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Resumo

MAIA, J. Transição de fase em modelos de Ising: o semi-infinito com campo decaindo
e o longo-alcance com campo aleatório. 2023. Tese (Doutorado) - Instituto de Matemática e
Estatística, Universidade de São Paulo, São Paulo, 2023.

Nesta tese apresentamos resultados referentes ao problema de transição de fase para dois mod-
elos: o modelo de Ising semi-infinito com um campo decaindo e o modelo de Ising de longo-alcance
com um campo aleatório.

No modelo de Ising semi-infinito, o parâmetro relevante na existência de transição de fase é λ, a
interação entre os spins do sistema e a parede que divide o lattice. Introduzindo um campo magnético
que da forma hi = λ|id|−δ com δ > 1, que decai conforme se afasta da parede, conseguimos mostrar
que, em baixas temperaturas, o modelo ainda apresenta um ponto de criticalidade 0 < λc(J, δ)

satisfazendo: para 0 ≤ λ < λc(J, δ) existem múltiplos estados de Gibbs e para λ > λc(J, δ) temos
unicidade. Mostramos ainda que quando δ < 1, λc(J, δ) = 0 e portanto temos sempre unicidade.

No modelo de Ising de longo-alcance com campo aleatório, estendemos um argumento de Ding
e Zhuang do modelo de primeiros vizinhos para o modelo com interação de longo-alcance. Combi-
nando uma generalização dos contornos de Fröhlich-Spencer, proposta por Affonso, Bissacot, Endo
e Handa, com um procedimento de coarse-graining introduzido por Fisher, Fröhlich, and Spencer,
conseguimos provar que o modelo de Ising com interação Jxy = |x− y|−α com α > d em dimensão
d ≥ 3 apresenta transição de fase. Consideramos um campo aleatório dado por uma coleção i.i.d
com distribuição Gaussiana ou Bernoulli. Nossa prova constitui uma prova alternativa que não usa
grupos de renormalização (GR), uma vez que Bricmont e Kupiainen afirmaram que seus resultados
usando GR funcionam para qualquer modelo que possua um sistema de contornos.

Palavras-chave: Transição de fase, modelo de Ising semi-infinito, energia livre de superfície, campo
externo não-homogêneo, modelo de Ising longo-alcance, campo aleatório, contornos, análise multi-
escala, coarse-graining, mecânica estatística clássica
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Abstract

MAIA, J. Phase Transitions in Ising models: the Semi-infinite with decaying field and
the Random Field Long-range. 2023. PhD Thesis - Institute of Mathematics and Statistics,
University of São Paulo, São Paulo, 2023.

In this thesis, we present results on phase transition for two models: the semi-infinite Ising model
with a decaying field, and the long-range Ising model with a random field.

We study the semi-infinite Ising model with an external field hi = λ|id|−δ, λ is the wall influence,
and δ > 0. This external field decays as it gets further away from the wall. We are able to show
that when δ > 1 and β > βc(d), there exists a critical value 0 < λc := λc(δ, β) such that, for λ < λc

there is phase transition and for λ > λc we have uniqueness of the Gibbs state. In addition, when
δ < 1 we have only one Gibbs state for any positive β and λ.

For the model with a random field, we extend the recent argument by Ding and Zhuang from
nearest-neighbor to long-range interactions and prove the phase transition in the class of ferromag-
netic random field Ising models. Our proof combines a generalization of Fröhlich-Spencer contours
to the multidimensional setting proposed by Affonso, Bissacot, Endo and Handa, with the coarse-
graining procedure introduced by Fisher, Fröhlich, and Spencer. Our result shows that the Ding-
Zhuang strategy is also useful for interactions Jxy = |x− y|−α when α > d in dimension d ≥ 3 if we
have a suitable system of contours, yielding an alternative proof that does not use the Renormal-
ization Group Method (RGM), since Bricmont and Kupiainen claimed that the RGM should also
work on this generality. We can consider i.i.d. random fields with Gaussian or Bernoulli distributions.

Keywords: Phase transition, semi-infinite Ising model, surface free energy, inhomogeneous external
field, Long-range random field Ising model, random field, contours, multiscale analysis, coarse-
graining, classical statistical mechanics.
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Introduction

The problem of the presence or absence of phase transitions is key in statistical mechanics. The
Ising model is one of the most studied ones on this matter. It was introduced by Lenz and studied by
Ising [52]. In the Ising model, we represent the positions of the particles by the points of the lattice
Zd. Each site is associated with a spin σi, taking values +1 or −1. Configurations are elements of
Ω := {−1,+1}Zd . The parameters of importance are the interaction J = (Jij)i,j∈Zd , the external
field h = (hi)i∈Zd , and the inverse temperature β. The family J represents that the energy of the
interaction of two sites i and j is −Jij if the spins are σi and σj aligned, i.e. if having the same sign,
and is Jij otherwise. The most studied Ising model is the one with nearest neighbor ferromagnetic
interaction, for which Jij = J whenever i and j are neighbors on the graph and are zero otherwise.
The external field h represents a quantity that favors each spin to align in the same direction as
the field, and so the formal Hamiltonian of the model is given by

HJ,h(σ) = −
∑

i,j∈Zd

|i−j|=1

Jσiσj −
∑
i∈Zd

hiσi,

where J > 0 and |i−j| = 1 means that the distance in the graph is one. The role of the temperature
is expressed in the formal Gibbs measure, given by

µβ
J ,h(σ) =

e−βHJ,h(σ)

Zβ
J ,h

where Zβ
J ,h is the partition function

Zβ
J ,h =

∑
σ∈Ω

e−βHJ,h(σ).

In this thesis, we will study the phase diagram of two variations of this model. First, we will
study the semi-infiinite Ising model with non-homogeneous external fields. After that, we focus on
proving phase transition for the long-range random field Ising model for d ≥ 3.

The semi-infinite Ising model is a variation of the Ising model where, instead of Zd (d ≥ 2),
the lattice is Hd

+ = Zd−1 ×N and the configurations space is Ω := {−1,+1}Hd
+ . In the semi-infinite

model, the sites in the wallW = Zd−1×{1} are in contact with a substrate favoring one of the spins.
This influence is represented by an external field, with intensity λ ∈ R, acting only on spins at the
wall W. The other parameters of the model are the interaction J = (Jij)i,j∈Hd

+
, the external field

h = (hi)i∈Hd
+

and the inverse temperature β. We will always consider nearest neighbor ferromagnetic
interaction, hence Jij = J > 0 whenever |i − j| = 1 and are zero otherwise. The distance here is
taken concerning the ℓ1-norm. The interaction J and the external field h play the same role in the
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2 INTRODUCTION

energy as in the standard Ising model, so the formal Hamiltonian is

HJ,λ,h(σ) = −
∑

i,j∈Hd
+

|i−j|=1

Jσiσj −
∑
i∈Hd

+

hiσi −
∑
i∈W

λσi.

The role of the temperature is expressed in the formal Gibbs measure, given by

µβ
J ,λ,h(σ) =

e−βHJ,λ,h(σ)

Zβ
J ,λ,h

where Zβ
J ,λ,h is the partition function, a normalizing weight. Throughout this thesis, we will assume

λ ≥ 0 for simplicity. The extension of our statements for λ ≤ 0 will follow from spin-flip symmetry.
The semi-infinite Ising model was extensively studied by Fröhlich and Pfister in [38, 39], where

they presented a wide range of results. Regarding the macroscopic behavior of the system, it was
shown that, for β ≤ βc, the system behaves exactly as the Ising model and the spins align inde-
pendently, where βc denotes the critical inverse temperature of the Ising model. Below the critical
temperature, when there is no external field, there exists a critical value λc > 0 that determines the
behavior of the spins near the wall. When the influence of the wall is bigger than λc, the influence
of the substrate "penetrates" the model and we see a thick layer of spins near the wall aligned with
the substrate phase:

Figure 1: Complete wetting: λ = 1 > λc, β = 0.5, J = 1. The + spins are black and the − are white.

This regime is then called complete wetting. When 0 ≤ λ < λc, the influence of the substrate is
only capable of creating disconnected clusters on the wall, so we say there is partial wetting :

Figure 2: Partial wetting: λ = 0.03 < λc, β = 0.5, J = 1. The + spins are black and the − are white.

In [39], they also showed that this critical value is related to the existence of multiple Gibbs
states, in the sense that, for 0 ≤ λ < λc there are multiple Gibbs states, and for λ > λc we have
uniqueness. The existence of this critical value λc is proved using a notion of wall-free energy, defined
formally as

τw(J, λ,h) = lim
Λ→Zd

1

2|W ∩ Λ|
ln

(Z−,J

Λ∩Hd
+;λ,h

)2

Q−,J
Λ;h

− lim
Λ→Zd

1

2|W ∩ Λ|
ln

(Z+,J

Λ∩Hd
+;λ,h

)2

Q+,J
Λ;h

 ,

where Q±,J
Λ;h is the partition function of the Ising model (on Zd) with ± boundary condition on

Λ, a finite set such that W ∩ Λ ̸= ∅ and Z±,J

Λ∩Hd
+;λ,h

is the partition function of the semi-infinite

Ising model with ± boundary condition on Λ∩Hd
+. This quantity is suitable for measuring the wall

influence when there is no external field since the partition functions of the Ising model cancel out,
and the remaining terms can be written as an integral of the difference of the magnetization with
respect to the wall influence λ, see Proposition 2.1.2.
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Figure 3: The - boundary condition of the semi-infinite model.

In the Ising model, adding a nonnull constant external field disrupts the phase transition at every
temperature, as a consequence of Lee-Yang theorem [36, 61]. However, it was shown in [14] that we
can add an external field that decays as it goes to infinity and still preserves phase transition. This
paper started a streak of new results on models with decaying fields [1, 13, 15, 16].

One particular result [13], states that we can consider an intermediate external field h∗ =
(h∗i )i∈Zd given by

h∗i =

{
h∗ if i = 0,
h∗

|i|δ otherwise.

that preserves phase transition for low temperatures when δ > 1 and induces uniqueness at low
temperatures when δ < 1. In the critical value δ = 1, there is phase transition for h∗ small enough.
The proof of uniqueness when δ < 1 was extended to all temperatures in [25]. The argument
in [13] involves contour arguments and Peierls’ bounds techniques for low temperatures, while
[25] uses a generalization of the Edwards-Sokal representation. Both techniques are fairly distinct
and complement each other, which makes the complete proof of uniqueness involved. There is no
standard strategy to prove uniqueness, with each model requiring particular techniques.

For the semi-infinite Ising model, a more natural choice of the external field is one decaying as
it gets further from the wall, that is, hi ≤ hj whenever jd ≤ id. Given h ∈ R, one such external
field is ĥ = (hi)i∈Hd

+
with

hi =
h

iδd

for all i ∈ Hd
+. Figures 4 and 5 shows how this external field behaves. A particularly interesting

Figure 4: The influence of the external field in a box Λn.

Figure 5: The external field w.r.t. the distance of a spin to the wall.



4 INTRODUCTION

choice of h is h = λ, so we link the wall influence and the field. This particular case will be denoted
λ̂ = (λi)i ∈ Hd

+, with

λi =
λ

iδd
.

We can prove that, when δ > 1, the semi-infinite model with external field λ̂ behaves as the model
with no field, so if we fix β = 1, there exists a critical value λc(J) such that there are multiple Gibbs
states when 0 ≤ λ < λc(J), and we have uniqueness when λc(J) < λ. At last, we show that when
δ < 1, the semi-infinity Ising model with this choice of external field presents only one Gibbs state
for any J > 0. To simplify the notation, we choose to fix β = 1 and let J vary, as in the previous
papers about the semi-infinite Ising model. Our results are summarized in the following theorem.

Theorem. Let d ≥ 2, and let Jc be the critical value of the Ising model in Zd at β = 1. Given any
δ > 0, there exists a critical value λc = λc(J, δ) ≥ 0 such that the semi-infinite Ising model with
external field λ̂ presents phase transition for all 0 ≤ λ < λc and uniqueness for λc < λ. Moreover,
for δ > 1 and J > Jc we have 0 < λc. When δ < 1, λc = 0 and there is uniqueness for all J > 0.

In the second half of this thesis, we study the phase transition in the long-range random field
Ising model at dimensions d ≥ 3. The problem of the presence or absence of phase transition is
central in statistical mechanics. To prove the existence of phase transition, the standard idea is to
define a notion of contour and use Peierls’ argument [66]. In the Ising model [52], particles of the
system interact only with their nearest neighbors. On ferromagnetic long-range Ising models [7],
there is interaction between each pair of spins in the lattice. The Hamiltonian of the model is given
formally by

H(σ) = −
∑

x,y∈Zd

Jxyσxσy,

where Jxy = J |x − y|−α, J > 0, α > d. It is well-known phase transition in dimension 2 for Ising
models with nearest-neighbors implies phase transition for long-range interactions when d ≥ 2, as
a consequence of correlation inequalities. For the one-dimensional lattice, it is known that short-
range models do not present phase transition [43]. In the long-range case, a different behavior was
conjectured depending on the exponent α (see [54]), but the problem was challenging.

In dimension d = 1, phase transition was proved first in 1969 by Dyson [33], for α ∈ (1, 2),
by proving phase transition in an auxiliary model, known nowadays as the Dyson model or hi-
erarchical model. Dyson’s approach fails exactly on the critical exponent α = 2. It was already
known that for α > 2 uniqueness holds [43]. In 1982, Fröhlich and Spencer [41] introduced a notion
of one-dimensional contours and then applied Peierls’ argument to show phase transition for the
critical value α = 2. These contours were inspired by the multiscale techniques previously intro-
duced to study the Berezinskii-Kosterlitz-Thouless transition in two-dimensional continuous spin
systems [40]. Later, Cassandro, Ferrari, Merola and Presutti [21] extended the contour argument
previously available for α = 2 to exponents α ∈ (3 − ln 3

ln 2 , 2], with the additional restriction that
the nearest-neighbor interaction is strong, i.e., J(1)≫ 1; this restriction was removed for a subclass
of interactions in [16]. Further results were obtained using contour arguments, such as the decay
of correlations, cluster expansions, phase transition with random interactions, etc; some references
with these results are [22, 23, 48, 49, 53].

In the multidimensional setting (d ≥ 2), Ginibre, Grossmann, and Ruelle, in [44], proved the
phase transition for α > d + 1, using an enhanced version of Peierls’ argument and the usual
contours. Park used a different notion of contour for long-range systems in [64, 65], extending
the Pirogov-Sinai theory available for short-range interactions assuming α > 3d + 1, although he
can also consider Potts models and models without symmetry with his methods. Some results in
the literature suggest that truly long-range effects appear only when d < α ≤ d + 1, see [12].
Recently, Affonso, Bissacot, Endo, and Handa [1], inspired by the ideas from Fröhlich and Spencer
in [40, 41], introduced a version of multiscale multidimensional contour and proved phase transition
by a contour argument in the whole region α > d. They can consider long-range Ising models with
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deterministic decaying fields, first introduced in the context of nearest-neighbor interactions in [14].
For such models, the lack of analyticity of the free energy does not imply phase transition since
these models have the same free energy as the models with zero field. It is expected that slowly
decaying fields imply uniqueness. In this setting, a contour argument is useful for proofs of phase
transitions as well as for uniqueness, some papers with models with deterministic decaying fields
are [8, 13, 16, 25].

The Random Field Ising model (RFIM) [50] is the nearest-neighbor Ising model with an addi-
tional external field acting on each site (hx)x∈Zd that is a family of i.i.d. Gaussian random variable
with mean 0 and variance 1. Formally, the Hamiltonian of the model is given by

H(σ) = −
∑

x,y∈Zd

|x−y|=1

Jσxσy − ε
∑
x∈Zd

hxσx,

where J > 0, ε > 0, and d ≥ 1. A detailed account of the history of the phase transition problem
for this model, as well as detailed proofs, was given in [17]. Here we present a brief overview.

During the 1980s, the question of the specific dimension where phase transition for the RFIM
should happen attracted much attention and was a topic of heated debate. Two convincing argu-
ments divided the physics community. One of them, due to Imry and Ma [50], was a non-rigorous
application of the Peierls’ argument together with the use of the isoperimetric inequality. The key
idea of Peierls’ argument is to define a notion of contour and calculate the energy cost of "erasing"
each contour, i.e., the energy cost of flipping all spins inside the contour. When there is no external
field, the energy necessary to flip the spins in a region A ⊂ Zd is of the order of the boundary |∂A|.
When we add an external field, we get an extra cost depending on this field. Imry and Ma argued
that this cost should be approximately

√
|A|. By the isoperimetric inequelity,

√
|A| ≤ |∂A|

d
2(d−1) ,

which is strictly smaller than |∂A| for all regions only when d ≥ 3, so this should be the region where
phase transition occurs. The other argument, due to Parisi and Sourlas [63], based on dimensional
reduction [3] and supersymmetry arguments, predicted that the d-dimensional RFIM would behave
like the d− 2-dimensional nearest-neighbor Ising model, therefore presenting phase transition only
when d ≥ 4.

The question was settled by two celebrated papers showing that Imry and Ma’s prediction was
correct. First, in 1988, Bricmont and Kupiainen [18] showed that there is phase transition almost
surely in d ≥ 3, for low temperatures and ε small enough. Their proof uses a rigorous renormalization
group analysis and it is considered involved. Still, they claimed that the result works for any model
with a suitable contour representation and centered sub-gaussian external field. Later on, Aizenman
and Wehr [6] proved uniqueness for d ≤ 2. For detailed proofs of these results, we refer the reader
to [17] (see also [10, 20, 37, 57] for more uniqueness results).

Recently, Ding and Zhuang [31], provided a simpler proof of the phase transition, not using RGM.
In addition, Ding, Liu, and Xia [27] proved that if βc(d) is the critical inverse of the temperature
of the Ising model with no field, for all β > βc(d) there exists a critical value ε0(d, β) such that the
RFIM with ε ≤ ε0 presents phase transition.

In the present paper, we are considering a long-range Ising model with a random field, whose
Hamiltonian is given formally by

H(σ) = −
∑

x,y∈Zd

Jxyσxσy − ε
∑
x∈Zd

hxσx,

where Jxy = J |x − y|−α, J, ε > 0, α > d, d ≥ 3, and (hx)x∈Zd that is a family of i.i.d. Gaussian
random variable with mean 0 and variance 1. The only rigorous result on phase transition in
the long-range setting is for the one-dimensional long-range Ising model with a random field, by
Cassandro, Orlandi, and Picco [24]. They used the contours of [21] to show the phase transition
for the model when α ∈ (3− ln 3

ln 2 ,
3
2), under the assumption J(1)≫ 1. We stress that, as remarked

by Aizenman, Greenblatt, and Lebowitz [4], although their argument does not work for the whole
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region of the exponent α, the phase transition holds for values close to the critical value α = 3/2,
since by the Aizenman-Wehr theorem we know that there is uniqueness for α ≥ 3/2.

The argument from Ding and Zhuang in [31], for d ≥ 3, involves controlling the probability of
a bad event, which is related to controlling the quantity

sup
0∈A⊂Zd

A connected

∑
x∈A hx

|∂A|
,

known as the greedy animal lattice normalized by the boundary. The greedy animal lattice nor-
malized by the size, instead of the boundary, was extensively studied for general distributions of
(hx)x∈Zd , see [26, 42, 46, 62]. When we normalize by the boundary, an argument by Fisher, Fröhlich
and Spencer [34] shows that the expected value of the greedy animal lattice is finite. In dimension
d = 2, the expected value is not finite, see [29]. The supremum is taken over connected regions
containing the origin since the interiors of the usual Peierls contours are of this form.

For the long-range model, the interior of contours is not necessarily connected. In fact, long-
range contours may have considerably large diameters with respect to their size, so their interiors
can be very sparse. Our definition of the contours is strongly inspired by the (M,a, r)-partition
in [1], that are constructed using a multiscaled procedure that assures that the contours have no
cluster with small density. With them, we generalize the arguments by Fisher-Fröhlich-Spencer [34],
and prove that the expected value of the greedy animal lattice is finite, even considering regions
not necessarily connected. Then, we prove the phase transition for d ≥ 3. Our main result can be
stated as

Theorem. Given d ≥ 3, α > d, there exists βc := β(d, α) and εc := ε(d, α) such that, for β > βc
and ε ≤ εc, the extremal Gibbs measures µ+

β,ε and µ−
β,ε are distinct, that is, µ+

β,ε ̸= µ−
β,ε P-almost

surely. Therefore the long-range random field Ising model presents phase transition.



Chapter 1

Semi-infinite Ising Model

In this chapter, we study the semi-infinite Ising model following [38, 39] closely. The model
represents the usual Ising model but now with a constraining wall that absorbs some state, that is,
it has a preference for aligning with the + or − spin. We first prove phase transition when there
is no external field. Then we show that the macroscopic picture described in [39] does not change
even if we add a non-homogeneous external field, that depends only on the distance to the wall and
is small in a sense.

1.1 The model and important definitions

To represent a wall in the usual Ising model we change the graph where the model takes place.
Instead of Zd, we consider the graph

Hd
+ := {i = (i1, i2, . . . , id) ∈ Zd : id ≥ 0},

and the wall is denoted by W := {i ∈ Hd
+ : id = 0}. To represent the influence of the wall in

its neighbors, we introduce a parameter λ and, for the finite sets Λ ⋐ Hd
+, we define the local

Hamiltonian

HJ
Λ;λ,h(σ) := −

∑
i∼j

{i,j}∩Λ̸=∅

Ji,jσiσj −
∑
i∈Λ

hiσi −
∑

i∈Λ∩W
λσi. (1.1.1)

Here, h = (hi)i∈Hd
+

is the external field and the interaction J = (Ji,j)i,j∈Hd
+

is non-negative for all
i, j ∈ Zd, so we say the model is ferromagnetic. The configurations in Λ ⋐ Zd with boundary
condition η ∈ Ω are the elements of Ωη

Λ := {ω ∈ Ω : ωi = ηi for all i /∈ Λ}. The finite Gibbs measure
in Λ with η-boundary condition is

µη
Λ;λ,h(σ) := 1{σ∈Ωη

Λ}
e−βHJ

Λ;λ,h(σ)

Zη,J
Λ;λ,h

, (1.1.2)

where Zη,J
Λ;λ,h :=

∑
σ∈Ωη

Λ
e−βHη

Λ;h(σ) is the usual partition function. This measure is in the σ-algebra
generated by the cylinder set, which coincides with the Borel σ-algebra when we consider the
product topology on Ω, a compact space. Then, the set of probability measures defined over the
Borel sets is a weak* compact set.

To construct the infinite measures we consider sequences of finite subsets (Λn)n∈N such that,
for any subset Λ ⊂ Hd

+, there exists N = N(Λ) > 0 such that Λ ⊂ Λn for every n > N . We say
such sequences invades Hd

+ and we denote it by Λn ↗ Hd
+. A particularly important sequence that

invades Hd
+ is the finite boxes

Λn,m := {i ∈ Hd
+ : id ≤ m,−n ≤ ik ≤ n for k = 1, . . . , d− 1},

7
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with n,m ≥ 0. We define also Wn,m :=W ∩Λn,m the restriction of the wall for this boxes. The set
of Gibbs measures is the closed convex hull of all the weak* limits obtained by sequences invading
Hd

+:
GJ := conv{µJ : µJ = w∗- lim

Λ′↗Hd
+

µω
Λ′;λ,h}. (1.1.3)

To simplify the notation, we are omitting the dependency on β, h and λ in the definition of GJ .
Moreover, throughout this chapter and the next, we fix β = 1 and let J vary, to simplify the
notation. Most of this chapter will be dedicated to investigating whether |GJ | > 1, hence there is a
phase transition or |GJ | = 1, so there is uniqueness.

Replacing the semi-infinite lattice Hd
+ by the whole lattice Zd in all definitions above, we can

define the set of Ising Gibbs measures with ferromagnetic interaction J = (Ji,j)i,j∈Zd and external
field h = (hi)i∈Zd as

GISJ := conv{µJ : µJ = w∗- lim
Λ′↗Zd

µω
Λ′;0,h}.

As an alternative for working with Gibbs measures, we can use the Gibbs states. These are linear
functional defined on the space of local functions. A function f : Ω 7→ R is said local when there
exists Λ ⋐ Hd

+ such that, ∀σ, ω ∈ Ω, f(σ) = f(ω) whenever σi = ωi for all i ∈ Λc. The smallest
such Λ, with respect to the inclusion, is called the support of f . Moreover, f is quasilocal if there is
a sequence (gn)n of local functions such that limn→∞ ∥gn− f∥∞ = 0. To each finite Gibbs measure,
we associate the local Gibbs state in Λ with η-boundary condition, defined by

⟨f⟩ηΛ,λ,h :=
∑
σ∈Ω

f(σ)µη
Λ;λ,h(σ).

Moreover, the Gibbs state with η boundary condition is

⟨f⟩ηλ,h := lim
Λ′↗Hd

+

⟨f⟩ηΛ′;λ,h,

when the limit exists. The semi-infinite model inherits several properties from the usual Ising model
in Zd once the Hamiltonian (1.1.1) can be seen as a particular case of the Ising model. The usual
Ising Hamiltonian in Λ ⋐ Zd is

HJ
Λ;h(σ) = −

∑
i∼j

{i,j}∩Λ ̸=∅

Ji,jσiσj −
∑
i∈Λ

hiσi (1.1.4)

where J = (Ji,j)i,j∈Zd a family of non-negative real number and h = (hi)i∈Zd is the external field
with hi ∈ R for all i ∈ Zd. The Ising local state with boundary condition η ∈ Ω is, for any local
function f ,

⟨f⟩ηΛ;h := (Qη,J
Λ;h)

−1
∑
σ∈Ωη

Λ

f(σ)e−HJ
Λ;h(σ),

where Qη,J
Λ;h :=

∑
σ∈Ωη

Λ
e−HJ

Λ;h(σ) is the usual partition function. So, for Λ ⋐ Hd
+, the state ⟨f⟩ηΛ;λ,h

is the Ising state with interaction (Jλ
i,j)i,j∈Zd given by

Jλ
i,j =

{
Ji,j if {i, j} ⊂ Hd

+,

λ otherwise,
(1.1.5)

and boundary condition η+ given by, for all i ∈ Zd,

η+i =

{
η if i ∈ Hd

+,

+1 otherwise.
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We are interested in phase transition results for a uniform interaction J ≡ J > 0, λ > 0 and
hi ≥ 0 for all i ∈ Hd

+. For the Ising model with no external field, the existence of two distinct states
translates to the fact that, on a macroscopic scale, the spins will align in the same direction. If
we consider the plus state, when we look at huge boxes, we will see a sea of pluses and some rare
occurrences of minus.

In the semi-infinite Ising model, again with no field, the macroscopic consequence of the phase
transition is different, it has to do with the existence of a layered phase separating the wall from
the bulk. Writing the semi-infinite model interaction as in (1.1.5), the minus state in a box is given
by the boundary condition like in Figure 1.1, so if λ is big enough we have the phenomenon of

Figure 1.1: The + spins in the wall compete with the − on the boundary.

complete wetting, where the wall forces to spin to align in the plus direction.
To better understand this type of phenomenon, we recommend the survey paper [51]. The surface

free energy of the wall is a quantity that tries to identify whether or not we have complete wetting
and is defined as follows. Consider the sequence that invades Hd

+ given by Λn := Λn,nα for some
0 < α < 1. Take Λ′

n as the reflection of Λn with respect to the line L := {(i1, . . . , id) ∈ Zd : id = −1
2}.

Similarly, define the reflection of the wallsWn asW ′
n := [−n, n]×{−1}. Denoting ∆n := Λn∪Λ′

n and
extending h to Zd by choosing hi = h(i1,...,−id−1) (the reflection of i through line L), the partition
function of the usual Ising model in ∆n with η-boundary condition is

Qη,J
∆n;h

=
∑

σ∈Ωη
∆n

exp {
∑
i∼j

{i,j}∩∆n ̸=∅

Jσiσj +
∑
i∈∆n

hiσi}

and the free surface energy for the + b.c. and − b.c. are, respectively,

F+(J, λ,h) := lim
n→∞

− 1

2|Wn|
ln

[
(Z+,J

n;λ,h)
2

Q+,J
∆n;h

]
(1.1.6)

and

F−(J, λ,h) := lim
n→∞

− 1

2|Wn|
ln

[
(Z−,J

n;λ,h)
2

Q−,J
∆n;h

]
. (1.1.7)

Here, Z+,J
n;λ,h (respectively Z−,J

n;λ,h) is the partition function of the semi-infinite model in the box Λn

with plus boundary condition. (respectively minus boundary condition).

All results in this chapter follows [38, 39] closely, with minor generalizations. We first prove
that these limits exists. As we do not fix a constant external field, this shows that the proof in [38]
extends trivially for space dependent external fields. After that, we will study the wetting transition
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when h = 0. Using the surface free energy between the + and − b.c., defined as

τw(J, λ,h) := F−(J, λ,h)− F+(J, λ,h)

we characterize the presence or absence of phase transition. Moreover, we will compare this quantity
to the interface free energy for the Ising model, defined as

τ(J) = lim
n,m→∞

− 1

|Wn|
ln

[
Q∓,J

∆m,n;0

Q+,J
∆m,n;0

]
, (1.1.8)

where the ∓-boundary condition denotes the configuration σ ∈ Ω defined by

σi =

{
−1, if i ∈ Hd

+,

+1 if i ∈ H−
d

and
∆m,n = [−m,m]d−1 × [−n, n] .

At least, we present some characterizations of the macroscopic picture in both the uniqueness and
phase transition regime. In this last part, we consider the model with an external field that depend
only on the distance to the wall. We are able to show that the characterization presented in [39]
is preserved as long as the sum of the external field in a line perpendicular to the wall is small
enough.

1.2 Correlation inequalities and the limiting states

Before we introduce the correlation inequalities, we define the free boundary condition and the
state associated with it. This is an important state, for which all of the correlation inequalities
apply to. For Λ ⋐ Zd and a configuration σ ∈ Ω,

HJ ,f
Λ;h(σ) := −

∑
i∼j

{i,j}⊂Λ

Ji,jσiσj −
∑
i∈Λ

hiσi, (1.2.1)

where, again, h = (hi)i∈Zd is a family of real numbers and J = (Ji,j)i,j∈Zd are all positive real
numbers. The difference between this Hamiltonian and the usual one defined in (1.1.4) is that there
is no interaction between the interior and the exterior of Λ. The state defined by such Hamiltonian
is

⟨f⟩fΛ;h := (Z f
Λ;h)

−1
∑

σ∈{−1,+1}Λ
f(σ)eH

J,f
Λ;h(σ), (1.2.2)

where f is any local function and Z f
Λ;h is the usual partition function

Z f
Λ;h :=

∑
σ∈{−1,+1}Λ

eH
J,f
Λ;h(σ).

The correlation inequalities we will need are the GKS, FKG and duplicated variables inequalities.
They are used to prove the existence and some essential properties of the limiting states. A proof
for the FKG and GKS inequalities can be found in [36]. Since both inequalities are classical results,
the proof of them will not be presented here. The duplicated variable inequalities were proven in
[58]. One important observation is that all of these inequalities are stated for the finite-volume Ising
states in Zd, but are easily translated to the semi-infinite states due to the particularization (1.1.5).
We start with the GKS inequalities:
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Proposition 1.2.1 (GKS inequalities). Let J = (Ji,j)i,j∈Zd and h = (hi)i∈H+
d

be two collections of
non-negative real numbers and Λ ⋐ Zd. Then for any A,B ⋐ Λ we have

⟨σA⟩+Λ;h ≥ 0 (1.2.3)

⟨σAσB⟩+Λ;h ≥ ⟨σA⟩
+
Λ;h⟨σB⟩

+
Λ;h. (1.2.4)

Both inequalities also hold for the free boundary condition.

This inequality, named after Griffiths, Kelly, and Sherman, was first proved in [45, 55]. The next
inequality is the FKG, one of the most important in Statistical Mechanics and it is related to the
notion of non-decreasing function. Given two configurations ω, σ ∈ Ω, we write σ ≤ ω if σi ≤ ωi

for all i ∈ H+
d . We say that a local function f is non-decreasing if, for all σ ≤ ω, f(σ) ≤ f(ω). The

FKG inequality, named after Fortuin–Kasteleyn–Ginibre [35], is

Theorem 1.2.2 (FKG Inequality). Let J = (Ji,j)i,j∈Zd be a collection of non-negative real numbers
and h = (hi)i∈H+

d
be a collection of arbitrary real numbers. Then for any Λ ⋐ Zd and any non-

decreasing functions f and g we have

⟨fg⟩ηΛ;h ≥ ⟨f⟩
η
Λ;h⟨g⟩

η
Λ;h (1.2.5)

for an arbitrary boundary condition η, including the free boundary condition.

Now we use some consequences of this inequality to characterize the limiting states and get
equivalences of phase transition. The first one is:

Lemma 1.2.3. Let f be a non-decreasing function, β ≥ 0, J = (Jx,y)i,j∈Zd a family of positive
real numbers and h = (hi)i∈H+

d
be any external field. Then, for any boundary condition η ∈ Ω and

Λ ⋐ Zd,
⟨f⟩−Λ;h ≤ ⟨f⟩

η
Λ;h ≤ ⟨f⟩

+
Λ;h.

Moreover, if ω ∈ Ω is such that η ≤ ω, then

⟨f⟩ηΛ;h ≤ ⟨f⟩
ω
Λ;h.

If f is also local satisfying supp(f) ⊂ Λ, then

⟨f⟩−Λ;h ≤ ⟨f⟩
f
Λ;h ≤ ⟨f⟩+Λ;h.

Another important consequence of FKG is that it allow us to define precisely the limiting states.

Lemma 1.2.4. For a non-decreasing local function f , β > 0, J = (Ji,j)i,j∈Zd a family of positive
real numbers and h = (hi)i∈H+

d
any external field, if Λ1 ⊂ Λ2 ⋐ Zd we have

⟨f⟩+Λ2;h
≤ ⟨f⟩+Λ1;h

. (1.2.6)

The same inequality holds for the −b.c when f is non-increasing.

Similarly, we can use the GKS inequalities to prove:

Lemma 1.2.5. Let J and h be as in the hypothesis of the GKS Inequalities, and Λ1 ⊂ Λ2 ⋐ Zd.
Then, for any A ⊂ Λ1

⟨σA⟩+Λ2;h
≤ ⟨σA⟩+Λ1;h

(1.2.7)

and
⟨σA⟩fΛ2;h ≥ ⟨σA⟩

f
Λ1;h. (1.2.8)

Both these lemmas are important to prove some fundamental properties of the limit states in
both the usual and the semi-infinite Ising models, including its existence. Below we enunciate some
of these properties for the semi-infinite model.
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Proposition 1.2.6. Let β ≥ 0, J = (Jx,y)i,j∈Zd a family of positive real numbers, h = (hi)i∈H+
d

any external field and λ ∈ R be the wall influence. Then

1. Extremality: The states ⟨·⟩+λ,h is extremal, in the sense that it is not a convex combination of
other states.

2. Tranlation invariance: For any local function f and a ∈ W we have

⟨f ◦Θa⟩+λ,h = ⟨f⟩+λ,h,

where Θa is the translation of configurations defined by

(Θa(ω))i = ωi−a, ∀i ∈ H+
d . (1.2.9)

3. Short-range correlations: Given two local functions f and g we have

lim
|a|→∞

⟨(f ◦Θa)g⟩+λ,h = ⟨f⟩+λ,h⟨g⟩
+
λ,h.

Moreover, all of these statements are also true for the minus state.

At last, we discuss the so-called duplicate variable inequalities. This set of inequalities was
proved in [58] as a consequence of the GKS and a more general form of the FKG inequalities. In a
subset Λ ⋐ Zd, we consider a Hamiltonian of two independent systems with free boundary condition

HJ
Λ;h,h′(σ, σ′) := HJ ,f

Λ;h(σ) +H
J ,f
Λ;h′(σ

′) = −
∑
i∼j

{i,j}⊂Λ

Ji,jσiσj −
∑
i∼j

{i,j}⊂Λ

Ji,jσ
′
iσ

′
j −

∑
i∈Λ

hiσi −
∑
i∈Λ

h′iσ
′
i.

(1.2.10)

With this we can define the state

⟨f⟩f,fΛ;h,h′ := (Z f,f
Λ;h,h′)

−1
∑

σ,σ′∈{−1,+1}Λ
f(σ, σ′) exp−βHJ

Λ;h,h′(σ, σ′), (1.2.11)

where f is any local function and

Z f,f
Λ;h,h′ :=

∑
σ,σ′∈{−1,+1}Λ

exp−βHJ
Λ;h,h′(σ, σ′).

With this definition, we see that if f(σ, σ′) = f(σ) and g(σ, σ′) = g(σ′), that is, f depends only
of the first variable and g depends only on the second, then

⟨f⟩Λ;h,h′ = ⟨f⟩fΛ;h and ⟨g⟩Λ;h,h′ = ⟨g⟩fΛ;h′ ,

so we say that the marginal distributions of ⟨·⟩Λ;h,h′ are ⟨·⟩fΛ;h and ⟨⟩fΛ;h′ .
Introducing the random variables si = σi + σ′

i and ti = σi − σ′
i, for all i ∈ Zd, as well as

sA =
∏
j∈A

sj and tA =
∏
j∈A

tj

for all A ⋐ Zd, the duplicate variable inequalities are:

Theorem 1.2.7 (Duplicate variable inequalities). Let J = (Ji,j)i,j∈Zd be a collection of non-
negative real numbers, h = (hi)i∈H+

d
and h′ = (hi)

′
i∈H+

d

be two collection of arbitrary real numbers

satisfying hi ± h′i ≥ 0 for all i ∈ Zd. Then, for any A,B ⋐ Zd, we have
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0 ≤ ⟨tAsB⟩f,fΛ;h,h′ ≤ ⟨tA⟩f,fΛ;h,h′⟨sB⟩f,fΛ;h,h′ , (1.2.12)

⟨tAtB⟩f,fΛ;h,h′ ≥ ⟨tA⟩f,fΛ;h,h′⟨tB⟩f,fΛ;h,h′ , (1.2.13)

⟨sAsB⟩f,fΛ;h,h′ ≥ ⟨sA⟩f,fΛ;h,h′⟨sB⟩f,fΛ;h,h′ . (1.2.14)

One important remark is that we can make a change in the external field so that the marginal
distributions of ⟨·⟩f,fΛ;h,h′ became ⟨·⟩ηΛ;h for some η ∈ Ω. Indeed, defining an altered external field hη

as
hηi = hi +

∑
j∼i

j∈Zd\Λ

Jijηj ,

for any configuration η ∈ Ω, we have

⟨f⟩Λ;hη ,h′ω = (Zη,ω
Λ;h,h′)

−1
∑
σ∈Ωη

Λ
σ′∈Ωω

Λ

f(σ, σ′)e
HJ

Λ;h(σ)+HJ
Λ;h′ (σ

′)
.

With this, it is straightforward that, for functions f(σ, σ′) = f(σ), g(σ, σ′) = g(σ′) and η, ω ∈ Ω∪{f},

⟨f⟩Λ;hη ,h′ω = ⟨f⟩ηΛ;h and ⟨g⟩Λ;hη ,h′ω = ⟨g⟩ωΛ;h′ .

For consistency, we are defining hf = h. To stress this properties we define the state, for η, ω ∈ Ω∪{f}
and h = h′,

⟨·⟩η,ωΛ;h,h := ⟨·⟩Λ;hη ,hω , (1.2.15)

and we have the following:

Corollary 1.2.8. Let J = (Ji,j)i,j∈Zd and h = (hi)i∈Zd be a collection of non-negative real numbers.
Then, for any A,B ⋐ Zd and any η ∈ Ω ∪ {f}, we have

0 ≤ ⟨tAsB⟩+,η
Λ;h ≤ ⟨tA⟩

+,η
Λ;h⟨sB⟩

+,η
Λ;h, (1.2.16)

⟨tAtB⟩+,η
Λ;h ≥ ⟨tA⟩

+,η
Λ;h⟨tB⟩

+,η
Λ;h, (1.2.17)

⟨sAsB⟩+,η
Λ;h ≥ ⟨sA⟩

+,η
Λ;h⟨sB⟩

+,η
Λ;h. (1.2.18)

The most important consequence of the duplicated variables inequalities is

Proposition 1.2.9. Let J = (Jij)i,j∈Zd be a non-negative interaction satisfying Jij > 0 if |i−j| = 1,
h = (hi)i∈Zd be a non-negative external field and β > 0. Then, if ⟨σi⟩−β,h = ⟨σi⟩+β,h for some i ∈ Zd,
there is a unique Gibbs state.

Proof. Fix i, j ∈ Zd with |i − j| = 1, and Λ ⋐ Zd containing i and j. For the duplicated variable
system with plus and minus boundary conditions, we will prove that

⟨titj⟩+,−
Λ;h ≥ ⟨titj⟩

+,+
{i,j};h > 0. (1.2.19)

Start by rewriting the Hamiltonian of this duplicated system as

H+,−
Λ;h (σ, σ′) =

∑
{i,j}⊂Λ

Jij(σiσj + σ′
iσ

′
j) +

∑
i∈Λ

hi(σi + σ′
i) +

∑
i∈Λ,j∈Λc

Jij(σi − σ′
i).
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For any u ∈ Λ, we can differentiate w.r.t. hu,

d

dhu
(⟨titj⟩+,−

Λ;h ) = β⟨titjsu⟩+,−
Λ;h − ⟨titj⟩

+,−
Λ;h ⟨su⟩

+,−
Λ;h

which is negative by (1.2.16), hence ⟨titj⟩+,−
Λ;h is decreasing in hk for all k ∈ Λ. Given µ ≥ 0, define

the external field h+ µi,j as (h+ µi,j)k := hi + µ1k∈Λ\{i,j}, for all k ∈ Λ. Then,

⟨titj⟩+,−
Λ;h ≥ ⟨titj⟩

+,−
Λ;h+µi,j

. (1.2.20)

To take the limit as µ goes to infinity, write the Hamiltonian as

⟨titj⟩+,−
Λ;h+µi,j

=

∑
σ,σ′∈ΩΛ

titj exp
{
βH+,−

Λ;h,h′(σ, σ′) + β
∑

u∈Λ\{i,j} µ(σu + σ′
u)
}

∑
σ,σ′∈ΩΛ

exp
{
βH+,−

Λ;h,h′(σ, σ′) + β
∑

u∈Λ\{i,j} µ(σu + σ′
u)
}

=

∑
σ,σ′∈ΩΛ

titj exp
{
βH+,−

Λ;h,h′(σ, σ′)− β
∑

u∈Λ\{i,j} µ[2− (σu + σ′
u)]
}

∑
σ,σ′∈ΩΛ

exp
{
βH+,−

Λ;h,h′(σ, σ′)− β
∑

u∈Λ\{i,j} µ[2− (σu + σ′
u)]
} .

As e−βµ[2−(σu+σ′
u)] does not converge to zero if and only if σu = σ′

u = 1, the limit is

lim
µ→+∞

⟨titj⟩+,−
Λ;h+µi,j

= ⟨titj⟩+,+
{i,j};h.

The positivity of this limit comes from writing its Hamiltonian in terms of the s and t variables

H+,+
{i,j};h(σ, σ

′) = −1

2
Jij(sisj + titj)− (hi + 2d− 1)si − (hj + 2d− 1)sj .

Uniqueness follows from the simple calculation

⟨ti⟩+,−
Λ;h =

1

4
⟨ti(t2j + s2j )⟩

+,−
Λ;h

≥ 1

4
⟨tit2j ⟩

+,−
Λ;h ≥

1

4
⟨titj⟩+,−

Λ;h ⟨tj⟩
+,−
Λ;h ,

where in the first inequality we use (1.2.16) and in the second we use (1.2.17). Taking the limit as
Λ ↗ Zd we conclude that if ⟨ti⟩+,−

Λ;h = 0, then ⟨tj⟩+,−
Λ;h = 0 for all j neighbour of i. As the graph is

connected and i, j are arbitrary, this yields ⟨tj⟩+,−
Λ;h for all sites j ∈ Zd.

The last result needed is

Proposition 1.2.10. Let λ ≥ 0 and h = (hi)i∈H+
d

be a family of non-negative real numbers. Then,
for all Λ ⋐ H+

d and all i, j ∈ H+
d

⟨σiσj⟩−Λ;λ,h ≤ ⟨σiσj⟩
+
Λ;λ,h (1.2.21)

and
⟨σiσj⟩−Λ;λ,h − ⟨σi⟩

−
Λ;λ,h⟨σj⟩

−
Λ;λ,h ≥ ⟨σiσj⟩

+
Λ;λ,h − ⟨σi⟩

+
Λ;λ,h⟨σj⟩

+
Λ;λ,h (1.2.22)

Proof. Consider the duplicated state ⟨·⟩+,−
Λ;hλ

where

(hλ)i = hi + λ1{i∈W}.
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The marginal distributions of this state are ⟨·⟩+Λ;λ,h and ⟨·⟩−Λ;λ,h. So,

1

2

(
⟨sitj⟩+,−

Λ;hλ
+ ⟨tisj⟩+,−

Λ;hλ

)
=

=
1

2

(
⟨(σi + σ′

i)(σj − σ′
j)⟩

+,−
Λ;hλ

+ ⟨(σi − σ′
i)(σj + σ′

j)⟩
+,−
Λ;hλ

)
= ⟨σiσj⟩+,−

Λ;hλ
− ⟨σ′

iσ
′
j⟩

+,−
Λ;hλ

= ⟨σiσj⟩+Λ;λ,h − ⟨σiσj⟩
−
Λ;λ,h.

The positivity of the RHS of this equation comes from (1.2.16), and from the other part of the
inequality we get

⟨σiσj⟩+Λ;λ,h − ⟨σiσj⟩
−
Λ;λ,h ≤

1

2

(
⟨si⟩+,−

Λ;hλ
⟨tj⟩+,−

Λ;hλ
+ ⟨ti⟩+,−

Λ;hλ
⟨sj⟩+,−

Λ;hλ

)
= ⟨σi⟩+,−

Λ;hλ
⟨σj⟩+,−

Λ;hλ
− ⟨σ′

i⟩
+,−
Λ;hλ
⟨σ′

j⟩
+,−
Λ;hλ

= ⟨σi⟩+Λ;λ,h⟨σj⟩
+
Λ;λ,h − ⟨σi⟩

−
Λ;λ,h⟨σj⟩

−
Λ;λ,h,

what concludes the proof.

We finish this section by proving the existence of the limits (1.1.6) and (1.1.7). From now on we
always assume that the external field depends only on the distance to the wall, and when taking a
field h = (hk)

∞
k=0 we hope it is clear that, in the Hamiltonian, hi = hid for all i ∈ H+

d . Moreover,
we will only consider the uniform interaction Ji,j = J > 0 for all i, j ∈ H+

d .

Theorem 1.2.11. Given J > 0, λ ∈ R, an external field h induced by h = (hi)
∞
i=1 and Λn := Λn,nα ,

with 0 < α < 1, the limits

lim
n→∞

1

2|Wn|
ln

[
(Z+,J

n;λ,h)
2

Q+,J
∆n;h

]
(1.2.23)

and

lim
n→∞

1

2|Wn|
ln

[
(Z−,J

n;λ,h)
2

Q−,J
∆n;h

]
(1.2.24)

exists for all 0 < α < 1.

Proof. As the parameters J, λ, and h are fixed, we omit them from the notation. Also, in all the
sums we are going to omit i ∼ j since it is always the case. Start by noticing that

(Z+
n )2 =

∑
σ∈Ω+

∆n

exp {
∑

i,j∈H+
d {i,j}∩Λn ̸=∅

Jσiσj +
∑

i,j∈H−
d {i,j}∩Λ′

n ̸=∅

Jσiσj +
∑
i∈∆n

hiσi +
∑

i∈Wn∪W ′
n

λσi}

Defining

H̃n(σ) :=
∑

i∈Wn,j∈W ′
n

Jσiσj −
∑

i∈Wn∪W ′
n

λσi

we have that
(Z+

n )2 =
∑

σ∈Ω+
∆n

exp−{HIs,n(σ) + H̃n(σ)}

where HIs,n is the usual Ising Hamiltonian such that

Q+,J
∆n;h

=
∑

ω∈Ω+
∆n

exp {−HIs,n}.
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Now, defining
Ξn(t) =

∑
σ∈Ω+

∆n

exp−{HIs,n(σ) + tH̃n(σ)}

we get

ln

[
(Z+,J

n;λ,h)
2

Q+,J
∆n;h

]
= ln

[
Ξn(1)

Ξn(0)

]
=

∫ 1

0
(
d

dt
ln [Ξn(t)])dt

As

d

dt
ln [Ξn(t)] =

1

Ξn(t)

∑
σ∈Ω+

∆n

H̃n exp−{HIs,n(σ) + tH̃n}

=
∑

i∈Wn,j∈W ′
n

J⟨σiσj⟩+n (t)−
∑

i∈Wn∪W ′
n

λ⟨σi⟩+n (t),

where ⟨·⟩+n (t) are the Gibbs states with Hamiltonian HIs,n(σ)+tH̃n and + boundary condition. Tak-
ing now the limiting states ⟨·⟩+(t) = limn→∞⟨·⟩+n (t), these are invariant under translations parallel
to the wall since the local states are, and therefore

lim
n→∞

1

2|Wn|
∑

i∈Wn,j∈W ′
n

J⟨σiσj⟩tn −
∑

i∈Wn∪W ′
n

λ⟨σi⟩tn =
J

2
⟨σiσj⟩t + λ⟨σi⟩t

for any i, j ∈ Wn. The factor 1
2 vanishes on the second term since the states are also invariant under

reflection through the line L. Now we just use the dominated convergence theorem to get

lim
n→∞

1

2|Wn|
ln

[
(Z+,J

n;λ,h)
2

Q+,J
∆n;h

]
=

∫ 1

0

J

2
⟨σiσj⟩t + λ⟨σi⟩tdt

1.3 The wetting transition with no field

In this section, we characterize the picture of the wetting transition with no external field. As
h ≡ 0, we are omitting h from the notation through this whole subsection. We also assume λ ≥ 0,
since the other case is equivalent by spin-flip symmetry. Also, as the external field plays no role, we
opt to emphasize the interaction J in the limiting states, so we write

⟨f⟩ηJ,λ := lim
n→∞

⟨f⟩ηΛn;λ,0
.

With the previously defined wall free energy, τw(J, λ,h) := F−(J, λ,h) − F+(J, λ,h) and the
interface free energy for the Ising model

τ(J) = lim
n,m→∞

− 1

|Wn|
ln

[
Q∓,J

∆m,n;0

Q+,J
∆m,n;0

]
,

our goal will be to show the following results, proved in [39]:

Proposition 1.3.1. For h ≡ 0, the wall free energy τw(J, λ) can be written as

τw(J, λ) =

∫ λ

0
⟨σ0⟩+J,s − ⟨σ0⟩

−
J,sds. (1.3.1)

and
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Theorem 1.3.2. When h ≡ 0 and J > 0 we have

(a) 0 ≤ τw(J, λ) ≤ τ(J) for all λ ≥ 0. Also, τw(J, 0) = 0;

(b) τw is an monotonic non-decreasing function of J and λ ≥ 0;

(c) τw(J, λ) is a concave function of λ ≥ 0;

(d) If λ ≥ J then τw(J, λ) = τ(J).

With these results, we see that

λc := inf{λ ≥ 0 : τw(J, λ, 0) = τ(J)}

is finite. Moreover, from (1.3.1) we get

τ(J) =

∫ λc

0
⟨σ0⟩+J,s − ⟨σ0⟩

−
J,sds.

Let Jc be the critical value for the phase transition for the Ising model. It was proved in [19]
that τ(J) = 0 for all J < Jc and in [59] that τ(J) > 0 for all J > Jc. This, together with
Theorem 1.3.2(a), shows that the semi-infinite Ising model has the same critical temperature as the
usual Ising model, independent of the wall influence λ.

The most import consequence of this results is that get a criteria for uniqueness of the states
once ⟨σ0⟩+J,λ = ⟨σ0⟩−J,λ for λ > λc and for λ < λc this equality does not hold. This will be proved
at the end of the section, completing the phase transition picture. We now proceed to the proof of
Proposition 1.3.1.

Proof of Proposition 1.3.1. We start by noting that, as we don’t have an external field, Q+
∆n

=

Q−
∆n

.This simplifies the surface tension to

τw(J, λ) = F−(J, λ)− F+(J, λ) = lim
n→∞

− 1

|Wn|
ln

[
Z−
n;λ

Z+
n;λ

]
. (1.3.2)

Differentiating each term in the limit w.r.t. λ we get

−∂λ

(
ln

[
Z−,J
n;λ

Z+,J
n;λ

])
= ∂λ

(
lnZ+,J

n;λ − lnZ−,J
n;λ

)
=

1

Z+,J
n;λ

∂λ

(
Z+,J
n;λ

)
− 1

Z−,J
n;λ

∂λ

(
Z−,J
n;λ

)
.

As
∂λ

(
Z+,J
n;λ

)
=
∑
i∈Wn

∑
σ∈Σ+

Λn

σie
−HJ

Λn;λ,0(σ),

we conclude that

−∂λ

(
ln

[
Z−,J
n;λ

Z+,J
n;λ

])
=
∑
i∈Wn

⟨σi⟩+,J
n;λ − ⟨σi⟩

−,J
n;λ . (1.3.3)

All of the above functions are continuous and bounded since they are the logarithm of positive
polynomials. Therefore we can apply the fundamental theorem of calculus to get

τw(J, λ) = lim
n→∞

1

|Wn|
∑
i∈Wn

∫ λ

0
⟨σi⟩+,J

n;s − ⟨σi⟩−,J
n;s ds, (1.3.4)
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so the proof will be finished once we prove that, for any fixed s > 0,

lim
n→∞

1

|Wn|
∑
i∈Wn

⟨σi⟩+,J
n;s = ⟨σ0⟩+,J

s (1.3.5)

and

lim
n→∞

1

|Wn|
∑
i∈Wn

⟨σi⟩−,J
n;s = ⟨σ0⟩−,J

s , (1.3.6)

then, by the dominated convergence theorem we conclude (1.3.1).

We will prove only (1.3.5) since the proof for the other limit is analogous. Start by noticing that,
for any i ∈ Wn, ⟨σi⟩+,J

n;s
n↑∞−−−→ ⟨σ0⟩+,J

s by the translation invariance of the limit state (Proposition
1.2.6).

The rest of the proof consists of bounding from above and below the terms in the limit (1.3.5).
For the upper bound, fix an m ∈ N. For any n ≥ m

1

|Wn|
∑
i∈Wn

⟨σi⟩+,J
n;s =

1

|Wn|
∑

i∈Wn−m

⟨σi⟩+,J
n;s +

1

|Wn|
∑

i∈Wn\Wn−m

⟨σi⟩+,J
n;s .

If i ∈ Wn−m we have that i + Λm ⊂ Λn and by Lemma 1.2.4 ⟨σi⟩+,J
n;s ≤ ⟨σi⟩+,J

Λm+i;s = ⟨σ0⟩+,J
m;s .

Therefore
1

|Wn|
∑

i∈Wn−m

⟨σi⟩+,J
n;s ≤

1

|Wn−m|
∑

i∈Wn−m

⟨σ0⟩+,J
m;s = ⟨σ0⟩+,J

m;s . (1.3.7)

If i ∈ Wn \Wn−m, then i+ Λm ̸⊂ Λn and this set intersects the boundary of the wall

∂Wn := {i ∈ Wn : ∃j ∈ Wn+1 \Wn s.t. i ∼ j},

so we can bound the number of such vertex by |Λm||∂Λn|. Since |⟨σi⟩+,J
n;s | ≤ 1, we have

1

|Wn|
∑

i∈Wn\Wn−m

⟨σi⟩+,J
n;s ≤

2|Λm||∂Wn|
|Wn|

which goes to zero as n increases. Putting both bounds together we get

lim sup
n

1

|Wn|
∑
i∈Wn

⟨σi⟩+,J
n;s ≤ ⟨σ0⟩+,J

m;s .

As m is arbitrary, we can take the limit to get the upper bound in (1.3.5). The lower bound is a
direct consequence of the translation invariance and Lemma 1.2.4 since

⟨σ0⟩+,J
s =

1

|Wn|
∑
i∈Wn

⟨σi⟩+,J
s ≤ 1

|Wn|
∑
i∈Wn

⟨σi⟩+,J
n;s ,

therefore lim infn
1

|Wn|
∑

i∈Wn
⟨σi⟩+,J

n;s ≥ ⟨σ0⟩+,J
s .

Remark 1.3.3. One fundamental difference when we have a non zero external field is that the
integral in (1.3.1) from 0 to λ leaves one extra term, that does not vanish when the external field is
not zero.

Proof of Theorem 1.3.2.
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Proof of (a): We define the set Ω∓
n of configurations with ∓-boundary condition as the config-

urations ω such that, for all i ∈ Hd
+,

ωi =

{
+1, if id ≤ nα/2

−1 if id > nα/2.

Observe that

lim
n→∞

1

|Wn|
ln

[
Z−
n;λ,h

Z∓
n;λ,h

]
= 0 (1.3.8)

since (omitting i ∼ j in the sums)

Z−
n;λ,h =

∑
σ∈Ω−

n

exp {
∑

i,j∈Λn

Jσiσj +
∑
i∈Λn

hiσi +
∑
i∈Wn

λσi −
∑
i∈Λn

j∈Hd
+∩Λc

n

Jσi}

=
∑
σ∈Ω∓

n

exp {−HJ
n;λ,h(σ)− 2

∑
i∈Λn

j∈Hd
+∩Λc

n

id≤nα

Jσi}

≤ Z∓
n;λ,h exp {2

∑
i∈Λnj∈Hd

+∩Λn

id≤nα

J} = Z∓
n;λ,h exp {2Jdnα(2n+ 1)d−2}.

If in the last inequality we take σi = +1 instead, we get an similar lower bound, thus

| ln

[
1

|Wn|
Z−
n;λ,h

Z∓
n;λ,h

]
|≤ 2Jdnα (2n+ 1)d−2

|Wn|
,

from which follows (1.3.8), since |Wn| = O((2n)d−1) and we choose 0 < α < 1.

This gives us

τw(J, λ,h) = lim
n→∞

− 1

|Wn|
ln

[
Z∓
n;λ,h

Z+
n;λ,h

]
− 1

2|Wn|
ln

[
Q−,J

∆n;h

Q+,J
∆n;h

]
. (1.3.9)

For a fixed n <∞, if we take the derivative we get

∂λ(τw(J, λ,h)) = −∂λ

(
1

|Wn|
ln

[
Z∓
n;λ,h

Z+
n;λ,h

])
= |Wn|−1

∑
i∈Wn

⟨σi⟩+n;λ,h − ⟨σi⟩
∓
n;λ,h (1.3.10)

which is positive by the second part of Lemma 1.2.3. Therefore, we bound each term of the sequence
by its limit when λ goes to infinity, getting

− 1

|Wn|
ln

[
Z∓
n;λ,h

Z+
n;λ,h

]
≤ lim

λ→∞
− 1

|Wn|
ln

[∑
σ∈Ω∓

n
exp {

∑
i,j∈Λn

Jσiσj + λ(
∑

i∈Wn
σi − |Wn|)}∑

σ∈Ω+
n
exp {

∑
i,j∈Λn

Jσiσj + λ(
∑

i∈Wn
σi − |Wn|)}

]

= − 1

|Wn|
ln

[∑
σ∈Ω∓

n
exp {

∑
i,j∈Λn

Jσiσj}1{σi=+1, ∀i∈Wn}∑
σ∈Ω+

n
exp {

∑
i,j∈Λn

Jσiσj}1{σi=+1, ∀i∈Wn}

]

= − 1

|Wn|
ln

∑σ∈Ω∓
Λn\Wn

exp {
∑

i,j∈Λn\Wn
Jσiσj}∑

σ∈Ω+
Λn\Wn

exp {
∑

i,j∈Λn\Wn
Jσiσj}

.
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Notice that, when h ≡ 0, this last term is equal to

− 1

|Wn|
ln

Q∓,J
[−n,n]d−1×[−nα/2,nα/2],0

Q+,J
[−n,n]d−1×[−nα/2,nα/2],0


that coincides with the definition (1.1.8).

Proof of (b): Having in mind the simplification (1.3.2), the non-decreasing property of τw w.r.t.
λ comes directly from the positivity of (1.3.3), that is a consequence of Lemma 1.2.3. Analogously,
if we differentiate the RHS of (1.3.2) w.r.t. J we get

−∂J

(
1

|Wn|
ln

[
Z−
n;λ,h

Z+
n;λ,h

])
= |Wn|−1

∑
i∼J

{i,j}∩Λn ̸=∅

⟨σiσj⟩+n;λ − ⟨σiσj⟩
−
n;λ, (1.3.11)

that is positive by Proposition 1.2.10, a consequence of the duplicate variables inequalities.

Proof of (c): To see that τw is a concave function of λ, we use (1.3.3) to get

− ∂2
λ

(
ln

[
Z−,J
n;λ

Z+,J
n;λ

])
=

∑
i,j∈Wn

⟨σiσj⟩+,J
n;λ − ⟨σi⟩

+,J
n;λ ⟨σj⟩

+,J
n;λ − ⟨σiσj⟩

−,J
n;λ + ⟨σi⟩−,J

n;λ ⟨σj⟩
−,J
n;λ , (1.3.12)

which is negative by Proposition 1.2.10. So τw is the limit of concave functions, therefore it is con-
cave.

Proof of (d): For λ ≥ J , since τw(J, λ) is non-decreasing in λ, we have that

τw(J, λ) ≥ τw(J, J).

But, by definition,

τw(J, J) = lim
n→∞

− 1

|Wn|
ln

[
Z∓
n;J

Z+
n;J,

]
= lim

n→∞
− 1

|Wn|
ln

[
Q∓

[−n,n]d−1×[−nα/2,nα/2];0

Q+
[−n,n]d−1×[−nα/2,nα/2];0

]
,

where in the last equality we just used the representation of the semi-infinite model as the usual
one and the translation invariance of the latter. Going back to the definition of τ(J), the last term
in the sequence above is just the sub-sequence m = n/2, which concludes the proof.

We proceed to prove that such critical value coincides with the critical value for non-uniqueness
of the states, that is, λc defined as in (1.3) satisfies

λc = inf{λ ≥ 0 : ⟨σ0⟩+λ = ⟨σ0⟩−λ }. (1.3.13)

Proposition 1.3.4 (Uniqueness with h ≡ 0). For λ > λc, we have ⟨σ0⟩+λ = ⟨σ0⟩−λ .

Proof. Indeed, since τw is non-decreasing in λ and bounded by τ(J), we get that τw(J, λ) is con-
stant equal to τ(J) for all λ > λc. Therefore, for any given λ > λc, τw is differentiable in λ and
∂λτw(J, λ) = 0.

So, τw is differentiable in λ and is the point-wise limit of the sequence |Wn|−1∂λ

(
lnZ+,J

n;λ − lnZ−,J
n;λ

)
,

which is concave. We can then use a known theorem for convex functions, see for example [36, The-
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orem B.12 ], to conclude that

0 = ∂λτw(J, λ) = lim
n→∞

1

|Wn|
∂λ

(
lnZ+,J

n;λ − lnZ−,J
n;λ

)
= lim

n→∞

1

|Wn|
∑
i∈Wn

⟨σi⟩+n;λ−⟨σi⟩
−
n;λ = ⟨σ0⟩+λ−⟨σ0⟩

−
λ ,

which is what we wanted to prove. The second equality is just (1.3.3) and the last was proved during
the demonstration of Proposition 1.3.1.

Proposition 1.3.5 (Non-uniqueness with h ≡ 0). For λ < λc, ⟨σ0⟩+λ > ⟨σ0⟩−λ .

Proof. By equation (1.3.12), we see that ⟨σ0⟩+λ −⟨σ0⟩
−
λ is a decreasing function of λ, since the finite

states also are. Then
⟨σ0⟩+λ′ − ⟨σ0⟩−λ′ ≤ ⟨σ0⟩+λ − ⟨σ0⟩

−
λ ∀λ′ ≥ λ. (1.3.14)

Suppose that ⟨σ0⟩+λ = ⟨σ0⟩−λ . Then, the RHS of the equation above is zero and so is the LHS. We
then have

τw(J, λ) =

∫ λ

0
⟨σ0⟩+s − ⟨σ0⟩−s ds =

∫ λc

0
⟨σ0⟩+s − ⟨σ0⟩−s ds = τ(J),

so λ ≥ λc which is a contradiction.

Lastly, we have some bounds for λc. A lower bound comes easily from (1.3.1), just by bounding
⟨σ0⟩+J,s and ⟨σ0⟩−J,s we get

λc ≥
τ(J)

2
. (1.3.15)

In particular, λc(J) > 0 for all J > Jc, since τ(J) > 0 for J > Jc, see [59]. An upper bound is a
direct consequence of Theorem 1.3.2(d):

λc ≤ J.

1.4 The macroscopic phenomenon of phase transition

To define precisely what is the layer described in the first subsection, we need to use contours.
We start this section by defining the low-temperature representation and the Peierls contours, and
then we show how the existence or absence of multiple states determines the wetting transition.

1.4.1 Low-temperature representation and Peierls contours

Looking back at the definition of the Ising model, we see that a low temperature (β >> 0)
favors the configurations with spins aligned, so we rewrite the Hamiltonian trying to emphasize the
non-aligned spins. Remember that we are considering a uniform interaction J ≡ J . Again, we can
see the semi-infinite model as the Ising model with interaction J̃ as in (1.1.5).

Using the graph structure of Zd, we define EΛ = {{x, y} ∈ H+
d : x ∼ y, x ∈ Λ}, the set of edges

with at least one vertex in Λ ⊂ H+
d and no vertices in the wall, and EWΛ = {{x, y} ∈ Zd : x ∼ y, x ∈ Λ ∩W}

so we have that

−
∑
i∼j

{i,j}∩Λ ̸=∅

J̃i,jσiσj = −
∑

{i,j}∈EΛ

Jσiσj −
∑

{i,j}∈EW
Λ

λσiσj

= −J |EΛ| − λ|EWΛ |+
∑

{i,j}∈EΛ

J(1− σiσj) +
∑

{i,j}∈EW
Λ

λ(1− σiσj).
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and the low temperature representation of the Hamiltonian is

HJ
Λ;λ,h(σ) = −J |EΛ| − λ|EWΛ |+ 2J |{{i, j} ∈ EΛ : σi ̸= σj}| (1.4.1)

+ 2λ|{{i, j} ∈ EWΛ : σi ̸= σj}| −
∑
i∈Λ

hiσi.

The Peierls contours are defined in Zd
∗, the dual graph of Zd. Such graph is constructed in the

following way: for each x ∈ Zd, the closed unit cube with the center in x is Cx ⊂ Rd, and Zd
∗ is the

union of all faces Cx ∩Cy, for x and y nearest neighbors in Zd. With this we define the interface of
a configuration ω ∈ Ω as

Γ(ω) =
⋃
x∼y

ωx ̸=ωy

Cx ∩ Cy. (1.4.2)

Each maximal connected component of Γ(ω) is called a contour, which are usually denoted by γ.
Each one of the contours γ ∈ Γ(ω) separates the vertices of Zd into two subsets, the interior and the
exterior of γ. The interior of gamma, denoted Int(γ), are the vertices that are connected to infinity
only by paths that cross γ, and the exterior is just Ext(γ) := Zd \ Int(γ). With these definitions,
we see that given a configuration ω ∈ Ω there is a one-to-one correspondence between non-aligned
spins and the faces of Γ(ω).

Figure 1.2: An example of a configuration with plus boundary condition and its contours.

The last observation is that, as the interaction between vertices in the bulk and at the wall
differs, it is natural to differentiate faces separating the wall and the layer below it, so we consider
W∗ := {Cx ∩ Cy : x ∈ W, y ∈ H−

d } the wall on the dual lattice and we rewrite the measure µη
Λ;λ,h

as

µη
Λ;λ,h(σ) =

1{σ∈Ωη
Λ}

exp
{
−2β

∑
γ∈Γ(σ) (J |γ \W∗|+ λ|γ ∩W∗|) +

∑
i∈Λ hiσi

}
∑

ω∈Ωη
Λ

exp
{
−2β

∑
γ∈Γ(ω) (J |γ \W∗|+ λ|γ ∩W∗|) +

∑
i∈Λ hiωi

} . (1.4.3)

At least, if we fix a contour γ∗, the event that this contour occurs for some configuration has
probability

µη
Λ;λ,h(γ

∗) =

∑
ω∈Ωη

Λ
γ∗∈Γ(ω)

exp
{
−2β

∑
γ∈Γ(ω) (J |γ \W∗|+ λ|γ ∩W∗|) +

∑
i∈Λ hiωi

}
∑

ω∈Ωη
Λ

exp
{
−2β

∑
γ∈Γ(ω) (J |γ \W∗|+ λ|γ ∩W∗|) +

∑
i∈Λ hiωi

} . (1.4.4)

This is the basic setup of the famous Peierls’ argument, one of the most important tools in the
study of phase transition in lower temperatures. One application will be seen in the next subsection.
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1.4.2 The wetting transition in terms of contours

To define precisely what it means to appear a thick layer of pluses in the wall we define the ωL

boundary condition, where L ∈ N and, for i ∈ Zd,

(ωL)i =

{
+1, if i ∈ WL − ed,

−1, otherwise,

where ed = (0, . . . , 0, 1). For a fixed L ∈ N andWL ⊂ Λ ⋐ Zd, if we pick any configuration ω ∈ ΩωL
Λ ,

there will be one open contour γL ∈ Γ(ω) that is induced by the defect in the layer right below the
wall, that is, γL is the contour that separates WL − ed from WL+1 \WL − ed, as in Figure 1.3.

Figure 1.3: The γL contour of a configuration in ΛL+3.

This boundary condition induces the limiting state

⟨·⟩Lλ,h := lim
Λ↗Hd

+

⟨·⟩ωL

Λ;λ,h, (1.4.5)

which exists since, for any WL ⊂ Λ1 ⊂ Λ2 ⋐ Hd
+ and any local non-decreasing function f ,

⟨f⟩ωL

Λ1;λ,h
≤ ⟨f⟩ωL

Λ2;λ,h
. The proof of this is identical to the proof of Lemma 1.2.4. As expected,

the state (1.4.5) converges, as L diverges, to the minus state. Indeed, by Lemma 1.2.3, if L1 ≤ L2

and WL2 ⊂ Λ,
⟨f⟩ωL1

Λ;λ,h ≤ ⟨f⟩ω
L2

Λ;λ,h

for any local non-decreasing function f . Therefore, ⟨·⟩L1
λ,h ≤ ⟨·⟩

L2
λ,h and we can then take the limit

as L→∞, which converges to the minus state since ⟨·⟩−λ,h = limL→∞⟨·⟩ωL
ΛL;λ,h

. Hence

lim
L→∞

⟨·⟩Lλ,h = ⟨·⟩−λ,h.

From now on, we go back to the notation of Gibbs measures (1.1.2) since it is more intuitive
to use probabilities to deal with contours. Two key events are the configurations for which γL
separates 0 and −ed, denoted by {γL ∈ 0} and its complementary, denoted {γL ∈ 0}. For example,
the configuration in Figure 1.3 belongs to {γL ∈ 0}.

Proposition 1.4.1. Consider the nearest neighbour semi-infinite Ising model with interaction J >
0, wall influence λ > 0 and external field h = (hi)i∈Hd

+
induced by a non-negative summable sequence

h = (hk)
∞
k=0, that is, hi = hid for all i ∈ Hd

+. Then, if there is phase transition, µωL
λ,h(γL ∈ 0) > 0

for every L large enough. Conversely, when µ+
λ,h = µ−

λ,h, ||h||1 < 2min{J, λ} and β is large enough,
we have that limL→∞ µL

λ,h(γL ∈ 0) = 0.

Remark 1.4.2. The condition ||h||1 < 2min{J, λ} may seem very restrictive at first, but it is not
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so much. Given h = (hk)
∞
k=0, consider the sequence h′ that is equal to h, except at 0, where h′0 = 0.

Then, for all η ∈ Ω, µη
λ,h = µη

λ+h1,h′, where h′ is the field induced by h′. The condition above, hence,
becomes ||h′||1 < 2min{λ+ h1, J}.

Proof. Notice that

µωL
Λn;λ,h

(σ0) = µωL
Λn;λ,h

(σ01{γL∈0}) + µωL
Λn;λ,h

(σ01{γL∈0})

= µωL
Λn;λ,h

({γL ∈ 0}) +
∑
γ∈0

µωL
Λn;λ,h

(σ01{γ=γL})

= µωL
Λn;λ,h

({γL ∈ 0}) +
∑
γ∈0

µωL
Λn;λ,h

(σ0|γ = γL)µ
ωL
Λn;λ,h

(γ = γL). (1.4.6)

If γ ∈ 0, it means that the origin is surrounded by a set with plus boundary condition. More
precisely, since the model is short range, for γ ∈ 0,

µωL
Λn;λ,h

(σ0|γ = γL) = µ+
Int(γ);λ,h(σ0),

and by Lemma 1.2.4, µωL
Λn;λ,h

(σ0|γ = γL) ≥ µ+
λ,h(σ0). Together with (1.4.6), this implies that

µωL
Λn;λ,h

(γL ∈ 0) ≥ µ+
λ,h(σ0)(1− µωL

Λn;λ,h
(γL ∈ 0))− µωL

Λn;λ,h
(σ0).

Finally, taking the limit as n→∞,

µL
λ,h(γL ∈ 0) ≥ 1

2
(µ+

λ,h(σ0)− µL
λ,h(σ0)) =

1

2
(µ+

λ,h(σ0)− µ−
λ,h(σ0)).

This shows that, as soon as we have a phase transition, there is a positive probability of not
seeing a layer of pluses on the wall. To get a converse, we express the magnetization as µωL

Λn;λ,h
(σ0) =

1−2µωL
Λn;λ,h

(σ0 = −1). When σ0 = −1, either γL ∈ 0 or there exists a contour surrounding 0, hence

µωL
Λn;λ,h

(σ0 = −1) = µωL
Λn;λ,h

(γL ∈ 0) +
∑

o∈Int(γ)

µωL
Λn;λ,h

(γ). (1.4.7)

We proceed to prove that we can take the limit as n → ∞ in the equation above, or equivalently,
that

∑
0∈Int(γ) µ

L
λ,h(γ) < +∞. We will do so by using a Peierls-type argument. For n > L and γ∗

a contour in Λn with 0 ∈ Int(γ), the low temperature representation (1.4.4) yields

µωL
Λn;λ,h

(γ∗) =
1

ZωL,J
n;λ,h

∑
ω∈ΩωL
γ∗∈Γ(ω)

∏
γ∈Γ(ω)

exp {−2K(γ) +
∑
i∈Λn

βhiωi}

≤ e{−2K(γ∗)+2
∑

i∈Int(γ∗) hi}

ZωL,J
n;λ,h

∑
ω∈ΩωL
γ∗∈Γ(ω)

∏
γ∈Γ(ω)\{γ∗}

exp {−2K(γ) +
∑
i∈Λn

βhiωi(1− 21{i∈Int(γ∗)})}

≤ exp {−2β(J ∧ λ)|γ∗|+ 2
∑

i∈Int(γ∗)

hi}, (1.4.8)

where K(γ) := βJ |γ\W∗|+βλ|γ∩W∗| is a bounded value that depends on γ and x∧y := min{x, y}.
To relate the influence of the field in the interior of a contour with its size, we define the layers
of γ, layerk(γ) = {i ∈ Int(γ) : id = k}. The largest layer is layermax(γ), that is, |layermax(γ)| =
maxk=1,...,nα |layerk(γ)|. Hence

∑
i∈Int(γ)

hi ≤
nα∑
k=0

hk|layermax(γ)|.
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Finally, for each vertex v = (v1, . . . , vd) ∈ layermax(γ), there are two distinct vertices av, bv ∈
{(v1, . . . , vd−1, s) ∈ Hd

+ : 0 ≤ s ≤ nα + 1} for which Cv ∩ Cav , Cv ∩ Cbv ∈ γ. This is because v is
surrounded by γ, so there is one plaquette of γ above v and one below it. Hence |layermax(γ)| ≤
|γ|/2. This, together with (1.4.8) yields

µωL
Λn;λ,h

(γ∗) ≤ exp {(−2β(J ∧ λ) + β||h||1)|γ∗|},

Therefore
∑

0∈Int(γ) µ
L
λ,h(γ) < +∞ whenever ||h||1 < 2(J ∧λ) and β is large enough. Hence, taking

n→∞, (1.4.7) yields

µL
λ,h(σ0 = −1) = µL

λ,h(γL ∈ 0) +
∑

o∈Int(γ)

µL
λ,h(γ).

Since for the plus state µ+
λ,h(σ0 = −1) =

∑
o∈Int(γ) µ

+
λ,h(γ), we conclude that when we have

uniqueness, that is, µ+
λ,h = µ−

λ,h, then

lim
L→∞

µL
λ,h(γL ∈ 0) = lim

L→∞
(µL

λ,h(σ0 = −1)−
∑

o∈Int(γ)

µL
λ,h(γ)) = µ−

λ,h(σ0 = −1)−
∑

o∈Int(γ)

µ−
λ,h(γ))

= µ−
λ,h(σ0 = −1)−

∑
o∈Int(γ)

µ+
λ,h(γ)) = µ−

λ,h(σ0 = −1)− µ+
λ,h(σ0 = −1) = 0.
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Chapter 2

Semi-infinite Ising model with
inhomogeneous external fields

In this chapter, we consider some choices of external fields that vary according to the distance
to the wall. For the nearest neighbor Ising model with external field h∗ = (h∗i )i∈Zd given by

h∗i =

{
h∗ if i = 0,
h∗

|i|δ otherwise,
(2.0.1)

it was proved in [13] that when δ < 1 we have uniqueness for temperatures below a critical one. In
[25], it was shown that this critical temperature must be zero. The proof in [13] involves contour
arguments and the one in [25] uses a generalization of the Edwards–Sokal representation.

For the semi-infinite Ising model, we first consider external fields h induced by a summable
sequence h = (hi)i∈Hd

+
, that is, hi = hid for all i ∈ Hd

+. We show in Section 1 that such an external
field preserves the phase transition, as long as the ℓ1-norm of h is small compared to λ.

A more natural choice of the external field is one decaying as it gets further from the wall, that
is, hi ≤ hj whenever jd ≤ id. Hence, we will consider the external field given by hi = λi−δ. In
Section 2 we prove that, when δ > 1, the model behaves as the model with no field, so there is a
critical value λc(J, δ) such that there are multiple Gibbs states when 0 ≤ λ < λc(J, δ), and there is
uniqueness otherwise. We are also able to show that 0 < λc(J, δ) ≤ λc whenever J < Jc. At last,
we show that when δ < 1, the semi-infinity Ising model with this choice of external field presents
only one Gibbs state.

2.1 External field decaying with λ

In order to simplify the notation, we make a slight change to the lattice defined previously. We
consider now the model takes place in Hd

+ = Zd−1 ×N, with the natural numbers starting at 1. All
the definitions made previously can be easily adapted to this lattice. In particular, given h ∈ R, the
external field we are interested in is ĥ = (hi)i∈Hd

+
with

hi =
h

iδd
, (2.1.1)

for all i ∈ Hd
+. Figures 4 and 5 shows how this external field behaves. A particularly interesting

choice of h is h = λ. This particular case will be denoted λ̂ = (λi)i∈Hd
+
, hence

λi =
λ

iδd
. (2.1.2)

We will always assume λ ≥ 0.

27
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2.1.1 Critical behavior when δ > 1

In the same steps of the case with no external field, we prove that there exists a critical value
λc such that, for λ > λc there is a unique state, and for λ < λc, there is a phase transition. To do
so, we need to use a modified notion of wall-free energy.

As we shifted the lattice, we reintroduce some previously defined regions. Consider the sequence
that invades Hd

+ given by Λn := Λn,n = [−n, n]d−1 × [1, n]. Take Λ′
n as the reflection of Λn with

respect to the line L := {(i1, . . . , id) ∈ Zd : id = 1
2}. Similarly, define the walls asWn := [−n, n]d−1×

{1} and reflection of the walls Wn as W ′
n := [−n, n] × {0}. Moreover, we denote ∆n := Λn ∪ Λ′

n.
For any summable sequence of positive real numbers h = (hℓ)ℓ≥1, let h = {hi}i∈Hd

+
d be the external

field induced by h, that is, hi := hid , with id being the last coordinate of i ∈ Zd. We also denote
h = {hi}i∈Zd the natural extension on h to Zd, defined by

hi =

{
hi if i ∈ Hd

+

h−i+ed if i ∈ Zd \Hd
+,

where ed = (0, . . . , 0, 1) is a canonical base vector. Given any J > 0 and summable h = (hℓ)ℓ≥0, the
free surface energy for the +-boundary condition and −-boundary condition are, respectively,

F̃+(J,h) := lim
n→∞

− 1

2|Wn|
ln


(
Z+
n;h

)2
Q+

∆n;J


and

F̃−(J,h) := lim
n→∞

− 1

2|Wn|
ln


(
Z−
n;h

)2
Q−

∆n;J

.
The difference between this definition and the one introduced previously, and in [39], is that we are
also erasing the external field in the partition functions of the Ising model. We first prove that this
limits are well defined.

Proposition 2.1.1. For any J ≥ 0 and any summable sequence of positive real numbers h =
(hℓ)ℓ≥1, let h be the external field induced by h. The limits F̃+(J,h) and F̃−(J,h) are well defined.

Proof. As the parameters J and h are fixed, we will omit then from the notation. Also, in the sums,
we omit |i− j| = 1, since this is always the case. Start by noticing that

(
Z+
n;h

)2
=

∑
σ∈Ω+

∆n

exp


∑

i,j∈∆n

Jσiσj −
∑
i∈Wn

Jσiσi−ed +
∑
i∈∆n

hiσi +
∑
i∈∆n
j /∈∆n

Jσi


=

∑
σ∈Ω+

∆n

exp


∑

i,j∈∆n

Jσiσj +
∑
i∈∆n
j /∈∆n

Jσi − H̃n(σ)

,

with H̃n(σ) =
∑

i∈Wn
Jσiσi−ed −

∑
i∈∆n

hiσi. Take

Ξn(t) :=
∑

σ∈Ω+
∆n

exp


∑

i,j∈∆n

Jσiσj +
∑
i∈∆n
j /∈∆n

Jσi − tH̃n(σ)

,

and let ⟨·⟩+∆n
(t) be the state with +-boundary condition given by the Hamiltonian Hn(t)(σ) =
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∑
i,j∈∆n

Jσiσj +
∑

i∈∆n
j /∈∆n

Jσi − tH̃n(σ). We can write

ln


(
Z+
n;h

)2
Q+

∆n;J

 = ln

[
Ξn(1)

Ξn(0)

]
=

∫ 1

0

d
d s

(ln Ξn(s)) ds

= −
∫ 1

0

∑
i∈Wn

J⟨σiσi−ed⟩
+
∆n

(s)ds+

∫ 1

0

∑
i∈∆n

hi⟨σi⟩+∆n
(s)ds. (2.1.3)

Considering ⟨·⟩+(t) := limn→∞⟨·⟩+∆n
(t) the limiting state, we will show that

lim
n→∞

1

|Wn|
∑
i∈Wn

⟨σiσi−ed⟩
+
∆n

(s) = ⟨σ0σ−ed⟩
+(s). (2.1.4)

Defining, for all i ∈ Zd, ηi =
(σi+1)

2 , ηiηj is an increasing function and σiσj = 4ηiηj − σi − σj − 1.
To show (2.1.4), we first prove that

lim
n→∞

1

|Wn|
∑
i∈Wn

⟨ηiηi−ed⟩
+
∆n

(s) = ⟨η0η−ed⟩
+(s).

Fix m ∈ N. For any n ≥ m

1

|Wn|
∑
i∈Wn

⟨ηiηi−ed⟩
+
∆n

(s) =
1

|Wn|
∑

i∈Wn−m

⟨ηiηi−ed⟩
+
∆n

(s) +
1

|Wn|
∑

i∈Wn\Wn−m

⟨ηiηi−ed⟩
+
∆n

(s).

If i ∈Wn−m we have that i+Λm ⊂ Λn and by Lemma 1.2.4 ⟨ηiηi−ed⟩
+
∆n

(s) ≤ ⟨ηiηi−ed⟩
+
∆m+i(s) =

⟨η0η−ed⟩
+
∆m

(s). Therefore

1

|Wn|
∑

i∈Wn−m

⟨ηiηi−ed⟩
+
∆n

(s) ≤ 1

|Wn−m|
∑

i∈Wn−m

⟨η0η−ed⟩
+
∆m

(s) = ⟨η0η−ed⟩
+
∆m

(s). (2.1.5)

If i ∈ Wn \Wn−m, then i+ Λm ̸⊂ Λn and this set intersects the boundary of the wall

∂Wn := {i ∈ Wn : ∃j ∈ Wn+1 \Wn s.t. i ∼ j}.

We can bound the number of such vertex by |Λm||∂Λn|. Since |⟨ηiηi−ed⟩
+
∆n

(s)| ≤ 1, we have

1

|Wn|
∑

i∈Wn\Wn−m

⟨ηiηi−ed⟩
+
∆n

(s) ≤ 2|Λm||∂Wn|
|Wn|

which goes to zero as n increases. Putting both bounds together we get

lim sup
n

1

|Wn|
∑
i∈Wn

⟨ηiηi−ed⟩
+
∆n

(s) ≤ ⟨η0η−ed⟩
+
∆m

(s).

As m is arbitrary, we can take the limit to get the upper bound in (1.3.5). The lower bound is a
direct consequence of the translation invariance and Lemma 1.2.4 since

⟨η0η−ed⟩
+(s) =

1

|Wn|
∑
i∈Wn

⟨ηiηi−ed⟩
+(s) ≤ 1

|Wn|
∑
i∈Wn

⟨ηiηi−ed⟩
+
∆n

(s),

therefore lim infn
1

|Wn|
∑

i∈Wn
⟨ηiηi−ed⟩

+
∆n

(s) ≥ ⟨η0η−ed⟩+(s). In a completely analogous way, we
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prove that

lim
n→∞

1

|Wn|
∑
i∈Wn

⟨σi⟩+∆n
(s) = ⟨σ0⟩+(s),

what shows (2.1.4). By the same argument, we can show that

lim
n→∞

1

|Wn|
∑
i∈∆n

hi⟨σi⟩+∆n
(s) =

∞∑
ℓ=1

hℓ
(
⟨σℓed⟩

+(s) + ⟨σ−(ℓ−1)ed⟩
+(s)

)
. (2.1.6)

Notice that, since the sequence
(
⟨σℓed⟩+(s) + ⟨σ−(ℓ−1)ed⟩

+(s)
)
n≥0

is bounded by 2, the series in the
right hand side of equation above is well defined. Start by noticing that, by our choice of external
field, ∑

i∈∆n

hi⟨σi⟩+∆n
(s) =

∑
i∈W ′

n

n∑
ℓ=1

hℓ
(
⟨σi+ℓed⟩

+
∆n

(s) + ⟨σi−(ℓ−1)ed⟩
+
∆n

(s)
)
.

Fixed m ∈ N, for any n ≥ m, we split

∑
i∈W ′

n

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+
∆n

(s) =
∑

i∈W ′
n−m

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+
∆n

(s) +
∑

i∈W ′
n\W ′

n−m

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+
∆n

(s)

If i ∈ Wn−m we have that i + Λm ⊂ Λn and by Lemma 1.2.4 ⟨σi+ℓed⟩
+
∆n

(s) ≤ ⟨σi+ℓed⟩
+
∆m+i(s) =

⟨σℓed⟩
+
∆m

(s). Therefore

1

|Wn|
∑

i∈W ′
n−m

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+
∆n

(s) ≤ 1

|Wn−m|
∑

i∈Wn−m

n∑
ℓ=1

hℓ⟨σℓed⟩
+
∆m

(s) =

n∑
ℓ=1

hℓ⟨σℓed⟩
+
∆m

(s) ≤
∞∑
ℓ=1

hℓ⟨σℓed⟩
+
∆m

(s).

(2.1.7)
In the last equation, we used that hℓ ≥ 0 and ⟨σℓed⟩

+
∆m

(s), for all ℓ ≥ 1. If i ∈ Wn \Wn−m, then
i + Λm ̸⊂ Λn and this set intersects the boundary of the wall ∂Wn. We can bound the number of
such vertex by |Λm||∂Λn|. Since |⟨σi+ℓed⟩

+
∆n

(s)| ≤ 1, we have

1

|Wn|
∑

i∈Wn\Wn−m

n∑
ℓ=1

⟨σi+ℓed⟩
+
∆n

(s) ≤ 2|Λm||∂Wn|
|Wn|

∞∑
ℓ=1

hℓ.

which goes to zero as n increases. Putting both bounds together we get

lim sup
n

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+
∆n

(s) ≤
∞∑
ℓ=1

hℓ⟨σℓed⟩
+
∆m

(s).

As m is arbitrary, we can take the limit to get the upper bound in the sum. The lower bound is a
direct consequence of the translation invariance and Lemma 1.2.4 since

n∑
ℓ=1

hℓ⟨σℓed⟩
+(s) =

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+(s) ≤ 1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+
∆n

(s),

therefore lim infn
1

|Wn|
∑

i∈W ′
n

∑n
ℓ=1 hℓ⟨σi+ℓed⟩

+
∆n

(s) ≥
∑∞

ℓ=1 hℓ⟨σℓed⟩+(s). This proves that

lim
n→∞

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

hℓ⟨σi+ℓed⟩
+
∆n

(s) =

∞∑
ℓ=1

hℓ⟨σℓed⟩
+(s). (2.1.8)
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By the exact same argument, we can show that

lim
n→∞

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

hℓ ⟨σi−(ℓ−1)ed⟩
+
∆n

(s) =
∞∑
ℓ=1

hℓ⟨σ−(ℓ−1)ed⟩
+(s),

and therefore we have (2.1.6). Equations (2.1.3), (2.1.4) and (2.1.6), together with the dominated
convergence theorem, yields

F+(J,h) = lim
n→∞

− 1

|Wn|

∫ 1

0

∑
i∈Wn

J⟨σiσi−ed⟩
+
∆n

(s)ds+
1

|Wn|

∫ 1

0

∑
i∈∆n

hi⟨σi⟩+∆n
(s)ds

=

∫ 1

0
J⟨σ0σ−ed⟩

+(s)ds−
∞∑
ℓ=1

∫ 1

0
hℓ
(
⟨σℓed⟩

+(s) + ⟨σ−(ℓ−1)ed⟩
+(s)

)
ds,

so F̃+(J,h) is well defined. The proof that the limit F̃−(J,h) exists is analogous.

To characterize the phase transition, we proceed as in [39] and use the wall free energy, defined
as

τ̃w(J,h) := F̃−(J,h)− F̃+(J,h). (2.1.9)

Notice that, when we do not have an external field, Q+
∆n

= Q−
∆n

. This simplifies the surface tension
to

τ̃w(J,h) = lim
n→∞

− 1

|Wn|
ln

[
Z−
n;h

Z+
n;h

]
. (2.1.10)

First we prove that, similarly to (1.3.1), for the external field λ̂, we can write τ̃w(J, λ̂) in terms of
differences of the magnetization.

Proposition 2.1.2. For J > 0 and λ ≥ 0, the wall free energy can be written as

τ̃w(J, λ̂) =

∫ λ

0

∞∑
ℓ=1

1

ℓδ

(
⟨σℓed⟩

+
J,ŝ − ⟨σℓed⟩

−
J,ŝ

)
ds. (2.1.11)

Proof. Using (2.1.10), the wall free energy simplifies to

τw(J, λ̂) = F̃−(J, λ̂)− F̃+(J, λ̂) = lim
n→∞

− 1

|Wn|
ln

Z−
n;λ̂

Z+

n;λ̂

 . (2.1.12)

Differentiating each term in the limit w.r.t. λ we get

−∂λ

ln

Z−,J

n;λ̂

Z+,J

n;λ̂

 = ∂λ

(
lnZ+,J

n;λ̂
− lnZ−,J

n;λ̂

)
=

1

Z+,J

n;λ̂

∂λ

(
Z+,J

n;λ̂

)
− 1

Z−,J
n;λ

∂λ

(
Z−,J

n;λ̂

)
.

As

∂λ

(
Z+,J

n;λ̂

)
=
∑
i∈Λn

∑
σ∈Σ+

Λn

1

iδd
σie

−HJ
Λn;λ̂

(σ)
=
∑
i∈W ′

n

n∑
ℓ=0

1

ℓδ
σi+ℓede

−HJ
Λn;λ̂

(σ)
,

we conclude that

−∂λ

ln

Z−,J

n;λ̂

Z+,J

n;λ̂

 =
∑
i∈W ′

n

n∑
ℓ=1

1

ℓδ

(
⟨σi+ℓed⟩

+,J

n;λ̂
− ⟨σi+ℓed⟩

−,J

n;λ̂

)
. (2.1.13)
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All of the above functions are continuous and bounded since they are the logarithm of positive
polynomials. Moreover, Z+

n;0 = Z
−
n;0. Hence we can write

τ̃w(J, λ̂) = lim
n→∞

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

∫ λ

0

1

ℓδ

(
⟨σi+ℓed⟩

+,J
n;ŝ − ⟨σi+ℓed⟩

−,J
n;ŝ

)
ds.

The result follows from the dominated convergence theorem once we note that, for any 0 < s,

lim
n→∞

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

1

ℓδ
⟨σi+ℓed⟩

+,J
n;ŝ =

∞∑
ℓ=1

1

ℓδ
⟨σℓed⟩

+,J
ŝ

and

lim
n→∞

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

1

ℓδ
⟨σi+ℓed⟩

−,J
n;ŝ =

∞∑
ℓ=1

1

ℓδ
⟨σℓed⟩

−,J
ŝ .

These limits are proved in the same steps we proved (2.1.8).

This new wall free energy also presents the monotonicity and convexity properties of the previous
one. Such properties are described in the next proposition.

Proposition 2.1.3. For J > 0, and an external field h induced by a positive, summable sequence
h = (hℓ)

∞
ℓ=1, and λ > 0, we have

(a) τ̃w(J,h) is non-decreasing in J and hℓ, for all ℓ ≥ 1;

(b) τ̃w(J, λ̂) is a concave function of λ > 0.

Proof. Item (a) follows from the representation (2.1.10) after we differentiate the liming term with
respect to the appropriate variable. Differentiating the term in the limit with respect to J we get

−∂J

(
1

|Wn|
ln

[
Z−
n;λ,h

Z+
n;λ,h

])
= |Wn|−1

∑
i∼J

{i,j}∩Λn ̸=∅

⟨σiσj⟩+n;h − ⟨σiσj⟩
−
n;h,

that is positive by Proposition 1.2.10, a consequence of the duplicate variables inequalities. Differ-
entiating the same term we respect to hℓ for a fixed ℓ ≥ 1 we have

−∂hℓ

(
1

|Wn|
ln

[
Z−
n;λ,h

Z+
n;λ,h

])
= |Wn|−1

∑
i∈W ′

n

⟨σi+ℓed⟩
+
n;h − ⟨σi+ℓed⟩

−
n;h,

that is positive by Lemma 1.2.3. To prove claim (b), we use a similar reasoning. By equation (2.1.13),
we have

− ∂2
λ

(
ln

[
Z−,J
n;λ

Z+,J
n;λ

])
=
∑
i∈W ′

n

n∑
ℓ=1

1

ℓδ
∂λ

(
⟨σi+ℓed⟩

+,J

n;λ̂
− ⟨σi+ℓed⟩

−,J

n;λ̂

)
=

∑
i,j∈W ′

n

n∑
ℓ,k=1

1

ℓδ
1

kδ

(
⟨σi+ℓedσj+ked⟩

+,J

n;λ̂
− ⟨σi+ℓed⟩

+,J

n;λ̂
⟨σj+ked⟩

+,J

n;λ̂
− ⟨σi+ℓed⟩

−,J

n;λ̂
+ ⟨σi+ℓed⟩

−,J

n;λ̂
⟨σj+ked⟩

−,J

n;λ̂

)
,

that is smaller or equal to zero by Proposition 1.2.10. So τ̃w is the limit of concave functions, and
therefore it is concave.

To relate the wall free energy and the phase-transition or uniqueness, we introduce the critical
quantity

λc(J) := inf{λ : τ̃w(J, λ̂) = max
s≥0

τ̃w(J, ŝ)}.



2.1 EXTERNAL FIELD DECAYING WITH λ 33

Using Proposition 2.1.3 we can show that the wall free energy reaches a maximum and therefore λc

is finite.

Lemma 2.1.4. For J > 0, λc is finite and λc ≤ λc. Moreover, λc > 0 whenever J > Jc.

Proof. To prove that λc ≤ λc, it is enough to show that for J > 0 and λ ≥ λc,

τ̃w(J, λ̂) = τ̃w(J, λ̂c).

Indeed, for all i, j ∈ Hd
+, n ∈ N and positive external field h, ⟨σi⟩+n;h − ⟨σi⟩

−
n;h is decreasing in hj ,

since

∂hj
(⟨σi⟩+n;h − ⟨σi⟩

−
n;h) = ⟨σiσj⟩

+
n;h − ⟨σi⟩

+
n;h⟨σj⟩

+
n;h − ⟨σiσj⟩

−
n;h + ⟨σi⟩−n;h⟨σj⟩

−
n;h ≤ 0 (2.1.14)

by Proposition 1.2.10. In particular, for any λ ≥ 0, ⟨σi⟩+
n;λ̂
− ⟨σi⟩−

n;λ̂
≤ ⟨σi⟩+n;λ − ⟨σi⟩

−
n;λ, and the

same inequality holds for the limit states. As ⟨σi⟩+λ − ⟨σi⟩
−
λ = 0 for all λ > λc and i ∈ Hd

+, using
Proposition 2.1.2 we conclude that

τ̃w(J, λ̂) =

∫ λ

0

∞∑
ℓ=1

1

ℓδ

(
⟨σℓed⟩

+
J,ŝ − ⟨σℓed⟩

−
J,ŝ

)
ds =

∫ λc

0

∞∑
ℓ=1

1

ℓδ

(
⟨σℓed⟩

+
J,ŝ − ⟨σℓed⟩

−
J,ŝ

)
ds = τ̃w(J, λ̂c).

By the monotonicity on the external field, given λ ≥ 0 and taking λ0 := {λ1{i∈W}}, the external
field that is zero outside of W, we have

τw(J, λ) = τ̃w(J,λ0) ≤ τ̃w(J, λ̂) (2.1.15)

For J > Jc, it was shown in [59] that τ(J) > 0. The lower bound (1.3.15) yields λc > 0, hence
τw(J, λc) > 0. Then, inequality (2.1.15) implies that

0 < τw(J, λc) ≤ τ̃w(J, λ̂c),

and therefore λc > 0 whenever J > Jc.

We end this section by proving that λc is the critical value for phase transition.

Proposition 2.1.5. For any 0 ≤ λ < λc, ⟨·⟩+
J,λ̂
̸= ⟨·⟩−

J,λ̂
. And for λ > λc, ⟨·⟩+

J,λ̂
= ⟨·⟩−

J,λ̂
.

Proof. Fixed 0 ≤ λ ≤ λc, lets assume by contradiction that ⟨·⟩+
J,λ̂

= ⟨·⟩−
J,λ̂

. As we argued before,

inequality (2.1.14) shows that the difference ⟨σi⟩+
n;J,λ̂

− ⟨σi⟩−
n;J,λ̂

is decreasing in λ for all i ∈ Hd
+.

Hence, for every λ′ > λ,

⟨σi⟩+
n;J,λ̂′ − ⟨σi⟩

−
n;J,λ̂′ ≤ ⟨σi⟩

+

n;J,λ̂
− ⟨σi⟩−

n;J,λ̂
= 0.

By Proposition 2.1.2, this implies that

τ̃w(J, λ̂) =

∫ λ

0

∞∑
ℓ=1

1

ℓδ

(
⟨σℓed⟩

+
J,ŝ − ⟨σℓed⟩

−
J,ŝ

)
ds =

∫ λc

0

∞∑
ℓ=1

1

ℓδ

(
⟨σℓed⟩

+
J,ŝ − ⟨σℓed⟩

−
J,ŝ

)
ds = max

s≥0
τ̃w(J, ŝ).

In the last equation, we are using that the maximum is reached at λc, since all concave functions
are continuous. This shows that λ ≥ λc.

Since τ̃w is non-decreasing in λ, for all λ > λc, τ̃w(J, λ̂) = maxs≥0 τ̃w(J, ŝ). Moreover, it is
differentiable in λ and is the point-wise limit of the sequence |Wn|−1

(
lnZ+

n;λ̂
− lnZ−

n;λ̂

)
, which is

concave. We can then use a known theorem for convex functions, see for example [36, Theorem B.12
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], to conclude that

0 = ∂λτ̃w(J, λ̂) = lim
n→∞

1

|Wn|
∂λ

(
lnZ+

n;h − lnZ−
n;h

)
= lim

n→∞

1

|Wn|
∑
i∈W ′

n

n∑
ℓ=1

1

ℓδ

(
⟨σi+ℓed⟩

+,J

n;λ̂
− ⟨σi+ℓed⟩

−,J

n;λ̂

)
=

∞∑
ℓ=1

1

ℓδ

(
⟨σℓed⟩

+

J,λ̂
− ⟨σℓed⟩

−
J,λ̂

)
.

By Lemma 1.2.3, all the terms in the sum are non-negative, therefore ⟨σℓed⟩
+

J,λ̂
= ⟨σℓed⟩

−
J,λ̂

for all

ℓ ≥ 1. By translation invariance, we conclude that ⟨σi⟩+
J,λ̂

= ⟨σi⟩−
J,λ̂

for all i ∈ Hd
+, what show

uniqueness by Proposition 1.2.9.

2.1.2 Uniqueness for δ < 1

In this section we will prove uniqueness for the semi-infinite Ising model with external field
λ, for any inverse temperature β > 0 and ferromagnetic interaction. To do this, we will first
prove uniqueness for Ising model in Zd with external field h∗ given by (2.0.1) and interaction
Jλ = (Jij)i,j∈Zd given by

(Jλ)i,j =

{
λ
2 if i ∈ L0 and j ∈ L−1 ∪ L1,

J otherwise.
(2.1.16)

for |i− j| = 1. As we are always considering short-range interactions, Jij = 0 whenever |i− j| ≠ 1.
We will then show how uniqueness for this model implies uniqueness for our model of interest.

The proof of uniqueness given by [13] together with [25] only considers constant interactions.
The extension to the interaction Jλ is a direct consequence of the monotonicity properties of the
Random cluster representation, proved first by [11] for constant external fields and extended by [25]
to more general models.

Random Cluster Representation and Edward-Sokal coupling

In this section, following [11] and [25], we define the Random Cluster model (RC), then we
introduce the Edward-Sokal (ES) coupling between the RC model and the Ising model. Next present
a result showing that uniquiness for the ES model implies uniquiness for the Ising model. We
conclude the section introducing some monotonicity properties of the RC model and proving that
there is only one RC measure.

In [11] and [25], they consider the Potts model and the General Random Cluster model, so their
setting is more general. We will restrict the results presented here to a particular case of interest.

The Random Cluster model

Given E = {{i, j} ⊂ Zd : |i − j| = 1}, (Zd,E) defines a graph. The configuration space of the
RC model is {}E. A general configuration will be denoted ω and called an edge configuration. An
edge e ∈ E is open (in a configuration ω) if ωe = 1, and it is closed otherwise. A path (e0, e1, . . . , en)
is an open path if ωek = 1 for all k = 0, . . . , n. Vertices i, j ∈ Zd are connected in ω if there is an
open path (e0, . . . , en) connecting i and j, that is, i ∈ e0 and j ∈ en. We denote x ←→ y when
x and y are connected in ω. The open connected component of x ∈ Zd is Cx(ω) = {{i, j} ∈ E :
x←→ i}∪ {x}. An arbitrary connected component of ω is denoted C(ω). Moreover, for any E ⊂ E
V(E) = {x ∈ Zd : x ∈ e for some e ∈ E} is the set of vertices touched by E.

Given Λ ⋐ Zd, consider E(Λ) = {{i, j} ∈ E : x ∈ Λ} the edges with at least one endpoint
in Λ. Consider also E0(Λ) = {e ∈ E : e ⊂ Λ}, the edges with both endpoints in Λ. For any
G = (V,E) finite sub-graph of (Zd,E), the probability measure of the Random Cluster model
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in E ⋐ E with ferromagnetic interaction J = (Jij)i,j , external field h = (h)x∈Zd and boundary
condition ωEc ∈ {0, 1}Ec is

ϕE;J ,h(ωE |ωEc) =
1

ZRC,ωEc

E;J ,H

BJ (ωE)
∏

C(ω):C(ω)∩V(E)̸=∅

(1 + e−2β
∑

i∈C(ω) hi), (2.1.17)

where the product is taken over connected open clusters only, with the convention that e−∞ = 0.
The term in the denominator is the usual partition function

ZRC,ωEc

E;J ,h =
∑

ωE∈{0,1}E
BJ (ωE)

∏
C(ω):C(ω)∩V(E)̸=∅

(1 + e−2β
∑

i∈C(ω) hi).

and BJ is the Bernoulli like factor

BJ (ω) :=
∏

e:ωe=1

(e2βJe − 1).

This is not a Bernoulli factor since the weights can be bigger than one. Moreover, the interaction
of an edge e = {i, j} is, as expected, Je := Jij . For i = 0, 1, let ω

(i)
E be the configuration satisfying

ω
(i)
e = i for all e ∈ Ec. Two particularly important measures are the RC model with free boundary

condition in Λ ⋐ Zd, given by

ϕ0
Λ;J ,h := ϕE0(Λ);β;J ,h(ωE0(Λ)|ω

(0)
E0(Λ)

),

and the RC model with wired boundary condition in Λ ⋐ Zd, given by

ϕ1
Λ;J ,h := ϕE0(Λ);β;J ,h(ωE0(Λ)|ω

(1)
E0(Λ)

).

The RC model is related to the Ising model through the Edwards-Sokal coupling, introduced next.

The Edwards-Sokal model

Given Λ ⋐ Zd and E ⋐ E, two configurations σ ∈ Ω, ω ∈ {0, 1}E and weights

W(σΛ, ωE |σΛc , ωEc) =
∏

{i,j}∈E:
ωi,j=1

δσi,σj (e
2βJij − 1)

∏
i∈Λ

eβhiσi ,

the Edwards-Sokal (ES) measure in Λ ⋐ Zd and E ⋐ E is given by

ϕES
Λ,E;J ,h(σΛ, ωE |σΛc , ωEc) :=

W(σΛ, ωE |σΛc , ωEc)

ZES
Λ,E;J ,h(σΛc , ωEc)

,

with
ZES
Λ,E;J ,h(σΛc , ωEc) :=

∑
ηΛ∈ΩΛ

ξE∈{0,1}E

W(ηΛ, ξE |σΛc , ωEc).

If ZES
Λ,E;J ,h(σΛc , ωEc) = 0, we simply take ϕES

Λ,E;J ,h(·|σΛc , ωEc) = 0. To simplify the notation, as we
are considering arbitrary interactions and external fields, we will omit them from the notation. We
also highlight two particularly important ES-measures, the ES-measure with free boundary condition
in Λ ⋐ Zd, given by

ϕES,0
Λ;β,J ,h(·) := ϕES

Λ,E0(Λ)
(·|σΛc , ω

(0)
E0(Λ)

),
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and the ES-measure with wired boundary condition in Λ ⋐ Zd, given by

ϕES,1
Λ;β,J ,h(·) := ϕES

Λ,E(Λ)(·|σ
+
Λc , ω

(1)
E(Λ)).

Remark 2.1.6. The measure ϕES,0
Λ;β,J ,h(·) does not depend on the choice of σΛc . Moreover, the

measures ϕES
Λ,E(Λ)(·|σΛc , ωEc(Λ)) do not depend on the choice of configuration ωEc(Λ). We choose to

keep it in the notation since, later on, we will want to see ϕES
Λ,E(Λ) as an specification.

Remark 2.1.7. To simplify the notation, we will omit the dependency of the RC and ES measures
on β, J and h. They will appear again only on results concerning a specific interaction or external
field.

The following two lemmas guarantee that the ES model is indeed a coupling between the Ising
and the RC model.

Lemma 2.1.8 (Spin Marginals). Given Λ ⋐ Zd and f : Ω −→ R with supp(f) ⊂ Λ,

ϕES
Λ,E(Λ)(f |σΛc , ωE(Λ)c) = µσ

Λ;J ,h(f).

Proof. We first write the Boltzmann factor as

e−βHJ
Λ;h(σ) =

∏
{i,j}∈E(Λ)

eβJi,jσiσj
∏
i∈Λ

eβhiσi

=
∏

{i,j}∈E(Λ)

eβJi,j(2δσi,σj−1)
∏
i∈Λ

eβhiσi

=
∏

{i,j}∈E(Λ)

e−βJi,j
∏

{i,j}∈E(Λ)

e2βJi,jδσi,σj
∏
i∈Λ

eβhiσi .

Moreover, writing e2βJi,jδσi,σj = 1 + (eβJi,j − 1)δσi,σj , we have

e−βHJ
Λ;h(σ) =

∏
{i,j}∈E(Λ)

e−βJi,j
∏

{i,j}∈E(Λ)

(
1 + (eβJi,j − 1)δσi,σj

)∏
i∈Λ

eβhiσi

=
∏

{i,j}∈E(Λ)

e−βJi,j
∑

ω∈{0,1}E(Λ)

∏
{i,j}∈E(Λ):

ωi,j=1

(eβJi,j − 1)δσi,σj

∏
i∈Λ

eβhiσi

=
∏

{i,j}∈E(Λ)

e−βJi,j
∑

ω∈{0,1}E(Λ)

W(σΛ, ωE |σΛc , ωEc).

Multiplying by the normalizing factors, we get

µσ
Λ;J ,h(f) =

ZES
Λ,E;J ,h(σΛc , ωEc)

Zη,J
Λ;λ,h

∏
{i,j}∈E(Λ)

e−βJi,jϕES
Λ,E(Λ)(f |σΛc , ωE(Λ)c).

Applying this for f ≡ 1, we conclude that
ZES
Λ,E;J,h(σΛc ,ωEc )

Zη,J
Λ;λ,h

∏
{i,j}∈E(Λ) = 1, and the lemma follows.

Lemma 2.1.9 (RC Marginals). Given f, g : {0, 1}E −→ R and Λ ⋐ Zd with supp(f) ⊂ E0(Λ) and
supp(g) ⊂ E(Λ),

ϕES,0
Λ (f) = ϕ0

Λ(f) (2.1.18)

and
ϕES,1
Λ (g) = ϕ1

Λ(g) (2.1.19)
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Proof. Given any ω ∈ {0, 1}E , let ΩΛ(ω) := {σ ∈ ΩΛ : ∀C(ω) open cluster and i, j ∈ C(ω)∩Λ, σi =
σj} be the configurations that are constant in the open clusters. Then,

ZES
Λ,E(σΛc , ω

(0)
E )ϕES,0

Λ (f) =
∑

ω∈{0,1}E0(Λ)

∑
σ∈ΩΛ

f(ω)
∏

{i,j}∈E0(Λ):
ωi,j=1

δσi,σj (e
2βJij − 1)

∏
i∈Λ

eβhiσi

=
∑

ω∈{0,1}E0(Λ)

∑
σ∈ΩΛ(ω)

f(ω)
∏

{i,j}∈E0(Λ):
ωi,j=1

(e2βJij − 1)
∏
i∈Λ

eβhiσi

=
∑

ω∈{0,1}E0(Λ)

f(ω)BJ (ωE0(Λ))
∑

σ∈ΩΛ(ω)

∏
i∈Λ

eβhiσi .

As the sum above is only over configurations that are constant in the open clusters, we have∑
σ∈ΩΛ(ω)

∏
i∈Λ

eβhiσi =
∑

σ∈ΩΛ(ω)

∏
C(ω)⊂Λ

eβ
∑

i∈C(ω) hiσi

= eβ
∑

i∈Λ hi
∏

C(ω)⊂Λ

(eβ
∑

i∈C(ω) hi + e−β
∑

i∈C(ω) hi) =
∏

C(ω)⊂Λ

(1 + e−2β
∑

i∈C(ω) hi).

This shows that

ZES
Λ,E(σΛc , ω

(0)
E )ϕES,0

Λ (f) = eβ
∑

i∈Λ hi
∑

ω∈{0,1}E0(Λ)

f(ω)BJ (ωE0(Λ))
∏

C(ω)⊂Λ

(1 + e−2β
∑

i∈C(ω) hi)

= eβ
∑

i∈Λ hiZ
RC,ω

(0)
E0(Λ)

E0(Λ)
ϕ0
Λ(f).

We get equation (2.1.18) by noticing that ϕES,0
Λ (1) = ϕ0

Λ(1) = 1, hence Z
RC,ω

(0)
E0(Λ)

E0(Λ)
eβ

∑
i∈Λ hi

(
ZES
Λ,E(σΛc , ω

(0)
E )
)−1

=

1. For the other equation, we take Ω+
Λ(ω) := ΩΛ(ω) ∩ Ω+

Λ . This is the set of configurations with
constant configurations in the clusters, with the restriction that clusters connecting Λ and Λc must
have sign +. Proceeding in the same steps as before, we can write

ZES
Λ,E(σ

+
Λc , ω

(1)
E )ϕES,1

Λ (g) =
∑

ω∈{0,1}E(Λ)

g(ω)BJ (ωE(Λ))
∑

σ∈Ω+
Λ (ω)

∏
i∈Λ

eβhiσi .

As we are considering wired boundary conditions, we can write∑
σ∈Ω+

Λ (ω)

∏
i∈Λ

eβhiσi =
∑

σ∈Ω+
Λ (ω)

∏
C(ω):C(ω)⊂Λ

eβ
∑

i∈C(ω) hiσi
∏

C(ω):C(ω)∩Λc ̸=∅

eβ
∑

i∈C(ω)∩Λ hi

=
∏

C(ω):C(ω)⊂Λ

(
eβ

∑
i∈C(ω) hi + e−β

∑
i∈C(ω) hi

) ∏
C(ω):C(ω)∩Λc ̸=∅

eβ
∑

i∈C(ω)∩Λ hi

= eβ
∑

i∈Λ hi
∏

C(ω):C(ω)⊂Λ

(
1 + e−2β

∑
i∈C(ω) hi

)
= eβ

∑
i∈Λ hi

∏
C(ω):C(ω)∩Λ̸=∅

(
1 + e−2β

∑
i∈C(ω) hi

)
.

This shows that ZES
Λ,E(σ

+
Λc , ω

(1)
E )ϕES,1

Λ (f) = eβ
∑

i∈Λ hiZ
RC,ω

(1)
E(Λ)

E(Λ) ϕ1
Λ(g). Again, this proves equation

(2.1.19) once we take g = 1 to conclude that
(
ZES
Λ,E(σ

+
Λc , ω

(1)
E )
)−1

eβ
∑

i∈Λ hiZ
RC,ω

(1)
E(Λ)

E(Λ) = 1.

To define the infinity volume measures, we use the DLR equations. Let F1 be the cylinders
σ-algebra of {0, 1}E, and F2 the cylinders σ-algebra of Ω × {0, 1}E. We take P({0, 1}E) the set
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of probability measures in ({0, 1}E,F1) and P(Ω × {0, 1}E) the set of probability measures in
(Ω× {0, 1}E,F2). The set of RC measures is

GRC
β,J ,h :=

{
ϕ ∈ P({0, 1}E) : ϕ(f) =

∫
ϕE(f |ωc

E)}dϕ(ω), whenever supp(f) ⊂ E and E ⋐ E
}
.

Analogously, the set of ES measures is

GES
β,J ,h :=

{
ν ∈ P(Ω× {0, 1}E) : ν(f) =

∫
ϕES
Λ,E(Λ)(f |σ

c
Λ, ωE(Λ)c)dν(σ, ω),

whenever supp(f) ⊂ Λ× E(Λ) and Λ ⋐ Zd
}
. (2.1.20)

We will often omit the parameters β and h in statements that hold for an arbitrary choice of them.
So GRC

J denotes GRC
β,J ,h and GES

J denotes GES
β,J ,h.

Remark 2.1.10. Since the families {ϕE}E⋐E and {ϕES
Λ,E(Λ)}Λ⋐Zd are specifications, the sets GRC

J

and GES
J are the usual set of DLR Gibbs measures.

At first, it is unclear if the spin marginal of an infinity ES measure is a spin Gibbs measure
in GJ . In fact, an even stronger statement holds. The following theorem was proved in [11] and
extended to general external fields in [25].

Theorem 2.1.11. Let ΠS : GES
J :−→ GISJ be the application that takes an ES - measure to its spin

marginal, that is, for any ν ∈ GES
J and f : Ω −→ R with supp(f) ⋐ Zd,

ΠS(ν)(f) :=

∫
f(σ)dν(σ, ω).

Then, ΠS is a linear isomorphism. In particular, |GES
J | = 1 if and only if |GISJ | = 1.

This shows that uniqueness for the ES model implies uniqueness for the Ising model. It is left to
relate the uniqueness of the RC model with the uniqueness of the ES model. To do so, we use the
FKG property, and some consequences of it, of the RC and ES models. The main contribution of
[25] was the extension of these properties from the models with constant external fields to models
with non-constant external fields. These results are described next.

As we did for the configuration space, we can consider a partial order on {0, 1}E defining ω ≤ ω′

when ωe ≤ ω′
e for all e ∈ E. The first key property of the RC model is that it satisfies the so-called

strong FKG.

Theorem 2.1.12 (Strong FKG). Given E ⊂ E′ ⊂ E and ξ ∈ {0, 1}E, take Υξ
E′\E := {ω ∈ {0, 1}E :

ωe = ξe ∀e ∈ E′ \ E}. Then, for any Λ ⋐ Zd and non-decreasing functions f and g,

ϕ0
Λ(f.g|Υ

ξ
E′\E) ≥ ϕ0

Λ(f |Υ
ξ
E′\E)ϕ

0
Λ(g|Υ

ξ
E′\E)

whenever ϕ0
Λ(Υ

ξ
E′\E) > 0. The same result holds for ϕ1

Λ.

Remark 2.1.13. Choosing E = E0(Λ), E′ = E0(Λ)
c and ξ = ω(0) in the definition above, we

get ϕ0
Λ(f.g) ≥ ϕ0

Λ(f)ϕ
0
Λ(g) for any non-decreasing functions f and g. Similarly, taking E = E(Λ),

E′ = E(Λ)c and ξ = ω(1) we conclude that ϕ1
Λ(f.g) ≥ ϕ1

Λ(f)ϕ
1
Λ(g). This resembles the usual FKG

property for spin systems (1.2.5).

Two consequences of the FKG property are particularly important for us. One of them is the
existence and extremality of the limit measures with free and wired boundary conditions.

Theorem 2.1.14. Let β ≥ 0, J = {Ji,j}i,j∈Zd be any ferromagnetic nearest neighbor interaction,
and h = {hi}i∈Zd be a non-negative external field. Then, for any f and g quasi-local function,
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(I) The limits

ϕ0(f) := lim
Λ↗Zd

ϕ0
Λ(f) and ϕ1(f) := lim

Λ↗Zd
ϕ1
Λ(f)

exists.

(II) The limits

ϕES,0(g) := lim
Λ↗Zd

ϕES,0
Λ (g) and ϕES,1(g) := lim

Λ↗Zd
ϕES,1
Λ (g)

exists.

(III) For any ϕ ∈ GRC , if f is non-decreasing then

ϕ0(f) ≤ ϕ(f) ≤ ϕ1(f). (2.1.21)

All limits are taken over sequences invading Zd.

The next result allows us to compare the models with interaction Jλ and constant interaction
J ≡ J . The proof is a straightforward adaptation of [25, Theorem 7].

Proposition 2.1.15. Let J = {Ji,j}i,j∈Zd and J ′ = {J ′
i,j}i,j∈Zd be nearest-neighbor interactions

with 0 ≤ Ji,j ≤ J ′
i,j, for all i, j ∈ Zd. Then, for any Λ ⋐ Zd and f local non-decreasing function,

ϕ0
Λ;J (f) ≤ ϕ0

Λ;J ′(f) and ϕ1
Λ;J (f) ≤ ϕ1

Λ;J ′(f).

Proof. Consider a function g : {0, 1}E(Λ) −→ R given by

g(ω) =
∏

e∈E(Λ)

(
e2βJe − 1

e2βJ ′
e − 1

)ωe

.

By the restriction on J and J ′, the all the fractions above are at most 1, so g is non-increasing.
Given a non-decreasing local function f ,

ϕ0
Λ;J (f) =

1

Z0
Λ;J

∑
ω∈{0,1}E0(Λ)

f(ω)g(ω)
∏

e:ωe=1

(
e2βJ

′
e − 1

) ∏
C(ω)

(
1 + e−2β

∑
i∈C(ω) hi

)
=

Z0
Λ;J ′

Z0
Λ;J

ϕ0
Λ;J ′(f.g).

Taking, in particular, f ≡ 1, we get ϕ0
Λ;J ′(g) =

Z0
Λ;J

Z0
Λ;J′

. Using the FKG property, we conclude that

ϕ0
Λ;J (f) =

ϕ0
Λ;J ′(f.g)

ϕ0
Λ;J ′(g)

≤ ϕ0
Λ;J ′(f).

This exact same argument can be done for the wired boundary condition, what concludes the
proof.

To guarantee uniqueness for the RC model, we can use the quantity

P∞(β,J ,h) := sup
x∈Zd

sup
ϕ∈GRC

ϕ (|Cx| = +∞) .

This next theorem was proved in [25].

Theorem 2.1.16. For any β ≥ 0, ferromagnetic nearest-neighbor interacion J = {Ji,j}i,j∈Zd and
non-negative external field h = (hi)i∈Zd, if P∞(β,J ,h) = 0, then

∣∣GES
∣∣ = ∣∣GRC

∣∣ = 1
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Uniqueness for δ<1

To prove uniqueness for the semi-infinite Ising model, we first prove uniqueness for the usual
Ising model with interaction given by (2.1.16). To do so, we use the RC and ES models presented
in the previous section.

Theorem 2.1.17. The Ising model in Zd with interaction Jλ defined in (2.1.16), λ > 0 and external
field h∗ = (h∗i )i∈Zd given by (2.0.1) has a unique state, for any inverse temperature β > 0.

Proof. Fixed β > 0, by Theorem 2.1.11, it is enough to show that
∣∣∣GES

β,Jλ,h∗

∣∣∣ = 1. It was shown
in [25] that, for any constant nearest-neighbor ferromagnetic interaction J ≡ J , P∞(β,J ,h∗) = 0
and, in particular, ϕ1

J ,h∗ (|Cx| = +∞) = 0 for all x ∈ Zd. For any x ∈ Zd, the function 1{|Cx|=+∞}
is increasing. Then, Proposition 2.1.15 yields

ϕ1
Λ;Jλ,h∗ (|Cx| = +∞) ≤ ϕ1

Λ;J ,h∗ (|Cx| = +∞)

for any Λ ⋐ Zd and x ∈ Zd. By Theorem 2.1.14, we can take the limit Λ↗ Zd to get ϕ1
Jλ,h∗ (|Cx| = +∞) =

0 for all x ∈ Zd. Since ϕ1
Jλ,h∗ is extremal, in the sense of (2.1.21), we conclude that P∞(β,Jλ,h

∗) =

0, and therefore we have
∣∣∣GES

β,Jλ,h∗

∣∣∣ = 1 by Theorem 2.1.16.

Now we prove the main result of this section. We prove uniqueness for the semi-infinite Ising
with external field given by (2.0.1) and δ < 1 at any temperature, by comparing it with the model
of Theorem 2.1.17.

Theorem 2.1.18. The semi-infinite Ising model with interaction J > 0 and external field λ =
(λi)i ∈ Hd

+ with λi =
λ
iδd

for all i ∈ Hd
+ and δ < 1 has a unique Gibbs state.

Proof. Proposition 1.2.9 guarantees that it is enough to prove ⟨σed⟩
+
λ = ⟨σed⟩

−
λ , where ed =

(0, . . . , 0, 1) is a base vector of Hd
+. By spin-flip symmetry, we can assume without loss of gen-

erality that λ ≥ 0. Split Zd in layers Lk := Zd−1×{k}, with k ∈ Z. For any Λn = [−n, n]d−1× [1, n],
we rewrite the semi-infinite model as the usual Ising model but now with interaction Jλ and external
field λ0 given by

(λ0)i =


λ/2 if i ∈ L1,

λ | id |−δ, if i ∈ Lk, k > 1,

0 otherwise,

for any i, j ∈ Zd. Hence,

⟨σed⟩
+
Λn;λ

= ⟨σed⟩
+,Jλ
Λn;λ0

and ⟨σed⟩
−
Λn;λ

= ⟨σed⟩
∓,Jλ
Λn;λ0

(2.1.22)

where (∓)i = 1{i∈Zd\Hd
+} − 1{i∈Hd

+}. Consider λ′
0 an extension of λ0 to Zd given by (λ′

0)i := (λ0)i

when i ∈ Hd
+ and (λ′

0)i := (λ0)i′ when i ∈ Zd \ Hd
+, where i′ = (i1, . . . , id−1,−id). Since the boxes

Λn and Λ′
n := [−n, n]d−1 × [−n,−1] are not connected, taking ∆′

n := Λn ∪ Λ′
n we have

⟨σed⟩
+,Jλ
Λn;λ0

= ⟨σed⟩
+,Jλ

∆′
n;λ

′
0

and ⟨σed⟩
∓,Jλ
Λn;λ0

= ⟨σed⟩
∓,Jλ

∆′
n;λ

′
0
. (2.1.23)

For every h ≥ 0, let hw be an external field acting only on L0, that is hwi = h1{i∈L0} for all i ∈ Zd.
Then, denoting ∆n = ∆∗

n ∪ L0,

⟨σed⟩
+,Jλ

∆′
n;λ

′
0
= lim

h→∞
⟨σed⟩

+,Jλ

∆n;λ′
0+hw and ⟨σed⟩

∓,Jλ

∆′
n;λ

′
0
= lim

h→∞
⟨σed⟩

∓,Jλ

∆n;λ′
0+hw . (2.1.24)
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Differentiating in h and using Proposition 1.2.10, we see that the difference ⟨σed⟩
+,Jλ

∆n;λ′
0+h0−⟨σed⟩

∓,Jλ

∆n;λ′
0+h0

is decreasing in h for h ≥ 0. Proposition 1.2.10 was stated for the semi-infinite states, but it also
holds for Ising states since the DVI are in this generality. We can then bound the difference of the
states by choosing the particular case h = λ. Denoting λl = λ′

0 + λ0, we conclude that

⟨σed⟩
+
Λn;λ

− ⟨σed⟩
−
Λn;λ

≤ ⟨σed⟩
+,Jλ
∆n;λl

− ⟨σed⟩
∓,Jλ
∆n;λl

. (2.1.25)

Again by Proposition 1.2.10, the RHS of equation (2.1.25) in non-increasing in hi, the external field
on the site i, for any i ∈ Zd. So, denoting λIs the external field (2.0.1) considered in [13] with
h∗ = λ/2, we have that, for any i ∈ Zd, hIsi = λ

2 |i|
−δ ≤ λ

2 |id|
δ ≤ (λl)i, hence

⟨σed⟩
+
Λn;λ

− ⟨σed⟩
−
Λn;λ

≤ ⟨σed⟩
+,Jλ

∆n;λIs − ⟨σed⟩
∓,Jλ

∆n;λIs . (2.1.26)

Taking the limit in n, the RHS of equation above goes to ⟨σed⟩
+,Jλ

λIs − ⟨σed⟩
∓,Jλ

λIs , that is equal to 0

by Theorem 2.1.17. We conclude that ⟨σed⟩
+
λ − ⟨σed⟩

−
λ = 0, so there is only one Gibbs state. When

λ > 2J , we replace Jλ by J ≡ J in the argument above and the same proof holds with minor
adjustments.
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Chapter 3

Random Field Ising Model

This chapter follows the argument of [31] and proves phase transition for the nearest-neighbor
Ising model with a random field. In Section 1 we present the model and the overall strategy of the
Peierls’ argument. In Section 2, we present the Ding and Zhuang approach to prove phase transition
and define the bad event. In Section 3, we follow the work of [34] and use a coarse-graining argument
to upper bound the probability of the bad event and complete the proof of phase transition for the
RFIM.

3.1 The model

The random field Ising model (RFIM) consists of the usual Ising model, previously introduced
in Chapter 1, but with an external field that is random. The local Hamiltonian of the random field
Ising model in Λ ⋐ Zd with η-boundary condition is Hη,IS

Λ,εh : Ωη
Λ → R, given by

Hη,IS
Λ;εh(σ) := −

∑
x,y∈Λ

|x−y|=1

Jσxσy −
∑

x∈Λ,y∈Λc

|x−y|=1

Jσxηy −
∑
x∈Λ

εhxσx, (3.1.1)

where the external field is a family {hx}x∈Zd of i.i.d. random variables in (Ω̃,A,P), and every hx has
a standard normal distribution1. The parameter ε > 0 controls the variance of the external field.
Given Λ ⋐ Zd, consider FΛ the σ-algebra generated by the cylinders sets supported in Λ and F
the σ-algebra generated by finite union of cylinders. One of the main objects of study in classical
statistical mechanics is the finite volume Gibbs measures, which are probability measures in (Ω,F ),
given by

µη,IS
Λ;β,εh(σ) := 1Ωη

Λ
(σ)

e−βHη,IS
Λ,εh(σ)

Zη,IS
Λ;β,ε(h)

, (3.1.2)

where β > 0 is the inverse temperature and Zη,IS
Λ;β,ε is called partition function, defined as

Zη,IS
Λ;β,ε(h) :=

∑
σ∈Ωη

Λ

e−βHη,IS
Λ,εh(σ). (3.1.3)

One important remark is that, since the external field is random, the Gibbs measures are random
variables. To explicit the dependence of µη,IS

Λ;β,εh on Ω̃, we write µη,IS
Λ;β,εh[ω], with ω being a general

element of Ω̃. Two particularly important boundary conditions are given by the configurations
η+ ≡ +1 and η− ≡ −1, and are called + and − boundary conditions, respectively. For these
boundary conditions, we can P-almost surely define the infinite volume measures by taking the
weak*-limit

µ±,IS
β,εh[ω] := lim

n→∞
µ±,IS
Λn;β,εh

[ω], (3.1.4)

1Our results also hold for more general distributions of hx, see Remarks 3.2.3 and 3.2.5.

43
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where (Λn)n∈N is any sequence invading Zd, that is, for any subset Λ ⋐ Zd, there exists N =
N(Λ) > 0 such that Λ ⊂ Λn for every n > N . By Lemma 1.2.3, for any fixed external field, the
measures µ±,IS

Λn;β,εh
[ω] are monotone, which guarantees the existence of the limits over sequences

invading Zd. To have more than one Gibbs measure, it is enough to show that µ+,IS
β,εh[ω] ̸= µ−,IS

β,εh[ω],
with P-probability 1, see [17, Theorem 7.2.2].

The standard strategy to prove phase transition in the Ising model is to use the Peierls’ argument,
which based on the idea of erasing contours. Contours are geometric objects in the dual lattice Zd

∗
defined as: denoting Cx the closed unit cube in Rd centered in x, Zd

∗ is the union of all faces Cx∩Cy

with |x− y| = 1. Given a configuration, its contours are the maximal connected components of the
union of the faces Cx ∩ Cy satisfying σx ̸= σy. The set of contours of σ is denoted by Γ(σ), and
γ denotes a generic element of Γ(σ). Moreover, Γ(Ω) denotes all family of contours that can be
associated to a configuration, so Γ(Ω) := ∪σ∈ΩΓ(σ). The interior of a contour γ, denoted I(γ), is
the set of points connected to ∞ only by paths crossing γ. Given n ∈ N, take

Γ0(n) := {γ ∈ Γ(Ω) : 0 ∈ I(γ), |γ| = n}

and Γ0 = ∪n≥1Γ0(n). The operation τγ used to remove a contour γ ∈ Γ(σ) can be written as a
particular case of the following one: given A ⊂ Zd, take τA : RZd −→ RZd as

(τA(σ))i :=

{
−σi if i ∈ A,

σi otherwise,
(3.1.5)

for every i ∈ Zd. The transformation that erases a contour γ is τγ(σ) := τI(γ)(σ). The key property of
this contour system is that we can bound the difference in the Hamiltonian after erasing a contours,
when there is no external field.

Proposition 3.1.1. There is a constant c1(d) > 0 such that, for any σ ∈ Ω+ and γ ∈ Γ(σ),

H+,IS
Λ,0 (τγ(σ))−H+,IS

Λ,0 (σ) ≤ −Jc1(d)|γ|. (3.1.6)

This bound on the energy cost of erasing a contour is the first ingredient of a Peierls’ argument.
The second key ingredient in to bound the number of contours with a fixed size. It is well-known
that |Γ0(n)| ≤ ec2(d)n for a suitable constant c2(d) > 0. The best bound for this constant is due to
Balister and Bollobás, [9].

3.2 Ding and Zhuang approach

The main idea used in Ding and Zhuang’s proof of phase transition in [31] is to make the Peierls’
argument on the joint space of the configurations and the external field, and when erasing a contour,
perform in the external field the same flips you do in the configuration. Doing this, the part on the
Hamiltonian that depends on the external field does not change, but the partition function does.
The complication of this method is to control such differences.

Given Λ ⊂ Zd, define the local joint measure for (σ, h) as

Q+,IS
Λ;β,ε(σ ∈ A, h ∈ B) =

∫
B
µ+,IS
Λ;β,εh(A)dP(h),

for A ⊂ Ω measurable and B ⊂ RΛ borelian. Since β, ε and Λ are fixed, we will omit then from the
notation. This measure Q has density

g+,IS
Λ;β,ε(σ, h) =

∏
u∈Λ

1√
2π

e−
1
2
h2
u × µ+,IS

Λ;β,εh(σ).
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The main idea used in the proof of phase transition in [31] is to make the Peierls’ argument on
the measure Q, and perform in the external field the same flips you do in the configuration when
erasing a contour. Formally, in [31] they compare the density g+,IS

Λ;β,ε(σ, h) with the density after
erasing a contour γ ∈ Γ(σ), and performing the same flips on the external field, getting

g+,IS
Λ;β,ε(σ, h)

g+,IS
Λ;β,ε(τγ(σ), τγ(h))

= exp {βH+,IS
Λ,0 (τγ(σ))− βH+,IS

Λ,0 (σ)}
Z+,IS
Λ;β,ε(τγ(h))

Z+,IS
Λ;β,ε(h)

.

(3.2.1)

For some realizations of the external field, the quotient of the partition functions can be bigger
than the exponential term. Denoting

∆A(h) := −
1

β
ln

Z+,IS
Λ;β,ε(h)

Z+,IS
Λ;β,ε(τA(h))

(3.2.2)

for every A ⊂ Zd, the bad event is

Ec :=

{
sup
γ∈Γ0

|∆I(γ)(h)|
c1|γ|

>
1

4

}
. (3.2.3)

To control the probability of this bad event, we need a concentration result for Gaussian random
variables. The following one is due to M. Ledoux and M. Talagrand, and a proof can be found in
[60].

Theorem 3.2.1. Let f : RM −→ R be a uniform Lipschitz continuous function with constant CLip,
that is, for any X,Y ∈ RM ,

|f(X)− f(Y )| ≤ CLip||X − Y ||2.

Then, if X1, . . . , XM are i.i.d. Gaussian random variables with variance 1,

P (|f(X1, . . . , XM )− E(f(X1, . . . , XM ))| ≥ z) ≤ 2 exp

{
−z2

2C2
Lip

}
. (3.2.4)

Remark 3.2.2. If f is differentiable and ||∇f(·)||2 is bounded, the mean value theorem guarantees
that supZ∈RM ||∇f(Z)||2 is a uniform Lipschitz constant for f .

Remark 3.2.3. If f has a compact support and convex level sets, an equation similar to (3.2.4)
holds, with some adjustments on the constants and replacing the mean by the median, see [17,
Theorem 7.1.3]. Therefore, our results hold when hi has a Bernoulli distribution P(hi = +1) =
P(hi = −1) = 1

2 .

Given A ⊂ Zd, hA := (hx)x∈A denotes the restriction of the external field to the subset A. The
next Lemma was proved in [31] and is a direct consequence of Theorem 3.2.1.

Lemma 3.2.4. For any A,A′ ⋐ Zd and λ > 0, we have

P (|∆A(h)| ≥ λ|hAc) ≤ 2e
−λ2

8ε2|A| , (3.2.5)

and

P(|∆A(h)−∆A′(h)| > λ|hA∪A′c) ≤ 2e
− λ2

8ε2|A∆A′| , (3.2.6)

where A∆A′ is the symmetric difference.

Proof. Start by noticing that
E(∆A(h)|hAc) = 0,



46 RANDOM FIELD ISING MODEL 3.3

since h =d τA(h) by the symmetry of the Gaussian distribution. Now, for any v ∈ A,∣∣∣∣ d

dhv
(∆A(h))

∣∣∣∣ = ε
∣∣∣µ+,IS

Λ;β,ετA(h)(σv) + µ+,IS
Λ;β,εh(σv)

∣∣∣ ≤ 2ε.

Hence, for any z ∈ RA, ||∇f(z)||2 < 2e|A|
1
2 , which, together with Theorem 3.2.1 and Remark 3.2.2,

concludes the proof of equation (3.2.5).
For the second equation, notice that ∆A(h) − ∆A′(h) = 1

βZ
+,IS
Λ;β,ε(τA(h)) −

1
βZ

+,IS
Λ;β,ε(τA′(h)). By

the symmetry of the Gaussian distribution, (τA(h), τA′(h)) and (τA ◦ τA(h), τA ◦ τA′(h)) have the
same distribution. Moreover, τA ◦ τA′ = τA∆A′ , hence

∆A(h)−∆A′(h) =
1

β
Z+,IS
Λ;β,ε(τA∆A′(h))− 1

β
Z+,IS
Λ;β,ε(h) =

d ∆A∆A′(h)

and equation (3.2.6) follows from (3.2.5) applied to ∆A∆A′(h).

Remark 3.2.5. This lemma holds whenever h = (hx)x∈Zd satisfy equation (3.2.4).As a consequence,
our results can be stated for more general external fields.

3.3 Controlling P (Ec)
To control the probability of Ec we use a multi-scale analysis method presented in [34]. This

section is dedicated to prove

Proposition 3.3.1. There exists C1 := C1(α, d) such that P(Ec) ≤ e−
C1
ε2 .

As pointed out by [31], the proof presented in [34], despite being self-contained, is an indirect
application of Dudley’s entropy bound. Here we adapt the proof presented in [34] using this entropy
bound. For the detailed argument of the original proof, see [17]. First, we need to introduce some
probability tools, then we introduce the coarse-graining procedure and prove Proposition 3.3.1.

3.3.1 Probability Results

To control the probability of Ec, we use some results on majorizing measures. For an extensive
overview, we refer to [69]. Consider (T, d) a finite metric space and a process (Xt)t∈T such that, for
every λ > 0 and t, s ∈ T ,

P (|Xt −Xs| ≥ λ) ≤ 2 exp
−λ2

2 d(s, t)2
. (3.3.1)

Assume also that E (Xt) = 0 for every t ∈ T . One example of such process is (|∆I(γ)|)γ∈Γ0(n), with
the distance d2(γ, γ

′) = 2ε|I(γ)∆I(γ′)|
1
2 over the set Γ0(n). For n ∈ N, consider the quantities

Nn = 22
n and N0 = 1.

Definition 3.3.2. Given a set T , a sequence (An)n≥0 of partitions of T is admissible when |An| ≤
Nn and An+1 ⪯ An for all n ≥ 0.

Given t ∈ T and an admissible sequence (An)n≥0, An(t) denotes the element of An that contains
t.

Definition 3.3.3. Given θ > 0 and a metric space (T, d), we define

γθ(T, d) := inf
(An)n≥0

sup
t∈T

∑
n≥0

2
n
θ diam(An(t)),

where the infimum is taken over all admissible sequences.
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Theorem 3.3.4 (Majorizing Measure Theorem [68]). There is a universal constant L > 0 such
that

1

L
γ2(T, d) ≤ E

(
sup
t∈T

Xt

)
≤ Lγ2(T, d).

Given ϵ > 0, let N(T, d, ϵ) be the minimal number of balls with radius ϵ necessary to cover T ,
using the distance d.

Proposition 3.3.5 (Dudley’s Entropy Bound [32]). Let (Xt)t∈T be a family of centered random
variables satisfying (3.3.1) for some distance d. Then there exists a constant L > 0 such that

E
[
sup
t∈T

Xt

]
≤ L

∫ ∞

0

√
logN(T, d, ϵ)dϵ.

Dudley’s entropy bound together with the Majorizing Measure Theorem yields that there is a
constant L′ > 0 such that,

γ2(T, d) ≤ L′
∫ ∞

0

√
logN(T, d, ϵ)dϵ. (3.3.2)

We also need the following result.

Theorem 3.3.6. Given a metric space (T, d) and a family (Xt)t∈T of centered random variables
satisfying (3.3.1), there is a universal constant L > 0 such that, for any u > 0,

P
(
sup
t∈T

Xt > L(γ2(T, d) + udiam(T ))

)
≤ e−u2

,

where the diam(T ) is the diameter taken with respect to the distance d

A proof can be found in [69, Theorem 2.2.27]. Using these results, the bound on the bad event
Ec follows from the next proposition.

Proposition 3.3.7. Given n ≥ 0 and d ≥ 3 there is a constant L1 := L1(d, α) > 0 such that

γ2(Γ0(n), d2) ≤ εL1n.

As a direct consequence of this Proposition, we can control the probability of the bad event Ec.

Proof of Proposition 3.3.1. To apply Theorem 3.3.6, notice that, by the isoperimetric inequality
diam(Γ0(n)) = supγ1,γ2∈Γ0(n) ≤ 4ε

√
|I(n)| ≤ 4εn

1
2
(1+ 1

d−1
). Hence, for ε small enough

P
(
sup
γ

∆I(γ)(h) ≥
c2
2
n

)
≤ P

(
sup
γ

∆I(γ)(h) ≥ L(b5εn+ n
1
2
(1− 1

d−1
)n

1
2
(1+ 1

d−1
))

)
≤ e−

n
(1− 1

d−1
)

ε2 .

The union bound yields P(Ec) ≤ e−
C
ε2 for C > 0 large enough.

The next subsections are dedicated to proving Proposition 3.3.7.

3.3.2 Coarse-graining Procedure

We will apply these results for the family (|∆I−(γ)|)γ∈Γ0(n). To construct the covering by balls
in Dudley’s entropy bound, we use the coarse-graining idea introduced in [34]. For each 0 < ℓ and
each contour γ ∈ Γ0, we will associate a region Bℓ(γ) that approximates the interior I(γ) in a scaled
lattice, with the scale growing with ℓ. This is done in a way that two contours that have the same
representation are in a ball with fixed radius, depending on ℓ.
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For any x ∈ Zd and m ≥ 0,

Cm(x) :=

(
d∏

i=1

[2mxi, 2m(xi + 1))

)
∩ Zd, (3.3.3)

is the cube of Zd centered at 2mx+ 2m−1 − 1
2 with side length 2m − 1. Any such cube is called an

m-cube. As all cubes in this paper are of this form, with centers 2mx+2m−1− 1
2 and x ∈ Zd, we will

often omit the point x in what follows, writing Cm for an m-cube instead of Cm(x). An arbitrary
collection of m-cubes will be denoted Cm and BCm

:= ∪C∈CmC is the region covered by Cm. We
denote by Cm(Λ) the covering of Λ ⋐ Zd with the smallest possible number of m-cubes.

0

Zd

C3(0)

Figure 3.1: The cube C3(0) is formed by the black dots. The dashed lines delimit four smaller cubes C2.
Here we see that our cubes Cm are cubes with side length 2m centered outside of Zd.

Fix n ∈ N, γ ∈ Γ0(n), and ℓ ∈ {0, 1, . . . , k}. An ℓ-cube Cℓ is admissible if it more than a half of
its points are inside I(γ). Thus, the set of admissible cubes is

Cℓ(γ) := {Cℓ : |Cℓ ∩ I(γ)| ≥ 1

2
|Cℓ|}.

We choose Bℓ(γ) := BCℓ(γ), the region covered by the admissible cubes. Notice that Bℓ(γ) is uniquely
determined by ∂Bℓ(γ). Moreover, ∂Bℓ(γ) is uniquely determined by

∂Cℓ(γ) := {{Cℓ, C
′
ℓ} : Cℓ ∈ Cℓ(γ), C ′

ℓ /∈ Cℓ, C ′
ℓ shares a face with Cℓ}.

We will now control the number of cubes in Cℓ(γ) by proving a proposition similar to [34, Proposition
2]. This proposition was written for d = 3 and γ simply connected, but it can clearly be extended to
d ≥ 2 with no restriction in γ, see [17]. As we could not find a detailed proof anywhere, we provide
one here.

Given a rectangle R = [1, r1]× [1, r2]× · · · × [1, rd], consider Ri := {x ∈ R : xi = 1} the face of
R that is perpendicular to the direction ei, for i = 1, . . . , d. The line that connects a point x ∈ Ri

to a point in the opposite face of Ri is ℓix := {x+ kei : 1 ≤ k ≤ ri}. Given A ⊂ Zd, the projection
of A ∩R into the face Ri is

Pi(A ∩R) := {x ∈ Ri : ℓ
i
x ∩A ̸= ∅}.
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e3

A ∩R A ∩R

e1

P1(A ∩R)

P3(A ∩R)

e3 e1

ℓ3p′

p′

p ℓ1p

Figure 3.2: The light gray region is A ∩ R, the projections P1(A ∩ R) and P3(A ∩ R) are the dark gray
region. The dashed line ℓ1p is a bad line and the dotted line ℓ3p′ is a good one. In this particular example,
all points in P1(A ∩ R) are bad and all points in P3(A ∩ R) are good, hence PB

1 (A ∩ R) = P1(A ∩ R) and
PG
3 (A ∩R) = P3(A ∩R).

In many situations, we will split the projections into good and bad points. The set of good points
is Pi(A ∩ R)G := {x ∈ Pi(A ∩ R) : ℓix ∩ (R \ A) ̸= ∅}, that is, there exist a point in ℓix ∩ R that is
not in A. The bad points are defined as PB

i (A ∩R) := Pi(A ∩R) \ PG
i (A ∩R).

A ∩R

p

p′

Figure 3.3: Considering A ∩ R the gray region, both points p, p′ ∈ P1(A ∩ R) are in the projection, but p
is a good point and p′ is a bad point. The doted lines represent ℓ1p and ℓ1p′ .

Given x ∈ Pi(A∩R)G, by definition of the projection, there exists a point in ℓix ∩A. Therefore,
there exists a point p ∈ ℓix such that p ∈ ∂exA ∩R. As all lines are disjoint, we conclude that

|PG
i (A ∩R)| ≤ |∂exA ∩R|. (3.3.4)

We now prove two auxiliary lemmas.

Lemma 3.3.8. Given d ≥ 2, for any family of positive integers r = (ri)
d
i=1 with R ≤ ri ≤ 2R for

some R ≥ 2, 0 < λ < 1 and A ⊂ Zd, there exists a constant c := c(d, λ) such that, if

|Pi(A ∩R)| ≤ λ|Ri| (3.3.5)

for all i = 1, . . . , d, then
d∑

i=1

|Pi(A ∩R)| ≤ c|∂exA ∩R|,

where R = [1, r1]× · · · × [1, rd].
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Proof. The proof will be done by induction on the dimension. For d = 2, take a rectangleR = [1, r1]× [1, r2].
If there is no bad points in P1(A ∩R), then

|P1(A ∩R)| = |PG
1 (A ∩R)| ≤ |∂exA ∩R|. (3.3.6)

If there is a bad point p = (1, p2) ∈ PB
1 (A ∩ R), ℓ1p ⊂ A ∩ R by definition of bad point. As

|P1(A∩R)| ≤ λ|R1| < |R1|, there is a point p′ = (1, p′2) ∈ R1 \P1(A∩R) that is in the face R1 but
not in the projection. By definition of the projection, ℓ1p′ ∈ Ac ∩ R. Therefore, for any 1 ≤ k ≤ r1,
(k, p2) ∈ A ∩R and (k, p′2) ∈ Ac ∩R, we can find a point pk = (k, pk2) ∈ ∂exA ∩R. Since pk1 ̸= pk2

for every k1 ̸= k2, we have r1 ≤ |∂exA ∩R|, hence

|P1(A ∩R)| ≤ |R1| = r2 ≤ 2R ≤ 2r1 ≤ 2|∂exA ∩R|. (3.3.7)

A completely analogous argument can be done to bound |P2(A ∩R)|, and we conclude that

2∑
i=1

|Pi(A ∩R)| ≤ 4|∂exA ∩R|,

and take c(2, λ) = 4. Suppose the lemma holds for d−1 and fix a rectangle R = [1, r1]×· · ·× [1, rd].
We split R into layers Lk = {x ∈ Zd : xd = k}, for k = 1, . . . , rd. We can then partition the
projection and write

|Pi(A ∩R)| =
rd∑
k=1

|Pi(A ∩R) ∩ Lk|,

for any i ∈ {1, . . . , d− 1}. This yields

d∑
i=1

|Pi(A ∩R)| =
d−1∑
i=1

rd∑
k=1

|Pi(A ∩R) ∩ Lk|+ |Pd(A ∩R)|

=

rd∑
k=1

d−1∑
i=1

|Pi(A ∩R) ∩ Lk|+ |Pd(A ∩R)|. (3.3.8)

Notice now that Pi(A ∩R) ∩ Lk = Pi(A ∩ (R∩ Lk)). Defining the rectangle Rk := R∩ Lk, for
every point p ∈ PB

j (A ∩ Rk), ℓjp ⊂ A ∩ Rk. Moreover, we can associate every point x ∈ ℓjp in the
line with a point x′ ∈ Pd(A ∩R) by taking x′m = xm for m ≤ d− 1 and x′d = 1, therefore

rj |PB
j (A ∩Rk)| =

∑
p∈PB

j (A∩Rk)

|ℓjp| ≤ |Pd(A ∩R)|.
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Figure 3.4: Considering A∩R the light gray region, the dark gray region is a layer Lk and the dotted region
is A ∩Rk, the restriction of A to the layer Lk.

Using the hypothesis (3.3.5) we conclude that

|PB
j (A ∩Rk)| ≤ λ

|Rd|
rj

= λ

∏
q ̸=d rq

rj
= λ

∏
q ̸=j,d

rq = λ|(Rk)j |. (3.3.9)

We consider know two cases:

(a) If |Pi(A∩Rk)| ≤ λ+1
2 |(R

k)i|, for all i ≤ d− 1, then we are in the hypothesis of the lemma in
d− 1 and therefore

d−1∑
i=1

|Pi(A ∩Rk)| ≤ c

(
d− 1,

λ+ 1

2

)
|∂exA ∩Rk|. (3.3.10)

(b) If there exists j ∈ {1, . . . , d − 1} satisfying |Pj(A ∩ Rk)| > λ+1
2 |(R

k)j |, by (3.3.9) we have
|PG

j (A ∩Rk)| = |Pj(A ∩Rk)| − |PB
j (A ∩Rk)| ≥ 1−λ

2 |(R
k)j |, hence

|(Rk)j | ≤
2

1− λ
|∂exA ∩Rk|.

Using that |(Rk)i| ≤ (2R)d−2 ≤ 2d−2|(Rk)j | for every i ∈ {1, . . . , d}, we conclude that

d−1∑
i=1

|Pi(A ∩Rk)| ≤
d−1∑
i=1

|(Rk)i| ≤ (d− 1)2d−2|(Rk)j | ≤
(d− 1)2d−1

1− λ
|∂exA ∩Rk|. (3.3.11)

In both cases we were able to bound the sum of projections by a constant times the size of the
boundary of A in Rk. Applying (3.3.10) and (3.3.11) back in (3.3.8) we get

d∑
i=1

|Pi(A ∩R)| ≤
rd∑
k=1

[
c

(
d− 1,

λ+ 1

2

)
+

(d− 1)2d−1

1− λ

]
|∂exA ∩R ∩ Lk|+ |Pd(A ∩R)|

=

[
c

(
d− 1,

λ+ 1

2

)
+

(d− 1)2d−1

1− λ

]
|∂exA ∩R|+ |Pd(A ∩R)|.
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We finish the proof by noticing that we can repeat this exact same argument but now splitting R
into layers Lk = {x ∈ R : xj = k}. By doing so, we have that

d∑
i=1

|Pi(A ∩R)| ≤
[
c

(
d− 1,

λ+ 1

2

)
+

(d− 1)2d−1

1− λ

]
|∂exA ∩R|+ |Pj(A ∩R)|

for any j ∈ {1, . . . , d}. Summing both sides in j we conclude

d∑
i=1

|Pi(A ∩R)| ≤
d

d− 1

[
c

(
d− 1,

λ+ 1

2

)
+

(d− 1)2d−1

1− λ

]
|∂exA ∩R|, (3.3.12)

which proves our claim if we take c(d, λ) := d
d−1

[
c(d− 1, λ+1

2 ) + (d−1)2d−1

1−λ

]
= 2d+ (d−2)d2d−1

1−λ .

Remark 3.3.9. This lemma can be proved when R ≤ ri ≤ κR for any κ > 1. When applying the
lemma, we will choose λ = 7

8 to simplify the notation. All the proofs work as long as we choose
λ > 3

4 .

Lemma 3.3.10. Given A ⊂ Zd, ℓ ≥ 0 and U = Cℓ ∪ C ′
ℓ with Cℓ and C ′

ℓ being two ℓ-cubes sharing
a face, there exists a constant b := b(d) such that, if

1

2
|Cℓ| ≤ |Cℓ ∩A| and |C ′

ℓ ∩A| < 1

2
|C ′

ℓ| (3.3.13)

then 2ℓ(d−1) ≤ b|∂exA ∩ U |.
Proof. For ℓ = 0, (3.3.13) guarantees that Cℓ = {x} ⊂ A and C ′

ℓ = {y} ⊂ Ac, hence |∂exA∩{x, y}| =
1 and it is enough to take b ≥ 1. For ℓ ≥ 1, (3.3.13) yields

1

2
2ℓd ≤ |A ∩ U | ≤ 3

2
2ℓd. (3.3.14)

To simplify the notation, we can assume wlog that U = [1, 2ℓ]d−1 × [1, 2ℓ+1]. As discussed before,
for each point p ∈ PB

j (A∩U) in the projection, ℓjp ⊂ A∩U and the lines are disjoint. Moreover, the
size of the lines is constant rj := |ℓjp|, hence |PB

j (A ∩ U)|rj =
∑

p∈PB
j (A∩U) |ℓ

j
p| ≤ |A ∩ U |. Together

with the upper bound (3.3.14), this yields

|PB
j (A ∩ U)| ≤ 3

2
2ℓdr−1

j . (3.3.15)

Using the isometric inequality, the lower bound on (3.3.14) yields d2
1
d 2ℓ(d−1) ≤ |∂ex(A ∩ U)|. As

1

2d
|∂ex(A ∩ U)| ≤ |∂in(A ∩ U)| = |∂in(A ∩ U) ∩ ∂inU |+ |∂in(A ∩ U) ∩ (U \ ∂inU)|

≤ 2

d∑
i=1

|Pi(A ∩ U)|+ |∂inA ∩ U | ≤ 2

d∑
i=1

|Pi(A ∩ U)|+ |∂exA ∩ U |,

we get

2
1
d
−12ℓ(d−1) ≤ 2

d∑
i=1

|Pi(A ∩ U)|+ |∂exA ∩ U | (3.3.16)

We again consider two cases:

(a) If |Pj(A ∩ U)| > 7
8 |Uj | for some j = 1, . . . , d, by (3.3.15) and (3.3.4) we get

7

8
|Uj | < |Pj(A ∩ U)| ≤ |∂exA ∩ U |+ 3

2
2ℓdr−1

j .
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A simple calculation shows that 1
82

ℓ(d−1) ≤ 7
8 |Uj | − 3

22
ℓdr−1

j , therefore

1

8
2ℓ(d−1) ≤ |∂exA ∩ U |. (3.3.17)

(b) If |Pi(A ∩ U)| ≤ 7
8 |Ui| for all i, by Lemma 3.3.8, there is a constant c = c(d) such that

d∑
i=1

|Pi(A ∩ U)| ≤ c|∂exA ∩ U |. (3.3.18)

Together with (3.3.16), this yields

2ℓ(d−1) ≤ 2c+ 1

2
1
d
−1
|∂exA ∩ U |. (3.3.19)

Equations (3.3.17) and (3.3.19) shows the desired results taking b := max{8, (2c+ 1)21−
1
d }.

Proposition 3.3.11. For the functions B0, . . . , Bk defined above, there exists constants b1, b2 de-
pending only on d and r such that

|∂Cℓ(γ)| ≤ b1
|∂exI(γ)|
2ℓ(d−1)

≤ b1
|γ|

2ℓ(d−1)
(3.3.20)

and
|Bℓ(γ)∆Bℓ+1(γ)| ≤ b22

ℓ|γ| (3.3.21)

for every ℓ ∈ {0, . . . , k} and γ ∈ Γ0(n).

Proof. Fix ℓ ∈ {0, . . . , k}. Given a pair (Cℓ, C
′
ℓ), we will write Cℓ ∼ C ′

ℓ when (Cℓ, C
′
ℓ) ∈ ∂Cℓ(γ),

and the union we be denoted by U = Cℓ ∪ C ′
ℓ. Then, defining C ℓ = {Cℓ ∈ ∂Cℓ(γ) : Cℓ ∼

C ′
ℓ for some Cp

ℓ rime /∈ Cℓ(γ)}, for any A ⋐ Zd,

∑
(Cℓ,C

′
ℓ)∈∂Cℓ(γ)

|A ∩ {Cℓ ∪ C ′
ℓ}| ≤

∑
Cℓ∈C ℓ

∑
C′

ℓ /∈Cℓ(γ)

Cℓ∼C′
ℓ

(
|A ∩ Cℓ|+ |A ∩ C ′

ℓ|
)

≤
∑

Cℓ∈C ℓ

2d|A ∩ Cℓ|+
∑

C′
ℓ /∈Cℓ(γ)

2d|A ∩ C ′
ℓ| ≤ 2d|A|

Any pair of cubes Cℓ ∼ C ′
ℓ are in the hypothesis of Lemma 3.3.10, hence b2ℓ(d−1) ≤ |∂exI(γ)∩U |.

Applying equation above for A = ∂exI(γ) we get that

b

2d
2ℓ(d−1)|∂Cℓ(γ)| ≤

1

2d

∑
(Cℓ,C

′
ℓ)∈∂Cℓ(γ)

|∂exI(γ) ∩ {Cℓ ∪ C ′
ℓ}| ≤ |∂exI(γ)|,

that concludes (3.3.20) for b1 := 2d/b.
Given C(ℓ+1) ∈ C(ℓ+1)(Bℓ+1(γ)\Bℓ(γ)), there is a ℓ-cube C ′

ℓ ⊂ Cr(ℓ+1) with C ′
ℓ /∈ Cℓ(γ), otherwise

(Bℓ+1(γ) \ Bℓ(γ)) ∩ C(ℓ+1) = ∅. There is also a ℓ-cube Cℓ ⊂ Cr(ℓ+1) with Cℓ ∈ Cℓ(γ), otherwise we
would have

|I(γ) ∩ C(ℓ+1)| =
∑

Cℓ⊂C(ℓ+1)

|I(γ) ∩ Cℓ| ≤
1

2
|C(ℓ+1)|.
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Moreover, we can assume that Cℓ and C ′
ℓ share a face. Again, we use Lemma 3.3.10 to get,

|Bℓ+1(γ) \Bℓ(γ) ∩ C(ℓ+1)| ≤ |C(ℓ+1)| = 2d2ℓ2ℓ(d−1)

≤ 2d2ℓb|∂exI(γ) ∩ {Cℓ ∪ C ′
ℓ}|

≤ 2d2ℓb|∂exI(γ) ∩ C(ℓ+1)|. (3.3.22)

Therefore,

|Bℓ+1(γ) \Bℓ(γ)| =
∑

C(ℓ+1)∈C(ℓ+1)(Bℓ+1(γ)\Bℓ(γ))

|Bℓ+1(γ) \Bℓ(γ) ∩ C(ℓ+1)|

≤
∑

C(ℓ+1)∈C(ℓ+1)(Bℓ+1(γ)\Bℓ(γ))

2d2ℓb|∂exI(γ) ∩ C(ℓ+1)| ≤
b2
2
2ℓ|∂exI(γ)|.

with b2 = b2d+1. To get the same bound for |Bℓ(γ)\Bℓ+1(γ)| we repeat a similar argument, covering
Bℓ(γ) \Bℓ+1(γ) with (ℓ+ 1)-cubes.

Corollary 3.3.12. For any ℓ > 0 and any two contours γ1, γ2 ∈ Γ0(n) such that Bℓ(γ1) = Bℓ(γ2),
there exists a constant b3 > 0 such that

d2(γ1, γ2) ≤ 4εb32
ℓ
2n

1
2 .

Proof. This is a simple application of the triangular inequality, since d2(γ1, γ2) ≤ d2(γ1, Bℓ(γ1)) +
d2(γ2, Bℓ(γ2)) and

d2(γ1, Bℓ(γ1)) ≤
ℓ∑

i=1

d2(Bi(γ1), Bi−1(γ1)) =
ℓ∑

i=1

2ε
√

Bi(γ1)∆Bi−1(γ1)

≤
ℓ∑

i=1

2ε
√
b22

i
2
√
n ≤ 2ε

√
b2(
√
2 + 1)2

ℓ
2
√
n

where in the second to last equation used (3.3.21). As the same bound holds for d2(γ2, Bℓ(γ2)), the
corollary is proved by taking b3 =

√
b2(
√
2 + 1)

Remark 3.3.13. This corollary shows that we can create a covering of Γ0(n), indexed by Bℓ(Γ0(n)),
of ball with radius 4εb32

ℓ
2n

1
2 . Therefore N(Γ0(n), d2, 4εb32

ℓ
2n

1
2 ) ≤ |Bℓ(Γ0(n))|.

In the next proposition we bound |Bℓ(Γ0(n))|, again following [34].

Proposition 3.3.14. There exists a constant b4 := b4(d) such that, for any n ∈ N,

|Bℓ(Γ0(n))| ≤ exp

{
b4ℓn

2ℓ(d−1)

}
, (3.3.23)

that is, the number of coarse-grained contours in Bℓ(Γ0(n)) is bounded above by an exponential
term.

Proof. Start by noticing that |Bℓ(Γ0(n))| = |∂Bℓ(Γ0(n))|, and to each Bℓ(γ) we can associate a
contour ξℓ(γ) with I(ξℓ) = Bℓ(γ). Given ξℓ ∈ ξℓ(Γ0(n)) for ℓ ∈ {1, . . . , k}, let {ξ(1)ℓ , ξ

(2)
ℓ , . . . , ξ

(m)
ℓ }

be the connected components of ξℓ. To connected component ξ
(i)
ℓ we can uniquely associate a pair

(Cℓ, C
′
ℓ) ∈ ∂Cℓ(γ) with BCℓ

⊂ I(ξ
(i)
ℓ ). By Lemma 3.3.10, there are at least b−12ℓ(d−1) points of

∂exI(γ) in Cℓ ∪ C ′
ℓ. Hence ξℓ has at most bn

2ℓ(d−1) connected components and we take Mn := bn
2ℓ(d−1) .

Moreover, by Lemma 3.3.11, |ξℓ| =
∑Mn

i=1 |ξ
(i)
ℓ | = 2ℓ(d−1)|∂Cℓ(γ)| ≤ b1n.
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Fixed x1, x2, . . . , xMn ∈ 2ℓZd, and s1, s2, . . . , sMn ∈ 2ℓ(d−1)N, if Γ({xi}Mn
i=1, {si}

Mn
i=1) is the number

of coarse-grained contours with xi ∈ I(ξ
(i)
ℓ ) and |ξ(i)ℓ | = si for every i, then

Γ({xi}Mn
i=1, {si}

Mn
i=1) ≤ exp

(
ln (4d)

Mn∑
i=1

si

2ℓ(d−1)

)
≤ exp

(
b1 ln (4d)

n

2ℓ(d−1)

)
. (3.3.24)

The number of choices of s1, s2, . . . , s1 ∈ 2ℓdN with
∑q

i=1 s
i ≤ b1n is less then 2

b1n

2ℓ(d−1) . This is a
simple bound on the number of ways of putting up to b1n

2ℓ(d−1) balls on Mn spaces.
It remains know to bound the number of choices for (xi)Mn

i=1. Set d1 = |x1| and di = |xi−xi−1| for
i = 2, . . . ,Mn. For every i = 1, . . . ,Mn, we choose y1, . . . , yMn ∈ I(γ) such that |xi−yi| = d(xi, I(γ)).
With this choice we get d(xi, yi) ≤ d2ℓ. Since all the cubes are not connected, d(yi, yi−1) > 2ℓ, hence

d(xi, yi) ≤ d|yi − yi−1|.

As all yi are in I(γ) and y0 = x0 = 0, we can reorder the terms to minimize the sum of distances,
getting

Mn∑
i=1

d(yi, yi−1) ≤ 2d|∂exI(γ)| = 2dn.

This yields

Mn∑
i=1

di ≤ 2

Mn∑
i=1

d(xi, yi) +

Mn∑
i=1

d(yi, yi−1) ≤ (2d+ 1)

Mn∑
i=1

d(yi, yi−1) ≤ (2d+ 1)2n (3.3.25)

Fixing d1, d2, . . . , dq, the number of ways of choosing x1, . . . , xq is bounded by
∏Mn

i=1(2di)
d. The

maximum of this quantity is reached when all the distances are the same. Assuming d1 = · · · =
dq = d∗, equation (3.3.25) yields

d∗ ≤ (2d+ 1)2n

Mn
=

(2d+ 1)22ℓ(d−1)

b
,

so we have at most

(
(2d+ 1)22ℓ(d−1)

b
)

dbn

2ℓ(d−1) ≤ exp

{
(2d(d− 1) ln (2)b ln (

(2d+ 1)

b
))

ℓn

2ℓ(d−1)

}
(3.3.26)

ways of choose x1, . . . , xMn given d1, . . . , dMn . The number of solutions (d1, . . . , dMn) to
∑Mn

i=1 di = N

is
(
N−1
Mn

)
. As

(
N−1
Mn

)
< NMn

Mn!
≤ ( eNMn

)Mn , the number of solutions of (3.3.25) is bounded by

(2d+1)2n∑
N=1

(
eN

Mn

)Mn

≤
∫ (2d+1)2n+1

0

(
ex

Mn

)Mn

dx = eMn
(2d+ 1)2n+ 1

Mn + 1

(
(2d+ 1)2n+ 1

Mn

)Mn

≤

(
2e(2d+ 1)22ℓ(d−1)

b

) bn

2ℓ(d−1)

≤ exp

{
4eb−1 ln(2)(2d+ 1)2

ℓn

2ℓ(d−1)

}
. (3.3.27)

Taking b4 = max {b1 ln (4d), 2d(d− 1) ln (2)b ln ( (2d+1)
b ), eb−1 ln(2)(2d+ 1)2}, equations (3.3.24),

(3.3.26) and (3.3.27) proves the proposition.

We are ready to prove the main proposition.
Proof of Proposition 3.3.7: As N(Γ0(n), d2, ϵ) is decreasing in ϵ, we can use Dudley’s integral
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bound to bound

E

[
sup

γ∈Γ0(n)
∆I(γ)(h)

]
≤
∫ ∞

0

√
logN(Γ0(n), d2, ϵ)dϵ

≤ 2εb3n
1
2

∞∑
ℓ=1

(2
ℓ
2 − 2

ℓ−1
2 )

√
logN(Γ0(n), d2, εb32

ℓ
2n

1
2 ). (3.3.28)

Remember that, as discussed in Remark 3.3.13, N(Γ0(n), d2, εb32
ℓ
2n

1
2 ) ≤ |Bℓ(Γ0(n))|. Therefore,

by Proposition 3.3.14,

∞∑
ℓ=1

(2
ℓ
2 − 2

ℓ−1
2 )

√
logN(Γ0(n), d2, εb32

ℓ
2n

1
2 ) ≤

∞∑
ℓ=1

(2
ℓ
2 − 2

ℓ−1
2 )

√
b4ℓn

2ℓ(d−1)

≤
√
b4n

1
2 (1−

√
2

2
)

∞∑
ℓ=1

√
ℓ

2ℓ(d−2)
. (3.3.29)

Denoting τ(d) =
∑∞

ℓ=1

√
ℓ

2ℓ(d−2) , and b5 = 2τ(d)b3
√
b4(1−

√
2
2 ), equation (3.3.28) and (3.3.29) yields

E

[
sup

γ∈Γ0(n)
∆I(γ)(h)

]
≤ b5εn.

3.3.3 Phase transition for the RFIM

Let us first prove an auxiliary lemma showing that if µ+,IS
Λ;β,εh(σ0 = −1) > c has positive proba-

bility, then µ+,IS
Λ;β,εh ̸= µ−,IS

Λ;β,εh P-almost surely.

Lemma 3.3.15. If there exists a constant 0 ≤ c < 1
2 such that, for all Λ ⋐ Zd,

P
(
µ+,IS
Λ;β,εh(σ0 = −1) < c

)
> 1− c,

then µ+,IS
β,εh ̸= µ−,IS

β,εh P-almost surely.

Proof. Notice first that, as the function 1{σ0=−1} is non-increasing, by FKG µ+,IS
Λ;β,εh(σ0 = −1) ≤

µ+,IS
∆;β,εh(σ0 = −1) for all Λ ⊂ ∆ ⋐ Zd. As µ+,IS

β,εh is the weak limit of the local measures µ+,IS
ΛN ;β,εh, by

continuity of P we have

P
(
µ+,IS
β,εh(σ0 = −1) < c

)
= lim

N→∞
P
(
µ+,IS
ΛN ;β,εh(σ0 = −1) < c

)
> 1− c.

Like in the usual Ising model, we can write

µ+,IS
β,εh(σ0) = 1− 2µ+,IS

β,εh(σ0 = −1),

so {h : µ+,IS
β,εh(σ0) > 0} ⊃ {h : µ+,IS

β,εh(σ0 = −1) < c} and therefore P
(
µ+,IS
β,εh(σ0) > 0

)
> 1 − c.

Moreover,

P
(
µ+,IS
β,εh(σx) ̸= µ−,IS

β,εh(σx) for some x ∈ Zd
)
≥ P

(
µ+,IS
β,εh(σ0) > 0, µ−,IS

β,εh(σ0) < 0
)

≥ P
(
µ+,IS
β,εh(σ0) > 0

)
+ P

(
µ−,IS
β,εh(σ0) < 0

)
− 1 ≥ 1− 2c > 0,

where in the second inequality we used that P(A∩B) ≥ P(A)+P(B)−1 for any events A and B. Con-
sidering the translation map T (h) = (hx+e1)x∈Zd and B(RZd

) the Borel σ-algebra of RZd , P is mixing
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in the dynamical system (RZd
,B,P, T ) and {h : µ+,IS

β,εh(σx) ̸= µ−,IS
β,εh(σx) for some x ∈ Zd} is a transla-

tion invariant event with positive probability, therefore P
(
µ+,IS
β,εh(σx) ̸= µ−,IS

β,εh(σx) for some x ∈ Zd
)
=

1. We conclude the proof by noticing that P
(
µ+,IS
β,εh ̸= µ−,IS

β,εh

)
≥ P

(
µ+,IS
β,εh(σx) ̸= µ−,IS

β,εh(σx) for some x ∈ Zd
)
.

Theorem 3.3.16. For d ≥ 3, there exists a constant C := C(d, α) such that, for all β > 0, e ≤ C
and Λ ⋐ Zd, the event

µ+,IS
Λ;β,εh(σ0 = −1) ≤ e−Cβ + e−C/ε2 (3.3.30)

has P-probability bigger then 1− e−Cβ − e−C/ε2.

In particular, for β > βc and ε small enough, there is a phase transition for the long-range Ising
model.

Proof. The proof is an application of the Peierls’ argument, but now on the joint measure Q. By
Proposition 3.3.1, we have

Q+,IS
Λ;β,ε(σ0 = −1) = Q+,IS

Λ;β,ε({σ0 = −1} ∩ E) +Q+,IS
Λ;β,ε({σ0 = −1} ∩ E

c)

≤ Q+,IS
Λ;β,ε({σ0 = −1} ∩ E) + e−C1/ε2 (3.3.31)

since Q+,IS
Λ;β,ε({σ0 = −1} ∩ Ec) ≤ Q+,IS

Λ;β,ε(E
c) = P(Ec). When σ0 = −1, there must exist a contour γ

with 0 ∈ V (γ), hence
µ+,IS
Λ;β,εh(σ0 = −1) ≤

∑
γ∈C0

µ+,IS
Λ;β,εh(Ω(γ)),

where Ω(γ) := {σ ∈ Ω : γ ⊂ Γ(σ)}. So we can write

Q+,IS
Λ;β,ε({σ0 = −1} ∩ E) =

∫
E

∑
σ:σ0=−1

g+,IS
Λ;β,ε(σ, h)dh

≤
∑
γ∈C0

∫
E

∑
σ∈Ω(γ)

g+,IS
Λ;β,ε(σ, h)dh

≤
∑
γ∈C0

∫
E
∑

σ∈Ω(γ) g
+,IS
Λ;β,ε(σ, h)dh∫

E
∑

σ∈Ω(γ) g
+,IS
Λ;β,ε(τγ(σ), τI(γ)(h))dh

≤
∑
γ∈C0

sup
h∈E

σ∈Ω(γ)

g+,IS
Λ;β,ε(σ, h)

g+,IS
Λ;β,ε(τγ(σ), τI(γ)(h))

. (3.3.32)

In the second inequality we used that
∫
E
∑

σ∈Ω(γ) g
+,IS
Λ;β,ε(τγ(σ), τI(γ)(h))dh = 1. By (3.2.2) and

the definition of the event E ,

sup
h∈E

σ∈Ω(γ)

g+,IS
Λ;β,ε(σ, h)

g+,IS
Λ;β,ε(τγ(σ), τI(γ)(h))

≤ sup
h∈E

σ∈Ω(γ)

exp {−βc1|γ|}
Z+,IS
Λ;β,ε(τI(γ)(h))

Z+,IS
Λ;β,ε(h)

= sup
h∈E

σ∈Ω(γ)

exp {−βc1|γ|+ β∆γ(h)}

≤ exp {−β c1
2
|γ|}, (3.3.33)
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since ∆γ(h) ≤ 1
2(c1|γ|), for all h ∈ E . Equations (3.3.31), (3.3.32) and (3.3.33) yields

Q+,IS
Λ;β,ε(σ0 = −1) ≤

∑
γ∈E+,IS

Λ
0∈V (γ)

2|γ| exp {−β c1
2
|γ|}+ e−c0/ε2

≤
∑
n≥1

∑
γ∈E+

Λ ,|γ|=n
0∈V (γ)

exp {(−β c1
2

+ ln 2)n}+ e−c0/ε2

≤
∑
n≥1

|C0(n)| exp {(−β
c1
2

+ ln 2)n}+ e−c1/ε2 ≤
∑
n≥1

e(c2−β
c1
2
+ln 2)n + e−c0/ε2 .

When β is large enough, the sum above converges and there exists a constant C such that

Q+,IS
Λ;β,ε(σ0 = −1) ≤ e−β2C + e−2C/ε2 .

The Markov Inequality finally yields

P
(
µ+,IS
Λ;β,εh(σ0 = −1) ≥ e−Cβ + e−C/ε2

)
≤

Q+,IS
Λ;β,ε(σ0 = −1)
e−Cβ − e−C/ε2

≤ e−β2C + e−2C/ε2

e−Cβ + e−C/ε2
≤ e−Cβ + e−C/ε2 ,

what proves our claim.



Chapter 4

Long-range Random Field Ising Model

In this chapter, we prove phase transition in the long-range random field Ising model. First, we
use an argument by Ginibre, Grossman, and Ruelle [44] to extend the results from the previous
chapter in the region α > d + 1. When d < α ≤ d + 1, we need to work with a different contour
system. By adapting the contour argument presented in [1], we extend the arguments of [31] to the
long-range model, proving the main result:

Theorem. Given d ≥ 3, α > d, there exists βc := β(d, α) and εc := ε(d, α) such that, for β > βc
and ε ≤ εc, the extremal Gibbs measures µ+

β,ε and µ−
β,ε are distinct, that is, µ+

β,ε ̸= µ−
β,ε P-almost

surely. Therefore the long-range random field Ising model presents phase transition.

We now present a sketch of the main steps of the proof.

Ideas of the proof: We first introduce a suitable notion of contour, for which we can control
both the energy cost of erasing a contour (Proposition 4.2.14) and the number of contours of a
fixed size that surrounds the origin (Corollary 4.4.13). Our contours, as in the Pirogov-Sinai theory,
are composed of a support, that represents the incorrect points of a configuration, and the plus
and minus interior, which are the regions inside the contours. We denote C0 the set of all contours
surrounding the origin and C0(n) the set of contours in C0 with n points in the support. We also
denote I−(n) the set of all subsets of Zd that are the minus interior of a contour in C0(n).

By the Ding-Zhuang method, we can show that phase transition follows from controlling the
probability of the bad event

Ec :=

{
sup
γ∈C0

|∆I−(γ)(h)|
c2|γ|

>
1

4

}
,

where |γ| is the size of the support of a contour γ and (∆A)A⋐Zd is a family of functions that, by
Lemma 3.2.4, have the same tail of

∑
x∈A hx, and the distribution of ∆A(h)−∆A′(h) is the same

as ∆A∆A′(h), for all A,A′ ∈ Zd finite, see [31].
When the contours are connected, all the interiors I−(γ) are connected, and the two properties

in Lemma 3.2.4 together with the coarse-graining procedure introduced by Fisher, Fröhlich, and
Spencer in [34] is enough to control P(Ec). Given a family of scales (2rℓ)ℓ≥0, with r being a suitable
constant, we can partition Zd into disjoint fitting cubes with sides 2rℓ, see Figure 3.1. Each such
cube is called an rℓ-cube, and all cubes throughout our analysis will be of this form unless stated
otherwise. The strategy of the coarse-graining argument is to, at each scale, approximate each
interior I−(γ) by a simpler region Bℓ(γ), formed by the union of disjoint cubes with side length
2rℓ, see Figure 4.1. The argument follows once you have two estimations: on the error of this
approximation and on the size of the set Bℓ(C0(n)) := {B ⊂ Zd : B = Bℓ(γ), for some γ ∈ C0(n)}
containing all regions that are approximations of contours in C0(n).

In Corollary 4.4.3, we show that |Bℓ(γ)∆I−(γ)| ≤ c2rℓ|γ|, so the error in the approximation is
not too large. This bound follows [34] closely since we approximate the interiors in the same way.
Then, we need to estimate |Bℓ(C0(n))|, which is done by a fairly distinct argument. The difficulty

59
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I−(γ)

Bℓ(γ)
2rℓ

Bℓ(γ)
2rℓ

Figure 4.1: The figure on the left represents the minus interior of a contour γ, while the central figure
represents its approximation. The picture on the right depicts the error of the approximation, that is both
the cross-hatched regions not covered by the gray area and the gray areas not intersected by the cross-hatch
region.

of the proof comes from the fact that our contours may be disconnected. As the regions Bℓ(γ) are
the union of disjoint cubes, they are, up to a constant, determined by ∂inCℓ(γ), the collection of
cubes needed to cover Bℓ(γ) that share a face with a cube that does not intersect Bℓ(γ), see Figure
4.2.

Bℓ(γ)2rℓ

∈ ∂inCℓ(γ)

Figure 4.2: The region Bℓ(γ) is the approximation of the interior in Figure 4.1, and ∂inCrℓ(γ) is the
collection containing all the doted cubes.

Following the argument of Fisher, Fröhlich, and Spencer we show that |∂inCrℓ(γ)| ≤ M|γ|,ℓ
(see Proposition 4.4.1), so we can bound |Bℓ(C0(n))| by counting all possible choices of Mn,ℓ non-
intersecting cubes with side length 2rℓ in Zd, with a suitable restriction. When the contours are
connected, this restriction is that all cubes must be close to a surface with size n, and the proof
follows once you can use that the minimal path connecting all the cubes has length at most cn.
This is not true for our contours, so we need a different strategy.

Let CrL(γ) be the smallest collection of cubes, in the rL scale, needed to cover γ. The property
we will use is that, for all L ≥ ℓ, every cube in ∂inCℓ(γ) is covered or is next to a cube in CrL(γ),
see Figure 4.3. As every cube with side length 2rL contains 2rd(L−ℓ) cubes with side length 2rℓ, any
fixed collection CrL(γ) covers 2rd(L−ℓ)|CrL(γ)| cubes in the rℓ scale.

So, roughly, we can bound |Bℓ(C0(n))| by counting all the possible choices of Mn,ℓ cubes in the
2rℓ scale that are covered by a collection in CrL(C0(n)) := {CrL : CrL = CrL(γ) for some γ ∈ C0(n)},
that is, we can bound

|Bℓ(C0(n))| ≤
∑

CrL∈CrL(C0(n))

(
2rd(L−ℓ)|CrL|

Mn,ℓ

)
.
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∂inCℓ(γ)2rℓ

γ
2rL(ℓ)

CrL(ℓ)(γ)

Figure 4.3: The contour γ is the one the originates the interior I−(γ) in Figure 4.1. The dotted cubes are
the cubes in ∂inCℓ(γ) and the larger cubes are the ones needed to cover the contour γ.

The construction of our contours allow us to upper bound |CrL(γ)| and |CrL(C0(n))|, see Propo-
sition 4.4.10 and Proposition 4.4.12, and we are able to get the same bound for |Bℓ(C0(n))| as in [34]
by making an appropriate choice of the large scale L = L(ℓ) depending on the smaller one. From
this, the control on the probability of the bad event follows as an application of Dudley’s entropy
bound.

In Section 1, we define the model of interest and the notion of contour we will use. Then, in
Section 2, we present the Ding and Zhuang method [31] of proofing phase transition and the bad
events for the RIFM with long-range interaction. After that, we control the probability of the bad
events by extending the arguments of [34] to our case. Finally, in the last section, we prove the
phase transition for the long-range RFIM.

4.1 The Long-range RFIM

The set of configurations of the long-range Ising model is, as usual, Ω := {−1, 1}Zd . However,
each spin interacts with all others, not only its nearest neighbors, so the interaction {Jxy}x,y∈Zd is
defined as

Jxy =

{
J

|x−y|α if x ̸= y,

0 otherwise,
(4.1.1)

where J > 0, α > d and the distance |x− y| is given by the ℓ1-norm. We write Λ ⋐ Zd to denote a
finite subset of Zd. Fixed such Λ, the local configurations are ΩΛ := {−1, 1}Λ. Moreover, given η ∈ Ω,
the set of local configurations with η boundary conditions is Ωη

Λ := {σ ∈ Ω : σx = ηx, ∀x ∈ Λc}. The
local Hamiltonian of the random field long-range Ising model in Λ ⋐ Zd with η-boundary condition
is Hη

Λ;εh : Ωη
Λ → R, given by

Hη
Λ;εh(σ) := −

∑
x,y∈Λ

Jxyσxσy −
∑

x∈Λ,y∈Λc

Jxyσxηy −
∑
x∈Λ

εhxσx, (4.1.2)

where the external field is a family {hx}x∈Zd of i.i.d. random variables in (Ω̃,A,P), and every hx
has a standard normal distribution1. The parameter ε > 0 controls the variance of the external
field. Given Λ ⋐ Zd, consider FΛ the σ-algebra generated by the cylinders sets supported in Λ
and F the σ-algebra generated by finite union of cylinders. One of the main objects of study in
classical statistical mechanics are the finite volume Gibbs measures, which are probability measures

1Our results also hold for more general distributions of hx, see Remarks 3.2.3 and 3.2.5.
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in (Ω,F ), given by

µη
Λ;β,εh(σ) := 1Ωη

Λ
(σ)

e−βHη
Λ,εh(σ)

Zη
Λ;β,ε(h)

, (4.1.3)

where β > 0 is the inverse temperature and Zη
Λ;β,ε is the partition function, defined as

Zη
Λ;β,ε(h) :=

∑
σ∈Ωη

Λ

e−βHη
Λ,εh(σ). (4.1.4)

As in the short-range case, since the external field is random, the Gibbs measures are random
variables. To make the dependence of µη

Λ;β,εh on Ω̃ explicit, we write µη
Λ;β,εh[ω], with ω being a

general element of Ω̃. Two particularly important boundary conditions are given by the configu-
rations η+ ≡ +1 and η− ≡ −1, and are called + and − boundary conditions, respectively. For
these boundary conditions, we can P-almost surely define the infinite volume measures by taking
the weak*-limit

µ±
β,εh[ω] := lim

n→∞
µ±
Λn;β,εh

[ω], (4.1.5)

where (Λn)n∈N is any sequence invading Zd, that is, for any subset Λ ⋐ Zd, there exists N =
N(Λ) > 0 such that Λ ⊂ Λn for every n > N . By Lemma 1.2.3, for any fixed external field, the
measures µ±

Λn;β,εh
[ω] are monotone, which guarantees the existence of the limits over sequences

invading Zd. To have more than one Gibbs measure, it is enough to show that µ+
β,εh[ω] ̸= µ−

β,εh[ω],
with P-probability 1, see [17, Theorem 7.2.2].

4.1.1 Phase Transition for α > d+ 1

When α > d+1, Ginibre, Grossman and Ruelle [44] showed that we can use the standard Peierls’
argument, with the short-range contours, to prove phase transition for the long-range model. This
happens since we can extend the bound (3.1.6) a class of models with long-range interactions. This
is shown in the next proposition

Proposition 4.1.1. For the long-range Ising model with α > d+1, there is a constant c1(α, d) > 0
such that, for any σ ∈ Ω and γ ∈ Γ(σ)

H+
Λ,0(τγ(σ))−H+

Λ,0(σ) ≤ −Jc1(α)|γ|. (4.1.6)

Here, Γ(σ) is the collection of short-range contours defined in the previous chapter.

Proof. A straightforward computation shows that

H+
Λ,0(τγ(σ)) = −

∑
x,y∈I(γ)

Jxyτγ(σ)xτγ(σ)y −
∑

x,y∈I(γ)c
Jxyτγ(σ)xτγ(σ)y −

∑
x∈I(γ)
y∈I(γ)c

Jxyτγ(σ)xτγ(σ)y

= −
∑

x,y∈I(γ)

Jxyσxσy −
∑

x,y∈I(γ)c
Jxyσxσy +

∑
x∈I(γ)
y∈I(γ)c

Jxyσxσy

= H+
Λ,0(σ) + 2

∑
x∈I(γ)
y∈I(γ)c

Jxyσxσy.
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Therefore, the difference can be bounded in the following way

1

2
(H+

Λ,0(τγ(σ))−H+
Λ,0(σ)) =

∑
x∈I(γ)
y∈I(γ)c

Jxyσxσy =
∑

x∈∂inI(γ),
y∈∂exI(γ)c

Jσxσy +
∑

x∈I(γ),
y∈I(γ)c
|x−y|≥2

Jxyσxσy

≤ −J |γ|+
∑

x∈I(γ)
y∈I(γ)c
|x−y|≥2

Jxy

= −J |γ|+
∑
k∈Zd

|k|≥2

J0,k|{{x, y} : x ∈ I(γ), y ∈ I(γ)c, x− y = k}|.

For i = 1, . . . , d, let γi be the faces of γ perpendicular to the direction ei. Using that

|{x, y} : x ∈ I(γ), y ∈ I(γ)c, x− y = k| ≤
d∑

i=1

|ki||γi|,

we get

H+
Λ,0(τγ(σ))−H+

Λ,0(σ) ≤ −2J |γ|+ 2
∑
k∈Zd

|k|≥2

J

|k|α−1
|γ|.

Taking c1(α) = 2(1−
∑

k∈Zd

|k|≥2

1
|k|α−1 ), we conclude our proof by noticing that c1(α) > 0 if and only

if α > d+ 1.

Remark 4.1.2. Notice that the proof above holds for any interaction J = {Jxy}x,y∈Zd that is
translation invariant and satisfy ∑

x∈Zd

|x|>1

|xi|J0,x < J0,ei

for every i = 1, . . . , d, where ei is a base vector in the i-th direction and xi is the i-th coordinate of
x.

With Proposition 4.1.1, we can use the exact same argument from the previous section, only
replacing the measure µ+,IS

Λ;β,εh(σ) by µ+
Λ;β,εh(σ), to prove the next theorem.

Theorem 4.1.3. For d ≥ 3 and α > d+ 1, there exists a constant C := C(d, α) such that, for all
β > 0 and ε ≤ C, the event

µ+
Λ;β,εh(σ0 = −1) ≤ e−Cβ + e−C/ε2 (4.1.7)

has P-probability bigger then 1− e−Cβ − e−C/ε2.

In particular, for β > βc and ε small enough, there is phase transition for the long-range Ising
model.

The only difference between the two cases is that, for the long-range model, the error function
is

∆A(h) := −
1

β
log

Z+
Λ;β,ε(h)

Z+
Λ;β,ε(τA(h))

, (4.1.8)

for any A ⋐ Zd. We are abusing the notation here since ∆A(h) denotes two different random
variables, (3.2.2) and (4.1.8). We hope this does not cause any confusion, since the only property
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we use from ∆A is that it satisfies Lemma 3.2.4. Moreover, all remarks and claims made in Section
3.2 hold for both definitions of ∆A.

For d < α ≤ d+ 1, we need to use a different contours system, introduced next.

4.2 Long-range Contours

Contours were first defined in the seminal paper of R. Peierls [66], where he introduced these
geometrical objects to prove phase transition in the Ising model for d ≥ 2. This technique is known
nowadays as the Peierls’ Argument. One of the most successful extensions of this argument was
made by S. Pirogov and Y. Sinai [67], and extended by Zahradnik [70]. This is known as the Pirogov-
Sinai Theory, which can be used in models with short-range interactions and finite state spaces,
even without symmetries. The Pirogov-Sinai Theory was one of the achievements cited when Yakov
Sinai received the Abel Prize [56].

For long-range models, using the usual Peierls’ contours with plaquettes of dimension d − 1,
Ginibre, Grossman, and Ruelle, in [44], proved phase transition for α > d + 1. Park, in [64, 65],
considered systems with two-body interactions satisfying |Jxy| ≤ |x − y|−α for α > 3d + 1, and
extended the Pirogov-Sinai theory for this class of models. Fröhlich and Spencer, in [41], proposed
a different contour definition for the one-dimensional long-range Ising models. Roughly speaking,
collections of intervals are the new contours but arranged in a particular way. When they are
sufficiently far apart, the collections of intervals are deemed as different contours, while collections of
intervals close enough are considered a single contour. Note that this definition drastically contrasts
with the notion of contour in the multidimensional setting since now they are not necessarily
connected objects of the lattice. This fact implies that the control of the number of contours for a
fixed size could be much more challenging.

Inspired by such contours, Affonso, Bissacot, Endo, and Handa proposed a definition of contour
extending the contours of Fröhlich and Spencer to any dimension d ≥ 2, see [1]. With these contours,
they were able to use Peierls’ argument to show phase transition in the whole region α > d, with
d ≥ 2. Note that such contours can be very sparse, in the sense that its diameter can be much larger
than its size. We modify the contour definition of [1] using a similar partition through multiscale
methods. We choose to use the new definition of contours for two main reasons: the definition is
simpler, and we can improve the control of the number of cubes needed to cover a contour, from
a polynomial bound to an exponential bound, see Propositions 4.4.9 and 4.4.10. We would like to
stress that the main results of this paper still hold if we adopt the notion of contour presented in
[1]. In Remark 4.4.17 we describe the key adaptations that must be made in our arguments. In this
section, we describe our contours.

Definition 4.2.1. Given σ ∈ Ω, a point x ∈ Zd is called + (or - resp.) correct if σy = +1, (or −1,
resp.) for all points y such that |x − y| ≤ 1. The boundary of σ, denoted by ∂σ, is the set of all
points in Zd that are neither + nor − correct.

The boundary of a configuration is not finite in general, it can even be the whole lattice Zd.
To avoid this problem, we will restrict our attention to configurations with finite boundaries. Such
configurations, by definition of incorrectness, satisfy σ ∈ Ω+

Λ or σ ∈ Ω−
Λ for some Λ ⋐ Zd. We also

defined, for each Λ ⋐ Zd, Λ(0) as the unique unbounded connected component of Λc. The volume
of Λ is defined as V (Λ) := Zd \ Λ(0). The interior of Λ is I(Λ) := Λc \ Λ(0).

The usual definition of contours in Pirogov-Sinai theory considers only the connected subsets
of the boundary ∂σ. We have to proceed differently for long-range models since every point in the
lattice interacts with all the others. The definition below, which was presented in [1], allows contours
to be disconnected, and in return, we can control the interaction between two contours.

Definition 4.2.2. Fix real numbers M,a, r > 0. For each A ⋐ Zd, a set Γ(A) := {γ : γ ⊂ A} is
called an (M,a, r)-partition when the following conditions are satisfied:

(A) They form a partition of A, i.e.,
⋃

γ∈Γ1(A) γ = A and γ∩γ′ = ∅ for distinct elements of Γ1(A).
Moreover, each γ′ is contained in only one connected component of (γ)c.
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(B) For all γ ∈ Γ1(A) there exist 1 ≤ n ≤ 2r − 1 and a family of subsets (γk)1≤k≤n satisfying

(B1) γ =
⋃

1≤k≤n γk,

(B2) For all distinct γ, γ′ ∈ Γ1(A),

dist(γ, γ′) > M min

{
max
1≤k≤n

diam(γk), max
1≤j≤n′

diam(γ′j)

}a

, (4.2.1)

where (γ′j)1≤j≤n′ is the family given by item (B1) for γ′.

This partition was used to define the contours in [1], and they are enough to control the energy
of erasing a contour. Moreover, by suitably constructing these partitions, with a proper choice
of the constants M,a, and r, the authors can control the number of contours with a fixed size
surrounding the origin. These are the two main ingredients of the Peierls’ argument. We introduce
a new partition, that has a much simpler definition. This partition will also be constructed by a
multiscale procedure, described next.

Definition 4.2.3. Let M > 0 and a, δ > d. For each A ⋐ Zd, a set Γ(A) := {γ : γ ⊂ A} is called
a (M,a, δ)-partition when the following two conditions are satisfied.

(A) They form a partition of A, i.e.,
⋃

γ∈Γ(A) γ = A and γ ∩ γ′ = ∅ for distinct elements of Γ(A).

(B) For all γ, γ′ ∈ Γ(A)

d(γ, γ′) > M min
{
|V (γ)|, |V (γ′)|

}a
δ . (4.2.2)

Remark 4.2.4. Our construction and the control of the energy works for any d < δ < a(α−d)
2 and

a > 2(d+1)
(α−d)∧1 . To simplify the calculations, we will take δ = d + 1 and a := a(α, d) = 3(d+1)

(α−d)∧1 from
now on, so a

δ = 3
(α−d)∧1 and a (M,a, δ)-partition will be called (M,a)-partition.

In Figure 4.4 we give an example of a region A ⋐ Zd that is only one contour using the (M,a, r)-
partition of [1], but can be partitioned into multiple components to form a (M,a)-partition.

r = 2

M2raℓ

2rℓ

M2raℓ

2rℓ2rℓ

M2raℓ

2rℓ

(M,a) − partition

Γ(A) = {A1, A2, A3, A4}

(M,a, r) − partition

{A}

A1 A2 A3 A4

A

A

Figure 4.4: We wish to partition the gray area A. Each cube has side 2rℓ and the distance between each
other is M2raℓ. With r = 2, 2r − 1 = 3 and therefore no partition into smaller parts is a (M,a, r)-partition.
However, the partition into connected components {A1, A2, A3, A4} is an (M,a)-partition, since V (Ai)

a
δ =

2ra
d
δ ℓ < 2raℓ whenever δ > d.
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The existence of a (M,a)-partition for any A ⋐ Zd does not depend on the choice of M,a > 0.
However, to guarantee the existence of phase transition, we have to choose particular values for
these parameters, see Remark 4.2.4. Later on, in Proposition 4.2.14, M will be taken large enough.

We write Γ(σ) := Γ(∂σ) for a (M,a)-partition of ∂σ. In general, there is more than one (M,a)-
partition for each region A ∈ Zd. Given two partitions Γ and Γ′ of a set A, we say that Γ is finer
than Γ′, and denote Γ ⪯ Γ′, if for every γ ∈ Γ there is γ′ ∈ Γ′ with γ ⊆ γ′. The next proposition
shows that the finest (M,a)-partition exists.

Proposition 4.2.5. For every A ⋐ Zd, there is a finest (M,a)-partition.

Proof. Given any two (M,a)-partitions Γ(A) and Γ′(A), consider

Γ ∩ Γ′ := {γ ∩ γ′ : γ ∈ Γ(A), γ′ ∈ Γ′(A), γ ∩ γ′ ̸= ∅}.

Then, Γ∩Γ′ is a (M,a)-partition of A finer than Γ(A) and Γ′(A). Indeed, given γ1∩γ′1, γ2∩γ′2 ∈
Γ ∩ Γ′,

d(γ1 ∩ γ′1, γ2 ∩ γ′2) ≥ d(γ1, γ2) ≥M min {|V (γ1)|, |V (γ2)|}
a

d+1

≥M min {|V (γ1 ∩ γ′1)|, |V (γ2 ∩ γ′2)|}
a

d+1 .

As the number of (M,a)-partitions is finite, we construct the finest one by intersecting all of
them.

From now on, when taking a (M,a)-partition Γ(A), we will always assume it is the finest. It is
easy to see that the finest (M,a)-partition Γ(A) satisfies the following property:

(A1) For any γ, γ′ ∈ Γ(A), γ′ is contained in only one connected component of (γ)c.

Property (A1) is essential to define labels as in [1]. It implies in particular that γ′ is contained
in the unbounded component of γc if and only if V (γ) ∩ V (γ′) = ∅. See Figure 4.5 for an example
of partition not satisfying (A1).

γ′′

γ′ γ′

Figure 4.5: An example of how Condition (A1) works: considering γ′ the dotted region and γ′′ the grey
region, one can readily see that γ′ intersects two different connected components of (γ′′)c. To turn this into
a partition satisfying condition (A1), one should separate γ′ in two different sets of Γ(A).

Counting the number of contours surrounding zero using the finest (M,a)-partition may be
troublesome since the definition provides very little information on these objects. To extract good
properties of these contours, we establish a multiscale procedure, depending on a parameter r, that
creates a (M,a)-partition of any given set. To define this procedure, we introduce some notation.
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For any x ∈ Zd and m ≥ 0,

Cm(x) :=

(
d∏

i=1

[2mxi, 2m(xi + 1))

)
∩ Zd, (4.2.3)

is the cube of Zd centered at 2mx + 2m−1 − 1
2 with side length 2m − 1, see Figure 3.1. Any such

cube is called an m-cube. As all cubes in this paper are of this form, with centers 2mx+ 2m−1 − 1
2

and x ∈ Zd, we will often omit the point x in what follows, writing Cm for an m-cube instead of
Cm(x). An arbitrary collection of m-cubes will be denoted Cm and BCm

:= ∪C∈CmC is the region
covered by Cm. We denote by Cm(Λ) the covering of Λ ⋐ Zd with the smallest possible number of
m-cubes.

For each n ≥ 0, define the graph Gn(Λ) = (Vn(Λ), En(Λ)) with vertex set Vn(Λ) = Cn(Λ) and
En(Λ) = {(Cn, C

′
n) : d(Cn, C

′
n) ≤M2an}. Let Gn(Λ) be the connected components of Gn(Λ). Given

G = (V,E) ∈ Gn(Λ), we denote ΛG := Λ∩BV the area of Λ covered by G. In the next proposition,
we will introduce a procedure that can generate a (M,a)-partition that can be nontrivial.

Proposition 4.2.6. For any r > 0 and A ⋐ Zd, there is a possibly non-trivial (M,a)-partition
Γr(A).

Proof. Given r > 0 and A ⋐ Zd, Γr(A) is the partition of A created by the following procedure. In
the first step we consider A1 := A and we take the connected components of G ∈ Gr(A1) such that
AG

1 have small density, that is, consider

P1 := {G ∈ Gr(A1) : |V (AG
1 )| ≤ 2r(d+1)}.

Then, the subsets to be removed in the first step are Γr
1(A) := {AG

1 : G ∈ P1} and the set left to
partition is A2 := A1 \

⋃
γ∈Γr

1(A)

γ. We can repeat this procedure inductively by taking

Pn := {G ∈ Grn(An) : |V (AG
n )| ≤ 2rn(d+1)},

then define Γr
n(A) := {AG

n : G ∈Pn} and An+1 := An \
⋃

γ∈Γr
n(A)

γ. As the cubes invade the lattice,

this procedure stops, in the sense that for some N large enough, Pn = ∅ for all n ≥ N . We then
define Γr(A) := ∪n≥0Γ

r
n(A). By this construction, Γr(A) is clearly a partition of A, so condition

(A) follows. To show condition (B), take γ, γ′ ∈ Γr(A). Let m ≥ n ≥ 1 be such that γ ∈ Γr
n(A)

and γ′ ∈ Γr
m(A). Then,

d(γ, γ′) ≥M2rna ≥M
(
2rn(d+1)

) a
d+1 ≥M |V (γ)|

a
d+1 .

If m = n, the same inequality holds for |V (γ′)| and condition (B) holds. When m > n, γ′ was not
removed at step n, so |V (γ′)| > 2rn(d+1) ≥ |V (γ)|, so |V (γ)| = min{|V (γ)|, |V (γ′)|} and again we
get condition (B).

The construction in Proposition 4.2.6 works for any r > 0, but we need to take r large enough
for the computations in Section 3 to work. So we fix r := 4⌈log2(a + 1)⌉ + d + 1, where ⌈x⌉ is the
smallest integer greater than or equal to x. This r is taken larger than the one in [1] to simplify some
calculations. All our computations should work with the previous choice of r, with some adaptation.
Next, we define the label of a contour.

Definition 4.2.7. For Λ ⊂ Zd, the edge boundary of Λ is ∂Λ = {{x, y} ⊂ Zd : |x − y| = 1, x ∈
Λ, y ∈ Λc}. The inner boundary of Λ is ∂inΛ := {x ∈ Λ : ∃y ∈ Λc such that |x − y| = 1} and the
external boundary is ∂exΛ := {x ∈ Λc : ∃y ∈ Λ such that |x− y| = 1}

Remark 4.2.8. The usual isoperimetric inequality states that 2d|Λ|
d−1
d ≤ |∂Λ|. The inner boundary
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and the edge are related by |∂inΛ| ≤ |∂Λ| ≤ 2d|∂inΛ|, so we can write the inequality as |Λ|
d−1
d ≤

|∂inΛ|.

To define the label of a contour, the naive definition would be to take the sign of the inner
boundary of the set γ. However, this cannot be done since this inner boundary may have different
signs, see Figure 4.6.

γ

γ

Figure 4.6: An example of Γ(σ) = {γ}, with γ having regions in the inner boundary with different signs. In
the figure, the grey region are for incorrect points, the black and white borders corresponds to, respectively,
+1 and −1 labels.

For any Λ ⋐ Zd, its connected components are denoted Λ(1), . . . ,Λ(n). Given γ ∈ Γ(σ), a
connected component γ(k) is external if V (γ(j)) ⊂ V (γ(k)), for all other connected components γ(j)

satisfying V (γ(j)) ∩ V (γ(k)) ̸= ∅. Denoting

γext =
⋃
k≥1

γ(k) is external

γ(k),

it is shown in [1, Lemma 3.8] that the sign of σ is constant in ∂inV (γext). The label of γ is the
function labγ : {(γ)(0), I(γ)(1) . . . , I(γ)(n)} → {−1,+1} defined as: labγ(I(γ)(k)) is the sign of the
configuration σ in ∂inV (I(γ)(k)), for k ≥ 1, and labγ((γ)

(0)) is the sign of σ in ∂inV (γext). We then
define the contours.

Definition 4.2.9. Given a configuration σ with finite boundary, its contours γ are pairs (γ, labγ),
where γ ∈ Γ(σ) and labγ is the label of γ as defined above. The support of the contour γ is defined
as sp(γ) := γ and its size is given by |γ| := |sp(γ)|.

Another important definition is of the interior of a contour γ, given by I(γ) := I(sp(γ)). This
notion of interior and volume works as expected since I(γ) = V (sp(γ)) \ sp(γ). We also split the
interior according to its labels as

I±(γ) =
⋃
k≥1,

labγ(I(γ)
(k))=±1

I(γ)(k).

To simplify the notation, we write V (γ) := V (sp(γ)). Different from Pirogov-Sinai theory, where
the interiors of contours are a union of simply connected sets, the interior I(γ) is at most the union
of connected sets, that is, they may have holes.

Moreover, there is no bijection between families of contours Γ = {γ1, . . . , γn} and configurations.
Usually, more than one configuration can have the same boundary. First, Γ may not even form a
(M,a)-partition. Even so, their labels may not be compatible. We say that Γ is compatible when
there exists a configuration σ with contours precisely Γ.
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γ2

γ1

γ3

Figure 4.7: Here we have two different cases of incompatibility. First, γ1 and γ2 are too close to be split in
two, thus they should be the same contour. Moreover, γ1 and γ3 are not compatible since their labels do not
match.

A contour γ in Γ is external if its external connected components are not contained in any other
V (γ′), for γ′ ∈ Γ \ {γ}. Taking I±(Γ) := ∪γ∈ΓI±(γ) and V (Γ) := ∪γ∈ΓV (γ), for each Λ ⋐ Zd we
consider the sets

E±Λ := {Γ = {γ1, . . . , γn} : Γ is compatible,γi is external, labγi((γi)
(0)) = ±1, V (Γ) ⊂ Λ},

of all external compatible families of contours with external label ± contained in Λ. When we write
γ ∈ E±Λ we mean {γ} ∈ E±Λ . Most of the time the set Λ will play no role, so we will often omit the
subscript.

The first step for a Peierls-type argument to hold is to control the number of contours with a
fixed size. Consider C0(n) := {γ ∈ E+Λ : 0 ∈ V (γ), |γ| = n}, the set of contours with fixed size with
the origin in its volume, and C0 := ∪n≥1C0(n).

We will later show in Corollary 4.4.13 that the size of the set C0(n) is exponentially bounded
depending on n. Before we start the estimations of the Peierls arguments, let us present a property
of the new contours that, despite not being necessary in our results, highlights a major difference
between our construction and the contours of [1].

Proposition 4.2.10. There exists a constant c := c(d, a) such that all σ ∈ Ω and γ ∈ Γ(σ),

diam(γ) ≤ c|γ|1+
a

d+1
(1+ 1

d−1
)

Proof. Let j ≥ 1 be such that γ ∈ Γr
j(σ), that is, γ is removed in the j-th step of the construction.

Then, |V (γ)| ≥ 2r(d+1)(j−1). For any Λ,Λ′ ⋐ Zd,

diam(Λ ∪ Λ) ≤ diam(Λ) + diam(Λ′) + dist(Λ,Λ′),

and we can always extract a vertex from a connected graph in a way that the induced sub-graph
is still connected, by removing a leaf of a spanning tree. Using this and the fact that Grj =
(Crj(γ), Erj(γ)) is connected, we can bound

diam(γ) ≤ diam(BCrj
(γ)) ≤ |Crj(γ)|(d2rj +M2raj)

≤ 2Md2raj |γ| = 2Md2ra2ra(j−1)|γ| ≤ 2Md2ra|V (γ)|
a

d+1 |γ|

≤ 2Md2ra|γ|1+
a

d+1
(1+ 1

d−1
),

what concludes our proof for c = 2Md2ra.

Repeating this argument for the contours defined by (M,a, r)-partition, we would get a sub-
exponential bound on the diameter. The only difference in the argument is that we must replace
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|V (γ)| ≥ 2r(d+1)(j−1) by |V (γ)| ≥ 2r. We also need to use that j ≤ nlog2(a)/r−d−1, otherwise, by
Proposition 4.4.9, we would have only one r(j − 1)-cube covering γ, and therefore j would not be
the step the contour was removed.

A key step of a Peierls-type argument is to control the energy cost of erasing a contour. Given
Γ ∈ E+, the configurations compatible with Γ are Ω(Γ) := {σ ∈ Ω+

Λ : Γ ⊂ Γ(σ)}. The map
τΓ : Ω(Γ)→ Ω+

Λ defined as

τΓ(σ)x =


σx if x ∈ I+(Γ) ∪ V (Γ)c,

−σx if x ∈ I−(Γ),

+1 if x ∈ sp(Γ),

(4.2.4)

erases a family of compatible contours, since the spin-flip preserves incorrect points but transforms
−-correct points into +-correct points. Define, for B ⋐ Zd, the interaction

FB :=
∑
x∈B
y∈Bc

Jxy.

In [1] it was proved the following proposition:

Proposition 4.2.11. For M large enough, there exists a constant c2 := c2(α, d) > 0, such that for
any configuration σ ∈ Ω and γ ∈ Γ(σ), with γ external and 0 ∈ V (γ), it holds that

H+
Λ;0(σ)−H+

Λ;0(τγ(σ)) ≥ c2|γ|. (4.2.5)

We now need to extend this proposition to our contours. To do so, we need some auxiliary
lemmas.

Given B ⊂ Zd and σ ∈ Ω with ∂σ finite, let ΓInt(σ,B) be the contours γ′ with sp(γ′) ∈ Γ(σ)
and enclosed by B, that is, sp(γ′) ⊂ B. Define also ΓExt(σ,B) as the contours γ′ with sp(γ′) ∈ Γ(σ)
outside B, that is, sp(γ′) ⊂ Bc.

Lemma 4.2.12. Given σ ∈ Ω with ∂σ finite and a contour γ with sp(γ) ∈ Γ(σ) , there is a constant
κ
(1)
α := κ

(1)
α (α, d), such that, for B = sp(γ) or B = I−(γ) we have∑

x∈B
y∈V (ΓExt(σ,B)\{γ})

Jxy ≤ κ(1)α

[
|B|

Mα−d
|V (γ)|

a
d+1

(d−α) +
FB

M

]
, (4.2.6)

Proof. Fixed σ and B, we drop them from the notation, so ΓExt := ΓExt(σ,B). Splitting ΓExt \ {γ}
into Υ1 := {γ′ ∈ ΓExt \ {γ} : |V (γ′)| ≥ |V (γ)|} and Υ2 = ΓExt \ (Υ1 ∪ γ) we get∑

x∈B
y∈V (ΓExt\{γ})

Jxy ≤
∑
x∈B

y∈V (Υ1)

Jxy +
∑
x∈B

y∈V (Υ2)

Jxy.

For any γ′ ∈ Υ1, d(γ, γ′) > M |V (γ)|
a

d+1 . Moreover, V (γ′) ⊂ V (γ)c, otherwise we would have
a region contained in V (γ) with volume bigger than |V (γ)|. Hence, for any x ∈ B and y ∈ V (γ′),
with γ′ ∈ Υ1,

d(x, y) ≥ d(γ, γ′) ≥M |V (γ)|
a

d+1 .

We can then bound ∑
x∈B

y∈V (Υ1)

Jxy ≤
∑
x∈B

y:|y−x|>R

Jxy = |B|
∑

y:|y|>R

J0y, (4.2.7)

with R := M |V (γ)|
a

d+1 .
Defining sd(n) := |{x ∈ Zd : |x| = n}|, it is known that sd(n) ≤ 22d−1ed−1nd−1, see for example

[1, Lemma 4.2]. Using the integral bound of the sum, we can show that
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∑
y:|y|>R

J0y = J
∑
n>R

sd(n)

nα
≤ J22d−1ed−1

∑
n>R

1

nα−d+1

≤ J22d−1ed−1

∫ ∞

⌊R⌋

1

xα−d+1
dx ≤ J22d−1ed−1

(α− d)
⌊R⌋d−α ≤ J2d−1+αed−1

(α− d)
Rd−α.

(4.2.8)

Together with (4.2.7), this yields

∑
x∈B

y∈V (Υ1)

Jxy ≤ |B|
J2d−1+αed−1

(α− d)

[
M |V (γ)|

a
d+1

]d−α

≤ J2d−1+αed−1

(α− d)

|B|
Mα−d

|V (γ)|
a

d+1
(d−α). (4.2.9)

To bound the other term, split Υ2 into layers Υ2,m := {γ′ ∈ Υ2 : |V (γ′)| = m}, for 1 ≤ m ≤
|V (γ)| − 1. Denoting yγ′,x ∈ sp(γ′) the point satisfying d(x, sp(γ′)) = d(x, yγ′,x), we can bound

∑
x∈B

y∈V (Υ2,m)

Jxy ≤
∑
x∈B

γ′∈Υ2,m

|V (γ′)|Jx,yγ′,x ≤ m
∑
x∈B

γ′∈Υ2,m

Jx,yγ′,x .

Consider the minimal paths λx,yγ′,x that connects x and yγ′,x. Denoting λ′
x,yγ′,x

the path re-

stricted to the last M
3 m

a
d+1 steps, we have

M

3
m

a
d+1Jx,yγ′,x ≤

∑
y∈λ′

x,yγ′,x

Jxy. (4.2.10)

Since d(x, yγ′,x) ≥ d(γ, γ′) > Mm
a

d+1 , and d(yγ′,x, yγ′′,x) > d(γ′, γ′′) > Mm
a

d+1 for any γ′, γ′′ ∈
Υ2,m, the balls with radius M

3 m
a

d+1 centered in yγ′,x, for all γ′ ∈ Υ2,m are disjoint and are contained
in Bc. Hence, the paths λ′

x,yγ′,x
and λ′

x,yγ′′,x
are disjoint, for all γ′, γ′′ ∈ Υ2,m, and are in Bc.

Therefore, summing equation (4.2.10) over all points contours in Υ2,m we get∑
γ′∈Υ2,m

Jx,yγ′,x ≤
3

Mm
a

d+1

∑
γ′∈Υ2,m

∑
y∈λ′

x,yγ′,x

Jxy ≤
3

Mm
a

d+1

∑
y∈Bc

Jxy,

and we recuperate the desired inequality by summing over x ∈ B we conclude that∑
x∈B

γ′∈Υ2,m

Jx,yγ′,x ≤
3

Mm
a

d+1

FB.

That gives us

∑
x∈B

y∈V (Υ2)

Jxy ≤
|V (γ)|−1∑
m=1

3

Mm
a

d+1
−1

FB ≤
3ζ( a

d+1 − 1)

M
FB, (4.2.11)

what concludes the proof for κ
(1)
α := J2d−1+αed−1

(α−d) + 3ζ( a
d+1 − 1).

Corollary 4.2.13. For any configuration σ ∈ Ω and γ ∈ Γ(σ),
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∑
x∈sp(γ)

y∈V (Γ(σ)\{γ})

Jxy ≤ 2κ(1)α

Fsp(γ)

M (α−d)∧1 , (4.2.12)

∑
x∈I−(γ)

y∈V (ΓExt(σ,I−(γ))\{γ})

Jxy ≤ 2κ(1)α

FI−(γ)

M (α−d)∧1 , (4.2.13)

and ∑
x∈I−(γ)c

y∈V (ΓInt(σ,I−(γ)))

Jxy ≤ κ(1)α

FI−(γ)

M
(4.2.14)

Proof. The first inequality is a direct application of the Lemma 4.2.12 for B = sp(γ), once we note
that ΓExt(σ,B) = Γ(σ)\{γ} and, our choice of a, |γ|

|V (γ)|
a

d+1
(α−d) ≤

|γ|
|V (γ)| ≤ 1. The second inequality

is likewise a direct application of Lemma 4.2.12 for B = V (γ), since |V (γ)|
|V (γ)|

a
d+1

(α−d) ≤
|V (γ)|
|V (γ)| ≤ 1. For

the last inequality, we cannot apply Lemma 4.2.12 directly. However, the proof works in the similar
steps when we take B = I−(γ)

c. Moreover, notice that V (ΓInt(σ, I−(γ))) = V (ΓExt(σ, I−(γ)
c)) and,

for all γ′ ∈ ΓInt(σ, I−(γ)), |V (γ′)| < |V (γ)|. In the notation of the proof of Lemma 4.2.12, this
means that Υ2 = ΓExt(σ, I−(γ)

c), so equation (4.2.11) yields∑
x∈I−(γ)c

y∈V (ΓExt(σ,I−(γ)c))

Jxy ≤ ζ
( a

d+ 1
− 1
)FI−(γ)c

M
.

Since FI−(γ)c = FI−(γ) and ζ( a
d+1 − 1) ≤ κ

(1)
α , we get the desired bound.

We are ready to prove the main proposition of this section:

Proposition 4.2.14. For M large enough, there exists a constant c2 := c2(α, d) > 0, such that for
any Λ ⋐ Zd, γ ∈ E+Λ , and σ ∈ Ω(γ) it holds that

H+
Λ;0(σ)−H+

Λ;0(τγ(σ)) ≥ c2
(
|γ|+ FI−(γ) + Fsp(γ)

)
. (4.2.15)

Proof. Fix some σ ∈ Ω(γ). We will denote τγ(σ) := τ and Γ(σ) := Γ throughout this proposition.
The difference between the Hamiltonians is

H+
Λ (σ)−H+

Λ (τ) =
∑

{x,y}⊂Λ

Jxy(τxτy − σxσy) +
∑
x∈Λ
y∈Λc

Jxy(τx − σx)

=
∑

{x,y}⊂V (Γ)

Jxy(τxτy − σxσy) +
∑

x∈V (Γ)
y∈Λ\V (Γ)

Jxy(τx − σx) +
∑

x∈V (Γ)
y∈Λc

Jxy(τx − σx)

=
∑

{x,y}⊂V (Γ)

Jxy(τxτy − σxσy) +
∑

x∈V (Γ)
y∈V (Γ)c

Jxy(τx − σx),

(4.2.16)

where the second equality is due the fact that outside V (Γ) the configurations σ and τ are equal
to +1. Since τx = σx for x ∈ V (Γ \ {γ}) we have∑
{x,y}⊂V (Γ)

Jxy(τxτy − σxσy) +
∑

x∈V (Γ)
y∈V (Γ)c

Jxy(σx − τx) =
∑

{x,y}⊂V (γ)

Jxy(τxτy − σxσy) +
∑

x∈V (γ)
y∈V (γ)c

Jxy(τxσy − σxσy).
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We focus now on the sum involving the terms {x, y} ⊂ V (γ). We can split it accordingly with
V (γ) = sp(γ) ∪ I(γ). Then,∑
{x,y}⊂V (γ)

Jxy(τxτy − σxσy) =
∑

{x,y}⊂sp(γ)

Jxy(τxτy − σxσy) +
∑

{x,y}⊂I(γ)

Jxy(τxτy − σxσy) +
∑

x∈sp(γ)
y∈I(γ)

Jxy(τxτy − σxσy)

=
∑

{x,y}⊂sp(γ)

Jxy(1− σxσy)− 2
∑

x∈I−(γ)
y∈I+(γ)

Jxyσxσy +
∑

x∈sp(γ)
y∈I(γ)

Jxy((−1)1I−(γ)(y)σy − σxσy),

where for the second equality we used the definition of the map τγ and 1I−(γ)(y) = 1 if y ∈ I−(γ)
and 1I−(γ)(y) = 0 if y ∈ I+(γ). For the same reason, we have∑

x∈V (γ)
y∈V (γ)c

Jxy(τxσy − σxσy) =
∑

x∈sp(γ)
y∈V (γ)c

Jxy(σy − σxσy)− 2
∑

x∈I−(γ)
y∈V (γ)c

Jxyσxσy

Putting everything together and using that ±σy − σxσy = 21{σx ̸=σy} − 21{σy=∓1} we get

H+
Λ (σ)−H+

Λ (τ) =
∑

x∈sp(γ)
y∈Zd

Jxy1{σx ̸=σy} +
∑

x∈sp(γ)
y∈sp(γ)c

Jxy1{σx ̸=σy} − 2
∑

x∈I−(γ)
y∈B(γ)

Jxyσxσy

− 2
∑

x∈sp(γ)
y∈B(γ)

Jxy1{σy=−1} − 2
∑

x∈sp(γ)
y∈I−(γ)

Jxy1{σy=+1}, (4.2.17)

with B(γ) := I+(γ) ∪ V (γ)c.
We first analyze the last two negative terms. It holds that∑

x∈sp(γ)
y∈B(γ)

Jxy1{σy=−1} +
∑

x∈sp(γ)
y∈I−(γ)

Jxy1{σy=+1} ≤
∑

x∈sp(γ)
y∈V (Γ(σ)\{γ})

Jxy,

since the characteristic function can only be non-zero in the volume of other contours. By Corollary
4.2.13, ∑

x∈sp(γ)
y∈V (Γ(σ)\{γ})

Jxy ≤ 2κ(1)α

Fsp(γ)

M (α−d)∧1 . (4.2.18)

For the negative term left, taking Γ′ the contours inside I−(γ) and Γ′′ = Γ(σ) \ (Γ′ ∪ γ) we can
write ∑

x∈I−(γ)
y∈B(γ)

Jxyσxσy =
∑

x∈V (Γ′)
y∈V (Γ′′)

Jxyσxσy +
∑

x∈V (Γ′)
y∈B(γ)\V (Γ′′)

Jxyσx

−
∑

x∈I−(γ)\V (Γ′)
y∈V (Γ′′)

Jxyσy −
∑

x∈I−(γ)\V (Γ′)
y∈B(γ)\V (Γ′′)

Jxy.

We can write the first term as∑
x∈V (Γ′)
y∈V (Γ′′)

Jxyσxσy =
∑

x∈V (Γ′)
y∈V (Γ′′)

Jxy −
∑

x∈V (Γ′)
y∈V (Γ′′)

2Jxy1{σx ̸=σy}.
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Similarly, we have∑
x∈V (Γ′)

y∈B(γ)\V (Γ′′)

Jxyσx −
∑

x∈I−(γ)\V (Γ′)
y∈V (Γ′′)

Jxyσy =
∑

x∈V (Γ′)
y∈B(γ)\V (Γ′′)

2Jxy1{σx=+1} −
∑

x∈V (Γ′)
y∈B(γ)\V (Γ′′)

Jxy

+
∑

x∈I−(γ)\V (Γ′)
y∈V (Γ′′)

2Jxy1{σy=−1} −
∑

x∈I−(γ)\V (Γ′)
y∈V (Γ′′)

Jxy.

Putting the equations together we have∑
x∈I−(γ)
y∈B(γ)

Jxyσxσy =
∑

x∈V (Γ′)
y∈V (Γ′′)

Jxy +
∑

x∈I−(γ)\V (Γ′)
y∈V (Γ′′)

2Jxy1{σy=−1} +
∑

x∈V (Γ′)
y∈B(γ)\V (Γ′′)

2Jxy1{σx=+1}

−
∑

x∈I−(γ)\V (Γ′)
y∈V (Γ′′)

Jxy −
∑

x∈V (Γ′)
y∈V (Γ′′)

2Jxy1{σx ̸=σy} −
∑

x∈I−(γ)
y∈B(γ)\V (Γ′′)

Jxy. (4.2.19)

We can bound the first two terms by∑
x∈V (Γ′)
y∈V (Γ′′)

Jxy +
∑

x∈I−(γ)\V (Γ′)
y∈V (Γ′′)

2Jxy1{σy=−1} ≤ 2
∑

x∈I−(γ)
y∈V (Γ′′)

Jxy ≤ 4κ(1)α

FI−(γ)

M (α−d)∧1 . (4.2.20)

In the second inequality, we are applying Corollary 4.2.13. For the next term, since B(γ) \V (Γ′′) ⊂
I−(γ)

c, we can bound ∑
x∈V (Γ′)

y∈B(γ)\V (Γ′′)

2Jxy1{σy=+1} ≤
∑

x∈V (Γ′)
y∈I−(γ)c

2Jxy ≤ 2κ(1)α

FI−(γ)

M
. (4.2.21)

In the last inequality, we are again applying Corollary 4.2.13.
For the negative terms in (4.2.19), we bound the term containing 1{σx ̸=σx} by 0 and multiply

the remaining terms by 1
(2d+1)2α+2 , getting

∑
x∈I−(γ)\V (Γ′)

y∈V (Γ′′)

Jxy+
∑

x∈V (Γ′)
y∈V (Γ′′)

2Jxy1{σx ̸=σy}+
∑

x∈I−(γ)
y∈B(γ)\V (Γ′′)

Jxy ≥
1

(2d+ 1)2α+2

 ∑
x∈I−(γ)\V (Γ′)

y∈V (Γ′′)

Jxy +
∑

x∈I−(γ)
y∈B(γ)\V (Γ′′)

Jxy

 .

Using the second inequality of (4.2.20), we have∑
x∈I−(γ)\V (Γ′)

y∈V (Γ′′)

Jxy +
∑

x∈I−(γ)
y∈B(γ)\V (Γ′′)

Jxy = FI−(γ) −
∑

x∈V (Γ′)
y∈V (Γ′′)

Jxy −
∑

x∈I−(γ)
y∈sp(γ)

Jxy

≥
(
1− 2κ

(1)
α

M (α−d)∧1

)
FI−(γ) − Fsp(γ).

(4.2.22)
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Plugging inequalities (4.2.20), (4.2.21) and (4.2.22) back in (4.2.19) we get

∑
x∈I−(γ)
y∈B(γ)

Jxyσxσy ≤ 6κ(1)α

FI−(γ)

M (α−d)∧1 +
2κ

(1)
α

(2d+ 1)2α+1

FI−(γ)

M (α−d)∧1 −
1

(2d+ 1)2α+1
FI−(γ) +

1

(2d+ 1)2α+1
Fsp(γ)

≤

(
6κ(1)α +

2κ
(1)
α

(2d+ 1)2α+1

)
FI−(γ)

M (α−d)∧1 −
FI−(γ)

(2d+ 1)2α+1
+

Fsp(γ)

(2d+ 1)2α+1

≤ 8κ(1)α

FI−(γ)

M (α−d)∧1 +
Fsp(γ) − FI−(γ)

(2d+ 1)2α+1
(4.2.23)

For the positive terms in (4.2.17), we can use the triangular inequality to bound, for every
x, y ∈ Zd, ∑

|x−x′|≤1

Jx′y

Jxy
=

∑
|x−x′|≤1

|x− y|α

|x′ − y|α
≤

∑
|x−x′|≤1

(
|x− x′|+ |x′ − y|

|x′ − y|

)α

≤
∑

|x−x′|≤1

(
1

|x′ − y|
+ 1

)α

≤ (2d+ 1)2α.

This shows that
Jxy ≥

1

(2d+ 1)2α

∑
|x−x′|≤1

Jx′y,

and therefore∑
x∈sp(γ)
y∈Zd

Jxy1{σx ̸=σy} +
∑

x∈sp(γ)
y∈sp(γ)c

Jxy1{σx ̸=σy} ≥
1

(2d+ 1)2α
(
Jcα|γ|+ Fsp(γ)

)
, (4.2.24)

with cα =
∑

y∈Zd\0 |y|
−α. Plugging (4.2.18), (4.2.23) and (4.2.24) back in (4.2.17) we get

H+
Λ (σ)−H+

Λ (τ) ≥ Jcα
(2d+ 1)2α

|γ|+

(
1

(2d+ 1)2α+1
− 16κ

(1)
α

M (α−d)∧1

)
FI−(γ) +

(
1

(2d+ 1)2α+1
− 4κ

(1)
α

M (α−d)∧1

)
Fsp(γ),

what proves the proposition for M (α−d)∧1 > 16κ
(1)
α 2α+1(2d+ 1).

4.3 Joint measure and bad events

In the short-range case, the spins that need to be flipped to erase a contour are precisely the ones
in the interior of it. This is not the case for the long-range model, so we make a slight modification
in the argument, and instead of performing the same flips in both spaces, we flip the external field
only on I−(γ). Doing this, not only does the partition function change, but we also get an extra
cost when comparing the original energy with the energy after performing such a transformation.
This extra term depends only on the external field in sp(γ).

In this section, we define the measure in the joint space and show that, with high probability,
the change of partition function resulting from such flipping is upper-bounded by the size of the
support |γ|, with high probability.

Given Λ ⊂ Zd, a contour associated with a configuration in Ω+
Λ is not always inside Λ. To avoid

this, we consider the event ΘΛ := {σ : σx is +-correct for all x ∈ ∂inΛ} and the conditional measure

ν+Λ;β,εh(A) := µ+
Λ;β,εh(A|ΘΛ) (4.3.1)
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for any A ⊂ Ω measurable. First, we show that ν+Λ;β,εh is also a local Gibbs measure. To do this,
we need the so-called Markov property of the local Gibbs measures, which states that, for any
Λ1 ⊂ Λ2 ⋐ Zd, η ∈ Ω and ω ∈ Ωη

Λ2
,

µη
Λ2;β,εh

( · | σx = ωx, ∀x ∈ Λ2 \ Λ1) = µω
Λ1;β,εh(·).

Consider the set Λ′ = {x ∈ Λ : d(x,Λc) > 2}, that is the set Λ after we remove the sites at the
inner boundary and all of its neighbors. Then, ΘΛ = {σ ∈ Ω+

Λ : σx = +1, ∀x ∈ Λ \ Λ′}. Using the
Markov property, for every A ⊂ Ω measurable we have

ν+Λ;β,εh(A) = µ+
Λ;β,εh(A|σx = +1, ∀x ∈ Λ \ Λ′) = µ+

Λ′;β,εh(A).

This not only shows that ν+Λ;β,εh is a local Gibbs measure, but it also that limn→∞ ν+Λn;β,εh
= µ+

β,εh,
with the limit being taken over any sequence (Λn)n≥0 invading Zd. Define the joint measure for
(σ, h) as

Q+
Λ;β,ε(σ ∈ A, h ∈ B) :=

∫
B
ν+Λ;β,εh(A)dP(h),

for A ⊂ Ω measurable and B ⊂ RΛ a Borel set. This measure QΛ;β,ε has density

g+Λ;β,ε(σ, h) :=
∏
x∈Λ

1√
2π

e−
1
2
h2
x × ν+Λ;β,εh(σ).

The operation τγ used to remove a contour γ ∈ Γ(σ) can be written as a particular case of the
following one: given A ⊂ Zd, take τA : RZd −→ RZd as

(τA(σ))x :=

{
−σx if x ∈ A,

σx otherwise,
(4.3.2)

for every x ∈ Zd. Defining sp(γ, σ)± := {x ∈ sp(γ) : σx = ±1}, the transformation that erases a
contour γ is τγ(σ) = τI−(γ)∪sp−(γ,σ)(σ).

The main idea used in the proof of phase transition in [31] is to make the Peierls’ argument on
the measure QΛ;β,ε, and perform in the external field the same flips one does in the configuration
when erasing a contour. Formally, in [31] they compare the density g+Λ;β,ε(σ, h) with the density after
erasing a contour γ ∈ Γ(σ), and performing the same flips on the external field. For the short-range
model, the spins that need to be flipped to erase a contour are precisely the ones in the interior of
it. This is not the case for the long-range setting, so we compare g+Λ;β,ε(σ, h) with the density after
erasing γ and flipping the external field only in I−(γ), getting

g+Λ;β,ε(σ, h)

g+Λ;β,ε(τγ(σ), τI−(γ)(h))
= exp {βH+

Λ,ετI−(γ)(h)
(τγ(σ))− βH+

Λ,εh(σ)}
Z+
Λ;β,ε(τI−(γ)(h))

Z+
Λ;β,ε(h)

≤ exp {−βc2|γ| − 2β
∑

x∈sp−(γ,σ)

εhx}
Z+
Λ;β,ε(τI−(γ)(h))

Z+
Λ;β,ε(h)

. (4.3.3)

where the constant c2 is the one given by Proposition 4.2.14.
The sum of the external field in sp−(γ, σ) can be shown to be of order |sp−(γ, σ)|, and do not

influence the Peierls’ argument. However, the quotient of the partition functions can be bigger than
the exponential term. Again, the bad event is

Ec :=

{
sup
γ∈C0

|∆I−(γ)(h)|
c2|γ|

>
1

4

}
,
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where ∆A(h) is the function previously defined in (4.1.8). Let us remind again that we are
abusing the notation once ∆A(h) denotes two different random variables, (3.2.2) and (4.1.8). We do
so since the only property we use from ∆A is that it satisfies Lemma 3.2.4. Moreover, all remarks
and claims made in Section 3.2 hold for both definitions of ∆A.

To control the probability of the bad event, we the concentration inequalities presented in Section
3.3.1. Using then, the bound on the bad event Ec follows from the next proposition.

Proposition 4.3.1. Given n ≥ 0, d ≥ 3 and α > d, there is a constant L1 := L1(d, α) > 0 such
that

γ2(I−(n), d2) ≤ εL1n.

As a direct consequence of this Proposition, we can control the probability of the bad event.

Proposition 4.3.2. There exists C1 := C1(α, d) such that P(Ec) ≤ e−
C1
ε2 for any ε2 < C1.

Proof. By the union bound,

P

(
sup
γ∈C0

|∆I−(γ)(h)|
c2|γ|

>
1

4

)
≤

∞∑
n=2

P

(
sup

γ∈C0(n)
|∆I−(γ)(h)| >

c2
4
|γ|

)
. (4.3.4)

Let γ, γ′ ∈ C0(n) be two contours satisfying diam(I−(n)) = d2(I−(γ), I−(γ
′)), where the diameter is

in the d2 distance. By the isoperimetric inequality,

diam(I−(n)) = 2ε|I−(γ)∆I−(γ
′)|

1
2 ≤ 2

√
2εn( d

d−1
) 1
2 = 2

√
2εn

( 1
2
+ 1

2(d−1)
)
.

Together with Proposition 4.3.1, this yields

c2
4
|γ| = L

[
εL1n+ εL1

(
c2

4εL1L
− 1

)
n

]
≥ L

[
γ2(I−(n), d2) +

L1

2
√
2

(
c2

4εL1L
− 1

)
n

1
2
− 1

2(d−1)diam(I−(n))

]
≥ L

[
γ2(I−(n), d2) +

C ′
1

ε
n

1
2
− 1

2(d−1)diam(I−(n))

]
,

with C ′
1 =

c2
16

√
2L

and ε < c2
8L1L

. Applying Theorem 3.3.6 with u =
C′

1
ε n

1
2
− 1

2(d−1) , we have

P

(
sup

γ∈C0(n)
|∆I−(γ)(h)| >

c2
4
|γ|

)
= P

(
sup

I∈I−(n)
|∆I(h)| >

c2
4
n

)

≤ P

(
sup

I∈I−(n)
|∆I(h)| > L

[
γ2(I−(n), d2) +

C ′
1

ε
n

1
2
− 1

2(d−1)diam(I−(n))

])

≤ exp

{
−C ′2

1 n
1− 1

(d−1)

ε2

}
.

Using this back in equation (4.3.4), we get

P

(
sup
γ∈C0

|∆I−(γ)(h)|
c2|γ|

>
1

4

)
≤

∞∑
n=2

exp

{
−C ′2

1 n
1− 1

(d−1)

ε2

}

≤
∞∑
n=2

exp

{
−C ′2

1 n
1
2

ε2

}
.
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The integral bound gives us

∞∑
n=2

exp

{
−C ′2

1 n
1
2

2ε2

}
≤
∫ ∞

1
exp

{
−C ′2

1 x
1
2

2ε2

}
dx ≤ 8

ε2

C ′2
1

exp

{
−C ′2

1

2ε2

}
.

We conclude that

P

(
sup
γ∈C0

|∆I−(γ)(h)|
c2|γ|

>
1

4

)
≤ 8

C ′2
1

ε2 exp

{
−C ′2

1

2ε2

}
≤ exp

{
−C1

ε2

}
,

for ε2 < C1 and C1 := C1(α, d) = min{
(

c2
8L1L

)2
,
C′2

1
8 }. The dependency on α is due to the depen-

dency on c2(α, d).

The next two subsections are dedicated to proving Proposition 4.3.1.

4.4 Controling γ2(I−(n), d2)

The next section is dedicated to proving Proposition 4.3.1. To construct the cover by balls in
Dudley’s entropy bound, we use the coarse-graining idea introduced in [34]. For each ℓ > 0 and
each contour γ ∈ C0(n), we will associate a region Bℓ(γ) that approximates the interior I−(γ) in
a scaled lattice, with the scale growing with ℓ. This is done in a way that two interiors that are
approximated by the same region are in a ball in distance d2 with a fixed radius, depending on ℓ.

An rℓ-cube Crℓ is admissible if more than a half of its points are inside I−(γ). Thus, the set of
admissible cubes is

Cℓ(γ) :=

{
Crℓ : |Crℓ ∩ I−(γ)| ≥

1

2
|Crℓ|

}
.

With this notion of admissibility, two contours with the same admissible cubes should be close in
distance d2. Consider functions Bℓ : E+Λ −→ P(Zd), with P(Zd) := {A : A ⋐ Zd}, that takes contours
γ to Bℓ(γ) := BCℓ(γ), the region covered by the admissible cubes. We will be interested in counting
the image of Bℓ by C0(n), that is, |Bℓ(C0(n))| = |{B : B = Bℓ(γ) for some γ ∈ C0(n)}|. Notice that
Bℓ(γ) is uniquely determined by ∂Bℓ(γ). Given any collection Cm, we define the edge boundary of
Cm as

∂Cm := {{Cm, C ′
m} : Cm ∈ Cm, C ′

m /∈ Cm and C ′
m shares a face with Cm}.

We also define the inner boundary of Cm as

∂inCm := {Cm ∈ Cm : ∃C ′
m /∈ Cm such that {Cm, C ′

m} ∈ ∂Cm}.

With this definition, it is clear that ∂Bℓ(γ) is uniquely determined by ∂Cℓ(γ). Hence, defining
∂Crℓ(C0(n)) := {∂Crℓ : Crℓ = Cℓ(γ) for some γ ∈ C0(n)}, we have |Bℓ(C0(n))| = |∂Cℓ(C0(n))|. In a
similar fashion we define ∂inCrℓ(C0(n)) := {∂inCrℓ : Crℓ = Cℓ(γ) for some γ ∈ C0(n)}. We will now
control the number of cubes in Cℓ(γ).

Proposition 4.4.1. For the functions (Bℓ)ℓ≥0 defined above, there exists constants b1, b2 depending
only on d and r such that

|∂inCℓ(γ)| ≤ b1
|∂exI−(γ)|
2rℓ(d−1)

≤ b1
|γ|

2rℓ(d−1)
, (4.4.1)

and
|Bℓ(γ)∆Bℓ+1(γ)| ≤ b22

rℓ|γ|, (4.4.2)

for every ℓ ≥ 0 and γ ∈ C0(n).
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Remark 4.4.2. This proposition shows that when b1|γ|
2rℓ(d−1) < 1 there are no admissible cubes. There-

fore, in some propositions, we assume ℓ ≤ log2r (b1|γ|)
d−1 , since the relevant bounds on the complemen-

tary case follow trivially.

The proof of Proposition 4.4.1 follows the same steps of 3.3.11, since both lemmas 3.3.8 and
3.3.10 can be used for the new admissible regions as they do not require A ⋐ Zd to be connected.

The next Corollary estimates the difference between the minus interior of a contour and its
approximation, see Figure 4.1.

Corollary 4.4.3. There exists a constant b3 > 0 such that, for any ℓ > 0 and any two contours
γ1, γ2 ∈ C0(n) with Bℓ(γ1) = Bℓ(γ2),

d2(I−(γ1), I−(γ2)) ≤ 4εb32
rℓ
2 n

1
2 .

Proof. This is a simple application of the triangular inequality, since d2(I−(γ1), I−(γ2)) ≤ d2(I−(γ1), Bℓ(γ1))+
d2(I−(γ2), Bℓ(γ2)) and

d2(I−(γ1), Bℓ(γ1)) ≤
ℓ∑

i=1

d2(Bi(γ1), Bi−1(γ1)) =

ℓ∑
i=1

2ε
√
|Bi(γ1)∆Bi−1(γ1)|

≤ 2ε
√

b2
√
n

ℓ∑
i=1

2
ir
2 ≤ 4ε

√
b22

rℓ
2
√
n

where in the second to last equation used (4.4.2). As the same bound holds for d2(I−(γ2), Bℓ(γ2)),
the corollary is proved by taking b3 = 2

√
b2.

Remark 4.4.4. Corollary 4.4.3 shows that we can create a cover of I−(n), indexed by Bℓ(C0(n)),
of balls with radius 4εb32

rℓ
2 n

1
2 . Therefore N(I−(n), d2, 4εb32

rℓ
2 n

1
2 ) ≤ |Bℓ(C0(n))|.

We now proceed to bounding |Bℓ(C0(n))|. As we discussed before, in the definition of admis-
sibility at the beginning of this subsection, |Bℓ(C0(n))| = |∂Crℓ(C0(n))|. In the short-range case, a
key ingredient to count the admissible cubes is that despite Bℓ(γ) not being connected, all cubes
are close to a connected region with size |γ|. As the contours now may not connected, we need to
change the strategy: we choose a suitable scale L(ℓ) and count how many rL(ℓ)-coverings of con-
tours there are. That is, we first control |CrL(ℓ)(C0(n))|. Once a rL(ℓ)-covering is fixed, we choose
which rℓ-cubes inside this covering will be admissible. At last, we choose the scale L(ℓ) in a suitable
way.

The first step is to bound |CrL(C0(n))|, for L > 0. For n,m ≥ 0, we say that Cn is subordinated
to Cm, denoted by Cn ⪯ Cm, if for all Cn ∈ Cn, there exists Cm ∈ Cm such that Cn ⊂ Cm. Moreover,
define

N(Cm, n, V ) := |{Cn : Cn ⪯ Cm, |Cn| = V }|,

the number of collections of n-cubes Cn subordinated to a fixed collection Cm and with |Cn| = V .
Notice that every m-cube contains 2d (m−1)-cubes, all of them being disjoint. Therefore, the number
of n-cubes inside a m-cube is 2(m−n)d and we have N(Cm, n, V ) =

(2(m−n)d|Cm|
V

)
. In particular, the

bound on the binomial
(
n
k

)
≤
(
en
k

)k yields

N(Cr(ℓ+1), rℓ, V ) =

(
2rd|Cr(ℓ+1)|

V

)
≤

(
2rde|Cr(ℓ+1)|

V

)V

. (4.4.3)

For any subset Λ ⋐ Zd, define

V ℓ
r (Λ) :=

nr(Λ)∑
n=ℓ

|Crn(Λ)|,
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where nr(Λ) := ⌈log2r(diam(Λ))⌉. To control V ℓ
r (Λ) we bound the number of coverings at a fixed

step L > 0.

Proposition 4.4.5. Let k ≥ 1 and G be a finite, non-empty, connected simple graph with vertex
set v(G). Then, G can be covered by ⌈|v(G)|/k⌉ connected sub-graphs of size at most 2k.

We omit the proof since it is the same as in [1]. Remember that, given G = (V,E) ∈ Gn(Λ),
ΛG := Λ ∩ BV denotes the area of Λ covered by G. Remember also that, for A ⋐ Zd and j ≥ 1,
Γr
j(A) are the partition elements removed at step j, in the construction presented in Section 2.

Using this construction we can prove the following lemma.

Lemma 4.4.6. Let A ⋐ Zd, γ ∈ Γr(A) and j ≥ 1 be such that γ ∈ Γr
j(A). Then, for any ℓ < j and

Grℓ ∈ Grℓ(γ),
2r(1−

1
d
)ℓ ≤ |Crℓ(γ

Grℓ)| (4.4.4)

Proof. Given Grℓ ∈ Grℓ(γ), by our construction of the contour, 2r(d+1)ℓ < |V (γGrℓ)|. A trivial
bound gives us |V (γGrℓ)| ≤ 2rℓd|Crℓ(V (γGrℓ))|. Associating each cube Cm(x) to x, we get a one-
to-one correspondence between m-cubes and lattice points that preserves neighbors, that is, two
m-cubes Cm(x) and Cm(y) share a face if and only if |x − y| = 1. We can therefore apply the
isoperimetric inequality to get |Crℓ(V (γGrℓ))| ≤ |∂inCrℓ(V (γGrℓ))|

d
d−1 ≤ |Crℓ(γ

Grℓ)|
d

d−1 , where in
the last equation we are using that every cube in the boundary of cubes must cover at least one
point of γGrℓ . We conclude that 2r(d+1)ℓ ≤ 2rℓd|Crℓ(γ

Grℓ)|
d

d−1 , and (4.4.4) follows.

As a corollary, we can recuperate a key lemma of [1], which is the following.

Lemma 4.4.7. Given A ⋐ Zd, n > 1 and γ ∈ Γr(A), if |Grn(γ)| ≥ 2 then |v(Grn(γ))| ≥ 2r for
every Grn(γ) ∈ Grn(γ)

The next proposition bounds the partial volume.

Proposition 4.4.8. There exists a constant b3 := b3(d,M, r) such that, for any A ⋐ Zd, γ ∈ Γr(A)
and ℓ ≥ 0,

V ℓ
r (γ) ≤ b3(ℓ ∨ 1)|Crℓ(γ)|.

Proof. Start by noticing that γ ∈ Γr(A) implies that Γr(γ) = {γ}. Let’s assume first that ℓ ≥ 2.
Define g : N −→ Z by

g(n) :=

⌊
n− 2− log2r(2M)

a

⌋
. (4.4.5)

It was proved in [1, Proposition 3.13] that

|Crn(γ)| ≤
1

2r−d−1
|Crg(n)(γ)|, (4.4.6)

whenever g(n) > 0, and every connected component of Grg(n)(γ) has more than 2r − 1 vertices.
This is equivalent, by Lemma 4.4.7, to |Grg(n)(γ)| ≥ 2 or |Grg(n)(γ)| = 1 with |v(Grg(n)(γ))| ≥ 2r.
Consider then the auxiliary quantities

l1(n) := max{m : gm(n) ≥ ℓ} and l2(n) := max{m : |Grgm(n)(γ)| = 1 and |v(Grgm(n))| ≤ 2r − 1}.

We first show that l2(n) is not zero for only a constant number of scales n. For any m ≤ l2(n),
as spγ ⊂ BCrgm(n)(γ)

, diam(γ) ≤ diam(BCrgm(n)(γ)
). Moreover, since the graph Grgm(n) ∈ Grgm(n)(γ)

has v(Grgm(n)) = Crgm(n)(γ), and |Crgm(n)(γ)| ≤ 2r − 1. For any Λ,Λ′ ⋐ Zd,

diam(Λ ∪ Λ) ≤ diam(Λ) + diam(Λ′) + dist(Λ,Λ′),
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and we can always extract a vertex from a connected graph in a way that the induced sub-graph is
still connected, by removing a leaf of a spanning tree. Using this we can bound

diam(γ) ≤ diam(BCrgm(n)(γ)
) ≤

∑
Crgm(n)∈v(Grgm(n))

diam(Crgm(n)) + |v(Gi)|M2arg
m(n)

≤ (d2rg
m(n) +Mda2arg

m(n))|Crgm(n)(γ)| ≤ 2Mda2arg
m(n)+r. (4.4.7)

Applying the logarithm with respect to base 2r we get

log2r(diam(γ)) ≤ log2r(2Mda) + agm(n) + 1 ≤ log2r(2Mda) +
n

am−1
+ 1

Assuming diam(γ) > 22r+1Mda, we can isolate the term depending on m in the equation above
and take the logarithm on both sides to get

m ≤ 1 +
log2(n)− log2(log2r(diam(γ))− log2r(2Mda)− 1)

log2(a)
.

Equation above holds for any element of {m : |Grgm(n)(A)| = 1, |v(Grgm(n))| ≤ 2r − 1} thus it also
holds for l2(n). This shows in particular that l2(n) = 0 for n < log2r(diam(γ))− log2r(2Mda)− 1.
Taking N0 = nr(γ)− log2r(2Mda)− 2, as N0 ≤ log2r(diam(γ))− log2r(2Mda)− 1 we can bound

nr(γ)∑
n=N0

|Crn(γ)| ≤ (log2r(2Mda) + 2)|Crℓ(γ)|. (4.4.8)

We consider now n < N0. Knowing that l2(n) = 0 and |Ck(γ)| ≤ |Cj(γ)|, for all j ≤ k, we get

|Crn(γ)| ≤
1

2(r−d−1)l1(n)
|Crℓ(γ)|. (4.4.9)

We claim that

l1(n) ≥

{
0, if n ≤ b+ ℓ⌊
log2(n)−log2(b+ℓ)

log2(a)

⌋
, if n > b+ ℓ,

(4.4.10)

where b = (a+ 2 + log2r(2M))(a− 1)−1. Given n > b+ ℓ, consider

g̃(n) =
n− 2− log2r(2M)

a
− 1.

It is clear that g(n) ≥ g̃(n) and both functions are increasing, therefore gm(n) ≥ g̃m(n) for every
m ≥ 0. As

g̃m(n) =
n

am
− b′

am − 1

am−1(a− 1)
,

with b′ = (a+ 2 + log2r(2M))a−1, it is sufficient to have

n

am
− ab′

(a− 1)
≥ ℓ.

We get the desired bound by applying the logarithm with base two in the equation above. The
bounds (4.4.9) and (4.4.10) yields
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V ℓ
r (γ) =

b+ℓ−1∑
n=ℓ

|Crn(γ)|+
N0−1∑
n=b+ℓ

|Crn(γ)|+
nr(γ)∑
n=N0

|Crn(γ)|

≤ b|Crℓ(γ)|+ |Crℓ(γ)|2r−d−1(b+ ℓ)
r−d−1
log2(a)

∑
n=b+ℓ

1

n
r−d−1
log2(a)

+ (log2r(2Mda) + 2)|Crℓ(γ)|

≤ (b+ log2r(2Mda) + 2)|Crℓ(γ)|+ |Crℓ(γ)|2r−d−1(b+ 1)
r−d−1
log2(a) ℓ

r−d−1
log2(a)

∞∑
n=ℓ+1

1

n
r−d−1
log2(a)

≤
(
b+ log2r(2Mda) + 2 + 2r−d−1(b+ 1)

r−d−1
log2(a)

log2(a)

r − d− 1 + log2(a)

)
ℓ|Crℓ(γ)|,

where in the last inequality we used the integral bound

∞∑
n=ℓ+1

n
− r−d−1

log2(a) ≤
∫ ∞

ℓ
x
− r−d−1

log2(a)dx =
log2(a)

r − d− 1 + log2(a)
ℓ
1− r−d−1

log2(a) .

If diam(γ) ≤ 22r+1M , we have

V ℓ
r (γ) ≤ (nr(γ)− ℓ+ 1)|Crℓ(γ)| ≤ (3 + log2r(2M))|Crℓ(γ)|.

Taking b′3 := max{2r−d+2(2 + a
d−1)(b+ log2r(2Mda) + 3)

r−d−1
log2(a) , 3 + log2r(2M)} we get the desired

bound when ℓ ≥ 2. For ℓ = 0, a trivial bound yields V 0
r (γ) = 2|γ|+ V 2

r (γ) ≤ (2+ b′32)|γ|. Similarly,
for ℓ = 1, V 1

r (γ) = |Cr(γ)| + V 2
r (γ) ≤ (1 + b′32)|Cr(γ)| and we conclude the proof by taking

b3 := 2(b′3 + 1).

We then need to bound the minimal number of rℓ-cubes necessary to cover a contour. Using only
Lemma 4.4.7, it is possible to prove the next proposition, in the same steps as in [1, Proposition
3.13].

Proposition 4.4.9. There exists a constant b′′4 := b′′4(α, d) such that for any A ⋐ Zd, γ ∈ Γ(A) and
1 ≤ ℓ ≤ nr(A),

|Crℓ(γ)| ≤ b′′4
|γ|

ℓ
r−d−1
log2(a)

.

Next, we can improve this upper bound using our construction. This is the most relevant prop-
erty of the new contours.

Proposition 4.4.10. There exists constants b4 := b4(α, d) and b′4 := b′4(α, d) such that for any
A ⋐ Zd, γ ∈ Γr

j(A) and 0 ≤ ℓ < j,

|Crℓ(γ)| ≤ b4
(ℓ ∨ 1)κ

2ra′ℓ
|γ|, (4.4.11)

with a′ :=
(1− 1

d
)

a− 1
d

and κ :=
d+1+r(1− 1

d
)(a+2−d−1+log2r (2M))(a−d−1)−1

log2(a+1−d−1)
. Moreover, for ℓ ≥ j

|Crℓ(γ)| ≤ b′4ℓ
κ

(
|γ|

2r
a′
a
ℓ
∨ 1

)
. (4.4.12)

Proof. Lets first consider ℓ < j. Define f : N −→ Z by

f(ℓ) :=

⌊
ℓ− log2r(2M)− 1

a+ (1− 1
d)

⌋
. (4.4.13)
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Following the proof of (4.4.6) in [1, Proposition 3.13], we can show that

|Crℓ(γ)| ≤
2d+1

2r(1−
1
d
)f(ℓ)
|Crf(ℓ)(γ)|. (4.4.14)

By definition, Grf(ℓ)(γ) is the set of all connected components of Grf(ℓ)(γ), hence

|Crf(ℓ)(γ)| = 2r(1−
1
d
)f(ℓ)

∑
G∈Grf(ℓ)(γ)

|v(G)|
2r(1−

1
d
)f(ℓ)

. (4.4.15)

Proposition 4.4.5 guarantees that we can split G into sub-graphs Gi, with 1 ≤ i ≤ ⌈v(G)/2r(1−
1
d
)f(ℓ)⌉

and |v(Gi)| ≤ 2r(1−
1
d
)f(ℓ)+1. Proceeding as in (4.4.7), we can bound

diam(Bv(Gi)) ≤
∑

Crf(ℓ)∈v(Gi)

diam(Crf(ℓ)) + |v(Gi)|M2arf(ℓ)

≤ |v(Gi)|(d2rf(ℓ) +M2arf(ℓ)) ≤ 2M2r[f(ℓ)(1−
1
d
)+a]+1

≤ 2rℓ.

The last inequality holds since M,a, r ≥ 1. This shows that every Gi can be covered by a cube
with center in Zd and side length 2rℓ. Every such cube can be covered by at most 2d rℓ-cubes.
Indeed, it is enough to consider the simpler case when the cube is of the form

d∏
i=1

[qi, qi + 2rℓ) ∩ Zd, (4.4.16)

with qi ∈ {0, 1, . . . , 2rℓ − 1}, for 1 ≤ i ≤ d. It is easy to see that

[qi, qi + 2rℓ] ⊂ [0, 2rℓ) ∪ [2rℓ, 2rℓ+1).

Taking the products for all 1 ≤ i ≤ d, we get 2d rℓ-cubes that covers (4.4.16). We conclude that,
to cover a connected component G ∈ Grf(ℓ), we need at most 2d⌈|v(G)|/2r(1−

1
d
)f(ℓ)⌉ rf(ℓ)-cubes,

yielding us

|Crℓ(γ)| ≤ |Crℓ(BCrf(ℓ)(γ))| ≤
∑

G∈Grf(ℓ)

|Crℓ(v(G))| ≤
∑

G∈Grf(ℓ)

2d
⌈
|v(G)|

2r(1−
1
d
)f(ℓ)

⌉
. (4.4.17)

When every connected component of Grf(ℓ)(γ) has more than 2r(1−
1
d
)f(ℓ) vertices, we can bound

1

2

⌈
|v(G)|

2r(1−
1
d
)f(ℓ)

⌉
≤ |v(G)|

2r(1−
1
d
)f(ℓ)

.

Together with Inequalities (4.4.15) and (4.4.17), this yields

|Crℓ(γ)| ≤
∑

G∈Grf(ℓ)

2d+1 |v(G)|
2r(1−

1
d
)f(ℓ)

=
2d+1

2r(1−
1
d
)f(ℓ)
|Crf(ℓ)(γ)|. (4.4.18)

Equation (4.4.14) can be iterated as long as f(ℓ) is positive. Considering then the auxiliary
quantity

m(ℓ) := max{m : fm(ℓ) ≥ 0},
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we have

|Crℓ(γ)| ≤
2(d+1)m(ℓ)

2
r(1− 1

d)
(∑m(ℓ)

i=1 f i(ℓ)
) |γ|, (4.4.19)

so we need upper and lower estimates for m(ℓ). We claim that

m(ℓ) ≥

0, if ℓ ≤ b⌊
log2(ℓ)−log2(b)

log2(a+(1− 1
d
))

⌋
, if ℓ > b,

(4.4.20)

where b = (a+ 1 + log2r(2M))(a− 1)−1 and a := a+ (1− 1
d). Given ℓ > b, consider

f(ℓ) =
ℓ− 1− log2r(2M)

a+ (1− 1
d)

− 1.

It is clear that f(ℓ) ≥ f(ℓ) and both functions are increasing, therefore fm(ℓ) ≥ f
m
(ℓ) for every

m ≥ 0. As

f
m
(ℓ) =

ℓ

am
− b′

am − 1

am−1(a− 1)
,

with b′ = (a+ 1 + log2r(2M))a−1, it is sufficient to have

ℓ

am
− ab′

(a− 1)
≥ 0.

We get the desired bound by applying the logarithm with base two in the equation above. Moreover,
we can bound

m(ℓ)∑
i=1

f i(ℓ) ≥
m(ℓ)∑
i=1

ℓ

ai
−m(ℓ)

ab′

a− 1
=

1

a
(
1− 1

am(ℓ)

1− 1
a

)ℓ−m(ℓ)b

≥ 1

a− 1
(1− 1

am(ℓ)
)ℓ−m(ℓ)b ≥ 1

a− 1
(ℓ− ab)−m(ℓ)b

For the upper bound on m(ℓ), take f̃(ℓ) := ℓ
a+(1− 1

d
)
. As f(ℓ) ≤ f̃(ℓ) and f̃ is increasing, for every

m ≥ 0, fm(ℓ) ≤ f̃m(ℓ). Notice that, if f̃m(ℓ) ≤ 1, fm+1(ℓ) < 0, and therefore m + 1 > m(ℓ). As

f̃m(ℓ) ≤ 1 if and only if ℓ ≤ [a+(1− 1
d)]

m, taking m =

⌈
log2(ℓ)

log2(a+(1− 1
d
))

⌉
we get

⌈
log2(ℓ)

log2(a+(1− 1
d
))

⌉
+1 >

m(ℓ). Applying this bound on (4.4.19) we conclude that

|Crℓ(γ)| ≤
2d+1+r(1− 1

d
)( a

a−1
+1)bℓ

d+1+r(1− 1
d
)b

log2(a)

2r(1−
1
d
) 1
a−1

ℓ
|γ|, (4.4.21)

for ℓ > b. When ℓ ≤ b, we can take b4 := min{(j ∨ 1)
d+1+r(1− 1

d
)b

log2(a) 2−r(1− 1
d
) 1
a−1

j : 0 ≤ j ≤ b} and then

|Crℓ(γ)| ≤ |γ| ≤
1

b4

(ℓ ∨ 1)
d+1+r(1− 1

d
)b

log2(a)

2r(1−
1
d
) 1
a−1

ℓ
|γ|.

This, together with equation (4.4.21), yields inequality (4.4.11) with b4 := max{2d+1+r(1− 1
d
)( a

a−1
+1)b, b

−1
4 }.

To prove inequality (4.4.12), we first notice that for any ℓ ≥ j,

|Crℓ(γ)| ≤ |Cr(j−1)(γ)| ≤ b42
ra′ jκ

2ra′j
|γ|. (4.4.22)
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When ℓ ≤ aj, this already gives us (4.4.12). For ℓ > aj, we can give a better bound once we notice
that, by the construction of the contour, the graph Grj(γ) is connected and its vertices are the
covering Crj(γ). In a similar fashion as done previously, by Proposition 4.4.5 we can split Grj(γ)

into ⌈|v(Grj(γ))|/k⌉ connected sub-graphs G1, . . . , Gk, with k :=
⌈

2rℓ

2raj

⌉
and |v(Gi)| ≤ 2

⌈
2rℓ

2raj

⌉
for

all i = 1, . . . , k. Assuming ℓ > aj, we have |v(Gi)| ≤ 2r(ℓ−aj)+2. As

diam(Bv(Gi)) ≤ |v(Gi)|(d2rj +M2arj) ≤ 2Md2raj |v(Gi)|
≤ 8Md2rℓ,

Bv(Gi) can be covered by (8Md)d cubes centered in Zd with side length 2rℓ. As we seen before,
every such cube can be covered by at most 2d rℓ-cubes, therefore |Crℓ(Bv(Gi))| ≤ (16Md)d and we
conclude that

|Crℓ(γ)| ≤
⌈|v(Grj(γ))|/k⌉∑

i=1

|Crℓ(Bv(Gi))| ≤ (16Md)d

⌈
|Crj(γ)|

2rℓ

2raj

⌉

≤ 2(16Md)db42
ra′jκ

(
2r(aj−ℓ)

2ra′j
|γ| ∨ 1

)
. (4.4.23)

As we are assuming ℓ > aj,

2r(aj−ℓ)

2ra′j
=

2r(a−a′)j

2rℓ

≤ 2r(1−
a′
a
)ℓ

2rℓ
=

1

2r
a′
a
ℓ
,

what concludes the proof of (4.4.12) with b′4 := 2(16Md)db42
ra′ .

For any non-negative V,M, a, r, define

F ℓ
V := {Crℓ : V

ℓ
r (BCrℓ

) = V,BCrℓ
⊂ [−diam(BCrℓ

),diam(BCrℓ
)]d}.

Using equation (4.4.3), in the same steps as [1, Proposition 3.11], we can show that the number
of collections in FV is exponentially bounded by V .

Proposition 4.4.11. There exists b5 := b5(d, r) such that

|F ℓ
V | ≤ eb5V . (4.4.24)

Proof. We start by splitting F ℓ
V into F ℓ

V,m := {Crℓ ∈ F ℓ
V : nr(BCrℓ

) = m}. Since ℓ ≤ nr(BCrℓ
) ≤

V ℓ
r (BCrℓ

) + ℓ, we get

|F ℓ
V | ≤

V+ℓ∑
m=ℓ

|F ℓ
V,m|. (4.4.25)

Denoting (Vrn)
m
n=ℓ an arbitrary family of natural numbers satisfying

m∑
n=ℓ

Vrn ≤ V, (4.4.26)
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with Vrn ≤ Vr(n−1), we can bound

|F ℓ
V,m| ≤

∑
(Vrn)mn=ℓ

|{Crℓ : BCrℓ
⊂ [−2rm, 2rm]d, |Crn(BCrℓ

)| = Vrn, for every ℓ ≤ n ≤ m,nr(BCrℓ
) = m}|.

(4.4.27)

As [−2rm, 2rm]d is a cube centered in Zd with side length 2rm+1 + 1, it can be covered by 3d

(rm+ 1)-cubes. Indeed, it is enough to consider the simpler case when the cube is of the form

d∏
i=1

[qi, qi + 2rm+1] ∩ Zd, (4.4.28)

with qi ∈ {0, 1, . . . , 2rm+1}, for 1 ≤ i ≤ d. It is easy to see that

[qi, qi + 2rm+1] ⊂ [0, 2rm+1) ∪ [2rm+1, 2rm+2) ∪ [2rm+2, 2rm+3).

Taking the products for all 1 ≤ i ≤ d, we get 3d (rm + 1)-cubes that covers (4.4.28). We can give
an upper bound to the right-hand side of equation (4.4.27) by counting the number of families
(Crn)

m
n=ℓ such that Crn ⪯ Cr(n+1), for n < m, and Crm ⪯ C 0

rm+1, yielding us

|F ℓ
V,m| ≤

∑
(Vrn)

m−1
n=ℓ

|{(Crn)
m
n=ℓ : |Crn| = Vrn,Crn ⪯ Cr(n+1),Crm ⪯ C 0

rm+1}|

≤
∑

(Vrn)
m−1
n=ℓ

∑
Crm⪯C 0

rm+1

|Crm|=Vrm

∑
Cr(m−1)

|Cr(m−1)|=Vr(m−1)

Cr(m−1)⪯Crm

· · ·
∑

Cr(ℓ+1)

|Cr(ℓ+1)|=Vr(ℓ+1)

Cr(ℓ+1)⪯Cr(ℓ+2)

N(Cr(ℓ+1), rℓ, Vrℓ).

Iterating equation (4.4.3) we get that

|F ℓ
V,m| ≤

∑
(Vrn)mn=ℓ

(
2de|C 0

rm+1|
Vrm

)Vrm m−1∏
n=ℓ

(
2rdeVr(n+1)

Vrn

)Vrn

≤
∑

(Vrn)
m−1
n=ℓ

(
2de3d

Vrm

)Vrm m−1∏
n=ℓ

e(rd log(2)+1)Vrn

≤
∑

(Vrn)
m−1
n=ℓ

e(d log(2)+1+d log(3))Vrm

m−1∏
n=ℓ

e(rd log(2)+1)Vrn ≤
∑

(Vrn)
m−1
n=ℓ

e(rd log(2)+1+d log(3))V

As the number of solutions of (4.4.26) is bounded by 2V , we conclude that

|F ℓ
V | ≤

V+ℓ∑
m=ℓ

|F ℓ
V,m| ≤ V 2V e(rd log(2)+1+d log(3))V ,

therefore equation (4.4.24) holds for b5 := [rd+ 1] log(2) + 2 + d log(3).

With these propositions we can control the number of coverings of contours at a given scale,
that its, we can give an upper bound to |Crℓ (C0(n))| = |{Crℓ : Crℓ = Crℓ(γ) for some γ ∈ C0(n)}|.

Proposition 4.4.12. Let n ≥ 0, Λ ⋐ Zd. There exists a constant b6 := b6(a, d) > 0 such that,

|Crℓ(C0(n))| ≤ exp

{
b6(ℓ ∨ 1)κ+1

(
n

2r
a′
a
ℓ
∨ 1

)}
.
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Proof. Proposition 4.4.8 together with Proposition 4.4.10 yields,

V ℓ
r (γ) = V ℓ

r (BCrℓ(γ)) ≤ b3(b4 + b′4)(ℓ ∨ 1)κ+1

(
n

2r
a′
a
ℓ
∨ 1

)
=: Rn,ℓ. (4.4.29)

Therefore,

{Crℓ : Crℓ = Crℓ(γ) for some γ ∈ C0(n)}

⊂
{

Crℓ : V
ℓ
r (BCrℓ

) ≤ Rn,ℓ , BCrℓ
⊂ [−diam(BCrℓ

), diam(BCrℓ
)]d
}

⊂
⌈Rn,ℓ⌉⋃
V=1

F ℓ
V

and Proposition 4.4.11 yields

| {Crℓ : Crℓ = Crℓ(γ) for some γ ∈ C0(n)} | ≤
⌈Rn,ℓ⌉∑
V=1

|F ℓ
V | ≤ exp

{
2b5b3(b4 + b′4)(ℓ ∨ 1)κ+1

(
n

2r
a′
a
ℓ
∨ 1

)}
.

This concludes the proof for b6 := 2b5b3(b4 + b′4).

A consequence of Proposition 4.4.12 is that we get an exponential bound on the number of
contours with a fixed size.

Corollary 4.4.13. Let d ≥ 2, and Λ ⋐ Zd. For all n ≥ 1, |C0(n)| ≤ eb6n.

Remark 4.4.14. This result was also proved in [1] when the contours are the finest partition.
However, it is only required that the contours are the partition given by the construction in [1,
Proposition 3.5]. Our Lemma 4.4.6 shows that our contours are a subset of such contours, thus the
same counting holds.

By the construction of all contours, not all the graphs (Crℓ(γ), Erℓ(γ)) are connected. However,
the use of Propositions 4.4.8 and 4.4.9 together, recuperates a bound on |Crℓ(C0(n))| as if it was
the case. This is shown by the next proposition. Although such a Proposition is not necessary to
prove our results, we provide a proof for completeness.

Lemma 4.4.15. Given ℓ > 0, consider the graph G = (Crℓ(Zd), E), with two vertices C,C ′ being
connected if and only if d(C,C ′) ≤M2raℓ. There exists a constant b′5 := b′5(d, α) such that

|{Crℓ : Crℓ(0) ∈ Crℓ, Crℓ is connected , |Crℓ| = N}| ≤ eb
′
5ℓN . (4.4.30)

Proof. To count |{Crℓ : Crℓ(0) ∈ Crℓ, Crℓ is connected , |Crℓ| = N}|, it is enough to count the
number spanning trees containing Crℓ(0) with N vertices. Let T0 be the set of all such trees. Fixed
T ∈ T0, for each Crℓ ∈ v(T ), let dT (Crℓ) be the degree of Crℓ. As T is a tree,

∑
Crℓ∈v(T ) dT (Crℓ) =

2(N − 1). Moreover, as there are at most 2rd(aℓ+log2r M−ℓ) rℓ-cubes inside a r(aℓ + log2r M)-cube,
each cube Crℓ ∈ T has at most 2rd(a+log2r M−1)ℓ neighbours. Let (di)

N
i=1 denote a general solution

to
N∑
i=1

di = 2(N − 1), (4.4.31)

with di ≤ 2rd(a+log2r M−1)ℓ for all i = 1, . . . , N . Then

|{Crℓ : Crℓ(0) ∈ Crℓ, Crℓ is connected , |Crℓ| = N}| ≤
∑

(di)Ni=1

|{T ∈ T0 : dT (Ci) = di}|.
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In the set above, {C1, C2, . . . , CN} is any ordering of v(T ) with C1 = Crℓ(0). Therefore,

|{T ∈ T0 : dT (Ci) = di}| ≤
N∏
i=1

(
2rd(a+log2r M−1)ℓ

di

)
≤ (e2rd(a+log2r M−1)ℓ)N .

As the number of solutions to (4.4.31) is bounded by 2N , we conclude that

{Crℓ : Crℓ(0) ∈ Crℓ, Crℓ is connected , |Crℓ| = N}| ≤ 2NeN2rd(a+log2r M−1)ℓN ≤ eb
′
5ℓN ,

with b′5 := log 2 + 1 + rd(a+ log2r M − 1) log 2.

We are finally ready to upper bound the number of admissible regions |Bℓ(C0(n))| at scale rℓ.

Proposition 4.4.16. Let n ≥ 0, Λ ⋐ Zd and 1 ≤ ℓ ≤ log2r(b1n)(d− 1)−1. There exists a constant
c4 := c4(α, d) such that,

|Bℓ(C0(n))| ≤ exp

{
c4

ℓκ+1n

2rℓ(d−1)

}
. (4.4.32)

Proof. The upper bound on ℓ may seem artificial, but Remark 4.4.2 shows that this is not the case.
Remember that |Bℓ(C0(n))| = |∂Cℓ(C0(n))|. Moreover, given {Crℓ, C

′
rℓ} ∈ ∂Cℓ(γ), either Crℓ ∈ ∂inCℓ

or C ′
rℓ ∈ ∂inCℓ. Using that

∑p
k=0

(
p
k

)
= 2p, we have

|∂Cℓ(C0(n))| =
∑

∂inCrℓ∈∂inCℓ(C0(n))

|{∂C ′
rℓ : ∂inC

′
rℓ = ∂inCrℓ}|

≤
∑

∂inCrℓ∈∂inCℓ(C0(n))

2d|∂inCrℓ|∑
k=1

(
2d|∂inCrℓ|

k

)
≤

∑
∂inCrℓ∈∂inCℓ(C0(n))

22d|∂inCrℓ| ≤ |∂inCℓ(C0(n))|e
log(2)2db1

n

2rℓ(d−1) ,

(4.4.33)

where in the last inequality we applied Proposition 4.4.1. For every L ≥ ℓ and an arbitrary collection
CrL, define CrL = CrL ∪ {C ′

rL : ∃CrL ∈ CrL such that C ′
rL shares a face with CrL}.

Given Crℓ ∈ ∂inCℓ(γ), either Crℓ or one of its neighbouring cubes intersects sp(γ). Hence, for any
L ≥ ℓ, ∂inCℓ(γ) ⪯ CrL(γ). Moreover, the number of rℓ-cubes inside a collection CrL(γ) of rL-cubes
is bound by |CrL(γ)|2rd(L−ℓ) ≤ 2d|CrL(γ)|2rd(L−ℓ). Using again Proposition 4.4.1, we can bound

|∂inCℓ(C0(n))| ≤
∑

CrL∈CrL(C0(n))

⌈
b1n

2rℓ(d−1)

⌉∑
k=0

(
2d|CrL|2rd(L−ℓ)

k

)

≤
∑

CrL∈CrL(C0(n))

(
e2d|CrL|2rd(L−ℓ)

b1n2−rℓ(d−1)

) b1n

2rℓ(d−1)

≤
∑

CrL∈CrL(C0(n))

(
e2d|CrL|2rdL

b1n2rℓ

) 2b1n

2rℓ(d−1)

,

where in the last equation we used that, for any 0 < M ≤ N ,
∑M

p=0

(
N
p

)
≤
(
eN
M

)M . Moreover, the

restriction ℓ ≤ log2r(b1n)(d− 1)−1 gives us 1 ≤ b1n
2rℓ(d−1) , so we bounded

⌈
b1n

2rℓ(d−1)

⌉
≤ 2b1n

2rℓ(d−1) . Given

a scale ℓ, we choose L(ℓ) :=
⌊
a(d−1)ℓ

a′

⌋
. The restriction ℓ ≤ log2r(b1n)(d − 1)−1 allow us to bound(

n

2r
a′
a L(ℓ)

∨ 1

)
≤
(

b1n

2r
a′
a L(ℓ)

∨ 1

)
≤
(
b12

r a′
a

n
2r(d−1)ℓ ∨ 1

)
≤ b1(2

r a′
a ∨ 1) n

2r(d−1)ℓ assuming w.l.o.g. that
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b1 ≥ 1, so, for any CrL(ℓ) ∈ CrL(ℓ)(C0(n)), Proposition 4.4.10 yields

|CrL(ℓ)|2rdL(ℓ) ≤ (b4 + b′4)L(ℓ)
κ

(
n

2r
a′
a
L(ℓ)
∨ 1

)
2rd

a(d−1)

a′ ℓ

≤ b1(b4 + b′4)

(
(d− 1)a

a′

)κ ⌈
2r

a′
a

⌉
ℓκ2(d−1)r(ad

a′ −1)ℓn,

hence

(
e2d|CrL(ℓ)|2rdL(ℓ)

b1n2rℓ

) 2b1n

2rℓ(d−1)

≤

e2db1(b4 + b′4)
(
(d−1)a

a′

)κ ⌈
2r

a′
a

⌉
ℓκ2(d−1)r(ad

a′ −1)ℓn

b1n2rℓ


2b1n

2rℓ(d−1)

≤
(
e2d(b4 + b′4)

(
a(d− 1)

a′

)κ ⌈
2r

a′
a

⌉
ℓκ2[(d−1)(ad

a′ −1)−1]rℓ

) 2b1n

2rℓ(d−1)

≤ exp

{
c′4

ℓn

2rℓ(d−1)

}
,

with c′4 = [1 + log(2d(b4 + b′4)
(
(d−1)a

a′

)κ ⌈
2r

a′
a

⌉
) + κ+ ((d− 1)(ada′ − 1)− 1) log(2)r]2b1. Moreover,

by Proposition 4.4.12,

|CrL(ℓ)(C0(n))| ≤ exp

{
b6L(ℓ)

κ+1

(
n

2r
a′
a
L(ℓ)
∨ 1

)}
≤ exp

{
b6b1

(
a(d− 1)

a′

)κ+1 ⌈
2r

a′
a

⌉ ℓκ+1n

2(d−1)rℓ

}

so equations (4.4.33) and (4.4.34) yield

|∂Cℓ(C0(n))| ≤ exp

{
b6b1

(
a(d− 1)

a′

)κ+1 ⌈
2r

a′
a

⌉ ℓκ+1n

2rℓ(d−1)
+ c′4

ℓn

2rℓ(d−1)
+ log(2)2db1

n

2rℓ(d−1)

}
.

(4.4.34)

that concludes our proof taking c4 := b6b1

(
a(d−1)

a′

)κ+1 ⌈
2r

a′
a

⌉
+ c′4 + log(2)2db1.

Remark 4.4.17. Using the notion of long-range contours of [1], we can get a worse upper bound
on |Bℓ(C0(n))| that is still good enough to prove phase transition in d ≥ 3. Using Proposition

4.4.9, we can prove in the same steps as Proposition 4.4.12 that |Crℓ(C0(n))| ≤ b′′4nℓ
− r−d−1−log2(a)

log2(a) .
With this, we can proceed similarly as in the proof of Proposition 4.4.16 but now choosing L(ℓ) =

2
2r

⌊
log2(a)ℓ

r−d−1−log2(a)

⌋
, which gives us the bound

|Bℓ(C0(n))| ≤ exp

{
c′4

n

2
rℓ(d−1− 2 log2(a)

r−d−1−log2(a)
)

}
.

For r large enough, d− 1− 2 log2(a)
r−d−1−log2(a)

> 1 and the proof of Proposition 4.3.1 follows with small
adaptations.

Proof of Proposition 4.3.1

At last, we prove the main proposition of this section.
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Proof. As N(I−(n), d2, ϵ) is decreasing in ϵ, we can use Dudley’s entropy bound to get

E

[
sup

γ∈C0(n)
∆I−(γ)(h)

]
= E

[
sup

I∈I−(n)
∆I(h)

]

≤
∫ ∞

0

√
logN(I−(n), d2, ϵ)dϵ

≤ 2εb3n
1
2

∞∑
ℓ=1

(2
rℓ
2 − 2

r(ℓ−1)
2 )

√
logN(I−(n), d2, εb32

rℓ
2 n

1
2 ).

We can bound the first term by noticing that N(I−(n), d2, 0) = |I−(n)| ≤ 2n|C0(n)|, 2n being an
upper bound on the number of labels given a fixed support. By Corollary 4.4.13, |C0(n)| ≤ ec1n,
and hence

4εb3Ln
1
2

√
logN(I−(n), d2, 0) ≤ 4εb3L(c1 + log 2)

1
2n.

Since d2(I−(γ1), I−(γ2)) ≤ 2ε
√
|I−(γ1)|+ |I−(γ2)| ≤ 2

√
2εn

1
2
+ 1

2(d−1) for any γ1, γ2 ∈ C0(n), when

4εb3L2
rℓ
2 n

1
2 ≥ 2

√
2εn

1
2
+ 1

2(d−1) , only one ball covers all interiors, hence all the terms in the sum above
with ℓ > k(n) := ⌊ log2r (n)(d−1) ⌋ are zero. As N(I−(n), d2, εb32

rℓ
2 n

1
2 ) ≤ |Bℓ(C0(n))|, see Remark 4.4.4,

using Proposition 4.4.16 we get

E

[
sup

γ∈C0(n)
∆I(γ)(h)

]
≤ 4εb3L2

r
2
√
c4n

1
2

k(n)∑
ℓ=1

2
rℓ
2

√
ℓκ+1n

2r(d−1)ℓ
+ 4εb3L(c1 + log 2)

1
2n

≤ 4εb3L2
r
2
√
c4

[
(c1 + log 2)

1
2 +

∞∑
ℓ=1

(
ℓ
κ+1
2

2
rℓ(d−2)

2

)]
n.

The series above converges for any d ≥ 3, and we conclude that

E

[
sup

γ∈C0(n)
∆I−(γ)(h)

]
≤ εL′

1n,

with L′
1 := 4b3L2

r
2
√
c4

[
(c1 + log 2)

1
2 +

∑∞
ℓ=1

(
ℓ
κ+1
2

2
rℓ(d−2)

2

)]
. The desired result follows from Theorem

3.3.4 taking the constant L1 := LL′
1.

4.5 Phase transition

Theorem 4.5.1. For d ≥ 3 and α > d, there exists a constant C := C(d, α) such that, for all β > 0
and e ≤ C, the event

ν+Λ;β,εh(σ0 = −1) ≤ e−Cβ + e−C/ε2 (4.5.1)

has P-probability bigger then 1− e−Cβ − e−C/ε2.

In particular, for β > βc and ε small enough, there is phase transition for the long-range Ising
model.

Proof. The proof is an application of the Peierls’ argument, but now on the joint measure Q. By
Proposition 4.3.2, we have

Q+
Λ;β,ε(σ0 = −1) = Q+

Λ;β,ε({σ0 = −1} ∩ E) +Q+
Λ;β,ε({σ0 = −1} ∩ E

c)

≤ Q+
Λ;β,ε({σ0 = −1} ∩ E) + e−C1/ε2 . (4.5.2)
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When σ0 = −1, there must exist a contour γ with 0 ∈ V (γ), hence

ν+Λ;β,εh(σ0 = −1) ≤
∑
γ∈C0

ν+Λ;β,εh(Ω(γ)),

where Ω(γ) := {σ ∈ Ω : sp(γ) ⊂ Γ(σ)}. So we can write

Q+
Λ;β,ε({σ0 = −1} ∩ E) =

∫
E

∑
σ:σ0=−1

g+Λ;β,ε(σ, h)dh

≤
∑
γ∈C0

∫
E

∑
σ∈Ω(γ)

g+Λ;β,ε(σ, h)dh

≤
∑
γ∈C0

2|γ|
∫
E

sup
σ∈Ω(γ)

g+Λ;β,ε(σ, h)

g+Λ;β,ε(τγ(σ), τI−(γ)(h))

∏
x∈Λ

1√
2π

e−
1
2
h2
xdhx (4.5.3)

In the third equation, we used that
∑

σ∈Ω(γ) g
+
Λ;β,ε(τγ(σ), τI−(γ)(h)) ≤ 2|γ| ×

∏
x∈Λ

1√
2π
e−

1
2
h2
x ,

since the number of configurations that are incorrect in sp(γ) are bounded by 2|γ|. Equation (4.3.3)
implies,

sup
σ∈Ω(γ)

g+Λ;β,ε(σ, h)

g+Λ;β,ε(τγ(σ), τI−(γ)(h))
≤ exp {−βc2|γ|+ β∆γ(h)} sup

σ∈Ω(γ)
exp {−2β

∑
x∈sp−(γ,σ)

εhx}

≤ exp {−β 3c2
4
|γ|} sup

σ∈Ω(γ)
exp {−2β

∑
x∈sp−(γ,σ)

εhx}, (4.5.4)

since ∆γ(h) ≤ c2
4 |γ|, for all h ∈ E . Moreover, notice that∫

E
sup

σ∈Ω(γ)
exp {−2β

∑
x∈sp−(γ,σ)

εhx −
1

2

∑
x∈Λ

h2x}dhx ≤ sup
σ∈Ω(γ)

∫
RΛ

exp {−2β
∑

x∈sp−(γ,σ)

εhx −
1

2

∑
x∈Λ

h2x}dhx

= (2π)
|Λ|
2 sup

σ∈Ω(γ)
exp {2(βε)2|sp−(γ, σ)|},

where in the equality we used the Gaussian integral formula. Notice that, since in this problem we
need to take β large and ε small, we can make this choice in a way that 8βε2 ≤ c2. This observation,
together with Equations (4.5.2), (4.5.3) and (4.5.4) and the inequality above yields

Q+
Λ;β,ε(σ0 = −1) ≤

∑
γ∈E+

Λ
0∈V (γ)

2|γ| exp {−β(3c2
4
− 2βε2)|γ|}+ e−C1/ε2

≤
∑
n≥1

∑
γ∈E+

Λ ,|γ|=n
0∈V (γ)

exp {(−β c2
2

+ log 2)n}+ e−C1/ε2

≤
∑
n≥1

|C0(n)| exp {(−β
c2
2

+ log 2)n}+ e−C1/ε2

≤
∑
n≥1

e(b6−β
c2
2
+log 2)n + e−C1/ε2 .

When β is large enough, the sum above converges and there exists a constant C such that

Q+
Λ;β,ε(σ0 = −1) ≤ e−β2C + e−2C/ε2 .
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The Markov Inequality finally yields

P
(
ν+Λ;β,εh(σ0 = −1) ≥ e−Cβ + e−C/ε2

)
≤

Q+
Λ;β,ε(σ0 = −1)
e−Cβ − e−C/ε2

≤ e−β2C + e−2C/ε2

e−Cβ + e−C/ε2
≤ e−Cβ + e−C/ε2 ,

what proves our claim.



Concluding Remarks

In this thesis, we studied two Ising models: the semi-infinite Ising model with a decaying field
and the long-range random field Ising model.

For the semi-infinite Ising model with an external field of the form hi = λ|id|−δ, where λ is the
wall influence, we proved the existence of a critical value λc for which there is phase transition for
0 ≤ λ < λc and there is uniqueness for λ > λc. Moreover, we proved that when δ < 1, λc = 0 hence
there is uniqueness for all temperatures and all wall parameters.

In the semi-infinite model, the external field λc resembles the long-range Ising model interaction.
One natural question is if the phase transition results can be extended to a long-range semi-infinite
Ising model. The case δ > 1 should be expandable with little effort. However, the proof of uniqueness
when δ < 1 should be far from trivial.

For the critical exponent δ = 1, the Ising model with external field considered in [13] presents
phase transition for a region of the parameters. This indicates that the semi-infinite model with a
decaying field should also present a phase transition. However, our methods are not well suited to
treat this case since the wall-free energy may be ill-defined.

One last thing regarding this model is that, on [39], they show that the macroscopic behavior
of the system is as expected: there is a macroscopic layer on the wall when λ > λc, and the same
do not happen when λ < λc. This macroscopic behavior is described using the Peierls’ contours
configuration for "defect" boundary conditions: if there is a contour surrounding the origin, the wall
layer is thick, otherwise, it is thin. However, the Peierls’ contours are not well suited for dealing
with long-range interactions, so an interesting question is how to define the macroscopic behavior
of the system in terms of the long-range contours considered in [1, 2].

In the second part of the thesis, we proved the existence of phase transitions for the long-range
random field Ising model in d ≥ 3 and α > d, by following a new method of proving phase transition
introduced by Ding and Zhuang [31], and using a modification of multidimensional contours defined
in [1]. The key part of the argument was to extend the results of [34] to contours that are not
necessarily connected. This proof can be extended to other models with a contour system, as long
as the probability of the event Ec decreases to zero for large ε.

For the long-range random field model, there is a wide range of very interesting problems to
study next. The most interesting one is the presence of phase transition in dimensions d = 1, 2.
In d = 1, it is expected that the PT occurs in the entire region α ∈ (1, 32), without the restriction
J(1) >> 1 presented in [24]. In two dimensions, as shown in [29], we are unable to control the
greedy animal lattice normalized by the boundary, so the PT results do not extend to this region.
Also, it is expected that the long-range model random field model preserves the critical temperature
as the model without an external field, in the same sense as the RFIM [27].

Regarding the decay of correlations, not much is known about the long-range model. The most
prominent results are in one dimension, where Imbrie and Newman [48, 49] showed a polynomial
decay rate, that matches the interaction at high temperatures. In [47], the authors use the GHS
inequality to show that, when there is no external field, the truncated correlation of two points x, y
is always larger than c(d, α)Jxy. The only known result for the long-range random field model is [57],
where they show a polynomial decay of correlations at high external fields or high temperatures.

A first interesting question is if this lower bound of [47] still holds when we have a random
field. For an upper bound, a new correlation inequality [28] shows that the addition of any field
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only increases the difference of the magnetization at plus and minus boundary conditions. As
an application, the bounds of Imbrie and Newman can be used to control the difference of the
magnetization in the random field case. However, their results are limited to the region α ≥ 2, so it
is still left to study the behavior of the correlations in the region α ∈ [32 , 2). Similarly, in d = 2, the
RFIM presents exponential decay of correlations [5, 30]. For the long-range model the decay should
be slower (polynomial) in the uniqueness region α ≥ 3.
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