Analise de métodos de volumes finitos miméticos para modelos de
Aguas rasas classicos e com umidade considerando malhas esféricas
de Voronoi com refinamento local baseado em topografia

Analysis of mimetic finite volume schemes on classical and moist
shallow water models considering topography based local
refinement in spherical Voronoi grids

Luan da Fonseca Santos

DISSERTACAO APRESENTADA
AO
INSTITUTO DE MATEMATICA E ESTATISTICA
DA
UNIVERSIDADE DE SAO PAULO
PARA
OBTENCAO DO TITULO
DE
MESTRE EM CIENCIAS

Programa: Matemaética Aplicada
Orientador: Prof. Dr. Pedro da Silva Peixoto

Durante o desenvolvimento deste trabalho o autor recebeu auxilio financeiro da FAPESP
(Processo 17/25191-4)

Sao Paulo, Marco de 2020



Analise de métodos de volumes finitos miméticos para modelos de
Aguas rasas classicos e com umidade considerando malhas esféricas
de Voronoi com refinamento local baseado em topografia

Esta é a versao original da dissertacao elaborada pelo
candidato Luan da Fonseca Santos, tal como

submetida & Comissao Julgadora.

Comissao Julgadora:

e Prof. Dr. Saulo Rabello Maciel de Barros (Presidente) - IME-USP
e Prof. Dr. Pedro Leite da Silva Dias - TAG-USP
e Prof. Dr. Silvio Nilo Figueroa Rivero - CPTEC-INPE



Agradecimentos

Ao meu orientador, Prof. Pedro Peixoto, pela excelente orientacio, competéncia, paciéncia, apoio

e por todos os ensinamentos.
A minha mae Jeane e ao meu pai Reinaldo, por sempre me apoiarem desde o comeco.
A toda minha familia.
Aos professores, funcionarios e alunos do IME com quem convivi durante este periodo.

A FAPESP, pelo apoio financeiro.



ii



Abstract

Santos, L. F. Analysis of mimetic finite volume schemes on classical and moist shallow
water models considering topography based local refinement in spherical Voronoi grids.
2020. 74 f. Dissertation (Masters) - Instituto de Matematica e Estatistica, Universidade de Sao
Paulo, Sao Paulo, 2020.

The latitude-longitude grid has been used in global atmospheric models since the early 1960s
until today. Nevertheless, the use of this grid creates drawbacks for scalability on massively parallel
machines, mainly due to excessive data communication requirements near the poles. Thus, to achieve
the required degree of parallelism for the efficient use of massively parallel architectures, the interest
in quasi-uniform geodesic grids has increased. Much consideration has been given to icosahedral grids
and its pentagonal /hexagonal dual grid. This grid might be optimized using centroidal Voronoi
tesselation algorithms that allows us to build local refinements based on a density function. Grids
with local refinements have been developed aiming to solve local phenomena without requiring the
use of a uniform global grid which can be computationally prohibitive.

In this work, aiming to benefit weather forecasting in Brazil, we propose a grid that captures
well the Andes mountains and the South American continent. This grid is built through a dens-
ity function based on topography using centroidal Voronoi tesselation algorithms. The developed
density function uses smoothing data techniques on the topography data and has a parameter that
allows us to approximately define the ratio between the cell diameters in low and high-resolution
regions. The grids developed have a smooth transition between low and high-resolution regions.
Using the grids developed, we analyze the use of a mimetic finite volume method for the shallow
water equations. Using standard, and more recent shallow water tests available in the literature, our
results show that the refined region generates localized numerical noise in the solution. However, we
show how a small amount of diffusion is already enough to mitigate this problem. Additionally, we
also implemented a moist shallow water model, where physical precipitation processes are included
in the classical shallow water model. This model is used to investigate the impact of the local re-
finement on the cloud and rain formation in the South American continent, with results indicating
that the refinement greatly affects the model, generating more cloud and rain when compared to

the uniform resolution model.

Keywords: geodesic grids, non structured grids, local refinement, finite volume, shallow water

equations, moist shallow water model
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Resumo

Santos, L. F. Analise de métodos de volumes finitos miméticos para modelos de aguas ra-
sas classicos e com umidade considerando malhas esféricas de Voronoi com refinamento
local baseado em topografia. 2020. 74 f. Dissertacdo (Mestrado) - Instituto de Matematica e
Estatistica, Universidade de Sao Paulo, Sao Paulo, 2020.

Malhas do tipo latitude longitude sao usadas em modelos atmosféricos globais desde o inicio dos
anos 60. Porém, estas malhas apresentam problemas de escalabilidade em maquinas massivamente
paralelas devido ao excesso de comunicacao de dados dos pontos que se acumulam nos polos.
Assim o interesse em malhas geodésicas quase uniformes tem aumentado visando atingir o grau de
paralelismo necessario para o uso eficiente de maquinas paralelas. A malha icosaédrica e a sua malha
dual pentagonal /hexagonal tem se destacado. Esta malha pode ser otimizada usando algoritmos
de Diagramas centroidais de Voronoi que permitem construir refinamentos locais através de uma
funcdo de densidade. Malhas com refinamento local sdo desenvolvidas visando resolver fenémenos
locais sem utilizar uma malha uniforme global que pode ser computacionalmente proibitiva.

Neste trabalho, visando beneficiar a previsao do tempo no Brasil, propomos desenvolver malhas
que capturam bem a cordilheira dos Andes e o continente sul-americano. Esta malha é construida
através de uma funcao de densidade que é baseada na topografia terrestre usando algoritmos de
Diagramas centroidais de Voronoi. A fungéo de densidade desenvolvida usa técnicas de suavizagao
de dados e tem um pardmetro que permite definir a razao dos diAmetros entre células da regiao
refinada e da regiao de malha grossa. A malha desenvolvida tem uma transicao suave entre a regiao
de malha fina e malha grossa. Utilizando as malhas desenvolvidas, nés analisamos um método de
volumes finitos mimético para as equagoes de dgua rasa. Usando testes classicos e mais recentes para
o modelo de adgua rasa propostos na literatura, nossos resultados mostram que a regiao refinada gera
ruido numérico local na solucao. No entanto, mostramos que uma pequena quantidade de difusao
é suficiente para resolver esse problema. Além disso, também implementamos um modelo de dgua
rasa com umidade, onde os processos de precipitacao fisica sao incluidos no modelo classico de dgua
rasa. Este modelo é usado para analisarmos o impacto do refinamento local na formacao de nuvens
e chuvas no continente sul-americano, com resultados indicando que o refinamento afeta bastante

o modelo, gerando mais nuvens e chuva quando comparado ao modelo de resolugao uniforme.

Palavras-chave: malhas geodésicas, malhas nao-estruturadas, refinamento local, volumes finitos,

equacoes de dgua rasa, umidade.
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Chapter 1

Introduction

1.1 Background

Weather prediction and climate simulation require the solution of partial differential equations
that are defined on the sphere. These equations are the so-called primitive equations and represent
mathematically the geophysical fluid dynamics and are derived from physical laws for state variables
such as wind velocity, temperature and pressure (Haltiner e Williams, 1980; Holton, 2004). These
problems are initial value problems, i.e., knowing these equations and given the initial state, our
task is to find the time evolution of the state variables. However, these equations are too complex
to be solved analytically and must be treated numerically. This motivates the construction of global
atmospheric models.

A global atmospheric model consists of a dynamical core and physical parametrizations. The
dynamical core solves the fluid motion equations, thermodynamics equations and also solves the
transport of tracers that are resolved on grid-scale. On the other hand, sub-grid scale processes such
as radiative processes and convective processes are represented in physical parametrizations, where
these sub-grid processes are parameterized as functions of the grid-scale processes (Williamson,
2007).

In order to develop a global atmospheric model, it is helpful to start with a simpler model that is
capable to retain important aspects of the complete system. The three-dimensional Euler equations
can be simplified to the shallow water equations on the sphere. They describe the dynamics of a
thin layer, rotating two-dimensional fluid. They are a stepping stone to design numerical schemes
for the full three-dimensional weather prediction and climate models. The shallow water equations
have the advantage of being two dimensional, therefore they reduce the computational cost to run
in high resolutions. Furthermore, besides being an interesting geophysical model on their own, the
shallow water equations represent key properties of the atmosphere, such as geostrophic adjustment,
Coriolis effect, gravity waves and Rossby waves.

One important choice in order to develop a numerical method for an atmospheric model is
to define a grid that covers the sphere. There are several ways to do this. One alternative is the
regular latitude-longitude grid which perhaps is the most natural way do discretize the sphere.
This grid has a nice rectangular structure and orthogonality properties. Atmospheric models used
finite differences schemes on these grids in the early 1960s. However, the convergence of meridians
at the poles makes the longitude intervals distance goes to zero. This causes the so-called "pole
problem", where explicit finite difference and finite volume schemes must have a too short time step
to satisfy the Courant-Fredrich-Levy (CFL) condition, which makes these schemes too expensive.
Some attempts made finite difference schemes on a latitude-longitude grid cheaper such as applying
filters near the poles (Williamson, 2007).

In the 1970s the spectral method, which uses a latitude-longitude grid, became the most popular
and almost exclusive choice for atmospheric models until the emergence of massively parallel com-
puting platforms. During this time, semi-Lagrangian schemes were also developed and have been
adopted by some weather prediction centers. These semi-Lagrangian schemes allow longer time
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steps and also use a latitude-longitude grid. Efforts were made to improve the physical properties of
spectral and semi-Lagrangian schemes since the numerical solution should reflect the physical prop-
erties of the continuous equations. Although semi-Lagrangian schemes and spectral methods solve
the pole problem mentioned before, they suffer from scalability bottleneck on massively parallel
architectures due to global data communication as a result of spectral transform and also because
of the grid points clustered in the poles (Staniforth e Thuburn, 2012). For these reasons, many
development efforts have been made to investigate isotropic alternatives grids to the traditional
latitude-longitude grid that allow good scaling efficiency on massively parallel machines.

Grids based on Platonic solids became popular and have been adopted in modern global at-
mospheric models. These grids are more homogeneous, isotropic and have desirable properties for
atmospheric modelling on the sphere. An example of such grids is the cubed sphere, which is a
geodesic grid obtained through a gnomonical projection of the cube edges onto the sphere. The
resulting spherical squares are uniformly subdivided into new spherical squares, yielding a high-
resolution grid.

Another popular grid-based on Platonic solid is the icosahedral grid and its pentagonal-hexagonal
dual grid. The construction of the icosahedral grid starts with the icosahedron inscribed within a
sphere that is gnomonically projected the sphere. This process results in a grid that is composed
of 20 spherical triangles and 12 grid points. Each resulting spherical triangle is divide into 4 new
spherical triangles, and we proceed in this manner until we reach the desired resolution. This process
yields a Delaunay Triangulation on the sphere. Its dual grid can be obtained by taking the Voronoi
Diagram of the icosahedral grid (Ju et al., 2011).

It is usual to optimize the icosahedral grid by some grid optimization algorithm aiming to im-
prove discrete operators’ accuracy. In (Miura e Kimoto, 2005), the authors analyze grid quality
properties and the converge of finite volume operators in optimized icosahedral grids using the op-
timization proposed by (Heikes e Randall, 1995), the spring dynamics optimization (Tomita et al.,
2002) and spherical centroidal Voronoi (SCVT) optimization (Du et al., 1999; Ju et al., 2011). These
optimizations are needed to improve the operators’ convergence.

Much consideration has been given on icosahedral grids for the next generation of global at-
mospheric models. In fact, the icosahedral grid has been used in global atmospheric models. For
instance, the NICAM (nonhydrostatic icosahedral atmospheric model) (Satoh et al., 2008) uses an
icosahedral grid optimized with spring dynamics. The DYNAMICO (Dubos et al., 2015) uses the
dual grid optimized with SCVT optimization. The ICON-IAP (Icosahedral Nonhydrostatic model at
the Institute for Atmospheric Physics), developed by Max Planck Institute for Meteorology (MPI-
M) and Deutscher Wetterdienst (DWD), uses the dual grid with the spring dynamics optimization
(Gassmann, 2013).

The centroidal Voronoi grids are also used in MPAS (Model for Prediction Across Scales), which
is jointly developed by NCAR and Los Alamos Laboratory (Skamarock et al., 2012). This model
is designed for weather and climate modeling, regional climate, oceanographic modeling and seems
to achieve good scalability on parallel computing machines. Besides that, MPAS explores grids
with local refinement aiming to solve phenomena such as clouds in specific regions of the earth.
Voronoi grids have the advantage of allowing local refinement. This can be done using Lloyds’s
method (Ju et al., 2011). Using locally refined grids in a global model avoids artificial boundary
conditions, as it is usual in regional atmospheric models. Global models with locally refined grids
have been developed for other grids like the latitude-longitude grid. In Barros e Garcia (2004), they
develop a semi-implicit semi-Lagrangian global shallow water model in a latitude-longitude grid
with local refinement and smooth transitions to coarser regions. It is worth pointing out that being
unstructured makes Voronoi grids able to have a much more flexible refinement than in structured
grids like the latitude-longitude grid.

The MPAS model discretizes spatially the continuous equations using finite volume techniques
on the centroidal Voronoi grid. The prognostic variables are distributed according to a C-staggering
distribution. Their discretization is based on Thuburn et al. (2009) and Ringler et al. (2010). This
method is known in the literature as TRSK and it is designed to solve the shallow water equations on
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the sphere for a variety of grids. TRSK was first developed for the linear shallow water equations
in Thuburn et al. (2009) on arbitrary structured C-grids that have an orthogonal dual grid. In
Ringler et al. (2010), TRSK was extended to the non-linear shallow water equation for same type
of grid as in Thuburn et al. (2009). Later, it was extended for grids with non-orthogonal dual
(Thuburn e Cotter, 2012; Weller, 2014). The TRSK methodology became popular since it uses
local operators and reflects many physical constraints that the continuous equations have. These
properties are known as mimetic properties and are highly desirable for global atmospheric models.

1.2 Motivations and goals

In this work, we aim to study the TRSK scheme to solve the shallow water equations on
centroidal Voronoi grids with local refinement based on topography. We shall apply Lloyd’s method
(Ju et al., 2011) to build grids that capture well the Andean mountain and are smoothly transitioned
to a regional grid in South America that is also smoothly transitioned to a coarser global grid. Thus,
we are interested in developing grids with higher resolution on Andes mountain in order to allow
studies about the effect of Andes on the weather and climate conditions over South America. For
instance, in Walsh (1994) the author investigates the effect of Andes topography on the circulation
of the Southern Hemisphere climate using a spectral global circulation model and concludes that
the Andes has a dramatic impact only in South America climate. In Seluchi et al. (1998), the effect
of the Andes in high and low-pressure systems is analyzed also using a global circulation model.
Therefore, we believe that this kind of grid can benefit South America climate studies and weather
forecasting.

We evaluate the behavior of TRSK on the grid with local refinement on the Andes applying
standard shallow water test cases proposed in the literature (Galewsky et al., 2004; Williamson et al.,
1992) and also the test case recently proposed by Shamir et al. (2019).

Although the shallow water equations represent many of dynamics of the full equations, they
lack physics forcing that play a key role in the atmosphere. Global models usually include physical
parametrization after the three-dimensional dynamical core is completely developed. In order to
avoid a rework of numerical schemes when applied to a three-dimensional model, it is desirable to
be able to evaluate a numerical scheme adding physical forces in the shallow water model before
investing effort to develop a complete three-dimensional model. Therefore, we propose to investigate
the convective moisture shallow water model proposed by Zerroukat e Allen (2015), discretize this
model using TRSK and test it on locally refined grids.

We will the grid generator and shallow water model developed by Peixoto (2013) called iModel.
We developed in iModel the capabilities of topography based local refinement, convective shallow
water model and the test case proposed by Shamir et al. (2019).

1.3 Outline

In Chapter 2 introduce the concepts of spherical centroidal Voronoi tesselations and how this is
an useful tool to build grids with local refinement based on topography. In Chapter 3 we present
the shallow water equations and its vector invariant form. Then, we discretize the shallow water
equations using TRSK.

In Chapter 4 we show results of standard shallow water tests proposed in the literature using
TRSK in grids with local refinements based on topography. We also present in Chapter 5 a convective
shallow water model and show how we can discretizate the equations using TRSK. Results for SCV'T
with local refinement are presented. At last, we show the conclusions of our analysis in Chapter 6.
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Chapter 2

SCVT grids

This chapter aims to explain the sphere discretization adopted in this wok. We will introduce
the icosahedral grid in Section 2.1 and SCVT optimization in Section 2.2. In Section 2.3 we shall
see some examples of locally refined grid and also a way to build a grid with local refinement on the
Andes mountain region by setting an appropriate density function based on topography and using
Lloyd’s method (Ju et al., 2011).

2.1 Definitions

We start with basic definitions of Voronoi diagrams and Delaunay triangulations. Although
those concepts can be defined for any d dimensional space or manifold, we will focus only on the
case of the unit sphere S2.

Definition 2.1. (Voronoi Diagram) Let {z;}"_;, C &2 a set of points on the sphere. The i-th
Voronoi region §2; is defined by:

Q; = {2z € 8% d(zi,x) < d(xj,x),Vi# j},
where d(-,-) denotes the geodesic distance on the sphere:
d(x,y) = arccos(z - y),Vz,y € S2.

The sets {€;}"; is called a Voronoi tesselation or a Voronoi diagram of the sphere and the
points {z;} ; are called generators. From Definition 2.1 follows the properties:

e 0;NQ; =0 for all i # j;
o U, Q; = 82, where Q; denotes the closure of €);;

e Each §; is an open convex spherical polygonal.

Another important concept is the definition of Delaunay triangulation.

Definition 2.2. (Triangulation) Let P = {z;}" ; C 8? and A = {T1,--- ,T}} a set of spherical
triangles. We say that A is a triangulation of the sphere if:

k
o Ui Ti = 8%
e The triangles have disjoint interiors;
e Each triangle contains only its own vertices;

e The set of all vertices is P.
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Figure 2.1: Icosahedral grid construction - 20, 42, 162 and 642 vertices.
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Figure 2.2: Voronoi diagrams and the icosahedral grid: 162, 642 and 2562 cells.

Definition 2.3. (Delaunay triangulation) A Delaunay triangulation is a triangulation where
each spherical triangle is circumscribed in a circumference that does not contain any vertex.

The Delaunay triangulation is the dual grid of a Voronoi diagram in a graph theory sense.
Given a Voronoi diagram, the dual relation can be seen by connecting the neighbor generators.
This process yields a Delaunay triangulation. On the other hand, given a Delaunay triangulation, a
Voronoi diagram may be constructed by connecting neighbor triangle circumcenters (Okabe et al.,
2000). Each Voronoi cell is related to one Delaunay vertex and each Delaunay triangle is related to
one Voronoi vertex. Each Delaunay edge is related to one Voronoi edge and they are orthogonal.
This property is desirable for numerical schemes. At last, we call the Delaunay triangulation the
dual grid and the Voronoi diagram as the primal grid or Voronoi grid.

An important example of Voronoi diagram and Delaunay triangulation is the icosahedral grid
and the pentagonal /hexagonal grid. The icosahedral construction begins with an icosahedron in-
scribed within a sphere. Its edges are projected gnomonically on the sphere surface. Each resulting
spherical triangle is subdivided into 4 triangles by connecting the midpoints of the edges. The new
triangles can be subdivided and we can proceed recursively. This process is illustrated in Figure
2.1. The grid constructed from the initial icosahedron has 12 vertices. Given a level of recursion [ for
the process described for refinement of the grid, it can be showed that the grid has N; = 10-2% 42
vertices. Also, this construction yields a Delaunay triangulation. Therefore, a Voronoi diagram may
be obtained by connecting the circumcenters of the spherical triangles (Miura e Kimoto, 2005). In
Figure 2.2 we show examples of Voronoi diagrams on the sphere.

2.2 Spherical centroidal Voronoi tesselation

A Spherical centroidal Voronoi tesselation (SCVT) is a Voronoi diagram where the generators
are the center of mass of each cell with respect to a density function. Formally, we have the following
definitions.

Definition 2.4. (Center of mass) Let ) be a spherical polygon and p € C(S?), p : §? —]0, 00|,
we define the center of mass with respect to p by

o Jyzp@)i0()
Jo @) dx(e)

The function p if often called density function and the integral above is a surface integral.
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This definition of center of mass does not guarantee that x* € S2. Therefore, we have the
definition of spherical center of mass.

Definition 2.5. (Spherical center of mass) Let © be a spherical polygon and p : S — [0, oc.
We define the center of mass with respect to p as the minimizer of the following functional:

F(z) = /Q pW)lly — ol2dy), zeQ

This minimizer is denoted as z¢ and the integral above is a surface integral.

In Du et al. (2003) the authors have shown that the minimizer always exists. However, it is
not always unique. This work also shows that a minimizer may be obtained from the following
expression:

x*

ERD
In other words, we just need to radially project the center of mass from Definition 2.4 on the
sphere in order to obtain the spherical center of mass from Definition 2.5.

C

(2.1)

Definition 2.6. (SCVT) Given {z;}" ; and a density function p : §* — [0, 00[, consider the
Voronoi regions (2; for each i. We say that the Voronoi tesselation {€;}7 , is a spherical centroidal
Voronoi tesselation (SCVT) with respect to p if z; = x;¢, where x;¢ is the spherical center of mass

of Qz

Therefore, SCVT are Voronoi diagrams where the Voronoi generators are the local spherical
center of mass with respect to p. A natural question is how we can build SCVT. This is possible
using an iterative method called Lloyd’s method (Du et al., 2003; Ju et al., 2011)

Algorithm 2.7. (Lloyd’s method) Given a density function p : S — [0, 00[ and a number of
generators n:

1. Choose n generators points 1, -- ,z, € S%;

2. Compute the Voronoi diagram (2; for each generator;

.
Z;

[EHIK

3. For each i, compute =] and project onto the sphere using z{ =
4. Doxj=uzi,Vi=1,---,m

5. If the new points satisfy some stopping criteria, the return {z;}!*; and {€;}!" ;. Otherwise,
go back to step 2.

In this work, we use the algorithm developed by Renka (1997) to construct Delaunay Triangu-
lations on the sphere and build the Voronoi Diagrams from the Delaunay triangulations.

The convergence of Lloyd’s method is related with an energy functional. Given x = {x;}!"
points on the sphere and ©Q = {€;}"_; subsets of the sphere satisfying:

1. Q;NQ; #0, for ¢ # 4,
2. UL, Qi = S

we define the energy functional by:
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where
Kilas ) = [ o)y~ ailPa0y)
This energy functional decreases for each Lloyd’s method iteration. Furthermore, ({z;}!" ¢, {4} ;)
is a local minimum of K if only if ({z;}11, {4}},) is a SCVT with respect to p. Analysing the
energy functional, it is also possible to conclude that (Du et al., 2003; Ju et al., 2011),

1
b AN 1
AN <p<x])> , (2.2)
hj  \p(xi)
where h; and h; denotes the diameters of €); and (1, respectively. This approximation plays a key
role in our work. It allows us to build grid with local refinement, as we shall see.

2.3 Example of local refinements in SCVT grids

First, let’s define a density function based on Ju et al. (2011), that allows us to build a grid
that captures the South America continent.
We represent a point # € S? C R? in spherical coordinates as,

s

2},9 € [—m, ], (2.3)

x = (sinp cos 8, sin ¢sin b, cos ) € R3, o€ [— g’

and set the parameters (¢, 0.) = ( -9 —%), xe = (sin . cos b, sin ¢, sin ., cos ¢.) and consider
the parameters v, o and € that will be set later. Then we define:

d(z,z.) = ||z — x|, z €8 (2.4)
where || - || denote the Euclidean norm. We define the following auxiliary function:
1, if d(z,z.) < a,
s(z) = %@:’IC), if o <d(z,z.) < a+e, (2.5)
0, otherwise.

Finally, the density function is given by:

1 1
p1(z) = por + <1 - 74>s(x) (2.6)

The parameter a represents the radius of the high-resolution grid region. The parameter &
represents the width of the transition zone between coarse and fine grid resolution. The parameter
~ represents the ratio between the diameter of a cell in the high-resolution region and a cell in the
low-resolution region. This parameter v is introduced based on Equation (2.2).

Aiming for grids with smooth transition between higher and lower resolution zones, we applied
a smoothing filter in the function defined in Equation 2.5 as follows. Firstly, we consider a latitude-
longitude grid with 720 x 1440 points. For each point P on this grid, we consider the value of the
function s(P) at this point. This value is then replaced by an average of the values of s at the points
of a box centered in P. We considered a box with centered at P with 552 points, for each P in the
latitude-longitude grid. Bilinear interpolation was employed to compute the values of s at points
that are not grid points of the latitude-longitude grid that we defined. We choose the size of the
box empirically. Our assessment criteria was so that the generated primal grid has only triangles
with circumcenters inside of the corresponding triangles, because this property is desirable in order
to guarantee a well staggered grid where the primal and dual edges intersect (Engwirda, 2018).

i s

We set the parameters v = 3, @« = 4£ and € = §5. Then, for the density function given in

Equation (2.6) with smoothing filter we obtain the following grid illustrated in Figure 2.3 after
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applying Lloyd’s algorithm.
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Figure 2.3: Grid generated by Lloyd’s algorithm with density function defined by Equation (2.6) considering
10424 generators (left) and the density function defined by Equation (2.6) (right). A smoothing filter was
employed.

An important property of computational grids is the cell distortions. Given a Voronoi cell €2
with edges with lengths Iy, --- ,[,, the distortion may be given by:

g \/% Z?:Zl ()

2

i

where

Note that a cell has zero distortion if, and only if, it has equal edge lengths. In Figures 2.4, 2.5
and 2.6 we show the diameters and distortion properties, respectively, of the grid showed in Figure
2.3. Also, note that the cells within the South America region have diameter approximately 3 times
smaller than in most of the globe.
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Figure 2.4: Diameters (radians) of the cells considering the grid showed in Figure 2.3.
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Figure 2.5: Distortion of the cells considering the grid showed in Figure 2.3.
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Figure 2.6: Distortion histogram (left) and diameters of cells (km) vs density function values (right) con-
sidering the grid and density function showed in Figure 2.3.

Aiming to build grids that represent well the Andes mountain, we can define a density function
based on topography. Indeed, the data from ETOPO (Amante e Eakins, 2009) has the Earth to-
pography defined in a latitude-longitude grid. In order to build a grid that captures the Andes, we
removed all the data from ETOPO except the Andes. Even though the ETOPO data is given for a
high resolution, we used in this work the ETOPO data in a latitude-longitude grid with 720 x 1440
points since this number of points showed to represent well the Andes’ topography in our sim-
ulations. We also applied a smoothing technique on ETOPO data to produce a smooth density
function and therefore a grid with smooth transitions between coarser and finer regions. The em-
ployed smoothing technique was based on Jacobi method for the Poisson equation on a rectangular
domain. For each index (i, j) representing a point on the latitude-longitude grid, 0 < i < 720,
0 < j <1440, we consider the following iterative process:

1
by = g(bf—m b 1+ bige),

where k£ > 0 and b?j is the initial Andes data from ETOPO on the latitude-longitude grid.

The maximum number of iterations used was 500 iterations and it was chosen empirically.
We used again as an assessment criteria that the generated primal grids have all circumcenters
inside the triangles. The resulting data is normalized to enforce values in [0, 1]. Applying bilinear
interpolation on this latitude-longitude grid data, we have a function b(¢, \) that represents a
smooth Andes topography. Thus, the proposed density function may be built as:

pa(6, ) = 714 + (1 - ;)bw, ). (2.7)

The resulting grids and its properties after applying Lloyd’s method for the the density function
po are illustrated in Figures 2.7, 2.8, 2.9 and 2.10 for v = 3.
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Figure 2.7: Grid generated by Lloyd’s algorithm with density function defined by Equation (2.7) considering
10424 generators (left) and the density function defined by Equation (2.7) (right). A smoothing filter was
employed.
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Figure 2.8: Diameters (radians) of the cells considering the grid showed in Figure 2.7.
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Figure 2.9: Distortion of the cells considering the grid showed in Figure 2.7.
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Figure 2.10: Distortion histogram (left) and diameters of cells (km) vs density function values (right)
considering the grid and density function showed in Figure 2.7.

Finally, we can build a grid that represents well the Andes, has a refinement over South America
and has a smooth transition to global grid. Such a grid can be built by setting the following density
function based on the auxiliary function s defined in Equation (2.5) and the smoothed Andes
topography b used in Equation (2.7):

1 1
p3(x) = por} + (1 - ?) (As(z) + (1 = Nb(z)), z €S> (2.8)
where we are assuming that the respective smoothing was applied for each function and A € [0, 1].
We illustrate the generated grids using p3 with v = 3 and A = 0.6 on Figures 2.11, 2.12, 2.13
and 2.14. For this value of -, we expect a resolution 3 times higher on the Andes mountain from
Equation (2.2) and it is illustrated in Figure 2.12.
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Figure 2.11: Grid generated by Lloyd’s algorithm with density function defined by Equation (2.8) considering
10424 generators (left) and the density function defined by Equation (2.8) (right).
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Figure 2.12: Diameters (radians) of the cells considering the grid showed in Figure 2.11.
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Figure 2.13: Distortion of the cells considering the grid showed in Figure 2.11.
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Figure 2.14: Distortion histogram (left) and diameters of cells (km) vs density function values (right)
considering the grid and density function showed in Figure 2.11.
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Let x; be a Voronoi generator in South America continent such that the generator is not on
Andes mountain (i.e., b(z;) = 0 and s(z;) = 1) and z; be a Voronoi generator on the coarse
grid region (i.e., b(z;) = s(x;) = 0). Denoting the diameters of the Voronoi cells by h; and hj,
respectively, from Equation (2.2) we have the following approximation:

R e S

[714+ (1—714>A]L11 [(1—>\)—|—M4F

For the values v = 3 and A = 0.6, we have:

hi ~ 0.3779645 - - - . (2.10)
h;

Therefore, for these parameters, the diameter of a cell in the South American continent that
does not lie on Andes mountain is almost 38% the diameter of a cell in the coarse grid region.

This grid generated by ps is more distorted than the grids generated by p; and ps. As we can
see, distortion is not related with the diameter of a cell. It is not related either with the transition
zone between lower and higher resolution refinement.

Another important geometric feature of spherical grids is the concept of alignment of grid cells.
This concept was first introduced in Peixoto e Barros (2013), where the authors prove that the
alignment of cells is related to the order of accuracy of the usual finite volume discretization of the
divergence. We start with the following definition for planar polygons.

Definition 2.8. (Planar aligned polygon) Given a polygon 2 in the plane with even number
of edges, we say that €2 is aligned if any two opposite edges are parallel and have the same length.

This concept may be extended to spherical polygons as follows.

Definition 2.9. (Spherical aligned polygon) Given a spherical polygon € with even number of
edges, denote Py the center of mass of Q with respect to a constant density function. Let ' be the
planar polygon obtained by radial projection of the edges of {2 onto tangent plane at Fy. We say
that € is aligned if the planar polygon €' is aligned.

Finally, Peixoto e Barros (2013) defines a quantity known as alignment index denoted by © that
gives a measurement of a cell alignment.

Definition 2.10. (Alignment index) Given a spherical polygon 2 with even number of edges n,
denote its vertices by P;, ¢ = 1,--- ,n and consider P,;1 = P;. The alignment index is defined by:

1 3
0(2) = e D Ndivins2i = disnzie1] + 1 div1i = divnyosting2ls
i—1

where d = % Yoy diiv1 and d; j is the geodesic distance between P; and Pj.

It can be proven that a spherical polygon  is aligned if and only if ©(2) = 0. In Figure 2.15
we show the alignment index for the grid showed in Figure 2.11. It is worth noticing that there are
distorted cells (Figure 2.13) that are not ill aligned.
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Figure 2.15: Alignment index distribution considering the grid showed in Figure 2.11.

From our simulations we can conclude that SCVT and Lloyd’s method are a very flexible tool
to build grids with local refinement. The key idea is to define an adequate density function for our
purposes. We will investigate the numerical methods for the grids generated by the density function
p3 defined in Equation (2.8) in Chapters 4 and 5.



Chapter 3

Shallow water model and finite volume
scheme

Aiming to solve numerically the shallow water equations on the sphere, there are at least two
crucial choices to make. We must choose how we formulate the continuous equations and how
we discretize it. This chapter aims to explain how we made the above choices. We describe the
shallow water equations on the sphere and some of its properties in Section 3.1. We also present
these equations in the vector-invariant form, which will be adequate for our purposes. At last, in
Section 3.2, we describe the finite volume discretization presented in Thuburn et al. (2009) and
Ringler et al. (2010).

3.1 Shallow water equations

The shallow water equations can de be thought as a model for horizontal motions of a fluid
in a rotating frame where the vertical scale is negligible when compared to the horizontal scale.
They can be deduced from the primitive equations for both planar and spherical geometry. Their
deduction may be found in Haltiner e Williams (1980); Holton (2004). We will consider only the
spherical case in this work.

There are many ways to formulate the shallow water equations. A review for some of these
formulations may be found in Williamson et al. (1992). The shallow water equations on the rotating
sphere can be written in spherical coordinates as:

ou u  Ou vou g Oh+b)
0t+acos¢6)\+a8¢_f B tan¢+&005¢ OA -0 34
ov u v  v0dv 98(h+b)

ot + a cos ¢ O\ ta 8¢ +fu + ta ¢ + ¢ =0 @2
Oh 1 0

=+ m( (hu) + 87)(iw cos ¢)) = 0. (3.3)

Here (), ¢) are the latitude-longitude coordinate system on the sphere, with —7 < A < 7 and
—%5 < ¢ < 5. The prognostic variables are the fluid depth h = h(X, ¢,t), the longitudinal component
of the velocity u = u(\, ¢, t) and the latitudinal component of the velocity v = v(\, ¢, t).

The parameters are the bottom topography, b = b(\, ¢), the gravity acceleration constant,
g, the earth radius, a, and the Coriolis term, f = 2€)sin ¢, where ) = 826?% is the earth angular
velocity. Equations (3.1) and (3.2) are the momentum equations and equation (3.3) is the continuity
equation.

We define a local coordinates system {i,j,k} at each point of the sphere where i,j and k are
the longitudinal, latitudinal and upward direction unit vectors. In this model, the velocity vector
v = ui + vj is tangent to the sphere.

15
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Since the fluid is considered to lay on the sphere surface, the boundary conditions are periodic
in A and ¢. Finally, we are interested in the initial value problem related with the shallow water
equations, i.e., we consider the initial conditions ho(\, @) = h(A,¢,0), up(A, @) = u(A, ¢,0) and
vo(A, @) = v(A, ¢,0) to be given.

3.1.1 Vector-invariant formulation

With the aid of the following identities for the gradient and divergence operators on spherical
coordinates:

V() = o O 500 (3.4
v = accl)sqﬁ <gz + ;qﬁ(v cos gb)), (3.5)

we can write the shallow water equations in a vector form:

Ccll—::—kav—gV(h—i—b), (3.6)
dh
— ThY v =0, (3.7)
where
d d
70 =500+ v-V)() (3:8)

denotes the material derivative. This formulation is known as advective form (Williamson et al.,
1992). As we pointed out, this formulation uses local coordinates systems on the sphere. However,
it is possible to write these equations in a cartesian form.

In Cote (1988) it has been shown that the shallow water equations can be expressed using
three-dimensional cartesian coordinates as:

dV
dh
o TV V=0, (3.10)

Here V = (u,v,w) € R3, k is an unit vector in radial direction. The parameter y = —%

a Lagrange multiplier and it is included to guarantee that V stays constrained to be tangent to
sphere (k -V = 0). Notice that equations (3.9) and (3.10) are similar to equations (3.6) and (3.7),
the only difference is the Lagrange multiplier term and the number of components of the velocity

18

vector.
Defining the relative vorticity £ = k -V x V, we have the following relation (Satoh, 2004),

A%
VXV:gk—i—ka. (3.11)
Taking the cross product with V in (3.11) yields:

V.V
a

(VXV)XV:kaV+<ka>><V:§k><V— k . (3.12)

Considering the identity:

(V-V)V:(VXV)XV+V<W2|2>, (3.13)
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and combining (3.12) and (3.13), we get:

) 2
(V-V)V:gkxv—‘/a‘fmv(";’). (3.14)

Finally, we substitute (3.8) and (3.14) in (3.9) and eliminate the Lagrange multiplier to get:

2
%\t’:_(erg)ka—gV(thb)—V(‘\;‘>, (3.15)
oh

Equation (3.15) is called the vector-invariant form of the momentum equations. This is why we

say that equations (3.15) and (3.16) are the shallow water equations in the vector-invariant form.

. . . . . . . V|2
We can express these equations in vector-invariant form in terms of kinectic energy K = | 2‘ ,

potential vorticity ¢ = %, Bernoulli potential B = ® + K, where ® = g(h+b) is the geopotential,
and the perpendicular velocity term V1 =k x V as follows:

ov

e —ghV+ - VB, (3.17)
oh

The vector-invariant formulation is also valid for planar geometry and does not depend on the
coordinate system. In this formulation we don’t have to deal with the non-linear advection, which is a
problematic term for conservation of potential vorticity and energy (Ringler et al., 2010). Therefore,
this formulation will be used in our discretization.

Proceeding as in Ringler et al. (2010), we can derive the energy budget. Multiplying equation
(3.17) by AV and using that V+ -V = 0 we obtain:

(hV) - %\tf = -VB-(hV) = h%—[: = —VB- (hV). (3.19)

Multiplying equation (3.18) by K, we get:

oh
oy = KV (hV). (3.20)

Combining (3.19) and (3.20) yields the kinetic energy evolution equation:

O(hK
(8t ) =—-K(V-(hV))-VB-(hV)
=-K(V-(hV)) - VK - (hV) - Vo - (hV) (3.21)
=—-V-(hKV)—-V®.(hV)
Multiplying the equation (3.18) by ®, we get the potential energy equation:
A2 + ghb

ot
The energy is given by:

h2
E =g~ +ghb+hK (3.23)
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and its equation can be obtained by combining (3.21) and (3.22)

88?‘ +V - (hKV)=-V-(®(hV)) . (3.24)
Therefore, we can write the time derivative of energy as the divergence of a function. Integrating
Equation (3.24) on the sphere using differentiation under the integral sign, divergence theorem and
noticing that the sphere does not have boundary, we can conclude the total energy is conserved.
Notice that the Coriolis term does not contribute in the energy bugdet because of V4 .V = 0.
This property is highly desirable for a numerical scheme and much attention will be given to this
property.
It is also worth to write the linearised shallow water equations about a rest state with depth hg:

ov

T —fVt—V(h+d) (3.25)
ZL = —hV-V . (3.26)

We also consider the linear vorticity equation:

oc
S TIi=0 . (3.27)

This equation can be obtained applying the operator k - V x (+) in the linearised momentum
equation (3.25). The linearised equations will be useful to motivate some discretization aspects.

3.2 TRSK

This subsection is dedicated to present TRSK, a C-staggering finite volume/difference method
developed for the shallow water equations. TRSK was first presented for the linear shallow water
equations on a f-sphere, i.e., the Coriolis parameter is constant in the whole sphere (Thuburn et al.,
2009). The goal was to develop a numerical scheme that preserves stationary geostrophic modes.
Then, this work was extended to the non-linear shallow water equations with f variable (Ringler et al.,
2010). In these works, they use grids with orthogonal dual grids, such as the latitude-longitude grid,
icosahedral and pentagonal/hexagonal grid. Later, TRSK was extended to grids with a nonortho-
gonal dual grid, such as the conformal cubed sphere (Thuburn e Cotter, 2012) and other grids
(Weller, 2014). TRSK has become popular for its conservative and mimetic properties and became
adopted in the atmospheric model MPAS (Skamarock et al., 2012), as well as in the DYNAMICO
model (Dubos et al., 2015).

In this subsection, we shall describe TRSK for the non-linear shallow water equations. The grids
are supposed to have an orthogonal dual grid, which is the case that we are interested in this work.

3.2.1 Definitions

We start with a primal grid that has an orthogonal dual grid. For instance, the grid generated
by a Voronoi diagram on the sphere and its Delaunay triangulation. There are three types of grid
locations that are necessary for a C-grid staggering: primal cell centers (or dual vertices), the primal
cell vertices (or dual cell centers) and the point where the primal edges and dual edges intersect each
other (Figure 3.1). The indexes i,e and v stand for primal centers, intersecting edges points and
vertices. The length of an edge of a primal cell and a dual cell is denoted as d. and [., respectively.
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A Primal cell center // Dual vertex positions

@ Edge positions

@ Dual cell center // Primal vertex positions

Figure 3.1: Geometric definitions in primal and dual cells.

We will denote the velocity field V in equation (3.17) by u. The prognostic variables h and u
are stored in primal cell center and edges points, respectively. The divergence § = V - u is stored
in primal cell center and the relative vorticity £ = k-V X u is stored at the primal vertices, as it is
shown in Figure 3.2. Only the normal component of the velocity field is stored. Therefore, at each
edge point we define a normal vector n, to the edge pointing to the direction such that the normal
component of the velocity given by u - n. is positive. Given a primal cell 7 and an edge e, ne; is an
indicator function such that n.; = 1 if n, points out of cell 4 and n,; = —1 if n, points into cell 7.
Finally, given a vertex v, we define t. = k X n. and an indicator function t., such that t., = 1 if
t. points towards v and t., = —1 otherwise.

L

Figure 3.2: Variable positions for a C-grid staggering.

We also define useful indexes and notations for grid connectivity in Table 3.1.
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Description Simbol
Edges of a cell EC(3)

Vertices of a cell 7

Vertices at end of edge e
Cells that share edge e

v
VE
CFE
Edges that has v at its extreme point % EV
Cells with v as a vertex cv
EC
EV
EV

Pair of cells sharing en edge e P(e)
Edges with vertex v where each edge share a cell with e E(v,e)
Pair of edges that meet at a vertex v of cell i e C(v,1)
Area of a primal cell i A;

Area of a dual cell v A,

Center of a primal cell ¢ x;

Edge point Te

Primal cell vertex point Ty

Table 3.1: Grid notation following Ringler et al. (2010).

3.2.2 Discretized equations

Given an edge e, a cell i and taking the dot product of (3.17) with n., we get:

a;j = —[ghu*]. — [VB]., (3.28)
oh;
o= V- (), (3.29)

where h; denotes the height field in a primal cell center 7, u, is the normal component of the velocity
at edge e, i.e., ue = u(ze,t) - ne and

[qhuL]e = Q(we;t)h(xeat)uL(xeat) ‘ INg,
[VBle = VB(x,t) - ne,
[V - (hu)]; =V - (hu)(x;, t).

Notice that ut(z,,t) - ne gives the tangential component of the velocity. Our task now is to
discretize te operators [V - (hu)];, [ghut]e and [V B]e.

Divergence

We start with the continuity equation (3.29). Denoting a primal cell by €; and its boundary by
08, our approximation is based on the mean of V - (hu) over a cell ;, as it is usual in a finite
volume approach. The proposed approximation reads:

1
[V - (hu)]; = / V - (hu)dS;. (3.30)
|Ail Jo,
This integral can be computed using the divergence theorem. Therefore:
1 1
V- (hu)|; = hu-nd(99Q;) = — /hu-ndl, 3.31
V-l =y [ mendooy = S0 f (331)

ee EC (i)



3.2 TRSK 21

where in the last equality we used that €); is a polygonal with edges e. Since we are using a C
staggered grid, the line integral over primal edges above can be estimated as:

/hu -ndl ~ heteneile. (3.32)

e

In the expression above, we need to interpolate the values of h from cell centers positions to
edges positions. This can be done as:

1
he =5 > i (3.33)

1€CE(e)

In other words, the estimated value at an edge point is the average of values in cells either side
of e. Thus, we have the following approximation for each cell i:

V- (hu)]s ~ ji > hewnal. (3.34)
e€cEC(1)

The interpolation (3.33) is second-order accurate, since the edge point and either side primal cell
center lie on the same geodesic. However, as pointed by Peixoto (2016), the integral approximation
(3.32) is only first-order accurate on SCVT grids, since the edge point lying on the dual edge is not
the midpoint of the corresponding primal edge.

The discretization of the divergence used above has been investigated in Peixoto e Barros (2013).
They analyze the grid imprinting caused by this discretization and concludes that this pattern is
related to a concept of aligned cells. They prove that this discretization is second-order only for
aligned cells and similar results hold for the curl discretization that we shall present in this work.

Gradient of h +b

In the Bernoulli potential gradient discretization, we need to discretize the total fluid depth
h + b gradient. Since we need only the normal component value at edges points and h + b is stored
at primal cell centers, we can use a centered second-order finite difference scheme:

1
[V(h+b)]. = -z D (hi+bi)ne,. (3.35)
i€CE(e)

Curl

In order to evaluate the perpendicular term [qhuJ-]e, we need to estimate the potential vorticity
q at the edges. For this reason, we must discretize the relative vorticity (curl).

We start estimating the curl at vertices positions using again a finite volume approach. Given
a vertex v, let A, be the corresponding dual cell and

1
& = A/ (k- V x u) - ndA. (3.36)
At vertice positions, the vorticity can be calculated by applying Stoke’s theorem. Therefore,
1
&y = — u - tdoA = /u - tdl. (3.37)
Ay 94y e€EV(v) ¢

These line integrals over dual edges can be estimated with:

/u “tedl & detetey, (3.38)

e

and the curl discretization may be given by:
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— D Uecteyde (3.39)

eEEC( )

In the case of SCVT grids, the discretization (3.38) is the midpoint rule, since the point of dual
edge the intersects a primal edge is the midpoint of the dual edge. This follows from the definition
of Voronoi diagram. Hence, this discretization is second-order accurate.

Finally, the curl at an edge e is an average of the curl at vertices at the ends of e.

> G (3.40)

veVE(e)

This interpolation is only first-order accurate on SCVT grids. The reason is again related to the
fact of the edge point does not coincide with the edge midpoint.

Perpendicular term

Since now we know how to evaluate the relative vorticity and the height at edge positions,
we need to estimate the tangential component of the velocity u’ at the edges to compute the
complete perpendicular term [ghut].. This discretization will be constructed aiming to guarantee
the preservation of stationary geostrophic modes on the f-sphere. The construction builds up from
the linearised vorticity equation (3.27) assuming f constant (Thuburn et al., 2009),. Note that the
discretization of the linear momentum equation (3.25) on the f-sphere reads:

OUe

5 = —flut]e = [V(h +b)le. (3.41)
Let the tangential velocity be given by:
1
ueL = — Z Wee Lo Ue . (3.42)
€ e’'€ECP(e)

Our task is to find the weights w.e . Differentiating Equation (3.39) with respect to ¢, we get:

08 3ue
o = ! foYl uetede— Y [V(h+b)letede. (3.43)
ecEC() veBV (v) cCEV (v

Using Equation (3.35), we have:

Z [V(h+b) elevde Z Z (hi 4 bi)teud elle,i

e€EC(i) e€EV (v ) € ieCE(e)
Z Z hz + bi)tevne,i (344)
e€EV (v)icCE(e)
=0.
This sum vanishes since (h; + b;) appears twice with different signs. This property is a discrete

version that mimics the property V. x VF = 0 for a scalar field F'. Thus, using Equation (3.42) we
conclude that:

35”:—]0 > > weelouete. (3.45)

e€EEV (v) e!€ECP(e)

In order to mimic the vorticity equation (3.27), we should have:
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9 _
A = —fA,d,. 3.46
S = - f (3.46)
Where §, denotes a discretization of divergence of velocity at edges. We can compute the diver-
gence of velocity in cell centers (denoted by §;) in a similar fashion as we did in (3.34). The values

at a vertex v may be interpolated from the centers using:

— Y RuAidi=— > R Z Neiletie. (3.47)

zGCV (v) 1€CV( ) e€EC(1

The weights R;, satisfies ZUEVC(i) Riy = 1 in order to guarantee that the global integrals of
divergence (>, A;0; and ), A,d,) are the same.
Combining (3.45),(3.46) and (3.47) we have:

Z Z wee/l MUertey = Z R, Z Neilele (3.48)

e€EEV (v) e’€ECP(e 1€CV (v) e€EC(1

In Thuburn et al. (2009) they show that this system can be uniquely solved and the weights are

given by:
Wee'teyy = <2Rw - )ne i (349)

Where the sum varies on vertices over a walk from edge €’ to e. The last vertex encountered in
this walk is denoted by wvs.

We concluded that this discretization of the tangential velocity ensures a mimetic discrete
equation of (3.27). As shown in Thuburn et al. (2009), this property guarantees that stationary
geostrophic modes are preserved on the f-sphere. This discretization also satisfies the property:

Z Agutu, =0, (3.50)

which is an analogous of uZ - ue = 0. The term A, in Equation (3.50) is the area of the polygon
defined by the ends points of e and the centers of cell either side of e.

Kinetic Energy

The kinetic energy is discretized by:

A
- ) fug; (3.51)
1 .
e€EC (1)
As it is shown in Thuburn et al. (2009), this discretization ensures a discrete kinetic energy
equation consistent with the continuous kinetic energy equation (3.21). The gradient of the Kinetic
Energy may be estimated as in (3.35):

VK], Z Kine; (3.52)
de 1€CE(e)

The property (3.50) in continuous equations is important to guarantee that the Coriolis term
does not contribute to the energy budget, as we saw in Equation (3.19). For the discrete energy,
this property also ensures that the discrete Coriolis term does not contribute to the total energy.

Indeed, the discrete total energy is given by:
[gh < +b; )} (3.53)
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This quantity is conserved (within time error truncation). The proof is similar to what we did for
the continuous equations since the necessary vector identities hold for this discretization. Property
(3.50) is essential to ensure energy conservation.

Laplacian at edges

The shallow water equations do not contain any diffusive term. However, diffusion is employed
very often in atmospheric models in order to ensure numerical stability, remove numerical noises
and etc. There are other feasible ways mechanisms of dissipation, such as divergence damping,
hyperdiffusion and many others (Jablonowski e Williamson, 2011). We choose to work with diffusion
as a mechanism of dissipation in this text and we will make it clear when we are using diffusion in
the numerical experiment. Notice that diffusion is not part of TRSK, therefore some of its properties
may be violated by adding diffusion.

In order to add diffusion in the momentum equation, we introduce the concept of vector Lapla-
cian. Given a vector field u = (u,v,w), the vector Laplacian is defined by Au = (Au, Av, Aw).
The following identity holds:

Au=V(V-u)—-Vx (Vxu). (3.54)

Since we are working with the normal component of velocity at the edges as one of our prognostic
variables, we take the dot product of (3.54) with ne for each edge e and get:

Au(ze) ne = V(V-u)(ze) ne — V x (V xu)(ze) - ne. (3.55)

The first term on the right-hand side of equation (3.55) is estimated using the divergence theorem
and the midpoint rule as we did in equations (3.30) and (3.31) at the Voronoi centers of cells on
either side of e. The divergence of u estimates are stored at Voronoi centers, therefore we can apply
finite differences as in (3.35) to estimate the normal component of the divergence gradient.

The second term on the left-hand side of equation (3.55) is estimated as:

(V x (V xu))(ze) - ne = VE(x,) - te. (3.56)

Therefore, this term can be estimated computing the relative vorticity at the endpoints of edge
e using (3.39) and the tangential component of relative vorticity gradient may be calculated using
a finite difference scheme:

Vg(l‘e) = _li Z fvtev-

¢ veV E(e)

The approach for the Laplacian using the identity (3.54) is used in MPAS (Skamarock et al.,
2012) and ICON (Wan et al., 2013). In the next chapter, we shall include the vector Laplacian in
the momentum equation for some simulations. The vector Laplacian is multiplied by a diffusion
coefficient and added to the momentum equation (3.28). Notice that we can define the second-order
vector Laplacian A?u = A(Au). The second-order vector Laplacian may be calculated applying
the scheme described here twice. The second-order Laplacian has been widely used in atmospheric
models and it is known as hyperdiffusion (Jablonowski e Williamson, 2011).

Time discretization

We concluded the spatial discretization of the right hand side of equations (3.28) and (3.29).
The process presented in this work leads to an ordinary differential equation in the time variable
after the spatial variables are discretized, as it is usual in numerical modelling of geophysical fluids.
In this work, we use an explicit fourth-order Runge-Kutta scheme, even though other schemes may
be used (Durran, 2011).
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3.2.3 Mimetic properties

The discrete operators presented here satisfies the following properties:
1. Mass conservation;

2. Coriolis term is not a source/sink of energy (u.ut = 0);

3. Total energy is conserved;

4. The stationary geostrophic modes on the f-sphere are preserved;

5. The vector identities V x Vu = 0 and V - (uh) = AV - u+ u- Vh holds for the discrete
operators.

Property 1 is straightforward from the definition of finite volume discretization. Properties 2
and 4 are proved in Thuburn et al. (2009). The proof of properties 3 and 5 may be found in
Ringler et al. (2010). The above properties are known in the literature as mimetic properties. In
Staniforth e Thuburn (2012), a list of desirable properties for a dynamical core is made and the
properties listed above are included in their list.
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Chapter 4

Numerical experiments for shallow water
model

This section presents numerical experiments for the shallow water equations on the sphere
using the TRSK scheme described in Chapter 3 when applied to grids with local refinement based
on topography that capture well the Andes mountain and the South American continent developed
in Section 2.3 of Chapter 2. Some of the presented experiments will add the diffusion operator in
the momentum equation and we will compare the impact of the diffusion.

The set of test cases for the shallow water equations that will be analysed in our work are the
standard tests proposed in the literature provided by Williamson et al. (1992) (hereafter Will92)
and Galewsky et al. (2004). We will make small changes on these tests since our grids are refined
in South Hemisphere and we wish to investigate the impact of the refined region. Recently, a new
test has been proposed by Shamir et al. (2019) and this test will also be included in our tests.
Summarizing, our test set consist of:

1. Global steady geostrophic flow (test case 2 from Will92);
2. Flow over a mountain (test case 5 from Will92);

3. Rossby-Haurwitz wave (test case 6 from Will92);

4. Matsuno baroclinic wave (Shamir et al., 2019);

5. Barotropic unstable zonal jet with perturbation (Galewsky et al., 2004).

We also will analyse the discrete operator’s convergence in a similar way as Peixoto (2016). We
change test case 5 from Will92 by replacing the mountain by a smooth Andes topography. The
barotropic unstable jet is changed by defining the jet on the Southern Hemisphere rather than the
Northern Hemisphere, as it is originally proposed in Galewsky et al. (2004) and usually presented
in the literature.

There are only a few papers on literature that have investigated the solution of the shallow
water equations using TRSK on SCVT grids with local refinement. For instance, Ringler et al.
(2011) analyses TRSK on a SCVT grids with local refinement similar to the grid presented in
Figure 2.3. The only difference is that their grids refines North America instead of South America.
This work analyses grids with x2, x4, x8 and x16 higher resolution in North America. They
conclude that all conservation properties are maintained for all grids. Also, geostrophic balance is
maintained for all grids. For test case 2 (Will92) and unstable zonal jet, the error is dominated by
the coarser grid resolution region. They run these tests for 12 and 6 days, respectively. They also
find that for test case 5, the method converges with order 1.5, with respect to the coarser region
resolution. In Liu e Yang (2017), they run test case 2 for 365 days using the MPAS model on similar
grids to the ones shown in Ringler et al. (2011). They concluded that the geostrophic balance is
maintained for this period. Also, this work concludes that the impact of the width of the transition
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zone between coarse and fine resolution regions is negligible. The analysis of Ringler et al. (2011)
were extended a full 3D model in Skamarock et al. (2012). Their results also show no problem with
the transition zone.

Our analysis will contemplate more tests and propose grids with refinement based on topography,
aiming to better represent the Andes mountain and the South American continent, instead of the
grids presented in works mentioned in the previous paragraph.

4.1 Global steady geostrophic flow

This is test case 2 from Will92. Initial conditions are defined as:

1 ug\ o
h = hoy— p aQug + - ) sin o, (4.1)
U = g COS P, (4.2)
v=0.

The functions defined above satisfy the non-linear shallow water equations. Therefore, the initial
condition is a solution that does not depend on time. Hence, the solution should remain constant
for all time. We set the parameters hg = 3 x 10% and ug = 122g;ys'

As suggested in Will92, in order to asses our results we consider the following operator I:

2 g
I(h) = /0 /_ h(), ) cos ddad). (4.4)

(4.5)

[NIE]

Then, we define the relative errors in norm 2 and maximum norm, respectively:

I((h = hrer)?)

Io(h) = : (4.6)
’ 1(n2,;)
~ max; |h — hpeyl
loo(h) - max; ’href| 9 (47)
(4.8)

where h is thought as an estimated field and h,..y is the analytical solution. The definition of these
errors for the normal component of velocity u is straightforward.

We ran this test for 30 days for a uniform resolution SCVT grid and on a grid with 3x higher
resolution on the Andes mountain (Figure 2.11). The grid level was set equal to 6 in both cases.
We included the uniform grid in our analysis in order to investigate the impact of the refinement
in the solution behaviour. In Figure 4.1, we show the error evolution for the field h and in Figure
4.2, we show the error evolution for the normal velocity u. The error for i remains oscillating up to
day 20, then it grows. The error for u starts to increase after day 5. In Figures 4.3 and 4.4 we show
the errors for each cell at days 1 and 28, respectively. At day one the error is more concentrated
over some cells. Actually, as we shall see later, these cells are the most unaligned cells (Figure 4.10).
After 23 days, the error seems to be concentrated in one cell near to Andes region. After that, this
cell error triggers gravity waves, as we can see on day 28.
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Figure 4.4: Test case 2: Height field error distribution at day 28 considering a grid with local refinement
on the Andes and 40962 grid generators.

In order to analyze what is causing this behavior, we illustrate in Figures 4.5 and 4.6 the error
evolution for each discrete operator. We notice that the discrete kinetic energy gradient starts with
a large relative error in the maximum norm when compared to other operators. We observe this
behavior in both uniform and refined grid. However, in the uniform grid, this large relative error
does not impact in convergence, as we can see in Figure 4.1 and 4.2. The operator’s errors in the
uniform grid oscillate; in the refined grid, they increase. Both discrete gradients of kinetic energy
and total fluid depth increase only after approximately 14 days on the refined grid. The discrete
perpendicular term increases since day 0.
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Figure 4.5: Test case 2: Relative error time evolution for discrete version of the operators V(h +b) and
VK in refined (left) and uniform (right) SCVT grids. The grid has 40962 grid generators.



4.1 GLOBAL STEADY GEOSTROPHIC FLOW 31

ghu* ghu*

| — Linf — L.inf

Error

1073 4

4] 5 10 15 20 25 30 0 5 10 15 20 25 30

Time (days) Time (days)

Figure 4.6: Test case 2: Relative error evolution for discrete version of the operator ghu™ in refined (left)
and uniform (right) SCVT grids. The grid has 40962 grid generators.

In Figure 4.7 we show the gradient of the Bernoulli potential and the perpendicular term error
at day 26. From Figure 4.5 it is clear that the gradient term is being dominated by numerical
noise in the Andes region, which is clearly a nonphysical behaviour. This leads to a very inaccurate
representation of the Bernoulli potential gradient. The perpendicular term is less affected by the
refined region, which is expected by the error evolution of perpendicular term showed in Figure 4.6.

Although the errors for the height field showed in Figure 4.3 are not too large, other diagnostic
variables might be affected by the errors in the refined region that we showed here. For instance, in
Figure 4.8 we show the potential vorticity at day 23. The pattern showed is the same as the ones
showed in the discrete operators.
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Figure 4.7: Test case 2: Discrete Bernoulli potential gradient (left) and the perpendicular term (right) in
the refined SCVT grids at day 26.
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Figure 4.8: Test case 2: Potential vorticity in the refined SCVT grid at day 23.

Similarly to Peixoto (2016), we analyze the truncation error of divergence, perpendicular term,
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kinetic energy and its gradient. The results for the grids with local refinement are shown in Figure
4.9.

The gradient of h + b reaches second order of converge and the relative vorticity and potential
vorticity has first-order of convergence (not shown) as we pointed out in Section 3.2 of Chapter 3.
The full perpendicular term also reaches first order convergence (Figure 4.9).

The Kinetic energy truncation error does not converge to zero and its gradient truncation error
diverges. In Figure 4.10 we show the error of kinetic energy error for each cell. A similar graph
may be obtained for the kinetic gradient error. Figure 4.10 also shows the alignment index for
each cell and we can observe that exists a high correlation between the truncation error of the
kinetic energy and its gradient. The divergence’s lack of consistency is analyzed in Peixoto e Barros
(2013). They show that the inconsistency is due to bad aligned grid cells. In aligned cells, the finite
volume discretization of divergence reaches second-order convergence. Since there are only a few
badly aligned cells (Figure 4.10), first-order convergence is attained in I norm.

Similar results can be obtained for a uniform SCVT grid (not shown, see Peixoto (2016)).
Therefore, the inconsistency is not the reason for lack of convergence for test case 2 in our Andes
refined grid, since this test is convergent in a uniform SCV'T grid even though there are inconsistent
operators. However, we notice that the discrete kinetic gradient is more inaccurate in the refined
grid than in the uniform grid. We also analyzed the test case 2 for a grid with 2x refinement over
Andes mountain and we obtained similar results. Finally, we state that mass is conserved with
precision 10~ and the energy is conserved with precision 107 for the simulations presented so
far.
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Figure 4.9: Test case 2: Truncation error for discrete operators of K, VK ,V - (uh) and qghut in refined
grids for each grid level.
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Figure 4.10: Test case 2: Kinetic Energy truncation error (top) and alignment index (bottom) for Andes
refined grid considering grid level equal to 6.

Adding diffusion

In order to reduce the numerical noise from our simulations, we ran the same test case on the
refined grid as before but adding a numerical diffusion in the discrete equations. We employed the
following diffusion coefficient:

q
1)> ’

1 72

T (no(no +
where r denotes Earth radius, ng = 85, 7 = 8 hours and ¢ = 1. For these parameters, we have
K ~ 8225.13. This coefficient is used in spectral models (Jablonowski e Williamson, 2011) and will
be used in our simulations. Figure 4.11 shows the error evolution for the height field and normal
component of the velocity field. In contrast with Figures 4.1 and 4.2, we can notice that the error
does not grow in any field. Figure 4.12 shows how the height field error is distributed. We can notice
that the error is larger in bad aligned cells, similar to Figure 4.10. At last, from Figure 4.13 we
can notice that the mass is conserved with precision 10714, However, the total energy is no longer
conserved with machine precision as we obtained before in the simulation without diffusion.
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Figure 4.11: Relative errors for height field (left) and velocity (right) evolution with time for test case 2
using numerical diffusion.



34 NUMERICAL EXPERIMENTS FOR SHALLOW WATER MODEL 4.2

3.9e+00
3.1e+00
2.4e+00
1.6e+00
7.9e-01
0.0e+00
—-7.9e-01
-1.6e+00
-2.4e+00
-3.1e+00
-3.9e+00

-160° -120° -80"  -40° 0 40° 80° 120°  160°

Figure 4.12: Test case 2: Error distribution at day 30 for height field on grid with local refinement in Andes
mountain and South American continent using numerical diffusion. We used a grid with 40962 generators.
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Figure 4.13: Test case 2: Time evolution of relative change of total mass (left) and total energy (right).
Diffusion was employed. We used a grid with 40962 generators.

At last, we analyse the converge of the error when we increase the grid level. We compute the
errors at day 10. The results are shown in Figure 4.14. For the height field, in both norms, the error
decreases with order close second-order, then it gets close to first order and becomes stagnated for
the lo, norm. For the velocity field, in both norms, the error converges to zero with almost second
order from grid level 1 up to 6. From level 6 to 7 the errors decay with first-order. These results are
in agreement with Ringler et al. (2010) and Peixoto (2016).
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Figure 4.14: Test case 2: Grid convergence analysis of h (left) and u (right) using numerical diffusion.
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4.2 Flow over Andes mountain

This test is proposed by Will92 by adding a mountain with a cosine shape in test case 2. We
changed this test replacing the mountain by a smooth Andes topography in order to analyze the
flow behaviour in the refined region. We ran this test for 30 days with the 3x Andes refined grid
with grid level equal to 7 (163842 nodes). We used the same topography data that we showed in
Subsection 2.3. The mean height is set to hg = 5400 and the height field is given by:

2
h=hy— 1<aQu0 + 1;0> sin ¢ — b(\, ¢), (4.9)
g

where b is the smooth Andes topography data. Again, we apply linear interpolation in our topo-
graphy data. The velocity field is the same given in test case 2.

This test case does not have an available analytical solution. As a reference solution, we use
ENDGame (Thuburn et al., 2010), a semi-Lagrangian shallow water model on a latitude-longitude
C grid. We ran the test with a resolution of 720 x 1440 and applied cubic interpolation to estimate
the velocity and height field at edges and Voronoi centers, respectively, using the latitude-longitude
data from ENDGame.

In Figure 4.15 we show the solutions for the height field and its errors.
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Figure 4.15: Flow over Andes test case: Height field h (left) and height error (right) at days 1 (top), 15
(middle) and 30 (bottom) considering a grid with local refinement on Andes mountain and 163842 nodes.

The initial error concentrates on Andes mountain and it is transported on the the grid. The
height error behaviour is satisfactory as we can see in Figure 4.16, where we compare our solution
with ENDGame’s solution. The velocity field error grows after 23 days. At day 26, we can observe
a numerical noise in potential vorticty in Africa, as it is show in Figure 4.17. This contrasts with
test case 2, where numerical errors arose on refined region and not in the coarse region. The mass
is conserved with precision 107!4 and the energy is conserved with precision 107°.
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Figure 4.16: Flow over Andes test case: FEvolution of errors for h and u considering a grid with local
refinement on Andes mountain and 163842 nodes - Reference solution is yielded by ENDGame
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Figure 4.17: Flow over Andes test case: Potential vorticity at day 26 considering a grid with local refinement
on Andes mountain and 163842 nodes. Numerical noise appears in Africa.

As we did in test case 2, we shall consider including a numerical diffusion in the momentum
equation. In Figure 4.18 we show the results obtained. The error for the height field is lower than in
the simulation without numerical diffusion. For the velocity field, we can notice an improvement in
the error behaviour by adding diffusion. The velocity error does not increase as in Figure 4.16 and
it is almost ten times lower at day 30. No numerical noise in the potential vorticity was observed
(not shown). At last, the mass was conserved with precision 1074 and the energy is conserved with
precision 107° (Figure 4.19), which is worse than in the simulation without diffusion, as expected.
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Figure 4.18: Flow over Andes test case: FEvolution of errors for h and u considering a grid with local
refinement on Andes mountain and 163842 nodes. Numerical diffusion is employed in this simulation -
Reference solution is yielded by ENDGame
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Figure 4.19: Time evolution of relative change in total energy for Flow over Andes test case. Numerical
diffusion is employed.

4.3 Rossby-Haurwitz wave

This is the test case proposed in Will92. The height and velocity fields define an analytical
solution of the nonlinear vorticity barotropic equation. It is recommended to set only the wave
number 4 as an initial condition. The solution is expected to zonally propagate and keep its shape.
However, Thuburn e Li (2000) has shown that the wave number 4 is unstable and even numerical
errors can trigger the instability.

We ran the test for 30 days in the grid with 3x higher resolution on Andes. The grid level was
set equal to 6 (40962 nodes). After approximately 21 days, the wave starts to lose its shape.

In Figure 4.20 we show the errors evolution. The results show that the error is well behaved
until the wave started to lose its shape. The loss of shape is not caused by the refined grid, since in
uniform resolution the wave also loses its shape.

In Figure 4.21 we plot the error after 1 day. We can notice again that the error is dominated
by the bad aligned cells showed in Figure 4.10. After the shape of the wave is lost, the solution
won’t make sense. However, after 30 days we can notice that a numerical noise appears near to
Andes mountain, in both height field and vorticity field (Figure 4.22). Finally, mass and energy are
conserved with precision 107* and 1079 respectively (not shown).
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Figure 4.20: Rossby-Haurwitz wave test case: Evolution of errors for h and u considering a grid with local
refinement on Andes mountain and 40962 nodes - Reference solution is yielded by ENDGame.
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Figure 4.21: Rossby-Haurwitz wave test case: Distribution of the errors for h after 1 day considering a grid
with local refinement on Andes mountain and 40962 nodes.
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Figure 4.22: Rossby-Haurwitz wave test case: Height field and potential vorticity at day 30.
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4.4 Matsuno baroclinic wave

The instability of Rossby-Haurwitz is undesirable since we cannot run this test for more than
20 days, because after that the wave loses the shape. A new test case has been recently proposed
by Shamir et al. (2019), which is known as Matsuno baroclinic wave test case. In contrast with
the Rossby-Haurwitz test case that uses analytical solutions of the nonlinear barotropic vorticity
equation as initial conditions, this test case uses as initial conditions the analytic solution for the
shallow water equations linearised on beta plane obtained by Matsuno (1966). The solution has the
following form in planar geometry:

u(z,y,t) = %(ﬁ(y)ei(km_“’t)), (4.10)
v(z,y,t) = %(@(y)ei(kx_‘”t)), (4.11)
h(z,y,t) = %(ﬁ(y)ei(k‘”*“t)), (4.12)

(4.13)

where 3 denotes the real part, k is the wavenumber and w is the time-frequency. Therefore, the
solutions are zonally propagating waves. Replacing this ansatz in the shallow water equations
linearised on beta plane, we get a Schrodinger quantum harmonic equation that leads us to the
following dispersion relation:

0, (4.14)

20/ gH (2 1 209HEk
o (g P, s

a a

where n = —1,0,1,--- and H is the mean fluid depth. As pointed out in Shamir et al. (2019),
n = —1 gives one real root w = k+/gH, which corresponds to a Kelvin wave. Setting n = 0 leads
to a mixed Rossby-gravity wave, one eastward inertial gravity wave (hereafter EIGW) and one
westward inertial gravity wave (hereafter WIGW). This last wave is nonphysical since it leads to
infinite wind speed. Finally, n > 1 gives us three distinct real roots that correspond to a Rossby
wave (hereafter RW), a EIGW and a WIGW. The solutions of Equation (4.14) are given by:

1 Ag
for j = 1,2 and 3. The A; can be computed as:
2Qv/gH
Ao =3 [ngz + Tg(Qn + 1)] : (4.16)
As+JATZAAZ)5  omj
A= [ 1 — 0} exp(%i), (4.17)
40gHk
Ay = DAk (4.18)
a
We have the following correspondence between the waves and frequency:

RW <= wpi = —jinl%gg |wn, k] (4.19)
WIGW <= w1 = .@112“3‘*’717/6,]‘ (4.20)
EIGW <= wp = max wpp,j (4.21)

J=1,2,3
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Finally, for given n and k, we can write the time frequency wy, for each wave and get the
amplitudes:

. - 1y 1, 19.2
vn:AHn<54a) exp(—2(54a) >, (4.22)

1
A gHe1 n+1/( w, R n( Wnk R
ok = - il — 1) = [ e — k1|, 4.23
ek z‘a(wz,k—ng:?)[ 2 <\/gH )”“ \/;<ng )” 1] 123)

1
. Hei +1
hn,k: . 2g _gng,2)|:_ n2 <wnk+kng>Un+l+[<wnk k\/gH>Un 1:| 424)

(2Qa)?
gH

where H,, denotes the n-th normalized Hermite polynomial, A is the wave amplitude and € =
is the Lamb parameter.

These expressions describe the solution on Cartesian coordinates for the linearized shallow
water equation on the equatorial beta plane. These solutions approach solutions for the shallow
water equations on the sphere in the limit € — co. Hence since the earth radius a and the angular
velocity §2 are fixed values, the Matsuno wave solutions are accurate on the sphere only for small
values of gravity-wave velocity /gH. In order to write the solution in spherical coordinates, we
replace x by aX and y by a¢; the wavenumber k is replaced by the spherical wave number %s

The test case proposed by Shamir et al. (2019) is applicable for both planar and spherical shallow
water equations. It is recommend to use the values n = 1, ks = 5, A = 107°. As we mentioned
before, for n > 1 we have three types of waves. It is suggested to test only the RW and EIGW in
order to cover both longitude directions. The wave period is defined by T = %’T and it is given by
T = 18.5 days for the RW is and T" = 1.9 days for the EIGW. The time integration recommended
is 1007 for each wave.

Once we described the Matsuno baroclinic wave test case, let’s present results obtained in the
3x higher resolution on the Andes grid. In order to ensure that the whole wave will pass through the
Andes region, we rotate our grid in 21 degrees in z-z plane. We ran the test using the parameters
described before. We used a grid with 10242 nodes (glevel= 5) and 40962 (glevel= 6) for the RW
and EIGW, respectively. In Figure 4.23, we show the initial condition and the diameters distribution
of the rotated grid.
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Figure 4.23: Initial conditions for the RW and EIG (left and center) and diameters of the rotated grid
(right).

In Figures 4.24 and 4.25, we show our simulation results. A phase error is evident, which is not
caused by the local refinement. Mass and energy are conserved with precision 10714 (not shown). In
contrast with the Rossby-Haurwitz wave, we can see that both RW and EIGW preserves its shape
after 100 wave periods. In Shamir et al. (2019), a similar stability analysis as in Thuburn e Li (2000)
is made in order to investigate wave stability. Both RW and EIGW shows to be stable.

An assessment criteria for the Matsuno baroclinic wave test case suggested by Shamir et al.
(2019) is the Hovmoller diagram. We analyse one time-longitude diagram and one time-latitude
diagram. The time-longitude diagram is obtained by writing the values of the field that we wish



4.4 MATSUNO BAROCLINIC WAVE 41

to plot for a fixed latitude for each time. Since the wave propagates only in the zonal direction,
we expect that the time-longitude diagram consists of straight lines with slope f Similarly, the
time-latitude diagram of a field is obtained by writing its values for a fixed longitude. Similarly, the
time-latitude diagram of a field is obtained by writing its values for a fixed longitude. In Figures
4.26 - 4.31 we show the diagrams for the EIGW and the RW, respectively. The time interval is the
last wave period, i.e., we consider only 997" <t < 1007

1.1e-05 5.0e-06
8.6e-06 8.7e-06 4.0e-06
6.5e-06 6.5e-06 3.0e-06
4.3e-06 4.3e-06 2.0e-06
2.2e-06 2.2e-06 1.0e-06
0.0e+00 0.0e+00 0.0e+00
—-2.2e-06 -2.2e-06 -1.0e-06
-4.3e-06 -4.3e-06 -2.0e-06
-6.5e-06 -6.5e-06 -3.0e-06
-8.6e-06 -8.7e-06 -4.0e-06
-1.1e-05 -5.0e-06
h u
1077
107t
1072
5 5
il il
107
1072
107
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Time (days) Time (days)

Figure 4.24: EIGW: Height field (left, top), exact solution (center, top) and error (right, top) after 100
wave periods. Error time evolution for h (left, bottom) and u (right, bottom) in mazimum norm.
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Figure 4.25: RW: Height field (left, top), exact solution (center, top) and error (right, top) after 100 wave
periods. Error time evolution for h (left, bottom) and u (right, bottom) in mazimum norm.
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Figure 4.26: EIGW: Time-latitude Hovmoller diagrams for
solutions of hyu and v (bottom). The longitude is fized at X\ =

interval 99T < ¢ < 1007
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The time-latitude Hovmoller diagrams 4.26 and 4.29 for the velocities and height show the phase
error as we mentioned before. From the longitude-time Hovmoller diagrams 4.27 and 4.30, we can
conclude that the fields are propagating with the correct speed. This is clear when we compare the
black lines with the dashed white line in Figures 4.27 and 4.30. The results for the velocity field and
height field show the same behaviour of the same analytic solution. However, the relative vorticity
diagrams 4.28 and 4.31 shows some numerical noise, which is more evident in the RW diagram.
This numerical noise does not appear in relative vorticity graphs, it is only present in Hovmoller
diagrams.

4.5 Barotropically unstable jet with perturbation

This test case proposed by Galewsky et al. (2004) defines a zonal velocity field and with a height
field such that they are in balance. The velocity and the height fields are given by, respectively:

0, if ¢ < ¢0)
(@) = 4 Fere exp [(qs—qbo)l(qs—m)}’ if go < ¢ <1, (4.25)
0’ if ¢ > ¢1,
¢ /
h(¢) = ho — ; / au(¢’) [f + Wié)u(qs’)} d¢’, (4.26)

We define the parameters ¢g = —5°, ¢1 = —45°, Umaes = 80 and e, = exp [ — m] In the
literature the jet is usually defined in the Northern Hemisphere, however, the parameters ¢g and ¢
that we choose define the jet in the Southern Hemisphere so that we will analyse the jet on Andes.

We add the following perturbation in the height field:

2 2
h(\, ¢) = ﬁcos(gb)e_(%) e_(%) , (4.27)
where h = 120 m, a = % b= 1—15, ¢9 = —25°. This perturbation triggers the barotropic instability.
Actually, even numerical errors can trigger the instability because this test is unstable.

We ran this test in the 3x higher Andes resolution grid with glevel = 7 for 15 days. We used
again ENDGame as a reference solution. Mass and energy are conserved with precision 1079 and
10—, respectively.

In Figure 4.32 we show the error evolution for the height and velocity field. In Figure 4.33
we illustrate the potential vorticity field for the refined and uniform grid. At day 6 we can see a
numerical noise in the same region of Figures 4.7 and 4.8, which is transported with the flow, as it
is shown in days 7 and 8. Again, we cannot notice any numerical noise in the height field.

%1072

74 —e— Linf —e— Linf

u_error
o s
2 &

o
N

04 0.0 1

o 2 a & 8 1 1 14 o 2 a & 8 1 1 14
Time (days) Time (days)

Figure 4.32: Barotropically unstable jet test case: Error evolution for the height and normal velocity using
a grid locally refined on Andes mountain and on South America continent with 163842 nodes.
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Figure 4.33: Barotropically unstable jet test case: Potential vorticity at days 6 (top), 7 (middle) and 8
(bottom). The graphs on the left represent the results in the refined grid; the graphs on the right shows the
results in the uniform resolution grid.

In the same way as we did before in tests 2 and 5, we added a numerical diffusion in the
momentum equation aiming to remove the numerical noises that we observed in the previous sim-
ulation. From Figure 4.34 we can notice that the diffusion performance is capable to remove the
numerical noises from the potential vorticity. However, the errors obtained without diffusion (Figure
4.32) are similar to the errors obtained with diffusion (Figure 4.35). Similarly to the other simula-
tions with numerical diffusion that we showed in this work, the total energy is no longer conserved
(Figure 4.36).
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Figure 4.34: Potential vorticity at days 6 (left) and 8 (right) for the barotropically unstable jet test case
using the refined grid. Numerical diffusion was employed.
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Chapter 5

Moist shallow water model

The shallow water equations have the advantage of representing key processes of the atmosphere
and being less computationally expensive than the full 3D equations. Therefore they are usually used
as an initial model in developing and assessing numerical methods for geophysical fluids. However,
the shallow water equations lack of representing physical processes such as clouds, rain, convection,
among others.

Some models have been developed using the shallow water model in order to study atmospheric
processes. Wuersch e Craig (2014) has developed a model for cumulus convection and precipitation
formation by modifying the one dimensional shallow water equations. This model has rain as one
of its prognostic variables and the geopotential is modified when it exceeds a threshold in order to
represent cumulus convection. Lahaye e Zeitlin (2016) has investigated the formation of hurricanes-
like vortices using a model based on the rotating shallow water equations. Their model includes
equations for humidity, condensation sink and evaporation source.

In this work, we implemented and analyze the moist Boussinesq shallow water model developed
by Zerroukat e Allen (2015). This model is derived from the traditional Boussinesq approximation
to the 3D Euler equations and allows the density to vary with temperature. The moisture variables
are rain, vapour and clouds and these variables are advected as tracers. In Zerroukat e Allen (2015)
they asses a semi-implicit semi-Lagrangian in this moist shallow water model. Ferguson et al. (2019)
asses a high order finite volume method with adaptive moving mesh exploring the moist shallow
water model developed by Zerroukat e Allen (2015). They showed that local refinement was able
to solve local features.

In this chapter we will introduce the model developed by Zerroukat e Allen (2015) and discret-
izate the equations using TRSK on the grids with local refinement on Andes mountain developed
in Section 2.3.

5.1 Description

The model developed by Zerroukat e Allen (2015) can be summarized in the following equations
using the flux form for the advection equations:

2‘: + ghut + VB = S,, (5.1)
‘;’Z + V- (hu) =0, (5.2)
‘?;f + V- (h6u) = hS,, (5.3)
agfk +V - (hq"u) = hSE, (5.4)

47
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where 6 is the temperature, k = 1,2, 3, ¢! = ¢, is the water vapour state, ¢> = q. is the cloud state,
¢® = ¢, is the rain state and finally u is the wind speed and h is the fluid depth, as in the standard
shallow water model. The source for the momentum equation is given by:

1
Su = g8Vb+ VI, (5.6)

where b is the bottom topography and II = %h20. The source of the advection equations defines a
three-state moist physics.
The saturation function is given by:

q0
@sat(0) = gh+b) exp (200). (5.7)

The initial vapour state is given by:

QS(lt()\’ ¢7 0) = G()‘a (Z))QSat(g)a (58)

where ¢q is a constant chosen so that the initial maximum value of ¢, is 0.02 and G is a function
between 0 and 1 that defines how close ¢, is from the saturation. After that, whenever ¢, > qsq: the
excess value ¢, — ¢sq¢ 18 converted into cloud after being multiplied by a conversion rate v, = 7,(0)
and the temperature is modified due to local heating effect. Summarizing, if ¢, > ¢sq¢, then:

C= %}(qy - QSat)7
Qv+ qw — C,
ge ¢ qc + C,
00+ LC,

where v, = (1 + L%)*1 and L = 10.
Whenever g, < gsqt, & fraction of gsq¢ — g, is evaporated and the temperature is modified due
to a cooling process. This phenomenon can be summarized as:

C= min{gw ’YU(QU - QSat)}v
G ¢ —C,

ge < qc + C,

0«0+ LC.

Clouds are converted into rain whenever the g. exceeds a threshold value of gpecip. In this case,
a fraction of the excess value g. — @precip is converted:

C = rnax{O, Tr (qC - Qprecip)}a
Qv < G — C,
g < qc + C,

where v, = 1073,
The processes described here can be summarized in the following equations (Zerroukat e Allen,
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2015):

Ag, = max{0,v,(qv — gsat) }/ AL,

Aq. = min{q., max{0, v, (qy — gsat) } } /AL,
Agy = max{ (0,7 (e — Gprecip) }/At,

Sqp = Age — Agy,

where At is the time step used in the numerical model. Notice that Sy, + S, + S, = 0, therefore
we can conclude that the integral of (g, + ¢. + ¢») is conserved in this model.

5.2 Discretization

Our variables are u, h, hf and hg®. As in the shallow water model, we store h at Voronoi centers
and the normal component of u is stored at the edges. The temperature and moisture variables hf
and hg® are stored at Voronoi centers. Therefore, the terms in the advection equations for h# and
hq* need to be computed at Voronoi centers. The divergence term may be calculated in the same
manner as we did for the continuity equation (Equation (3.34)). The source terms for h# and hq*
are straightforward to be computed since they depend only of 6 and ¢, therefore we only need
to divide these terms by h, which is easy to achieve since these variables are stored at the same
position, so no interpolation is needed here.

The momentum equation in the moist shallow water model has a source term given by Equation
(5.6) and this term needs to be evaluated at edges points. For the term Vb, we first interpolate
to the edges as follow:

1
O =5 > 6 (5.9)

1€CE(e)

This interpolation is second order accurate. The gradient term Vb is computed using second order
finite differences as in (3.35),

[Vl>]e=—di > bine; (5.10)

The term %V(fﬂ@) requires the value of h at the edges to compute % This can be done through
interpolation as in (5.9). The gradient V(h29) is computed as in (5.10) and no interpolation is
required here since h and hf are stored at Voronoi centers.

5.3 Test problems

This section is dedicated to present results of the moist shallow water model using TRSK on
the grids with local refinement grid. We will present two test cases. These tests are similar to test
cases 2 and 5 from Will92 and they are suggested in Zerroukat e Allen (2015). We will use a smooth
Andes topography as a mountain in the second simulation.

5.3.1 Global steady geostrophic flow

This test initializes the fields with a time-independent analytical solution of the moist shallow
water equations. As suggested in Zerroukat e Allen (2015), we computed the fields in a coordinate
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system (X, ¢') which is obtained rotating 45 degrees the coordinate system (), ¢). The initial fields
are given by:

u(N,¢') = ugcos ¢, (5.11)
v(N,¢') =0, (5.12)
1
h(N,¢') = ho — = (w + o) sin® ¢/, (5.13)
g
b(N,¢') =0, (5.14)
2 4/ 2 4/ 2Py — w —
0()\/’ Q/)/) — 0 +20COS ¢ [(w + Z) COS ¢ + ( 0 w2 U)] (5 15)
P5 + (w+ 0)%sin® ¢/ — 2P (w + o) sin” ¢/
QU(Alv ¢,) - QSat(b, h07 90)7 (516)
qc(N,¢') =0, (5.17)
(N, ¢') =0, (5.18)
(5.19)
where the parameters are set as ug = 20, w = (Qauo + %‘%), o =w/10, ®g = 3 x 10%, hg = ®¢/g,
Oy = 5@% and € = ﬁ. In Figure 5.1 we show the initial fields.
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Figure 5.1: Initial fields: height (top, left), vapour (top, right) and temperature (bottom) for the steady
geostrophic flow for the moist shallow water model.

We ran this test on a uniform SCVT grid and on the grid with resolution 3x higher on Andes
mountain. The grid level was set equal to 6 and we ran the test for 30 days. In Figure 5.2 we show
the error evolution for the fields. No rain is generated, which agrees with the analytical solution.
However, clouds are created due to numerical errors. In Figure 5.3 we show the errors of the fields
for both grids after 30 days. We can notice that the rain generated is due to grid imprinting errors.
Even though clouds are being generated, they are not big enough in magnitude to generate rain.
From Figure 5.2 we can notice that the errors remain stable, except the error of the velocity field
that increases with time. This behaviour was observed in the shallow water model tests. However,
no numerical noise was found neither in potential vorticity nor in height field, as we observed in the
shallow water model tests with no diffusion. In Figure 5.4 we show how the total of water, given by
the integral of h(qy + gc + gr), evolves with time. We can notice that this quantity is conserved as
expected.
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Figure 5.2: Error evolution of height, velocity, vapour and cloud for steady geostrophic flow on refined grid
(left) and uniform grid (right). Both grids are set in level 6 (40962 nodes).
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Figure 5.3: Field errors after 30 days: height, temperature, vapour and cloud for steady geostrophic flow
on refined grid (left) and uniform grid (right).
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5.3.2 Flow over Andes mountain

This test is similar to test 5 from Will92. The bottom topography is again the smooth Andes
topography data (Figure 5.5). We normalized the values of Andes topography between 0 and 2000m.
The initial fields are given by:

u’ (A, @) = ug cos ¢, (5.20)
O (N, @) =0, (5.21)
h0(>‘7 d)) = hO - b()‘a QZ)) - W Sil’l2 d)v (522)
0°(\, ¢) = F(6°7, (1 — )07, 6%, §) + 11167 cos ¢ sin A, (5.23)
@\, @) = pagsat (b, ho, bo), (5.24)
(A ¢) =0, (5.25)

(5.27)

where F' is the function given by:
Ffr, forf3:0) = 5 [¢(¢ - g>f1 - 2¢(¢>+ g) (¢ - g>f2 + <z>(¢>+ g)fs]. (5.28)

The parameters are set as ug = 20, w = (Qauo + ?), 65P = —40e, HFQ = 40e, 6N = —20¢,
€ = zt5, 11 = 0.05, p1p = 0.98 and hg = 5960.
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Figure 5.5: Andes smooth topography (left) and initial total fluid depth (right) for flow over Andes test
case.
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Figure 5.6: Initial temperature (left) and initial vapour depth (right) for flow over Andes test case.

In Figures 5.5 and 5.6 we show the initial fields. The vapour field has a concentration near to
central America. As in the previous test, we ran this model for 30 days on the grid with 3x higher
resolution on Andes and on the uniform SCVT grid. The grid level is equal to 6 in both cases.
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Figure 5.7: Flow over Andes mountain test case: Cloud at days 10 (top), 20 (middle) and 30 (bottom) on
refined (left) and uniform grid (right).

In Figure 5.7 we show the cloud field at days 10, 20 and 30 in both grids. We can notice that they
are similar but the absolute value is slightly different. Furthermore, there are more clouds being
captured in the refined region when compared to the uniform grid. Nevertheless, the rain generated
is very different in both grids. In the uniform grid, no rain is generated until day 20. In the refined
grid, the rain starts at day 10. The uniform grid seems to represent better the rain than the refined
grid, since the simulation on test 2 presented in Zerroukat e Allen (2015) produces rain only after
15 days. In the cloud field, we can observe negative values in both grids. This is clearly undesirable,
but for the cloud field, the negative values are in magnitude much smaller than the positive values.
On other hand, the rain field shows negative values that have the same magnitude of the positive
values, as we can see in Figures 5.8 and 5.9. This may happen since the advection scheme employed
is not a high order and monotonic method. This leads to an inaccurate representation of the rain.
Even though there are negative values in rain and cloud, the total water was preserved similarly to
the previous simulation (not shown).
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Figure 5.8: Flow over Andes: Rain at day 15 (top) and day 30 (bottom) on the refined grid. We considered
a grid with 40962 generators.
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Figure 5.9: Flow over Andes: Rain at day 30 (right) on the uniform grid. We considered a grid with 40962
generators.

To avoid negative values in the moisture variables, we introduce a mass fixer in our model.
Whenever a variable ¢* is negative at some grid point, the negative value is set equal to zero. All
the mass that would be lost is distributed uniformly over the cells. This procedure guarantees only
nonnegative values for the moisture variables. However, the total water is no longer conserved.

In Figures 5.10 and 5.11 we show the results obtained using the mass fixer described in the
previous paragraph. From Figure 5.10 we can notice at day 10 that clouds are generated in the
South of Brazil on the refined grid but not on the uniform grid. Furthermore, rain is visible near to
the South of Brazil only on the refined grid and no rain is formed in the uniform grid. At day 20
we can observe that clouds are formed near to the South of Brazil on the uniform grid and at day
30 rain is produced in that region. However, at day 30 in the refined grid there is much more rain
and cloud next to the South of Brazil. This is evidence that these effects are caused by local grid
refinement. Nevertheless, most of the rain and cloud generated are concentrated in the transition
zone between higher and lower resolution grid. No rain or clouds were observed in the Andes, where
we have the highest resolution. As we mentioned, the total of water is no longer conserved when
we employ the mass fixer (Figure 5.12).
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Figure 5.10: Flow over Andes: cloud at days 10 (top), 20 (middle) and 30 (bottom) on refined grid (left)
and uniform grid (right). Mass fizer was employed. We considered a grid with 40962 generators.

5.7e-06
5.2e-06
4.6e-06
4.0e-06
3.4e-06
2.9e-06
2.3e-06
1.7e-06
1.1e-06
5.7e-07
| —- 0.0e+00

2.6e-05 6.2e-06
2.3e-05 5.6e-06
2.1e-05 5.0e-06
1.8e-05 4.3e-06
1.5e-05 3.7e-06
1.3e-05 3.1e-06
1.0e-05 2.5e-06
7.7e-06 1.9e-06
5.2e-06 1.2e-06
2.6e-06 - - . = 6.2e-07
0.0e+00 — 0.0e+00
-160" -120° -80° -40° O 40" 80" 120"  160°
9.3e-05 — 5.5e-05
8.4e-05 5.0e-05
7.4e-05 4.4e-05
6.5e-05 3.9e-05
5.6e-05 3.3e-05
4.6e-05 2.8e-05
3.7e-05 2.2e-05
2.8e-05 1.7e-05
1.9e-05 1.1e-05
9.3e-06 . e T T | 5.5e-06
T — 0.0e+00 T — 0.0e+00
-160" -120° -80° -40° O 40" 80" 120" 160" -160" -120° -80° -40° O 40" 80" 120"  160°

Figure 5.11: Flow over Andes: rain at days 10 (top), 20 (middle) and 30 (bottom) on refined grid (left)
and uniform grid (right). Mass fizer was employed. We considered a grid with 40962 generators.



5.3 TEST PROBLEMS 57

x1073

3.0 4

2.51

2.0 4

L5+

Relative Twater

10+

0.5

0.0 1

0 5 10 15 20 25 30
Time (days)

Figure 5.12: Flow over Andes: Time evolution of the relative variation of the total water. Mass fizer was
employed.

We ran this test on the refined grid employing the mass fixer with diffusion the momentum
equation. The results are shown in Figure 5.13. The results show that diffusion reduced the mag-
nitude of the rain and clouds. Also, fewer clouds and rain are formed near to the South of Brazil.
However, there is a significant quantity of rain and clouds in this region.
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Chapter 6

Concluding remarks

In this work, we investigated the method TRSK developed by Thuburn et al. (2009) and Ringler et al.
(2010) in SCVT grids with local refinement on the Andes mountain built through Lloyd’s method.
We showed how these grids can be built using smooth topography data.

We analysed TRSK on the refined grids in two different frameworks. In the first framework, we
worked in the classical shallow water model and tested the standard tests proposed in the literature.
In general, we could observe that error in the velocity field triggers numerical noise. These noises
were also observed in the potential vorticity. The only exception was the Matsuno baroclinic wave
proposed by Shamir et al. (2019), where the velocity showed to be stable even after a long period of
integration. Some numerical noise was detectable in the Hovmoller diagram for the vorticity though.

The error in velocity triggered numerical noises in the height field for tests 2 and 6 of Williamson et al.
(1992). After including diffusion in those tests, we could observe that numerical noises in the velocity
were removed. The unstable barotropic jet test case showed to have less numerical noise when the
diffusion is applied even when we compare it with the results on the uniform SCVT grid (Peixoto,
2016). Test case 2 seems to converge in the velocity field in both norms /o, and lo when the grid
level increases after applying diffusion. The height error decreases only in the I3 norm as with the
uniform grid case. An issue with diffusion is that the total energy is no longer conserved.

We could notice that the error of height field was in general concentrated in ill aligned cells,
with reason explained in Peixoto e Barros (2013). In our simulations, we couldn’t notice a relation
between error pattern and distortion.

The second framework investigated in this work is the moist shallow water model, which is
derived using the traditional Boussinesq approximation. This model includes thermodynamic equa-
tions for the moisture and temperature variable. We showed how the equations of this model can
be discretized in a C staggered grid using the operators of TRSK.

The first test analysed in the moist shallow water model is a steady-state in both refined and
uniform SCVT grids. In this test, we could observe a similar behavior to test case 2 in the classical
shallow water model. The error in velocity increases with time, but it does not trigger numerical
noise in the height field. The second test analysed is a test that simulates a flow over the Andes
including the thermodynamics profiles. In the cloud field, we could observe that they generate
similar patterns with more cloud being captured in South America. However, for the rain field, we
could observe that the rain field had negative values. Therefore, a monotonic filter was employed,
together with a mass fixer. We ran this test again with the fixers and we could observe that rain
next to the South of Brazil was generated faster on the refined grid than in the uniform grid. Also,
more clouds and rain were visible at day 30 on the refined grid near to the higher resolution region.
After adding diffusion, we could notice that the rain e and clouds reduce in magnitude, but they
still being noticed in regions where they are not visible on the uniform grid.

An extension of this work could be an analysis of the effect of local refinement in the full
3D equations using the MPAS core. The grids developed in this work are directly applicable to
MPAS structure. In the convective shallow water model, an extension could be employ a high order
and monotonic method in the advection equation for the moisture variables. In general, global
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atmospheric models use high order and monotonic methods for the advection of tracers. That could
lead to a more accurate representation of the moisture variables.
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