserving homeomorphism
f : (S,X) −→ (S,X) such that:

1. f(X) ⊂ Int(X).

2. If γ is a decomposition element of X, then f(γ) is contained in a decomposition element, and
diam(fn(γ))→ 0 as n→∞.

3. The induced graph endomorphism F : X −→ X is piecewise monotone (that is, there is a
finite subset L of V such that F−1(x)

⋂
U is connected for each x ∈ X and each component

U of X\L); and is strictly monotone away from the preimages of vertices (that is, every
x ∈ X\F−1(V ) has a neighborhood on which F restricts to an embedding).

4. For each component U of S\X there is a (least) positive integer nU for which either fnU (U) ⊂
X or fnU (U)

⋂
U 6= ∅, in which case U contains a period nU point pU of f , which is a source

whose immediate basin contains U : that is, f−knU (x)→ pU as k →∞ for all x ∈ U .

2.5 Some preliminary results

Now, we list some classical results which will be used in what follows. Goods references are the
books [Bus10], [FM12], [Why58], [MT01], [Lee11].

We will denote the 2-dimensional plane by R2. A Jordan curve J is a simple closed curve.

Theorem 2.5.1 (Jordan-Schoenflies). Every simple closed curve J divides the plane into exactly
two components of each of which it is the complete boundary and the closure of the bounded com-
ponent ( interior domain) can be mapped topologically onto the closed unit disc.
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Corollary 2.5.2. Let p, q ∈ D (possibly with p = q) and let α and β be simple arcs connecting p
to q which, except possibly for the endpoints, are contained in the interior of D. Then there exists a
homeomorphism h : D −→ D isotopic to identity with {p, q}∪∂S point-wise fixed such that h◦α = β
or h ◦ α = β−1.

Definition 2.5.3. Let J◦ be an interior domain in the plane, a cross-cut in J◦ ∪ J is a simple
closed arc α such that α◦ ⊂ J◦ and ∂α ⊂ J .

Theorem 2.5.4. Let J be a simple close curve in the plane. If α is a cross-cut in J◦, then J◦ is
divide in exactly two domain with frontiers α ∪ J1, α ∪ J2, for J1 ∪ J2 = J\∂α.

Corollary 2.5.5 ([Kol94]). Let α0∪α1∪· · ·∪αn (n ≥ 1) be simple arcs. If α0∪α1 is a simple closed
curve and α2∪· · ·∪αn is a collection of cross-cuts in (α0∪α1)

◦, then the set R2\(α0∪α1∪· · ·∪αn)
has exactly n distinct bounded components, each of them is a topological disk whose boundary lies
in α0 ∪ α1 ∪ · · · ∪ αn.

Theorem 2.5.6 ([CK94]). Let D1, ...,Dn be a finite number of closed topological disks in the plane
and J◦ be any connected component of ∩ni=1D◦i . Then ∂J is a simple closed curve and J , the closure
of J◦ is a topological disc.

Let f, g : I → Y be paths. We say that f and g are composable paths if f(1) = g(0).

Definition 2.5.7. If f and g are composable paths, we define their product f · g by

f · g(s) =

{
f(2s) 0 ≤ s ≤ 1

2 ;

g(2s− 1) 1
2 ≤ s ≤ 1.

Theorem 2.5.8. Let f0 ' f1 and g0 ' g1 be homotopy paths. If f0 and g0 are composable, then
f1 and g1 are composable and f0 · g0 ' f1 · g1.

Theorem 2.5.9 (Path Lifting Property). Let p : X → Y be a covering map. Suppose f : I → Y
is any path, and x0 ∈ X is any point in the fiber of p such that p(x0) = f(0). Then there exists a
unique lift f̃ : I → X of f such that p ◦ f̃ = f and f̃(0) = x0.

Theorem 2.5.10 (Monodromy Theorem). Let p : X → Y be a covering map. Suppose f and g are
paths in Y with the same initial point and the same end point, and f̃x0 , g̃x0 are their lifts with the
same initial point xo ∈ X .

(i) f̃x0 ' g̃x0 if and only if f ' g.

(ii) If f ' g, then f̃x0(1) = g̃x0(1).

(“ ' ” represent homotopy).

Theorem 2.5.11. Let S be a surface. If H : S1 × [0, 1] −→ S is a smooth isotopy of simple
closed curves, then there is an isotopy K : S × [0, 1] −→ S so that K |S×0 is the identity and
K |H(S1×0)×[0,1]= H.

Let Γ1 be the group generated by the translations (1, 0), (0, 1), and let Γ2 the group generated

by the translations (1, 0), (12 ,
√
3
2 ). Let T2 = R2/Γi, i = 1, 2. Let T x be a translation by x on R2

this is, T x(y) = x + y, for x, y ∈ R2. Let Rw, w ∈ R/2πZ be a rotation about 0 on R2 by angle
w. And let r̄ be the reflection on the x axis at R2. Denote by Tx, Rw, r the maps on T2 so that,
π ◦ T x = Tx ◦ π, π ◦Rw = Rw ◦ π, π ◦ r̄ = r ◦ π.

Theorem 2.5.12 ([GLM91]). If f : T2 −→ T2 is a homeomorphism of finite order, then it is
orientation-preserving conjugate to one of the following:

(i) Tm/n : R2/Γ1 → R2/Γ1; for m ∈ Z2, n ∈ N (order n).
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(ii) Rw : R2/Γ1 → R2/Γ1; for w = ±π/2 or Rw′ : R2/Γ2 → R2/Γ1; w′ = ±π/3,±2π/3 (orders
4,2,6,3 respectively).

(iii) r ◦ Tm/n : R2/Γ1 → R2/Γ1; for m ∈ Z2, n ∈ N (order m; if m is even, and order 2m; if m is
odd).

(iv) r ◦Rπ/2 : R2/Γ1 → R2/Γ1 (order 2).

Remark. Note that m/n for (i) and (iii) is not unique, many of these are orientation-preserving
conjugate.



8 PRELIMINARIES 2.5



Chapter 3

Description of the homeomorphism

In [BdCH16] was introduce on the figure eight space X = S1∧S2 a map F : X −→ X homotopic
to the identity. From this map, in the first section we will describe on the two-torus a homeormor-
phism isotopic to the identity which contain the fibered surface X, such that X = X/(∼). Followed
by this, we will define an order on the periodic orbit points, which is naturally induced by fibered
surface. In Section 3.2, we will identify the rotation set associated to the homeomorphism defined
in 3.1. Finally in 3.3, we will give some affirmations and their respective proofs. We will prove for
torus homeomorphisms isotopic to identity, that a necessary and sufficient condition to show that
a periodic orbit with rotation vector v = k

n(p1, p2) is of finite order, is that, there exist a simple
closed curve containing the orbit with homology (p1, p2) invariant up to isotopy relative to the
orbit. This tool allow us to find different fopos for a fixed the rotation vector.

3.1 Definition of the homeomorphism

Let X = S1 ∧ S2 be a wedge of two oriented circles, with respective lengths 5 and 3, which will
be denoted by a1, ..., a5, b1, ..., b3 respectively, such that S1 = a1 a2 a3 a4 a5 and S2 = b1 b2 b3. Let
F : X −→ X be the homeomorphism homotopic to the identity, which expands each edge uniformly
by a factor of either 5 or 3 (see figure 3.1).

S1 : F (a1) = S2 F (a2) = S−12 F (a3) = S1 F (a4) = S1 F (a5) = S−11

S2 : F (b1) = S2 F (b2) = S1 F (b3) = S−12

X

F (a1)

F (a2)

F (a3)

F (a4)

F (a5)

F

F (X)

a5a4a3a2v a1

b1

b2

b3

F (b1)

F (b2)

F (b3)

Figure 3.1: Action of the homeomorphism F on the set X = S1 ∧ S2

Definition 3.1.1. Let (T2,X) be a thick graph, where X is a fibered subsurface modelled by a 4-
junction V, and two fibered strips a, b which looks like the Figure 3.2 (Note that X = X/(∼) is a

9



10 DESCRIPTION OF THE HOMEOMORPHISM 3.1

graph embedded in X, with a vertice v = V/(∼) of valence four).

��
��
��
��

��
��
��
��

b

a

T2

f

Figure 3.2: Representation in the two-dimensional torus of the a, b strips.

Let us define the homeomorphism f : (T2,X) −→ (T2,X) (thick graph map) described in Figure
3.3, such that f induces the graph endomorphism F : X −→ X, with π ◦ f |X= F ◦ π, π : X −→ X.

��
��
��

��
��
��

b2

b3

b

a

a2 a3 a4 a5a1

b1

Figure 3.3: f -image of the a, b strips.

Notation. From now on, we denote the regions on the a, b strips with bold letter. The points in
these regions will be written normally.

Convention. Since we are considering a fibered surface which orbit points are localized in different
leafs of the subsurface X in a fundamental domain D in the universal cover R2, we can use the
projections onto the first and second factor πx, πy to define a order on the points in the horizontal
and vertical strips, as follows{

πx(ã1) < πx(ã2) < πx(ã3) < πx(ã4) < πx(ã5);

πy(b̃1) < πy(b̃2) < πy(b̃3).
(3.1)

These orders will allow us to define the relative positions (natural number) of the points of a
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periodic orbit from their symbolic representations. For example, comparing a1b1, a1b2, we see that
the first a1 is to the left of the second, and b1b2a3 is smaller in the order above than b1b2a4.
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f(b1)

f(a1)

f(b2)
b2

b1

a1 a3 a4

b1

b2

a1 a3 a4

Figure 3.4

For our work, we will take advantage of the fact that f preserves the previous order on the
regions a1, a3, a4, b1, and b2. For this reason, we will focus our study on periodic orbits that
have points in these places (see figure 3.4). Note also that these regions satisfy the relations in the
equation (3.2). Now, if f̃ is a lift of f to the universal cover, R2, the lift of points of a periodic
orbit satisfy the relations in the equation (3.2). From Definition 3.1.1, f̃ translate horizontally the
lift points in a4 from a fundamental domain to another by (1, 0) (i.e, ã4 ∈ ã, f̃(ã4) ∈ ã + (1, 0)),
and translate vertically by (0, 1) the lift the points in b̃2 (i.e, b̄2 ∈ b̃, f̃(b̃2) ∈ b̃+ (0, 1)). The points
in the sectors a1, a3, and b1 do not change of fundamental domain under the action of f̃ .

a1 7−→ f(a1) ⊂ b
a3 7−→ f(a3) ⊂ a
a4 7−→ f(a4) ⊂ a
b1 7−→ f(b1) ⊂ b
b2 7−→ f(b2) ⊂ a

ã1 7−→ f̃(ã1) ⊂ b̃ + (0, 0)

ã3 7−→ f̃(ã3) ⊂ ã + (0, 0)

ã4 7−→ f̃(ã4) ⊂ ã + (1, 0)

b̃1 7−→ f̃(b̃1) ⊂ b̃ + (0, 0)

b̃2 7−→ f̃(b̃2) ⊂ ã + (0, 1)

(3.2)

In this way, we know the relative positions of any pair of points in the periodic orbit.
πx(a1) < πx(a′1) =⇒ πy(f(a1)) < πy(f(a′1))
πx(a3) < πx(a′3) =⇒ πx(f(a3)) < πx(f(a′3))
πx(a4) < πx(a′4) =⇒ πx(f(a4)) < πx(f(a′4))
πy(b1) < πy(b

′
1) =⇒ πy(f(b1)) < πy(f(b′1))

πy(b2) < πy(b
′
2) =⇒ πx(f(b2)) < πx(f(b′2))

(3.3)

To end this section, we describe some differences between the cases p1 > p2 and p2 > p1 for a
periodic orbit of rotation vector v = k

n(p1, p2):
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p1 > p2 p2 > p1

a4 7−→ f(a4) =


a1,

a3,

a4

a4 7−→ f(a4) =
{
a1

b2 7−→ f(b2) =

{
a3,

a4
b2 7−→ f(b2) =


a1,

a3,

a4

a1 7−→ f(a1) =

{
b1,

b2

a3 7−→ f(a3) =

{
a3,

a4

b1 7−→ f(b1) =

{
b1,

b2

Table 3.1: Combinatory of the f -images of periodic orbit with points in a1, a3, a4, b1, b2.

3.2 Rotation vectors for the homeomorphism

From Definition 3.1.1, we can describe the rotation set as the convex hull of the rotation vectors
of periodic orbits of minimal loops. If the symbols `, r represent the vertical and horizontal Deck
transformations in the transition matrix down, the minimal loops are given by the vectors (0, 0),
(0, 1/2), and (1, 0). This vectors define a polygon ∆ of rational vertices (0, 0), (0, 1/2), and (1, 0).
The torus homeomorphism f is isotopic to the identity with rotation set of interior not empty, from
Parwani [Par05] every rotation vector of the way (pq ,

q
r ) in the interior of ∆ is realized by at least

a finite order periodic orbit. Let k, n, p1, p2 natural numbers with p1, p2 relatively prime, and k/n
irreducible. The rational rotation vectors in the interior of the rotation set can be represented as
v = k

n(p1, p2) with n > k(p1 + 2p2).



a1 a2 a3 a4 a5 b1 b2 b3

a1 0 0 0 0 0 1 1 1
a2 0 0 0 0 0 1 1 1
a3 1 1 1 1 1 0 0 0
a4 r r r r r 0 0 0
a5 r r r r r 0 0 0
b1 0 0 0 0 0 1 1 1
b2 ` ` ` ` ` 0 0 0
b3 ` ` ` ` ` 0 0 0


The sequences of points in a periodic orbit that take points in the regions a1, a3, a4, b1, b2

can be represented across of the transition diagram down.
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(0, 1/2)
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a3

a4

b1
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Figure 3.5: (Left.) Transition diagram to the periodic orbits with points in the regions: a1, a3, a4, b1, b2.
(Right.) Rotation set for the homeomorphism f .

In particular, when n = k(p1 + 2p2) the rotation vector v belong to the hypothenuse of rotation
triangle ∆ (i.e., for v = 1

q (p1, p2), with q = p1 + 2p2). This vectors can be to realized by periodic
orbits with terms in the regions a1, a4, and b2.

3.3 Some preliminary results

Let m = (m1,m2) ∈ Z2, n ∈ N such that m1, m2, n are relatively prime. Let Tm/n : T2 −→ T2

the homeomorphism induced by translation Tm/n : R2 −→ R2, such that π ◦ T v = Tv ◦ π.

Proposition 3.3.1. If g : T2 −→ T2 is a torus homeomorphism isotopic to the identity with
gn = idT2, then g is topologically conjugate to Tm/n.

Proof. Suppose that g is isotopic to the identity, it follows that every lift G commute with the
integer translations, i.e., G(x+ v) = G(x) + v for all x ∈ R2 and v ∈ Z2. By Theorem 2.5.12, g is
conjugated to a homeomorphism of the types (i) to (iv). In particular, g is not conjugated to (ii),
(iii), (iv). Let us see (ii), the others cases are similar.

Assume that g is conjugated to (ii). Let g = h ◦Rw ◦ h−1, it follows that G = H ◦Rw ◦H−1 is
a lift of g, where H, H−1 are lifts of h, h−1 respectively. From G(x+ v) = G(x) + v, we see that

π ◦G(x+ v) = π
(
H
(
Rw
(
H−1 (x+ v)

)))
= h

(
π
(
Rw
(
H−1 (x+ v)

)))
= h

(
Rw
(
π
(
H−1 (x+ v)

)))
,

(3.4)

π ◦ (G (x) + v) = π
(
H
(
Rw
(
H−1 (x)

)))
= h

(
π
(
Rw
(
H−1 (x)

)))
= h

(
Rw
(
π
(
H−1 (x) + v

)))
= h

(
π
(
Rw
(
H−1 (x) + v

)))
.

(3.5)

From (3.4) and (3.5) it is proved that H−1 commutes with integer translations, then
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π
(
Rw
(
H−1 (x) + v

))
= Rw

(
π
(
H−1 (x+ v)

))
= Rw

(
h−1 (π (x+ v))

)
= π

(
Rw
(
H−1 (x)

))
= π

(
Rw
(
H−1 (x)

)
+ v
)
.

Doing z = H−1(x), the above equality implies that the rotation about the origin commutes with
every integer translation, Rw(z + v) = Rw(z) + v, which is a contradiction. Note that Tm/n ◦ Tv =
Tv◦Tm/n. Therefore, g is conjugated to h◦Tm/n◦h−1 and it is of finite order gn = (h◦Tm/n◦h−1)n =

h ◦
(
Tm/n

)n ◦ h−1 = IdT2 .

Let km1, km2, n relatively prime with k < n. We assume the existence of some lift for which
the following rotation vector is realized.

Theorem 3.3.2. Let f : T2 −→ T2 be a homeomorphism isotopic to identity, and let O be a period-
n periodic orbit with rotation vector v = k

n(m1,m2). The orbit O is a finite order periodic orbit if
and only if there exists a simple closed curve γ : S1 −→ T2 with O ⊂ γ, such that

1. Hom(γ) = (m1,m2).

2. f(γ) ' γ(rel.O).

Proof. Suppose that O is a period-n periodic orbit of finite order with rotation vector v = km/n.
Since O is a finite order periodic orbit, there exists g ∈ Homeo+(T2) isotopic to f , relative to
the periodic orbit O of finite order, gn = idT2 . By Proposition 3.3.1, g can be chosen conjugate
to Tv=km/n induced by the projection of the translation by v, T km/n : R2 −→ R2. Note that

v = km/n is not unique, there are many vectors w such that rational translation Tw induce Tv.
Let g = h ◦ Tkm/n ◦ h−1.

Let x̃ ∈ R2 be a lift x ∈ O, x̃ = π−1(x). Consider the orbit of x̃ by G = H ◦ T km/n ◦ H−1,
Õ = {Gk(x̃) | k ∈ Z}. Note that Gk(x̃) = (H ◦T km/n ◦H−1)k(x̃) = H ◦T kkm/n ◦H−1(x̃). Then, the

orbit Õ is carried by a coordinate change in a orbit Ov define by translation T km/n. Let ` : R −→ R2

be the straight line ` ⊃ Ov with direction vector v = km/n. If γ̃ = H(`), then γ = π(γ̃) is a simple
closed curve that contains O. Since f is isotopic to g = h ◦ Tkm/n ◦ h−1 relative to O, it follows
f(γ) ' g (γ)(rel.O). Therefore, f(γ) ' γ(rel.O) as we wanted.

Suppose now that γ is a simple closed curve such thatO ⊂ γ. Assume f(γ) ' γ(rel.O). From the
Theorem 2.5.11, we can extend the relative isotopy to the entire two-torus. Let J : T2× [0, 1] −→ T2

such torus isotopy. Being f isotopy to the identity, call I : idT2 ' f such isotopy. Consider now the
composition map K = J ◦ I. Since O is a period n-periodic orbit with rotation vector v = km/n
for some lift of f , we can assume that the composition acts like a translation by v. Call g such map
(i.e., g(x) = K(x, 1)). In particular, g is a finite order torus homeomorphism, gn = idT2 . From the
isotopy J , we see that f is isotopic to g on the entire torus relative to O. Therefore, O is a finite
order periodic orbit.



Chapter 4

Finding finite order periodic orbits

In this chapter for the torus homeomorphism 3.1, we present necessary conditions to find finite
order periodic orbits with rotation vector in the interior or at the hypotenuse of the rotation set
(right triangle) onto the set of periodic orbits with points in the regions a1, a3, a4, b1, b2. From
[Par05], the set of finite order periodic orbits set which have rational rotation vector in the interior
of the rotation triangle is not empty. The Theorem 3.3.2 in the previous section give us a route of
how to search for finite order periodic orbits. This is, by relating a periodic orbit with an oriented
simple closed curve that contains it, to examine wether under the action of the homeomorphism
the image of the curve is isotopic relative to the orbit, to the original curve.

In section 4.1 we will give a preliminary description of how we will find the periodic orbits. For
a rotation vector v = k

n(p1, p2) with p1, p2, n relatively prime and n ≥ k(p1 + 2p2), we will start by
describing in the two-torus the distribution of the points of periodic orbits that realize the vector
v, and how f acts in the regions where these points are contained. In 4.2, we will consider periodic
orbits with rotation vector v as before and associate to each orbit an oriented simple closed curve
with homology (p1, p2) that contains it. In the Definition 4.2.10 we present the pairs set with which
we will work. In particular, a reasonable condition imposed on these pairs in order to the relative
isotopy occur, is that in the circular version of the (p1, p2)-curve the periodic orbit points behave
topologically like a rigid rotation. In this way, the finite order periodic orbits set will be a subset
of the previous set. We will see that a rotation vector can be realized by many finite order periodic
orbits.

Given the set of the orbit-curve pairs, in 4.3 we will divide it in two subsets, where one of them
contain the orbits that later will be finite order periodic orbits. Since we have the ability to read
the relative positions of the points of a periodic orbit and we know where the points are placed,
we can detect in which regions these points force folds in the p1 + p2 arcs that make up the simple
closed curve. The folds that we will consider can not deform up to isotopy, the orbit-curve pairs for
which we can avoid these folds will be call unfoldable. We also define a special way to embedded
the (p1, p2) curve in the two-torus. Up to isotopy relative to the orbit these simple closed curve can
be deformed to monotonous arcs with a unimodal part. Such pairs will be call unimodal, and we
will show that if a pair is unfoldable, then this is unimodal.

Done this, we will proof the main result in the Section4.4. We will show that the unfoldable
condition implies that the orbits in such pairs are finite order periodic orbits. The next section
contains the symbolic description of the chosen orbits in 4.2. In the final section, we describe the
computational program that list for a rotation vector v: (a) The sequences of the periodic orbits
with rotation vector v. (b) The sequence of the relative positions of the orbit points. (c) Number
of periodic orbits. (d) Number of fopos .

15
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4.1 Outline of the proposal

Let us consider the torus homeomorphism in 3.1.1 and let v a rotation vector in the interior
of the rotation set or in its boundary, this is v = k

n(p1, p2) with p1, p2, n relatively prime, and
n ≥ k(p1 + 2p2). If v is realized by a f -periodic orbit, we will only consider orbits with points in
the interior of the regions: a1, a3, a4, b1, and b2. In particular, if n = k(p1 + 2p2) the orbits with
v = (p1q ,

p2
q ) (q = p1 + 2p2) only will take points in the regions a1, a4, and b2. The orbit points are

distributed in the following way:

b2 a4 a1 a3 ∨ b1
n = kq kp2 kp1 kp2 0

n > kq kp2 kp1 kp2 n− k(p1 + 2p2)

(4.1)

Now, the images of these n points are completely determined, as follows

a3
(0,0)−−−→

{
a3,

a4
a1

(0,0)−−−→

{
b1,

b2
a4

(1,0)−−−→


a1,

a3,

a4

b1
(0,0)−−−→

{
b1,

b2
b2

(0,1)−−−→


a1,

a3,

a4

;

(4.2)

where the pairs (0, 0), (1, 0), (0, 1) represent the change of domains in the universal cover,
R2. From the action of the homeomorphism we can also recognize the places in the a, b strips,
where the orbit points and their images are located (see figures 3.4, 4.1(b)(c)). Notice that for
` = n− k(p1 + p2) > 0, a fixed rotation vector v can be realized by many different periodic orbits.
We will show that, such orbits have the same number of points in a1, a4, b2 and share in the
symbolic sequence the “same” location. All them differ in the number of terms between a3, b1
and their location in the symbolic sequence. Every period-n periodic orbit will be described by a
sequence in {a1, a3, a4, b1, b2}N, for which its itinerary satisfies the relations given in (4.2).
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p2-arcs

(b) p1 > p2 (c) p1 < p2

kp2-points

`b-points
`a-points

kp1-pointskp2-points

`b

kp2

kp2

k(p1 − p2)

`a

kp2

(a) ` = `a + `b

p1-arcs

p1-arcs

p2-arcs

p2-arcs

f
(b

1
)

f(b2)

f(a3)

b1

b2

a1 a3 a4

f
(b

1
)

f
(a

1
)

f(a4)

f(a3)

f(b2)
f(b2)

f
(a

1
)

f(a4)
f(a4)

Figure 4.1: (a) The fibered zones represent the places where the orbit takes values, each point is located in
a different leaf. (b)(c) By colors we can identify the action of f on the regions a1, a3, a4, b1, and b2. The
black boxes represent the place where the orbit points meets with the arcs of γ. Up to isotopy the a-arcs pass
inside the a-strip containing the a3’s, a4’s orbit points, and the b-arcs run through the a1’s, b1’s, b2’s points.

Fixed a periodic orbit O with rotation vector v = k
n(p1, p2) as before. Theorem 3.3.2 suggest

us to look for a simple closed curve γ with homological direction (p1, p2) containing O, such
that up to isotopy relative to the orbit the simple closed curve γ is invariant by the action of the
homeomorphism f . We will start by describing such simple closed curve, and we will give conditions
for γ to go through the orbit points. Consider γ : S1 −→ T2 a oriented (clockwise, say) simple closed
curve with homology Hom(γ) = (p1, p2) divide into p1 + p2 arcs, which up to isotopy correspond
to p2 meridian arcs crossing the vertical band b, and p1 parallel arcs crossing the horizontal band
a (see the figure 4.2).
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a3 a5p2

p2

p1

p1

b3

b2

b1

a1 a2 a4
a4 a5p2

p2

b3

b2

b1

a1 a2 a3

p1

p1

p1 > p2 p2 > p1

Figure 4.2: Representation of the (p1, p2) simple closed curve γ. The curve is divided in p1 parallel arcs,
and p2 meridian arcs.

Number the simple arcs from 0 to p1 + p2− 1, the a-arcs (arcs on a-strip) from 0 to p1− 1, and
the b-arcs (arcs on b-strip) from p1 to p1 + p2− 1 (see figure 4.3). The arcs γi (0 6 i 6 p1 + p2− 1)
that divide γ, get joined in the junction by mod(p1 + p2) addition (see expression 4.3). Notice that
for two continuous arcs γi, γi+1 in the a-strip or b-strip, the γi+1 arc always runs through the strip
to the left of γi arc.

γ0 γ1 · · · γp1 γp1+1 · · · γp1+p2−1
↓ ↓ ↓ ↓ ↓
γp2 γ1+p2 · · · γp1+p2 γ1 · · · γp2−1

(4.3)

γp1+1

γ0

γp2−1

γp1−1

γ1

γp2

γp1

γp1+p2−1

γp2−1

γ0
γ1

γp1−1

γp1+p2−1
γp2 γ0

γp1
γp1+p2−1

p1 > p2 p2 > p1

Figure 4.3: The simple arcs are numerate according to their naturally modular behavior.

Once (p1, p2) (relatively prime) are chosen, the curve γ is determined and the way the a-arcs
and b-arcs follow each other around γ. Now, we need to decide how the p1 + p2 arcs run through
the periodic orbit points. The points in O are placed in different leafs in the interior of the regions
a1, a3, a4, b1, b2 of the fibered subsurface X, and each of them will be contained in an a-arc, or
b-arc. Let `a, `b be orbit points in a3, b1 respectively (or one of them), we will assume that the
p1 a-arcs contain `a points in a3, kp1 points in a4, and the p2 b-arcs contain `b points in b1, kp2
points in b2 (see figure 4.1(a)). Since only the points in the region a1 go from a-strip to b-strip
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(see the blue block), these points function as a link between the two strips. This passage is given
in the following way {

ã4,

b̃2

(1,0)−−−→
(0,1)

ã1
(0,0)−−−→
(0,0)

{
b̃1,

b̃2

We note that in a fundamental domain f̃(ã1) do not change of domain for lifts f̃ , ã1 to R2,
it suggests us to deform isotopically the p2 arcs that go to vertical strip b, first going through a1

before going to b (see figure 4.4). Up to isotopy we will assume that the a-arcs that pass through
a-strip only intersect a, and the b-arcs are allowed to make a unimodal detour through a1 before
go to b.

γp1+1

γ0

γp2−1

γp1−1

γ1

γp2

γp1

γp1+p2−1

γp1+p2−1

γp1+p2−1
γp2 γ0
γp2−1

γ0
γ1

γp1−1

γp1

p1 > p2 p2 > p1

Figure 4.4: Homotopic deformation of the curve γ on the region a1.

Our assumption is not arbitrary, it follows from careful observation of how the homeomorphism
acts onto the points in O and the arcs of γ. On the one hand, the Figure 4.1 illustrate with colors
the behavior of the periodic orbit points, we use the boxes to indicate the places of the points. For
example in the case p1 > p2, the f -image of the kp1 orbit periodic points in the gray region a4 are
distributed in kp2, k(p1− p2) points between the regions a1, and a3, a4 respectively (see row one,
table 4.1). In summary,

x 7−→ f(x)
p1 > p2 p2 > p1

a4
kp1

a1 a3 ∧ a4
kp2 k(p1 − p2)

a1
kp1

b2
kp2

a3 ∧ a4
kp2

a1 a3 ∧ a4
kp1 k(p2 − p1)

a1
kp2

b1 ∧ b2
kp2

a3
`a

a3 ∧ a4
`a

b1
`b

b1 ∧ b2
`b

Table 4.1: Distribution by regions of the periodic orbit points under the action of the homeomorphism f .
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In the other hand, from Definition 3.1.1 we know how f expands the γ curve, hence its arcs. In
particular, f preserve the order of the orbit points in the horizontal and vertical strips (the points
in a1, b2 change from one strip to the other, but the order between their orbit points is preserved),
and also preserve the way as two arcs run through the strips, this is the arc f(γi+1) remains to the
left of f(γi) arc. Using the numbering in (4.3), we can identify the pieces of the arcs in f(γ) and
γ that must overlap for the relative isotopy to occur (see figure 4.5, this illustration allows us to
identify the route and the index of the arcs, this does not explain how the arcs move within the
strips or pass through the orbit points). Observe for example onto the a-strip (p1 > p2) that the
image under f of the b-arcs with index from p1 to p1 + p2 − 1 in the b-strip, together to the image
of the a-arcs with index from 0 to p1 − 1 in a-strip, follow the same route that the p1 + p2 arcs
above with indices from 0 to p1 + p2 − 1. Intuitively, if we have any hope that relative isotopy can
occur, we need that:

f(γi) ' γi(relPb); p1 ≤ i ≤ p1 + p2 − 1 (b− strip), Pb = O
⋂

(b1 ∪ b2),

and

f(γi) ' γ(i+p2)mod(p1+p2)(relPa); 0 ≤ i ≤ p1 + p2 − 1 (a− strip), Pa = O
⋂

(a1 ∪ a3 ∪ a4)
(4.4)
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f(γp1−1)

f(γ0)

f(γp1−1)

a1 a3 a4

p2-arcs

p1-arcs

p1-arcs

f(b1) f(a1)

b1

b2

γp1+p2−1γp1

f(b2)

f(a4)

f(a3)
f(γ0)

f(γp1−1)f(γp1)

f(γp1+p2−1)

· · ·

f(γp1)

f(γp1+p2−1)

f(γ0) k(p1 − p2)

`a
...

· · ·· · ·

...

...

` b k
p 2

kp2

kp2

Figure 4.5: Action of the homeomorphism on simple closed curve γ for p1 > p2. The arcs in the picture
just represent how them are ordered, and the bold boxes represent the places where the arcs meet the periodic
orbit points. Note that the curve can be embedded in many different way runs through the orbits points.

Continuing with the example of the a4’s points for p1 > p2, by (4.3) the a-arcs with indices
from 0 to p1 − p2 − 1 (i.e., those a-arcs that are connected to another a-arcs) will pass through
k(p1 − p2) points between the regions a3, a4, and the a-arcs with indices from p1 − p2 to p1 − 1
(i.e., those a-arcs that are connected to b-arcs) will pass through the kp2 points in the region a1

(see row one, table 4.2). In the Figure 4.1(b), we illustrate with a red strand the route that the
arcs follows inside the strips. In summary,
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p1 > p2
γi γδ=(i+p2)mod(p1+p2)

0 ≤ i ≤ p1 − 1 a− arcs a4 kp1
p2 ≤ δ ≤ p1 − 1

p1 ≤ δ ≤ p1 + p2 − 1
a− arcs
b− arcs

a3 ∧ a4
a1

k(p1 − p2)
kp2

p1 ≤ i ≤ p1 + p2 − 1 b− arcs b2 kp2 0 ≤ δ ≤ p2 − 1 a− arcs a3 ∧ a4 kp2

p1 < p2
γi γδ=(i+p2)mod(p1+p2)

p1 ≤ i ≤ p1 + p2 − 1 b− arcs b2 kp2
0 ≤ δ ≤ p1 − 1
p1 ≤ δ ≤ p2 − 1

a− arcs
b− arcs

a3 ∧ a4
a1

kp1
k(p2 − p1)

0 ≤ i ≤ p1 − 1 b− arcs a4 kp1 p2 ≤ δ ≤ p1 + p2 − 1 b− arcs a1 kp1

p1 > p2 ∧ p1 < p2
γi γi

0 ≤ i ≤ p1 − 1 a− arcs a3 `a 0 ≤ i ≤ p1 − 1 a− arcs a3 ∧ a4 `a
p1 ≤ i ≤ p1 − p2 − 1 b− arcs a1 kp2 p1 ≤ i ≤ p1 − p2 − 1 b− arcs b1 ∧ b2 kp2
p1 ≤ i ≤ p1 − p2 − 1 b− arcs b1 `b p1 ≤ i ≤ p1 − p2 − 1 b− arcs b1 ∧ b2 `b

Table 4.2: The arcs go through the orbit points respecting the behavior of the blocks in table 4.1, and the
way they are linked following 4.3.

Although we can recognize the places where the simple closed curve meets the orbit, it is not
enough to know how the curve passes through the points. Even with the above conditions the
simple closed curve can be embedded in the torus bands in many different way.

Once we have decided the route of the (p1, p2)-curve in the cloud of orbit points in strips a, b,
we can talk about the location of the n = k(p1 + 2p2) + ` points in the arcs of the simple closed
curve. For this, we consider the circular version of γ, drawing a circle divided into p1 + p2 arcs, by
(4.3), we know that arcs go across a-strip (i.e., go around a longitude), which arcs go across b-strip
(i.e., go around a meridian) and how a-arcs and b-arcs follow each other around γ. Additionally,
from the Tables 4.1, 4.2 we also know in which arcs the a1’s, a3’s, a4’s, b1’s, b2’s points can be
placed. Therefore, we just need to decide how many points of each type are in each arc. For this,
we can distribute their n points in the circular version of γ make them evenly spaced, a 2π/n
(clockwise).

We are looking for finite order periodic orbits, from Theorem 3.3.2 is necessary and sufficient
the invariance of γ up to isotopy relative to the periodic orbit O by f . So such a relative isotopy
must satisfies the Equations (4.4) and since the action of f preserves the order given to the points
in the a-arcs, b-arcs, a translation of the points occurs in the direction induced in the curve γ. Then,
our second choice is to take a periodic orbit which is conjugate to a rotation by angle 2kπ/n in the
circular representation of γ, preserving the properties defined above. We will say that a periodic
orbit with this quality is compatible with a 2kπ/n-rotation, and call the set of such periodic orbits
by Ω. We finalize this paragraph saying that the previous rules on the periodic orbits no guarantee
the relative isotopy in γ, but it defines the set of periodic orbits that have the possibility of being
fopos.

Main Theorem Let (O, γ) be a compatible orbit-curve pair. If (O, γ) is unfoldable, then O is a
finite order periodic orbit.

4.2 Compatible orbit-curve pair

The proof of the following propositions follows directly from the Definition 3.1.1.

Definition 4.2.1. Let R ⊂ T2 be a subset of the two-torus. We say that R is a closed rectangular
region if its lift to the universal cover R2 is a region of the form [x1, y1]× [x2, y2].

Proposition 4.2.2. The sets a, b, ai (i = 1, ..., 5) and bj (j = 1, 2, 3) in the Definition 3.1.1 are
rectangular regions.



22 FINDING FINITE ORDER PERIODIC ORBITS 4.2

Corollary 4.2.3. The unions⋃
i=l

(l≤m)

ai ⊂ a (l,m ∈ {1, ...5}) and
⋃
j=l′

(l′≤m′)

bj ⊂ b (l′,m′ ∈ {1, 2, 3}),

are rectangular regions.

Remark. From now on, we will refer to the sets in Proposition 4.2.2 and 4.2.3 as rectangular
regions or just regions.

Notation. Let I2 = [x1, y1]× [x2, y2]. We denote its boundary as ∂(I2) =
4⋃
i=1

li such that

l1 = [x1, y1]× {x2}
l2 = [x1, y1]× {y2}
l3 = {x1} × [x2, y2]
l4 = {y1} × [x2, y2]

;
∂in
(
I2
)

= l2 ∪ l4
∂out

(
I2
)

= l1 ∪ l3
.

Let R a rectangular region. We will write the sides of R using the map projection, as follows:
π(li) = lRi (i = 1, .., 4) and π

(
∂in
(
I2
))

= ∂in(R) = lR2 ∪ lR4 , π
(
∂out

(
I2
))

= ∂in(R) = lR1 ∪ lR3
respectively.

Notation. Let α be a cross-cut in the closed rectangular region R. We denote by Rri(α), Rle(α)
to the closed topological disks to the right (ri) and left (le) from α.

Definition 4.2.4. Let α1, α2 be a cross-cuts in the region R. We will say that α1 is relation with
α2 by “≺” which will be denote by α1 ≺ α2, if α2 ⊂ Rle(α1).

Remark. The relation “≺” is a total order in R.

Proposition 4.2.5. Let f be as Definition 3.1.1 and (O, γ) a compatible orbit-curve pair. Then,
f preserves the relation “≺”, as follows:

(i) f(lb22 ) ≺ f(lb24 ) ≺ f(la41 ) ≺ f(la43 ) ≺ f(la31 ) ≺ f(la33 ) on the region a,

(ii) f(la11 ) ≺ f(la13 ) ≺ f(lb12 ) ≺ f(lb14 ) ≺ f(la31 ) on the region b.

Proposition 4.2.6. Let ∂R the boundary of a rectangular region. Then

(i) f(∂in(a1)) ⊂ ∂out(b),

(ii) f(∂out(b2)) ⊂ ∂in(a),

(iii) f(∂in(a3)) ⊂ ∂in(a),

(iv) f(∂in(a4)) ⊂ ∂in(a),

(v) f(∂out(b1)) ⊂ ∂out(b).

Remark. Let R = ai (i = 3, ..., 5) or R = b2. From the Definition 3.1.1, f(R) ∩ a and this has a
piece outside of a contained in the disk V. Since the orbit points are contained in the interior of R,
there exist leaves in R close enough to the frontier for which the inclusions (ii)(iii)(iv) can occur
in the above proposition. Similarly, for R = ai (i = 1, 2) or R = bj (j = 1, 3) the inclusions (i)(v)
occur on b.

Corollary 4.2.7. The images f(ai) (i = 1, ..., 5) and f(bj) (j = 1, 2, 3) are closed rectangular
regions.
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Convention. From now on, we will assume that n, p1, p2 are relatively prime with n ≤ k(p1+2p2).

Definition 4.2.8. Let f : T2 −→ T2 be as in Definition 3.1.1. We will call O to the f -periodic
orbit of period n with rotation vector v = k

n(p1, p2) which has points in the interior of the regions
a1, a3, a4, b1, and b2.

Convention. We will consider orbits O in which the a3’s points only have image in a4 by f .

Notation. We denote by

Σai = ai
◦ ∩ O (i = 1, 3, 4); Σbj = bj

◦ ∩ O (j = 1, 2).

and
Σa =

⋃
i=1,3,4

Σai , Σb =
⋃
j=1,2

Σbj .

Definition 4.2.9. Let X ⊂ T2 be the fibered subsurface defined in 3.1.1 and let γ : S1 −→ X◦ be a
simple closed curve for which Hom(γ) = (p1, p2). We say that γ is a (p1, p2)-curve, if γ contains
p1 + p2 disjoint simple closed arcs γi, i = 0, ..., p1 + p2 − 1, as follows

(i) The pieces of the simple arcs γi ⊂ γ ∩ a are such that, (γi ∩ a)◦ ⊂ a◦ with ∂(γi ∩ a) ⊂ la4 ∪ la2
(i = 0, ..., p1 − 1), (γi ∩ a1)◦ ⊂ a1

◦ with ∂(γi ∩ a1) ⊂ la14 (i = p1, ..., p1 + p2 − 1), and
(γ0 ∩ a) ≺ · · · ≺ (γp1+p2−1 ∩ a);

(ii) The pieces of the simple arcs γi ⊂ γ∩b are such that ∂(γi∩b) ⊂ lb1 ∪ lb3 (i = p1, ..., p1+p2−1);

(iii) The γi ∩ (a1 ∪ b) (i = p1, ..., p1 + p2 − 1) pieces in (i) and (ii) are connected through V; and

(iv) Each γδ is the arc following to γi for δ = (i + p2) mod(p1 + p2) addition module (see figure
4.4).

γp1

la12

la11

la13

la14

γp1−1

Figure 4.6: The simple closed arcs on a1 region.

Convention. We refer to the simple arcs γi ∩ a just as γi for (i = 0, ..., p1 − 1). The arc γi =
γ ∩ (a1 ∪ b) is not strictly a simple arc since one piece is contained in the disk V. We assume that
γi (i = p1, ..., p1 + p2− 1) is the simple arc that first goes through [a1]◦ which enters and leaves by
la1 then it passes through V and continuous to b.

Notation. We denote by

Γa = γ0 ∪ · · · ∪ γp1−1 , Γb = γp1 ∪ · · · ∪ γp1+p2−1.
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Notation. We denote the relative positions of the points z ∈ Σa ∪ Σb in an arc γi ⊂ Γa ∪ Γb by
z(i,m) (m ∈ N), so that for m < n in a fundamental domain D in the universal cover R2

• πx(z̃(i,m)) < πx(z̃(i,n)); z(i,m), z(i,n) ∈ γi ⊂ a, 0 ≤ i ≤ p1 − 1.

• πx(z̃(i,m)) < πx(z̃(i,n)); z(i,m), z(i,n) ∈ γi ⊂ a1, p1 ≤ i ≤ p1 + p2 − 1.

• πy(z̃(i,m)) < πy(z̃
(i,n)); z(i,m), z(i,n) ∈ γi ⊂ b, p1 ≤ i ≤ p1 + p2 − 1.

Definition 4.2.10 (Main definition). Let O ⊂ T2 be a period-n periodic orbit with rotation
vector v = k

n(p1, p2) such that n ≥ k(p1 + 2p2) for n, p1, p2 relatively primes. Let γ be a (p1, p2)-
curve. Suppose that O ⊂ γ, we will say that (O, γ) is a compatible orbit-curve pair, if they
satisfy the following conditions:

(i) For each γi ⊂ Γa, we have that γi ∩ Σa4 = {a(i,1)4 , ..., a
(i,k)
4 } where πx(ã

(i,1)
4 ) < · · · < πx(ã

(i,k)
4 )

in D.

(ii) For each γi ⊂ Γb, we have that γi ∩ Σb2 = {b(i,1)2 , ..., b
(i,k)
2 } where πy(b̃

(i,1)
2 ) < · · · < πy(b̃

(i,k)
2 )

in D.

(iii) For each γi ⊂ Γb, we have that γi ∩ Σa1 = {a(i,1)1 , ..., a
(i,k)
1 } where πx(ã

(i,1)
1 ) < · · · < πx(ã

(i,k)
1 )

in D.

(iv) The remaining ` = n − k · (p1 + 2p2) points are distributed between Γa ∩ a3 and Γb ∩ b1
(preserving the order in D).

(v) Single outs those f -periodic orbits O which are contained in (p1, p2)-curve γ such that the
action of f on O is compatible with a 2πk/n rotation of γ. This is, there exists θ : S1 −→ S1
which is conjugated to a 2πk/n rotation that extends γ−1 ◦ f ◦ γ |γ−1(O)

S1 γ−1(O) O

S1 γ−1(O) O

θ γ−1◦f◦γ

γ

f

γ

Remark. The following picture is a caricature of a compatible pair (O, γ) for p1 > p2. This image
is a little far from the real situation because, by definition each orbit point is located in a different
leaf in the fibered subsurface.
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Remark.

1. The 4.2.10(v) condition allows us to choose a very specific type of periodic orbits, once the orbit
points are well distributed between the p1 + p2 arcs in the circular version of γ, where them
are spaced 2π/n, intuitively the homeomorphism “push” the points in the direction induced in
the circle, 2kπ/n positions. Done this, we can read off the sequence of symbols b1’s, b2’s, a1’s,
a3’s, a4’s around of the (p1, p2)-curve under the action of a 2kπ/n-rotation. Fixed a periodic
orbit O, from the symbolic representation it is possible to calculate the relative positions of
the points horizontally and vertically along this periodic orbit. This allow us to recognize the
precise location in the torus of the periodic orbit points. The complete symbolic description will
be developed in Section 4.5.

2. When n = k(p1 + 2p2), we have rational rotation vectors v = 1
q (p1, p2), for q = p1 + 2p2. This

vectors are located in the hypotenuse of the rotation triangle of equation 2y = 1− x, and them
are realized by periodic orbits with points in a1, a4, b2. In particular, the orbit has no points
in a3, b1, this is ` = 0.

3. Under the previous definition we have ` points (between b1, a3) distribuited in a set of p = p1+p2
places, in this way the number of orbits in Ov is given by the expression (combinatory with
repetitions), (

p
`

)
=

(
p+ `− 1

`

)
=

(p+ `− 1)!

`! (p− 1)!

Note that when ` = 0, we only have a unique periodic orbit, which correspond to the periodic
orbit in the hypothenuse of the rotation set. In particular, we will show that it is a finite order
periodic orbit.

Example 1. Suppose that we want a f -periodic orbit with rotation vector v = 1
9(3, 2). Note first

that v belongs to the interior of the rotation set. According to our previous definition, we will begin
by defining the oriented simple closed (3, 2)-curve. Naturally the arcs of the curve are connecting
γ1 −→ γ3 −→ γ5 −→ γ2 −→ γ4 #, we use the symbol “#” to indicate the restart of the sequence
(see figure 4.7). From definition, we have three points of the orbit in a4, two points in b2, and two
points in a1 as follow

γ1 → γ3 → γ5 → γ2 → γ4 #
a4 a4 a1b2 a4 a1b2

γ4

a4

b2

b2

a4a1

b2

γ1

γ5

γ2

a1

a4

a1
a4

γ1
γ2
γ3

γ3

γ5γ4

Figure 4.7: The picture on the left is circular version of the pair (O, γ). To the right we have the lift to the
fundamental domain of the pair (O, γ). So far we have not considered points in the regions a3 and b1.
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Since Per(O) = 9, there are two points between b1, a3. Then, for this example we choose a
point in b1 and one in a3 (we could also choose two in b1, or two in a3). By (iv), we can paste them
in any arc between a or b as appropriate, the b1 points can be pasted in γ4 or γ5, and the a3 points
in γ1, or γ2, or γ3. We put them as follows

γ1 → γ3 → γ5 → γ2 → γ4 #
a3a4 a4 a1b1b2 a4 a1b2

In this way, considering a 1/9-rotation we can represent the periodic orbit as

w = (a3a
2
4a1b1b2a4a1b2)

∞.

To find the location of the orbit on the torus (see figure 4.8), we use the orders πx, πy to know
the relative positions of the points in the orbit (see equation 3.3).

a3 a4 a4 a1 b1 b2 a4 a1 b2
3 6 4 1 1’ 3’ 5 2 2’

1 2 3 4 5

1

2

6

3

ā4ā4ā4ā3ā1ā1

b̄2

πx

πy

b̄1

b̄2

Figure 4.8: Lift to a fundamental domain of the pair (O, γ) with the horizontal projection for the points in
a-strip, and the vertical projection for the points in b-strip.

Example 2. Consider the rotation vector v = 2
9(2, 1). The simple closed curve γ is connected

as follow γ1 → γ2 → γ3 #. From the Definition 4.2.10(i), we have four points in a4 distributed

in the two simple arcs that running a as follow: a
(i,1)
4 , a

(i,2)
4 ∈ γi, i = 1, 2. By 4.2.10(ii)(iii) we

have four points distributed in the arc γ3, two points in a1, and two in b2. By 4.2.10(iv), a point
(` = n − k(p1 + 2p2) = 9 − 2(2 + 2 · 1)) between a3, b1. Since there are three possible places to
locate this element, we produce three different periodic orbits of rotation vector v with curves in
the class (2, 1). We illustrate this cases thinking in the circular version of the (2, 1)-curves.

w1 = (a24a1b1b2a
2
4a1b2)

∞ w2 = (a24a1b2a3a
2
4a1b2)

∞ w3 = (a4a3a4a1b1b2a
2
4a1b2)

∞
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b2

a1

a1

b1

b2
b2

a4

γ1

a3

γ2

γ3

a4

a4

a4

a4

a4

a4

a4

a1

a1

b2
b2

a4
a3

a4

a4

a1

a1

b2

Figure 4.9: Dynamic on the circle of three different periodic orbits with rotation vector v = 2
9 (2, 1).

4.3 Unfoldable and unimodal orbit-curve pair

Let Ω be the set of pairs (O, γ) in the Definition 4.2.10. In this section, through the relative
positions of the points in O, we will consider orbits for which the p1 arcs that pass through the
regions a3, a4 in a-strip, and the p2 arcs that pass through b1, b2 in the b-strip, their points
not force folds in these regions, up to isotopy relative to the orbit. This (O, γ) pairs will be call
unfoldable, in the next section we will show that this property allows us to pass the p1 + p2 arcs
monotonously in this regions (see Theorem 4.4.3). We will prove that this subset of Ω correspond
to the set of pairs with finite order periodic orbits, Λ.

f(b2) ∪ f(a4)

f(a3)

a3 a4

γi

γj

Figure 4.10: Fold between the arcs γi, γj with j > i.

Convention.

• Let γi be an a-arc (0 ≤ i ≤ p1 − 2) such that it contains at least an a3 point. We call

Si =

p1−1⋃
j=i

[γj ∩ (Σa3 ∪ Σa4)] ⊂ f(b2 ∪ a4)

to the set of a3’s, a4’s in f(b2)∪ f(a4), which belong to the arcs with index greater or equal

than i. For γi fixed, we define Ei = max
s∈Si

{
πx(s̃)

∣∣∣ s̃ ∈ D}, and Fi = πx

(
f̃
(
ã
(i,1)
3

))
.

• Let γi be a b-arc (p1 ≤ i ≤ p1 + p2 − 2) such that it contains at least a b1 point. We call
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Ti =

p1+p2−1⋃
j=i

[γj ∩ (Σb1 ∪ Σb2)] ⊂ f (a1)

to the set of b1’s, b2’s in f(a1), which belong to the arcs with index greater or equal than i.

For γi fixed, we define Li = max
t∈Ti

{
πy(t̃)

∣∣∣ t̃ ∈ D}, and Mi = πy

(
f̃
(
b̃
(i,1)
1

))
.

Definition 4.3.1. Let (O, γ) be a compatible orbit-curve pair. We will say that the pair (O, γ) is
unfoldable, if in the following two groups (F1)− (F3), (G1)− (G3), one of the conditions is true:

(F1) There are no a3’s points in a.

(F2) Only the arc γp1−1 in a has a3’s points.

(F3) For each γi ⊂ Γa\γp1−1 with at least an a3’s point; we have Ei < Fi.

(G1) There are no b1’s points in b.

(G2) Only the arc γp1+p2−1 in b has b1’s points.

(G3) For each γi ⊂ Γb\γp1+p2−1 with at least a b1’s point; we have Li < Mi.

Remark. The F1 and G1 cases occurs together when a periodic orbit has no points either a3 or
b1, so this periodic orbit realizes a vector v = 1

q (p1, p2) in the hypotenuse of the rotation set.

Example 3. Let v = 2
17(3, 2) be a rotation vector for a lift f̃ from f . We describe the dynamics

of two pairs (O, γ), (O′, γ′) with rotation vector v such that the first of them will be unfoldable.
Consider the following symbolic descriptions:

w = (a1b1b2a4a3a4a1b2a4a1b1b2a
2
4a1b2a4)

∞

w′ = (a1b1b2a3a
2
4a1b2a4a1b1b2a

2
4a1b2a4)

∞.

In the first case, once the word w is ordered, we sketch the pair (O, γ). This design is a simplified
version of the real picture, here the the orbit points have been moved in the leafs that contain them.

w = a1 b1 b2 a4 a3 a4 a1 b2 a4 a1 b1 b2 a4 a4 a1 b2 a4
1 1’ 5’ 10 5 9 4 4’ 7 2 2’ 6’ 11 8 3 3’ 6
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11101 2 3 4 5 6 7 8 9

p2 = 2

p1 = 3

1

2

3
4
5
6

a1 a3 a4

b2

b1

Figure 4.11: The pair (O, γ) with symbolic description w is unfoldable.

According to the definition the first pair (O, γ) is unfoldable because this satisfy (F2) and
(G3), here L1 = max{3, 4} and M1 = 5, then L1 < M1. The second pair (O′, γ′) can not be
unfolded, the arcs in the b-strip do not satisfy the conditions from (G1) to (G3) (note in (G3) that
L1 = max{4, 5} and M1 = 3, then L1 > M1.), although the arcs in the a strip do comply with the
property (F3); E1 = max{6, 7, 8, 9}, F1 = 11 with E1 < F1.

w′ = a1 b1 b2 a3 a4 a4 a1 b2 a4 a1 b1 b2 a4 a4 a1 b2 a4
1 1’ 3’ 5 11 9 4 5’ 7 2 2’ 6’ 10 8 3 4’ 6

10 111 2 3 4 5 6 7 8 9

6

a1 a3 a4

b2

b1

p2 = 2

p1 = 3

1

2

3

4
5

Figure 4.12: The pair (O′, γ′) with symbolic description w′ can not be unfolded.

Remark. The “unfoldable” condition is related to the points of the orbit, and we may use it to
describe how the curve passes through some points. In the second pair of the previous example, we
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can see that the curve defines a fold on the b-strip, which cannot be deformed up to isotopy (notice
that the curve may also go through the points without making a “fold”). These type of orbits will
be not considered, we will prove that the orbits that satisfy the statements in the Definition 4.3.1,
making isotopy relative to the orbit, the folds can be undone. We call unimodal to this property
(see Theorem 4.4.3). The unfoldable property will be a necessary condition for obtaining fopos (see
Theorem 4.4.8).

Convention.

• For us a monotone arc means that given a lift to the universal cover of a arc γi, (0 ≤ i ≤
p1 + p2 − 1) passing through of the horizontal band a from a1 to a5, or vertical band b
from b1 to b3, the projections on the first or second factor, πx, πy restricted to the lift arc is
injective.

• We will use the term unimodal arc to indicate that the arc tours a1 round-trip without
additional folds.

Definition 4.3.2. Let (O,γ) be a compatible orbit-curve pair. We will say that the pair (O,γ) is
unimodal, if up to homotopy relative to the orbit the curve looks like the figure (4.13), this is

(i) The p1 arcs that go through the horizontal band from a1 to a5 are a-monotones.

(ii) The p2 arcs that go through the vertical band from b1 to b3 are b-monotones.

(iii) The p2 arcs on the top of the horizontal band are unimodal on a1.

.
.
.

...

.
.
.

...

...

...

.
.
.

a

b2

a1

b

p2

p1

a3 a4

b1

Figure 4.13: These lines are joined here in the only possible way to make a simple closed curve.

Remark. Every pair (O, γ) with periodic orbit of rotation vector v = k
n(1, 1), n ≥ 3k satisfies

trivially the condition of being unimodal.

Example 4. Consider the example 3 from the Section 4.3. Observe that the curve in the pair (O, γ)
can be deformed isotopically satisfying the conditions from (i)-(iii) in the unimodal definition (see
figure 4.11). The curve in the second pair (O′, γ′) may or may not be represented as a unimodal
curve. In particular, the Figure 4.12 illustrate the case in which the curve is not unimodal (we
choose the (p1, p2)-curve which is more likely to be isotopic to its image relative to the periodic
orbit). These cases will be left out through the theorem 4.4.3.
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4.4 Main theorems and proofs

Convention. From now on, we will consider the case p1 > p2 (which means that the number of
a-arcs is greater than the number of b-arcs). The propositions and theorems in this sections can be
extended to the case p1 < p2. In particular, if p1 = p2 = 1, the main Theorem 4.4.8 follows directly.

Remark. From the Definitions 3.1.1, 4.2.10, we have for p1 > p2

kp1 points in Σa4 ⊂ a4
◦;

kp2 points in Σb2 ⊂ b2
◦;

kp2 points in Σa1 ⊂ a1
◦;

`a points in Σa3 ⊂ a3
◦;

`b points in Σb1 ⊂ b1
◦;

distributed as follows:

k(p2 − p1) points in Σa4 ∩
(
∪p1−p2−1i=0 γi

)
;

kp2 points in Σa4 ∩
(
∪p1+p2−1i=p1−p2 γi

)
;

kp2 points in Σb2 ∩ Γb;
kp2 points in Σa1 ∩ Γb;
`a points in Σa3 ∩ Γa;
`b points in Σb1 ∩ Γb.

Proposition 4.4.1. Let (O, γ) be a orbit-curve pair with rotation vector v = k
n(p1, p2) with n ≥

k(p1 + 2p2) for p1 > p2. Then

(i) f(Σa1 ∪ Σb1) = Σb1 ∪ Σb2;

(ii) f (Σb2) ∪ f (Σa3) ∪ f
(

Σa4 ∩
(
∪p1−p2−1i=0 γi

))
= Σa3 ∪ Σa4;

(iii) f
(

Σa4 ∩
(
∪p1−1i=p2

γi

))
= Σa1.

Proof. (i) Let p1 > p2. By 4.2.10(ii)(iv), there exist kp2 points in a1 and `b in b1. From the
Definition 3.1.1, f(Σa1) ⊂ Σb1 ∪ Σb2 and f(Σb1) ⊂ Σb1 ∪ Σb2 . Then

f (Σa1 ∪ Σb1) = f (Σa1) ∪ f (Σb1) ⊂ Σb1 ∪ Σb2 ,

and the last contains exactly kp2 + `b points. Since Σa1 ∩ Σb1 = and f is injective, it follows that
f (Σa1 ∪ Σb1) = Σb1 ∪ Σb2 .

(ii) Let p1 > p2. By 4.2.10(i)(ii)(iv), the regions a4, b2 and a3 contains kp1, kp2 and `a points

respectively. Then, f
(

Σb2 ∪ Σa3 ∪
[
Σa4 ∩

(
∪p1−p2−1i=0 γi

)])
has kp2+`a+k(p1−p2) = `a+kp1 points.

From the Definiton 3.1.1, f(Σb2) ⊂ Σa3 ∪Σa4 , f(Σa3) ⊂ Σa3 ∪Σa4 and f
(

Σa4 ∩ ∪
p1−p2−1
i=0 γi

)
. Thus,

f
(

Σb2 ∪ Σa3 ∪
[
Σa4 ∩

(
∪p1−p2−1i=0 γi

)])
⊂ Σa3 ∪ Σa4 .

We claim that the above inclusion is really an equality. Suppose that

Σa3 ∪ Σa4 * f
(

Σb2 ∪ Σa3 ∪
[
Σa4 ∩

(
∪p1−p2−1i=0 γi

)])
.

Then, it must exist a orbit point in Σa3 ∪ Σa4 which has not image of a point in Σb2 ∪ Σa3 ∪[
Σa4 ∩

(
∪p1−p2−1i=0 γi

)]
, but this is not possible since from Definition 3.1.1,

f
(

Σb2 ∪ Σa3 ∪
[
Σa4 ∩

(
∪p1−p2−1i=0 γi

)])
∩ (Σa3 ∪ Σa4) = ∅.
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(iii) The proof is similar to the previous ones.

Notation. Call `ia to the net number of a3’s in an a-arc γi (0 ≤ i ≤ p1 − 1), and `ib to the net
number of b1’s in a b-arc γi (p1 ≤ i ≤ p1 + p2 − 1).

Proposition 4.4.2. Let (O, γ) be a orbit-curve pair with rotation vector v = k
n(p1, p2) with n ≥

k(p1 + 2p2) for p1 > p2, and let δ = (i+ p2) mod(p1 + p2). Then

(i) f (γi ∩ (Σa1 ∪ Σb1)) = γi ∩ (Σb1 ∪ Σb2); i = p1, ..., p1 + p2 − 1.

(ii) f (γi ∩ Σb2) ⊂ γδ ∩ (Σa3 ∪ Σa4); i = p1, ..., p1 + p2 − 1, δ = 0, ..., p2 − 1.

(iii) f (γi ∩ Σa3) ⊂ γi ∩ (Σa3 ∪ Σa4); i = 0, ..., p1 − 1.

(iv) f (γi ∩ Σa4) ⊂ γδ ∩ (Σa3 ∪ Σa4); i = 0, ..., p1 − p2 − 1, δ = p2, ..., p1 − 1,

f (γi ∩ Σa4) = γδ ∩ Σa1 ; i = p1 − p2, ..., p1 − 1, δ = p1, ..., p1 + p2 − 1.

Proof. (i) By Propositions 4.2.6, 4.2.5 and Corollary 4.2.7 the rectangular regions f(a1), f(b1)
are contained in b-strip with f(∂in(a1)) ⊂ ∂out(b) and f(∂out(b1)) ⊂ ∂out(b) respectively. From
4.4.1(i), f (Γb ∩ (Σa1 ∪ Σb1)) = Γb ∩ (Σb1 ∪ Σb2). Let γi ⊂ Γb, by 4.2.10(i)(iii)(iv) γi contain the

following sets of ordered points: γi ∩ Σa1 = {a(i,1)1 , ..., a
(i,k)
1 }, γi ∩ Σb1 = {b(i,1)1 , ..., b

(i,`ib)
1 } (`ib ≥ 0)

and γi ∩Σb2 = {b(i,1)2 , ..., b
(i,k)
2 }. By 4.2.10(v), the homeomorphism f “push” one by one the points

in γi as follows: the k points in γi ∩ Σa1 are carried in the first k points in γi ∩ (Σb1 ∪ Σb2) from
`ib + k, the rest of the points are image of the `ib points in γi ∩ Σb1 . In particular, if `ib = 0 then

f(a
(i,1)
1 ) = b

(i,1)
2 , ..., f(a

(i,k)
1 ) = b

(i,k)
2 .

(ii) From the Proposition 4.4.1(ii), f (Γb ∩ Σb2) ⊂ Γa ∩ (Σa3 ∪ Σa4). Let γδ ⊂ Γa. By Definition
4.2.9, γδ is a continuation of γi with δ = (i+ p2) mod(p1 + p2), and by 4.2.10(i)(ii)(iv), γi ∩ Σb2 =

{b(i,1)2 , ..., b
(i,k)
2 } and γδ ∩ (Σa3 ∪ Σa4) = {a(δ,1)3 , ..., a

(δ,`δa)
3 , a

(δ,1)
4 , ..., a

(δ,k)
4 } (`δa ≥ 0). It follows from

4.2.10(v) that f carries the k points in γi ∩ Σb2 (p1 ≤ i ≤ p1 + p2 − 1) to the first k points in
Σa3 ∪ Σa4 , from k + `δa. The `δa points in γi ∩ Σa3 are also carried at the `δa points in the queue of
γδ ∩ (Σa3 ∪ Σa4).

(iii)-(iv) The proof is similar to the previous ones.

Remark. For 0 < `δa ≤ k in 4.4.2(iv), we see that:

{a(i,1)4 , ..., a
(i,1)
4 } ⊂ γi ∩ Σa4 ; i = 0, ..., p1 − p2 − 1,

{a(δ,1)3 , ..., a
(δ,`δa)
3 , a

(δ,1)
4 , ..., a

(δ,k)
4 } ⊂ γδ ∩ (Σa3 ∪ Σa4) ; δ = p2, ..., p1 − 1,

where

f
(
a
(i,1)
4

)
= a

(δ,1)
3 , ..., f

(
a
(i,`δa)
4

)
= a

(δ,`δa)
3 , f

(
a
(i,`δa+1)
4

)
= a

(δ,1)
4 , ..., f

(
a
(i,k)
4

)
= a

(k−`δa)
4 ,

and
f
(
a
(δ,1)
3

)
= a

(δ,k−`δa+1)
4 , ..., f

(
a
(i,`δa)
3

)
= a

(δ,k)
4

(see figure 4.14).
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f

γi γδ
a
(i,1)
4 a

(i,k)
4

· · · f(a
(i,1)
4 ) f(a

(i,k)
4 )

a
(δ,1)
3 a

(δ,`δa)
3 a

(δ,1)
4 a

(δ,k−`δa)
4

a
(δ,k−`δa+1)
4 a

(δ,k)
4

f(a
(δ,1)
3 ) f(a

(δ,`δa)
3 )

γδ

a4

a3 a4

· · ·· · ·

· · ·fa
(δ,∗)
3

f(b2) ∪ f(a4)

f(a3)

Figure 4.14: Behavior of the a4’s points in an a-arc, which have image in the arc γδ on the a-strip by f .
In this case the γδ arc contains 0 < `δa ≤ k points in a3.

Convention. We will use the notation Ei, Fi, Li, Mi in the Definition 4.3.1 to refer us to the
leafs where the values come from. Thus, we can write Li < Mi to indicate that the leaf Li is down
the leaf Mi, and write Ei < Fi to indicate that the leaf Ei is to left of leaf Fi.

Theorem 4.4.3. Let (O, γ) be a compatible orbit-curve pair. If the pair (O, γ) is unfoldable, then
it is unimodal.

Remark. The simple closed curve γ has a representative η in the isotopy class such that (O, η) is
unimodal.

Proof. (Theorem 4.4.3) Suppose that the pair (O, γ) is unfoldable. Since that in the definition the
a, b strips satisfy the same group of conditions, it is enough prove a group of them. We assume
that the arcs on a-strip are a-monotones. The proof will be divided into the three cases into b-strip.

Case 1. Suppose that there are no b1’s in the b-strip. By 4.2.10(ii), each γi (p1 ≤ i ≤ p1+p2−1)

passes through the k points {b(i,1)2 , b
(i,2)
2 , ..., b

(i,k)
2 } = γi ∩ Σb2 ⊂ b◦2 following the order induced by

relation πy(b̃
(i,1)
2 ) < · · · < πy(b̃

(i,k)
2 ) in a fundamental domain D of the universal cover R2. The kp2

points in the set ∪p1+p2−1i=p1
(γi ∩ Σb2) are placed in different leaves N1, N2, ..., Nkp2 in the interior of

f(a1) ⊂ b2, and them are completely ordered in the following way N1 < N2 < · · ·Nkp2 .

Let R = b. By 4.2.2, R is a closed rectangular region. From Definition 4.2.9(ii), the set of Γb∩R
arcs is a finite collection of cross-cuts in R. Since γp1 ≺ · · · ≺ γp1+p2−1 in R, we can choose the
points sij ∈ γi ∩Nj , (i = p1, ..., p1 + p2 − 1)(j = 1, ..., kp2) such that in a fundamental domain D:

For j fixed;
πx(s̃p1j) < πx(s̃(p1+1)j) < · · · < πx(s̃(p1+p2−1)j), (4.5)

For i fixed;
πy(s̃i1) < πy(s̃i2) < · · · < πx(s̃i(kp2)). (4.6)

Let Qi = {si1, si2, ..., si(kp2)} and denote by Q = ∪p+p2−1i=p1
Qi. In particular, γi ∩ Σb2 ⊂ Qi. Let

ηi be the piecewise geodesic curve that pass an orderly way through the points Qi (i.e., preserving
the natural order of the leaves in b-strip) with endpoints si0, si(kp2+1) ∈ γi ∩ ∂R. We claim that
ηi∩ηi+1 = ∅ (i = p1, ..., p1+p2−2). This follows from equations (4.5)(4.6) since in any fundamental
domain for i, j fixed the line segments η̃ij = π−1(ηij), η̃(i+1)j = π−1(η(i+1)j) are disjoints, where
ηij ⊂ ηi, η(i+1)j ⊂ ηi+1 have endpoints sij , si(j+1) and s(i+1)j , s(i+1)(j+1) respectively.

Let η be the oriented simple closed curve such that ηi ⊂ η and outside of b-strip is equal to
γ. Note that η is a (p1, p2)-curve such that η ∩ γ ⊃ Q. We want to show that η is homotopic to
γ relative to Q. Being η equal to γ outside b-strip, we just need to see what happens in b. Let
sij ∈ Q such that s̃ij is any point in the fiber of π−1(sij) in R2. From path lifting property (2.5.9),
there exist unique lifts from η, γ for which s̃ij ∈ γ̃ ∩ η̃ as follows: we begin by lifting the geodesic
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arcs γij , ηij of endpoints sij , si(j+1) to the arcs γ̃ij , η̃ij with initial point s̃ij . Then, we apply the
property again at the endpoint s̃i(j+1) = π−1(si(j+1)) as initial point of η̃i(j+1), γ̃i(j+1); so on.

Consider now the straight-line homotopy between γ̃, η̃ keeping fixed the points s̃ij ∈ γ̃i ∩ η̃i.
By Monodromy Theorem (2.5.10), calling the homotopy H̃ : η̃ ' γ̃(rel. Q̃), it follows that ηij '
γij(rel.{sij , si(j+1)}) for all p1 ≤ i ≤ p1 + p2 − 1, 0 ≤ j ≤ kp2 + 1. Then, by homotopy invariance
of path multiplication (2.5.8) between the homotopies Hij : ηij ' γij(rel.{sij , si(j+1)}), we get the
homotopy H : η ' γ(rel. Q). Since the lifts η̃, γ̃ are uniques for any point in the fiber π−1(sij),
these simple curves commute with Deck transformations. It follows that the homotopy H̃ commute
with respect to the group of Deck transformations. Therefore the homotopy H is well define, as we
want.

π

T2

b
(i,1)
2

b
(i,2)
2

b
(i,3)
2

b
(j,1)
2 b

(j,2)
2

b
(j,4)
2

b
(j,3)
2

b̃
(i,1)
2

b̃
(i,2)
2

b̃
(i,3)
2

b̃
(j,1)
2 b̃

(j,2)
2

b̃
(j,3)
2

b̃
(j,4)
2

R2

Figure 4.15: Lift of two piecewise geodesic curve from simple arcs γi in the b− strip.

Case 2. Assume that the simple arc γp1+p2−1 contains all b1’s on b-strip (i.e., `p1+p2−1b = `b ≥ 1).

From 4.2.10(ii), each γi = Γb ∩ b has k points in the region b2. Let {b(i,1)2 , b
(i,2)
2 , ..., b

(i,k)
2 } ⊂ γi ∩Σb2

be such a set, p1 ≤ i ≤ p1 + p2 − 1. The points γi ∩ Σb2 satisfy that πy(b̃
(i,1)
2 ) < · · · < πy(b̃

(i,k)
2 )

in D. Furthermore,
⋃p1+p2−2
i=p1

(γi ∩ Σb2) ⊂ [f(a1)]◦. Denote by δ = p1 + p2 − 1. Since `b ≥ 1,

{b(δ,1)1 , b
(δ,2)
1 , ..., b

(δ,`b)
1 } ⊂ γδ where

πy(b̃
(δ,1)
1 ) < · · · < πy(b̃

(δ,`b)
1 ) < πy(b̃

(δ,1)
2 ) < · · · < πy(b̃

(δ,k)
2 ),

In particular, if

`b ≤ k;
{
b
(δ,1)
1 , ..., b

(δ,`b)
1 , b

(δ,1)
2 , ..., b

(δ,k−`b)
1

}
⊂ [f(a1)]◦,{

b
(δ,k−`b+1)
2 , ..., b

(δ,k)
2

}
⊂ [f(b1)]◦,

`b > k;
{
b
(δ,1)
1 , ..., b

(δ,k)
1

}
⊂ [f(a1)]◦,{

b
(δ,k+1)
1 , ..., b

(δ,k+`b)
1 , b

(δ,1)
2 , ..., b

(δ,k)
2

}
⊂ [f(b1)]◦.

In both cases, γδ moves through the b-strip going from band f(a1) to f(b1). Furthermore,
γδ � γp1+p2−2 � · · · � γp1 in b. Once this is clear, we see that the conditions are similar to the
previous case, so we proceed as before.
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f(a1)

· · ·

...

...

· · ·

`b

k − `b

`b

k

f(b1)

...

b2

...

a1

b1

Figure 4.16: Illustration of the case 0 < `b ≤ k, for which all b1’s points belong to b-arc γp1+p2−1.

Before we proceed with the case 3, we will prove the following two propositions.

Notation. We denote by Γ = γi0 ∪ · · · γin to the set the b-arcs with b1’s, p1 ≤ i0 < · · · < in ≤
p1 + p2 − 1.

Proposition 4.4.4. Let Γ = γi0 ∪ · · · γin, p1 ≤ i0 < · · · < in ≤ p1 + p2− 1. Then, Lin ≤ · · · ≤ Li0.

Proof. The result follows directly from Tin ⊂ Tin−1 ⊂ · · · ⊂ Tin in 4.3.1(G3).

Proposition 4.4.5. Let Γ = γi0 ∪ · · · γin, p1 ≤ i0 < · · · < in ≤ p1 + p2 − 1 . Let

Ki0 =

{
Li0 ; Li1 < Li0 ,

Mi0 ; Li1 = Li0 .
, and Kin+1 =

{
Min+1 ; Min+1 < Kin ,

Kin ; Min+1 > Kin .
(4.7)

Then,

(i) Lim < Kim ≤Mim, m = 1, ..., n;

(ii) Kin ≤ · · · ≤ Ki0.

Proof. We will use induction on n. Suppose first for n = 1, thus

Ki0 =

{
Li0 ; Li1 < Li0 ,

Mi0 ; Li1 = Li0 .
and Ki1 =

{
Mi1 ; Mi1 < Ki0 ,

Ki0 ; Mi1 > Ki0 .

By Proposition 4.4.4, we have two cases:

If Li1 < Li0 , then Ki0 = Li0 . It follows:

(i) Ki1 = Mi1 > Li1︸ ︷︷ ︸
4.3.1(G3)

(ii) Ki1 = Mi1 < Ki0

Ki1 = Ki0 = Li0 > Li1 Ki1 = Ki0
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If Li1 = Li0 , then Ki0 = Mi0 . It follows:

(i) Ki1 = Mi1 > Li1︸ ︷︷ ︸
4.3.1(G3)

(ii) Ki1 = Mi1 < Ki0

Ki1 = Ki0 = Mi0 > Li0︸ ︷︷ ︸
4.3.1(G3)

= Li1 Ki1 = Ki0

Assume now the result for n (n > 1), this is Lin < Kin ≤ Min and Kin ≤ Kin−1 . To show for
n+ 1, we consider

Kin+1 =

{
Min+1 ; Min+1 < Kin ,

Kin ; Min+1 > Kin .

Solving by cases,

(1) Kin+1 = Min+1 > Lin+1︸ ︷︷ ︸
4.3.1(G3)

, (ii) Kin+1 = Min+1 < Kin ,

Kin+1 = Kin >
(∗)
Lin ≥ Lin+1︸ ︷︷ ︸

4.3.1(G3)

. Kin+1 = Kin .

(∗) : By hypothesis of induction.

(2) Kin+1 = Min+1 ,
Kin+1 = Kin < Min+1 .

From (1) and (2) it follows (i).
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f(b1)

...
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γim+1

Kim+1

γim+1
· · ·

...

γi1

γi2

γi3

γin

Ki1Ki2Ki3Kin

· · ·

Li2Li3

· · · · · ·

Lin

γi1

γi2

γi3

f(b
(im+1,1)
1 )

Figure 4.17: (a) The picture illustrate two continuous b-arcs γi, γim+1 with b1’s points in them such that
Li–m = Lim+1 < Mim+1 < Mim . (b) The bounds satisfy that Lim < Kim , m = 1, ..., n with p1 ≤ i0 < · · · <
in ≤ p1 + p2 − 1.

The following two propositions correspond to the versions on the a-strip and their proofs follow
in a similar way.

Proposition 4.4.6. Let Γ = γi0 ∪ · · · γin, 0 ≤ i0 < · · · < in ≤ p1 − 1. Then, Ein ≤ · · · ≤ Ei0.
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Proposition 4.4.7. Let Γ = γi0 ∪ · · · γin, 0 ≤ i0 < · · · < in ≤ p1 − 1 . Let

Gi0 =

{
Ei0 ; Ei1 < Ei0 ,

Fi0 ; Ei1 = Ei0 .
, and Gin+1 =

{
Fin+1 ; Fin+1 < Gin ,

Gin ; Fin+1 > Gin .
(4.8)

Then,

(i) Eim < Gim ≤ Fim, m = 1, ..., n;

(ii) Gin ≤ · · · ≤ Gi0.

Case 3. Suppose that p2 > 1 and `b ≥ 1 (not all b1’s are in γp1+p2−1). Let R = b. Assume that
γi, (p1 ≤ i ≤ p1 + p2 − 2) is the first b-arc with b1’s points. If p1 < i, the arcs with index from p1
to i− 1 only have b2’s points contained in the interior of the closed rectangular region f(a1).

Part I. Suppose Γ = γi0∪· · · γin with p1 ≤ i = i0 < · · · < in ≤ p1+p2−1. Since Lin ≤ · · · ≤ Li0
by 4.4.5, we may assume without lost of generality that the arcs Γim = γim ∪γim+1∪ · · ·∪γi(m+1)−1
intersect Lim (m = 0, ..., n− 1) and Γin = γin ∪ · · · ∪ γp1+p2−1 intersect Lin .

γi(m+1)−1

Lim

qim pim

γim
γim+1

γim+2· · ·γi(m+1)−2

Figure 4.18: Representation of the points pim , qim ; for (m = 0, ..., n).

Let L∗im ⊂ Lim be the closed arc for which the points Γim ∩ Lim ⊂ L∗im (see figure 4.18). Call
{pim , qim} = ∂L∗im for which pim ∈ Lim ∩ γim and qim ∈ Lim ∩ γim+1−1. Now, let consider us ψim be
a simple closed geodesic arc with ∂ψim = {qim , pim+1} such that ψim � γi(m+1)−1 in the closed disk

bounded by the Jordan curve contained in ∂in(R) ∪ Lim ∪ Lim+1 (see figure 4.19). In particular, if
Lim = Lim+1 = L then ψim ⊂ L. This follows from πx(q̃im+1) < πx(q̃im).

f(la31 )

pim

qim

ζimζim+1

rim

rim+1

ξ∗im

K∗im

Rim

f(la43 )

Kim

Lim−1

Kim+1

LimLim+1

ψim

L∗im
pim+1

Figure 4.19: Representation of the simple closed geodesic arcs ψim , ζim ; for (m = 0, ..., n).

On the other hand, consider the leaves Ki0 , ...,Kin in the Propositions 4.4.4, 4.4.5 for which
Kin ≤ · · · ≤ Ki0 and Lim < Kim ≤ Mim for m = 1, ..., n. For m = 0, notice that from 4.3.1(G3)
and (4.7), we have that (see figure #):
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if Li1 < Li0 , then Li1 < Ki1 ≤ Ki0 = Li0 < Mi0 and
if Li1 = Li0 , then Li0 = Li1 < Ki1 ≤ Ki0 = Mi0 .

(4.9)

Being Li1 < Li0 , we assign a new bound K ′i0 , as follows

K∗i0 := The leaf more close to Ki0 by its rights containing an orbit point (b1 or b2).

Consider the pieces of the arcs γim (m = 0, ..., n) between the points {b(im,1)1 , γim ∩ lR3 }. We
will not change the name of the curve. Let ξin be a simple geodesic arc with endpoints ∂ξin =

{rin , b
(in,1)
1 } such that rin ∈ [Kin ∩ f(b1)]◦. It follows that γin ∪ ξin is a simple arc with endpoints

in Kin , lR3 (see figure 4.20). We assume that ξin ∩ (γi0 ∪ · · · ∪ γin−1) = ∅.

Mi1 Mi0 Mi4 Mi2 Mi3

K∗i0Ki0Ki2 = Ki1Ki3Ki4

ξi4

ξi3

γi0

γi1

γi2

γi3

γi4

Figure 4.20: Extension on b of the arcs γim (m = 0, ..., n) with p1 ≤ i = i0 < · · · < in ≤ p1 + p2 − 1.

Let K∗in ⊂ Kin such that ∂K∗in = {rin , lR4 ∩ Kin}. From the fact that [K∗in ∪ ξin ∪ γin ]◦ is a
cross-cut in R with endpoints lR4 ∩Kin , lR3 ∩ γin , we have by θ-curve Theorem 2.5.4, [R\Din+1 ]◦ ⊃
[γi0 ∪· · ·∪γin−1 ]◦. Let ξin−1 ⊂ [R\Din+1 ]◦ extending γin−1 as before (i.e., ∂ξin−1 = {rin−1 , b

(in−1,1)
1 }).

It follows that [R\(Dn ∪ Dn−1)]◦ ⊃ [γi0 ∪ · · · ∪ γin−2 ]◦. Thus,

K∗in−1
∪ (ξin ∪ γin) ∪ (ξin−1 ∪ γin−1)

for ∂K∗in−1
= {Kin−1 ∩ ξin−1 ,Kin−1 ∩ ξin} is a cross-cut in [R\Din+1 ]◦. If Kin = Kin−1 , we choose

rin , rin−1 so that πx(r̃in) < πx(r̃in−1). We continue in the same way until R\
n+1⋃
m=1

Dim . For m = 0,

we extend the γi0 arc according to (4.9). When When Ki0 = Li0 , we do it until Ki0 , otherwise

Ki0 = Mi0 . We note that
n+1⋂
m=1

D◦im ∩ Σb = ∅.

Part II. From this it is not hard to see that there exist the piecewise closed curve ξ, ψ defined
by

ψ ⊂

(
n⋂

m=1

ψim ∪ L∗im

)
∪ (Li0 ∪ γi0) ∪ γp1+p2−1

ξ ⊂

(
n⋂

m=0

ξim ∪K∗im

)
∪ γi0

such that ξ◦, ψ◦ ⊂ R◦ and them separate R. It follows by 2.5.5 that R◦0, R◦1, R◦2 are bounded
components of R\(∂R ∪ ξ ∪ ψ). Notice that
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R0 ∩ O = f(a1) ∩ O; R◦1 ∩ O = ∅; R2 ∩ O = f(b1) ∩ O.

Let ζim be a simple closed geodesic arc with ∂ζim = {pim , rim} such that ζ◦im ⊂ R◦1 and ζim �
ψim . Since pim ∈ ξ ∩Lim and rim ∈ ψ ∩Kim , for m = 0, ..., n we can choose them disjoint in R◦1, as
follows: We start with ζi0 with endpoints in Li0 , Ki0 (or K ′i0). By (4.9), Li0 < Ki0 ≤ K ′i0 . Applying

2.5.3 to R1, we obtain domains R
(1)
i0

, [R1\R(1)
i0

]◦ bounded by R1\(∂R1 ∪ ζi0). From Propositions
4.4.4, 4.4.5; Li1 ≤ Li0 and Ki1 ≤ Ki0 . Then we can choose ζi2 with ∂ζi2 = {pi2 , ri2} so that

ζ◦i2 ⊂ [R1\R(1)
i0

]◦. If Li1 < Li0 and Ki1 < Ki0 then its clear that ζi0 and ζi2 are disjoint. Otherwise,

we have that πx(r̃i0) < πx(r̃i1) and πx(p̃i0) < πx(p̃i1). By 2.5.3, there exists R◦i0 , [R1\(R(1)
i0
∪R(1)

i1
)]◦

bounded components of R1\(∂R1 ∪ (ζi0 ∪ ζi1)); and so on.

Thus, [R
(1)
i0

]◦, ..., [R
(1)
in+1

]◦ are bounded components of [R1\(∂R1 ∪ (
n⋃

m=0

ζim))]◦.

Part III. Done this, we will define the (p1, p2)-curve η candidate to be unimodal. In particular,
we will define the piecewise geodesic arcs ηi ⊂ η along of γi for which γi ∩ Σb ⊂ ηi ∩ γi, i =
p1, ..., p1 + p2 − 1. In what follows, we will define the set of vertices P of η. For this, we begin by
redefining γi as follows:

γim := γ
(1)
im
∩ ζim ∪ ξim ∪ γ

(2)
im

; m = 0, ..., n,

where ∂γ
(1)
im

= {lR1 , pim} and ∂γ
(2)
im

= {b(im,1)1 , lR3 }. Then, by 2.5.5 we have n + 1 bounded
components in R that we denote by Ri0 , ..., Rin+1 . We note that

Ri0 ⊃ γp1 ∪ · · · ∪ γi0−1 ;
Rim+1 ⊃ γim ∪ · · · ∪ γi(m+1)−1 , m = 0, ..., n− 1;

Rin+1 ⊃ γin ∪ · · · ∪ γp1+p2−1 .

Let

Λ =

(
n⋂

m=0

Kim

)
∪
{

leaves that contains b1’s or b2’s
}

and let us consider for m = 0, ..., n the subsets

Λim =
{
λ ∈ Λ | λ ≤ Lim ∧ λ ≥ Kim

}
.

Thus, let us define the sets:

Pi0 =
{
sp1 , ..., si0−1

}
;

Pim+1 =
{
sim , ..., si(m+1)−1

}
, m = 0, ..., n− 1;

Pin+1 =
{
sin , ..., sp1+p2−1

}
;

so that Σb ⊂ P =

n+1⋃
m=0

Pim .

Since γp1 ≺ · · · ≺ γp1+p2−1, fixed Σb ⊂ P we may choose the rest of points in P , so that for all
λ ∈ Λ the chosen points λ ∩ P are ordered. We can do this separately in f(a1) and f(b1). More
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precisely, for λ ∈ Λ |f(a1) the sets:{
sp1 , ..., si0−1

}
⊂
{
λ ∩ (γp1 ∪ · · · ∪ γp+p2−1) | λ ≤ Lin

}
;{

sp1 , ..., si(m+1)−1

}
⊂
{
λ ∩ (γp1 ∪ · · · ∪ γi(m+1)−1) | Lim+1 ≤ λ ≤ Lim

}
, m = 0, ..., n− 1;{

sp1 , ..., si0−1

}
⊂
{
λ ∩ (γp1 ∪ · · · ∪ γi0−1) | Li0 < λ

}
;

satisfy that the points in any of them are horizontal ordered in a fundamental domain in R2.
Thus, in the first set have that πx(s̃p1) < πx(s̃p1+1) < · · · < πy(s̃p1+p2−1). Similarly, for λ ∈ Λ |f(b1)
the sets:{

tim+1 , ..., tp1+p2−1

}
⊂
{
λ ∩ (γim+1 ∪ · · · ∪ γp1+p2−1) | Kim+1 ≤ λ ≤ Kim

}
, m = 0, ..., n− 1;{

ti0 , ..., sp1+p2−1

}
⊂
{
λ ∩ (γi0 ∪ · · · ∪ γp1+p2−1) | Ki0 ≥ λ

}
.

Once we found P set, we can define the simple closed curve η. For i0, ..., in with p1 ≤ i0 < · · · <
in ≤ p1 + p2 − 1. Let

ηim = η
(1)
im
∪ ζim ∪ η

(2)
im

;

with endpoints ∂η
(1)
im

= {lR1 , pim}, ∂η
(2)
im

= {rim , lR3 } and vertices Λim ∩ γim ⊂ Pim . We note that
ηim is a piecewise geodesic arc along γim such that σb ∩ γim ⊂ ηim . We can proceed in similar way
to define the ηi arcs between i0, ..., in.

Once we assume that outside of b the curve η and γ coincide, the relative homotopy follows as
the Case 1.

Convention. For the following theorem, we assume an extension of Definition 4.2.4 for a closed
disk or a closed topological disk. The result follows from θ-curve Theorem 2.5.4.

Theorem 4.4.8 (Main Theorem). Let (O, γ) be a unfoldable orbit-curve pair. Then, O is a
finite order periodic orbit.

Proof. Let p1 > p2. Suppose that the pair (O, γ) is unfoldable. By Theorem 4.4.3 the pair (O, γ) is
unimodal. Then, we can assume that γ is a oriented simple closed curve containing O which have
p1 arcs a-monotones, p2 arcs b-monotones, and the arcs that connect a to b are unimodal on a1.
Since the points of each periodic orbit are located in the regions a1, a3, a4, b1, and b2, we can
mark the parts in γ where the points are placed, in the remaining parts the curve is left dotted
(see figure 4.21(a)).

From the Definition 3.1.1, we have that f expands the strips a, b preserving the monotonicity
of the simple arcs in them. The images f(a3), f(a4), f(b2) cover the a-strip and f(a1), f(b1)
cover the b-strip. By 4.2.5 and 4.2.6, the monotonous pieces ai ∩ Γa (i = 1, 3, 4), bj ∩ Γb (j = 1, 2)
and a1∩(Γa∪Γb) are expanded by f preserving the monotonicity, so that the images of f(ai∩Γa),
f(bj ∩ Γb) go from left to right in the a-strip and from bottom to top in the b-strip, respectively.
Furthemore, f(a1 ∩ (Γa ∪ Γb)) = f(a1 ∩ Γa) ∪ f(a1 ∩ Γb)) has two behaviors: the arcs in a1 ∩ Γa
have endpoints in la14 and la12 and the arcs in a1 ∩Γb (where (a1 ∩Γb)

◦ ⊂ a1
◦) go in and out by la14

(see figure 4.22(a)). Then, the image of the first go through b from lb1 to lb3 and the image of the
seconds go in and out by lb1. In particular, [f(a1 ∩ Γb)]

◦ ⊂ b◦.

We more accurately illustrate the case p1 > p2 (see figure 4.21(b)). Note that we only mark the
parts of the f(γ) curve that intercept the regions that may contain orbit points.
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f(b1)

a1
p2

b2

b1

a3 a4

p1

a1 a3 a4
p2

p1

b1

b2

f(a1)

f(a2)

f(a3) f(b3) f(a5)f(a4) f(b2)

Figure 4.21: (a) (figure at the top) Representation of an unfondable pair (O, γ) for p1 > p2. (b) (figure at
the bottom) Image of the pair (O, γ) by f .

Part I. First we deform isotopically f(γ) on the dotted parts. From Definition 3.1.1, the arcs
f(Γa ∩ (a1 ∪ a2)) intersect transversally lb3. Then, for ε > 0 large enough we define the closed disk
Dε for which lb3∩Dε is a topological diameter and [V ∩ f(Γa ∩ (a1 ∪ a2))]◦ ⊂ D◦ε (see figure #). By
the Corollary 2.5.2, there exist a isotopy of the identity with ∂Dε pointwise fixed that carry each
simple arc ci ⊂ Dε∩f(γi∩(a1∪a2)) onto another c′i in different sides of lb3∩Dε, i = p1, ..., p1+p2−1.
Since [f(γi ∩ (a1 ∪ a2))∩Dε]◦ ⊂ [Driε (f(γi+1 ∩ (a1 ∪ a2))∩Dε)]◦ for i = 0, ..., p1 − 2, we can begin
the isotopy with γ0 (see figure 4.22(a)).
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α
γp1−1

γp1

la11

la13

la12la14

f(α)

Dε

D′ε

bri(f(α))

ci

c′i

lb4 lb2

lb3

lb1

(a) (b)

Figure 4.22: (a) a-monotone simple arcs and unimodal arcs in the region a1. (b) Isotopic deformation of
f(γi ∩ (a1 ∪ a2)) (i = 0, ..., p1 − 1).

Once this is done, the arcs f(Γa ∩ (a1 ∪ a2)) (we call them the same way) are containing in b.
Since in a1 by hypothesis γp1 is unimodal and γp1−1 is monotonous, by Theorem 2.5.6(

ari1 (γp1) ∩ a1

)
∩
(
ale1 (γp1−1) ∩ a1

)
,

is a closed topological disk. Then, we can choose a simple arc α ⊂ a1 for which

α◦ ⊂
[(
ari1 (γp1) ∩ a1

)
∩
(
ale1 (γp1−1) ∩ a1

)]◦
,

and ∂α ⊂ la14 ∪ l
a1
2 (i.e., a cross-cut). We know that f(a1) ⊂ b is a rectangular region by Corollary

4.2.7, then f(α) is a cross-cut in the b-strip. Notice that D = bri(f(α)) is a closed topological disk
as consequence of 2.5.4, for which

f(Γa ∩ (a1 ∪ a2)) ⊂ bri(f(α)),

with ∂f(γi ∩ (a1 ∪ a2)) ⊂ lb1, γi ⊂ Γa. Let

f(γ0 ∩ (a1 ∪ a2)) ≺ · · · ≺ f(γp1−1 ∩ (a1 ∪ a2)),

in bri(f(α)) (see figure 4.23). As before there exist a isotopy of identity with ∂bri(f(α)) pointwise
fixed such that the arcs f(Γa ∩ (a1 ∪ a2)) are carried close enough to lb1. After this, again there
exist a closed disk D′ε in which up to isotopy the simple arcs are “pushed” one by one to different
sides of lb1. Now, the arcs are contained in the disk V. Using the above procedure it is not hard
to show that the Γa arcs can be pushed up the points in a1 and a3. In this way, by Propositions
4.4.2(ii)(iv), the image arcs in the a-strip are deform to:

f(γi ∩ (b2 ∪ b3)) ∪ f(γδ ∩ a3) , i = p1, ..., p1 + p2 − 1, δ = (i+ p2) mod(p1 + p2); (4.10)

f(γi ∩ (a4 ∪ a5)) ∪ f(γδ ∩ a3) , i = 0, ..., p1 − p2 − 1, δ = (i+ p2) mod(p1 + p2); (4.11)

(i.e., that the γδ arcs take values between 0 and p1− 1). From now on, the path isotopy will be
analyzed in the rectangular regions a3∪a4 and b1∪b2. We assume from (4.10)(4.11) the following
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notation

f(γi ∪ γδ), i ∈ {p1, ..., p1 + p2 − 1} ∪ {0, ..., p1 − p2 − 1} with δ = (i+ p2) mod(p1 + p2). (4.12)

· · ·

Dε

lb3

c0

c′0

D0

D1

Dp1−1

Dp1

f(γ0)f(γ1)f(γp1−1)

Figure 4.23: Driε (f(γ0)) ⊂ Driε (f(γ1)) ⊂ · · · ⊂ Driε (f(γp1−1)) ⊂ Dε.

Part II. In the following part, we will complete the invariance of γ up to relative isotopy. We
consider three cases in relation to the definition of unfoldable pairs:

1) The periodic orbit has no points in a3 (i.e., `a = 0).

2) The a3’s periodic orbit points are contained in the a-arc, γp1−1 (i.e., `a = `p1−1a > 0).

3) At least a a3 point is contained in an a-arc γi between 0, p1 − 2 (i.e., `ia > 0, 0 ≤ i ≤ p1 − 2).

Note that the three cases are analogous for the arcs in the b-strip, the combination of any of
the three conditions on the a-strip with any in b-strip will lead us to a finite order periodic orbit.

Case (`a = 0). Let Σa3 = ∅. By Proposition 4.4.1(ii)

f (Σb2) ∪ f (Σa3) ∪ f
(

Σa4 ∩
(
∪p1−p2−1i=0 γi

))
= Σa3 ∪ Σa4 ;

it follows that
f (Σb2) ∪ f

(
Σa4 ∩

(
∪p1−p2−1i=0 γi

))
= Σa4 .

Now, from the Proposition 4.4.2(ii)(iv) for γδ ⊂ Γa (i.e., δ = 0, ..., p1 − 1) there exists simple
arcs γi such that δ = (i+ p2) mod(p1 + p2) and

f(γi ∩ Σa4) = γδ ∩ Σa4 , i = 0, ..., p1 − p2 − 1;

f(γi ∩ Σb2) = γδ ∩ Σa4 , i = p1, ..., p1 + p2 − 1;
(4.13)

It follows from Proposition 4.2.5, Σa4 ⊂ [ari(f(la43 ))∩a4]◦. On the other hand, from Equations
(4.10)(4.11) for δ fixed

f(γi ∩ (a4 ∪ a5)) ∪ f(γδ ∩ a3) = f(γi ∩ a4) ∪ f(γi ∩ a5) ∪ f(γδ ∩ a3), 0 ≤ i ≤ p1 − p2 − 1;
or
f(γi ∩ (b2 ∪ b3)) ∪ f(γδ ∩ a3) = f(γi ∩ b2) ∪ f(γi ∩ b3) ∪ f(γδ ∩ a3), p1 ≤ i ≤ p1 + p2 − 1.

Let R = a3 ∩ a4. Since the pieces({
f(γi ∩ b3) ∪ f(γδ ∩ a3)

}p1+p2−1
i=p1

⋃{
f(γi ∩ a5) ∪ f(γδ ∩ a3)

}p1−p2−1
i=0

)
∩Rle (f(la43 ))
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not contain orbit points, up to isotopy we can deform the previous arcs, as follows (see figure
4.24(a)): First consider for ε > 0 large enough the disk Dε with topological diameter in la34 , as
before by 2.5.2 there exist a isotopy of the identity with ∂Dε pointwise fixed, which allows to move
the pieces above inside of R. After this, in view of Theorem 2.5.2 again there exist a identity isotopy
in some large rectangle ∆, so that Rle (f(la43 )) ⊂ ∆◦ and the isotopy pushes one by one the arcs
f(γi ∪ γδ) outside of Rle (f(la43 )) passing through la42 (see figure 4.24(b)). We note that Rri (f(la43 ))
is a closed rectangular region and the pieces f(γi ∩ a4) ∪ f(γi ∩ b2) are cross-cuts in this region
with endpoints la34 and la42 , for which

f(γp1 ∩ b2) ≺ · · · ≺ f(γp1+p2−1 ∩ b2) ≺ f(γ0 ∩ a4) ≺ · · · ≺ f(γp1−p2−1 ∩ a4).

If we denote these pieces (i.e., {f(γi ∩ a4) ∪ f(γi ∩ b2)} ∩Rri (f(la43 )) ) by

f(γp1) ≺ · · · ≺ f(γp1+p2−1) ≺ f(γ0) ≺ · · · ≺ f(γp1−p2−1),

from (4.13) we have for i ∈ {p1, ..., p1 + p2 − 1} ∪ {0, ..., p1 − p2 − 1} and δ = (i+ p2) mod(p1 + p2)
that ⋃

i

(f(γi) ∩ γδ) ⊃ Σa4 . (4.14)

...

(b)

f(γp1)

f(γp1−p2−1)

f(la43 )

Dε

ari(f(la43 ))

ale(f(la43 ))

a3 a4 la42

∆

(a)

Figure 4.24: Isotopic deformation of the arcs f((γi ∩ (a5)∪ (γδ ∩a3)); i ∈ {p1, ..., p1 + p2− 1}∪{0, ..., p1−
p2 − 1} and δ = (i+ p2) mod(p1 + p2).

Henceforth, we will describe the isotopy in Rri (f(la43 )). By Theorem 2.5.6 for

D◦δ =
[
Rle(γδ)

]◦⋂[
Rlef(γi)

]◦
, and D◦σ =

[
Rri(γδ)

]◦⋂[
Rrif(γi)

]◦
;

the sets Dδ = D◦δ and Dσ = D◦σ are closed topological disk (see figure 4.25). Let I = ∂Dδ\∂R
and J = ∂Dσ\∂R. Notice that the arcs f(γi), γδ are contained in Rri(I) and Rle(J), and moreover
f(γi−1) ≺ f(γi) ≺ f(γi+1). Here f(γi+1) and f(γi−1) may or may not intersect I and J respectively.
In particular, if f(γi+1) intersect I (similarly f(γi−1) and J) we can assume that they intersect
transversally (i.e., the intersection define bigons between them), otherwise the isotopy is clear. Since
I is form by pieces of f(γi) and γδ, f(γi+1) must intersect only the γδ pieces. Then, up to isotopy
relative to Σa4 , we can remove the transversal intersections between them, pushing up f(γi+1) to
the interior of the disk D◦δ . If many arcs intersect I (with index greater or equal than i + 1), we
remove them one by one starting with the arc of greater index (see figure 4.25).



4.4 MAIN THEOREMS AND PROOFS 45

D◦σ

I + ε

J − ε

γδ

f(γi)

D◦δ

Figure 4.25: f(γi ∩ a4) ' γδ ∩ a4

(
rel.{a(δ,1)4 , ..., a

(δ,k)
4 }

)
; i ∈ {p1, ..., p1 + p2 − 1} ∪ {0, ..., p1 − p2 − 1} and

δ = (i+ p2) mod(p1 + p2).

More clearly, the isotopy occurs as follows: For ε > 0 small enough we define the simple arcs
I+ε, J−ε such that (I+ε)◦ ⊂ D◦δ and (J−ε)◦ ⊂ D◦σ are at a distance ε from I and J respectively.
By Corollary 2.5.5 the bounded component by I + ε, J − ε is a closed topological disk D(f(γi), γδ).
By construction [f(γi) ∪ γδ]◦ ⊂ D◦ except by the endpoints in ∂R. In a\R◦ the disjoint collection
of arcs {f(γi)} and {γδ} have not orbit points, thus it is not hard to show that each arc f(γi) is
isotopic to γδ. Then, we can assume the endpoints of these pairwise arcs are the same in ∂R.

By hypothesis the arcs
⋃
f(γi),

⋃
γδ are a-monotones in R. Starting the relative isotopy for

the arcs with index i = p1 and δ = 0, it follows from Corollary 2.5.2 that between each continuous
pair of intersection points in f(γi)∩γδ there exist a isotopy of the identity into [D(f(γp1), γ0)]

◦ that
fixed the endpoints pointwise (we suppose that there are only finitely many intersection points).
We continue with the method until the pairwise arcs with index i = p1 − p2 − 1 and δ = p1 − 1.

Case (`a = `p1−1a > 0). By hypothesis the arcs γδ (δ = 0, ..., p1− 2) have not a3’s points. From
Part I (4.12), the pieces f(γi ∪ γδ) intersect a ∩ V but these can be carried inside of a (as before
by a disks Dε that intersect la52 ) such that

f(γp1 ∪ γ0) ≺ · · · ≺ f(γp1+p2−1 ∪ γp2−1) ≺ f(γ0 ∪ γp2) ≺ · · · ≺ f(γp1−p2−1 ∪ γp1−1).

Thus,
p1−2⋃
δ=0

f(γi ∪ γδ) ⊂ ari (f(γp1−p2−1 ∪ γp1−1)) .

These arcs are in similar conditions to the previous case, so we will assume that them can be
deform by isotopy up to ari (f(la43 )) as in 4.14. Done this, by analogy with the first case suppose
that the arcs γδ are deform isotopically to f(γi) relative to Σa4 with support in a (in the first case
the support is given in R = a3 ∪ a4).

Otherwise, by (4.11)(4.12)

f(γp1−p2−1 ∩ (a4 ∪ a5)) ∪ f(γp1−1 ∩ a3) := f(γp1−p2−1 ∪ γδ).

where by Propositions 4.4.1(ii), 4.4.2(iii)(iv)

f(γp1−p2−1 ∩ Σa4) ∪ f(γp1−1 ∩ Σa3) = γp1−1 ∩ (Σa3 ∪ Σa4).

We have that f(γp1−p2−2) = γp1−2. Since f(γp1−p2−1), γp1−1 are a-monotones arcs and

[f(γp1−p2−1) ∪ γp1−1]◦ ⊂
[
ale(γp1−2)

]◦
,
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by Corollary 2.5.2 it follows the isotopy (see figure 4.26).

f(γσ)

a
(δ,k−`δa+1)
4

· · ·

· · ·

f(b2) ∪ f(a4)

f(a3)

f

γσ γδ
a
(σ,1)
4 a

(σ,k)
4

· · · f(a
(σ,1)
4 ) f(a

(σ,k)
4 )

a
(δ,1)
3 a

(δ,`δa)
3 a

(δ,1)
4 a

(δ,k−`δa)
4

a
(δ,k)
4

f(a
(δ,1)
3 ) f(a

(δ,`δa)
3 )

γδ

a4

a3 a4

· · ·

f(γδ)

Figure 4.26: Representation of the relative isotopy for the case `a = `p1−1a , where 0 < `δ=p1−1a ≤ k and
σ = p1 − p2 − 1

Case (`ja > 0, 0 ≤ j ≤ p1 − 2). Assume that γj is the first a-arc with a3’s points with

0 ≤ i ≤ p1 − 2. For 0 ≤ j ≤ i − 1, we have `ja = 0. Thus, for δ = 0, ..., j − 1 we see that `δa = 0.
So, using arguments similar to those shown in the first part of the previous cases, the arcs ∪j−1δ=0

can be deformed by isotopy up to them are contained in ari(f(la43 )). By propositions 4.4.1(ii),
4.4.2(ii)(iii)(iv), for δ = (i+ p2) mod(p1 + p2)

f (γi ∩ Σb2) ∪ f (γi ∩ Σa3) = γδ ∩ (Σa3 ∪ Σa4) , i = p1, ..., p1 + p2 − 1;

f (γi ∩ Σa4) ∪ f (γi ∩ Σa3) = γδ ∩ (Σa3 ∪ Σa4) , i = 0, ..., p1 − p2 − 1.

It follows from Equation (4.11)

f(γi ∩ (b2 ∪ b3)) ∪ f(γδ ∩ a3) i = p1, ..., p1 + p2 − 1;

f(γi ∩ (a4 ∪ b3)) ∪ f(γδ ∩ a3) i = 0, ..., p1 − p2 − 1.

Let R = a3 ∪ a4. From the hypothesis the Γa are a-monotones. If Γ = γδ0 ∪ · · · γδn represent
the arcs with a3’s for j = δ0 < δ1 < · · · < δn ≤ p1 − 1 (i.e., Γ ⊆ Γa), as we saw in the third
case Theorem 4.4.3 the arcs γδ with δm < δ < δm+1 (i.e., without a3’s points) can be extended up
to the leafs Eδm , Gδm , m = 1, ..., n. Without loss of generality, we may assume that in the closed
rectangular region R∗ between f(la31 ), f(la43 ) (R∗ is well define by 2.5.5) each simple arc γδ ∩ R∗
only consist of a monotonous geodesic piece (ver figure 4.27).
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f(γim ∪ γδm)

f(la43 )

f(la31 )

Eim

Gim

Rm

Dε

γδm

Figure 4.27: Let f(γim ∪ γδm) ' γδm (rel.{Eim , Gim}); m = 0, ..., n with 0 ≤ δim < δim+1
< · · · < δin ≤

p1 − 1.

By corollaries (4.4.6)(4.4.7)(ii) the orbit points set contained in [f(b2) ∪ f(a4)]◦ are bounded
by the leafs la34 , Eδ0 and in [f(a3)]◦ by Gδn , la42 . By proposition 4.2.5, Rle(f(la31 )) ⊃ f(a3)∩R and
Rri(f(la43 )) ⊃ f(b2 ∪ a4)∩R are closed rectangular regions. Thus following the development of the
relative isotopy in the proof of the first case, we can do isotopy between f(γi ∪ γδ) and γδ, relative
to the sets O ∩ f(a3), O ∩ f(b2 ∪ a4) with support in Rle(f(la31 )) and Rri(f(la43 )) respectively.

In order to see the relative isotopy we start by taking two disk Dε, Dε′ , such that Dε ∩ la34 ,
Dε′ ∩ la42 are topological diameters on their respective disk. From 4.12 assume that the two pieces
of the arcs f(γi ∪ γδ) outside of R are contained in Dε and Dε′ . By Corollary 2.5.2 up to isotopy
we may push these pieces inside of R. Now, consider the arcs γδ (δm < δ < δm+1) which have not
a3’s points (if there exists one). By Proposition 4.4.7(i), Eδm < Gδm ≤ Fδm for m = 0, ..., n.

Let
Pm =

{
f(γi ∪ γδ) ∩Gδm | δm < δ < δm+1

}
.

Since the pieces f(γi), f(γδ) are a-monotones (ever after isotopic deformation in the disk Dε,
Dε′), there are exactly two points for each transverse intersection f(γi) ∩ Gδm , f(γδ) ∩ Gδm . We
note that the pieces {f(γi ∪ γδ) | (δm < δ < δm+1)} is a collection of cross-cuts in the rectangular
regions

Rle (f(la43 )) ∩Rle (Gim) = Rm

with endpoints in Gδm (see figure 4.27). Notice that Rm contains a piece of each γδ (Fδm) < Gδm
in which we will deform to f(γi∪γδ) by isotopy. In view of Corollary 2.5.2 we can do isotopy relative
to Pm ∩ f(a3) and

Qm =
{
γδ ∩ f(γi ∪ γδ) | δm < δ < δm+1

}⋂
R∗;

=
{
γδ ∩ f(γi) | δm < δ < δm+1

}
.

More precisely,

f(γi ∪ γδ) ' γδ
(
rel.
{
Gδm ∩ γδ, f(γi) ∩ γδ

})
with support in Rm, where δ = (i+ p2) mod(p1 + p2). The isotopy should begin by the arc with

lowest index (i.e., δ = δ0) deforming the arcs one by one as the index increases. The rest of the
isotopy follows in the same way on regions Rri(f(la31 ))∩Rle(Eδm) starting by the arcs with greater
index (i.e., δ = p1 − 1). Since Since on the region a1 it is enough to repeat the previous method,
this completes the isotopy on a-strip.
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Once the isotopy between f(γ) and γ relative to O has been proved for any of the previous
cases, from Theorem 3.3.2, it follows that the orbit O is of finite order periodic orbit as we wanted.

Example 5. In particular, the pair (O, γ) of the first example presented in 3 is unfoldable. Doing
isotopy on the image of the simple closed curve relative to the periodic orbit, we can see the
invariance of curve. This invariance up isotopy relative is enough to show that the orbit is a finite
order periodic orbit.

6’

1 2 3 4 5 6 7 8 9 10 11

1’

2’

3’

4’

5’

p1 = 3

b1

b2

a1 a3 a4

p2 = 2

Figure 4.28: Image under f of the pair (O, γ) with word w = (a1b1b2a4a3a4a1b2a4a1b1b2a
2
4a1b2a4)∞. The

f(γ) curve can be deformed isotopically to γ relative to O.

Finally through an example, we will represent finite order periodic orbits in terms of their
“inclination”, that is, keeping the homological direction (p1, p2). Using the property 4.3.1(G2), we
will show an example that systematically lists for each n > k · q, a finite order periodic orbit. Note
in the Table 4.3, that the symbolic description of the fopos with (p1, p2) fixed are related with
the symbolic sequence of the rational rotation vector 1

q (p1, p2) in the hypotenuse of the rotation
triangle.

Example 6. Consider v = k
n(2, 1), the following table contains a finite order periodic orbit for

each n > k · q:
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Table 4.3: Symbolic description of the finite order periodic orbits with rotation vector in the rotation triangle
intersected with the straight line that pass through the points (0, 0),

(
2
4 ,

1
4

)
. On hypotenuse of rotation triangle,

we first describe symbolically the orbit with rotation vector
(
2
4 ,

1
4

)
, as w = (b2 · a4 · a4 · a1)∞.

k Rotation vector Symbolic sequence ( · )∞

1
(
2
5 ,

1
5

)
b2 · a4 · a4 · a1 · b1

1
(
2
6 ,

1
6

)
b2 · a4 · a4 · a1 · b1 · b1

1
(
2
7 ,

1
7

)
b2 · a4 · a4 · a1 · b1 · b1 · b1

...
...

...

2
(
4
9 ,

2
9

)
b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1

2
(

4
10 ,

2
10

)
=
(
2
5 ,

1
5

)
b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1 · b1

2
(

4
11 ,

2
11

)
b2 · a4 · a4 · a1 · b1 · b1 · b2 · a4 · a4 · a1 · b1

2
(

4
12 ,

2
12

)
=
(
2
6 ,

1
6

)
b2 · a4 · a4 · a1 · b1 · b1 · b2 · a4 · a4 · a1 · b1 · b1

2
(

4
13 ,

2
13

)
b2 · a4 · a4 · a1 · b1 · b1 · b1 · b2 · a4 · a4 · a1 · b1 · b1

...
...

...

3
(

6
13 ,

3
13

)
b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1 · b2 · a4 · a4 · a1

3
(

6
14 ,

3
14

)
b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1

3
(

6
15 ,

3
15

)
=
(
2
5 ,

1
5

)
b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1 · b1

3
(

6
16 ,

3
16

)
b2 · a4 · a4 · a1 · b1 · b1 · b2 · a4 · a4 · a1 · b1 · b2 · a4 · a4 · a1 · b1

...
...

...

4.5 Symbolic description

Let (O, γ) be a compatible orbit curve pair with rotation vector v = k
n(p1, p2); k, n relatively

prime. From the Definition 4.2.10, γ is a (p1, p2) oriented simple closed curve divided by (4.3) into
p1 + p2 arcs, where each of the a-arcs 0 6 i 6 p1 − 1 contain k points in a4, and each of b-arcs
p1 6 i 6 p1 + p2− 1 contain 2k points equally distributed between a1, b2. By 4.2.10(iv) the sum of
the number of points in the regions b1, a3 is constant, furthermore they can be distributed in any
way between the arcs that pass through these regions. Now, we can distribute the points of the
period-n periodic orbit in the circular version of the (p1, p2)-curve γ make them evenly spaced, a
2π/n (clockwise). From 4.2.10(v), the orbit O is compatible with a 2πk/n rotation, it follows that
each periodic point is pushing forward k positions in the direction induce on the curve under the
action of f . Being k, n relatively prime with k < n, we will divide the word w that represent the
symbolic description in k-blocks. This is,

w = (B1 ·B2 · . . . ·Bk)∞ (4.15)

Since each of the p1 + p2 arcs contains at least k points in a1, or a4 or b2, in each lap around
γ we have the same number of a1’s, a4’s, b2’s (exactly p1 + 2p2 terms) and this no depend the
number of a3’s, b1’s orbit points. Then, we will divide each block Bl, 1 6 l 6 k that represent one
lap around γ, into p1 or p2 sub-blocks, as follows
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Bl =


B

(t)
l,1 ·B

(t+s)
l,2 · (· · · ) ·B(t+(p2−1)s)

l,p2
; p1 < p2

or

B̄
(1)
l,1 · B̄

(1+p2)
l,2 · (· · · ) · B̄(1+(p1−1)p2)

l,p1
; p1 > p2

(4.16)

where, t = p1 + 1, s = p2 − r and

1 ≤ m ≤ p2 , B
(∗)
l,m =


a1 · bk11 · b2 ; p1 6 ∗ 6 p2 , k1 > 0
or

a1 · bk11 · b2 · a
k2
3 · a4 ; p2 < ∗ 6 p1 + p2 − 1 , k1 > 0, k2 > 0

(4.17)

1 ≤ m ≤ p1 , B̄
(∗)
l,m =


ak13 · a4 ; 0 6 ∗ 6 p1 − p2 , k1 > 0
or

a1 · bk11 · b2 · a
k2
3 · a4 ; p1 − p2 < ∗ 6 p1 − 1 , k1 > 0, k2 > 0

(4.18)
These equations follows from,

Case (p2 > p1). In this case, we divide each block Bl in p2 sub-blocks, which we denote as
Bl,1, . . . , Bl,p2 . Since each block contain the same number of a1’s, a4’s, and b2’s orbit points in a
lap in the circle version of γ, we can group them according to the p2 b-arcs. Being p1 + p2, p2 are
relatively prime1, by the division algorithm, p1 + p2 = m1 · p2 + r1 with 1 < r1 < p2. In the circle
version of γ the arcs p1 6 i 6 p1 + p2 − 1 satisfy the following behavior

◦ To 1 6 k′ 6 r1 < p2,

γ(p1+k′) → γ(p1+k′)+p2 → γ(p1+k′)+2p2 → . . .→ γ(p1+k′)+m1p2 → γ(p1+k′)+(m1+1)p2 #

Note that (p1 + k′) + m1p2 + p2 = (p1 + k′) + (p1 + p2) − r1 + p2 = (p1 + k′) − r1 + p2, then

γ(p1+k′)
1−lap−−−→ γ(p1+k′)−r1+p2 .

◦ To r1 + 1 6 k′ 6 p2,

γ(p1+k′) → γ(p1+k′)+p2 → γ(p1+k′)+2p2 → . . .→ γ(p1+k′)+m1p2 #

Note that (p1 + k′) + m1p2 = (p1 + k′) + (p1 + p2) − r1 = (p1 + k′) − r1, then we have that

γ(p1+k′)
1−lap−−−→ γ(p1+k′)−r1 .

Therefore, γ(p1+k′)
1−lap−−−→ γ((p1+k′)−r1)mod(p2) for 1 6 k′ 6 p2. This means that a b-arc on b strip

come back r1 positions to the left of this. Writing s = p2 − r1 > 0, we have that Bl, 1 < l < k can

be divided in p2 sub-blocks B
(∗)
l,1 , B

(∗+s)
l,2 , ..., B

(∗+(p2−1)s)
l,p2

, where p1 < ∗ < p1 + p2 − 1. Intuitively, if
we start at a point in any b-arc on a1 each sub-block groups the points (from a Bl block) of the
arcs that cross a strip, before returning to another a1 strip (which goes to b strip).

Case (p1 > p2). Similarly to the previous case, each Bl block will be divided in p1 sub-blocks.
The sub-block Bl,j , 1 6 j 6 p1 groups the points that go to an γi, 0 6 i 6 p1 − 1 arc into a4 to
another arc in the same region. Doing p1 + p2 = m2p1 + r2 to 1 < r2 < p1, we have

◦ To 1 6 k′′ 6 r2 < p1,

γk′′
1−lap−−−→ γk′′+(m2+1)p1 = γk′′+(p1+p2)−r2+p1 = γk′′−r2+p1

1Since that p1+p2 ≡ p1 mod p2, we see that (p1+p2)/p2, p1/p2 have the same rest. Now, writing p1+p2 = m1p2+r,
p1 = m2p2 + r by result of number theory we have (p1 + p2, p2) = (p2, r) = (p1, p2) = 1.
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◦ To r2 + 1 6 k′′ 6 p1,

γk′′
1−lap−−−→ γk′′+m2p1 = γk′′+(p1+p2)−r2 = γk′′−r2

therefore, to 1 6 k′′ 6 p1 we have γk′′
1−lap−−−→ γ(k′′−r2)mod(p1). Writing t = p1 − r2 > 0 we can

divided each block Bl, 1 < l < k in p1 sub-blocks B1
l,1,B

1+t
l,2 ,...,B

1+(m2−1)t
l,p1

.

Once we symbolically describe each periodic orbit in a pair (O, γ), we can find the relative
position of each orbit point whitin a, b. We finish this section by giving an example that joins the
above information.

Example 7. Suppose that v = 2
17(3, 2) is realized by the periodic orbit according to the Definition

4.2.10 with symbolic description

w = (a1b
2
1b2a

2
4a1b2a4a1b1a

2
4a1b2a4)

∞

We know by first part of the Example 1 that there exist a curve γ of Hom(γ) = (3, 2), such
that the simple arcs are connecting as, γ1 −→ γ3 −→ γ5 −→ γ2 −→ γ4 # , we apply the Definition
4.2.10 for the pair (O, γ) (see the next figure). Ordering the symbolic sequence, we obtain the
description to the right.

γ1

γ2

γ5

γ3

γ4

a4

b1b2

a4

a4

a1

b1

b2

w=
(
a4︸︷︷︸
B

(1)
1,1

· a4a1b1b2︸ ︷︷ ︸
B

(3)
1,2

· a4a1b1b1b2︸ ︷︷ ︸
B

(2)
1,3︸ ︷︷ ︸

B1

· a4︸︷︷︸
B

(1)
2,1

· a4a1b1b2︸ ︷︷ ︸
B

(3)
2,2

· a4a1b1b2︸ ︷︷ ︸
B

(2)
2,3︸ ︷︷ ︸

B2

)∞

=(a4
9
· a4

6
a1
2
b1
2′
b2
6′
· a4

5
a1
1
b1
1′
b1
5′
b2
9′
· a4

10
· a4

7
a1
3
b1
3′
b2
7′
· a4

8
a1
4
b1
4′
b2
8′

)∞

4.6 Computational program

Given a rational rotation vector in the two-torus is not quickly to find and list the finite order
periodic orbits, for this reason we decide to implement a routine or computational program to
simplified the process to find the fopos related to a rational rotation vector. The algorithm list the
periodic orbits with rotation vector v = k

n(p1, p2), where each one is described with a sequence
symbolic which satisfy: a1 := 1, a3 := 2, a4 := 3, b1 := 4, b2 := 5. Each periodic orbit is classified
as a fopo or Nofopo (Note that the Nofopo orbits are not really classified by the algorithm).

To simplify the use of the computational program, we have designed a graphical interface (See
the figure below), in which you can directly enter the rotation vector, or you can randomly choose

a vector by clicking on the button (k, n, p1, p2) (for example n takes some value between 1 and

50, etc.). The computational application also create a .txt file with symbolic sequences.
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For the distribution of the application, you can get it for free by writing to the email
german.escobar@usco.edu.co. We have two options:

1. We give a link to download the installers for windows or mac (500 Mb approximately).

2. In the case of having Matlab (the routine was built in this language) we share the folder that
contains the code and functions that make up the application (12 Kb).
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