DOI
https://doi.org/10.11606/D.45.1996.tde-07052010-163719
Documento
Autor
Nome completo
Cesar Alberto Bravo Pariente
E-mail
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 1996
Kohayakawa, Yoshiharu (Presidente)
Grable, David Alan
Título em português
Um método probabilístico em combinatória
Palavras-chave em português
Combinatória
Geometria
Método Probabilístico
Teoria de Números
Resumo em português
Título em inglês
A Probabilistic Method in Combinatorics
Palavras-chave em inglês
Combinatorics
Geometry
Number Theory
Probabilistic Method
Resumo em inglês
The following work is an effort to present, in survey form, a collection of results that illustrate the application of a certain probabilistic method in combinatorics. We do not present new results in the area; however, we do believe that the systematic presentation of these results can help those who use probabilistic methods comprenhend this useful technique. The results we refer to have appeared over the last decade in the research literature and were used in the investigation of problems which have resisted other, more classical, approaches. Instead of theorizing about the method, we adopted the strategy of presenting three problems, using them as practical examples of the application of the method in question. Surpisingly, despite the difficulty of solutions to these problems, they share the characteristic of being able to be formulated very intuitively, as we will see in Chapter One. We should warn the reader that despite the fact that the problems which drive our discussion belong to such different fields as number theory, geometry and combinatorics, our goal is to place emphasis on what their solutions have in common and not on the subsequent implications that these problems have in their respective fields. Occasionally, we will comment on other potential applications of the tools utilized to solve these problems. The problems which we are discussing can be characterized by the decades-long wait for their solution: the first, from number theory, arose from the research in Fourier series conducted by Sidon at the beginning of the century and was proposed by him to Erdös in 1932. Since 1950, there have been diverse advances in the understanding of this problem, but the result we talk of comes from 1981. The second problem, from geometry, is a conjecture formulated in 1951 by Heilbronn and finally refuted in 1982. The last problem, from combinatorics, is a conjecture formulated by Erdös and Hanani in 1963 that was treated in several particular cases but was only solved in its entirety in 1985.

AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
CBdiss.pdf (1.18 Mbytes)
Data de Publicação
2010-09-21

AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.