• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2021.tde-07072021-123606
Document
Author
Full name
Sonia Isabel Renteria Alva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2021
Supervisor
Committee
Mereu, Ana Cristina de Oliveira (President)
Braun, Francisco
Novaes, Douglas Duarte
Title in Portuguese
Bifurcação zero-Hopf e soluções periódicas para um sistema hipercaótico de Lorenz
Keywords in Portuguese
Bifurcação zero-Hopf
Órbitas periódicas
Sistema hipercaótico tipo Lorenz
Teoria de Averaging
Abstract in Portuguese
Nesta dissertação estudamos a dinâmica local de um sistema hipercaótico de tipo Lorenz dependendo de sete parâmetros. Usando a teoria Averaging caracterizamos as bifurcações de soluções periódicas nos pontos de equilíbrio zero-Hopf e descrevemos as condições suficientes, que asseguram que duas soluções periódicas nasçam a partir do ponto de bifurcação.
Title in English
Zero-Hopf bifurcation and periodic solutions for a four-dimensional hyperchaotic system
Keywords in English
Averaging theory
Hyperchaotic type Lorenz system
Periodic orbits
Zero-Hopf bifurcation
Abstract in English
In this thesis we study the local dynamics of a hyperchaotic Lorenz-type system depending on seven parameters. Using the Averaging theory we characterize the bifurcations of periodic solutions at zero-Hopf equilibrium points and describe the sufficient conditions, which ensure that two periodic solutions are born from the bifurcation point.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Dissert_Sonia.pdf (1.93 Mbytes)
Publishing Date
2021-07-08
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.