• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2013.tde-07022014-205830
Document
Auteur
Nom complet
Max Reinhold Jahnke
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Cordaro, Paulo Domingos (Président)
Petronilho, Gerson
Ragazzo, Clodoaldo Grotta
Titre en portugais
A equação de Euler e a análise assintótica de Gevrey
Mots-clés en portugais
Análise Assintótica
Classes de Gevrey
Equação de Euler
Resumé en portugais
Neste trabalho, introduzimos a noção de desenvolvimento assintótico em classes de Gevrey e mostramos como o conceito clássico de convergência de séries de potências pode ser generalizado para englobar o caso em que o raio de convergência é nulo. Essa técnica pode ser útil em situações em que é necessário trabalhar com séries formais, como no estudo de Equações Diferenciais. Caracterizamos o conjunto das funções holomorfas que admitem desenvolvimento assintótico e, em cada classe de Gevrey, definimos uma aplicação que associa uma função a uma série formal. Determinamos sob quais condições tal aplicação é sobrejetora e sob quais ela é injetora, possibilitando a ampliação do conceito de convergência e as aplicações da teoria. Além disso, mostramos como essa técnica pode ser usada para obter resultados em equações diferenciais. Para isso, fazemos uma breve introdução de Equações Diferenciais com uma variável complexa e introduzimos o conceito de Polígono de Newton, ferramenta que permite obter a classe de Gevrey de uma solução formal. Finalmente, encontramos condições para que a soma de uma solução formal de uma equação diferencial seja uma solução clássica.
Titre en anglais
Euler Equation and Gevrey Asymptotic Analysis
Mots-clés en anglais
Asymptotic Development
Euler's Equation
Gevrey classes
Resumé en anglais
In this work, we introduce the notion of Gevrey asymptotic expansion and we show how the classical concept of a convergent power series can be generalized to include the case in which the radius of convergence is zero. This technique can be useful in situations where it is necessary to work with formal power series, as in the study of Differential Equations. We characterize the set of holomorphic functions which admit Gevrey asymptotic expansion and we define in each Gevrey class a map that associates to function in the class a formal series. We determine under which conditions such a map is surjective and under which it is injective, allowing the extension of the concept of convergence and applications of the theory. Furthermore, we show how this technique can be used to obtain results in Differential Equations. For this, we briefly recall the theory of Differential Equations in one complex variable and we introduce the concept of the Newton Polygon, a tool that allows us to find the Gevrey class of a formal solution. Finally, we find suficient conditions for the sum of a formal solution of a differential equation to be a classical solution.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
dissertacao.pdf (762.43 Kbytes)
Date de Publication
2014-04-09
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.