
Volumes, Areas and other
Falconer-type problems

Belmiro Galo da Silva

Thesis presented
to the

Institute of Mathematics and Statistics
of the

University of São Paulo
to

obtain the title
of

PhD

Program: Applied Mathematics
Advisor: Prof. Dr. Edson Vargas

Co-advisor: Prof. Dr. Alex Iosevich

During the development of this work, the author received financial assistance from CAPES and
CNPq

São Paulo, August 2021



Volumes, Areas and other Falconer-type problems

This is the original version of the thesis prepared by
the candidate Belmiro Galo da Silva, such as

submitted to the Judging Committee.



Volumes, Areas and other Falconer-type problems

This version of the thesis contains the suggested corrections and changes
by the Committee during the defense of the original version of the work,

held on 08/13/2021. A copy of the original version is available at
Institute of Mathematics and Statistics, University of São Paulo.

Committee:

• Prof. Dr. Edson Vargas (Advisor)- IME-USP

• Prof. Dr. Sinai Robins - IME-USP

• Prof. Dr. Alex Iosevich (Co-advisor) - University of Rochester

• Prof. Dr. Sevak Mkrtchyan - University of Rochester

• Prof. Dr. Gonzalo Mateos - University of Rochester



Acknowledgment

I would like to express my gratitude to my supervisor Alex Iosevich, for all of his support
and patient guidance. His help has not only made me a better mathematician, but also a better
person. Thanks for believing in me. Life is good.

To all of the staff and permanent faculty, past and present, of the Department of Mathemat-
ics at University of Rochester, thank you. Special thanks to Joan Robinson, Cynthia Spencer
and Professors Jonathan Pakianathan, Kalyani Madhu, Amanda Tucker, Sevak Mkrtchyan and
Stephen Kleene for their support and guidance throughout my studies at Rochester. Also, special
thanks to visiting Professors Charles Wolf and Alexander Carney.

Thanks you to Alex McDonald, my first collaborator. You helped me to expand my horizons
and started understanding how research is done in academia.

I would like to thank all of the permanent faculty, past and present, of the Department of
Mathematics at the University of São Paulo. Special thanks to my co-supervisor Edson Vargas
and professors Gabriel Haeser, Edson de Faria, André de Carvalho for their support during part
of my PhD at University of São Paulo.

Thanks to all graduate students of the Department of Mathematics and all the members of
the Association of Latin American Students at the University of Rochester, past and present, for
helping me feel at home over these years. Special thanks to Charles Brittenham, Jorge Olivares,
Carlos Mena, Bai Lin and all ALAS volleyball friends.

Last, but not least, I would like to thank my family and friends for their love and for their full
support. Special thanks to my friend Lucas Matos, my mom, Deborah Galo, my sister, Marcella
Galo and my partner Sarah Hofheins.

This thesis is dedicated to the memory of my grandmother, Olga Galo, and my friend and
first mentor, Arthur Matos. You are gone, but your belief in me has made this journey possible.

i



ii



Abstract

Galo, B. Volumes, Areas and other Falconer-type problems. 2021. 40 p. Thesis - Instituto
de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

In this thesis, we investigate the Falconer-type problems about point configurations and in
different dimensions.

It is well-known the concept of the Hausdorff measure is a generalization of the Lebesgue
measure and the Falconer distance problem aims to relate these two topics when it asks how
large does the Hausdorff dimension of a compact set need to be to ensure the Lebesgue measure
of the distance set.

In the first moment, we consider a k-point configurations in Rd and we prove that a compact
set E Ă Rd determines a positive measure of such volume types if the Hausdorff dimension
of E is greater than d ´ d´1

2k´d generalizing some results in this field. This portion of the work
represents joint work with Dr. Alex McDonald.

In the second moment, we study a Falconer-type problem on a 4-point configuration in the
plane and we prove that a compact set E Ă R2 determines a positive measure of such Galo
area types if the Hausdorff dimension of E is greater than 3

2 extending some results from A.
McDonald in [22].

Keywords: Falconer conjecture, volume type problems, Galo area type.
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Introduction

One of the most classical questions in geometric measure theory is the Falconer’s Distance
Conjecture. This conjecture intrigues many mathematicians due to the fact that the technical
statement of this conjecture is easy to understand and it relates basics concepts in the area such
as the Lebesgue measure and the Hausdorff dimension in the sense of if we have a set which is
sufficiently structured in some way and we apply a non-trivial map, the image is also structured.
To state this conjecture we need to define a set in Rd.

For a set E Ă Rd, define its distance set to be

∆pEq “ t|x´ y| : x, y P Eu.

Definition 1. For E Ă Rd non-empty, the diameter of E is defined as

|E| “ sup ∆pEq.

We call the collection tAiuiPJ a δ-cover of A, if A Ď
ď

iPJ

Ai and 0 ă |Ai| ď δ for all i P J.

Definition 2 (α-dimensional Hausdorff measure of E). Let E Ď Rd, α ą 0and δ ą 0. We define
the Hausdorff α-dimensional measure as

HαpEq :“ lim
δÑ0`

Hδ
αpEq

where Hδ
αpEq :“ inf

˜

8
ÿ

i“1

|Ai|
α

¸

and the infimum is taking over all countable δ-covers of E.

Thus, the Hausdorff dimension of E Ă Rd is

dimHpEq :“ inf tα : HαpEq “ 0u “ sup tα : HαpEq “ 8u .

In this work we will denote dimE “ dimHpEq the Hausdorff dimension of the set E. An
interesting example is when we look at the Cantor middle third set and we notice its Hausdorff
dimension is equal to log 2

log 3 but it has Lebesgue measure 0, see [17].
The Falconer’s distance conjecture asks how large the Hausdorff dimension of a compact set

E must be to ensure that ∆pEq has positive Lebesgue measure in the following way:

Conjecture 0.1 (Falconer’s Conjecture). For a compact E Ă Rd, d ě 2. If

dimHpEq ą
d

2

vii
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then ∆pEq has positive Lebesgue measure.

In [9], Falconer proved the following

Theorem 0.2. Let E Ă Rd be compact. If

dimHpEq ą
d` 1

2

then ∆pEq has positive Lebesgue measure.

He also found a family of examples tEsu such that for any s ă d
2 , one has dimEs ą s and

L1p∆pEqq “ 0. This suggests what is now known as the Falconer distance problem, which asks
for the smallest s such that dimE ą s implies L1p∆pEqq ą 0. Falconer’s work implies this
threshold is between d

2 and d`1
2 , and it is conjectured that d

2 is in fact the correct threshold. The
first major results were due to Wolff [23] and Erdogan [8], proving the threshold d

2 `
1
3 in the

case d “ 2 and d ě 3, respectively. These were the best results until recently, when a number of
improvements were made using the decoupling theorem of Bourgain and Demeter [2].

We can summarize the best results currently state that for compact E Ă Rd, if

dimE ą

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

5{4 for d “ 2 r14s

9{5 for d “ 3 r4s
d
2 `

1
4 for d ě 4 and d even r5s

d
2 `

1
4 `

1
4pd´1q for d ě 4 and d odd r6s.

then the distance set ∆pEq has positive Lebesgue measure.
A key generalization of the Falconer distance problem comes from considering geometric

properties of point configurations. We first establish some notation. We will use superscripts to
denote vectors and subscripts to denote components of vectors, so for a configuration x P pRdqk

we have x “ px1, ¨ ¨ ¨ , xkq where each xj P Rd has components xj “ pxj1, ¨ ¨ ¨ , x
j
dq. The most direct

generalization of the Falconer distance problem in this context is the problem of congruence
classes of such configurations. For k ď d, the congruence class of x P pRdqk`1 is determined by
the

`

k`1
2

˘

-tuple of distances |xi´xj |. Define ∆kpEq to be the set of vectors t|xi´xj |u1ďiăjăk`1u

with xi P E for all i. Note that the set ∆1pEq coincides with ∆pEq defined above. Greenleaf,
Iosevich, Liu, and Palsson [11] proved that ∆kpEq has positive

`

k`1
2

˘

dimensional Lebesgue
measure if dimE ą d ´ d´1

k`1 . The proof strategy was built on the fact that two configurations
are congruent if and only if there is an isometry mapping one to the other, which allowed me to
study the problem in terms of the group action. The group action framework was instrumental
in the proof of the discrete predecessor of the Falconer distance problem, known as the Erdos
distinct distance problem, which asks for the minimum number of distances determined by a set
of N points in Rd. In that context the group action framework was introduced by Elekes and
Sharir [7] and ultimately used by Guth and Katz to resolve the problem in the plane, obtaining
the bound N{ logN which is optimal up to powers of log [16].

The configuration congruence problem becomes more subtle when k ą d. This is because
the system of distance equations becomes overdetermined, and the space of congruence classes
can no longer be identified with the space of distance vectors Rp

k`1
2 q. Invoking the group action



ix

framework again, one would expect heuristically that the space of congruence classes should have
dimension dpk`1q´

`

d`1
2

˘

, since the space of configurations has dimension dpk`1q and the space
of isometries has dimension

`

d`1
2

˘

. Chatziconstantinou, Iosevich, Mkrtchyan, and Pakianathan
[3] proved that in fact this heuristic is correct, and obtained a non-trivial dimensional thresh-
old. Their proof used the theory of combinatorial rigidity. Given a pk ` 1q-point configuration,
they proved that the congruence class was determined (up to finitely many choices) if one fixes
dpk ` 1q ´

`

d`1
2

˘

strategically chosen distances. They then used the group action framework to
prove that ∆kpEq has positive dpk ` 1q ´

`

d`1
2

˘

dimensional measure if dimE ą d´ 1
k`1 .

The key to the results in [11] and [3] is the fact that the congruence relation can be described
in terms of action of the isometry group on the space of configurations. It is therefore natural
to study other point configuration problems where congruence is replaced by other geometric
relations with a corresponding group action invariance.
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Chapter 1

Main Results

The content of this chapter represents join work with Dr. Alex McDonald [15].
Let us start this chapter considering the volumes which are obtained by choosing any d

points of a configuration. More precisely, we make the following definition.

Definition 3. The volume type of x P pRdqk is the vector

tdetpxj1 , ¨ ¨ ¨ , xjdqu1ďj1ă¨¨¨ăjdďk P Rp
k
dq.

For a set E Ă Rd, let

Vk,dpEq “ ttdetpxj1 , ¨ ¨ ¨ , xjdqu1ďj1ă¨¨¨ăjdďk : x1, ..., xk P Eu

be the set of volume types determined by points in E. Finally, let Vk,d “ Vk,dpRdq be the space
of all volume types of k-point configurations in Rd.

Thus, the volume type of a k-point configuration x P pRdqk encodes all volumes obtained by
choosing any d points from x (see figure 1).

Figure 1.1: 5-point configuration x P
`

R3
˘5.

1



2 MAIN RESULTS 1.0

When k “ d, the space of volume types is simply Vd,d “ R, which we may equip with the
Lebesgue measure. In the case k “ d “ 3, Greenleaf, Iosevich, and Mourgoglou [12] proved that
V3,3pEq has positive measure if dimE ą 13{5. This threshold was later improved and generalized
to higher dimension by Greenleaf, Iosevich, and Taylor [13] who considered the case k “ d for
any d ě 3 and proved Vd,dpEq has positive measure if dimE ą d ´ 1 ` 1

d . Notice in the case
d “ 3 this improves the 13{5 threshold to 7{3. When k is large, the problem is overdetermined
and hence one needs to define an appropriate measure on the space of volume types. The second
listed author [22] proved that Vk`1,2 may be identified with a space of dimension 2k ´ 1 (note
that this is consistent with our previously described heuristic, since the space of pk ` 1q-point
configurations has dimension 2k`2 and the Lie group SL2pRq has dimension 3) and that Vk`1,2

has positive measure if dimE ą 2´ 1
2k . The second author also obtained a non-trivial result in

the two dimensional problem over finite fields and rings of the form Z{p`Z [21].

Our first goal is to generalize these results to the case where k, d are natural numbers satis-
fying k ě d ě 2 but are otherwise arbitrary. Our heuristic suggests that the dimension of Vk,d
should be dpk ´ dq ` 1. Our first theorem shows that this is indeed the case.

Theorem 1.1. The set Vk,d is an embedded submanifold in Rp
k
dq of dimension dpk ´ dq ` 1.

This will be proved in chapter 2. It follows that Vk,d is equipped with pdpk´dq`1q-dimensional
Lebesgue measure, which we will denote by Ldpk´dq`1. It also follows that if E is compact, Vk,dpEq
is a compact subset of Vk,d.

With this result, we are now ready to state our first main theorem.

Theorem 1.2. Let k ě d ě 2 and let E Ă Rd be a compact set with Hausdorff dimension greater
than d´ d´1

2k´d . Then, Ldpk´dq`1pVk,dpEqq ą 0.

We shall remark here that our decision to work with signed volume, rather than unsigned
volume, is an arbitrary one. One can immediately deduce an unsigned version of Theorem 1.2
by decomposing the set Vk,dpEq into 2p

k
dq pieces according to the sign of each component and

applying the pigeonhole principle. We also note that in the case k “ d our threshold is the same
as the one in [13]. The general case is proved by reducing to the k “ d case, so a better exponent
in that case would yield better general results.

Another classic object of study in the distance problem is chains of distances determined by a
set. A configuration x P pRdqk determines a k´1 chain of distances |x1´x2|, |x2´x3|, ..., |xk´1´

xk|. Bennett, Iosevich, and Taylor [1] proved that if dimE ą d`1
2 then the set of distance chains

determined by E has positive measure. This result was later generalized by Iosevich and Taylor
[18] to apply to all trees.

Our other main theorem will pertain to chains of volumes. Since a volume is determined by
d points rather than 2, we will consider chains in the sense of hypergraphs. Recall an r-regular
hypergraph is a set of vertices and hyperedges, where each hyperedge connects r vertices (so,
in particular, a 2-regular hypergraph is just a graph). A chain in a hypergraph is a seqeunce of
vertices where each shares some hyperedge with the next.

Given a d-uniform hypergraph on vertices t1, ..., ku and a configuration x P pRdqk, we may
consider volumes determined by points xj1 , ..., xjd such that pj1, ..., jdq forms a hyperedge. In
this framework, Theorem 1.2 gives a result in the case where the hypergraph is complete. Our
methods also allow us to obtain a result in the case of a chain. This is our next theorem.

Theorem 1.3. Let E Ă Rd be compact, and let
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Ck,d “ ttdetpxj , xj`1, ¨ ¨ ¨ , xj`d´1qu1ďjďk`1´d : x1, ..., xk P Eu.

If dimE ą d´ 1` 1
d , then Lpk`1´dqpCk,dpEqq.

Here, we pause to make a couple remarks. First, note that if our set E is contained in a
hyperplane through the origin it cannot determine any non-zero volume, so the optimal threshold
cannot be smaller than d ´ 1. Second, it is interesting to note that the threshold in Theorem
1.3 does not depend on k whereas the threshold in Theorem 1.2 tends to d as k Ñ8. Our final
theorem shows that this cannot be avoided.

Theorem 1.4 (Sharpness). For any k ě d ě 2 and any

sk,d ă d´
d2pd´ 1q

dpk ´ 1q ` 1
,

there exists a compact set Ek,d Ă Rd such that dimEk,d ą sk,d and

Ldpk´dq`1pVk,dpEkqq “ 0.

1.1 Setting up the group action framework

We start by examining the relationship between volume types and the action of SLdpRq on
the space of configurations. Generically, the property of two configurations having the same
volume type is equivalent to those configurations lying in the same orbit of this action. However,
this equivalence breaks down for configurations which do not span Rd. This leads to the following
definition.

Definition 4. A configuration x P pRdqk is called degenerate if tx1, ¨ ¨ ¨ , xdu is linearly depen-
dent, and non-degenerate otherwise.

We remark that we could broaden this notion of non-degeneracy to include configurations
where any d points span Rd, not just the first d points. However, in either case the set of degen-
erate configurations are negligible so we have chosen this definition to simplify our proofs and
notation.

With our definition in place, we have the following lemma.

Lemma 1.5. Let x, y P pRdqk be non-degenerate. Then x and y have the same volume type if
and only if there exists a unique g P SLdpRq such that y “ gx (i.e., for each j we have yj “ gxj).

Proof. First, suppose x and y have the same volume types. Because x and y are non-degenerate,

D :“ detpx1, ¨ ¨ ¨ , xdq “ detpy1, ¨ ¨ ¨ , ydq ‰ 0.

Equivalently, the d ˆ d matrix with columns x1 ¨ ¨ ¨xd is non-singular, same as y1 ¨ ¨ ¨ yd. We
denote these matrices by px1 ¨ ¨ ¨xdq and py1 ¨ ¨ ¨ ydq, respectively. Let

g “ py1 ¨ ¨ ¨ ydqpx1 ¨ ¨ ¨xdq´1.

This equation means that pgx1 ¨ ¨ ¨ gxdq “ py1 ¨ ¨ ¨ ydq, so gxn “ yn for every 1 ď n ď d. Let i
be any index, and write

xi “
d
ÿ

n“1

anx
n, yi “

d
ÿ

n“1

bny
n.

Observe that
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detpx1, ¨ ¨ ¨ , xd´1, xiq “ det

˜

x1, ¨ ¨ ¨ , xd´1,
d
ÿ

n“1

anx
n

¸

“

d
ÿ

n“1

det
´

x1, ¨ ¨ ¨ , xd´1, anx
n
¯

since the determinant behaves like a linear function on the rows of the matrix. Therefore,

detpx1, ¨ ¨ ¨ , xd´1, xiq “ det
´

x1, ¨ ¨ ¨ , xd´1, adx
d
¯

“ adD.

The same conclusion holds for

detpy1, ¨ ¨ ¨ , yd´1, yiq “ det

˜

y1, ¨ ¨ ¨ , yd´1,
d
ÿ

n“1

bny
n

¸

“

d
ÿ

n“1

det
´

y1, ¨ ¨ ¨ , yd´1, bny
n
¯

“ bdD.

By assumption x and y have the same volume type so we conclude ad “ bd. An argument
considering detpx1, ¨ ¨ ¨ , xn´1, xn`1, ¨ ¨ ¨ , xd, xiq similarly shows that an “ bn for every 1 ď n ď d.
Thus,

gxi “ g
d
ÿ

n“1

anx
n “

d
ÿ

n“1

angx
n “

d
ÿ

n“1

any
n “ yi.

Note that g P SLdpRq, since

det g “ detppy1, ¨ ¨ ¨ , ydqpx1, ¨ ¨ ¨ , xdq´1q “ detpy1, ¨ ¨ ¨ , ydq detpx1, ¨ ¨ ¨ , xdq´1 “ 1.

This proves existence. Uniqueness follows from the fact that the configuration contains a basis,
so g is determined by its action on the configuration. The converse follows from the matrix
equation

gpx1, ¨ ¨ ¨ , xdq “ py1, ¨ ¨ ¨ , ydq

and the fact that g has determinant 1.

We conclude this chapter by proving Theorem 1.1. Given manifoldsM and N , a smooth map
Φ : M Ñ N is an immersion if the derivative DΦ has full rank everywhere. A smooth embedding
is an injective immersion which is also a topological embedding, i.e. a homeomorphism from M
to ΦpMq. A thorough treatment can be found in chapter 5 of [20]. In particular, we will use the
following theorem.

Theorem 1.6 ([20], Theorem 5.31). The image of a smooth embedding is an embedded subman-
ifold.

Proof of Theorem 1.1. Let M be the subset of pRdqk consisting of configurations of the form

pe1, ..., ed´1, ted, zd`1, ..., zkq

with t P Rzt0u, zi P Rd, where ei is the i-th standard basis vector in Rd. We claim M has
a unique representative of every non-degenerate volume type. To prove every volume type is
represented, let x P pRdqk be non-degenerate. Let t “ detpx1, ..., xdq and let g P SLdpRq be
such that gpx1, ..., xdq “ pe1, ..., tedq. For i ą d, let zi “ gxi. This choice of t and zi produces
an element of M with the same volume type as x. To show this representation is unique, sup-
pose pe1, ..., ed´1, ted, zd`1, ..., zkq and pe1, ..., ed´1, t1ed, wd`1, ..., wkq have the same volume type.
Considering the volumes of the first d points, it is easy to see t “ t1. If g is the element of SLdpRq
mapping the first configuration to the second, it follows that g fixes a basis and is therefore the
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identity.

M is a manifold of dimension dpk ´ dq ` 1, and we can take t, zd`1, ..., zk as the co-
ordinates of the point pe1, ..., ed´1, ted, zd`1, ..., zkq. If Φpt, zd`1, ..., zkq is the volume type of
pe1, ..., ed´1, ted, zd`1, ..., zkq, then we have a smooth injective map Φ : M Ñ Rp

k
dq. We have

t “ detpe1, ..., tedq, and tzij “ detpe1, ..., ej´1, zi, ej`1, ..., tedq.

Let R0 be the row of the matrix DΦ corresponding to the component detpe1, ..., tedq, and for
each i, j ą d let Ri,j be the row corresponding to the component

detpe1, ..., ej´1, zi, ej`1, ..., tedq.

Then R0 has a 1 in the column corresponding to B{Bt and 0 elsewhere. The row Ri,j has a t
in the column corresponding to B{Bzij , a z

i
j in the column corresponding to B{Bt, and 0 elsewhere.

It is therefore clear that DΦ has full rank, so Φ is an immersion. It is also clear that Φ and
Φ´1 are smooth, so Φ is an embedding. It follows from Theorem 1.6 that the image Vk,d is an
embedded submanifold of Rp

k
dq. The dimension of Vk,d must be dimM “ dpk ´ dq ` 1.
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Chapter 2

Bounds and Proofs

The content of this chapter represents join work with Dr. Alex McDonald [15].

2.1 Fourier integral operators and generalized Radon transforms

To prove our theorems, we will employ the usual strategy of defining pushforward measures
supported on our sets Vk,dpEq and Ck,dpEq, taking approximations to those measures, and obtain-
ing a uniform L2 bound on those approximations. This will reduce to using mapping properties
of generalized Radon transforms, which we establish here. We will be following the framework
introduced in [13].

Let X and Y be open subsets of Rdˆpd´1q and Rd, respectively. A symbol of order m on
X ˆ Y ˆ R is a smooth map a : X ˆ Y ˆ RÑ R satisfying the bound

ˇ

ˇ

ˇ

ˇ

Bn

Bθn
apx, y, θq

ˇ

ˇ

ˇ

ˇ

À p1` |θ|qm´n

on compact subsets of X ˆ Y . Also, for smooth phase functions ϕ : X ˆ Y ˆ RÑ R, define

Cϕ “

"

px,∇xϕpx, y, θq, y,´∇yϕpx, y, θq : θ ‰ 0,
B

Bθ
ϕpx, y, θq “ 0

*

.

We view Cϕ as a subset of pT ˚Xzt0uq ˆ pT ˚Y zt0uq. Given any subset C Ă pT ˚Xzt0uq ˆ
pT ˚Y zt0uq and any order m P R, define the class of Fourier integral operators of order m and
with canonical relation C, denoted by ImpCq, to be those with Schwartz kernels which are locally
finite sums of kernels of the form

Kpx, yq “

ż

eiϕpx,y,θqapx, y, θq dθ

where Cϕ is a relatively open subset of C and a is a symbol of order m´ 1
2 `

d2

4 . We will use
the following result.

Theorem 2.1 ([13], Theorem 3.1). Let C be a canonical relation and let A P Ir´
d2´2d

4 have
compactly supported Schwartz kernel. Suppose the projections from pT ˚Xzt0uq ˆ pT ˚Y zt0uq to
each factor, restricted to C, have full rank (so the first is an immersion and the second is a
submersion). Then A is a bounded operator L2pY q Ñ L2

´rpXq.

Let Φ, η : X ˆY Ñ R be smooth and let η be compactly supported. A generalized Radon
transform is an operator of the form

Afpxq “

ż

Φpx,yq“0
fpyqηpx, yq dσxpyq,

7
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where σx is the induced surface measure on the surface defined by Φpx, yq “ 0. This can be
written in terms of the delta distribution (and its Fourier transform) as an oscillatory integral;
we have

Afpxq “

ż

Φpx,yq“0
fpyqηpx, yq dσxpyq

“

ż

δpΦpx, yqqfpyqηpx, yq dy

“

ż ż

e2πiΦpx,yqθfpyqηpx, yq1pθq dθ dy

Therefore, A is a Fourier integral operator with phase function 2πΦpx, yqθ and amplitude
ηpx, yqθ. The symbol ηpx, yqθ has order 0, so our generalized radon transforms are Fourier in-
tegral operators of order 2´d2

4 . This means Theorem 2.1 applies with r “ ´d´1
2 , assuming the

condition on the canonical relation holds.

The generalized radon transforms we will be interested in are those given by the determinant
function. Throughout this paper, Rt will denote the operator

Rtfpx
1, ¨ ¨ ¨xd´1q “

ż

detpx1,¨¨¨ ,xdq“t
fpxdqηpx1, ¨ ¨ ¨ , xdq dσt,x1,¨¨¨ ,xd´1pxdq

where σt,x1,¨¨¨ ,xd´1 is the surface measure. These operators are shown to satisfy the canonical
relation hypothesis of Theorem 2.1 in [13], which implies the following Sobolev bound for Rt.

Theorem 2.2. The generalized Radon transform Rt defined above is a bounded operator L2pRdq Ñ
L2

d´1
2

ppRdqd´1q.

2.2 Frostman measures and Littlewood-Paley projections

The following theorem is frequently used to study the dimension of fractal sets; see, for
example, [24].

Theorem 2.3 (Frostman’s Lemma). Let E Ă Rd be compact. For any s ă dimE, there is a
Borel probability measure µ supported on E satisfying

µpBrpxqq À rs

for all x P Rd and all r ą 0.

A measure µ as in the theorem is called a Frostman probability measure of exponent s.

We will be interested in the Littlewood-Paley decomposition of Frostman measures. Let µ
be a Frostman probability measure on Rd with exponent s and compact support. Then µj is the
j-th Littlewood-Paley piece of µ, defined by xµjpξq “ ψp2´jξqpµpξq where ψ is a Schwarz function
supported in the range 1

2 ď |ξ| ď 4 and constantly equal to 1 in the range 1 ď |ξ| ď 2. We will
use the following bounds.

Lemma 2.4. Let µ be a compactly supported Frostman probability measure with exponent s, and
let pfµqj be the j-th Littlewood Paley piece of the measure fµ for a function f . Then

}pfµqj}L8 À 2jpd´sq}f}L8pµq



2.2 FROSTMAN MEASURES AND LITTLEWOOD-PALEY PROJECTIONS 9

and
}pfµqj}

2
L2 À 2jpd´sq}f}2L2pµq

Proof. Firstly, let us prove the L8 bound. Since }pfµqj}L8 ď }f}L8pµq}µj}L8 it suffices to prove
the bound in the case f “ 1. Observe that

pfµqjpxq “ 22j
qψp2j ¨q ˚ fµpxq

Since ψ is a Schwarz function, we have ψpxq À p1` |x|q´2. Therefore,

|µjpxq| À 22j

ż

p1` 2j |x´ y|q´2dµpyq

Splitting this integral into two parts: 2j |x´ y| ă 1 and 2j |x´ y| ą 1. We have

22j

ż

2j |x´y|ă1
p1` 2j |x´ y|q´2dµpyq

À 22jµpty : 2j |x´ y| ă 1uq

À 2jpd´sq

and

22j

ż

2j |x´y|ą1
p1` 2j |x´ y|q´2dµpyq

“ 22j
8
ÿ

i“0

ż

2iď2j |x´y|ď2i`1

p1` 2j |x´ y|q´2dµpyq

À 22j
8
ÿ

i“0

2´2iµpty : 2i ď 2j |x´ y| ď 2i`1uq

À 2jpd´sq
8
ÿ

i“0

2ips´2q

À 2jpd´sq

Thus, we get the first result as claimed. To prove the L2 bound, we first observe that

}pfµqj}
2
L2 “ }

{pfµqj}
2
L2

“

ż

|xfµpξq|2ψ2
j pξqdξ

“ 2jd
ż ż

xψ2p2jpx´ yqqfpxqfpyqdµpxqdµpyq

where we have used Fourier inversion in the last line. Break the integral into two parts
corresponding to |x ´ y| ă 2´j and |x ´ y| ą 2´j , where C is a large constant. Since ψ is a
Schwartz function, it suffices to bound the first part. Let Kj “ 22jχt|x´y|ă2´ju and let Tjfpxq “
ş

Kjpx, yqfpyqdµpyq. Our goal is to prove xTjf, fyL2pµq À 2jpd´sq}f}L2pµq. By Cauchy-Schwarz,
it suffices to show the norm of Tj as an operator L2pµq Ñ L2pµq is bounded by 2jpd´sq. This
follows from Schur’s test, as

ż

Kpx, yqdµpxq “

ż

Kpx, yqdµpyq À 2jpd´sq.
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The generalized Radon transform applied to µj also has Fourier transform concentrated at
scale 2j . This together with Theorem 2.2 allows us to prove the following bounds. Here and
throughout, given f1, ..., fn : X Ñ R, the function f1b¨ ¨ ¨bfn is the function Xn Ñ R given by

f1 b ¨ ¨ ¨ b fnpx
1, ..., xnq “ f1px

1q ¨ ¨ ¨ fnpx
nq

Lemma 2.5. Let ϕ be a smooth function which is supported on r´1, 1s and equal to 1 on
r´1{2, 1{2s, and let ϕεptq “ ε´1ϕpε´1tq. Let η : pRdqd Ñ R be a smooth cutoff function supported
in the region |xi ´ ei| ă c where ei is the i-th standard basis vector and c is a small positive
constant. Finally, let Rε

t be the approximate generalized Radon transform defined by

Rε
tfpx

1, ..., xd´1q “

ż

fpxdqηpx1, ..., xdqϕεpdetpx1, ..., xdq ´ tq dxd.

If c is sufficiently small, we have the following.

(i)
}Rε

t pfµqj}
2
L2 À 2jp1´sq}f}2L2pµq.

(ii) If j, j1, ..., jd´1 are any indices such that |j ´ ji| ą 5 for any i, then for every number N
and functions f, f1, ..., fd´1 we have

@

Rε
t pfµqj , pf1µqj1 b ¨ ¨ ¨ b pfd´1µqjd´1

D

ÀN 2´N ¨maxpj,j1,...,jd´1q,

where x¨, ¨y is the inner product on L2pRd´1q.

Proof. We first prove that the Fourier transform of Rε
t pfµqj decays rapidly outside the region

|xj | « 2j . After we prove this, both statements follow from Plancherel and Theorem 2.2. By
Fourier inversion, we have

Rε
tµjpx

1, ..., xd´1q “

ż ż ż

e2πiξd¨xde2πiτpdetpxq´tq
{pfµqjpx

dqpϕpετqηpxq dxd dξd dτ,

and therefore

zRε
tµjpξ

1, ..., ξd´1q “

ż ż ż

e2πiprξ¨x`τpdetpxq´tqq
{pfµqjpξ

dqpϕpετqηpxq dx dξd dτ

where rξ “ pξ1, ..., ξd´1,´ξdq. This integral can be written
ż ż

{pfµqjpξ
dqpϕpετqIpτ, ξq dτ dξd,

where

Ipτ, ξq “

ż

e2πiprξ¨x`τpdetpxq´tqqηpxq dx.

This is an oscillatory integral with phase function

Φτ,ξpxq “ rξ ¨ x` τpdetpxq ´ tq.

We observe

∇Φτ,ξpxq “ rξ ` τ ¨∇ detpxq.
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For x in the support of η, we have 1
2 ă |∇xi detpxq ´ ei| ă 2 if the constant c in the

statement of the theorem is sufficiently small. Therefore, if Φτ,ξ has critical points then we must
have 1

2 |ξ
i| ď τ ď 2|ξi| for all i. If 2j´2 ă |ξd| ă 2j`2 and 2ji´2 ă |ξi| ă 2ji`2 with |j ´ ji| ą 5,

then Φτ,ξ has no critical points and by non-stationary phase (for example [24], proposition 6.1)
we have

Ipτ, ξq ÀN 2´N ¨maxpj,j1,...,jd´1q.

It follows from this and Lemma 3.2 that

@

Rε
t pfµqj , pf1µqj1 b ¨ ¨ ¨ b pfd´1µqjd´1

D

“

A

{Rε
t pfµqj ,

{pf1µqj1 b ¨ ¨ ¨ b
{pfd´1µqjd´1

E

“

ż ż

{pf1µqj1pξ
1q ¨ ¨ ¨ {pfd´1µqjd´1

pξd´1q{pfµqjpξ
dqpϕpετqIpτ, ξq dτ dξ

ÀN 2´N ¨maxpj,j1,...,jd´1q.

It also follows that

}Rε
t pfµqj}

2
L2 “ }

{Rε
t pfµqj}

2
L2

À 2´jpd´1q

ż

|ξ|«2j
|ξ|d´1

{Rε
t pfµqjpξqdξ

“ 2´jpd´1q}Rε
t pfµqj}

2
L2

d´1
2

À 2jp1´sq}f}2L2pµq

2.3 Proofs

2.3.1 Proof of Theorem 1.2

Many Falconer type problems can be attacked by defining an appropriate pushforward mea-
sure and proving it is in L2. The following lemma establishes this framework.

Lemma 2.6. Let M be an n-dimensional submanifold of Rm equipped with n-dimensional
Lebesgue measure Ln and consider a map Φ : pRdqk ÑM. For E Ă Rd, let

∆ΦpEq “ tΦpxq : x P Eku.

If µ is a probability measure supported on a compact set E and

ε´n
ż

¨ ¨ ¨

ż

|Φpxq´Φpyq|Àε
dµkpxq dµkpyq À 1,

then Lnp∆ΦpEqq ą 0.

Proof. Define a probability measure ν on M by the relation
ż

fptq dνptq “

ż

fpΦpxqq dµkpxq.
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It suffices to prove ν is absolutely continuous with respect to Ln. Let ϕ be a symmetric
Schwartz function on Rm supported on the ball of radius 2 and equal to 1 on the unit ball. Let
ϕεpxq “ ε´nϕpx{εq and let νε “ ϕε ˚ ν. Then

ż

A
νεptqdt ď LnpAq1{2}νε}L2 ,

where dt denotes integration with respect to n-dimensional Lebesgue measure. This reduces
matters to proving an upper bound on }νε}L2 which is uniform in ε. We have

νεptq “

ż

ϕεpt1 ´ tqdνpt1q

“

ż

ϕεpΦpxq ´ tqdµkpxq

« ε´n
ż

|Φpxq´t|ďε{2
dµkpxq.

Thus,

||νε||2L2 « ε´2n

ż

˜

ż

¨ ¨ ¨

ż

|Φpxq´t|ďε{2
dµkpxqdµkpyq

¸

dt

“ ε´2n

ż

¨ ¨ ¨

ż

|Φpxq´Φpyq|ďε

˜

ż

|φpxq´t|ďε{2
dt

¸

dµkpxqdµkpyq

« ε´n
ż

¨ ¨ ¨

ż

|φpxq´φpyq|ďε
dµkpxqdµkpyq

À 1

To apply this approach to our current problem, we first reduce to the case where our set
E Ă Rd has some additional structure.

Lemma 2.7. Let k ě d and let E Ă Rd be a compact set with Hausdorff dimension dimE ą d´1.
Then there exist subsets E1, ..., Ek Ă E and a constant c with dimEj “ dimE and the property
that for any choice of d points x1, ..., xd in different cells Ej, we have detpx1, ¨ ¨ ¨ , xdq ą c.

Proof. Let µ be a Frostman probability measure on E with exponent s ą d ´ 1 and let N
be a large integer to be determined later. The idea of the proof is that the 2´N -neighborhood
of a compact piece of a hyperplane has negligible µ-measure, so we can construct our sets Ej
recursively by throwing away bad parts of E.

Given a point x P Rd, let Bpxq denote the ball of radius 2´N centered at x. Let S0 be a finite
set such that tBpxq : x P S0 covers E, and let S Ă S0 be the subset obtained by discarding
any x such that µpBpxqq “ 0. Without loss of generality we may assume that none of our balls
contains the origin.

Let x1, x2 P S be arbitrary points such that the balls Bpx1q and Bpx2q have distance ą 2´N .
For 2 ď j ď d ´ 1, suppose x1, ..., xj have been defined and are linearly independent. Let X
denote the 2´N`10-neighborhood of spanpx1, ..., xjq intersected with the ball of radius supE.
Then µpXq À 2´Nps´jq. Since s ą j, for large N this is small, so we can choose xj`1 P EzX. It
follows that Bpxj`1q does not intersect the 2´N neighborhood of spanpx1, ..., xjq. For d ď j ă k,
suppose x1, ..., xj have been defined and have the property that for any j1, ..., jd ď j, Bpxjq does
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not intersect the 2´N -neighborhood of spanpxj1 , ..., xjd´1q. Again, if N is sufficiently large then
the union of all

`

j
d´1

˘

approximate hyplerplanes determined by any d´ 1 of the points x1, ..., xj

has small µ measure, so we can choose xj`1 to avoid all of them as well. It is clear that the
collection Ej :“ Bpxjq has the desired properties.

To prove Theorem 1.2, by Lemmas 2.6 and 2.7 it suffices to bound

ε´dpk´dq´1

ż ż

|Φpxq´Φpyq|Àε
dµkpxq dµkpyq (1)

independent of ε. We follow the approach used in [11] and [22] to reduce matters to the k “ d
case. We first decompose the dµkpyq factor into Littlewood-Paley pieces, reducing (1) to

« ε´dpk´dq´1
ÿ

j1,...,jk

ż ż

|Φpxq´Φpyq|Àε
µj1py

1q ¨ ¨ ¨ µjkpy
kq dy1 ¨ ¨ ¨ dyk dµkpxq. (2)

Here tµju are the Littlewood Paley pieces of µ, as defined in chapter 3. Now that we have
an integral in dy, we want to use the group action framework discussed in chapter 2 to turn
this into an integral over SLdpRq. The idea is that for fixed x, integrating over the region
|Φpxq ´ Φpyq| ă ε is equivalent to integrating over y „ gx as g varies. If ε is sufficiently
small then detpy1, ¨ ¨ ¨ , ydq ‰ 0 for y in this region. Every such y has the same area type as a
configuration of the form

px1
1, ¨ ¨ ¨ , x

d
d´1, td2 , ¨ ¨ ¨ , tkdq.

Moreover, there is an open set Ud Ă Rd2´1 such that for every pg1
1, ¨ ¨ ¨ , g

d
d´1q P Ud there

exists a unique g P SLdpRq whose matrix has those entries, and the lower right entry is a
rational function of the others. This gives a rational change of variables

y “ gpx1
1, ¨ ¨ ¨ , x

d
d´1, td2 , ¨ ¨ ¨ , tkdq,

where g is viewed in terms of its coordinates. Since x lives in a fixed compact subset of
configuration space, the Jacobian determinant is « 1 and (2) is

« ε´dpk´dq´1

ż ż ż

Bε

˜

ÿ

j1,...,jk

µj1 b ¨ ¨ ¨ b µjk

¸

pgpx1
1, ¨ ¨ ¨ , x

d
d´1, td2 , ¨ ¨ ¨ , tkdqq dg dt dµ

kpxq, (3)

where the two inner integral signs represent integration over the first d2 ´ 1 coordinates of
g and the dpk ´ dq ` 1 coordinates ttiu, respectively. The ti coordinates are integrated over the
ball Bε raidus ε centered at the last dpk ´ dq ` 1 coordinates of x. Taking the limit as ε Ñ 0,
this is

ÿ

j1,...,jk

ż ż

¨ ¨ ¨

ż

µj1pgx
1q ¨ ¨ ¨µjkpgx

kq dµpx1q ¨ ¨ ¨ dµpxkq dg. (4)

Here we make a couple simple reductions. First, µj is a Schwarz function satisfying the L8

bound }µj}L8 À 2jpd´sq (see for example [22], Lemma 3) which we use to reduce from general
k ě d to the k “ d case. Moreover, the sum over j1, ..., jk can be reduced to the sum over indices
satisfying j1 ě ¨ ¨ ¨ ě jk ě 0, as negative indices clearly contribute Op1q to the sum and other
permutations of indices only change the sum by a multiplicative constant. Applying the L8

bound and running the sum in the indices jd`1, ..., jk, it follows that (4) is
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À
ÿ

j1ě¨¨¨ějd

2jdpd´sqpk´dq
ż ż

¨ ¨ ¨

ż

µj1pgx
1q ¨ ¨ ¨µjdpgx

dq dµpx1q ¨ ¨ ¨ dµpxdq dg. (5)

This reduces matters to the k “ d case. Using the same change of variables in the other
direction, this is

« ε´1
ÿ

j1ě¨¨¨ějd

2jdpd´sqpk´dq
ż

¨ ¨ ¨

ż

|detpx1,...,xdq´detpy1,...,ydq|ăε
µj1py

1q ¨ ¨ ¨µjdpy
dq dy dµkpxq

« ε´2
ÿ

j1ě¨¨¨ějd

2jdpd´sqpk´dq
ż ż

¨ ¨ ¨

ż

|detpx1,¨¨¨ ,xdq´t|ăε
|detpy1,¨¨¨ ,ydq´t|ăε

µj1py
1q ¨ ¨ ¨µjdpy

dq dy dµkpxq dt.

«
ÿ

j1ě¨¨¨ějd

2jdpd´sqpk´dq
ż

˜

ε´1

ż

|detpx1,¨¨¨ ,xdq´t|ăε
dµkpxq

¸

xRε
tµj1 , µj2 b ¨ ¨ ¨ b µjdy dt (6)

where x¨, ¨y denotes the inner product on L2ppRdqd´1q and Rε
t is the approximation to the

generalized Radon transform discussed in chapter 2. Let

νεk,dptq “

ż

|detpxi1 ,¨¨¨ ,xid q´t|ăε
dµkpxq.

The quantity in (1) we are trying to bound is }νεk,d}
2
L2 , and we have proved.

}νεk,d}
2
L2 À

ÿ

j1ě¨¨¨ějd

2jdpd´sqpk´dq
ż

νεd,dptq xRε
tµj1 , µj2 b ¨ ¨ ¨ b µjdy dt,

Let

S “
ÿ

j1ě¨¨¨ějdě0

2jdpd´sqpk´dq sup
t
xRε

tµj1 , µj2 b ¨ ¨ ¨ b µjdy .

If S is finite, we have

}νεk,d}
2
L2 À }ν

ε
d,d}L2 .

Plugging in k “ d on the left, we have a uniform bound on }νεd,d}L2 which in turn implies a
uniform bound on }νεk,d}L2 for all k ě d. So, it suffices to prove S is finite under the hypotheses
of Theorem 1.2. By Lemma 2.5 it is clear that the part of the sum corresponding to indices with
jd ă j1 ´ 5 converges. It also follows from Lemma 2.5 and Cauchy-Schwarz that

sup
t
xRε

tµj , µj b ¨ ¨ ¨ b µjy À 2
j
2
p1´s`pd´sqpd´1qq.

Therefore,

S À
ÿ

jě0

2
j
´

pd´sqpk´dq` 1´s`pd´sqpd´1q
2

¯

.

The sum will converge if s ą d´ d´1
2k´d , as claimed.

2.3.2 Proof of Theorem 1.3

To prove Theorem 1.3, it is enough to establish the following bound. The theorem then
follows from Lemma 2.6.

Lemma 2.8. Let ϕε be an approximation to the identity on R, and let
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Jεt,k “

ż

˜

k`1´d
ź

j“1

ϕεpdetpxj , ..., xj`d´1q ´ tjq

¸

dµkpxq.

For every k ě d there is a constant Ck (which does not depend on t or ε) such that Jεt,k ď Ck.

Proof. We first prove a bound in the case k “ d. Since Jεt,d «
ř

j }Rε
tµj}L1pµd´1q, it is enough to

prove }Rε
tµj}L2pµd´1q À 2´cj for some positive c. To accomplish this, fix t and let T εj f “ Rε

t pfµqj .
We want to bound the norm of T εj as an operator L2pµq Ñ L2pµd´1q. To do this, let g P L2pµd´1q

be given by gpxq “ g1px
1q ¨ ¨ ¨ gd´1px

d´1q with gi P L2pµq. Using Littlewood-Paley decomposition,
Lemma 2.5, and Cauchy-Schwarz we have

@

T εj f, g
D

L2pµd´1q
À xRε

t pfµqj , pg1µqj b ¨ ¨ ¨ b pgd´1µqjy

À 2
j
2
p1´s`pd´sqpd´1qq}f}L2pµq}g}L2pµd´1q.

It follows that the operator norm, and hence }Rε
tµj}L1pµd´1q, is bounded by 2

j
2
p1´s`pd´sqpd´1qq,

and this series converges when s ą d´ 1` 1
d . This gives the desired bound in the case k “ d.

For k ą d, let

χεt,kpxq “
k`1´d
ź

j“1

ϕεpdetpxj , ..., xj`d´1q ´ tjq.

We have

Jεt,k “

ż

χεt,kpxqdµ
kpxq

“

ż

χε
t̃,k´1

px̃qϕεpdetpxk`1´d, ..., xkq ´ tk`1´dqdµ
k´1px̃qdµpxkq

«
ÿ

j

ż

χε
t̃,k´1

px̃qRε
tk`1´d

µjpx
k`1´d, ..., xk´1qdµk´1px̃q

À pJε
t̃,k´1

q1{2
ÿ

j

}Rtk`1´d
µj}L2pµk´1q

À pJε
t̃,k´1

q1{2

Let Φpxq “ pdetpx1, ..., xdq, ...,detpxk`1´d, ..., xkqq. We have

ε´pk`1´dq

ż ż

|Φpxq´Φpyq|ăε
dµkpxqdµkpyq À

ż

JεΦpxq,kdµ
kpxq À 1.

Theorem 1.3 then follows from Lemma 2.6.

2.3.3 Proof of Sharpness Theorem

We conclude this paper by proving Theorem 1.4. Let Λq,s be the q´
d
s -neighborhood of

1
q

`

Zd
Ş

`

r
q
2 , qs ˆ r0, qs

d´1
˘˘

, the right half of the lattice in the pd ´ 1q-dimensional unit cube
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with spacing 1
q (see figure 2). By Theorem 8.15 in [10] we can choose a sequence qn that in-

creases sufficiently rapidly such that

dim

˜

č

n

Λqn,s

¸

“ s

Thus, for large q we may regard Λq,s as an approximation to a set of Hausdorff dimension s.
Let us modify this situation to fit our problem. By Lemma 1.8 in [10] we have

Lemma 2.9 ([10], Lemma 1.8). Let ψ be Lipschitz and surjective, and let Hs be the s-dimensional
Hausdorff measure. Then HspF q À HspEq.

As consequence of this lemma we have dimF ď dimE. If ψ is bijective and Lipschitz in both
directions, then dimF “ dimE. Let Eq,s (figure 2.2) be the image of Λq,s under the spherical
map

ψpx1, x2, ¨ ¨ ¨ , xdq “

“ x1

˜

cos
´πx2

2

¯

, sin
´πx2

2

¯

cos
´πx3

2

¯

, ¨ ¨ ¨ ,
d´1
ź

i“2

sin
´πxi

2

¯

cos
´πxd

2

¯

,
d
ź

i“2

sin
´πxi

2

¯

¸

.
It is not hard to check this map is injective on r12 , 1s ˆ r0, 1s

d´1 and therefore bijective as a
map Λq,s Ñ Eq,s.

Let us fix a sequence qn such that dim

˜

č

n

Eqn,s

¸

“ s and call Es “
č

n

Eqn,s. It remains to

prove Ldpk´dq`1 pVk,d pEsqq “ 0.

We begin by counting the number of volume types determined by the image of 1
q

`

Zd
Ş

`

r
q
2 , qs ˆ r0, qs

d´1
˘˘

under ψ (i.e., the spherical lattice points themselves and not the thickened set). It is clear that
every volume type of this set is obtained by considering configurations with x1 restrained to the
first axis, and x2, ..., xk unrestrained. Thus there are « q choices for x1 and « qd choices for
x2, ..., xk. It follows that

Ldpk´dq`1 pVk,dpEq,sqq À
´

q´
d
s

¯dpk´dq`1
qdpk´1q`1

This tends to 0 as q Ñ8 provided s ă d´ d2pd´1q
dpk´1q`1 .
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Figure 2.1: Λ4,s for d “ 3.

Figure 2.2: E4,s for d “ 3.
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Figure 2.3: Λ10,s for d “ 2.

Figure 2.4: E10,s for d “ 2.



Chapter 3

Configurations in the plane

In this chapter, we consider 4-point configuration in the plane, d “ 2, under a similar
notion of equivalence as A. McDonald in [22]. The substantial difference here is that our 4-point
configuration in the plane are triangles with an extra leg. It means we will look for the triangle
spanned by the first three points in our configuration, x,y, and z, and then we add one more
point, w and look at the area of the triangle spanned by x and w. More precisely, we have the
following definition

Definition 5. The Galo area type of px, y, z, wq P pR2q4 is the vector

 

xyK, yzK, zxK, xwK
(

P R4.

For a set E Ă R2, let

GpEq “ tpxyK, yzK, zxK, xwKq|x, y, z, w P Eu

be the set of Galo area types determined by 4-points in E.
Finally, let G :“ GpR2q be the space of all Galo area types in R2.

It follows that a configuration has vertex area type 0 if and only if all the points of the
configuration lie on a common line through the origin.

We will use here the same concept of degeneracy defined in [22]:

Definition 6. A 4-point configuration v “ px, y, z, wq P pR2q4 is called degenerate if tx, yu are
linearly dependent and non-degenerate otherwise.

Thus, if you look at only for non-degenerate configurations we can also conclude v and
u have the same Galo area type if and only if there is a unique g P SL2pRq such that gv “ u.
Thus, we choose a measure on the space of Galo area types to be the 4-dimensional Lebesgue
measure, L4. Thus, we can state our main theorem:

Theorem 3.1. Let E Ă R2 be a compact set with dimE ą 3
2 . Then,

L4pGpEqq ą 0.

19
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Figure 3.1: 3 point configuration used in [22]

Figure 3.2: 4 point configuration.

3.1 Proof

In order to estimate our measure in G

1

e4

ż

|xyK´a|ăε

ż

|yzK´b|ăε

ż

|zxK´c|ăε

ż

|xwK´t|ăε
dµpxqµpyqµpzqµpwq

Let us define
Ftpxq “

1

ε

ż

|xwK´t|ăε
dµpwq
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It will be equivalent to estimate

1

e3

ż

|xyK´a|ăε

ż

|yzK´b|ăε

ż

|zxK´c|ăε
µpyqµpzqFtpxqdµpxq.

Firstly, let us compute the L2 norm squared in a, b, c (not at t at this point) since we know
two configurations are equivalent if they have the same area type and if px, y, zq P pR2q3 and
px1, y1, z1q P pR2q3 are non-degenerate configurations. Then px, y, zq and px1, y1, z1q have the same
area type if and only if there is a unique g P SL2pRq such that, we have

px1, y1, z1q “ε pgx, gy, gzq

Let E Ă R2 be compact with Hausdorff dimension greater than 3
2 and and let µ be a Frostman

probability measure with exponent s ą 3
2 . We repeat the process made in [22] to reduce matters

to bounding the integral
ż ż ż

µεpgxqµεpgyqµεpgzqFtpgxqFtpxqdµpxqdµpyqdµpzq

Thus, rewriting the quantity above and integrate it in dg we have

ż

˜

ˆ
ż

µεpgyqdµpyq

˙2 ż

µεpgxqFtpgxqFtpxqdµpxq

¸

dg

The fundamental idea behind is that if we can estimate this quantity
ż

µεpgxqFtpgxqFtpxqdµpxq

then the quantity the we have left is the squared integral
ˆ
ż

µεpgyqdµpyq

˙2

which corresponds to a single area problem and all bounds and details was solved by A. McDonald
in [22].

Using the Littlewood-Paley decomposition of Frostman measures. Let µ be a Frostman proba-
bility measure on R2 with exponent s and compact support. Then µj is the j-th Littlewood-Paley
piece of µ, defined by xµjpξq “ ψp2´jξqpµpξq where ψ is a Schwarz function supported in the range
1
2 ď |ξ| ď 4 and constantly equal to 1 in the range 1 ď |ξ| ď 2. We will use the following bounds.

Lemma 3.2. Let µ be a compactly supported Frostman probability measure with exponent s, and
let pFtµqj be the j-th Littlewood Paley piece of the measure Ftµ for a function Ft. Then

}pFtµqj}L8 À 2jp2´sq}Ft}L8pµq

and
}pFtµqj}

2
L2 À 2jp2´sq}Ft}

2
L2pµq

Proof. Firstly, let us prove the L8 bound. Since }pFtµqj}L8 ď }Ft}L8pµq}µj}L8 it suffices to
prove the bound in the case F “ 1. Observe that

pFtµqjpxq “ 22j
qψp2j ¨q ˚ Fµpxq

Since ψ is a Schwarz function, we have ψpxq À p1` |x|q´2. Therefore,
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|µjpxq| À 22j

ż

p1` 2j |x´ y|q´2dµpyq

Splitting this integral into two parts: 2j |x´ y| ă 1 and 2j |x´ y| ą 1. We have

22j

ż

2j |x´y|ă1
p1` 2j |x´ y|q´2dµpyq

À 22jµpty : 2j |x´ y| ă 1uq

À 2jp2´sq

and

22j

ż

2j |x´y|ą1
p1` 2j |x´ y|q´2dµpyq

“ 22j
8
ÿ

i“0

ż

2iď2j |x´y|ď2i`1

p1` 2j |x´ y|q´2dµpyq

À 22j
8
ÿ

i“0

2´2iµpty : 2i ď 2j |x´ y| ď 2i`1uq

À 2jp2´sq
8
ÿ

i“0

2ips´2q

À 2jp2´sq

Thus, we get the first result as claimed. To prove the L2 bound, we first observe that

}pFtµqj}
2
L2 “ }

{pFtµqj}
2
L2

“

ż

|ξ|„2j
|yFtµpξq|

2ψ2
j pξqdξ

“ 22j

ż ż

xψ2p2jpx´ yqqFtpxqFtpyqdµpxqdµpyq

ď C||Ft||
2
L2 ¨ 2

jp2´sq

where we have used Fourier inversion in the third line. Break the integral into two parts
corresponding to |x ´ y| ă 2´j and |x ´ y| ą 2´j , where C is a large constant. Since ψ is a
Schwartz function, it suffices to bound the first part. Let Kj “ 22jχt|x´y|ă2´ju and let TjFtpxq “
ş

Kjpx, yqFtpyqdµpyq.
The last line came from Lemma 2.5 [1], using xTjFt, FtyL2pµq À 2jp2´sq}Ft}L2pµq and by

Cauchy-Schwarz, it suffices to show the norm of Tj as an operator L2pµq Ñ L2pµq is bounded
by 2jp2´sq. This follows from Schur’s test, as

ż

Kpx, yqdµpxq “

ż

Kpx, yqdµpyq À 2jp2´sq.
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To show
ż

||Ft||
2
L2pµqdt ď C

We are going to use te fact that

||Ft||
2
L2pµq “

ż

˜

1

ε

ż

|x¨wK´t|ăε
dµpwq

¸2

dµpxq

“
1

ε2

ż ż ż

|x ¨ uK ´ t| ă ε
|x ¨ vK ´ t| ă ε

dµpxqdµpyqdµpvq

with that we have 2-chain of areas, and for areas it is well known this quantity is bounded
for s ą 3

2 .
If we call φpx, yq “ x ¨ yK “ x1y2 ´ x2y1 we can show it satisfies the non-vanishing Monge-

Ampere determinant assumption:

det

˜

0 ∇xφ

´p∇yφq
T B2φ

dxdy

¸

“ det

¨

˝

0 y2 ´y1

x2 0 ´1
x1 1 0

˛

‚“ x1y2 ´ x2y1 “ x ¨ yK

It implies for t ‰ 0 it does not vanish on the set tpx, yq|φpx, yq “ tu.
Thus, we can estimate

ş

||Ft||
2
L2pµqdt using the results from A. Iosevich, K. Taylor and Uriarte-

Tuero in [19]. Since they work with the assumption

sλ ą d` 1´ sµ

and the measure λ in their paper works as µ for our case and d “ 2 and it gives us:

sµ ą 2` 1´ sµ

sµ ą
3

2

This result is a bound which is adequate when s ą 3
2 , hence completes the proof of the main

theorem.
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3.2 Future steps

We could repeat this process and expend this result to any rigid structure adding chains or
trees to each vertex.

Figure 3.3: 6-point configuration h P pR2q6

This is the next step of my research in this area. In addition to consider a k-point configu-
rations in Rd and define a Galo volume type configurations.
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