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Abstract

ROJAS MENDOZA, ANA C. Numerical Solution of Ordinary Di�erential Equations Us-

ing Laplace Transform Integration. 2020.89 f. Dissertation (Master's degree) - Institute of

Mathematics and Statistics, University of São Paulo, São Paulo, 2020.

Oscillatory problems modeled by di�erential equations are called sti� when the eigenvalues vary

(simultaneously) in di�erent orders of magnitude: high values cause rapid oscillations while small

values cause slower oscillations. The time step size of the numerical methods used to integrate

such models is usually restricted by stability requirements. An explicit method will need a rela-

tively small time step, whereas with an implicit method it is possible to take larger time steps,

but usually impacting the accuracy of the solution. The aim of this work is to obtain a numerical

integration method that allows us to use larger time steps maintaining stability and precision. An

alternative method to solve di�erential equations based on the Inverse Laplace Transform is devel-

oped. The numerical scheme is de�ned, taking advantage of the properties of the Laplace Transform

and making some modi�cations on the integration contour. We analyze the method for di�erent

cases, including applied models, in order to establish a relationship between the integration pa-

rameters and to obtain optimal conditions to maintain stability, precision and the ability to use

larger time steps. In addition, under certain conditions, we also analyze the ability of the method

to act as a high-frequency component �lter. The comparison of this method with the Fourth Order

Runge Kutta Method, for di�erent cases, reveals that it is possible to take much larger time steps

without a�ecting stability and accuracy. Moreover, unlike the Runge Kutta Method, in the Laplace

Integration Method each evaluation is independent of each other. This implies that the calculations

can be executed in parallel, which could reduce the computation time.

Keywords: Laplace Transform, Inverse Laplace Transform, Time integration, Integration contour,

Filtering.
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Resumo

ROJAS MENDOZA, ANA C. Solução Numérica de Equações Diferenciais Ordinárias us-

ando Integração da Transformada de Laplace. 2020. 89 f. Dissertação (Mestrado) - Instituto

de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2020.

Problemas oscilatórios modelados por equações diferenciais são chamados rígidos quando os autoval-

ores variam (simultaneamente) em diferentes ordens de grandeza: valores elevados causam oscilações

rápidas, enquanto valores pequenos causam oscilações mais lentas. O tamanho do passo de tempo

dos métodos numéricos usados para integrar esses modelos geralmente é restrito pelos requisitos de

estabilidade. Um método explícito precisará de um passo de tempo relativamente pequeno, enquanto

que, com um método implícito é possível usar passos de tempo maiores, mas geralmente afetando a

precisão da solução. O objetivo deste trabalho é obter um método de integração numérica que nos

permita usar passos de tempo maiores, mantendo a estabilidade e a precisão. Um método alternativo

para resolver equações diferenciais ordinárias baseado na Transformada Inversa de Laplace é desen-

volvido. O esquema numérico é de�nido aplicando as propriedades da Transformada de Laplace e

fazendo algumas modi�cações no contorno da integração. Analisamos o método para diferentes ca-

sos, incluindo modelos aplicados, a �m de estabelecer uma relação entre os parâmetros de integração

e obter condições ideais para manter a estabilidade, a precisão e a capacidade de usar passos de

tempo maiores. Analisamos também, sob certas condições, a capacidade do método de atuar como

um �ltro de componentes de alta frequência. A comparação desse método com o Método de Runge

Kutta de quarta ordem, para diferentes casos, revela que é possível utilizar passos de tempo muito

maiores sem afetar a estabilidade e a precisão. Além disso, ao contrário do Método de Runge Kutta,

no método de integração de Laplace cada avaliação é independente. Isso implica que os cálculos

podem ser executados em paralelo, o que poderia reduzir o tempo de computação.

Palavras-chave: Transformada de Laplace, Transformada Inversa de Laplace, Integração no tempo,

Contorno de Integração, Filtragem.
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Introduction

Many problems in science and engineering lead to the necessity of solving systems of di�erential
equations, which is not always an easy task. Di�erential equations are used to model problems
that describe physical phenomena like Weather prediction, Motion of the Planets, Electrical Sys-
tems, Molecular Dynamics and Population Growth (Gri�ths and Highman (2010), Randall (2013),
Coi�er (2011), Logemann and Ryan (2013), Langer (1954), Ahmad and Ambrosetti (2014), Deng
(2015)). These mathematical models are accompanied by a set of initial and boundary conditions
given by the problem. Usually, the analytic solutions of these equations are hard to �nd or non-
existent so numerical methods must be used (See Mayers and Süli (2003), Bishop and Isaacson
(2003), Burlish and Stoer (2002)).

Naturally, some di�culties arise in the development of the numerical solution of di�erential equa-
tions. One of them is the simultaneous variation of the eigenvalues of the di�erential systems with
di�erent orders of magnitude. In oscillating systems, large eigenvalues produce rapid oscillatory
solutions, while small eigenvalues produce slow oscillatory solutions. Depending on the method,
the stability requirements compromise the size of the time step. Explicit methods need a relatively
small time step in order to guarantee stability and accuracy and implicit methods will allow larger
time steps, however, there is no guarantee of accuracy. The set of di�erential equations that produce
this behavior is called sti� equations.
Some examples of sti� systems are those with wave propagation such as weather, climate, seismic
imaging, and electrical systems. The methods designed to solve sti� equations allow to use larger
time steps maintaining stability and precision, however there is a price to pay, the computational
cost. Some of these time stepping strategies and methods are discussed in Busch et al. (2014),
Aydin and Kizilkan (2012) and Rahman and Thohura (2013).

Another class of methods developed to solve initial value problems are the Exponential Integrator
Methods (See Hochbruck and Ostermann (2010), Cox and Matthews (2002), Pope (1963)). The ex-
ponential integrator methods are based on the exact integration of the linear part of the di�erential
system using matrix exponentials, with the aim of avoiding the sti�ness of the problem, improving
the stability properties for larger time steps and achieving accuracy.

An integration method that has similar characteristics to the exponential integrator methods is
given by the Laplace Transform formula. The basic idea is to convert an Initial Value Problem
in the time domain (or t-domain) into an equivalent algebraic problem in a frequency domain (or
s-domain). Once the algebraic expression is obtained, the inverse transform will give the solution
of the di�erential equation system.

The Laplace Transform, de�ned for a time function f(t) as

f̂ (s) = L {f(t)} =

∫ ∞
0

e−stf (t) dt, s ∈ C, (1)

is an important mathematical tool that has di�erent applications in science and engineering �elds,
for example, Nuclear Physics, Control Theory and Signal processing (See Sawant (2018), Li et al.

1



2 LIST OF TABLES 0.0

(2010), Rani et al. (2019), Ngounda (2009), Ahmad and Javidi (2013), Al et al. (2016)). The Laplace
Transform is useful to examine di�erent aspects of a physical system. The real part of s in Equation
(1) is related to the quantity of damping and decay of the system and the imaginary part is related
to the frequency part of the system.

On the other hand, the Inverse Laplace Transform, may be de�ned using the Bromwich Integral:

f (t) = L−1
{
f̂
}

=
1

2πi

∫ δ+i∞

δ−i∞
estf̂ (s) ds, (2)

where δ must be greater than the real part of all the poles of f̂(s) (Schi� (1999)). The numerical
inversion of the Laplace Transform of a function represents a computational challenge, because it
depends on the sensitivity of the inversion procedure. Since the inversion formula has an exponential
term, it is important to be very careful with the value of st in Equation (2), as this can take very
large values which may produce an increasing round o� error and lead to divergence of the solution.
Another aspect to consider is the presence of very fast oscillations on the solutions, which is the
reason why di�erent numerical integration methods failed (Bellman (1966), Craig and Thompson
(1994)).
In the development of this work, it will be shown that making some modi�cations on the integra-
tion contour in Equation (2) it is possible to de�ne a useful method that can numerically invert the
Laplace Transform and apply it to solve di�erential equations.

The numerical inversion of the Laplace Transform has attracted the attention of many researchers.
Lynch (1985) developed a numerical scheme based on the Laplace Inversion formula. The method
is proposed as an initialization method to eliminate the high-frequency components from initial
conditions. Later Struylaert and Isacker (1985) stated that the application of the numerical in-
verse transform is not restricted to initialization and applied the technique to solve a Baroclinic
Model for atmosphere dynamics (See also Davies (1999), Ashan (2012), Clancy and Lynch (1994)).
Clancy (2010) showed some of the properties and bene�ts of the method, also an application of
this integration method to Shallow Water Equations is presented in Clancy and Lynch (2011),
Clancy and Lynch (2015).

The main contribution of this work is to provide a study of the bene�ts and drawbacks of applying
the Numerical Laplace Transform and its inverse to solve di�erential equation systems instead of
the classic methods of di�erences. In addition, we make a comparison of the Laplace Transform
Integration Method with the Fourth Order Runge Kutta Method for linear and non-linear cases.
With this, we seek to be able to use a larger time step that reduces computational cost without
a�ecting the stability and accuracy of the numerical solution.

Aims

The aim of this work is to explore the skills and limitations of the Laplace Transform Integration
Method (LTIM) to solve Ordinary Di�erential Equations. We want to see the advantages of this
method over classic di�erences methods such as the Fourth Order Runge Kutta Method. Some
speci�c aims are

† Establish a relationship between the parameters involved in the inversion process looking for
optimal conditions for larger time steps, accuracy, and stability,

† Analyse the capability of the method to act as a �lter of high-frequency components,

† Compare the scheme with a classical method in application models.
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Organization of the work

This work was organized as follow. Chapter 1 contains a brief compilation of the theory of
the Laplace Transform such as: conditions of existence and uniqueness, properties, examples, and
applications. Also, the Inverse Laplace Transform was de�ned and Appendix 5 includes the neces-
sary background of complex analysis to understand and apply the inversion formula given by the
Bromwich integral.

In Chapter 2 we describe and discuss the numerical scheme. We show the e�ects of replacing the
exponential function on the formula by its truncated Taylor Series. In addition, we deduce the
stability condition of the method. Finally, we present a general numerical scheme to solve initial
value problems.

In Chapter 3 we present the numerical results obtained after applying the Laplace Transform Inte-
gration Method. The Chapter is divided into four sections. In section 3.1, we solved a Linear case.
The behavior of the error corresponding to each parameter was analyzed and the relation between
the parameters was established, using that information we calculated the error decay order. In sec-
tion 3.2, we show how the LTIM works as a �lter of high-frequency components. Next, in Section
3.3, we solved a non-linear IVP. We also observed the behavior of the error corresponding to each
parameter to see how the non-linear part in�uences the relation between accuracy, stability, and
computational cost. In Section 3.4, we point out some of the limitations related to the numerical
stability of the method.

Chapter 4 presents a comparison between the Laplace Transform Integration Method and the Fourth
Order Runge Kutta Method for di�erent cases. Finally, we present the conclusions. Here we discuss
some of the advantages and applications of the method, pointing out the contributions resulting
from this research.
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Chapter 1

Laplace Transform Theory

Laplace Transform theory, named in honor of the Marquis Pierre Simone Laplace (1749 - 1827),
constitutes a very important tool in science, with impact in mathematics and physics, and engineer-
ing because it provides a method to solve Ordinary Di�erential Equations (ODE). The advantage
of using the Laplace Transform (LT) is that it converts an ODE into an algebraic equation of the
same order, which is usually easier to solve. Once the solution to the algebraic equation is found,
the Inverse Laplace Transform will give us the time - domain solution. In this chapter we present a
brief compilation of the Laplace Transform Theory. For more details we recommend to see Bellman
(1966), Groove (1991), Schi� (1999), Smith (1966), Spiegel (1965).

1.1 Existence and Uniqueness Requirements

De�nition 1.1 (Schi�, 1999). Suppose that f is a real or complex valued function of the variable

t ≥ 0. The Laplace Transform of f is given by:

f̂ (s) = L {f(t)} =

∫ ∞
0

e−stf (t) dt, (1.1)

where s is a complex number.

It is said that the Laplace Transform of the function f(t) exists if the integral (1.1) converges
for some s. Otherwise, it does not exists.

Example 1.1. Let f(t) ≡ 1, for t ≥ 0 and s ∈ R. Then:

L {f(t)} =

∫ ∞
0

e−st(1)dt

= lim
b→∞

[
e−st

−s

]b
0

= lim
b→∞

[
e−sb

−s
+

1

s

]

=


1
s , if s > 0

∞, if s ≤ 0.

Here we have considered a real s, but if s is a complex number the process will be equivalent. Let's

suppose that s = x+ iy. Then:

5
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L {f(t)} =

∫ ∞
0

e−st(1)dt

= lim
b→∞

[
e−st

−s

]b
0

= lim
b→∞

[
e−(x+iy)t

−(x+ iy)

]b
0

= lim
b→∞

[
e−(x+iy)b

−(x+ iy)
+

1

x+ iy

]

= lim
b→∞

[
e−xb (cos (by)− i sin (by))

−(x+ iy)
+

1

x+ iy

]

=
1

x+ iy
=


1
s , if Re(s) = x > 0

diverge, if Re(s) = x ≤ 0.

The Example 1.1 shows that, for suitable values of s, the Laplace transform of f(t) ≡ 1 exists.
Now consider that f(t) ≡ et2 . In this case, for any choice of s the integral (1.1) will diverge because
the function f(t) grows without inde�nitely. Thus, we need to establish su�cient conditions under
which the transform exists.

De�nition 1.2 (Schi�, 1999). A function f has a jump discontinuity at a point t0 if both limits

lim
t→t−0

f(t) = f(t−0 ),

lim
t→t+0

f(t) = f(t+0 ),

exist (as a �nite number) and f(t−0 ) 6= f(t+0 ). Here, t−0 and t+0 mean that t −→ t0 from the left and

right, respectively, (see Figure 1.1).

Figure 1.1: Function with a jump discontinuity in t = t0.

De�nition 1.3 (Schi�, 1999). A function is piecewise continuous on the interval [0,∞) if:

(i) limt→0+ f (t) = f (0+) exists;
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(ii) f is continuous on every �nite interval (0, b) except possibly only at a �nite number of points

τ1, τ2, ..., τn in (0, b) at which f has a jump discontinuity.

De�nition 1.4 (Schi�, 1999). A function f has exponential order α if there exist constants

M > 0 and α such that, for some t0 ≥ 0,

|f (t)| ≤Meαt, (1.2)

for t ≥ t0.

Example 1.2. Some examples of exponential order functions are:

(∗) eat has exponential order α = a;

(∗) Bounded functions such as sin(t) and cos(t) have exponential order 0 because they are bounded

by 1.

Remark 1.1. From now on, we will denote by L the class formed by those functions that satisfy

de�nitions (1.3) and (1.4).

Theorem 1.1 (Existence - Schi�, 1999). If f ∈ L, then the Laplace transform, L {f(t)}, exists for
Re(s) > α and converges absolutely.

Proof. First

|f (t)| ≤M1e
αt,

for t ≥ t0 and for some real α. Since f ∈ L, then f is also piecewise continuous on [0, t0], thus,
bounded in this interval, i.e.,

|f (t)| ≤M2,

for 0 < t < t0. Notice that eαt has a positive minimum on [0, t0], so a constant M can be chosen
su�ciently large so that

|f(t)| ≤Meαt,

for t > 0. Therefore,∫ τ

0
e−stf (t) dt ≤

∫ τ

0

∣∣e−stf (t)
∣∣ dt =

∫ τ

0

∣∣e−st∣∣ |f (t)|dt

=

∫ τ

0

∣∣∣e−(x+iy)t
∣∣∣ |f (t)|dt =

∫ τ

0
e−xt |f (t)|dt

≤ M

∫ τ

0
e−xteαtdt = M

∫ τ

0
e−(x−α)tdt

=

[
Me−(x−α)t

− (x− α)

]τ
0

=
Me−(x−α)τ

− (x− α)
+

M

x− α
,

Letting τ −→∞, Re(s) = x > α, yield∫ τ

0

∣∣e−stf (t)
∣∣ dt ≤ M

x− α
.

Thus the Laplace Transform converges absolutely (and hence converges) for Re(s) = x > α.
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Theorem 1.2 (Uniqueness - Lerch Theorem). Let f and g two continuous functions and of expo-

nential order such that F (s) = L {f(t)} and G(s) = L {g(t)}. Suppose that there is an s0 ∈ C such

that F (s) = G(s) for all Re(s) > Re(s0). Then, f(t)− g(t) is a null function, i.e.:∫ a

0
[f (t)− g (t)] dt = 0 ∀a > 0. (1.3)

Proof. If two functions f(t) and g(t) have the same LT, i.e., they satisfy:

L{f(t)} = L{g(t)},

or

L{f(t)} − L{g(t)} = 0,

we have, by the linearity of the Laplace transform, that,

L{f(t)− g(t)} = 0⇒
∫ ∞

0
e−st (f (t)− g (t))dt = 0.

Since the exponential function is always positive, the integral above indicates that f(t) and g(t) are
essentially equal.

Lerch Theorem ensures that if two functions have the same LT then they are equal in L. Hence,
it will make sense to talk about the inverse transform L−1 of a function considering that we have
uniqueness in L.

Example 1.3. In this example we calculate the Laplace Transform of a function f(t). Let f(t) = eat,
with real a . This function is continuous on (0,∞] and of exponential order a. Then:

L
{
eat
}

=

∫ ∞
0

e−steatdt =

∫ ∞
0

e−(s−a)tdt

= lim
b→∞

[
e−(s−a)t

− (s− a)

]b
0

= lim
b→∞

[
e−(s−a)b

− (s− a)
+

1

s− a

]

=
1

s− a
, Re(s) > a.

If a is a complex number, then Re(s) > Re(a).

1.2 Properties

In this section some basic, but very useful, properties of the Laplace Transform are mentioned
(More details can be found in Schi� (1999)).

Linearity. If f1 ∈ L for Re(s) > α, f2 ∈ L for Re(s) > β then:

f1 + f2 ∈ L,

for Re(s) > max {α, β} and,

L {c1f1(t) + c2f2(t)} = c1L {f1(t)}+ c2L {f2(t)} . (1.4)

for arbitrary real constants c1, c2.
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Transform of a �rst order derivative. Suppose that f ∈ L and that f ′ is piecewise
continuous in [0,∞). Then, for Re(s) > α,

L
{
f ′(t)

}
= sL {f(t)} − f (0) . (1.5)

Transform of an n-order derivative. Suppose that f(t), f ′(t), ..., f (n−1)(t) ∈ L on [0,∞),
while fn(t) is piecewise continuous on [0,∞). Then,

L
{
f (n)(t)

}
= snL {f(t)} − sn−1f (0)− sn−2f ′ (0) ...− sf (n−2) (0)− f (n−1) (0) . (1.6)

Transform of the convolution. Suppose that f, g ∈ L. If F (s) = L {f(t)} and G(s) =
L {g(t)} then,

L {(f ∗ g)(t)} = F (s)G(s), (1.7)

where

(f ∗ g) (t) =

∫ t

0
f (τ) g (t− τ) dτ.

Transform of a polynomial. If f (t) = a0 + a1t+ a2t
2 + ...+ ant

n is a polynomial of degree
n, then,

L {f(t)} =

n∑
k=0

akk!

sk+1
. (1.8)

Transform of in�nite series. If

f (t) =
∞∑
n=0

ant
n,

converges for t ≥ 0 , with

|an| ≤
Kαn

n!
,

for all n su�ciently large and α > 0,K > 0, then

L {f(t)} =

∞∑
n=0

anL {tn} =

∞∑
n=0

ann!

sn+1
. (1.9)

First Translation or Shifting Property. If F (s) = L {f(t)} for Re(s) > 0, then

F (s− a) = L
{
eatf(t)

}
, a ∈ R, Re(s) > a (1.10)

Second Translation or Shifting Property. If F (s) = L {f(t)} for Re(s) > 0, then

L {ua(t)f(t− a)} = e−asF (s), a > 0 (1.11)

where ua(t) is the unit step function de�ned as:

ua(t) =


1, if t ≥ a

0, if t < a.
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Change of scale. Let f ∈ L and F (s) = L {f(at)} for Re(s) > 0 , then

L {f(at)} =
1

a
F
(s
a

)
. (1.12)

1.3 Laplace Transform of some Functions

f(t) L {f(t)}

1
1
s

eat
1
s−a

tn, n ≥ 1
n!
sn+1

√
t

√
π

2
√
s

tneat, n ≥ 1
n!

(s−a)n+1

ua(t) = u(t− a)
e−as

s

sin at
a

s2+a2

cos at
s

s2+a2

eat sinh bt
b

(s−a)2−b2

eat cosh bt
s−a

(s−a)2+b2

1
t f(t)

∫∞
s F (u)du

Table 1.1: Laplace Transforms - Spiegel (1965)

1.4 Application to ODEs

As it was mentioned at the beginning of the chapter, the Laplace Transform can be use to solve
ODEs. The following example will show how to use the properties of the Laplace Transform to solve
an Initial Value Problem (IVP). Later we will deduced a general formula to solve IVPs. Let,


mx′′ = −kx− βx′,

x(0) = A,

x′(0) = B.

(1.13)

The second order equation in (1.13) is known as the Equation of motion with a damping force,
where k is the spring constant, m is the mass and β is the damping constant (See Spiegel (1965)).
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Applying the Laplace Transform and its properties to (1.13) we get,

mL
{
x′′
}

= −kL {x} − βL
{
x′
}

m
(
s2L {x} − sx(0)− x′(0)

)
= −kL {x} − β (sL {x} − x(0))(

ms2 + k + βs
)
L {x} = (ms+ β)x(0) +mx′(0)

L {x} =
(ms+ β)x(0) +mx′(0)

ms2 + k + βs

So we obtain:

x(t) = L−1

{
(ms+ β)x(0) +mx′(0)

ms2 + k + βs

}
. (1.14)

1.5 Inverse Laplace Transform

In the preceding section we showed how we can use the properties of the transform to solve an
Initial Value Problem. Even though we have a useful table of transforms that can be used to solve
ODEs, at some point we might have terms that won't have a �known transform�. Thus, we need a
general method to obtain the inverse transform. This method is provided by the inversion integral
which is usually referred as Bromwich Integral (also Mellin integral). In the Appendix 5 we give a
complex analysis background in order to understand and apply this integration formula.

Theorem 1.3. Let f(t) have a continuous derivative and let |f(t)| < Meαt where M and α are

positive constants. De�ne

f̂(s) = L {f(t)} =

∫ ∞
0

e−stf(t)dt, Re(s) > α.

Then

f(t) = L−1
{
f̂(s)

}
=

1

2πi

∫ δ+i∞

δ−i∞
estf̂(s)ds (1.15)

The integral (1.15) above is known as Bromwich integral.

Proof. See the proof at Cohen (2007).

Figure 1.2: Bromwich integral domain.
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In order to apply the inversion integration formula given by (1.15), we will use complex and
residue theory provided in the Appendix 5. The strategy will be to build a close contour that
contains the poles of f̂ .

Figure 1.3: Bromwich closed contour C = CR ∪ L.

Let's consider the contour C, shown in Figure 1.3. Then,∫
C
estf̂(s)ds =

∫
CR

estf̂(s)ds+

∫
L
estf̂(s)ds

=

∫
CR

estf̂(s)ds+

∫ δ+iR

δ−iR
estf̂(s)ds. (1.16)

The points s0, s1, ..., sn in Figure 1.3 represent a �nite number of poles of the function f̂ . Since the
poles are inside C, then by the Residue Theorem 1.4 we can rewrite (1.16) as

2πi
n∑
j=0

Res
[
f̂(s)est, sj

]
=

∫
CR

estf̂(s)ds+

∫ δ+iR

δ−iR
estf̂(s)ds. (1.17)

The �rst integral in (1.17) is going to 0 when R→∞ due to Jordan's Lemma (See Lemma .1) and
also making R→∞ the second integral becomes the Bromwich integral. Thus,

L−1
{
f̂
}

=
1

2πi

∫ δ+i∞

δ−i∞
estf̂ (s) ds =

n∑
j=0

Res
[
f̂(s)est, sj

]
. (1.18)

Theorem 1.4 (Residue .6). Suppose that f(z) is an analytic function on a simply-connected domain

D except for a �nite number of poles z1, z2, ..., zk. Suppose that C is a piecewise smooth positively-

oriented simple closed curve not passing through z1, z2, ..., zk. Then,

1

2πi

∫
C
f (z) dz =

∑
zj∈C

Res [f, zj ].



1.5 INVERSE LAPLACE TRANSFORM 13

Example 1.4. Calculate the Inverse Laplace transform of f̂(s) = 1
s−a .

Figure 1.4: Bromwich close contour for f̂(s) = 1
s−a .

The Laplace transform of f has one simple pole at s = a (Figure 1.4), so:

f(t) = L−1

{
1

s− a

}
= Res

[
est

s− a
, a

]
,

= lim
s→a

(s− a)

(
est

s− a

)
,

f(t) = eat.

It is possible to choose a circle as a contour (Figure 1.5). Because the right side has no poles
inside of it, thus the integral over CR2 is equal to zero. Therefore,

Figure 1.5: Alternative Bromwich close contour

L−1f̂ (s) =

∫
CR1

estf̂ (s) ds+

∫
CR2

estf̂ (s) ds =

∫
CR1

estf̂ (s) ds+ 0.

Other contours are possible, but we will adopt the circle contour throughout the derivation of the
numerical method that follows in the next Chapter.



14 LAPLACE TRANSFORM THEORY 1.5



Chapter 2

Laplace Transform Integration Method

Many physical phenomena are modeled through ODEs. One of the problems while solving these
equations are the high frequency components of the solutions. That is why the abilities of the Laplace
Transform were explored in di�erent researchs such as Lynch (1985), Lynch (1986), Struylaert and Isacker
(1987), Clancy (2010), Clancy and Lynch (2011), Clancy and Lynch (2015). Making some modi�-
cations on the inversion formula it is possible to de�ne a numerical scheme that works as a �lter
of high frequency components. In this chapter we present the formulation of the method based on
Laplace Transform Theory provided in the last chapter.

2.1 Numerical Inverse Laplace Transform

The inversion formula for the Laplace Transform is given by:

L−1
{
f̂
}

=
1

2πi

∫ γ+i∞

γ−i∞
estf̂ (s) ds. (2.1)

To apply this formula we need to replace the contour in (2.1) with a close contour C∗ (See Figure
2.1). We choose a circle centered at the origin and of radius γ (Clancy and Lynch (2011), Clancy
(2010)), then:

L−1
{
f̂
}

=
1

2πi

∫
C∗
estf̂ (s) ds, (2.2)

as long as all the poles of f̂ lie inside C∗.

Figure 2.1: Original contour vs Close contour C∗.

To apply numerically the formula (2.2), we reduce the integration into a quadrature formula

15
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using the Trapezoidal rule:

L−1
{
f̂
}

=
1

2πi

N∑
n=1

esntf̂ (sn) ∆sn. (2.3)

In equation (2.2), ds represents the length metric element of an arc in C∗ and ∆sn is an approxi-
mation for it (see Figure 2.2):

Figure 2.2: Relation between ds and ∆sn.

Since our contour is a circle of radius γ, we choose strategic points on C∗. These points are the
complex roots of γ (see the Appendix 5), de�ned as:

zn = γe
2iπn
N (2.4)

where N represents the (even) number of roots we use. So

ds ' θRC∗ =
2π

N
γ, (2.5)

and ∆sn can be calculated as:

∆sn =
2π

N

(
zn − zn−1

2 sin
(
π
N

) ) =
2π

N

(
γe

2iπn
N − γe

2iπ(n−1)
N

2 sin
(
π
N

) )

=
2π

N

γe 2iπn
N

(
1− e−

2iπ
N

)
2 sin

(
π
N

)


=
2π

N

γe 2iπn
N

(
e−

iπ
N e

iπ
N − e−

iπ
N e−

iπ
N

)
2 sin

(
π
N

)


=
2π

N

γe iπ(2n−1)
N

(
e
iπ
N − e−

iπ
N

)
2 sin

(
π
N

)


=
2π

N

(
γe

iπ(2n−1)
N

(
2i sin

(
π
N

))
2 sin

(
π
N

) )

=
2iπ

N
γe

iπ(2n−1)
N . (2.6)
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We denoted the exponential term in (2.6) as:

sn = γe
iπ(2n−1)

N . (2.7)

Thus:

∆sn =
2iπ

N
sn. (2.8)

Replacing the value of ∆sn in equation (2.3) we get:

L∗
{
f̂
}

=
1

N

N∑
n=1

esntf̂ (sn) sn. (2.9)

In addition we replace the exponential term in (2.9) by the truncated Taylor series expansion,

esntN =
N−1∑
j=0

(snt)
j

j!
. (2.10)

Thus, our discrete approximations de�ned in (2.9) becomes

L∗N

{
f̂
}

=
1

N

N∑
n=1

esntN f̂ (sn) sn. (2.11)

Clancy and Lynch (2011) obtained the formula (2.11) using an N -sided polygon C∗N (see Figure
2.3)

Figure 2.3: Contour C∗ vs N-sided polygon C∗N .

with

s′n = γ

cos ( πN )
e

2πin
N , n = 1, ..., N

∆sn = s′n − s′n−1 = 2is′ne
−πi
N sin

(
π
N

)
,

sn = γe
iπ(2n−1)

N = s′ne
−πi
N cos

(
π
N

)
,

(2.12)

where s′n,∆sn, sn represent the vertices, side length and midpoints of C∗N , respectively. In order to
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obtain the formula given in (2.9), Clancy and Lynch (2011) divided the summation in (2.3) by a
correction factor to ensure exactness for constants

κ =
N

π
tan

π

N
, (2.13)

that satis�es

1

κ
=

(
2πi

N

)(
sn

∆sn

)
. (2.14)

In the next section we shall analyze the e�ects of this replacement.

2.2 Truncated Exponential

Consider the case f(t) = 1 and f̂(s) = 1
s . We will use the operator de�ned in (2.9) (and the

Taylor Series Expansion of esnt) to invert f̂ . Thus:

L∗
(

1

s

)
=

1

N

N∑
n=1

esnt
1

sn
sn =

1

N

N∑
n=1

esnt

=
1

N

N∑
n=1

∞∑
k=0

(snt)
k

k!

=
1

N

N∑
n=1

∞∑
k=0

(
γe

iπ(2n−1)
N t

)k
k!

=
1

N

∞∑
k=0

N∑
n=1

(γt)k

k!
e
iπ(2n−1)k

N .

If k is a multiple of N , i.e., k = mN with m ∈ N0 = N ∪ {0}, then:

e
iπ(2n−1)k

N = e
iπ(2n−1)mN

N = eiπ(2n−1)m

= e2imnπe−imπ =
(
eiπ
)2mn(

e−iπ
)m

= (−1)m. (∗)

If we de�ne k = j +mN with j = {0, 1, ..., N − 1} ,m ∈ N0 = N ∪ {0}, then:

L∗
(

1

s

)
=

1

N

∞∑
m=0

N−1∑
j=0

N∑
n=1

(γt)j+mN

(j +mN)!
e
iπ(2n−1)(j+mN)

N . (2.15)

Analyzing the exponential term in (2.15) :

e
iπ(2n−1)(j+mN)

N = eiπ(2n−1)me
iπ(2n−1)j

N

= e2imnπe−imπe
2iπnj
N e

−iπj
N = (1)(−1)me

2iπnj
N e

−iπj
N

= (−1)me
2iπnj
N e

−iπj
N . (2.16)
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Now, we can rewrite (2.16):

L∗
(

1

s

)
=

1

N

∞∑
m=0

N−1∑
j=0

N∑
n=1

(γt)j+mN

(j +mN)!
(−1)me

2iπnj
N e−

iπj
N

=
1

N

∞∑
m=0

(−1)m
N−1∑
j=0

(γt)j+mN

(j +mN)!
e−

iπj
N

N∑
n=1

e
2iπnj
N . (2.17)

Analyzing the sum in (2.17), and using geometric summation properties, we conclude that:

N∑
n=1

e
2iπnj
N =

N∑
n=1

(
e

2iπj
N

)n
= e

2iπj
N

N−1∑
n=0

(
e

2iπj
N

)n

= e
2iπj
N

1−
(
e

2iπj
N

)N
1− e

2iπj
N


= e

2iπj
N

(
1− e2iπj

1− e
2iπj
N

)
.

Notice that we have two cases,

For j = 0:

N∑
n=1

e
2iπn(0)
N = N. (∗∗)

For j 6= 0:

N∑
n=1

e
2iπnj
N = 0. (∗ ∗ ∗)

So:

L∗
(

1

s

)
=

1

N

∞∑
m=0

(−1)m
(γt)mN

(mN)!
e−

iπ(0)
N (N)

+
1

N

∞∑
m=0

(−1)m
N−1∑
j 6=0

(γt)j+mN

(j +mN)!
e−

iπj
N (0)

=

∞∑
m=0

(−1)m
(γt)mN

(mN)!

= 1− (γt)N

N !
+

(γt)2N

(2N)!
− (γt)3N

(3N)!
+ ... .

If we truncate the exponential in the operator L∗ de�ned in (2.9), we have just the contribution of
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m = 0 and the inversion is exact, i.e.,

L∗N

(
1

s

)
= 1, (2.18)

and if we use the full exponential we get an O
(

(γt)N

N !

)
error. Making the same analysis for f̂(s) = 1

sk

we obtain:

L∗N

(
1

sk

)
=

tk−1

(k − 1)!
, for 1 ≤ k ≤ N,

which means that operator L∗N
(

1
sk

)
de�ned in (2.11) gives us the exact inversion for polynomials

of degree N − 1. More details about these analysis can be found in Clancy (2010).

2.3 Stability Criteria for Linear IVPs

In this section the stability condition for linear problems. Suppose that we have an linear Initial
Value Problem given by,


x′(t) = iωx,

x(0) = 1,

whose Laplace Transform and exact solution are given by f̂(s) and f(t) respectively,

f̂(s) = 1
s−iω ,

f(t) = eiωt.

(2.19)

Applying the operator L∗ in (2.9) to invert f̂(s) we have

L∗
(

1

s− iω

)
=

1

N

N∑
n=1

esnt
1

sn − iω
sn =

1

N

N∑
n=1

esnt
(

sn
sn − iω

)

=
1

N

N∑
n=1

esnt

(
1

1− iω
sn

)

=
1

N

N∑
n=1

esnt
∞∑
p=0

(
iω

sn

)p
, for

∣∣∣∣ iωsn
∣∣∣∣ < 1 (or |ω| < |γ|).

Suppose that p = l +mN with l = {0, 1, ..., N − 1} ,m ∈ N0 = N ∪ {0}, then

L∗
(

1

s− iω

)
=

1

N

N∑
n=1

esnt
∞∑
m=0

N−1∑
l=0

(
iω

sn

)l+mN
. (2.20)
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Using (2.6) and (∗): (
iω

sn

)l+mN
=

(
iω

γ
e−

iπ(2n−1)
N

)l+mN
=

(
iω

γ

)l+mN
e−

iπ(2n−1)l
N e−

iπ(2n−1)mN
N

=

(
iω

γ

)l+mN
e−

iπ(2n−1)l
N (−1)m.

Then: (
iω

sn

)l+mN
=

(
(−1)

(
iω

γ

)N)m
e−

iπ(2n−1)l
N

(
iω

γ

)l
. (2.21)

Replacing (2.21) in (2.20) and using (2.7) and (2.10) we get:

L∗
(

1

s− iω

)
=

1

N

N∑
n=1

∞∑
m=0

N−1∑
l=0

esnt

(
(−1)

(
iω

γ

)N)m
e−

iπ(2n−1)l
N

(
iω

γ

)l

=
1

N

∞∑
m=0

(
(−1)

(
iω

γ

)N)m N−1∑
l=0

N∑
n=1

esnte−
iπ(2n−1)l

N

(
iω

γ

)l

=
1

N

1

1 +
(
iω
γ

)N N−1∑
l=0

N∑
n=1

esnte−
iπ(2n−1)l

N

(
iω

γ

)l

(2.10)
=

1

N

1

1 +
(
iω
γ

)N N−1∑
l=0

N∑
n=1

∞∑
j=0

(snt)
j

j!
e−

iπ(2n−1)l
N

(
iω

γ

)l

(2.7)
=

1

N

1

1 +
(
iω
γ

)N N−1∑
l=0

N∑
n=1

∞∑
j=0

(γt)j

j!
e
iπ(2n−1)j

N e−
iπ(2n−1)l

N

(
iω

γ

)l

=
1

N

1

1 +
(
iω
γ

)N N−1∑
l=0

N∑
n=1

∞∑
j=0

(γt)j

j!
e

2iπn(j−l)
N e−

iπ(j−l)
N

(
iω

γ

)l

=
1

N

1

1 +
(
iω
γ

)N N−1∑
l=0

∞∑
j=0

(γt)j

j!
e−

iπ(j−l)
N

(
iω

γ

)l N∑
n=1

(
e

2iπ(j−l)
N

)n
. (2.22)

Observe that the last sum in (2.22) will be di�erent from zero only if j − l = kN , with k = 0, 1, ....
Writing j = l + kN and using (∗∗) and (∗ ∗ ∗), we get:

L∗
(

1

s− iω

)
=

1

N

1

1 +
(
iω
γ

)N N−1∑
l=0

∞∑
k=0

(γt)l+kN

(l + kN)!
e−iπk

(
iω

γ

)l N∑
n=1

(
e2πik

)n

=
1

N

1

1 +
(
iω
γ

)N N−1∑
l=0

∞∑
k=0

(γt)l+kN

(l + kN)!
(−1)k

(
iω

γ

)l
N.
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Thus,

L∗
(

1

s− iω

)
=

1

1 +
(
iω
γ

)N N−1∑
l=0

(iωt)l
∞∑
k=0

(−1)k
(γt)kN

(l + kN)!
. (2.23)

Separating (2.23) in two parts:

L∗
(

1

s− iω

)
=

1

1 +
(
iω
γ

)N
(
N−1∑
l=0

(iωt)l

l!

)
+

1

1 +
(
iω
γ

)N N−1∑
l=0

(iωt)l
∞∑
k=1

(−1)k
(γt)kN

(l + kN)!

=
1

1 +
(
iω
γ

)N
(
N−1∑
l=0

(iωt)l

l!

)

+
1

1 +
(
iω
γ

)N N−1∑
l=0

(iωt)l
(
− (γt)N

(l +N)!
+

(γt)2N

(l + 2N)!
− (γt)3N

(l + 3N)!
+ · · ·

)
. (?)

Struylaert and Isacker (1985) use the following notation:

HN (ω) =
1

1 +
(
iω
γ

)N . (2.24)

Then, using (2.24) we can rewrite (?) as

L∗
(

1

s− iω

)
= HN (ω)eiωtN +HN (ω)

N−1∑
l=0

(iωt)l
∞∑
k=1

(−1)k
(γt)kN

(l + kN)!
. (�)

Hence, for the truncated exponential we �nally get:

L∗N

(
1

s− iω

)
= HN (ω)eiωtN , (2.25)

as reported in Lynch (1986). Notice that the function HN (ω) will act as a damping factor when
|HN (ω)| ≤ 1. Suppose that ω = 2 and γ = 3. Then:

H2(2) =
1

1 +
(

2i
3

)2 = 1.8 ;

H4(2) =
1

1 +
(

2i
3

)4 = 0.83505... ;

H6(2) =
1

1 +
(

2i
3

)6 = 1.09624... ;

H8(2) =
1

1 +
(

2i
3

)8 = 0.96244... .

Thus, choosing N as a multiple of 4 will guarantee that |HN (ω)| ≤ 1. Our aim is to guarantee
stability, so we need the following condition to be satis�ed:∣∣HN (ω)eiω∆t

N

∣∣ ≤ 1. (2.26)
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Note that: ∣∣eiω∆t
N

∣∣ =
∣∣∣eiω∆t + eiω∆t

N − eiω∆t
∣∣∣

≤
∣∣eiω∆t

∣∣+
∣∣∣eiω∆t
N − eiω∆t

∣∣∣ = 1 +

∣∣∣∣∣(iωξ)NN !

∣∣∣∣∣ ξ ∈ [0,∆t] .

Therefore,

∣∣eiω∆t
N

∣∣ ≤ 1 +

∣∣∣∣∣(iω∆t)N

N !

∣∣∣∣∣ = 1 +
(ω∆t)N

N !
. (??)

Using (2.24) and (??), we get:

∣∣HN (ω)eiω∆t
N

∣∣ ≤
∣∣∣∣∣∣∣

1

1 +
(
iω
γ

)N
∣∣∣∣∣∣∣
(

1 +
(ω∆t)N

N !

)
.

Since we want condition (2.26) to be satis�ed, a su�cient condition is that∣∣∣∣∣∣∣
1

1 +
(
iω
γ

)N
∣∣∣∣∣∣∣
(

1 +
(ω∆t)N

N !

)
≤ 1,

1 +
(ω∆t)N

N !
≤

∣∣∣∣∣1 +

(
iω

γ

)N ∣∣∣∣∣ ≤ 1 +

(
ω

γ

)N
,

1 +
(ω∆t)N

N !
≤ 1 +

(
ω

γ

)N
,

(ω∆t)N

N !
≤

(
ω

γ

)N
.

Hence, the method will be stable if:

∆t ≤ (N !)
1
N

γ
. (2.27)

Example 2.1. Let's use γ = 3 and di�erent values of N on formula (2.27). The Table 2.1 shows

the corresponding ∆ts:

N Largest ∆t

8 1.25478353

16 2.26682226

24 3.60864540

32 4.26342976

64 8.22469183

Table 2.1: Time Steps for di�erent values of N and a �x value of γ

Observe that choosing N su�ciently large should provide means of using a larger ∆t, however is

not that simple.
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2.4 Numerical ODEs

As mentioned in Chapter 1, one of the most important applications of the Laplace Trans-
form is to solve Ordinary Di�erential Equation systems. Consider the general initial value problem
(Clancy and Lynch (2011)):


d ~X
dt = −L ~X −N

(
~X
)

~X(0) = ~X0

, (2.28)

where L is a linear operator and N a non-linear vector function. The Taylor expansion of the non-
linear term N( ~X) around ~X0 is given by:

N( ~X) = N( ~X0) +DXN( ~X0) · ~h+
1

2
~htHXN( ~X0)~h+ ... , (2.29)

where ~h = ~X − ~X0, DXN( ~X0) and HXN( ~X0) are the Jacobian and Hessian matrices of N( ~X)
respectively. In order to �nd the solution of the IVP (2.28) using the Laplace Transform, we use a
�rst order approximation of N( ~X):

N( ~X) = N( ~X0) +DXN( ~X0)~h+O

(∥∥∥~h∥∥∥2
)

, (2.30)

where O

(∥∥∥~h∥∥∥2
)

contains higher order terms that depends on the norm of ~h. The Mean Value

Theorem states that:

~X(t)− ~X(t0) = Dt
~X(ξi) · (t− t0) ,

for each ξi ∈ [t0, t]. Then:

∥∥∥~h∥∥∥ =
∥∥∥ ~X(t)− ~X(t0)

∥∥∥ ≤ sup
ξi∈[t0,t]

∥∥∥Dt
~X(ξi)(t− to)

∥∥∥
≤ sup

ξi∈[t0,t]

∥∥∥Dt
~X(ξi)

∥∥∥ sup
ξi∈[t0,t]

‖t− t0‖

≤ sup
ξi∈[t0,t]

∥∥∥Dt
~X(ξi)

∥∥∥∆t

Thus: ∥∥∥~h∥∥∥ =
∥∥∥ ~X(t)− ~X(t0)

∥∥∥ ≤ c∆t, (2.31)

where c = sup
ξi∈[t0,t]

∥∥∥Dt
~X(ξi)

∥∥∥. Thus, using (2.31), equation (2.30) can be written as:

N( ~X) = N( ~X0) +DXN( ~X0) · ~h+O
(
∆t2

)
. (2.32)

Applying the Laplace Transform to (2.28) and replacing (2.32) on it, we obtain:
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L

{
d ~X

dt

}
= −L

{
L ~X +N

(
~X
)}

;

sL
{
~X(t)

}
− ~X (0) = −L

{
L ~X(t)

}
− L

{
N
(
~X (0)

)
+D ~XN

(
~X(0)

)
· ~h+O

(
∆t2

)}
;

sL
{
~X(t)

}
− ~X0 = −L

{
L ~X(t)

}
− L

{
N( ~X0)

}
− L

{
D ~XN

(
~X0

)
· ~h
}

+ L
{
O
(
∆t2

)}
;

sL
{
~X(t)

}
− ~X0 = −L

(
L
{
~X(t)

})
−N

(
~X0

)
L {1} −D ~XN

(
~X0

)
· L
{
~h
}

+L
{
O
(
∆t2

)}
;

sL
{
~X(t)

}
+ L

(
L
{
~X(t)

})
= ~X0 −

1

s
N( ~X0)−D ~XN

(
~X0

)
· L
{
~X(t)− ~X0

}
+L

{
O
(
∆t2

)}
;

sL
{
~X(t)

}
+ L

(
L
{
~X(t)

})
= ~X0 −

1

s
N( ~X0)−D ~XN

(
~X0

)
· L
{
~X(t)

}
+D ~XN

(
~X0

)
· L
{
~X0

}
+ L

(
O
(
∆t2

))
;

(
sI + L+D ~XN

(
~X0

))
· L
{
~X(t)

}
= ~X0 −

1

s
N( ~X0) +D ~XN

(
~X0

)
· L
{
~X0

}
− L

{
O
(
∆t2

)}
;

(
sI + L+D ~XN

(
~X0

))
· L
{
~X(t)

}
= ~X0 −

1

s
N( ~X0) +

1

s
D ~XN

(
~X0

)
· ~X0 − L

{
O
(
∆t2

)}
.

Assuming that the inverse of
(
sI + L+D ~XN

(
~X0

))
exists,

L
{
~X(t)

}
=

(
sI + L+D ~XN

(
~X0

))−1
(
~X0 −

1

s
N( ~X0) +

1

s
D ~XN

(
~X0

)
· ~X0

)

+
(
sI + L+D ~XN

(
~X0

))−1
L
{
O
(
∆t2

)}
;

X (t) = L−1

{
(sI + L+DXN (X0))−1

(
X0 −

1

s
N(X0) +

1

s
DXN (X0) ·X0

)}
+L−1

{
(sI + L+DXN (X0))−1 (L{O (∆t2)})} ;

X (t) = L−1

{
(sI + L+DXN (X0))−1

(
X0 −

1

s
N(X0) +

1

s
DXN (X0) ·X0

)}
+ (sI + L+DXN (X0))−1 L−1

{
L
{
O
(
∆t2

)}}
.

Thus:

X(t) = L−1

{
(sI + L+DXN (X0))−1

(
X0 −

1

s
N(X0) +

1

s
DXN (X0) ·X0

)}
+(sI + L+DXN (X0))−1 (O (∆t2)) . (2.33)
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Equation (2.33) indicates that the order of accuracy of the method depends on the size of the time
step. Clancy (2010) assumed that the non-linear term is slowly varying over time and did a constant
approximation for each time step. With this assumption, Clancy and Lynch (2011) obtained the
following formula:

X(t) = L−1

{
(sI + L)−1

(
X0 −

1

s
N(X0)

)}
− (sI + L)−1 (O (∆t)) , (2.34)

which has a �rst order error.
In general, we have to solve IVPs of the form:

{
X ′ = −LX −N (X) ;

X(tk) = Xk.
(2.35)

Notice that formulas (2.33) and (2.34) require that the initial condition is always de�ned at t = 0.
Hence, we need to apply the shift property and rewrite (2.35) using τ = t− tk:

{
X̃ ′ = −LX̃ −N

(
X̃
)

;

X̃(0) = X̃k;
(2.36)

where:

 X̃(τ) = X(τ + tk) = X(t);

τ = t− tk.
(2.37)

So, (2.34) turns into:

X (t) = L−1

(sI + L)−1

X̃0 −
N
(
X̃0

)
s

 (t− tk)− (sI + L)−1 (O(∆t)) . (2.38)

Applying the operator L∗ de�ned by (2.9), we get:

X∗ (t) = L∗
{
X̂(t)

}
=

1

N

N∑
n=1

[
esn(t−tk)

(
(snI + L)−1

(
X̃0 −

N (X0)

sn

)
− (sI + L)−1 (O(∆t))

)
sn

]
(2.39)

Then, the numerical scheme is given by:

X∗k+1 =
1

N

N∑
n=1

[
esn(tk+1−tk)

(
(snI + L)−1

(
X∗k −

N (X∗k)

sn

))
sn

]
.

Remember that:

tk+1 − tk = (k + 1)∆t− k∆t = ∆t.
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Thus:

X∗k+1 =
1

N

N∑
n=1

[
esn∆t

(
(snI + L)−1

(
X∗k −

N (X∗k)

sn

))
sn

]
(2.40)

Summarizing, formula (2.40) gives a numerical scheme that is linearly stable for ∆t satisfying (2.27),
with exponential convergence on N for linear cases and �rst order on ∆t for non-linear cases.



28 LAPLACE TRANSFORM INTEGRATION METHOD 2.4



Chapter 3

Numerical Results

In this chapter we present the numerical results obtained after applying the Laplace Transform
Integration Method (LTIM) provided in Chapter 2. In Section 3.1 a linear ODE, whose Laplace
transform has a simple pole, is solved. In Section 3.2, as proposed by Lynch (1985), we apply this
integration method to remove high frequency components from the approximate solution, i.e., apply
this method as a �lter under certain conditions. In Section 3.3 we explored the ability of the method
to solve a non-linear ODE. Finally, in Section 3.4 we show the stability limitations of the method.

3.1 Linear Case

For the �rst experiment we considered a simple linear IVP:

{
dX
dt = 2iX,

X(0) = 1,
(3.1)

whose exact solution is:
X(t) = e2it. (3.2)

and its Laplace transform is given by:

L(X(t)) = X̂(s) =
1

s− 2i
, (3.3)

3.1.1 Theory Validation: E�ect of the Truncated Exponential

In this section, we numerically validate the theory developed in the previous chapter. Recall the
formula (�):

L∗
(

1

s− iω

)
= HN (ω)eiωtN +HN (ω)

N−1∑
l=0

(iωt)l
∞∑
k=1

(−1)k
(γt)kN

(l + kN)!
, (3.4)

Taking γ = 4 and using di�erent values of N , the largest time step for each N was calculated using
(2.27) in order to solve IVP (3.1). Figure 3.1 shows the Error (in ‖·‖∞) made in one time step, we
can clearly see the e�ect of full and truncated exponentials on the approximate solution of (3.1).
The decay of the error shows that the truncated exponential guarantees the convergence of the
approximate solution to the exact solution up until N ≈ 40; while with the full exponential, the
sum on the right in (3.4) is growing along with the value of N . This produces a larger accuracy error.

29
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Figure 3.1: Error Comparison in ‖·‖∞ between the full and truncated exponential corresponding to IVP
(3.1) using the largest ∆t for each N .

Observe that, for ∆ts corresponding to N ≥ 100 the solution is unstable for both exponentials.
This means that, numerically, the stability condition given in Chapter 2 is not enough to guaran-
tee stability. Later, in section 3.4 we discuss this problem and present the stability region for this
method. To better appreciate the e�ect of both exponentials on the approximate solution, we take
a smaller time step for each N (80% of the largest ∆t) as shown in Figure 3.2.

Figure 3.2: Error Comparison in ‖·‖∞ between the full and truncated exponential, using a smaller time
step (80% of the largest ∆t).

Figure 3.3 shows the behavior of the solution of IVP (3.1) for both exponentials in ten time
steps. Notice that, the error grows as the approximations process repeats. This result and the e�ects
of varying the values of N, γ, and ∆t will be shown in the next section.
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Figure 3.3: Solution for IVP 3.1 using the full and truncated exponential in 10 time steps and N = 12.

3.1.2 Linear ODEs

The function (3.3) has one simple pole at s = 2i on the imaginary axis. According to the theory
(Chapter 1), we will take di�erent radius greater than two otherwise the value of the transform will
be zero. Several experiments were made using di�erent values of N , radius γ and time partitions
∆t in order to establish a relationship between these parameters and see how they in�uence the
accuracy of the approximate solution. Initially, it is consider γ = 2.1. The aim of this simulation is
to see the behavior of the approximate solution when the contour is very close to the pole of X̂.
Choosing values for N and ∆t that satisfy the stability condition (2.27) given in Chapter 2 we get
the following results.

Figure 3.4: Exact solution vs Approximate solutions using γ = 2.1 for the IVP 3.1.
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Figure 3.5: Exact solution vs Approximate solutions using γ = 3.3 for the IVP (3.1).

Figure 3.4 shows that for a radius of 2.1, no matter how large we choose N , the error is always
quite large (no convergence in N). This is largely related to the proximity of the contour to the pole.
In Figure 3.5, we can see that the choice of the radius in�uences the accuracy of the solution. As we
get far from the pole we get a better approximation to the exact solution because the in�uence of
the pole is reduced. Also, in both cases, N = 4 gets the worst results. Nevertheless, when γ = 3.3
and N > 4, increasing the value of N leads to convergence to the exact solution. In order to see
the relation between the parameters we graph, for di�erent values of dt, γ and N , the behavior of
the error (in ‖·‖∞) which is the maximum error of all the time steps.

Figure 3.6: Number of s-points (N) vs Maximum Error taking dt = 0.0390625 and di�erent values of γ
for IVP (3.1).

In Figures 3.6 and 3.7 for a �x dt, we note that the error decays as the value of the radius and
N increases. We can also verify that the choice of radius plays an important role in the accuracy of
the solution. Each �gure shows that the farther from the pole, the smaller the error made.
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Figure 3.7: Number of s-points (N) vs Maximum Error taking dt = 1.25 and di�erent values of γ for
IVP (3.1).

Figure 3.8: γ vs Maximum Error taking N = 12 and di�erent values of dt for IVP (3.1).

On the other hand, here we �x two values of N and test di�erent values of dt and γ. Figures
3.8 and 3.9 show that the smallest error was obtained for the larger radius. Also we can see that
the smallest error corresponds to the largest time step. Observe that, we started with a small error
that becomes bigger over time due to the constant repetition of the approximation process. In other
words, the smaller time step, the greater accumulated error.
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Figure 3.9: γ vs Maximum Error taking N = 52 and di�erent values of dt for IVP (3.1).

Figure 3.10: N vs Maximum Error taking γ = 2.1 and di�erent values of dt for IVP (3.1).

Now in Figures 3.10 and 3.11, we �x the value of γ and test di�erent values for dt and N . The
behavior of the error is the same as in Figures 3.6 - 3.9. The best results are of γ = 3.3 and N = 52.
In addition, the accumulated error is smaller for the largest time step.
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Figure 3.11: N vs Maximum Error taking γ = 3.3 and di�erent values of dt for IVP (3.1).

The Figures 3.6 - 3.11 show a signi�cant decay of the error as the value of N grows. Hence, we
calculate the order of that decay. Suppose that:

Error = E = O
(
e−pN

)
≈ Ce−pN .

Then,

Ek = Ce−pNk ,

Ek+1 = Ce−pNk+1 ,

where Ek > Ek+1 and Nk < Nk+1. So that,

Ek
Ek+1

≈ ep(Nk+1−Nk),

ln

(
Ek
Ek+1

)
≈ p(Nk+1 −Nk),

p ≈
ln
(

Ek
Ek+1

)
Nk+1 −Nk

.

For di�erent values of N , we get the results listed in Tables 3.1 and 3.2:
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γ

N 2.1 2.3 2.5 2.7 2.9 3.1 3.3

4

12 0.000104 0.008324 0.052909 0.131104 0.222516 0.315692 0.406265

20 0.000646 0.052878 0.170346 0.275076 0.360139 0.432946 0.498225

28 0.002589 0.101879 0.213186 0.297726 0.370967 0.438094 0.500729

36 0.006839 0.126127 0.221439 0.299888 0.371533 0.438250 0.500774

44 0.013204 0.135163 0.222857 0.300085 0.371562 0.438255 0.500775

52 0.020458 0.138243 0.223095 0.300103 0.371563 0.438255 0.500771

Table 3.1: Error Decay Order p for a �x dt = 0.625 and di�erent values of γ and N for IVP (3.1).

From table 3.1 above, observe the di�erence between the error decay order (in N) for γ = 2.1
and γ = 3.3. In the last column of this table, corresponding to γ = 3.3, see that the value of p is
almost constant for each value of N and is approximately 0.5.

dt

N 0.0390625 0.078125 0.15625 0.3125 0.625 1.25

4

12 0.095367 0.163922 0.241102 0.321145 0.406265 1.124570

20 0.464142 0.481873 0.491121 0.495841 0.498225 0.495281

28 0.500071 0.500422 0.500597 0.500685 0.500729 0.500750

36 0.500762 0.500769 0.500772 0.500774 0.500774 0.500775

44 0.500775 0.500775 0.500775 0.500776 0.500774 0.500777

52 0.500779 0.500779 0.500760 0.500799 0.500801 0.500639

Table 3.2: Error Decay Order p for a �x γ = 3.3 and di�erent values of dt and N for IVP (3.1).

For Table 3.2, we �x γ = 3.3 and test di�erent values for dt and N . See that in the third row
the error decay order, associated to N = 20 and N = 28, is almost the same for all the choices
of time step dt. This means that we have the possibility to choose a bigger time step and still get
good accuracy.

For the linear case we can conclude that the accuracy of the solution depends more on the choice
of the radius γ and the number of s-points N than on the choice of the time step dt. This is due
to the way the method was de�ned. In the absence of the non-linear term, the order of the method
does not depend on the size of the time step. It is enough to choose a time step that satis�es the
stability condition (2.27) given in Chapter 2.
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Finally, as it was mentioned in Chapter 2, the IVP (3.1) is associated to a damping function. The
Figure 3.12 shows how this function looks for the di�erent values of γ and N that we tested.

Figure 3.12: Damping function for the linear case with ω = 2.

3.2 Filter Case

Many physical problems are modeled using ordinary di�erential equations whose solutions include
high frequency components due to fast waves. In this section, we show the ability of the Laplace
Transform to work as a �lter under certain considerations. In order to remove these high frequency
components we chose a positive number γ such that:

|sl| < γ < |sr|, (3.5)

where sl is the low frequency component and sr is the high frequency component. Suppose that we
have the following IVP:


X ′′ − 8iX ′ − 12X = 0,

X ′(0) = 8i,

X(0) = 2.

(3.6)

The Laplace Transform of this second order ODE is given by:

X̃(s) =
1

s− 2i
+

1

s− 6i
. (3.7)

We have two simple poles at s1 = 2i and s2 = 6i which represent the low and high frequencies
respectively. This means that s1 and s2 produce slow and fast oscillations on the solutions of IVP
(3.6). Hence, we de�ne the radius as follows:

2 < γ < 6.
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The IVP de�ned in (3.6) can be written as a �rst order linear system:



X ′1
X ′2

 =

 0 1

12 8i

X1

X2

 ,

X1 (0)

X2 (0)

 =

 2

8i

 ,

(3.8)

whose exact solution is given by

X1 (t)

X2 (t)

 =

 e2it + e6it

2ie2it + 6ie6it

 , (3.9)

and its �ltered solution is

X∗1 (t)

X∗2 (t)

 =

 e2it

2ie2it

 . (3.10)

3.2.1 E�ect of the Truncated Exponential

As we did on Section 3.1, here we present the e�ect of using the full and truncated exponential
while the integration method is acting as a �lter.

Figure 3.13: Error Comparison in (‖·‖∞) between the full and truncated exponential - Filter case.
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Figure 3.14: Error Comparison in ‖·‖∞ between the full and truncated exponential - Filter case (Zoom).

Figures 3.13 and 3.14 show that, although the error made for both exponentials is similar, the
truncated exponential continues to give better results than the full exponential. Since in this case
the method is being applied as a high frequency �lter, the value of the damping function a�ects the
result di�erently.

Suppose that γ = 4. Then the Laplace Transform of (3.8) is given by (3.11):

L∗
(

1

s− 2i
+

1

s− 6i

)
= HN (2)e2i∆t

N +HN (6)e6i∆t
N +HN (2)

N−1∑
l=0

(2i∆t)l
∞∑
k=1

(−1)k
(4∆t)kN

(l + kN)!

+HN (6)
N−1∑
l=0

(6i∆t)l
∞∑
k=1

(−1)k
(4∆t)kN

(l + kN)!
. (3.11)

Observe that HN (2) −→ 1 and HN (6) −→ 0 as the value of N grows. This means that, by choosing
a suitable value for gamma and truncating the exponential it is possible to eliminate the high
frequency component of the approximate solution, i.e., to obtain the �ltered solution. On the other
hand, by using the full exponential, we still have the following term:

HN (2)

N−1∑
l=0

(2i∆t)l
∞∑
k=1

(−1)k
(4∆t)kN

(l + kN)!
,

as a source of error.

3.2.2 Filtering

In the following �gures we will show how the �lter works, that is, we will show the �ltered
function. Since we cut the high frequency component, we only have the contribution of the lowest
frequency, i.e, the component with pole of the smallest module.
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Figure 3.15: Exact �ltered solution X∗1 vs Approximate �ltered solutions using dt = 0.15625 and γ = 2.1
for the IVP (3.6).

Figure 3.16: Exact �ltered solution X∗1 vs Approximate �ltered solutions using dt = 0.15625 and γ = 2.5
for the IVP (3.6).

Figures 3.15 and 3.16 show the results obtained while approximating the �ltered solution X∗1
given in (3.10). As in the �rst case, with a single pole, the further we get from the smallest pole the
better results we get. Here, we have a limitation for the radius, in the following we will see what is
the best choice for γ.
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Figure 3.17: Exact �ltered solution X∗2 vs Approximate �ltered solutions using dt = 0.15625 and γ = 2.1
for the IVP (3.6).

Figure 3.18: Exact �ltered solution X∗2 vs Approximate �ltered solutions using dt = 0.15625 and γ = 2.5
for the IVP (3.6).

Figures 3.17 and 3.18 show the results while approximating the �ltered solution X∗2 given in
(3.10). Next, we present the graphs showing the behavior of the error for this case. Since the behavior
of the error is similar for both solutions we just present the graphs corresponding to the solution
X∗1 .
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Figure 3.19: N vs Maximum Error for X∗1 using dt = 0.15625 and di�erent values of γ between 2.1 and
3.3 for IVP (3.6).

Figure 3.20: N vs Maximum Error for X∗1 using dt = 0.15625 and di�erent values of γ between 4 and
5.2 for IVP (3.6).

Observe that the simulations were separated in two groups. The �rst one with γ between 2.1
and 3.3 (Figure 3.19) and the second one with γ between 4 and 5.2 (Figure 3.20). As in the �rst
case, the error decays exponentially for bigger values of N . In addition, notice that for γ = 3.3 and
γ = 4 we get the smallest error; thus the best choice for the radius is 3.3 ≤ γ ≤ 4. Figure 3.20
indicates that the error is increasing for γ > 4, this is because the approach is a�ected by the high
frequency component.



3.3 NON-LINEAR ODES 43

3.3 Non-linear ODEs

Consider the following IVP: {
dX
dt = 2iX +X2,

X(0) = 0.8− 0.4i.
(3.12)

The solution for (3.12) was calculated using algebraic techniques for di�erential equations :

X(t) =
2e2it

2 + ie2it
. (3.13)

As in the linear case, we study the dependence of the stability and accuracy of the approximate
solution on the parameters γ, dt and N . We present the results obtained as follows.

Figure 3.21: Exact solution vs Approximate solutions using dt = 0.3125 and γ = 5.3 for IVP (3.12).

Figure 3.21 shows that the approximate solutions are unstable for the chosen parameters while
Figure 3.22 shows stable results for an smaller time step.

Figure 3.22: Exact solution vs Approximate solutions using dt = 0.15625 and γ = 5.3 for IVP (3.12).



44 NUMERICAL RESULTS 3.3

In order to establish the relation of the parameters γ, dt and N , we consider the behavior of
the error.

Figure 3.23: N vs Maximum Error (‖·‖∞) using dt = 0.009766 and di�erent values of γ and N for IVP
(3.12).

Figure 3.24: N vs Maximum Error (‖·‖∞) using dt = 0.15625 and di�erent values of γ for IVP (3.12).

In Figures 3.23 and 3.24 we graph the behavior of the error for a �x dt and di�erent values of γ
and N . Observe that the smallest error is obtained with dt = 0.009766 and γ = 5.3, also see that
for some large values of N the behavior of the error is constant. This means that the approach is
not depending on the value of N , however it is a�ected by the size of the time step.
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Figure 3.25: N vs Maximum Error (‖·‖∞) using γ = 3.3 and di�erent values of dt and N for IVP
(3.12).

Figure 3.26: N vs Maximum Error (‖·‖∞) using γ = 5.3 and di�erent values of dt and N for IVP
(3.12).

Figures 3.25 - 3.26 indicate that the smallest time step produces the smallest error. Since the
approximation of the non-linear term depends on the size of the time step (see Chapter 2), increasing
the value of N does not have a signi�cant impact on the accuracy of the solution. It is enough to
choose a su�ciently large N .



46 NUMERICAL RESULTS 3.4

Figure 3.27: dt vs Maximum Error using γ = 5.3 and di�erent values of dt and N for IVP (3.12).

For the non-linear case we can conclude that the stability and accuracy of the results depend
strongly on the choice of the time step. The bad news is that decay of the error with respect to the
time step is of �rst order (See Table 3.3), which is consistent with the de�nition of the integration
method given by the Equation (2.35) in Chapter 2. In this case, we have a polynomial decay of the
error and not exponential as in the linear case. In Table 3.3 we present the order of decay of the
error using the time steps that guaranteed stability.

N dt

0.019531 0.0039062 0.078125 0.15625

4

12 1.0584 1.0542 1.0800 1.0923

20 1.0257 1.0453 1.0780 1.0916

28 1.0257 1.0453 1.0780 1.0916

36 1.0257 1.0453 1.0780 1.0916

44 1.0257 1.0453 1.0780 1.0916

Table 3.3: Error Decay Order with respect to the time step using γ = 5.3 for IVP (3.12).
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3.4 Stability Limitations of the LTIM

3.4.1 Numerical instability due to roundo� errors

In Section 3.1 we solved an IVP with a small pole and a relation between the parameters γ,
dt and N was established. Here we consider the case where a linear IVP has a higher frequency
component. Let:


dX
dt = 100iX,

X(0) = 1,
(3.14)

be an IVP whose Laplace Transform is given by:

L{X(t)} =
1

s− 100i
, (3.15)

and its exact solution is:

X(t) = e100it. (3.16)

In order to analyse this case, we chose di�erent values for γ, dt and su�ciently large values for N .

Figure 3.28: dt vs Maximum Error using N = 160 and di�erent values of γ for IVP 3.14.

Figure 3.28 indicates that for dt > 0.2 the error grows too much. The exponential term in the
inversion formula has an exponent that is the product of γ and dt. If this is too large, then the
computer will not be able to represent it exactly due to round o� errors (See Higham (2002) and

Uerberhuber (1997)). Figure 3.29, shows another perspective of the behavior of the Maximum Error.



48 NUMERICAL RESULTS 3.4

Figure 3.29: γ vs Maximum Error using N = 160 and di�erent values of dt for IVP 3.14.

Cutting o� the errors greater than one (Figures 3.30 and 3.31), is possible to the take a closer
look on the error for suitable values of γ and dt.

Figure 3.30: dt vs Maximum Error using N = 160 and di�erent values of γ for IVP 3.14.
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Figure 3.31: γ vs Maximum Error using N = 160 and di�erent values of dt for IVP 3.14.

Notice that the error curves for dt = 0.3 and dt = 0.35 did not appear in the Figure 3.31, this
is because for any value of γ the error is greater than one. This information is organized in Table
3.4. For each radius γ we show both the analytical (obtained via equation (2.27)) and the largest
numerical time step obtained.

γ Analytical dt Numerical dt

110 0.5468 0.25

120 0.5012 0.25

130 0.4627 0.25

140 0.4296 0.2

150 0.4009 0.2

160 0.3759 0.2

Table 3.4: Analytical Numerical dt using N = 160 and di�erent values of γ for IVP 3.14.

Since the bound for the time step depends on the value of γ and N , we might think that, in
order to get a bigger time step, we just need to increase the value of N . The problem is that we can
not use an exponent that can not be represented by the computer. Thus, the stability condition
de�ned in Chapter 2 will not work in this case. Since we are using double precision, it is possible
to make arithmetic operations with sixteen signi�cant digits (see Cheney and Kincaid (2008)). The
largest number that we can work with (without round o� error problems) is of the form

B1, b2b3...b16 × 1015.
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To obtain the maximum exponent with which arithmetic operations can be performed with the
exponential, we perform the following calculation:

1015 = em;

15 log 10 = m log e;

m =
15 log 10

log e
.

Thus,

m ≈ 34.5387763949,

where m = sdt and s is an s-point. With this result, we plot the numeric stability zone of the LTIM
considering N su�ciently large, so that the largest analytical stable ∆t is larger than the numerical
largest ∆t.

Figure 3.32: Stability Region of the Laplace Transform Integration Method.



Chapter 4

Comparison with Fourth Order Runge

Kutta Method

4.1 Linear Initial Value Problem

In this section, in order to see the advantages of our method, we compare the LTIM and the
Fourth Order Runge Kutta Method (See (Mayers and Süli, 2003)) and solve the linear case given
in Section 3.1: {

dx
dt = 2ix,

x(0) = 1,
(4.1)

where f(t, x) = 2ix. The Fourth Runge Kutta (RK4) scheme is given by:

k1 = dtf(tn, xn),

k2 = dtf
(
tn + dt

2 , xn + dt
2 k1

)
,

k3 = dtf
(
tn + dt

2 , xn + dt
2 k2

)
,

k4 = dtf (tn + dt, xn + dtk3) ,
xn+1 = 1

6dt (k1 + 2k2 + 2k3 + k4) .

(4.2)

The stability zone of RK4 is given by the following condition (see Figure 4.1):∣∣∣∣∣1 + λdt+
(λdt)2

2
+

(λdt)3

6
+

(λdt)4

24

∣∣∣∣∣ ≤ 1. (4.3)

Figure 4.1: Stability Region of the Fourth Order Runge Kutta Method.

51
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For IVP (4.1) we have that λ = 2i. Thus, the largest time step for this method is

dt ≤ 1.25965.

The numerical scheme given by (4.2) indicates that for each iteration it is necessary to do execute
four evaluations of the function f . In the case of the Laplace Transform Integration Method, we
execute N evaluations per time iteration.

If we take dt = 1.25 and [0, 10] as the time domain, we have 8 iterations in time, which means
we need to make 32 evaluations of the function f for the RK4 and 8N evaluations for LTIM. As
mentioned in Chapter 2, the size of the time step depends on the value of N and γ. Thus, for
dt = 1.25 the value of N is approximately 12.

Method Evaluations Max. Error

LTIM 96 0.0983

RK4 32 1.1110

Table 4.1: Fourth Order Runge Kuta vs Laplace Transform Integration Method I.

Table 4.1 shows that the RK4 needs fewer evaluations than LTIM, but the RK4 method is not
as accurate as the LTIM. Now, observe Table 4.2.

Method Time step Evaluations Max. Error

LTIM 1.25 96 0.0983

1.25 256 1.8542× 10−5

RK4 1.25 32 1.1110

0.4 100 0.0665

0.05 800 1.6665× 10−5

Table 4.2: RK4 vs LTIM, Time step comparison II.

In Table 4.2, increased values of N produced a more accurate result for LTIM. On the other
hand, in order to get an error of size 10−5 with RK4 we had to reduce the size of time step. This
restricts even more the choice of the time step. If we want to increase the accuracy of the method
we have to increase in number of stages, which increases the computational cost. One of the aims
of this work is to take as large time steps as possible.

Method N Time step Evaluations Max. Error

LTIM 92 10 92 0.0257
RK4 - 0.4 100 0.0665

Table 4.3: RK4 vs LTIM, Time step comparison III.

Table 4.3 shows that with the LTIM is possible to take a larger time step with an smaller error
than with RK4. Notice also, that the LTIM needed fewer evaluations and the time step is 25 times
larger than the one used for RK4. Thus, for the linear case, the Laplace Transform Integration
Method is more e�cient than the Fourth Runge Kutta Method.
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4.2 Non-linear Initial Value Problem

4.2.1 Swinging Spring System

In this section we apply the Laplace Integration Method to the Lynch's Swinging Spring Model
(Lynch, 1996), given by:



θ̇ = pθ
mr2

,

ṗθ = −mgr sin θ,

ṙ = pr
m ,

ṗr =
p2θ
mr3
− k(r − l0) +mg cos θ,

(4.4)

where m is the mass of the bob, l0 is the unstretched length of the spring, k is the elasticity or
sti�ness of the spring, g is the gravity force, θ and r represent the angle and radius respectively
and, pθ and pr represent their velocities.

This model is of mathematical interest because for an appropriate choice of parameters, the elastic
oscillations have much higher frequency than the rotation or libration of the bob. Lynch (1996) con-
sidered the elastic oscillations to be analogues of the high frequency waves in atmosphere. Likewise,
he considered the low frequency rotational motions to correspond to the rotational or Rossby-
Haurwitz waves. Figure 4.2 shows a geometric representation of a swinging spring.

Figure 4.2: Swinging Spring Pendulum.

To solve this model, we linearize the system given by Equation (4.4) with X =
(
θ pθ r pr

)t
:

J ~X =


0 1

mr2
− 2pθ
mr3

0

−mgr cos θ 0 −mg sin θ 0

0 0 0 1
m

−mg sin θ 2pθ
mr3

− 2p2θ
mr4
− k 0

 . (4.5)

The equilibrium point is of the form:

Xe =
(
0 0 l0 + mg

k 0
)t
. (4.6)
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Thus, evaluating (4.5) in (4.6) we get:

J ~Xe
=


0 1

mr2
0 0

−mgr 0 0 0

0 0 0 1
m

0 0 −k 0

 . (4.7)

Using matrix (4.7), it is possible to write system (4.4) in the form:

Ẋ = −LX −N(X).

The chosen parameters for the simulations are:

m = 1kg, l0 = 1m, g = π2ms−2, k = 100π2kgs−2, (4.8)

and the initial condition is:
X0 =

(
−1

2 0 1.01 0
)t
. (4.9)

Figures 4.3 and 4.4 show the reference solution for the system (4.4) with initial data (4.8) and (4.9):

Figure 4.3: On the left: Angular Amplitude. On the right: Radial Amplitude.

Figure 4.4: On the left: Angular Velocity. On the right: Radial Velocity.
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In order to make the comparison between Laplace Transform Integration Method and The
Fourth Order Runge Kutta, two di�erent sets of time steps were considered.

RK4
∆t Total Evaluations

0.001953125 4086
0.0078125 1024
0.03125 256
0.125 64
0.25 32

LTIM
∆t Total Evaluations

0.03125 2560
0.0625 1280
0.125 640
0.25 320
0.5 160

Table 4.4: On the left: Time steps and number of evaluations for Rk4. On the right: Time steps and
number of evaluations for LTIM using γ = 40 and N = 40.

Figure 4.5: Error Comparison RK4 vs LTIM.

Figure 4.5 presents the Error curves for each method. As we can see, the LTIM was able to
perform numerical operations with larger time steps than the RK4. Considering just the time steps
for which the RK4 worked, observe that, the error for LTIM is not as small as the one for RK4.
However, it is still acceptable. Cutting o� the errors for which RK4 does not work (See Figure 4.6),
we get a closer view of both curves:

Figure 4.6: Error Comparison RK4 vs LTIM - Zoom.
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Naturally, being a non-linear problem the accuracy of the RK4 (fourth order) is far greater than
the �rst order accuracy LTIM on the non-linearities.



Chapter 5

Conclusions

Many physical phenomena are modeled through systems of di�erential equations. Generally,
these systems are di�cult to solve (or do not have solution), so we have to appeal to numerical
methods. Weather forecast models, for example, include solutions with very fast oscillations that
interfere with the stability of the approximate solutions. Due to this inconvenience, we are always
looking for more e�cient methods. Our work aimed to study an alternative numerical method to
solve systems of ordinary di�erential equations that allows larger time step without losing stability
and accuracy. In this case, the numerical method was based on the Inverse Laplace Transform. By
making some modi�cations on the contour of the Bromwich integral it was possible to develop a
method that can �lter high frequency components from the solutions.

From the experiments we saw that, for linear cases, stability can be guaranteed only by choosing
a time step that satis�es the stability condition (2.27) given in Chapter 2 and does not exceed the
stability zone de�ned in Chapter 3. Choosing a suitable time step, the accuracy of the approximate
solutions depends on the choice of N and γ. The behavior of the error showed a signi�cant decay as
the value of N increased, i.e., we have spectral convergence in N . The same results were observed
while applying the method as a �lter. In addition, we could verify that the truncated exponential
guarantees the convergence of the approximate solution to the exact solution.

On the other hand, for non-linear cases, the approximate solution is strongly a�ected by the non-
linear part. The behavior of the error indicated that the accuracy and stability of the solution
depends on the choice of ∆t. This is a consequence of the order of approximation of the non-linear
term.

When comparing the Laplace Transform Integration Method with the Fourth Order Runge Kutta
method, we showed that the �rst method was able to perform numerical operations with larger
time steps maintaining stability and an acceptable error. In addition, unlike RK4, in the LTIM
each evaluation of the numerical scheme is independent of each other. This means that we can do
the calculations in parallel which would reduce the computation time.

Since the numerical scheme includes an exponential term, the main limitation that this method
faced was instability due to round o� errors. In order to control this problem, an stability region
(that depends on the value of γ and ∆t) was de�ned.

As future work plans, we want to apply this method of integration to physical problems that are
modeled through partial di�erential equations. In this work, we have used an approach that has
�rst order error with respect to non-linearities. Improving the approximation of the non-linear
term will make this method more accurate for larger time step sizes. One option would be to
use some known method of di�erences to approximate the non-linear term separately, such as
predictor-corrector methods. Another option would be to apply the exponential integrator methods
(See Hochbruck and Ostermann (2010), Cox and Matthews (2002), Pope (1963)). We would like to
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explore another integration contours di�erent from the circle, this with the aim of improving the
accuracy of the method and expanding its stability zone.
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Complex Analysis Review

In this part we present an overview of the theory of complex analysis, which is required to
understand and apply complex integration formulas. More details about complex analysis theory
can be found at Schi� (1999), Spiegel (1965), Howie (2003), Ablowitz and Fokas (2003), Jose (2004),
Kreiszig (2011).

.1 Complex numbers

We will use Euler's notation for the imaginary unit number:

i2 = −1.

A complex number is an expression of the form:

z = x+ iy,

where x represents the real part of z, Re(z), and y represents the imaginary part of z, Im(z). The
set C of complex numbers is naturally identi�ed with the plane R2, and is often referred as Argand
Plane (see Figure 1).

Figure 1: Argand Plane.

De�nition .1. The complex number z = x− iy is called the complex conjugate of z = x+ iy.

Points in the complex plane can also be represented using polar coordinates:

x = rcosθ;

y = rsinθ.
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Then
z = r cos θ + i(r sin θ) = r(cos θ + i sin θ), (1)

where r = |z| =
√
x2 + y2, and θ is the angle of z (also called argument of z, θ = arg(z)).

We can rewrite equation (1) as
z = reiθ, 0 ≤ θ < 2π, (2)

Euler's formula (exponential version of a complex number). The expression (2) represents any point
on a circle of radius r (see Figure 2).

Figure 2: Complex circle of radius r.

Let z1 = x1 + iy1 and z2 = x2 + iy2 two non-null complex numbers. The following algebraic
operations are de�ned.

Addition and subtraction . The sum (subtraction) of complex two numbers is a complex
number.

z1 ± z2 = (x1 ± x2) + i (y1 ± y2)

Product . The product of complex two numbers is a complex number.

z1z2 = (x1x2 − y1y2) + i (x1y2 + x2y1)

Division .

z1

z2
=
x1 + iy1

x2 + iy2
.
x2 − iy2

x2 − iy2

=
z1z2

|z2|2

Some useful results concerning complex numbers are mentioned below.

Triangular Inequality . Let z1 = x1 + iy1 and z2 = x2 + iy2 two non-null complex numbers.
Then

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2| .

Moivre's Formula. For any complex number z (and in particular, for any real number) and
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for any integer n it is veri�ed that

zn =
(
reiθ

)n
= rneiθn.

Roots of a complex number . Let z = reiθ = r(cos θ + i sin θ) and ω = ρeiφ = r(cosφ +
i sinφ). Suppose that it is required to solve the equation zn = ω with

zn = rneinθ = rn(cos θn+ i sin θn),

ω = ρeiφ = r(cosφ+ i sinφ).
(3)

then
zn = rn(cos θn+ i sin θn) = ρeiφ = r(cosφ+ i sinφ) = ω. (4)

Thus

rn = ρ,

θn = φ+ 2kπ, k = 0, 1, ..., n− 1,

or equivalently

r = ρ1/n,

θ = φ+2kπ
n , k = 0, 1, ..., n− 1.

(5)

By (2) and (5):

z1/n = ρ1/n
(

cos
(
φ+2kπ
n

)
+ i sin

(
φ+2kπ
n

))
,

z1/n = ρ1/nei(
φ+2kπ
n ),

(6)

for n ∈ N. This means z has n-distinct roots.

Example .1. For n = 4 the roots of z = 1, are given by:

z1/4 = ei(
0+2kπ

4
), k = 0, 1, 2, 3,

that is:

z1 = 1

z2 = ei(
π
2

) = i
z3 = eiπ = −1

z4 = ei(
3π
2

) = −i

(7)

The n-roots of a complex number z represent the vertices of an inscribed regular polygon on
the complex plane (see Figure 3).

.2 Complex functions

A complex valued function w = f(z) of a complex variable assigns to each independent variable
z one or more dependent variables w. If there is only one such value w, then the function f(z) is
called single-valued ; otherwise f(z) is multiple valued (Schi� (1999)).
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Figure 3: Roots of the unity - Example .1

Let z = x+ iy and w = u+ iv. Then we can write:

w = f(z) = u(x, y) + iv(x, y),

where u = u(x, y) and v = v(x, y) are real valued functions that represent the real and imaginary
parts of f(z).

Example .2.

f(z) = z2 + 1 = (x2 − y2) + 1 + 2ixy

g(z) = eiz = e−y cosx+ ie−y sinx

where f, g are single valued complex functions.

Let z ∈ C. Some important complex functions are listed bellow.

Power series.

f (z) =
n∑
k=0

akz
k

Rational functions

f (z) =

n∑
k=0

akz
k

m∑
j=0

ajz
j

Taylor series

f (z) =
∞∑
k=0

ak(z − z0)k,

which is convergent only if L = limk→∞

∣∣∣ak+1

ak

∣∣∣ exists. Thus f converges for |z − z0| < 1
L

(radius of convergence).
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Exponential function

ez =

∞∑
k=0

zk

k!

Trigonometric functions

sin z =
eiz − e−iz

2i

cos z =
eiz + e−iz

2

Hyperbolic functions

sinh z =
ez − e−z

2

cosh z =
ez + e−z

2

Trigonometric identities

i sin z = sinh iz sin iz = i sinh z

cos z = cosh iz cos iz = cosh z

Complex logarithm . Let z = x+ iy and w = u+ iv. The complex number w, such ew = z
is called logarithm of z, i.e:

w = log z.

Notice:

x+ iy = z = ew

= eu+iv = eueiv

= eu(cos v + i sin v).

Then:

x = eu cos v,
y = eu sin v.

(8)

To obtain R = |z|:

|z| =
√
x2 + y2

=

√
e2u(cos2 v + sin2 v) =

√
e2u

= eu.

Thus u = ln |z|, which is a real value logarithm. From (8) we have that arg(z) = v is the
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angle of z. So:

w = u+ iv = log z → log z = ln |z|+ iarg(z).

However, θ + 2kπ also works as an angle:

log z = ln |z|+ i(arg(z) + 2kπ), ∀k ∈ Z, θ ∈ [0, 2π). (9)

For k = 0, (9) is called principal value or principal logarithm . Complex logarithm is a
classic example of a multivalued function (see Figure 4).

Figure 4: Complex logarithm.

Example .3. Calculate the principal value of z = 1−
√

3i:

log(1−
√

3i) = ln |1−
√

3i|+ iarg(1−
√

3i).

We know that θ = arg(z) = arctan( yx). Then:

arg(z) = arctan

(
−
√

3

1

)
= arctan(−

√
3) =

5π

3
.

Thus,

log(1−
√

3i) = ln 2 +
5iπ

3
.

.3 Analytic functions and Cauchy Riemann conditions

De�nition .2 (Schi� (1999)). A complex function f(z) de�ned on a connected open domain D is

di�erentiable at a point z0 ∈ D if the limit

df

dz
(z0) = f ′(z0) = lim

z→z0

f(z)− f(z0)

z − z0

exists.

If f(z) is di�erentiable at all points of some neighbourhood |z − z0| < r then f(z) is said to be
analytic at z0. Since analytic functions are di�erentiable, they are continuous.

De�nition .3 (Cauchy - Riemann conditions (Schi� (1999))). Let f(z) = u(x, y) + iv(x, y) an

analytic function. The real and imaginary parts (u and v), cannot be arbitrary functions, have to

satisfy the following property:

ux = vy, uy = −vx. (10)

As a consequence of (10), a non-constant analytic function f = u + iv cannot have v ≡ 0, for
Cauchy Riemann conditions would imply that u is a constant function, which is a contradiction.
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Theorem .1. If f(z) = u(x, y)+iv(x, y) is single valued and de�ned in a domain D and ux, uy, vx, vy
are continuous and satisfy (10), then f(z) is analytic in D.

Proof. See Kreiszig (2011).

Remark .1 (Characterization of Analytic Functions (Schi� (1999))). A function f(z) is analytic

at z0 if and only if its Taylor series

f(z) =
∞∑
n=0

fn(z0)

n!
(z − z0)n

converges to the function in a neighbourhood of z0.

Theorem .2. Let f(t) be piecewise continuous on [0,∞) and of exponential order α (f ∈ L). Then:

F (s) = L {f(t)} ,

is an analytic function in the domain Re(s) > α.

Proof. See Schi� (1999).

Example .4. The function f(z) = (z − z0)n is not analytic for n = −1,−2,−3, ....

.4 Integrals in the complex plane

De�nition .4 (Schi� (1999)). A Contour C is a continuous curve that is piecewise smooth, that

is, there is a subdivision α = t0 < t1 < ... < tn = β and z = z(t) is smooth on each subinterval

[tk−1, tk], k = 1, 2, .., n with n ∈ N. The points z(α) and z(β) are the initial and �nal points, and if

z(α) = z(β) then the contour is called closed (see Figure 5).

Figure 5: On the left an example of a simple contour, on the right an example of a closed simple contour.

De�nition .5. If the contour C does not cross itself, it is called simple (see Figure 5).

Theorem .3. If C is a curve joining z0 and z1 in a simple, closed connected region where f(z) is

analytic, then the integral ∫
C
f(z)dz

is independent of the path (see �gure (6)).

Proof. See Kreiszig (2011).
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Figure 6: Independence of the path, C = C1 + C2.

Theorem .4 (Cauchy - Goursat). Let f(z) be analytic in a simply connected domain D. Then for

any closed contour C in D, ∫
C
f(z)dz = 0. (11)

Proof. Since f(z) is a complex function:∫
C
f(z)dz =

∫
C

(u+ iv) (dx+ idy) =

∫
C

(udx− vdy) + i

∫
C

(vdx+ udy).

By the Green's theorem:

∫∫
D

(−vx − uy) dxdy + i

∫∫
D

(ux − vy) dxdy.

since f is an analytic function it satis�es the Cauchy Riemann conditions given in (10). Then:

∫
C
f(z)dz = 0.

Corolary .1 (Principle of deformation of the paths). Let C1 and C2 be two closed simple contours

positively oriented (counterclockwise), where C2 is inside C1. If f(z) is analytic in the closed region

formed by those contours and the points between them, then:∫
C1

f(z)dz =

∫
C2

f(z)dz.

(See �gure 7).

Example .5. Let f(z) = (z−a)n, which is not analytic for n = −1,−2, .... Nevertheless its integral
over close contours has nice properties.
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Figure 7: Deformation of the paths.

Case 1: For n = −2,−3, · · · and n > 0:∫
C

(z − a)ndz =

[
(z − a)n+1

n+ 1

]z1
z0

= 0.

Since f(z) is analytic for these values of n, the integral is equal to zero due to theorem (.4).

Case 2: For n = −1: ∫
C

(z − a)−1dz = [log (z − a)]z1z0 6= 0,

because log(z− a) is a multivalued function. In order to calculate the value of the integral, we

deform C into a circle of radius R and use the polar form of a complex number. Let's take:

z − a = Reiθ,
dz = iReiθdθ.

So, ∫
C

(z − a)−1dz =

∫ 2π

0

iReiθ

Reiθ
dθ

=

∫ 2π

0
idθ

= 2π.

From cases 1 and 2 we have:∫
C

(z − a)−ndz =

{
0 , n 6= −1

2π , n = −1
. (12)

Theorem .5 (Cauchy integral formula). Let f(z) be analytic within and on a simply closed contour

C. If z0 is any interior point in C, then[
dnf

dzn

]
z=z0

=
n!

2πi

∫
C

f(z)

(z − z0)n+1dz. (13)
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In particular, for n = 0

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz. (14)

Proof. To derive equation (14) we write:∫
C

f(z)

z − z0
dz =

∫
C

f(z0)

z − z0
dz +

∫
C

f(z)− f(z0)

z − z0
dz.

Figure 8: Contour C deformed into a circle Cδ.

To show that the second integral on the right side is zero we going to deform C into a circle Cδ
of radius δ (Figure 8).

Since f(z) is analytic around z0, it is possible to choose a δ such that |f(z)− f(z0)| < ε on Cδ.
So: ∣∣∣∣∫

C

f(z)− f(z0)

z − z0
dz

∣∣∣∣ ≤ ∫
C

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ dz ≤ ∫
C

ε

z − z0
dz,

and by the result (12) obtained in Example .5:∣∣∣∣∫
C

f(z)− f(z0)

z − z0
dz

∣∣∣∣ ≤ 2πiε.

Letting ε→ 0, ∫
C

f(z)− f(z0)

z − z0
dz = 0.

Then: ∫
C

f(z)

z − z0
dz =

∫
C

f(z0)

z − z0
dz + 0 = f(z0)

∫
C

1

z − z0
dz

(12)
= 2πf(z0)

Hence:

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz.
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The proof of (13) can be found in Kreiszig (2011).

De�nition .6 (Schi� (1999)). A power series is an in�nity series of the form:

∞∑
n=0

an(z − z0)n = a0 + a1(z − z0) + a2(z − z0)2 + · · · (15)

where z is a complex variable and z0, a0, a1, · · · are �xed complex numbers.

The power series given by equation (15) has a radius of convergence R ≥ 0:

For R = 0, (15) converges only for z = z0;

For 0 < R <∞, (15) converges absolutely for |z − z0| < R;

For |z − z0 ≤ R0 < R, (15) converges uniformly;

For |z − z0| > R, (15) diverges;

For R =∞, (15) converges for all z ∈ C.

The value of R is given by

R =
1

limn→∞
n
√
|an|

or by

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣,
whenever the limit exists.

Theorem (.1) shows that an analytic function can be represented by a Taylor series, but in cases
where this series can not be applied, an alternative option is to use Laurent Series.

De�nition .7. A Laurent series, around a point z0, is de�ned as

f(z) =

+∞∑
n=1

a−n(z − z0)−n +

+∞∑
n=0

an(z − z0)n (16)

or

f (z) =
∞∑

n=−∞
an(z − z0)n, (17)

where

an =
1

2πi

∫
C

f(z)

(z − z0)n+1dz. (18)

The �rst sum in (16) is called principal part while the second sum is called analytic part.

A Laurent series converges in the annulus 0 < |z − z0| < R (see Figure 9), where:

R =

(
limsup
n→∞

n
√
|an|

)−1

;

r = limsup
n→∞

n
√
|a−n|.

(19)

Analytic functions have very useful properties in complex integration, so it is important to study
also those points at which a function ceases to be analytic.



74 APPENDIX

Figure 9: Annulus of convergence for Laurent series.

De�nition .8. A singularity z0 of a function f(z) is a point at which f(z) is not analytic.

De�nition .9. A function has an isolated singularity in z = z0 if f is not analytic in z0, and

there is a R > 0 such that f is analytic in a punctured disk D = {z ∈ C, 0 < |z − z0| < R}.

Isolated singularities can be of three types.

Removable. A function f has a removable singularity at z0 if and only if

∃ lim
z→z0

f (z)⇒ lim
z→z0

(z − z0) f (z) = 0.

Or equivalently, if and only if an = 0 for all n > −1, where an is the coe�cient of Laurent
expansion of f given by (18).

Pole. Let D be such that a ∈ D, f analytic in D. The function f has a pole on z0 of order m
if and only if there is a positive integer m and an analytic function g : D → C with g(a) 6= 0
such that

f(z) =
g(z)

(z − z0)m
.

Or equivalently, if and only if a−n 6= 0 and an = 0 for all n ≤ −(n + 1), where an is the
coe�cient of Laurent expansion of f given by (18). If m = 1 then the pole is called simple

pole.

Essential. An essential singularity z0 is an isolated singularity that is not removable and
is not a pole. Or equivalently, z0 is an isolated singularity if and only if an 6= 0 for in�nite
negative values of n

De�nition .10. Let f be an analytic function and z0 an isolated singularity of f . The residue of

f is given by the coe�cient a−1 from its Laurent expansion.

Res [f, z0] = a−1

In general, Laurent series is used to calculate the residues of a function. However, in cases where
the singularity is a pole, there are simpler procedures that can be applied.
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If f has a pole of order m in z0, the residue is obtain using:

m = 1 : Res [f, z0] = lim
z→z0

(z − z0) f (z);

m > 1 : Res [f, z0] = 1
(m−1) limz→z0

dm−1

dz0
m−1 [(z − z0)mf (z)].

(20)

Theorem .6 (Residue). Suppose that f(z) is an analytic function on a simply-connected domain

D except for a �nite number of poles z1, z2, ..., zk. Suppose that C is a piecewise smooth positively-

oriented simple closed curve not passing through z1, z2, ..., zk. Then,

1

2πi

∫
C
f (z) dz =

∑
zj∈C

Res [f, zj ].

Proof. See Kreiszig (2011).

Lemma .1 (Jordan's Lemma). Let f be continuous for large R = |z|, and assume that f(z)→ 0 as

z →∞. Then, provided t > 0, we have:

lim
R→∞

∫
CR

f (z) etzdz = 0

where CR denotes a semicircular contour with θ → a+Reiθ, π2 < θ < 3π
2 (see Figure 10).

Figure 10: Semicircle CR

Proof. Let ε > 0. Because f(z) → 0 as z → ∞, there exists k > 0 such that |z| ≥ k implies
|f(z)| ≤ ε. This means that |f(z)| ≤ ε whenever |z − a| ≥ k + |a|, because |z| + |a| ≥ |z − a|. For
R ≥ k + |a|, we have:
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∣∣∣∣∫
CR

f (z) etzdz

∣∣∣∣ ≤ ∫
CR

∣∣f (z) etzdz
∣∣

≤ ε

∫
CR

∣∣etz∣∣ |dz|, |z − a| = R ≥ k + |a|

= ε

∫
CR

etRe(z)|dz| = ε

∫ 3π
2

π
2

etaetR cos θRdθ, z = a+Reiθ

= 2εReta
∫ π

π
2

etR cos θdθ, by symmetry

= 2εReta
∫ π

2

0
e−tR sin θdθ

(∗)
≤ 2εReta

∫ π
2

0
e

−2tRθ
π dθ

= 2Retaε

[
−π
2tR

e
−2tRθ
π

]π
2

0

=
etaπε

t

(
1− e−tR

)
≤ etaπε

t
.

Since t > 0 is �xed, this �nal quantity can be made as small as desired.

(∗) Jordan's inequality states that:

2

π
θ ≤ sin θ ≤ θ for θ ∈

[
0,
π

2

]
.
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