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Resumo

ROCHA, Henrique C. S. Uma Compactificação Local de Shifts de Markov Enu-
meráveis. 2022. 50 f. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Uni-
versidade de São Paulo, São Paulo, 2022.

Pouco mais de vinte anos atrás Ruy Exel e Marcelo Laca descobriram as álgebras de
Exel-Laca, que naturalmente levam seus nomes, que são uma tentativa de estender as ál-
gebras de Cuntz-Krieger para matrizes infinitas. Do ponto de vista da teoria de shifts de
Markov, essas álgebras sao interessantes porque o espectro de uma sub-álgebra comutativa
específica das álgebras de Exel-Laca aparece como uma local compactificação, ou compacti-
ficação a depender da matriz associada ao shift de Markov, de um shift de Markov que não é
localmente compacto. Além disto, tais local compactificações deixam invariantes shifts que
já são localmente compactos e sua construção independe de qualquer noção externa à matriz
que define o shift de Markov. O objetivo deste trabalho é descrever em detalhes tais local
compactificações para aqueles que não conhecem a teoria de álgebras C* e definir algumas
noções básicas tais quais medidas conformes para estes espaços.

Palavras-chave: medidas conformes, dinâmica simbólica, sistemas dinâmicos.
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Abstract

ROCHA, Henrique C. S. A Local Compactification to Countable Markov Shifts.
2022. 50 f. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade de
São Paulo, São Paulo, 2022.

Around twenty year ago Ruy Exel and Marcelo Laca first discovered the so-called Exel-
Laca algebras which are an attempt to extend Cuntz-Krieger algebras to infinite matrices.
From the point of view of the theory of countable Markov shifts, these algebras are in-
teresting because they contain some commutative sub-algebras whose spectrum is a local
compactification, or compactification depending on the matrix associated to the countable
Markov shift, of a countable Markov which is not locally compact. Furthermore, such con-
struction leaves invariant Markov shifts which are already compact and it does not depend
on anything other than the matrix describing the Markov shift. The objective of this work
is to describe in detail such local compactifications to those that are very knowledgeable on
the theory of C*-alegbras and to define some basic notion such as conformal measures to
such spaces.

Keywords: conformal measures, symbolic dynamics, dynamical systems.
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Chapter 1

Preliminaries

This work follows the footsteps of T. Raszeja [RAS20] in investigating the local compact-
ification of a countable Markov shift that arises from studying some specific commutative
sub-C∗-algebras of the Exel-Laca algebras first described by R. Exel and M. Laca [EL99] in
1999. In which case it is rather natural we start it with some preliminary definitions and
results on the theory of CMS and of C∗-algebras. A very good reference to the first being
the lecture notes by O. Sarig [SAR09] and the sufficient results to the second being present
in any book of C∗-algebras such as [MUR90].

1.1 Countable Markov Shifts
Our aim in this section is to introduce the notion of a countable Markov shift. The first

ingredients needed are a countable set S which we shall refer to as the alphabet and a matrix
A ∈ {0, 1}S×S . We endow the alphabet S with the discrete topology and we define the full
shift space over S as the space

Σfull
.
= SN0

endowed with its usual product topology. In a similar fashion, we define the shift space over
S related to the matrix A as the subset of the full shift space given by

ΣA
.
= {x ∈ Σfull : A(xi, xi+1) = 1 for all i ∈ N0}

and endow it with the subspace topology inherited from Σfull. We note that the topology of
Σfull has a natural basis in the set of cyllinder subsets, i.e., subsets of the form

[ω]
.
= {x ∈ Σfull : xi = ai for all 0 ≤ i ≤ k − 1},

where ω = ω0ω1...ωk−1 ∈ Sk is a finite word with length k. The same is naturally also true
for ΣA. Finally, we define a continuous application σ : Σfull → Σfull by

σ(x)i = xi+1

and note that it defines a local homeomorphism, the same is once again true for the restriction
of σ to ΣA. Whenever no confusion over which space we are working with is possible, we
shall denote the restriction of σ to ΣA simply by σ.

It is evident that we need to demand that A satisfy some conditions so that the pair
(ΣA, σ) has interesting dynamical properties. We say that A is transitive if for any pair of

1



2 PRELIMINARIES 1.1

symbols (i, j) ∈ S × S, there exists a finite word ω such that

[iωj] ∩ ΣA 6= ∅.

We say that A is topologically mixing if for any pair of symbols (i, j) ∈ S × S there exists
a number N ∈ N such that for any number n > N , there exists a finite word ω of length n
such that

[iωj] ∩ ΣA 6= ∅.

If not stated otherwise, we shall assume henceforth that any matrix A is topologically mixing.
We say that A is row-finite if

#{j ∈ S : A(i, j) = 1} <∞

for all i ∈ S and note that ΣA is compact if, and only if, S is finite, and that ΣA is locally
compact if, and only if, A is row-finite.

In general, our alphabet S shall be identified with the natural numbers and we shall
write S or N interchangeably whenever no confusion is possible. Finally, we note that ΣA is
a metric space with a natural metric dα : ΣA × ΣA → [0,∞) given by

dα(x, y)
.
= αmin{i∈N0:xi 6=yi},

where 0 < α < 1. It is straightforward to see that for this metric σ is a Hölder application
and that ΣA is complete.

1.1.1 Potentials

We shall refer to a continuous function on a CMS (countable markov shift) φ : ΣA → R
also by the term potential. In general, we will consider potentials such that

S(φ)
.
=
∑
s∈S

esupφ([s]) <∞. (1.1)

For n ∈ N, we define the n-th variation of φ by

Varnφ
.
= sup{|φ(x)− φ(y)| : xi = yi for 0 ≤ i ≤ n− 1}

and the n-th Birkhoff sum of φ by

ΣA 3 x 7→ φn(x)
.
=

n−1∑
k=0

φ ◦ σk(x).

It is evident that φ is uniformly continuous if, and only if,

lim
n→∞

Varnφ = 0.

In general, in the standard theory of CMS stricter conditions than uniform continuity
are demanded. We say that a potential φ : ΣA → R is weakly Hölder continuous if there
exist C > 0 and θ ∈ (0, 1) such that

Varnφ ≤ Cθn (1.2)
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for n ≥ 2. We say that a potential φ : ΣA → R has summable variations if

∞∑
n=2

Varnφ <∞. (1.3)

Finally, we say that a potential φ : ΣA → R satisfies Walter’s condition, or is Walter’s,
if for all k ∈ N

sup
n∈N

Varn+kφn <∞ and lim
k→∞

sup
n∈N

varn+kφn = 0. (1.4)

Lemma 1. 1. Every potential φ : ΣA → R which is weakly Hölder continuous has
summable variations.

2. Every potential φ : ΣA → R which has summable variations satisfies Walter’s condi-
tion.

Proof. Suppose that φ : ΣA → R is weakly Hölder continuous, then for some C > 0 and
θ ∈ (0, 1), we have that

∞∑
n=2

varnφ ≤
∞∑
n=2

Cθn =
Cθ2

1− θ
<∞

which proves the first item of the lemma.
We now prove that if φ : ΣA → R has summable variations, then it is Walter’s. Given

k, n ∈ N, let x, y ∈ ΣA satisfy x[0, n+ k) = y[0, n+ k), then

|φn(x)− φn(y)| =

∣∣∣∣∣
n−1∑
i=0

φ ◦ σi(x)−
n−1∑
i=0

φ ◦ σi(y)

∣∣∣∣∣ ≤
n−1∑
i=0

|φ ◦ σi(x)− φ ◦ σi(y)|.

We note that σi(x)[0, n+ k − i) = σi(y)[0, n+ k − i) for all 0 ≤ i ≤ n− 1, therefore

|φn(x)− φn(y)| ≤
n−1∑
i=0

varn+k−iφ =
n+k∑
i=k+1

variφ,

that is

varn+kφn ≤
n+k∑
i=k+1

variφ.

Finally,

sup
n∈N

varn+kφn ≤ sup
n∈N

n+k∑
i=k+1

variφ =
∞∑

i=k+1

variφ <∞

and we conclude that φ is Walter’s since

lim
k→∞

∞∑
i=k+1

variφ = 0

by hypothesis.

1.1.2 Conformal Measures

In this subsection, we reproduce the results present on [SAR09] and omit some of the
proofs, those interested may consult the original material. Our aim is to provide the definition
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of conformal measure and of Ruelle’s operator. The following definitions shall be necessary
to define the transfer operator which describes how densities under the application of a map
with "good properties" related to such measure. We begin with the very general concept of
non-singular measure/application.

Definition 1. Let µ be a σ-finite Borel measure on Σ, we say that µ is σ-non-singular or
that σ is non-singular on (Σ,BΣ, µ) if σ∗µ ∼ µ, i.e., if B is Borel, then

σ∗µ(B) = µ(σ−1B) = 0 ⇐⇒ µ(B) = 0.

The following definitions appears somewhat mysterious at first but it should soon be
clear why it is useful to describe such a measure.

Definition 2. Suppose ν is σ-non-singular. We define ν ◦ σ : BΣ → [0,∞] by

ν ◦ σ(E)
.
=
∑
a∈S

ν(σ(E ∩ [a])). (1.5)

Proposition 1. Suppose ν is σ-non-singular, then

1. ν ◦ σ defines a Borel measure on Σ;

2. for all non-negative functions f : Σ→ R, we have that∫
Σ

fd(ν ◦ σ) =
∑
a∈S

∫
σ[a]

f(ax)dν(x);

3. ν � ν ◦ σ;

4. if for every state a ∈ S and every Borel set E ⊂ [a], we have that ν(E) = 0 ⇐⇒
ν(σE) = 0, then ν ◦ σ ∼ ν.

The following two definitions also justify themselves a posteriori.

Definition 3. Suppose ν : BΣ → [0,∞] is σ-non-singular, we define the Jacobian of ν by

gν
.
=

dν

d(ν ◦ σ)
. (1.6)

If ν ∼ ν ◦ σ, we define the log Jacobian of ν by log gν = log dν
d(ν◦σ)

.

Definition 4. Suppose φ : Σ → R is Borel-measurable. We say that a (possibly infinite)
Borel measure ν is φ-conformal if it is finite on cyllinders and if there is λ > 0 such that
gν = λ−1 expφ a.e.

We are now able to define the transfer operator whose name shall be justified by the
properties proved in the proposition below.

Definition 5. The transfer operator, or Perron-Frobenius operator, of a non-singular map
T on a σ-finite measure space (Ω,B, µ) is the operator T̂ : L1(Ω,B, µ) → L1(Ω,B, µ) given
by

T̂ f
.
=

d(µf ◦ T−1)

dµ
, (1.7)

where dµf
.
= fdµ.
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Lemma 2. The transfer operator is well-defined.

Proof. To prove that the transfer operator is well-defined, we need to prove that µf◦T−1 � µ

and that if f ∈ L1, then T̂ f is also L1.
Let E ∈ B such that µ(E) = 0, then, by the non-singularity of µ, we have that µ(T−1E) =

0. Therefore,

µf ◦ T−1(E)
.
= µf (T

−1E) =

∫
T−1E

fdµ = 0

and we conclude.
Let f ∈ L1(Ω,B, µ), then

‖T̂ f‖1 =

∫
sgn(T̂ f) · T̂ fdµ =

∫
sgn(T̂ f)dµf ◦ T−1

=

∫
sgn(T̂ f) ◦ Tdµf =

∫
sgn(T̂ f) ◦ Tfdµ ≤ ‖f‖1,

where sgn denotes the sign function. Thus, the lemma is proven.

Proposition 2. Suppose T is a non-singular map on a σ-finite measure space (Ω,B, µ),
then

1. if f ∈ L1, then T̂ f is the unique L1-function such that, for all ϕ ∈ L∞,∫
ϕT̂fdµ =

∫
ϕ ◦ Tfdµ;

2. T̂ is positive, i.e., if f ≥ 0 a.e., then T̂ f ≥ 0 a.e.;

3. T̂ is a bounded linear operator on L1 with ‖T̂‖ = 1;

4.
∫
T̂ fdµ =

∫
fdµ for all f ∈ L1;

5. if f ≥ 0 and
∫
fdµ = 1, then T̂ f = f ⇐⇒ dm

.
= fdµ is a T -invariant probability

measure;

6. if µ is T -invariant, then (T̂ f) ◦ T = E(f |T−1B).

Remark 1. Property 1 is the one that justifies calling it the "transfer operator".

We are now interested in describing the transfer operator in the case of a CMS. Suppose
ν is a σ-non-singular σ-finite measure on (Σ,BΣ), we recall that, for all ϕ ∈ L∞(ν),

χσ[a](x)ϕ(x) = χσ[a](x)ϕ ◦ σ(ax).

Furthermore, recall that ν � ν ◦ σ and note that if h ∈ L1(ν) then gνh = dν
dν◦σh ∈ L

1(ν ◦ σ).
Let ϕ ∈ L∞(ν) and f ∈ L1(ν), then∫
ϕ ◦ σ · fdν =

∫
ϕ ◦ σ · fgνdν ◦ σ =

∑
a∈S

∫
σ[a]

(ϕ ◦ σ · fgν) (ax)dν(x)

=
∑
a∈S

∫
χσ[a](x)ϕ ◦ σ(ax)f(ax)gν(ax)dν(x)

=

∫
ϕ(x)

∑
a∈S

χσ[a](x)gν(ax)f(ax)dν(x) =

∫
ϕ(x)

(∑
σy=x

gν(y)f(y)

)
dν(x)
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and we conclude via item 1 of the previous proposition that, for a CMS,

T̂ f(x) =
∑
σy=x

gν(y)f(y) ν − a.e. (1.8)

Inspired by this computation, we shall define Ruelle’s operator.

Definition 6. Let φ : Σ→ R, we define the Ruelle’s operator Lφ associated to φ by

Lφf(x)
.
=
∑
σy=x

eφ(y)f(y). (1.9)

We have, thus, proved the following lemma.

Lemma 3. Suppose that ν ∼ ν ◦ σ, then

T̂ f = Llog gνf. (1.10)

At this point we define the notion of conservative measure and prove a criterion relating
the conservativity of a conformal measure to a series involving partition functions.

Definition 7. Let (Ω,B, µ) be a σ-finite measure space and T : Ω→ Ω be a measurable non-
singular map. We say that a measurable set W ∈ B is wandering if the family {T−nW}n∈N0

is composed of pairwise disjoint subsets.

Remark 2. If W ∈ B is a wandering set, then∑
n≥0

χW ◦ T n(x) ≤ 1

for all x ∈ Ω.

Definition 8. We say that T is conservative or that µ is conservative if for every wandering
subset W ∈ B, we have that either µ(W ) = 0 or that µ(W c) = 0.

Theorem 1. T is conservative iff for all E ∈ B such that µ(E) > 0, a.e. x ∈ E is recurrent,
i.e.,

#{n ∈ N : T nx ∈ E} =∞.
Using this theorem by Halmos, it is possible to establish a criterion to check for the

conservativy of a measure by studying its transfer operator.

Proposition 3. Let T be a non-singular map on a σ-finite measure space (Ω,B, µ).

1. If there exists a non-negative function f ∈ L1, such that

µ

({
x ∈ Ω :

∞∑
n=1

T̂ nf(x) <∞

})
= 0,

then T is conservative.

2. If there exists a strictly positive function f ∈ L1, such that

µ

({
x ∈ Ω :

∞∑
n=1

T̂ nf(x) <∞

})
> 0,

then T is not conservative.
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Let us apply this general results to the context of topological Markov shifts to establish
a connection between conservativity of a conformal measure and partition functions.

Definition 9. Let s ∈ S be a symbol, n ∈ N and φ : Σ → R be a potential. We define the
n-th partition function of φ at s by

Zn(φ, [s]) =
∑
σny=y
y0=s

eφn(y). (1.11)

We note that there exists Ns ∈ N such that Zn(φ, [s]) > 0 for n ≥ Ns in case A is
topologically mixing, which is the case we shall always be dealing with in this work. It
is here that the extra properties demanded upon potentials will show their importance in
establishing neat bounds for partition functions. Let us begin by proving that in case φ is
Walter’s, then for any s, t ∈ S

∞∑
n=1

λ−nZn(φ, [s]) =∞ ⇐⇒
∞∑
n=1

λ−nZn(φ, [t]) =∞.

Since we suppose A transitive, there exist finite words ω and ω̃ such that sωt and tω̃s are
admissible. These words allow us to define an injection

ϑ : {y ∈ Σ : y0 = s, T ny = y} → {y ∈ Σ : y0 = t, T n+ky = y},

where k = |ω|+ |ω̃|+ 2 in following manner

y 7→ tω̃y[0, n)sω,

where y[0, n) = y0y1...yn−1 and the overline means that it is repetition of this sequence of
symbols.

The matter now becomes estimating, for y ∈ {y ∈ Σ : y0 = s, T ny = y},

|φn+k(ϑ(y))− φn(y)|.

It turns out that if the potential is Walter’s and sup|φ|([s]) <∞ for all s ∈ S, it is possible
to extract a bound that does not depend on n. Indeed,

|φn+k(ϑ(y))− φn(y)| = |φn+k(sωtω̃y[0, n))− φn(y)|
≤ |φk(sωtω̃y[0, n))|+ |φn(y[0, n)sωtω̃ − φn(y))|
≤ sup|φk|([sωtω̃]) + sup

n∈N
Varn+1φn = C(s, t) <∞.

We conclude that,
Zn(φ, [s]) ≤ eC(s,t)Zn+k(φ, [t]).

Since the symbols s, t are arbitrary, we immediately get a similar inequality on the other
side and we conclude that

∞∑
n=1

λ−nZn(φ, [s]) =∞ ⇐⇒
∞∑
n=1

λ−nZn(φ, [t]) =∞.

Having established this fact and this sort of strategy on extracting bounds of partition
functions, we are in position to prove a criterion on the conservativity of a conformal measure.
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Theorem 2. Let ν be a non-singular measure on Σ which is finite on cyllinders and such
that dν

d(ν◦σ)
= λ−1eφ. If φ is Walter’s, then ν is conservative if, and only if,

∞∑
n=1

λ−nZn(φ, [s]) =∞

for all s ∈ S.

Proof. The proof of this theorem is more or less a direct application of the criterion from
the previous proposition applied to the function f = χ[s], the characteristic function of the
cyllinder [s]. Let us first note that, by hypothesis,

T̂ f(x) = Llog gνf(x) =
∑
σy=x

λ−1eφ(y)f(y),

which implies by induction that

T̂ nf(x) = λ−n
∑
σny=x

eφn(y)f(y)

for any n ∈ N and non-negative measurable function. In particular,

T̂ nχ[s](x) = λ−n
∑
σny=x

eφn(y)χ[s](y) = λ−n
∑
σny=x
y0=s

eφn(y). (1.12)

We shall now establish a fine bound, much like we did before, relating T̂ nχ[s](x) and λ−nZn(φ, [s]).
Since A is transitive, there exists a word ω̃ such that x0ω̃s is admissible. Hence, we can con-
struct an injection ϑ : σ−nx ∩ [s]→ {y ∈ Σ : T n+|ω̃|+1y = y, y0 = s} via

y = sω1...ωn−1x 7→ sω1...ωn−1x0ω̃

and in the exact same fashion as before we get that

|φn+|ω̃|+1(ϑ(y))− φn(y)| < C(s, x0) <∞

which implies that

T̂ nχ[s](x) ≤
[
λ|ω̃|+1eC(s,x0)

]
λ−n−|ω̃|−1Zn+|ω̃|+1(φ, [s]).

On the other hand, there exists a ω = ω1...ωk−1 such that sωx0 is admissible and we get an
injection ϑ′ : {y ∈ Σ : T n−ky = y, y0 = s} → σ−ny ∩ [s] via

y 7→ y[0, n− k)sωx

which implies that [
λ−keC

′(x0,s)
]
λ−(n−k)Zn−k(φ, s) ≤ T̂ nχ[s](x).

Therefore,

∞∑
n=1

T nχ[s](x) =∞ ⇐⇒
∞∑
n=1

λ−nZn(φ, [s]) =∞
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and we have thus proved the "if" part of the statement.
Let us now prove the "only if" part. Suppose that

∑
n≥1 λ

−nZn(φ, [s]) <∞, then by the
computation before the theorem this is the case for all symbols t ∈ S. Therefore,

χ[t](x)
∞∑
n=1

T̂ nχ[s](x) = C(s, t) <∞.

Fix t̃ ∈ S such that ν([t̃]) 6= 0. We recall that by hypothesis the measure ν is finite on
cyllinders. All that is left now is choosing a sequence {εs}s∈S such that∑

s∈S

εsC(s, t̃) <∞ and
∑
s∈S

εsν([s]) <∞.

A straightforward computation shows that f .
=
∑

s∈S is a strictly positive and integrable
function such that ∑

s∈S

T̂ nf(x) <∞

on [t̃] and we conclude by the previous proposition.

Let us finish this section by stating a theorem dealing with the existence of conformal
measures on non-compact shifts for Walter’s potential. Since the proof is very long, we omit
it and refer to the Lecture Notes by Sarig.

Theorem 3. Suppose φ : Σ → R satisfies Walter’s property, then φ has a conservative
conformal measure on Σ that is finite on cyllinders if, and only if, for some s ∈ S

1. log λ
.
= lim supn→∞

1
n

logZn(φ, [s]) <∞;

2.
∑∞

n=1 λ
−nZn(φ, [s]) =∞.

Remark 3. We call the quantity λ present in the theorem the Gurevich pressure of φ and
denote it by Pg(φ). The sort of computation we did in the previous subsection proves that
Pg(φ) does not depend on the symbol s if φ is Walters so this notation is justified.

1.2 Very brief remarks on C*-Algebras
In this very brief section, we simply state the result that is important to define the local

compactification of a non-local countable Markov shift that is the fact that the spectrum of a
C*-algebra is locally compact (it is compact if the C*-algebra is unital). To those interested
in the details of the matter, we recommend the third section of chapter 1 of [MUR90] and
to those interested in a more abstract approach to the construction of the C*-algebras that
we will deal with in the next chapter we recommend [EL99] and [RAS20].

Definition 10. Let A be a complete normed complex algebra with an adjoint operation
·∗ : A→ A, i.e., an application satisfying

1. (a∗)∗ = a for all a ∈ A;

2. (λa)∗ = λa∗ for all a ∈ A and λ ∈ C;

3. (a+ b)∗ = a∗ + b∗ for all a, b ∈ A;
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4. (ab)∗ = b∗a∗.

We say that A is a C*-algebra if

‖a‖2 = ‖a∗a‖

for all a ∈ A.

Let H be a Hilbert space, the typical example of a C*-algebra is a closed subset of
the set of continuous operators on H which we denote by B(H) with the usual supremum
norm. Furthermore, in case A is a C*-algebra without an unity there exists an unique way
to unitize it while keeping it a C*-algebra. Finally, since we are not really interested in the
theory of C*-algebras in this work, let us skip ahead to definition of character and that of
the spectrum of a commutative C*-algebra.

Definition 11. Let A be a commutative C*-algebra. We say that a non-zero continuous
linear application ϕ : A→ C is a character if

1. it is compatible with the adjoint operation, i.e., ϕ(a∗) = ϕ(a) for all a ∈ A;

2. it is an algebra homomorphism, i.e., ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A.

We denote the set of characters of A by Ω(A) and refer to it as the spectrum of A.

In case A is unital, it turns out that every character has norm 1 and that endowed with
the usual weak-* topology the set Ω(A) becomes a compact Hausdorff space. In the case
where A is not unital, it is instead a locally compact Hausdorff space where any set of the
form

K(a, α) = {ϕ ∈ Ω(A) : |ϕ(a)| ≥ α}

is compact, where a ∈ A and α > 0. Furthermore, the spectrum of Ã, the unitization of A,
is the usual one-point compactification of the spectrum of Ω(A). Finally, a subset U ∈ Ω(A)
is dense if, and only if, it separates the points of A.



Chapter 2

Generalized Countable Markov Shifts

We shall not, conceptually at least, dive in depth on the matter, those interested may
consult work by T.Raszeja [RAS20] or R.Exel and M.Laca [EL99], but it is important to
give a thorough operational description of the local compactifications of countable Markov
shifts that arise from the study of the spectrum of specific commutative sub-C∗-algebras of
the so-called Exel-Laca algebras.

2.1 An Interesting Commutative Operator Algebra
Given a topologically mixing countable Markov shift, let H = l2(ΣA) denote the Hilbert

space of square-summable sequences indexed by ΣA. We begin by defining a family of con-
tinuous operators on H that somewhat captures the structure of ΣA. Let s ∈ S, we define
Ts ∈ B(H) by

Ts(ex) = A(s, x0)esx, (2.1)

where {ex}x∈ΣA denotes the canonical basis of H. A very straightforward computation yields
us

T ∗s (ex) = χ[s](x)eσ(x). (2.2)

Given a finite word ω ∈ Sk, we write

Tω
.
= Tω0Tω1 ...Tωk−1

and note that Tω 6= 0 if, and only if, ω is admissible. In general, we have that

Tω(ex) =

[
k−2∏
l=0

A(ωi, ωi+1)

]
A(ωk−1, x0)eωx (2.3)

In a similar manner, we obtain that

T ∗ω(ex) = χ[ω](x)eσk(x) (2.4)

We may define two families of projections {Ps}s∈S and {Qs}s∈S using the family of operators
{Ts}s∈S in the following manner:

Ps(ex)
.
= TsT

∗
s (ex) = χ[s](x)ex (2.5)

11
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and

Qs(ex)
.
= T ∗s Ts(ex) = A(s, x0)ex (2.6)

We note that PsPs′ = 0 if s 6= s′ and that QsQs′ = Qs′Qs for all pairs (s, s′) ∈ S × S.
Let (i, j) ∈ S×S, we are interested in computing QiTj for reasons that will become clear

in a couple of paragraphs. Let x ∈ ΣA, we have that

QiTj(ex) = A(i, j)A(j, x0)ejx

We conclude that

QiTj = A(i, j)Tj (2.7)

and by adjunction

T ∗j Qi = A(i, j)T ∗j .

Let ω ∈ Sk and ω̃ ∈ S k̃ be admissible words, we are also interested in computing T ∗ωTω̃.
In order to so, we are going to divide the computation in three cases.
Case 1: k > k̃. Let x ∈ ΣA, then

T ∗ωTω̃(ex) =

{
eσk(ω̃x), if A(ω̃k̃−1, x0) = 1 and ω̃x ∈ [ω]

0, otherwise.

Since k > k̃, if ω̃x ∈ [ω], then ω̃ is a subword of ω, i.e., there exists an admissible word
α ∈ Sk−k̃ such that ω = ω̃α. In this case, ω̃x ∈ [ω] iff x ∈ [α]. Finally, we note that the fact
that ω is admissible implies that if x ∈ [α], then

A(ω̃k̃−1, x0) = A(ω̃k̃−1, α0) = 1.

On the other hand, σk(ω̃x) = σk−k̃(x), therefore

T ∗ωTω̃(ex) =

{
eσk−k̃(x), if ω = ω̃α and x ∈ [α]

0, otherwise.

We conclude that

T ∗ωTω̃ =

{
T ∗α, if ω = ω̃α,

0, otherwise.
(2.8)

Case 2: k = k̃. We proceed as in the previous case. We get that ω̃x ∈ [ω] iff ω̃ = ω and
therefore

T ∗ωTω̃(ex) =

{
ex, if ω = ω̃ and A(ωk−1, x0) = 1

0, otherwise.
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We conclude that

T ∗ωTω̃ =

{
Qωk−1

, if ω = ω̃,

0, otherwise.
(2.9)

Case 3: k < k̃. Let x ∈ ΣA, then

T ∗ωTω̃(ex) =

{
eσk(ω̃x), if A(ω̃k̃−1, x0) = 1 and ω̃x ∈ [ω]

0, otherwise.

Since k < k̃, ω̃x ∈ [ω] iff ω is a subword of ω̃, i.e., there exists an admissible word α ∈ S k̃−k
such that ω̃ = ωα. In this case,

A(ω̃k̃−1, x0) = A(αk̃−k−1, x0).

On the other hand, σk(ω̃x) = αx, therefore

T ∗ωTω̃(ex) =

{
eαx, if ω̃ = ωα and A(αk̃−k−1, x0) = 1

0, otherwise.

We conclude that

T ∗ωTω̃ =

{
Tα, if ω̃ = ωα,

0, otherwise.
(2.10)

Let us write these results in the form of a lemma.

Lemma 4. Let ω ∈ Sk and ω̃ ∈ S k̃ be admissible words, then

1. if k > k̃, then T ∗ωTω̃ =

{
T ∗α, if ω = ω̃α,

0, otherwise.

2. if k = k̃, then T ∗ωTω̃ =

{
Qωk−1

, if ω = ω̃,

0, otherwise.

3. if k < k̃, then T ∗ωTω̃ =

{
Tα, if ω̃ = ωα,

0, otherwise.

We shall now define a commutative and separable sub-algebra of B(H), which we shall
denote by DA, and whose closure we shall denote by DA. We shall denote the empty word,
i.e., the admissible (by vacuity) word of length zero by e. Let

A .
= {(α, F ) : α is a finite admissible word, F ⊂ P(S) finite; α 6= e or F 6= ∅},

where P(S) denotes the power set of S. It is evident that A is countable and for each
(α, F ) ∈ A, we shall define

e(α, F )
.
= Tα

(∏
i∈F

Qi

)
T ∗α, (2.11)
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with the convention that e(e, F )
.
=
∏

i∈F Qi and e(α, ∅)
.
= TαT

∗
α, and define

DA = span{e(α, F ) : (α, F ) ∈ A} (2.12)

and its closure on B(H) by DA. We note that for all x ∈ ΣA, we have that

e(α, F )ex =

[∏
i∈F

A(i, x|α|)

]
χ[α](x)ex

which implies that e(α, F )e(β,G) = e(β,G)e(α, F ) for all (α, F ), (β,G) ∈ A. Therefore DA
defines a commutative algebra.

We note that DA with the usual operator norm is then a C∗-algebra composed of diagonal
operators which may, or may not, be unital. In fact, DA has an unit if, and only if there is
a finite number of symbols which cover the whole of S, i.e., there is F ⊂ S finite such that
for all t ∈ S, we have that A(s, t) = 1 for some s ∈ F .

2.2 Stems and Roots
We are finally in position to give a description of a locally compact extension of countable

Markov shifts which we shall call Generalized Countable Markov Shifts (GCMS). We recall
the definition of character.

Definition 12. A non-zero continuous linear functional ϕ : DA → C is called a character if

ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ DA.

Definition 13. We define the GCMS associated to the matrix A ∈ {0, 1}S×S by

XA
.
= Ω(DA) = {ϕ : DA → C : ϕ is a character} (2.13)

endowed with its usual weak-∗ topology, i.e., XA is the spectrum of DA.

It follows from the theory of C∗-algebras thatXA is locally compact and that it is compact
if, and only if, DA is unital. Let us now show that there is a natural continuous injection of
ΣA onto XA whose image is dense in XA.

Proposition 4. There is a continuous injection of the usual CMS ΣA onto XA whose image
is dense.

Proof. Given x ∈ ΣA, we define ϕx : DA → C by

ϕx(a) = 〈a(ex), ex〉l2(ΣA), (2.14)

it is straightforward to see that ϕx ∈ XA, i.e., that it defines a character on DA.
Let us now show that the mapping x 7→ ϕx is continuous. It is sufficient to show that if

(α, F ) ∈ A and {xn}n∈N ⊂ ΣA is a sequence converging to x ∈ ΣA that

lim
n→∞

ϕxn(e(α, F )) = ϕx(e(α, F )) =

{
1, if x ∈ [α] and A(i, x|α|) = 1 ∀i ∈ F,
0, otherwise.
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We note that xn n→∞−−−→ x iff for all k ∈ N, there is N(k) ∈ N such that n ≥ N(k) implies
that

xn[0, k)
.
= ωn0ω

n
1 ...ω

n
k−1 = ω0ω1...ωk−1 = x[0, k).

It is straightforward to see that if n ≥ N(|α| + 1), then ϕxn(e(α, F )) = ϕx(e(α, F )) which
proves the continuity of the application.

Let x, x̃ ∈ ΣA satisfy x 6= x̃, there exists k ∈ N such that xk 6= x̃k. It follows that

ϕx(e(x[0, k + 1), ∅)) = 1 6= 0 = ϕx̃(e(x[0, k + 1), ∅))

which proves the injectivity of the application.
Let us now show that {ϕx : x ∈ ΣA} is dense in XA. As discussed in the introduction,

it is sufficient to show that {ϕx : x ∈ ΣA} separates the points of DA, or similarly that
if ϕx(a) = 0 for all x ∈ ΣA, then a = 0. We note that if ϕx(a) = 0, then aex = 0 since
all operators in DA are diagonal. Suppose now that a ∈ DA is such that ϕx(a) = 0 for all
x ∈ ΣA, then, by the previous observation, we have that aex = 0 for all x ∈ ΣA, which is
equivalent to a = 0 and we conclude the proof of the proposition.

Let us begin by characterizing what are the sequences {xn}n∈N ⊂ ΣA for which we get
no new points, i.e., the sequences {ϕxn}n∈N for which the only accumulation points are of
the form ϕx for some x ∈ ΣA.

Proposition 5. Let {xn}n∈N ⊂ ΣA be a sequence such that

#{xnk : n ∈ N} <∞

for all k ∈ N0. Then, every accumulation point of {ϕxn}n∈N is of the form ϕx for some
x ∈ ΣA.

Remark 4. We already know that a sequence of this form always has a converging subse-
quence in an usual CMS.

Proof. Let Il
.
= {xnl : n ∈ N} for l ≥ 0, then∑

α0∈I0

∑
α1∈I1

...
∑
αl∈Il

χ[α0α1...αl](x
n) = 1

for all l ≥ 0 and n ∈ N.
Now let ϕ̃ be an accumulation point of {ϕn}n∈N, then there exists a subsequence {ϕnk}k∈N

such that ϕnk
∗
⇀ ϕ̃. In particular, for all α0α1...αl ∈ I0× I1× ...× Il and l ≥ 0, we have that

lim
k→∞

ϕxnk (e(α0α1...αl, ∅))

exists. The computation above shows that for all l ≥ 0, we have that

ϕ̃
(
e
(
αl0α

l
1...α

l
l, ∅
))

= lim
k→∞

ϕxnk
(
e
(
αl0α

l
1...α

l
l, ∅
))

= 1

for some αl0αl1...αll ∈ I0 × I1 × ...× Il.
Let us consider the sequence {xnk0 }k∈N, since ϕ̃(e(α0

0, ∅)) = 1, there exists K0 ∈ N such
that xnk0 = α0

0 for k ≥ K0. Proceeding inductively in this manner we get that if l < l′, then

αl
′

0α
l′

1 ...α
l′

l = αl0α
l
1...α

l
l
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and that limk→∞ x
nk
l = αll. By construction we have that A

(
αll, α

l+1
l+1

)
= 1 for all l ≥ 0 and

therefore

lim
k→∞

xnk = α0
0α

1
1...α

l
l... ∈ ΣA.

By continuity of x 7→ ϕx, we conclude that {ϕxnk}k∈N converges weakly to ϕx, where x =
α0

0α
1
1...α

l
l....

Corollary 1. If ΣA is locally compact, then XA = ΣA.

Proof. If ΣA is locally compact, then every sequence in ΣA satisfies the hypothesis of the
previous proposition and we conclude by the density of {ϕx : x ∈ ΣA} in XA.

We have shown that if #{xnk : n ∈ N} < ∞ for all k ∈ N0, then every accumulation
point of {ϕxn}n∈N is of the form ϕx for some x ∈ ΣA. We are now, therefore, interested in
studying sequences {xn}n∈N for which there is k ∈ N0 such that #{xnk : n ∈ N} = ∞. Note
that if

k′
.
= inf{k ∈ N0 : #{xnk : n ∈ N} =∞} > 0,

by arguing in the same manner as in this section, we are dealing essentially with the case
xn = ωyn where ω ∈ Sk′ is an admissible word, which is the case that we deal next.
Furthermore, we may suppose by taking subsequences that no symbol s ∈ S appears an
infinite amount of times on the sequence {xnk′}n∈N. Finally, we leave for a future subsubsection
the case k′ = 0 with no symbol s ∈ S appearing an infinite amount of times on the sequence
{xn0}n∈N.

2.2.1 Finite Words

Let us now describe most of the extra points that appear in case ΣA is not locally
compact, which for reason that should become clear below we will name finite words. We
will denote the set of finite words of XA by FA.

Definition 14. Let s ∈ S, we define the range of s by

r(s)
.
= {t ∈ S : A(s, t) = 1} (2.15)

and the source of s by

s(s)
.
= {r ∈ S : A(r, s) = 1}. (2.16)

In a similar manner, given F ⊂ S, we write

r(F )
.
= {t ∈ S : A(s, t) = 1, ∀s ∈ F} =

⋂
s∈F

r(s)

and, given J ⊂ S, we write

s(J)
.
= {r ∈ S : A(r, s) = 1, ∀s ∈ J} =

⋂
s∈J

s(s).

Definition 15. We say that s ∈ S is an infinite emitter if

#r(s) =∞.
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We call a finite admissible word ω ∈ Sn a finite stem if ωn−1 is an infinite emitter.

Let us consider a sequence of elements of ΣA of the form xn = ωjny
n, where ω is a finite

stem and such that no symbol s ∈ S appears an infinite number of times in {jn}n∈N. Since
ϕxn(e(ω, ∅)) = 1 for all n ∈ N, it follows that {ϕxn}n∈N is relatively compact in XA. Hence,
there exists a sequence {nk}k∈N and ϕ̃ ∈ XA such that ϕxnk

∗
⇀ ϕ̃ which is a nontrivial

character.
We begin by computing ϕ̃(e(α, F )) in the case α 6= ω. We have that

ϕxn(e(α, F )) =

[∏
i∈F

A
(
i, xn|α|

)]
χ[α](x

n). (2.17)

Let us first analyze the χ[α](x
n) part. Since no symbol s ∈ S appears an infinite amount

of times in {jn}n∈N, we have that n 7→ χ[α](x
n) is eventually constant and equal to zero if

|α| > |ω|. On the other hand, if |α| < |ω|, then the sequence n 7→ χ[α](x
n) is constant and

the same is true for the sequence n 7→ xn|α|. Finally, if |α| = |ω| and α 6= ω, then χ[α](x
n) = 0

for all n ∈ N. So far we have obtained that

ϕ̃(e(α, F )) =

{
1, if αγ = ω s.t. γ 6= e and A(i, ω|α|) = 1 ∀i ∈ F,
0, otherwise.

Nothing interesting has come up so far. Let us now treat the case α = ω, here we have that

ϕxn(e(α, F )) =

[∏
i∈F

A
(
i, xn|α|

)]
χ[α](x

n) =
∏
i∈F

A(i, jn),

we now need to restrict ourselves to the converging subsequence {ϕnk}k∈N. Due to conver-
gence we get that either of the following is true:

1. there exists K(F ) ∈ N such that jnk ∈ r(F ) for all k ≥ K(F ), in which case
ϕ̃(e(ω, F )) = 1;

2. or there exists K(F ) ∈ N such that jnk /∈ r(F ) for all k ≥ K(F ), in which case
ϕ̃(e(ω, F )) = 0.

This motivates us to define what we shall refer to as a root in the following way

R .
= {F ⊂ S : F is finite and ∃K(F ) ∈ N : jnk ∈ r(F ) for k ≥ K(F )}. (2.18)

It is evident that R 6= ∅ since {ω|ω|−1} ∈ R. We conclude that:

ϕ̃(e(α, F )) =


1, if α = ω and F ∈ R,
1, if αγ = ω s.t. γ 6= e and A(i, ω|α|) = 1 ∀i ∈ F,
0, otherwise.

(2.19)

It is also evident that ϕ̃ 6= ϕx for any x ∈ ΣA since

ϕ̃(e(x[0, |ω|+ 1), ∅)) = 0 6= 1 = ϕx(e(x[0, |ω|+ 1), ∅)),

so it describes a "new" point that somewhat behaves as the finite word ω.

Remark 5. There are no finite words ending in finite emitters.
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2.2.2 Roots

The calculations in the previous subsubsection also prove that if s ∈ S is an infinite
emitter and J ⊂ r(s) is such that #J = ∞, then there exists an infinite J̃ ⊂ J such that
either of the following is true for any finite F ⊂ S:

1. there exists GF ⊂ J̃ finite such that J̃ \GF ⊂ r(F ),

2. there exists GF ⊂ J̃ finite such that (J̃ \GF ) ∩ r(F ) = ∅.

Definition 16. Let s ∈ S be an infinite emitter and J ⊂ S be an infinite set of symbols
such that #J \ r(s) <∞ and such that for any finite F ⊂ S, there exists GF ⊂ J finite such
that either J \ GF ⊂ r(F ) or (J \ GF ) ∩ r(F ) = ∅. We say that J is compatible with a root
and we define the root associated to J by

RJ
.
= {F ⊂ S : F is finite and ∃GF ⊂ J finite s.t. J \GF ⊂ r(F )}. (2.20)

Remark 6. Note that if F ∈ R, where R is a root, then all subsets F ′ ⊂ F are also elements
of R. In particular, if s ∈ F , then {s} ∈ R.

Without further inspection of the specific matrix A, it is not at all evident how many such
roots exist. They are in fact in a one-to-one correspondence with the acumulation points of
the sources of symbols in S. Let us make this statement clear.

Given a symbol s ∈ S, we define the vector of its sources S(s) ∈ {0, 1}S by

S(s)(i) =

{
1, if i ∈ s(s),

0, otherwise,
(2.21)

where we endow {0, 1}S with its usual topology. What are then the acumulation points of
the set S(S) in {0, 1}S? First, note that there is a non-zero accumulation point of S(S) iff
there is an infinite emitting symbol, i.e., iff ΣA is not locally compact. Indeed, if there are
no infinite emitters, then

#{S(s)(i) = 1 : s ∈ S} = #r(i) <∞

for all i ∈ S, i.e., 0 is the only accumulation point of {S(s)(i) : s ∈ S} ⊂ {0, 1} for all i ∈ S
which implies that 0 is the only accumulation point of S(S). On the other hand, suppose
s̃ ∈ S is an infinite emitter, then

∞ = #S(r(s̃)) = #{S(s) : s ∈ r(s̃)}

and S(s)(s̃) = 1 for all s ∈ S(r(s̃)). Since {0, 1}S is compact, there is an accumulation point
S(∞) of S(r(s̃)) and it is evident that S(∞) 6= 0 since S(∞)(s̃) = 1.

Remark 7. Note that S(∞)(s) = 1 for some accumulation point S(∞) of S(S) if, and only
if, s ∈ S is an infinite emitter.

Now, let S(∞) be a non-zero accumulation point of S(S), then there exists an injective
sequence {jk}k∈N ⊂ S such that

S(∞) = lim
k→∞

S(jk).
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Define G .
= {s ∈ S : S(s) = 1} and J .

= {jk : k ∈ N}. Let F ⊂ G be a finite subset of S,
then

#{j ∈ J : j /∈ r(F )} = #{k ∈ N : S(jk)(s) = 0 for some s ∈ F}

≤
∑
s∈F

#{k ∈ N : S(jk)(s) = 0} <∞.

On the other hand, suppose F ⊂ S be a finite subset such that S(s) = 0 for some s ∈ F ,
then

#{j ∈ J : j ∈ r(F )} ≤ #{j ∈ J : S(j)(s) = 1} <∞.

We have thus proved that J is compatible with a root and that the root it is compatible
with is given by

RJ = {F ⊂ S : F is finite and F ⊂ G} = {F ⊂ S : F is finite and S(∞)(s) = 1 ∀s ∈ F}.
(2.22)

Let us prove the converse, suppose that J ⊂ S is an infinite set of symbols such that
#J \ r(s) < ∞, for some infinite emitter s ∈ S, and such that for any finite F ⊂ S, there
exists GF ⊂ J finite such that either J \ GF ⊂ r(F ) or (J \ GF ) ∩ r(F ) = ∅. Enumerate
J = {jn}n∈N, let us show that limn→∞ S(jn) = S(∞J) exists and that

S(∞J)(s) =

{
1, if #J \ r(s) <∞,
0, if #J ∩ r(s) <∞.

(2.23)

Since {0, 1}S is compact, it is sufficient to show that S(∞J) is the only accumulation of
S(J). Note that this is a consequence of the following two observations

#{n ∈ N : S(jn)(s) = 1} <∞

if {s} /∈ RJ and

#{n ∈ N : S(jn)(s) = 0} <∞

if {s} ∈ RJ . Hence, 0 is the only accumulation point of {S(jn)(s) : n ∈ N} if {s} /∈ RJ and
similarly 1 is the only accumulation point of {S(jn)(s) : n ∈ N} if {s} ∈ RJ . We have thus
proved the following theorem.

Theorem 4. A collection of finite sets of symbols R is a root if, and only if, there is a
non-zero accumulation point S(∞) of S(S) such that

R = {F ⊂ S : F is finite and S(∞)(s) = 1 ∀s ∈ F}. (2.24)

Corollary 2. Let R be a root. Then, J is compatible with R if, and only if,

lim
j∈J

s(j) =
⋃
F∈R

F
.
= R. (2.25)

The set of roots also does something similar to partitioning the set of symbols S in the
following sense: let R and R′ be distinct roots associated respectively to the infinite subsets
of symbols J and J ′, which we naturally suppose are compatible with roots. Since R 6= R′,
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we may suppose that there exists s ∈ S such that {s} ∈ R \ R′, in which case we have by
definition that

#J \ r(s) <∞ and #J ′ ∩ r(s) <∞.

Therefore, there exists two finite, maybe empty, subsets of symbols G and G′ such that

J ⊂ r(s) ∪G and (J ′ \G′) ∩ r(s) = ∅.

Hence,

J ∩ J ′ ⊂ (r(s) ∪G) ∩ J ′ = (r(s) ∩ J ′) ∪ (G ∩ J ′) ⊂ G′ ∪G.

Therefore,

#J ∩ J ′ <∞.

So J and J ′ are essentially disjoint sets.

Proposition 6. Suppose there are two distinct roots R and R′ associated respectively to the
infinite subsets of symbols J and J ′. Then,

#J ∩ J ′ <∞. (2.26)

Corollary 3. Let R be a countable family of roots, then there exists J = {JR : R ∈ R}
such that JR is compatible with R for all R ∈ R and such that JR ∩ JR′ 6= ∅ if, and only if,
R = R′.

Proof. We begin by enumerating R and for each Rn we take J ′n compatible with Rn. For
n = 1, we put

JR1 = J ′1

and, for n > 1, we put

JRn = J ′n \
n−1⋃
k=1

JRk .

This is sufficient since

#J ′n ∩

(
n−1⋃
k=1

JRk

)
≤

n−1∑
k=1

#J ′n ∩ JRk <∞

due to the previous proposition.

Let us finish this subsection analyzing the matter of convergence of roots.

Proposition 7. Suppose that {Rn}n∈N is a sequence of roots such that limn→∞Rn exists.
Then,

R .
= lim

n→∞
Rn
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is a root if it is not equal to the empty set. Furthermore, for each n ∈ N, let S(∞n) be the
accumulation point of S(S) associated to the root Rn. Then,

lim
n→∞

S(∞n) = S(∞)

exists, is not equal to 0 and R is the root associated to S(∞). The converse is also true.

Proof. Let {Rn}n∈N be a sequence of roots and suppose that its limit exists. We note that,
by the definition of limit of a sequence of sets, for s ∈ S, we have either that {s} ∈ Rn for
all n ≥ Ns or that {s} /∈ Rn for all n ≥ Ns, for some NF ∈ N. Then, we have that

lim
n→∞

S(∞n)(s) =

{
1, if {s} ∈ R,
0, if {s} /∈ R,

exists for all s ∈ S since {s} ∈ Rn iff S(∞n) = 1 and {s} /∈ Rn iff S(∞n) = 0. Due to the
compactness of {0, 1}S , we have that limn→∞ S(∞n) = S(∞) exists and is an accumulation
point of S(S). It is evident that R is associated to S(∞) and it is, therefore, a root. The
proof of the converse is identical.

2.2.3 Compatibility between roots and finite stems

We have seen previously how a sequence of infinite words converges towards a finite word,
we also saw that this finite stem is not sufficient to describe this limit point and we have
therefore introduced the notion of root. On the other hand, we have not explored in depth
the relation between finite stems and roots, this is precisely the topic of this subsubsection.

Given a finite stem ω ending in s̃ ∈ S, which is an infinite emitter by definition, we are
interested in determining what are the roots R (or equivalently, the accumulation points of
sources) for which ϕω,R ∈ XA, where

ϕω,R(e(α, F )) =


1, if α = ω and F ∈ R or F = ∅,
1, if αγ = ω s.t. γ 6= e and A(i, ω|α|) = 1 ∀i ∈ F,
0, otherwise.

for all (α, F ) ∈ A.

Theorem 5. Let ω be an finite stem ending in s̃ ∈ S and R be a root, then ϕω,R ∈ XA if, and
only if, R = R(S(∞)) for some accumulation point S(∞) of S(S) such that S(∞)(s̃) = 1,
where

R(S(∞)) = {F ⊂ S : F is finite and S(∞)(s) = 1 ∀s ∈ F}. (2.27)

Proof. Suppose ϕω,R ∈ XA, then there exists a sequence {xn}n∈N ⊂ ΣA such that ϕxn
converges weakly to ϕω,R such that n 7→ xn|ω| is injective. It is easy to see that there exists
N ∈ N such that

xn[0, |ω|) = ω

for n ≥ N since

lim
n→∞

ϕxn(e(ω, ∅)) = ϕω,R(e(ω, ∅)) = 1.
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In particular, xn|ω|−1 = s̃ for n ≥ N .
We are going to show that {S(xn|ω|)}n∈N converges to S(∞), that S(s̃) = 1 and, finally,

that R = R(S(∞)). We recall that we can partition S in the following manner, either
{s} ∈ R or {s} /∈ R, in which case, F ∩ {s} = ∅ for all F ∈ R. Furthermore, we note that
this implies that F ∈ R iff F = {s1, ..., sm} where {si} ∈ R for all 1 ≤ i ≤ m.

Let s ∈ S be a symbol such that {s} /∈ R. Then, by hypothesis, we have that

0 = ϕω,R(e(ω, {s})) = lim
n→∞

ϕxn(e(ω, {s})) = lim
n→∞

A
(
s, xn|ω|

)
.

Therefore, 0 is the only accumulation point of {S(xn|ω|)(s)}n∈N, i.e., #{n ∈ N : S(xn|ω|)(s) =

1} < ∞. On the other hand, if s ∈ S is a symbol such that {s} ∈ R, then, once again by
hypothesis, we have that

1 = ϕω,R(e(ω, {s})) = lim
n→∞

ϕxn(e(ω, {s})) = lim
n→∞

A
(
s, xn|ω|

)
.

Therefore, #{n ∈ N : S(xn|ω|)(s) = 0} < ∞. Taking into consideration the observations of
the previous paragraph, we conclude that

lim
n→∞

S
(
xn|ω|
)

= S(∞)

exists and thatR = R(S(∞)). Finally, since xn|ω|−1 = s̃ for n ≥ N , we have that A(s̃, xn|ω|) = 1

for n ≥ N , therefore S(∞)(s̃) = 1.
Let us prove the converse. Let S(∞) be an accumulation point of S(S) such that

S(∞)(s̃) = 1, then there exists n 7→ jn ∈ S injective such that

lim
n→∞

S(jn) = S(∞)

and S(jn)(s̃) = 1 for all n ∈ N. Define {xn}n∈N ⊂ ΣA by

xn = ωjny
n.

Following the usual computations that we have done in this section, we obtain that

ϕxn
∗
⇀ ϕω,R(S(∞))

and the theorem is proved.

2.2.4 Empty words

So far we have shown that in case ΣA is not locally compact, there are elements of XA

that are not of the form ϕx for x ∈ ΣA and that we may describe such elements by what
we called stems and roots. Nonetheless, there is still one type of sequence {ϕxn}n∈N that we
have not yet discussed which gives rise to what we shall refer to as empty words, the case

k′
.
= inf{k ∈ N0 : #{xnk : n ∈ N} =∞} = 0

with no symbol s ∈ S appearing an infinite amount of times in {xn0}n∈N.
First, we note that, in this case,

lim
n→∞

ϕxn(e(α, F )) = 0
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if α 6= e. It is, therefore, sufficient to study the family of sequences {aFn }n∈N

aFn
.
=
∏
i∈F

A(i, xn0 ) = ϕxn(e(e, F )),

where ∅ 6= F ⊂ S is a finite subset of symbols, something very similar to what we have done
in studying roots.

If for some F̃ ⊂ S finite, we have that 1 is an accumulation point of {aF̃n }n∈N. Then, by a
similar procedure as in the previous subsubsection, we can find J = {xnk0 }k∈N ⊂ {xn0 : n ∈ N}
infinite such that for all F ⊂ S finite, we have that either #J ∩r(F ) <∞ or #J \r(F ) <∞.
In which case, we have that F̃ ∈ RJ and

lim
k→∞

ϕxnk = ϕe,RJ ,

where

ϕe,RJ (e(α, F )) =

{
1, if α = e and F ∈ RJ ,

0, otherwise.
(2.28)

On the other hand, let R be a root, then there exists S(∞) accumulation point of S(S) such
that

R = {F ⊂ S : F is finite and S(∞)(s) = 1 ∀s ∈ F}.

Choose an injective sequence {jn}n∈N of symbols such that S(∞) = limn→∞ S(jn) and a
sequence {xn}n∈N ⊂ ΣA such that xn0 = jn. It is straightforward to prove that

ϕxn
∗
⇀ ϕe,R.

The following proposition has been proved.

Proposition 8. The set EA ⊂ XA of empty words is in a one-to-one correspondence with
the set of roots.

Sometimes it can happen that the only accumulation point of {aFn }n∈N is 0 for all F ⊂ S
finite. Note that this happens if, and only if, 0 is an accumulation point of S(S). This is
precisely the case where XA is not compact and we have that {ϕxn}n∈N has no accumulation
point in XA.

2.2.5 Sequences of finite and empty words

We have seen how infinite words converge to finite words, let us now explore the opposite
phenomenon, i.e., how finite words converge to infinite words. Let x ∈ ΣA, it is important
to determine whether there is a sequence

FA 3 ϕωn,Rn
∗
⇀ ϕx.

It is necessary that

lim
n→∞

ϕωn,Rn (e (x[0, k), ∅)) = ϕx (e (x[0, k), ∅)) = 1
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for all k ∈ N. This is true if, and only if, for all k ∈ N, there is N(k) ∈ N such that if
n ≥ N(k), then

|ωn| ≥ k and ωn[0, k) = x[0, k).

We shall now show that this is sufficient. Note that this is always possible since A is transitive.

Proposition 9. Let {ϕωn,Rn}n∈R ⊂ FA be a sequence such that for all k ∈ N, there is
N(k) ∈ N such that if n ≥ N(k), then

|ωn| ≥ k and ωn[0, k) = x[0, k).

Then,

ϕωn,Rn
∗
⇀ ϕx.

Remark 8. This proposition shows that the root element of finite words disappears when
passing to infinite words as expected.

Proof. Let (α, F ) ∈ A and take n ≥ N(|α|), then

ϕx(e(α, F )) =
∏
i∈F

A
(
i, x|α|

)
χ[α](x) =

∏
i∈F

A
(
i, ωn|α|

)
χ[α](ω

n) = ϕωn,Rn(e(α, F ))

and we conclude.

Corollary 4. The set of finite words FA is dense in XA.

Let us now study how roots interact with each other when it comes to the convergence of
sequences, i.e., how they relate to the topology of XA. Let ϕω,R ∈ FA, we need to determine
what are the properties that a sequence {ϕωn,Rn}n∈R ⊂ FA must satisfy so that ϕωn,Rn

∗
⇀

ϕω,R.
Suppose that ϕωn,Rn

∗
⇀ ϕω,R. At first, note that

1 = ϕω,R (e(ω, ∅)) = lim
n→∞

ϕωn,Rn(e(ω, ∅)).

Therefore, there exists N ∈ N such that

ωn[0, |ω|) = ω

for n ≥ N . On the other hand, for all s ∈ S

0 = ϕωs,R (e(ω, ∅)) = lim
n→∞

ϕωn,Rn(e(ωs, ∅)).

Two scenarios are possible.
If there is an infinite amount on indexes for which |ωn| > |ω|, then no symbol s ∈ S

appears an infinite amount of times on the sequence {ωn|ω|}k∈N, where {nk : k ∈ N} is the set
of indexes for which |ωn| > |ω|. On the other hand, we have that {ϕωnk ,Rnk} also converges
weakly to ϕω,R . Hence, by the usual arguments exposed in this section, the set of symbols

J =
{
ωnk|ω| : k ∈ N

}
is compatible with the root R. The converse is also true, if {ϕωn,Rn}n∈N is such that
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1. |ωn| > |ω| for all n ∈ N,

2. ωn[0, |ω|) = ω for n ≥ N for some N ∈ N,

3. and J .
=
{
ωn|ω| : n ∈ N

}
compatible with R.

Then, ϕωn,Rn
∗
⇀ ϕω,R. The proof is more or less identical to how a sequence of elements of

ΣA converge to a finite word.
Suppose now that #{n ∈ N : |ωn| > |ω|} < ∞. Then, we have proved that ωn = ω for

n ≥ N for some N ∈ N. Take F ∈ R finite and nonempty, then

1 = ϕω,R(e(ω, F )) = lim
n→∞

ϕω,Rn(e(ω, F )),

i.e., F ∈ Rn for all n ≥ NF for some NF ∈ N or equivalently F ∈ lim infn→∞Rn. Similarly,
if F /∈ R finite and nonempty, then

0 = ϕω,R(e(ω, F )) = lim
n→∞

ϕω,Rn(e(ω, F )),

i.e., F /∈ R for any n ≥ NF for some NF ∈ N, or equivalently F /∈ lim supn→∞Rn. Note
that this implies that limn→∞Rn exists and that

R = lim
n→∞

Rn.

The converse is also true, and once again the proof is more or less identical to what we have
done before in detail: if {ϕωn,Rn}n∈N is such that

1. ωn = ω for n ≥ N for some n ∈ N,

2. and limn∈NRn = R.

Then, ϕωn,Rn
∗
⇀ ϕω,R. We conclude that a sequence of finite words converging to another

finite word would be of either one of those types described above or a mixture of both.
Sequences of finite words converging to empty words follow the same routine as sequences

of infinite words converging to empty words, where only the first symbol matters. More
precisely, if {ϕωn,Rn} converges weakly to ϕe,R, then no symbol appears an infinite amount
of times on the sequence {ωn0 }n∈N and J = {ωn0 : n ∈ N} is compatible with the root R. The
converse is also true.

Let us now take a quick look at sequences composed of empty words. It should be evident
by this point that the set of empty words EA is closed in XA since ϕe,R(e(s, ∅)) = 0 for any
s ∈ R and ϕe,R ∈ EA. Similarly to the case of finite words converging to finite words, a
sequence {ϕe,Rn}n∈N converges weakly to ϕe,R if, and only if, R = limn→∞Rn.

Corollary 5. The set of roots is separable in the sense that there exists a countable family
of roots R such that for all roots R we have that

R = lim
k→∞
Rn (2.29)

for some {Rn}n∈N ⊂ R.

Proof. Since there is a countable subset dense on XA (for example the set of all infinite
periodic words), there is a countable dense subset of EA. Let {ϕe,R : R ∈ R} be such a set,
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take ϕe,R∞ ∈ EA, there exists {Rn}n∈N ⊂ R such that

ϕe,Rn
∗
⇀ ϕe,R∞

and therefore

R∞ = lim
k→∞
Rn

and we conclude.

2.3 Continuous Functions
While the notation ϕω,R was convenient when proving results regarding the convergence

of sequences of elements of XA, it is in general more convenient to write ωR instead of ϕω,R.

Definition 17. Let ω ∈ Sk, for k ∈ N, be an admissible word, we define the generalized
cyllinder [ω] associated to ω by

[ω] = {x ∈ ΣA : x[0, k) = ω} t {αR ∈ FA : |α| ≥ k and α[0, k) = ω}. (2.30)

Due to the results proved in the previous subsection, we have that generalized cyllinders
are clopen and sequentially compact and, therefore, also compact in XA since XA is metriz-
able as it is the spectre of a commutative separable C∗-algebra. We should also note that

ΣA t FA =
⊔
s∈S

[s], (2.31)

which proves the following proposition.

Proposition 10. Let Y be a topological space and F .
= {fs : s ∈ S} be a family of functions

such that fs : [s]→ Y is continuous for all s ∈ S. Then, f : ΣA t FA → Y defined by

f(y)
.
= fy0(y) (2.32)

is continuous.

2.3.1 The Generalized Shift Application

Having fully characterized the topology (in the language of convergence of sequences)
of XA, we are now interested in extending the usual shift application σ : ΣA → Σ to the
generalized setting. In general, it will not be possible to extend it continuously to the whole
XA, but instead we will always be able to define a continuous shift application

σ : ΣA t FA → XA (2.33)

with the property that σ(FA) = FA t EA and the usual σ(ΣA) = ΣA.
So what is the natural candidate for σ(ωR)? It is σ(ω)R, where σ(ω) = ω1...ω|ω|−1. Proving

that this definition extends the usual shift map σ continuously is more or less identical to
the work already done in this section so we omit the details.

Remark 9. In case ω = s̃ for some s̃ ∈ S, we define σ(ω) = e, the empty stem.
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Definition 18. We define the generalized shift application σ : ΣA t FA → XA by

σ(x) =

{
σ(x), if x ∈ ΣA,

σ(ω)R, if x = ωR ∈ FA.
(2.34)

Remark 10. Due to the previous proposition, the generalized shift application is continuous.

An interesting identity relating the set of finite words FA and the preimages of the empty
words arises from the generalized shift application. More specifically,

FA =
⊔
R root

⊔
k≥1

σ−k ({eR}) . (2.35)

Having this identity in mind, for a root R, we define its R-family YR by

YR
.
=
⊔
k≥0

σ−k ({eR}) . (2.36)

Note that σ−1 (YR) = YR and σ (YR ∩ U) = YR. Furthermore,

σ−1 ({eR}) = {sR : s ∈ S s.t. {s} ∈ R} . (2.37)

It becomes rather easy to describe the set of finite words in this manner, it is sufficient to
know all the roots, which can be done simply by studying the matrix A.

Remark 11. Every R-family is countable. Hence, FA is uncountable if, and only if, there
is uncountable number of distinct roots.

2.3.2 The Algebra of Real Continuous Functions on Generalized
Cyllinders

Our objective here is to give a description of the set of real continuous functions on
U = ΣA t FA using Stone-Weierstrass’ theorem. In order to do so, we need to present a
family of functions that separates the points in U .

To construct a family of real continuous functions separating the points of U , we will
need an positive summable sequence b : S → R such that∑

s∈B

b(s) =
∑
s∈B′

b(s) ⇐⇒ B = B′.

Note that this sequence induces a finite measure H : P(S)→ [0,∞) via

H(B) =
∑
s∈B

b(s) (2.38)

for any B ∈ P(S). Since this measure is finite, we have that

H
(

lim
n→∞

Bn

)
= lim

n→∞
H(Bn) (2.39)

if limn→∞Bn exists. Let a : S → R be a positive function bounded by 1 whose image has
only 0 as an accumulation point. Furthermore, suppose that a(s)H(B) = a(s′)H(B′) if, and
only if, (s, B) = (s′, B′).
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Then, we may define hn : U → R by

hn(y) =


∏n−1

k=1 a(ωk)H(R), if y = ωR ∈ σ−neR,∏n−1
k=1 a(xk)H(s(xn)), if y = x ∈ ΣA,∏n−1
k=1 a(ωk)H(s(ωn)), if y = ωR ∈ FA with |ω| > n,

0, otherwise,

(2.40)

for n ∈ N, where R .
= ∪F∈RF with the convention

∏0
k=1 a(xk)

.
= 1.

Let us first prove that hm is continuous. We begin by noting that {yn}n∈N converges to
x ∈ ΣA if, and only if, for all k ∈ N, there exists Nk ∈ N such that yn[0, k) = x[0, k) if
n ≥ Nk. The sequence n 7→ hm(yn) is eventually constant and equal to

m−1∏
k=1

a(xk)H(s(xm)) = hm(x).

In the case of finite words, we need to break the problem in two. Let us first deal with the
case |ω| ≥ m. Take {yn}n∈N converges to ωR ∈ FA with |ω| ≥ m, there are two cases we
need to consider. In the first, the stem of yn is eventually equal to ω, i.e., yn = ωRn , in which
case the series converges to ωR if, and only if, limn→∞Rn = R. We get that

hm (ωRn) =
m−1∏
k=1

a(ωk)H(Rn)
n→∞−−−→

m−1∏
k=1

a(ωk)H(R) = hm (ωR)

In the second case, we may suppose that |yn| > ω with yn[0, |ω|) = ω and {yn|ω|}n∈N injective
and compatible with R. Hence

hm (ωRn) =
m−1∏
k=1

a(ωk)H
(
s
(
yn|ω|
)) n→∞−−−→

m−1∏
k=1

a(ωk)H(R) = hm (ωR) .

Finally, suppose that |ω| ≤ m and {yn} converges to ωR. The non-evident case is precisely
when |yn| > m for all n ∈ N. We may suppose that n 7→ yn|ω| is injective. Since H(S) < ∞
and a(S) is bounded with 0 being its only accumulation point, we get that

lim
n→∞

a(yn|ω|) = 0

and we have thus proved the continuity of hm.
The fact that it separates points comes from the hypothesis H(B) = H(B′) if, and only

if, B = B′ and a(s)H(B) = a(s′)H(B′) if, and only if, (s, B) = (s′, B′). We conclude, by the
Stone-Weierstrass theorem, that the set of continuous functions on the generalized cyllinder
[s] is the completion of the algebra

A = R[{1} ∪ {hn : n ∈ N}]. (2.41)

endowed with the usual algebraic operations of real functions and the usual normal. There-
fore, if φ : U → R is continuous, there exists {c(n, s) : n ∈ N, s ∈ S} ⊂ R such that∑

n∈N

|c(n, s)|‖hn‖∞ <∞
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for all s ∈ S and

φ(x) =
∑
s∈S

∑
n∈N

c(n, s)χ[s](x)hn(x). (2.42)

Corollary 6. Let φ : U → R be a continuous function. Define the n-th variation of φ on
the cyllinder [s] by

Varn(φ, s) = sup{|φ(x)− φ(y)| : x, y ∈ [s] with |x| ≥ n, |y| ≥ n and x[0, n) = y[0, n)}.
(2.43)

Then, for all s ∈ S,

lim
n→∞

Varn(φ, s) = 0. (2.44)

Remark 12. Note that it is not necessary that Varnφ
.
= sups∈S Varn(φ, s) < ∞ for any

n ∈ N.

Definition 19. We say that φ : U → R is uniformly continuous if there exists m ∈ N such
that

Varmφ
.
= sup

s∈S
Varm(φ, s) <∞ (2.45)

and

lim
n→∞

Varnφ = 0. (2.46)

We call Varnφ the generalized n-th variation ofφ.

Remark 13. It should be easy to see that if the restriction of φ : U → R is Walter’s in the
usual sense, then φ is uniformly continuous and the generalized variation satisfies the same
bounds as the usual variation.

2.4 Examples
In this section we will always deal with the case S = N, and write S or N interchangeably

whenever no confusion is possible.

2.4.1 The Generalized Renewal Shift

Let A ∈ {0, 1}N×N be given by

A(i, j) =


1, if i = j + 1,

1, if i = 1,

0, otherwise.
(2.47)

Note that for all x ∈ ΣA and n ∈ N0, we have that

x[n, n+ xn) = xn(xn − 1)...21. (2.48)
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In this case the only infinite emitter is the symbol 1 and the only accumulation point
of the sources is given by δ1. Hence, the only root is given by R = P∗({1}) and an infinite
subset of symbols compatible with R is J = S.

Let us describe FA with the help of the notion of R-family. We have that

FA =
⊔
k≥1

σ−k({eR}).

On the other hand, we have that

σ−1({eR}) = {1R}. (2.49)

Suppose ωR ∈ σ−k({eR}), it should be easy to see that

σ−1({ωR}) = {1ωR, (ω0 + 1)ωR}. (2.50)

This implies by an argument of induction that

#σ−k({eR}) = 2k−1. (2.51)

Futhermore, note that if ωn = m, then |ω| ≥ n+m and

ω[n, n+m) = m(m− 1)...21. (2.52)

We note that

ωR = lim
n→∞

ωn(n− 1)...21xn ∈ ΣA. (2.53)

Furthermore, if {ωnR}n∈N converges to ωR and {|ωn|}n∈N is bounded, then there exists N ∈ N
such that ωnR = ωR for n ≥ N . This follows from the last observation of the previous
paragraph.

2.4.2 The Super Renewal Shift

Let A ∈ {0, 1}N×N be given by

A(i, j) =


1, if i = j + 1,

1, if i = 2k and 2k | j for some k ∈ N0,

0, otherwise.
(2.54)

Note that for all x ∈ ΣA and n ∈ N0, we have that

x
[
n, n+ 1 + xn − 2blog2 xnc

)
= xn(xn − 1)...(2blog2 xnc + 1)2blog2 xnc. (2.55)

In this case there is an infinite number of infinite emitters, more specifically every power
of 2, including 1, is an infinite emitter and there are no others. It is also true that there is
an infinite number of accumulation points of the sources, more precisely

Sk
.
=

k∑
j=0

δ2j , (2.56)
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where k ∈ N0∪{∞}, is an accumulation point, and every accumulation point is of this form.
The root Rk associated to Sk is given by

Rk = P∗f ({2j : 0 ≤ j ≤ k}). (2.57)

Furthermore,

R∞ = lim
n→∞

Rn. (2.58)

For k ∈ N0, a set of symbols compatible with Rk is

Jk = {2kj : j ∈ N and j odd} (2.59)

and every set J ′ compatible with Rk is up to a finite number of elements a subset of Jk. A
set of symbols compatible with R∞ is

J∞ = {2j : j ∈ N} (2.60)

and, similarly, every set J ′ compatible with R∞ is up to a finite number of elements a subset
of J∞.

2.4.3 The Generalized Full Shift

Let A ∈ {0, 1}N×N be given by

A(i, j) = 1. (2.61)

In this case every symbol is an infinite emitter but there is only one accumulation point of
the sources given by

∑
n∈N δn. Hence the only root is given by R = P∗f (N) and an infinite

subset of symbols compatible with R is J = S = N. It should be easy to see that there is a
natural bijection between the set of all finite admssible words and the set of finite words on
X.
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Chapter 3

Conformal Measures on Generalized
Shifts

Since the shift application is not defined on the whole space, we need to make some
tiny modifications to the definitions present in the usual theory of conformal measure on
countable Markov shifts. If we omit a proof in this section, it is very likely that it is identical
to the case of an usual countable Markov shift. In this section we will write U instead of
ΣAtFA and, in general, we will omit the subscript A. Furthermore, unless stated otherwise,
we assume that every function φ : σ → R may be extended continuously to U . For more
equivalent definitions of conformality in the generalized we recommend [RAS20].

3.1 Ruelle’s Operator on Generalized Markov Shifts
As in the usual case, we say that a σ-finite Borel measure µ on X is not said to be

singular if σ∗µ ∼ µ, i.e., given B ⊂ X we have that

σ∗µ(B) = µ(σ−1B) = 0 ⇐⇒ µ(B) = 0. (3.1)

We note that if a measure µ is not singular and µ(eR) = 0 for some root R, then µ(YR) = 0,
and similarly if µ(ωR) > 0 for some ωR ∈ YR, then µ(eR) > 0. Furthermore, if µ on Σ is
non-singular in the usual sense, then µ̃ defined by

µ̃(B)
.
= µ(B ∩ Σ)

is also non-singular. .
Suppose now that µ is a non-singular measure on X, then we define the measure µ ◦ σ

on U by
µ ◦ σ(B)

.
=
∑
s∈S

µ(σ(B ∩ [s])), (3.2)

where B ⊂ U is Borel measurable. Furthermore, noting that

χσ(B∩[s])(x) = χσ[s](x)χB(sx)

33
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for all x ∈ X, s ∈ S and B ⊂ U Borel measurable, we get that∫
U

χEd(µ ◦ σ) =
∑
s∈S

µ[σ(E ∩ [s])] =
∑
s∈S

∫
X

χσ(E∩[s])(x)dµ

=
∑
s∈S

∫
X

χσ[s](x)χE(sx)dµ(x) =
∑
s∈S

∫
σ[s]

χE(sx)dµ(x)

and therefore ∫
U

fd(µ ◦ σ) =
∑
s∈S

∫
X

f(sx)dµ(x) (3.3)

for all f : U → R≥0 Borel measurable.
Let φ : U → R be an continuous function such that

S(φ)
.
=
∑
s∈S

esup{φ(x):x∈[s]} <∞. (3.4)

We define the Ruelle operator Lφ : L∞(U)→ L∞(X) associated to φ by

Lφf(x) =
∑
σy=x

eφ(y)f(y) =
∑
s∈S

χσ[s](x)eφ(sx)f(sx). (3.5)

This operator is evidently continuous: let x ∈ X and f, g ∈ L∞(U), then

|Lφf(x)− Lφg(x)| ≤
∑
s∈S

eφ(sx)|f(x)− g(x)| ≤ S(φ)‖f − g‖∞.

We may also define recursively Lnφ : L∞(U)→ L∞(X) by

Ln+1
φ f(x)

.
= Lφ

(
Lnφf

)
U

(x).

Then,

Lnφf(x) =
∑
σny

eφn(y)f(y) (3.6)

for all n ∈ N, where

φn(y) =
n−1∑
k=0

φ(σky)

denotes the usual Birkhoff sum.
As usual it induces an operator L∗φ : Mσ(X) →Mσ(U) taking σ-finite Borel measures

on XA to σ-finite Borel measures on U via

L∗φµ(B)
.
=

∫
X

LφχB(x)dµ(x), (3.7)
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where B ⊂ U is a Borel measurable set. On the other hand,

L∗φµ(B) =

∫
X

∑
s∈S

χσ[s](x)eφ(sx)χB(sx)dµ(x)

=
∑
s∈S

∫
σ[s]

eφ(sx)χB(sx)dµ(x)

=

∫
U

eφ(x)χB(x)d(µ ◦ σ)(x) =

∫
B

eφ(x)d(µ ◦ σ)(x).

We conclude that L∗φµ ∼ µ ◦ σ.

Definition 20. We say that a measure µ on X is an eigenmeasure of the Ruelle operator
associated to φ with eigenvalue λ > 0 if

L∗φµ = λµU . (3.8)

Proposition 11. A measure µ on X is an eigenmeasure of the Ruelle Operator associated
to φ with eigenvalue λ > 0 if, and only if,

dµU
d(µ ◦ σ)

(x) = λ−1eφ(x) µU -a.e. (3.9)

Proof. The proposition follows from the computation above the definition of eigenmeasure.

3.2 Eigenmeasures supported on the set of finite words
Let us investigate what are the eigenmeasures µ of the Ruelle operator which give positive

mass to a YR family. We know that such measure must satisfy µ(eR) > 0 if it is non-singular.
Let s̃R ∈ σ−1(eR), then

λµ(s̃R) = L∗φµ(s̃R) =
∑
s∈S

∫
σ[s]

eφ(sx)χs̃R(sx)dµ(x)

=

∫
σ[s̃]

eφ(s̃x)χeR(x)dµ(x) = eφ(s̃R)µ(eR)

or rearranging the terms

µ(s̃R) = λ−1eφ(s̃R)µ(eR).

This implies that

µ(σ−1eR) =
∑

s:{s}∈R

µ(sR) = λ−1
∑
σy=eR

eφ(y)µ(eR) = λ−1Lφ1(eR)µ(eR).

Proposition 12. Suppose µ is a λ-eigenmeasure of the Ruelle operator, then

µ(σ−neR) = λ−nLnφ1(eR)µ(eR) (3.10)
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for all n ∈ N and eR ∈ E. In particular, if µ(eR) > 0, then µ(YR) <∞ if, and only if,

∞∑
n=1

λ−nLnφ1(eR) =
∞∑
n=1

λ−n
∑

σny=eR

eφn(y) <∞. (3.11)

Proof. Let us begin the proof by showing by induction that if ωR ∈ σ−neR, then

µ(ωR) = λ−neφn(ωR)µ(eR). (3.12)

The base case is already done. Suppose now the result true from n = k and take ωR ∈
σ−(k+1)eR, then

λµ(ωR) = L∗φ(ωR) =
∑
s∈S

∫
σ[s]

eφ(sx)χωR(sx)dµ(x) =

∫
σ[ω0]

eφ(ω0x)χωR(ω0x)dµ(x)

=

∫
σ[ω0]

eφ(ω0x)χσ(ω)R(x)dµ(x) = eφ(ωR)µ(σ(ω)R).

Therefore,

µ(ωR) = λ−1eφ(ωR)µ(σ(ω)R) = λ−1eφ(ωR)λ−keφk(σ(ω)R)µ(eR) = λ−(k+1)eφk+1(ωR)µ(eR)

and we conclude the induction.
Let us now sum µ(ωR) over σ−neR, we get that

µ(σ−neR) =
∑

σny=eR

µ(y) =
∑

σny=eR

λ−neφn(y)µ(eR) = λ−nLnφ1(eR)µ(eR)

and therefore

µ(YR) =
∞∑
n=1

µ(σ−neR) = µ(eR)
∞∑
n=1

λ−nLnφ1(eR)

and we conclude.

Corollary 7. There is a finite λ-eigenmeasure µ of the Ruelle operator associated to φ
supported on YR if

λ > lim sup
n→∞

1

n
logLnφ1(eR)

.
= P (φ, eR).

There is no finite λ-eigenmeasure µ of the Ruelle operator supported on YR if λ < P (φ, eR).

Definition 21. Let x ∈ X, we define the n-th partition function at x by

Zn(φ, x)
.
= Lnφ1(x) =

∑
σny=x

eφn(y) (3.13)

and the pressure of φ at x by

P (φ, x)
.
= lim sup

n→∞

1

n
logZn(φ, x). (3.14)
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For all n ≥ 1 and x ∈ X, note that

Zn+1(φ, x) =
∑

σn+1y=x

eφn+1(y) =
∑
σw=x

∑
σny=ω

eφn+1(y)

=
∑
σw=x

eφ(w)
∑
σny=w

eφn(w) =
∑
σw=x

eφ(w)Zn(φ,w).

In particular, we have that

Zn+1(φ, eR) =
∑

s:{s}∈R

eφ(sR)Zn(φ, sR). (3.15)

Therefore, in general,

P (φ, eR) ≥ sup
s:{s}∈R

P (φ, sR) (3.16)

and in the case #R <∞

P (φ, eR) = sup
s:{s}∈R

P (φ, sR). (3.17)

Let us show that, in the case that φ : U → R is uniformly continuous and Var2φ <∞, the
pressure function is constant on the generalized cyllinders. Let x, x′ ∈ U such that x0 = x′0,
then there is a natural bijection between σ−nx and σ−nx′ for all n ∈ N, more specifically,

σ−nx 3 y 7→ y[0, n)x′ ∈ σ−nx′.

On the other hand,

|φn(y)− φn(y[0, n)x′)| ≤ Varn+1φn

and therefore ∣∣∣∣ 1n logZn(φ, x)− 1

n
logZn(φ, x′)

∣∣∣∣ ≤ 1

n
Varn+1φn

n→∞−−−→ 0.

Proposition 13. Suppose that φ : U → R is uniformly continuous and Var2φ < ∞, then
P (φ, ·) is constant on generalized cyllinders.

Let us return to the usual theory of countable Markov shifts for a moment. For Walter’s
potentials it has been proved that the Gurevich pressure given by

Pg(φ, s)
.
= lim sup

n→∞

1

n
logZn(F, [s]) <∞ (3.18)

exists and does not depend on s ∈ S, where

Zn(φ, s) =
∑
σnx=x
x0=s

eφn(x) (3.19)

is Sarig’s n-th partition function on the symbol s.
Furthermore, there is a finite conservative ePg(φ)-eigenmeasure of the usual Ruelle oper-
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ator if, and only if,

∞∑
n=1

e−nPg(φ)Zn(φ, [s]) =∞ (3.20)

and
∞∑
n=1

e−nPg(φ)Z∗n(φ, [s]) <∞, (3.21)

where

Z∗n(φ, [s]) =
∑
σnx=x

xm=s⇐⇒ n|m

eφn(x) (3.22)

Note that the usual theory contrasts with the theory of eigenmeasures on finite words,
since there is a finite eP (F,eR)-eigenmeasure supported on YR if, and only if,

∞∑
n=1

e−nP (φ,eR)Zn(φ, eR) <∞. (3.23)

Furthermore, it is not yet evident how these two definitions of pressure and these two def-
initions of partition function relate to each other. Do the different definitions of pressure
compute the same quantity? Do the distinct partition functions behave equally as n grows
very large?

3.3 Source-compactness
If φ : U → R is uniformly continuous and Var2φ < ∞, we have that Pg(φ, s) ≤ P (φ, x)

for all x ∈ [s]. Indeed, given s ∈ S, take x ∈ U such that x0 = s. Then, for all z ∈ Σ such
that z = s and σnz = z, we have that

|φn(z)− φn(z[0, n)x)| ≤ Varn+1φn

and, therefore,

Zn(φ, [s]) = Zn(φ, [x0]) ≤ eVarn+1φnZn(φ, x). (3.24)

We conclude that

Pg(φ, s) = lim sup
n→∞

1

n
logZn(φ, [s]) ≤ lim sup

n→∞

1

n
Varn+1φn +

1

n
logZn(φ, x) = P (φ, x). (3.25)

We shall now give a sufficient condition for the equality of the two defintions of pressure.

Definition 22. We say that the matrix A is source-compact if for all s ∈ S, there exists
ms ∈ N and Fs ⊂ S finite such that for all s̃ ∈ S, there exists a non-empty finite admissible
word ω with

1. |ω| = k ≤ ms,

2. ω0 = s and A(ωk−1, s̃) = 1,
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3. and ω ∈ F k
s .

Remark 14. Since A is transitive, it is sufficient to prove that the property is true for a
single s ∈ S.

Proposition 14. If there exists F ⊂ S finite such that⋃
t∈F

r(t) = S,

then A is source-compact.

Proof. Given s ∈ S, take for each t ∈ F , let ω(t) be a finite word starting in s and ending
in t. We claim that it is sufficient to take

1. ms = maxt∈F |ω(t)|,

2. and Fs = {ω(t)n : t ∈ F, 0 ≤ n < |ω(t)|}.

Indeed, let s̃ ∈ S, there exists t ∈ F such that A(t, s̃) = 1, in which case it is sufficient to
take ω = ω(t).

Let φ : U → R be a continuous function and x, y ∈ U such that σny = x. If A is
source-compact, there exist mx0 ∈ N and Fx0 ⊂ S such that there exists ω(y0) with

1. |ω(y0)| = ky ≤ mx0 ,

2. ω(y0)0 = x0 and ω(y0)y admissible,

3. and ω(y0) ∈ F ky
x0 .

In which case,

φn(y) = φn
(
σkyω(y0)y

)
= φn+ky(ω(y0)y)− φky(ω(y0)y).

Note now that if S(φ) <∞, then

sup[−φky(ω(y0)y)] ≤
ky−1∑
j=0

sup|φ|([σjω(y0)]) ≤
mx0∑
j=1

∑
ω∈F jx0

sup|φ|([ω])
.
= C(x0) <∞

where the finiteness of |φ| on generalized cyllinders follows from the continuity of φ. On the
other hand, let z(y) ∈ Σ be the periodic word such that

1. σn+kyz(y) = z(y),

2. and z(y)[0, n+ ky) = ω(y0)y[0, n).

Note that y 7→ z(y) defines an injection from σ−nx into ∪mx0k=1{z ∈ Σ : σn+kz = z, z0 = x0}.
Furthermore, we have by construction that

|φn+ky(ω(y0)y)− φn+ky(zy)| ≤ Varn+ky+1φn+ky .
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Therefore,

Zn(φ, x) =
∑
σy=x

eφn(y) ≤ eC0

n+mx0∑
k=n+1

eVark+1φk
∑

σn+kz=z
z0=x0

eφn+k(z) = eC0

n+mx0∑
k=n+1

eVark+1φkZn+k(φ, [x0]).

(3.26)

We have thus proved the following proposition.

Proposition 15. Suppose that A is source-compact and φ : U → R is uniformly continuous
with Var2φ <∞, then

P (φ, x) = Pg(φ, [x0]) (3.27)

for all x ∈ U .

Corollary 8. Suppose that A is source-compact. If φ is Walter’s, then P (φ, ·) is constant
on U and equal to the Gurevich pressure Pg(φ). Furthermore, if every root R is finite, then
P (φ, ·) is constant on X and equal to the Gurevich pressure Pg(φ).

Remark 15. If every root is finite, the set of roots is countable and therefore the set of finite
words F is also countable, in which case every measure on F is a sum of delta measures.

Let us analyze the existence of non-trivial ePg(φ)-eigenmeasures in the case where φ is
Walter’s and every root R is finite. In this case, we may rewrite the bound relating the two
different definitions of partition functions in the following way

Zn(φ, x) ≤M(x0)

n+mx0∑
k=n+1

Zn+k(φ, [x0]),

where M(x0) > 0 does not depend on n, and in a similar manner

M ′(x0)Zn(φ, [x0]) ≤ Zn(φ, x).

Therefore,

Zn+1(φ, eR) =
∑

s:{s}∈R

eφ(sR)Zn(φ, sR) ≥
∑

s:{s}∈R

M ′(s)eφ(sR)

n+ms∑
k=n+1

Zk(φ, [s])

Since P (φ, eR) = Pg(φ),

∞∑
n=1

e−nPg(φ)Zn+1(φ, eR) ≥
∑

s:{s}∈R

M ′(s)eφ(sR)

∞∑
n=1

e−nPg(φ)

n+ms∑
k=n+1

Zk(φ, [s])

=
∑

s:{s}∈R

M ′(s)eφ(sR)

ms∑
k=1

ekPg(φ)

∞∑
n=k+1

e−nPg(φ)Zn(φ, [s]).

We conclude that if
∞∑
n=1

enPg(φ)Zn(φ, [s]) =∞,
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then
∞∑
n=1

e−nPg(φ)Zn(φ, eR) =∞.

We know from the usual theory of countable Markov shifts that if φ is Walter’s and there
is a non-trivial ePg(φ)-eigenmeasure on Σ that is conservative and finite on cyllinders, then

∞∑
n=1

e−nPg(φ)Zn(φ, [s]) =∞

for all s ∈ S. Therefore,
∞∑
n=1

e−nPg(φ)Zn(φ, eR) =∞

for all eR ∈ E. We conclude that in case φ is Walter’s and all roots are finite, that it is
impossible that there exists a finite ePg(f)-eigenmeasure that gives mass to Σ and F at the
same time.

Furthermore, given an ePg(φ)-eigenmeasure µ of Ruelle’s operator and s ∈ S, then, for all
n ∈ N, we have that

µ
(
σ−(n+1)eR ∩ [s]

)
=

∑
σn+1y=eR

e−(n+1)Pg(φ)eφn+1(y)χ[s](y)

=
∑
σy=w

e−Pg(φ)eφ(y)
∑

σnw=eR

e−nPg(φ)eφn(w)χ[s](y)

= e−Pg(φ)
∑

σnw=eR

e−nPg(φ)eφ(sw)eφn(w)
∑
t∈r(s)

χ[t](w)

= e−Pg(φ)
∑
t∈r(s)

∑
σnw=eR

eφ(sw)e−nPg(φ)eφn(w)χ[s](w)

and therefore

einf φ([s])−Pg(φ)
∑
t∈r(s)

µ
(
σ−neR ∩ [t]

)
≤ µ

(
σ−(n+1)eR ∩ [s]

)
≤ esupφ([s])−Pg(φ)

∑
t∈r(s)

µ
(
σ−neR ∩ [t]

)
.

We conclude that

einf φ([s])−Pg(φ)
∑
t∈r(s)

µ (YR ∩ [t]) ≤ µ (YR ∩ [s])− C(s,R) ≤ esupφ([s])−Pg(φ)
∑
t∈r(s)

µ (YR ∩ [t]) ,

(3.28)

where C(s,R) = µ(σ−1eR ∩ [s]). If there exists F ⊂ S finite such that ∪s∈F r(s) = S, then

µ(YR) ≤
∑
s∈F

∑
t∈r(s)

µ(YR ∩ [t]) ≤
∑
s∈F

e− inf φ([s]) [µ(YR ∩ [s]) + C(s,R)] .

We conclude that in this case there is an ePg(φ)-eigenmeasure µ of Ruelle’s operator giving
finite mass to generalized cyllinder such that µ(eR) > 0 if, and only if, µ(YR) <∞.

Proposition 16. Let φ : U → R be a continuous function satisfying Walter’s condition.
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Suppose there is F ⊂ S finite such that for all s ∈ S, there is s̃ ∈ F such that A(s̃, s) = 1.
Furthermore, suppose that every root R is finite, then either of the following happens

1. There exists a conservative ePg(φ)-eigenmeasure of Ruelle’s operator on Σ that is finite
on cyllinders, but there is no ePg(φ)-eigenmeasure of Ruelle’s operator giving mass to
F that is finite on generalized cyllinders.

2. There is a finite ePg(φ)-eigenmeasure of Ruelle’s operator giving mass to YR for any
root R, but there is no conservative ePg(φ)-eigenmeasure of Ruelle’s operator on Σ that
is finite on cyllinders.

We have, unfortunately, that, for very well behaved functions, there is no ePg(φ)-eigenmeasure
finite on cyllinders that detects at the same time both the infinite words and the finite words
if the matrix A is sufficiently simple (i.e. the hypothesis that all roots are finite and that
there is a finite number of symbols covering the whole of S).

3.4 An Existence Theorem for the Compact Case
In this subsection we shall prove a theorem by Denker and Yuri [DY15] which guarantees

the existence of a finite eP (φ,x)-eigenmeasure of the Ruelle’s operator in the case where X is
compact, i.e., the case where 0 is not an accumulation point of S(S). This gives us a new
criterion to check for the existence of a finite ePg(φ)-eigenmeasure on Σ. More specifically, if

∞∑
n=1

e−nPg(φ)
∑

σny=eR

eφn(y) =∞

for all root R, then there is a finite ePg(φ)-eigenmeasure of the usual Ruelle’s operator on Σ.
We will need the following technical lemma from [DU91].

Lemma 5. Suppose {an}n∈N is a sequence of real numbers such that lim supn→∞
an
n

= c <∞.
Then, there exists a positive sequence {bn}n∈N such that limn→∞

bn
bn+1

= 1 and∑
n∈N

bn exp an − nt <∞ ⇐⇒ t > c.

Remark 16. Note that by construction limt→c+
∑

n∈N bn exp an − nt =∞.

Suppose that P (φ, x) <∞. Note that this implies that Zn(φ, x) <∞ for all n ∈ N. Let
us apply the lemma above to the sequence {an}n∈N given by

an = logZn(φ, x). (3.29)

There exists a positive sequence {bn}n∈N such that limn→∞
bn
bn+1

= 1 and

M(t, x)
.
=
∑
n∈N

bn exp an − nt =
∑
n∈N

bne
−ntZn(φ, x) <∞ ⇐⇒ t > P (φ, x). (3.30)

For t > P (φ, x), let us define the following probability measure on X

m(t, x)
.
= M(t, x)−1

∑
n∈N

bne
−nt

∑
σny=x

eφn(y)δy. (3.31)
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Then, for any f ∈ L∞(X), we have that

m(t, x)(f) = M(t, x)−1
∑
n∈N

bne
−nt

∑
σny=x

eφn(y)δy(f)

= M(t, x)−1
∑
n∈N

bne
−nt

∑
σny=x

eφn(y)f(y)

= M(t, x)−1
∑
n∈N

bne
−ntLnφf(x).

If g ∈ L∞(U), we get that

m(t, x)(Lφg) = M(t, x)−1
∑
n∈N

bne
−ntLnφ(Lφg)(x)

= M(t, x)−1
∑
n∈N

(bn+1 − bn+1 + bn)e−ntLn+1
φ g(x)

= M(t, x)−1et
∑
n∈N

bne
−ntLnφg(x)−M(t, x)−1b1Lφg(x)

+M(t, x)−1
∑
n∈N

(
bn
bn+1

− 1

)
bn+1e

−ntLn+1
φ g(x)

= M(t, x)−1
∑
n∈N

(
bn
bn+1

− 1

)
bn+1e

−ntLn+1
φ g(x)

+ etm(t, x)(g)−M(t, x)−1b1Lφg(x).

Note that

lim
t→P (φ,x)+

M(t, x)−1b1Lφg(x) = 0

due to the remark under the lemma. Let us now analyze the other term, given ε > 0, there
exists Nε ∈ N such that | bn

bn+1
− 1| < ε if n > Nε. Therefore,∣∣∣∣( bn

bn+1

− 1

)
bn+1e

−ntLn+1
φ g(x)

∣∣∣∣ ≤ εet‖g‖∞bn+1e
−(n+1)tZn+1(φ, x)

if n > Nε. On the other hand,

Nε∑
n=1

∣∣∣∣ bnbn+1

− 1

∣∣∣∣ bn+1e
−nt‖g‖∞Zn(φ, x)

is bounded as t approaches P (φ, x) from above. Hence,

lim sup
t→P (φ,x)+

∣∣∣∣∣M(t, x)−1
∑
n∈N

(
bn
bn+1

− 1

)
bn+1e

−ntLn+1
φ g(x)

∣∣∣∣∣ ≤ εeP (φ,x)‖g‖∞

for all ε > 0. We conclude that

lim
t→P (φ,x)

m(t, x)(Lφg)− eP (φ,x)m(t, x)(g) = 0 (3.32)
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for all g ∈ L∞(U).
Take any sequence {tn}n∈N decreasing to P (φ, x). Since X is compact, the sequence of

probability measures {m(tn, x)}n∈N has as accumulation point m. The computation above
shows us that m is an eP (φ,x)-eigenmeasure of Ruelle’s operator.

Theorem 6. Suppose that X is compact and P (φ, x) < ∞ for some x ∈ X. Then, there
exists an eP (φ,x)-eigenmeasure of Ruelle’s operator.

3.5 Relaxing the Continuity Condition
In this subsection, we will show that it is rather easy to construct potentials φ : U →∞

that, while not continuous, satisfy

Var1φ <∞ and lim
n→∞

Varnφ = 0

and such that there are ePg(φ)-eigenmeasures giving mass to both finite and infinite words.
We will do so by studying ways to extend product type potentials, such as those investigated
in [CDLS17], to the finite words of the Generalized Full Shift that respect the conditions
above.

Definition 23. Let φ : Σ→ R, we say it is a product type potential if there exists a family
of functions (ϕk)k∈N0 such that

φ(x) =
∑
k∈N0

ϕk(xk). (3.33)

For n ≥ 1, we define φ(n) : Σ→ R by

φ(n)(x) =
∑
k∈N0

ϕk+n(xk). (3.34)

In general, we will suppose that

∞∑
k=1

‖ϕk‖∞ <∞ (3.35)

Lemma 6. Let φ : Σ→ R be a product type potential. Then, φ admits a continuous extension
to U if, and only if, there exist ϕ0, ϕ1 : N→ R such that

1. limn→∞ ϕ1(n) = 0,

2. F (x) = ϕ0(x0) + ϕ1(x1).

Proof. Suppose φ : Σ→ R is given by

φ(x) =
∑
k≥0

ϕk(xk),

where ϕk : N→ R for k ≥ 0.
Let s ∈ N and x ∈ Σ, then the sequence (anx)n∈N converges to s ∈ F in the topology of

X, for any x ∈ Σ. Hence, for φ to extend continuously to U , it is necessary that

lim
n→∞

φ(anx) = lim
n→∞

(
ϕ0(s) + ϕ1(n) + φ(2)(x)

)
= ϕ0(a) + φ(2)(x) + lim

n→∞
ϕ1(n)
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exists and does not depend on x ∈ Σ. Therefore, φ(2) is constant and limn→∞ϕ1(n) exists.
Arguing in the same manner for the sequence (abnx)n∈N, where a, b ∈ N and x ∈ X, we

obtain that φ(3) is constant and that limn→∞ϕ2(n) exists. On the other hand, it is true that

φ(2)(nx) = φ(3)(x) + ϕ2(n).

We conclude that ϕ2 is constant. An argument by induction gives us that ϕn is constant for
n ≥ 2.

By absorbing a constant to the definitions of ϕ0 and ϕ1, we conclude that for a product
type potential on Σ to extend continuously to U , it is necessary that it be given by

φ(x) = ϕ0(x0) + ϕ1(x1)

with limn→∞ ϕ1(n) = 0. It is indeed sufficient, φ̃ : U → R given by

φ̃(x) =

{
ϕ0(x0), if |x| = 1

ϕ0(x0) + ϕ1(x1), if |x| ≥ 2.

is the continuous extension of φ to U .

Proposition 17. Let φ : Σ → R be a product type potential with summable variations and
finite Gurevich pressure, then φ is positive recurrent and there is a probability measure ν
that is an ePg(φ)-eigenmeasure of Ruelle’s operator.

Proof. Let s ∈ N, then

Zn(φ, [s]) =
∑

σn(x)=x
x0=s

exp(φn(x)) =
∑

σn(x)=x
x0=s

n−1∏
k=0

exp

(∑
m≥0

ϕm(xk)

)

= exp

(∑
m≥0

ϕm(s)

)(∑
l∈N

exp

(∑
m≥0

ϕm(l)

))n−1

and therefore

Pg(φ) = log
∑
l∈N

exp

(∑
m≥0

ϕm(l)

)
. (3.36)

Finally, ∑
n≥1

e−nPg(φ)Zn(φ, [s]) =
∑
n≥1

e−nPg(φ)eφ(s̄)e(n−1)Pg(φ) = eφ(s̄)−Pg(φ)
∑
n≥1

1 =∞

and φ is recurrent.
A very similar calculation yields

Z∗n(φ, [s]) = exp

(∑
m≥0

ϕm(s)

) ∑
l∈N\{s}

exp

(∑
m≥0

ϕm(l)

)n−1

= eφ(s̄)+C(n−1)



46 CONFORMAL MEASURES ON GENERALIZED SHIFTS 3.5

and therefore ∑
n≥1

ne−nPg(φ)Z∗n(φ, [s]) = eφ(s̄)−C
∑
n≥1

nen(C−Pg(φ)) <∞

since C < Pg(φ).
We conclude that φ is positive recurrent and therefore there is a σ-finite measure ν such

that L∗νν = ePg(φ)ν and ν([s]) <∞ for all s ∈ N. Let s ∈ N, then

∞ > ePg(φ)ν([s]) =

∫
Σ

exp(φ(sx))ν(dx) = eϕ0(s)

∫
Σ

exp(φ(1)(x))ν(dx),

hence ∫
Σ

exp(φ(1)(x))ν(dx) = M <∞

and

ν(Σ) =
∑
a∈N

ν([a]) =
∑
a∈N

Meφ0(a)−Pg(φ) = Me−Pg(φ)
∑
a∈N

eφ0(a) <∞.

Corollary 9. Let φ : Σ→ R be a product type potential. If φ admits a continuous extension
to U , then there are no finite ePg(φ)-eigenmeasures of the Ruelle operator giving mass to
finite words.

Proof. This corollary is a direct consequence of the observation that

Zn(φ, e) = e(n−1)Pg(φ)
∑
k∈N

exp(ϕ0(k)).

in which case P (φ, e) = Pg(φ) and

∞∑
n=1

e−nP (φ,e)Zn(φ, e) =
∞∑
n=1

e−nPg(φ)Zn(φ, e) = e−Pg(φ)

∞∑
n=1

1 =∞.

It should be clear that there are many different sequences of functions Φ = {ϕn : n ∈ N0}
that yield a potential φ, indeed, given any absolutely summable sequence of real numbers
a = (an)n∈N0 such that

∞∑
n=0

an = 0,

then Φ = (ϕn)n∈N0
yields φ if, and only if, so does Φa = (ϕa

n)n∈N0
, where

ϕa
n(k) = ϕn(k) + an.

The converse is also true: given two sequences of functions Φ and Φ′ yielding φ, then ϕm−ϕ′m
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is constant for all m ∈ N0,

∞∑
n=0

an
.
=
∞∑
n=0

[ϕn(1)− ϕ′n(1)] = φ(1)− φ(1) = 0.

and
∞∑
n=0

|an| ≤ |ϕ0(1)− ϕ′0(1)|+
∞∑
n=1

(‖ϕn‖∞ + ‖ϕ′n‖∞) <∞.

As a matter of convention, given any product type potential φ, we shall fix a sequence of
functions Φ that best relates to the variations of φ, i.e,

Varnφ =
∞∑
m=n

‖ϕm‖∞. (3.37)

We shall now consider the natural yet discontinuous extension of φ to U given by trun-
cating the sum of the functions defining it. This extension shall depend on the sequence of
functions Φa yielding φ and shall therefore be denoted by φa. We will show that the pressure
of φa in the generalized setting is equal to Pg(φ) and that by carefully choosing (an)n∈N0

we
will be able to produce a non-trivial finite ePg(φ)-eigenmeasure of Ruelle’s operator giving
mass to F .

Definition 24. Let x ∈ F , we define the truncated extension of φ associated to Φa at x by

φa(x)
.
=

|x|−1∑
k=0

ϕa
k(xk). (3.38)

Remark 17. It should be clear that the absolute summability of both {‖ϕn‖}n∈N and a =
{an}n∈N implies that both Var1φ

a <∞ and limn→∞Varnφ
a = 0.

Proposition 18. Let x ∈ F t E, then

P (φa, x) = Pg(φ). (3.39)

In particular, the pressure does not depend on which truncated extension we choose.
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Proof. Let x ∈ F , then

Zn (φa, x) =
∑
σny=x

expφa
n(y) =

∑
σny=x

exp

(
n−1∑
j=0

φa (σjy))

=
∑
σny=x

exp

n−1∑
j=0

|x|+n−j−1∑
m=0

ϕa
m (ym+j)


=
∑
σny=x

exp

n−1∑
j=0

|x|−1∑
m=0

ϕa
m+n−j (xm) +

n−j−1∑
m=0

ϕa
m (ym+j)


=

n−1∏
j=0

|x|−1∏
m=0

expϕa
m+n−j (xm)

[ ∑
σny=x

exp

(
n−1∑
j=0

j∑
m=0

ϕa
m (yj)

)]

=

n−1∏
j=0

|x|−1∏
m=0

expϕa
m+n−j (xm)

 n−1∏
j=0

[∑
k∈N

j∏
m=0

expϕa
m(k)

]
.

Let bn
.
=
∑|x|−1

m=0 ϕ
a
m+n−j (xm), then limn→∞ bn = 0 and therefore

lim
n→∞

1

n
log

n−1∏
j=0

|x|−1∏
m=0

expϕa
m+n−j (xm) = lim

n→∞

1

n

n−1∑
j=0

bj = lim
n→∞

bn = 0.

On the other hand, by Lebesgue’s dominated convergence theorem

lim
n→∞

∑
k∈N

n∏
m=0

expϕa
m(k) =

∑
k∈N

∞∏
m=0

expϕa
m(k) =

∑
k∈N

∞∏
m=0

expϕm(k) = ePg(φ)

and therefore

lim
n→∞

1

n
log

n−1∏
j=0

[∑
k∈N

j∏
m=0

expϕa
m(k)

]
= lim

n→∞

1

n

n−1∑
j=0

log
∑
k∈N

j∏
m=0

expϕa
m(k) = Pg(φ).

Finally, we conclude that

P (φa, x) = lim sup
n→∞

1

n
logZn (φa, x) = Pg(φ).

We are now interested in finding a sequence of functions Φa defining φ for which

∞∑
n=1

e−nPg(φ)Zn (φa, e) <∞. (3.40)

In order to do so, the following simple lemma is very useful.
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Lemma 7. We have for all n ∈ N that

Zn (φa, e) = Zn
(
φ0, e

)
exp

(
−

n∑
j=1

∞∑
m=j

am

)
(3.41)

and

exp

(
−

n∑
j=1

∞∑
m=j

‖ϕm‖∞

)
≤ e−nPg(φ)Zn

(
φ0, e

)
≤ exp

(
n∑
j=1

∞∑
m=j

‖ϕm‖∞

)
. (3.42)

In particular, if φ has summable variations, there exists C ≥ 1 such that

C−1 ≤ e−nPg(φ)Zn
(
φ0, e

)
≤ C. (3.43)

Proof. Let n ∈ N, then

Zn (φa, e) =
∑
σny=e

expφa(y) =
n−1∏
j=0

[∑
k∈N

j∏
m=0

expϕa
m(k)

]

=

{
n−1∏
j=0

[∑
k∈N

j∏
m=0

expϕm(k)

]}[
n−1∏
j=0

j∏
m=0

exp am

]

= Zn
(
φ0, e

)
exp

(
−

n∑
j=1

∞∑
m=j

am

)
.

On the other hand, for all k ∈ N we have

exp

(
−

∞∑
m=j+1

‖ϕm‖∞

)
≤

[
∞∏
m=0

expϕm(k)

]−1 [ j∏
m=0

expϕm(k)

]
≤ exp

(
∞∑

m=j+1

‖ϕm‖∞

)

and therefore

exp

(
−

n∑
j=1

∞∑
m=j

‖ϕm‖∞

)
≤ e−nPg(φ)Zn

(
φ0, e

)
≤ exp

(
n∑
j=1

∞∑
m=j

‖ϕm‖∞

)
.

Finally, if φ has summable variations, it is sufficient to take

C = exp

(
∞∑
j=1

∞∑
m=j

‖ϕm‖∞

)
.

Using the bounds established by the lemma above, it becomes really easy to make a
choice of a = {an}n∈N0 giving us a finite ePg(φ)-eigenmeasure of Ruelle’s operator giving
mass to finite words. Indeed, let a = (an)n∈N0

be given by

an =

{
−1−

∑∞
m=1‖ϕn‖∞, if n = 0

1

n
1
2
− 1

(n+1)
1
2

+ ‖ϕn‖∞, if n ∈ N.



50 CONFORMAL MEASURES ON GENERALIZED SHIFTS 3.5

Then,

n∑
j=1

∞∑
m=j

‖ϕm‖∞ −
n∑
j=1

∞∑
m=j

am = −
n∑
j=1

∞∑
m=j

(
1

m
1
2

− 1

(m+ 1)
1
2

)
= −

n∑
j=1

1

j
1
2

≤ −
∫ n

1

dx

x
1
2

= −1

2

[
n

1
2 − 1

]
=

1

2
− 1

2
n

1
2 .

Hence
e−nPg(φ)Zn (φa, e) ≤ exp

(
1

2
− 1

2
n

1
2

)
which is absolutely summable.

We have thus succeeded, in a rather crude manner, in finding a sequence of functions Φa

defining φ for which there are two distinct finite ePg(φ)-eigenmeasures of Ruelle’s operator
with disjoint supports, namely the usual one supported on Σ and a new one supported on
Y . In fact, a similar construction is possible for all Walter’s potentials φ on Σ arising from a
sequence of functions Φ = {ϕn}n∈N0 such that Varn+1ϕn = 0 (this is NOT a Birkhoff sum)
and such that {‖ϕn‖∞}n∈N is absolutely summable.



Chapter 4

Conclusions

We have not yet given up on the idea that there might be a continuous potential φ :
U → R for which both definitions of pressure are in accordance and such that there is an
ePg(φ)-eigenmeasure giving mass to both Σ and F that is finite on the generalized cyllinders.
and we shall provide a possible route to construct such a potential in this section. We will
atempt to do so on the Generalized Renewal Shift.

We begin by finding a family of functions more appropriate to tackle the problem that
describes a subset (it is important to know that this choice of functions will NOT separate all
points of U) of continuous functions on the Generalized Renewal Shift than the one provided
some sections ago. Let us define the "maximum" function M : ∪n∈NNn → N, where

M(ω) = max{ωk : 0 ≤ k < |ω|}. (4.1)

Let a : N → R be a strictly decreasing positive sequence converging to 0. We define hn :
U → R by

hn(x) =

{
a(M(x[0, n))), if |x| ≥ n,

0, otherwise.
(4.2)

It should be evident at this point that such functions are continuous. We consider the closure
of the following subalgebra of continuous functions on the generalized cyllinder [s]

A = R[{1} ∪ {hn : n ∈ N}]. (4.3)

We are therefore looking at continuous potentials φ : U → R of the form

φ(x) =
∑
s∈N

∞∑
n=0

c(n, s)χ[s](x)hn(x) (4.4)

such that for all s ∈ N
∞∑
n=1

|c(n, s)| <∞.

We recall that there is a canonical bijection between the set of finite words of length n
given by σ−ne and Per(1, n) = {y ∈ Σ : y0 = 1, σn = y}, the set of periodic words starting 1
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with period n, which is given by

ω ←→ 1ω[0, n− 1). (4.5)

Let us estimate φn(1ω[0, n− 1))− φn(ω) = φn(ω)− φn(ω) supposing that c(n, s) ≥ 0 for all
n ≥ 1 and s ∈ N. We have that

φn(ω) =
n−1∑
k=0

[∑
s∈S

∞∑
l=0

c(l, s)χ[s](σ
kω)hn(σkω)

]
=

n−1∑
k=0

n−1−k∑
l=0

c(l, ωk)a(M(ω[k, k + l)))

and

φn(ω) =
n−1∑
k=0

[∑
s∈S

∞∑
l=0

c(l, s)χ[s](σ
kω)hn(σkω)

]
=

n−1∑
k=0

n−1−k∑
l=0

c(l, ωk)a(M(ω[k, k + l)))

= φn(ω) +
n−1∑
k=0

∞∑
l=n−k

c(l, ωk)a(M(ω[k, k + l))).

Noting that a(M(ω[k, k + l))) ≥ a(M(ω)) ≥ a(n), where the second inequality follows from
the structure of the renewal shift, we get that

φn(ω)− φn(ω) ≥ a(n)
n−1∑
k=0

∞∑
l=n−k

c(l, ωk) (4.6)

and therefore

Zn(φ, [1]) ≥ Zn(φ, e) exp a(n)
n−1∑
k=0

∞∑
l=n−k

c(l, ωk). (4.7)

Our hope is that by choosing c(n, s) well we should be able to construct a potential with
pressure 0 (on both definitions) for which

∞∑
n=1

Zn(φ, e) <∞

and

∞∑
n=1

Zn(φ, e) exp a(n)
n−1∑
k=0

∞∑
l=n−k

c(l, ωk) =∞.

In general, it is not very hard to produce a sequence of measures that would converge
to an ePg(φ)-eigenmeasure on Σ, it is sufficient to follow a recipe similar to that present in
the proof of Denker-Yuri’s theorem. The problem lies in proving that there actually exists
an accumulation point to that sequence. In the standard literature, for example in Sarig’s
Lecture Notes on the Thermodynamic Formalism for Topological Markov Shifts [SAR09],
the proof that the natural sequence of measures satisfies the hypotheses of Helly-Prohorov’s
theorem heavily relies on the Walter’s condition of the potential. Our hope is that given the
very simple dynamic properties of the renewal shift and the sufficiently strict structure of
the potential, it is possible to prove that the candidate sequence satisfies Helly-Prohorov’s
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theorem and hence obtain a finite eigenmeasure giving mass to both finite and infinite words.
This is most likely how our research on this type of local compactification of the usual count-
able Markov shifts will proceed, attempting to construct a potential whose eigenmeasures
see both the infinite and finite words.
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