Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2020.tde-07012021-183508
Documento
Autor
Nombre completo
Ana Cecilia Rojas Mendoza
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2020
Director
Tribunal
Peixoto, Pedro da Silva (Presidente)
Camargo, André Pierro de
Nós, Rudimar Luiz
Título en portugués
Solução numérica de equações diferenciais via integração de transformada de Laplace
Palabras clave en portugués
Contorno de integração
Filtragem
Integração no tempo
Transformada de Laplace
Transformada inversa de Laplace
Resumen en portugués
Problemas oscilatórios modelados por equações diferenciais são chamados rígidos quando os autovalores variam (simultaneamente) em diferentes ordens de grandeza: valores elevados causam oscilações rápidas, enquanto valores pequenos causam oscilações mais lentas. O tamanho do passo de tempo dos métodos numéricos usados para integrar esses modelos geralmente é restrito pelos requisitos de estabilidade. Um método explícito precisará de um passo de tempo relativamente pequeno, enquanto que, com um método implícito é possível usar passos de tempo maiores, mas geralmente afetando a precisão da solução. O objetivo deste trabalho é obter um método de integração numérica que nos permita usar passos de tempo maiores, mantendo a estabilidade e a precisão. Um método alternativo para resolver equações diferenciais ordinárias baseado na Transformada Inversa de Laplace é desenvolvido. O esquema numérico é definido aplicando as propriedades da Transformada de Laplace e fazendo algumas modificações no contorno da integração. Analisamos o método para diferentes casos, incluindo modelos aplicados, a fim de estabelecer uma relação entre os parâmetros de integração e obter condições ideais para manter a estabilidade, a precisão e a capacidade de usar passos de tempo maiores. Analisamos também, sob certas condições, a capacidade do método de atuar como um filtro de componentes de alta frequência. A comparação desse método com o Método de Runge Kutta de quarta ordem, para diferentes casos, revela que é possível utilizar passos de tempo muito maiores sem afetar a estabilidade e a precisão. Além disso, ao contrário do Método de Runge Kutta, no método de integração de Laplace cada avaliação é independente. Isso implica que os cálculos podem ser executados em paralelo, o que poderia reduzir o tempo de computação.
Título en inglés
Numerical solution of ordinary diferential equations using Laplace transform integration
Palabras clave en inglés
Filtering
Integration contour
Inverse Laplace transform
Laplace transform
Time integration
Resumen en inglés
Oscillatory problems modeled by differential equations are called stiff when the eigenvalues vary (simultaneously) in different orders of magnitude: high values cause rapid oscillations while small values cause slower oscillations. The time step size of the numerical methods used to integrate such models is usually restricted by stability requirements. An explicit method will need a relatively small time step, whereas with an implicit method it is possible to take larger time steps,but usually impacting the accuracy of the solution. The aim of this work is to obtain a numerical integration method that allows us to use larger time steps maintaining stability and precision. An alternative method to solve dierential equations based on the Inverse Laplace Transform is developed. The numerical scheme is dened, taking advantage of the properties of the Laplace Transform and making some modifications on the integration contour. We analyze the method for different cases, including applied models, in order to establish a relationship between the integration parameters and to obtain optimal conditions to maintain stability, precision and the ability to use larger time steps. In addition, under certain conditions, we also analyze the ability of the method to act as a high-frequency component filter. The comparison of this method with the Fourth Order Runge Kutta Method, for different cases, reveals that it is possible to take much larger time steps without affecting stability and accuracy. Moreover, unlike the Runge Kutta Method, in the Laplace Integration Method each evaluation is independent of each other. This implies that the calculations can be executed in parallel, which could reduce the computation time.
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
teseMILT.pdf (4.40 Mbytes)
Fecha de Publicación
2021-01-20