
Some Mathematical aspects of DAG-based Distributed Ledger
Systems

Olivia Terence Saa

Tese apresentada
ao

Instituto de Matemática e Estatística
da

Universidade de São Paulo
para

obtenção do título
de

Doutor em Ciências

Programa: Matemática Aplicada
Orientador: Prof. Dr. André Salles de Carvalho

Coorientador: Prof. Dr. Serguei Popov

Durante o desenvolvimento deste trabalho a autora recebeu auxílio financeiro da CNPq

São Paulo, abril de 2020

Some Mathematical aspects of DAG-based Distributed Ledger
Systems

Esta é a versão original da dissertação/tese elaborada pelo
candidato (Olivia Terence Saa), tal como

submetida à Comissão Julgadora.

Resumo

SAA, O. T.Aspectos Matemáticos Diversos sobre Sistemas de Ledger Distribuído basea-
dos em DAGs. 2020. 68 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade
de São Paulo, São Paulo, 2020.

Na primeira parte do presente trabalho, um sistema de peering automático e aleatório é ap-
resentado, modelado e analisado. Este sistema pode ser implementado em qualquer sistema dis-
tribuído. Concluímos que ele possui certas propriedades desejáveis (especificamente, um fluxo baixo
de mensagens entre os agentes, uma distribuição razoável do número de conexões de cada nó e
uma probabilidade desprezável de ser atacado). Na segunda parte do trabalho, apresentamos um
artigo publicado no volume 136 do periódico Computers & Industrial Engineering, de outubro de
2019 (DOI 10.1016/j.cie.2019.07.025). Neste paper, analisamos os equilíbrios de Nash de um jogo
definido de tal maneira a representar as diferentes estratégias que participantes maliciosos podem
utilizar para obter certas vantagens em um sistema de Ledger distribuído baseado em DAGs (Di-
rected Acyclic Graphs). Provamos a existência de equilíbrios “quase simétricos” para o sistema no
qual uma parte dos jogadores usa uma estratégia padronizada e a outra parte tenta otimizar sua es-
tratégia. Também são apresentadas simulações que apontam que os atores “egoístas” não escolherão
estratégias excessivamente diferentes das estratégias padrão.
Palavras-chave: Sistemas Distribuídos, DLT, Equilíbrio de Nash, Tangle.

i

ii

Abstract

SAA, O. T. Some Mathematical aspects of DAG-based Distributed Ledger Systems.
2020. 68 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo,
São Paulo, 2020.

In the first part of this work, we present, model and analyze a randomized automated peering
model, that can be implemented to any distributed system. We conclude that the scheme has some
desirable properties (specifically, a reasonable message overhead, a reasonable distribution of the
numbers of peers of a node, and a negligible probability of an attack by a malicious actor to be
successful). In the second part, we present an article published in the volume 136 of the journal
Computers & Industrial Engineering, in October of 2019 (DOI 10.1016/j.cie.2019.07.025). In the
paper, we analyze the Nash Equilibria of a graph attachment game, defined to represent the different
strategies that malicious actors can use to take certain advantages in a DAG-based (i.e., based on
Directed Acyclic Graphs) distributed ledger system. We prove the existence of “almost symmetric”
Nash equilibria for the system where a part of players tries to optimize their attachment strategies
and another part follows a default one. We also present simulations that show that the “selfish”
players will not choose strategies that are considerably different that the “recommended” one.
Keywords: Distributed Systems, DLT, Nash Equilibria, Tangle.

iii

iv

Contents

List of Figures vii

List of Tables ix

Organization of the work 1

I Part One - Random Auto Peering 3

1 Introduction 5
1.1 Distributed systems and peer-to-peer networks - from ARPA to DLTs 5
1.2 Peering Algorithms . 8
1.3 A Particular Auto Peering Algorithm . 8

2 The Random Auto Peering Model 11
2.1 Definition of the Mathematical Model . 11
2.2 A transient regime solution for the synchronized problem 12

2.2.1 Probability Distribution of the Acceptance Metrics of the Realised Connections 13
2.2.2 Additional Properties of the Process . 16

2.3 Another practical application to the synchronized solution 18
2.3.1 Bounds on the probability of acceptance for p > 0 19

2.4 Solutions for the generalized (p > 0) model . 22
2.4.1 Stationary distribution . 24
2.4.2 Some approximations . 26
2.4.3 Heuristic approximations . 31

3 Results 33
3.1 The life cycle of a connection . 34

3.1.1 A Real Life Example . 38
3.2 Final remarks . 39

3.2.1 Open questions . 41

II Part Two - Nash Equilibria and Tip Selection Algorithms 43

4 Equilibria in the Tangle 45
4.1 Article - Equilibria in the Tangle . 45

v

vi CONTENTS

4.2 Introduction . 45
4.3 Description of the model . 47

4.3.1 On attaching a new transaction to the Tangle 49
4.4 Selfish nodes and Nash equilibria . 52

4.4.1 Some further assumptions and definitions . 53
4.4.2 Main results . 55
4.4.3 Proofs . 56

4.5 Simulations . 60
4.5.1 One dimensional Nash equilibria . 61

4.6 Conclusions and future work . 65

Bibliography 67

List of Figures

1.1 Pencil drawing of the four node Arpanet map, from december 1969. Available at
https://www.computerhistory.org/collections/catalog/102658020 5

1.2 ARPANET logical map, circa 1977 . 6
1.3 Napster’s architecture. Extracted from [Anh08] . 7
1.4 Gnutella’s architecture. Extracted from [Anh08] . 7

2.1 Density functions of dk(i), for k = 8 and some values of i 15
2.2 Density functions P (m,n), for some values of m . 17
2.3 Exact expression for the bound p on the probability of acceptance of a request, for

some values of k, under the assumption that the requests are received by the accepting
node exactly every 1

λ units of time. 21
2.4 Approximated expression for the bound p on the probability of acceptance of a re-

quest, under the assumption that the requests are received by the accepting node
exactly every 1

λ units of time. 21
2.5 Transformation w −→ x(w) = p

p+wk for some values of p
k 27

2.6 Absolute difference between the exact and approximated solutions for some selected
values of k and p . 29

2.7 Exact solution fex for some selected values of k. 31
2.8 Logarithm of the exact and empirically approximated solutions for some selected

values of k . 32
2.9 Absolute difference between the exact and empirically approximated solutions for

some selected values of k and p . 32

3.1 Values of function f(k, p) for some selected values of k 37
3.2 Region defined by the graphs of the functions f(2, p) and lim

k→+∞
f(k, p), for small p . 37

3.3 Values of the eclipsing probability PEC(N, 4, 5) . 40

4.1 On the DAGs we are considering: the genesis vertex is on the left, and the tips are
grey . 48

4.2 The walk on the tangle and tip selection. Tips are circles, and transactions which
were approved at least once are disks. 51

vii

viii LIST OF FIGURES

4.3 On the main idea of the proof of Theorem 4.4.3. The node with the highest cost
will switch to the strategy of the node with the lowest cost. That will not guarantee
exactly that same cost to the former node, but the difference will be rather small
since N is large (so the change in one component of the strategy vector will not
influence a lot the outcome). 58

4.4 Why the “greedy” tip selection strategy will not work (the two “best” tips are shown
as larger circles). 60

4.5 Cumulative distribution of time of approvals for several values of α and λ 61
4.6 Dotted lines are the raw data. Solid lines were fitted with least squares polynomials

of four-degree. Costs (a) and gain of the strategy S1 over S0; (b) for α = 0.01. 62
4.7 Different Nash equilibrium points in systems with similar curves 63
4.8 Costs (a) and gain (b) of the strategy S1 over S0; for α = 0.5. 64
4.9 Relative cost increase of the transactions issued by the strategy S0 induced by the

presence of transactions emitted by the strategy S1. 64
4.10 Costs (a) and gain (b) of the strategy S1 over S0; for α = 0.05. 65
4.11 Costs (a) and gain (b) of the strategy S1 over S0; for α = 1. 65

List of Tables

3.1 Relevant solutions on the range [0, 1] for equation (3.4) and k = 2 and k →∞ 38

3.2 Values of p and E(dSk), for values of k = 2, . . . , 10 and
T

h
= 360 39

3.3 Values of m, λ, LT, propconn and Nc, for values of k = 2, . . . , 10 and
T

h
= 360 39

ix

x LIST OF TABLES

Organization of the work

This thesis is divided in two parts: “Random Auto Peering” and “Nash Equilibria and Tip
Selection Algorithm”. Despite being related, the two parts can be read independently.

In the first part, we present, model and analyze an randomized automated peering model, that
can be implemented to any distributed system, and not only to DAG-based distributed ledgers.

In the second part, we present an article published in the volume 136 of the journal Computers
& Industrial Engineering, at October of 2019 (DOI 10.1016/j.cie.2019.07.025). The paper analyzes
the Nash Equilibria of a graph attachment game, defined to represent the different strategies that
malicious actors can use to take certain advantages in a DAG-based distributed ledger system.

1

2 LIST OF TABLES 0.0

Part I

Part One - Random Auto Peering

3

Chapter 1

Introduction

1.1 Distributed systems and peer-to-peer networks - from ARPA
to DLTs

A distributed system can be defined as a set of computers (called nodes) working together,
independently, towards a common goal. The nodes interact and coordinate their work by messaging
each other, without any form of central coordination.

A peer-to-peer (P2P) network of a distributed system is formed of a set of equally privileged
nodes, which share their resources (as information or processing power) directly to the other par-
ticipants, without having to share them through servers or another kind of centralized entity
[Bar01, Sch01].

Figure 1.1: Pencil drawing of the four node Arpanet map, from december 1969. Available at
https://www.computerhistory.org/collections/catalog/102658020

P2P networks have been used since the late 60’s, with the conception of the ARPANET (an
experimental computer network, precursor to the Internet), that originally connected the Univer-
sity of California Los Angeles, the Stanford Research Institute, the University of California Santa
Barbara and the University of Utah as equal computing peers. Figure 1.1 is a pencil drawing of the
original (1969) ARPANET and Figure 1.2 represents the same network in 1977.

5

6 INTRODUCTION 1.1

Figure 1.2: ARPANET logical map, circa 1977. Available (among a collection of other ARPANET logical
maps from different years) at http://mercury.lcs.mit.edu/∼jnc/tech/arpalog.html

Despite conceptually being more than 50 years old, P2P networks were popularized by the
file sharing system Napster -originally released in 1999-, that allowed users to search some of its
neighbors’ directories for MP3 files and download them directly, without the intervention of a
central node. Nevertheless, Napster relied on a centralized indexing server (see Figure 1.3), that
was susceptible to being shutdown by regulators. Consequently, Napster ceased its activities in their
original form in July 2001.

1.2 DISTRIBUTED SYSTEMS AND PEER-TO-PEER NETWORKS - FROM ARPA TO DLTS 7

Figure 1.3: Napster’s architecture. Extracted from [Anh08]

After Napster’s shutdown, a new P2P file sharing system called Gnutella became popular; in
this system, there is no central database or indexing. Also, there are many different clients available
to access this network. These particularities make the Gnutella protocol less vulnerable to being
shut down by authorities -or even by attackers- than Napster was.

Figure 1.4: Gnutella’s architecture. Extracted from [Anh08]

Almost one decade later, in 2009, the first functional distributed ledger went live, the Bitcoin
Network. Distributed ledgers (or DLTs, from distributed ledger technology) are P2P systems which
goal is to store and reach consensus over data, such as financial transactions or any other information
that possibly needs to be verified and agreed by the involved parts. The main difference between
DLTs and the previous introduced distributed systems is the presence of a consensus mechanism
protocol besides the decentralized information sharing protocol.

For any of these protocols already introduced, the number of nodes is, in general, relatively
large; therefore, in practice, a node cannot share its information directly to all the other nodes.
For that reason, in the next section, we introduce the concept of a peering (or connection to peers)
algorithm.

8 INTRODUCTION 1.3

1.2 Peering Algorithms

Since we cannot have a complete graph of communication in most of the distributed systems
applications, we must introduce the concept of a peering algorithm. When a node first joins the
network, it will not have any other node connected to it; in fact, it will not even be aware of the
others nodes’ existence. In order to establish its first connections, the node will have to rely on a
centralized list of nodes, as a bootstrap. Then, it can ask the elements of this list for their known
nodes, and so on. This process is what we call a peer discovering algorithm.

After the node already discovered a substantial number of possible connections, it will have to
choose a small portion of them to be its direct peers. These will be the set of nodes that will directly
exchange all kind of information with it. The reason behind the requirement of choosing a small
amount of peers from a large list (instead of discovering a small portion of the nodes and connecting
to all of them or even sticking with the original bootstrapping list) is, besides the clustering effects
of the network around the bootstrap list, the need of an homogeneous flow of information over the
graph. Roughly speaking, if a new node connects to others that were introduced to it by a neighbor,
the information received by all of them will be very similar. This creates a form of an echo chamber.
Moreover, with this kind of network growth, a malicious entity can eclipse a chosen region by just
introducing a large amount of his own nodes to the newcomers. We call this second phase of the
neighbor choosing process the peering algorithm. Furthermore, any peering algorithm where the
nodes choose their neighbors without any manual intervention by the node operator is called an
auto peering algorithm.

1.3 A Particular Auto Peering Algorithm

Since this work consists in modeling and analyzing only the auto peering algorithm1, we assume
that a suitable peer discovery phase was already performed and finished. Then, each of the nodes
i = 1, . . . , N must set:

1. a fixed public node id (a 32 bytes string called node_id(i)).

2. a public salt (a 20 bytes string called pub_salt(i)).

3. a private salt (a 20 bytes string called priv_salt(i)).

The neighbor selection -and, in particular, the decision about which potential neighbors are
preferable- is made based on two different distances between nodes, that depend on the node id,
private and public salts.

We define the requesting distance between node A and B as follows:

dreq(A,B) = hash(node_id(A))⊕ hash(node_id(B) + pub_salt(A))

where ⊕ denotes the exclusive or (XOR) operation and any appropriate hash function can be used.
To request a new connection, node A must calculate dreq(A,B) for all known nodes and order
them by this distance. After that, the node requests connections, from the closest to the farthest,
until k of these requests are accepted by the other nodes (and, consequently, the connections are
established).

We also define the accepting distance between node B and A as

dacc(B,A) = hash(node_id(B))⊕ hash(node_id(A) + priv_salt(B)).

A node B will accept a request from a node A whenever:

1. it is currently peered with less than k other nodes or
1This algorithm is intended to be used in the IOTA network (see www.iota.org)

1.3 A PARTICULAR AUTO PEERING ALGORITHM 9

2. dacc(B,A) < dacc(B,C) for some C in the set of B’s accepted peers. In this case, node B will
drop the connection to its farthest accepted node.

Both private and public salts will be periodically updated; consequently, the distances that
depend on them will periodically change. The private salts can be set on each node’s volition2,
whereas the public salts must be set using a hash chain3. When salts are generated with the aid of
hash-chains, the moment the first salt is published, the node cannot choose salts at its own volition
anymore and has to stick for a long time to the salts generated by the hash chain, since they are
publicly verifiable. This way, a node will commit to a certain salt sequence and will not be able
to game the requesting process by forcing its requesting distances to always be close to a certain
target.

Notice that each node will aim to have 2k connections -half of them established by requesting
other nodes, and the second half established by accepting other nodes’ requests-, but, in general,
the nodes will have a random number of connections less or equal than k, implying the non-
regularity of the associated graph of connections. Also notice that, since all the public and private
salts are independently set, the requesting and accepting distances between a pair of nodes will
be uncorrelated. Also, the requesting (or accepting) distances between different pair of nodes are
independently and uniformly distributed (since they are obtained from a hash function), implying
that every pair of nodes will have the same average probability of being connected over time.

Finally, let us define what does it mean for a malicious node (or set of nodes) to try to attack
the system. Since each node aims at 2k connections, the probability of a malicious actor successfully
peering with a single target will be roughly 2k/N , where N is the total number of nodes in the
network. We say that a node is successfully being attacked if a malicious entity can enforce a
probability of peering with it significantly larger than 2k/N . Observe that the requesting distances
depend only on public information. This way, the nodes can verify if a certain request was probably
done by following the protocol or not, by evaluating if the distance has an appropriate order of
magnitude. Furthermore, if the salts are generated with the aid of hash-chains, the nodes commit
to a long sequence of salts, making virtually impossible a successful attack to be sustained for a
large amount of time. Now, as the acceptance will depend on a variable only known by the accepting
node (the private salt), whether an attacker will or will not establish a connection with a target is
completely unpredictable to the attacker itself. So, with this algorithm, network topology does not
need to be kept secret to prevent attacks.

Hence, our goal is to analyse if the presented algorithm provides:

1. a negligible probability of an attack by a malicious actor to be successful

2. a reasonable message overhead

3. a reasonable distribution of the numbers of peers of a node

2A node can also commit to a sequence of private salts by using a hash chain and revealing the already used
private salts. This way, if the node lies about a certain acceptance distance, the other nodes will know that after
some time

3A Hash Chain is a successive application of a hash function H to a certain secret number S. Then, the sequence
will be used backwards, meaning that, if i < j, the user will always reveal Hj(S) before Hi(S); this way, the next
number of the sequence can be only predicted by breaking the hash chain, while the other users can verify if the
sequence has been used correctly comparing the hash of the last number to the second to last.

10 INTRODUCTION 1.3

Chapter 2

The Random Auto Peering Model

In this chapter we will mathematically define the random auto peering model used in the
current work, and will present two analytical solutions: the first one, a solution to the transient1

regime of the synchronized expiration problem; the second one, a solution to the equations of the
asynchronous problem in its stationary regime (the difference between these two problems will be
later well defined).

2.1 Definition of the Mathematical Model

The mathematical model can be informally described as follows: Consider a complete graph
Kn with n vertices -which we will denote as nodes- as the network of possible connections. Each
node’s goal is to establish a number k of realized connections. The procedure to establish these
connections will depend on two different metrics2 Y (the requesting metric) and X(the acceptance
metric). The algorithm will proceed as follows: Every node i will use an individual random request
metric Y (i, ·) to determine its order of preferred nodes, and will send requests in this said order.
On the other hand, each node j receiving a request from i will accept it either if j has less than k
connections or if the acceptance metric X(j, i) is lower than the acceptance metric of at least one
of its current accepted nodes. In this case, we drop the connection with the node of largest metric
and accept the new request.

Every node will drop all accepted and requested connections periodically and update all their
distances, after a fixed amount of time T . We say that a connection has expired if it was dropped
by this reason. This process can be made asynchronously (meaning that each node will drop its
connections at different points in time) or in a synchronized manner (meaning that every node will
drop its connections at the same time). If one of your connections was dropped by another node,
making your number of connections lower than k, then you will resume the requesting procedure
until you obtain k connections again.

In this work, we consider two independent metrics and therefore two independent orderings, one
for requests and one for acceptances, both given by i.i.d. uniform random variables in the interval
[0, 1]. Hence, in general, Y (i, j) 6= Y (j, i), X(i, j) 6= X(j, i), and Y (i, j) 6= X(j, i).

Before we formally describe the model, we define the variables ai(t) and bi(t)), as long as the
set Ai(t), as:

1. ai(t): number of requests that node i has accepted and to which it is still connected. The
respective set of such nodes is denoted by Ai(t).

2. bi(t): number of distinct nodes that requested a connection to i before time t.
1Here, we use the word transient in the physics sense, i.e., as a synonym of something that has some or all of its

properties evolving with time.
2The word metric is not used as in the metric spaces theory sense; for instance, we do not claim that the triangle

inequality holds.

11

12 THE RANDOM AUTO PEERING MODEL 2.2

These variables defined above will also be updated every time each nodes’ connections expire.

Definition 2.1.1 (Random Auto Peering Model). Consider the complete graph Kn (with n ver-
tices), together with the request metric {Y (i, j)}(i,j)∈V (Kn)×V (Kn) and acceptance metric
{X(i, j)}(i,j)∈V (Kn)×V (Kn), both given by i.i.d. uniform random variables3 in the interval [0, 1]. For
every node we have a sequence of non simultaneous incoming requests, forming an Poisson process
with rate λ. Since the acceptance metrics are independent of the requesting ones, we only worry here
about the accepting process.

1. For each node z, on each Poisson event, there is a probability p that one and only one of its
connections will vanish4. The exact connection that will disappear will be chosen uniformly at
random. In that case, the incoming request will be instantly accepted by z, no matter how large
the acceptance metric U [0, 1] is (since, in this case, node z will have less than k connections).

2. Otherwise (i.e., with probability 1− p), node z will have to compare the acceptance metric of
the incoming request to the metric of its current connections. In that case, if node i requested
z for a connection at a Poisson event at instant t, then z will accept the connection either if
az(t) < k or if az(t) = k but i satisfies

X(z, i) < max
j∈Az(t)

X(z, j),

In the second case z drops the connection with arg max
j∈Az(t)

X(z, j) and replace it with i.

3. z will drop all its connections every T units of time

In order to calculate all relevant parameters for the practical peering problem, we must evaluate
how the probability of a request being accepted evolves with time. In the next two sections we
answer to this question, under certain additional simplifications.

2.2 A transient regime solution for the synchronized problem

In this section, we find the distribution of some of the relevant variables of the problem, under
the additional hypothesis that all the nodes drop connections at the same time. Without loss of
generality, we assume that the last expiration time was at t = 0. Since we are interested in the
behaviour of the problem in the interval [0, T) -given that after t = T the accepted node will drop
connections itself-, we know that none of the accepted connections will expire in that period; in
other words, we can assume p = 0. For each time t and node z, we define the following parameters:

• i = bz(t), i.e., the number of requests that node z received in the interval [0, t).

• (dj(i))j=1,...,min(k,i) is the ordered permutation5 of the set {X(z, j)}j∈Az(t), meaning that if
j1 < j2, then dj1(i) < dj2(i).

This way, for each node, the problem can be summarized as a Poisson process of rate λ of
incoming requests, with the following accepting rule: A node z accepts the ith received request,
where i = bz(t), made by m, either if az(t) < k or if az(t) = k but m satisfies

X(z,m) < dk(i− 1);

3i.e., for each ordered pair of different vertices, we have independent metrics, toting up to 2n2 i.i.d variables.
4this probability p was added to the model to take into account the possibility of one of the accepted connections

being dropped by the requesting node for any reason, as for instance, the expiration of its connections.
5the reason behind the dependency on i of these variables is that, the larger is the number of requests that a node

has already received, the smaller tend to be the metrics of the accepted connections.

2.2 A TRANSIENT REGIME SOLUTION FOR THE SYNCHRONIZED PROBLEM 13

or in other words, if the accepting request of node m as calculated by z is smaller than the largest
acceptance metric among z’s connections. In the second case z drops the connection with the node
associated to dk(i−1) and replaces it with a connection to m. Notice that since the distributions of
the acceptance metric does not actually depend on the requester (neither depends on the requested
node), we can identify the acceptance metrics based on their Poisson event instead of based on the
associated nodes. For that reason, for each node z, if a request was made in the ith Poisson event
by node m, we define Xi = X(z,m). Finally, we assume that z will drop all its connections at time
t = T .

2.2.1 Probability Distribution of the Acceptance Metrics of the Realised Con-
nections

Theorem 2.2.1. Let i = bz(t) and dj(i) for j = 1, . . . ,min(k, i) defined as usual. Then, for i ≥ j:

fdj(i)(x) = Beta(j, i− j + 1) =
i!

(i− j)!(j − 1)!
xj−1 (1− x)i−j (2.1)

Also, we have, for 2 ≤ j ≤ k (note that the equation below does not depend on i and therefore is
constant over time):

fdj−1(i)|dj(i)(x|y) =
j − 1

y

(
x

y

)j−2

(2.2)

Proof. First notice that the acceptance metric of the realised connections at a certain time do not
depend on the order that the requests were made. This means that, for instance, the smallest of the
accepted metrics right after the ith Poisson event is the smallest of the metrics of all the requests
received until the ith Poisson (this last Poisson event included). In fact, the variable dj(i) will be
the jth smallest of the acceptance metrics among the i first requests. For that reason, in this proof
(and only in this proof), we extend the domain of the variable dj(i) to j ∈ N+ and i ≥ j. Let us
now find a useful relation between all the events on this process, noticing the following implications:

1. if Xi ≤ dj−1(i− 1), then dj(i) = dj−1(i− 1) ≤ dj(i− 1)

2. if dj−1(i− 1) < Xi ≤ dj(i− 1), then dj(i) = Xi ≤ dj(i− 1)

3. if dj(i− 1) < Xi, then dj(i) = dj(i− 1)

One can see that, no matter the value of Xi, if dj(i− 1) ≤ x, then dj(i) ≤ x. Next, if dj(i− 1) > x,
the only way to have dj(i) ≤ x will be by having Xi ≤ dj−1(i − 1) ≤ x or dj−1(i) ≤ Xi ≤ x; in
other words, the only way to have dj(i) ≤ x will be by having dj−1(i− 1) ≤ x and Xi ≤ x. Hence,
finally, we have the following relation between events:

{dj(i) ≤ x} = {dj(i− 1) ≤ x} ∪ [{dj−1(i− 1) ≤ x < dj(i− 1)} ∩ {Xi ≤ x}] (2.3)

We opt to solve a generalized version of this first part of the Theorem (that will be used later on its
generalized form) by considering all random variables {Xm}m∈N+ as uniforms in the interval [0, d] for
a fixed d > 0 (instead of being uniforms on [0, 1]). Consequently, all dn(m) for n = 1, . . . ,min(k,m)
and m ∈ N+ will also be variables in the range [0, d]. For the sake of organization, we call these
new scaled versions of the variables X̂m and d̂n(m). We want to prove that, in this case, the density
functions of each d̂n(m) are given by:

fd̂j(i)(x) =
i!

(i− j)!(j − 1)!

xj−1 (d− x)i−j

di
(2.4)

Notice that the relation (2.3) is not affected by this scaling of the variables and it is still valid.
Proceeding with the proof, since X̂i will be given by a uniform random variable in the interval [0, d],

14 THE RANDOM AUTO PEERING MODEL 2.2

independent of d̂j−1(i− 1) and d̂j(i− 1), we have, for i > j:

P{d̂j(i) ≤ x} = P{d̂j(i− 1) ≤ x}+
x

d
P{d̂j−1(i− 1) ≤ x < d̂j(i− 1)}

Observe that the event {d̂j−1(i − 1) ≤ x < d̂j(i − 1)} is equivalent to having exactly j − 1 out of
the i− 1 i.i.d. uniform random variables {X̂n}n=1,...,i−1 smaller than x. Then, it follows:

P{d̂j(i) ≤ x} = P{d̂j(i− 1) ≤ x}+
x

d
P{Bin(i− 1, x/d) = j − 1}

= P{d̂j(i− 1) ≤ x}+
x

d

(i− 1)!

(j − 1)!(i− j)!
xj−1(d− x)i−j

di−1
(2.5)

Differentiating both sides and rearranging, we get the following relation:

fd̂j(i)(x)− fd̂j(i−1)(x) =
(i− 1)!

(j − 1)!(i− j)!
xj−1(d− x)i−j−1(dj − ix)

di
(2.6)

Now, let us show by induction that (2.4) is the desired distribution. For i = j, it is straightfor-
ward6 to come to the conclusion that fd̂j(j)(x) = jxj−1/dj , that satisfies (2.4). Now, we use (2.6)
for the induction step. Assume (2.4) is valid for some i ≥ j. Then:

fd̂j(i+1)(x) = fd̂j(i)(x) + (fd̂j(i+1)(x)− fd̂j(i)(x))

by(2.6)
= fd̂j(i)(x) +

i!

(j − 1)!(i+ 1− j)!
xj−1(d− x)i−j(dj − (i+ 1)x)

di+1

by (2.4)
=

i!

(i− j)!(j − 1)!

xj−1 (d− x)i−j

di

+
i!

(j − 1)!(i+ 1− j)!
xj−1(d− x)i−j(dj − (i+ 1)x)

di+1

=
(i+ 1)!

(j − 1)!(i− j + 1)!

xj−1(d− x)i−j+1

di+1

and (2.4) is valid for every i ≥ k. Applying d = 1 to this equation, we have (2.1), that finishes the
first part of our proof. To prove (2.2), notice that, for all x ∈ [0, 1], fdj−1(i)|dj(i) as defined by (2.2)
satisfies∫ 1

x
fdj−1(i)|dj(i)(x|y)fdj(i)(y)dy =

∫ 1

x

j − 1

y

(
x

y

)j−2 i!

(i− j)!(j − 1)!
yj−1 (1− y)i−j dy

=
i!(j − 1)

(i− j)!(j − 1)!
xj−2

∫ 1

x
(1− y)i−j dy

=
i!

(i− (j − 1))!((j − 1)− 1)!
xj−2(1− x)i−j+1

or, equivalently

fdj−1(i)(x) =

∫ 1

0
fdj−1(i),dj(i)(x, y)dy

=

∫ 1

x
fdj−1(i)|dj(i)(x|y)fdj(i)(y)dy (2.7)

where fdj−1(i) and fdj(i) are known. Furthermore, the fact that fdj(i) is non negative, implies the

6Is is sufficient to notice that P{d̂j(j) ≤ x} is the same as the probability of j uniform random variables in the
interval [0, d] being smaller than x/d, i.e. P{d̂j(j) ≤ x/d} = (x/d)j

2.2 A TRANSIENT REGIME SOLUTION FOR THE SYNCHRONIZED PROBLEM 15

uniqueness of fdj−1(i)|dj(i). In fact, let f1(x, y) and f2(x, y) be two solutions7 for (2.7). Then, sub-
tracting one identity from the other, we have:

0 =

∫ 1

x
f1(x, y)fdj(i)(y)dy −

∫ 1

x
f2(x, y)fdj(i)(y)dy

=

∫ 1

x
[f1(x, y)− f2(x, y)]fdj(i)(y)dy

Since the equation above must hold for all x ∈ [0, 1], the integrand must be 0 almost everywhere.
Moreover, since fdj(i) is positive a.e., then f1 − f2 = 0 a.e, that completes the proof.

Figure 2.1 represents the density functions of dk(i), for k = 8 and some values of i.

Figure 2.1: Density functions of dk(i), for k = 8 and some values of i

Corollary 2.2.2. The variables dj(i), j = 1, . . . , k − 1 and i ≥ k are distributed as k − 1 ordered
uniform random variables in the interval [0, dk(i)].

Proof. For a fixed j < k and d = dk(i) , let yj be the jth smallest of k−1 uniform random variables
in the interval [0, d]. The variable yj , for a fixed d, has the following distribution8:

fyj |d(x|d) =
(k − 1)!

(k − j − 1)!(j − 1)!

xj−1 (d− x)k−j−1

dk−1

Then, by (2.1) applied to j = k, if d ∼ dk(i), we have that:

fyj ,d(x, d) = fyj |d(x|d)fdk(i)(d)

=
(k − 1)!

(k − j − 1)!(j − 1)!

xj−1 (d− x)k−j−1

dk−1

i!

(i− k)!(k − 1)!
dk−1 (1− d)i−k

=
i!

(k − j − 1)!(j − 1)!(i− k)!
xj−1 (d− x)k−j−1 (1− d)i−k

And

fyj (x) =

∫ 1

x

i!

(k − j − 1)!(j − 1)!(i− k)!
xj−1 (y − x)k−j−1 (1− y)i−k dy

=
i!

(j − 1)!(i− j)!x
j−1(1− x)i−j

7i.e., fi(x, y) is such that fdj−1(i)(x) =
∫ 1

x
fi(x, y)fdj(i)(y)dy

8It follows from applying i = k − 1 to (2.4).

16 THE RANDOM AUTO PEERING MODEL 2.2

that presents the same distribution as dj(i) (see equation (2.1)).

2.2.2 Additional Properties of the Process

Theorem 2.2.3. Given that a node accepts the mth received request (where m > k), this connection
will survive for exactly the n next requests with a probability given by:

P{mth request surviving for exactly n other requests} =
m

(n+m+ 1)(n+m)
(2.8)

Proof. First let us calculate the probability P̄ (m,n, k) of the mth received request surviving for
at least n following Poisson events. Let us denote Ai the event where the mth request becomes
the connection with the ith smallest metric. We know that P (Ai) = 1

k for i = 1, . . . , k, since, by
(2.2) -if the acceptance metric is unknown-, a connection has the same probability of being any of
the k current connections (recall that the metrics of the k − 1 closest neighbors at step i are k − 1
uniform random variables in the interval [0, dk(i)], where dk(i) is the metric of the furthest accepted
connection). Then, we have:

P̄ (m,n, k) =

k∑
l=1

P{mth request surviving for at least n events|Al}P (Al)

=
1

k

k∑
l=1

P{mth req. being the lth closest connec. and surviving for at least n events}

=
1

k

k∑
l=1

P{at most k − l of Xm+1, . . . , Xm+n being smaller than dl(m)}

=
1

k

k∑
l=1

P{Bin(n, dl(m)) ≤ k − l}

=
1

k

k∑
l=1

k−l∑
j=0

P{Bin(n, dl(m)) = j}

Then, the probability in which we are interested will be:

P̄ (m,n, k) =
1

k

∫ 1

0

k∑
l=1

k−l∑
j=0

(
n

j

)
xj(1− x)n−jfdl(m)(x)dx

=
1

k

∫ 1

0

k∑
l=1

k−l∑
j=0

(
n

j

)(
m

l

)
lxj+l−1(1− x)n−j+m−ldx

Switching the order between integration and sum, we have:

P̄ (m,n, k) =
1

k

k∑
l=1

k−l∑
j=0

(
n

j

)(
m

l

)
l

∫ 1

0
xj+l−1(1− x)n−j+m−ldx

=
1

k

k∑
l=1

k−l∑
j=0

(
n

j

)(
m

l

)
l
(j + l − 1)!(n+m− l − j)!

(n+m)!

2.2 A TRANSIENT REGIME SOLUTION FOR THE SYNCHRONIZED PROBLEM 17

Rearranging the sums, with the change of variables q = l + j, we find:

P̄ (m,n, k) =
1

k

k∑
q=1

q∑
l=1

(
n

q − l

)(
m

l

)
l
(q − 1)!(n+m− q)!

(n+m)!

=
1

k

k∑
q=1

(q − 1)!(n+m− q)!
(n+m)!

q∑
l=1

n!

(q − l)!(n− q + l)!

m!

(l − 1)!(m− l)!

=
1

k

k∑
q=1

(q − 1)!(n+m− q)!
(n+m)!

m

(q − 1)!

(m+ n− 1)!

(m+ n− q)!

=
1

k

k∑
q=1

m

(n+m)
=

m

(m+ n)

Notice that this probability does not depend on k. Then, the probability P (m,n) of the mth

request received surviving for exactly n requests will be given by P̄ (m,n) − P̄ (m,n + 1). Using
the relation found above, we have:

P (m,n) =
m

(m+ n)
− m

(n+m+ 1)

=
m

(n+m+ 1)(n+m)

Figure 2.2 shows the density functions P (m,n), for some values of m.

Figure 2.2: Density functions P (m,n), for some values of m

Theorem 2.2.4. Given that a request is the ith one received by a node, for the model with p = 0,
the probability of acceptance is

pI(i) =

1, if 1 ≤ i ≤ k
k

i
, if i > k

(2.9)

Proof. If i > k, the probability of acceptance conditioned of the request being the ith received by
a node will be the same as the probability of the acceptance metric of the ith request (a uniform

18 THE RANDOM AUTO PEERING MODEL 2.3

U [0, 1]) being smaller than dk(i− 1):

pI(i) = P{U [0, 1] < dk(i− 1)}

=

∫ 1

0
P{U [0, 1] < dk(i− 1)|dk(i− 1) = y}fdk(i−1)(y)dy

=

∫ 1

0
y

(i− 1)!

(i− 1− k)!(k − 1)!
yk−1 (1− y)i−1−k dy

=
k

i

If i ≤ k, then the request will be accepted with probability 1.

2.3 Another practical application to the synchronized solution

Let us introduce another problem related to the synchronized model studied in the last section.
Suppose that the expiration of the connections occur in a asynchronous manner; in other words all
the nodes will drop their connections independently and at different points in time. In that case,
we cannot assume that p = 0 as in the last section, since the expiration effects are not negligible.
However, it can be shown that the solution assuming p = 0 serves as a bound to the solution for
p > 0, as in the following proposition:

Proposition 2.3.1. For the non-simplified problem (i.e., for p > 0), the acceptance metrics domi-
nate the analogous acceptance metrics for the case p = 0; in other words, if d̂j(i) is the jth smallest
accepting metric among the realised connections at time i for the case p > 0, and dj(i) is the jth

smallest accepting metric at time i, for the case p = 0, then:

P{d̂j(i) ≥ x} ≥ P{dj(i) ≥ x}

whenever these variables are well defined.

Proof. Let D̂(i) = {d̂1(i), . . . , d̂k(i)} be the set of accepting metrics of the realised connections of a
certain node at a certain point i in time. Let us study the evolution of this set, for the case p > 0.
If X̂ is the acceptance metric of the next incoming request, Y ∼ Ber(p) (related to the event where
one of the connections expire) and Zi is the event where Y = 1 and the expired connection is the
one with the ith smallest acceptance metric, we have that:

• If Y = 1, then d̂1(i+ 1) =

{
min(X̂, d̂2(i)), on Z1

min(X̂, d̂1(i)), on Z{
1

• If Y = 1, then d̂j(i+ 1) =

max(min(X̂, d̂j+1(i)), d̂j(i)), on ∪j−1

l=1 Zl

min(max(X̂, d̂j−1(i)), d̂j+1(i)), on Zj
min(max(X̂, d̂j−1(i)), d̂j(i)), on ∪kl=j+1 Zl

• If Y = 1, then d̂k(i+ 1) =

{
max(X̂, d̂k−1(i)), on Zk
max(X̂, d̂k(i)), on Z{

k

• If Y = 0 and 1 < j ≤ k, then d̂j(i+ 1) = min(d̂j(i),max(X̂, d̂j−1(i)))

• If Y = 0, then d̂1(i+ 1) = min(d̂1(i), X̂)

On the other hand, let D(i) = {d1(i), . . . , dk(i)} is the set of accepting metrics of the connections
of a certain node at a certain point i in time for the case p = 0. If X = X̂ is the acceptance metric
of the next incoming request, then:

2.3 ANOTHER PRACTICAL APPLICATION TO THE SYNCHRONIZED SOLUTION 19

• For any Y and 1 < j ≤ k, we have dj(i+ 1) = min(dj(i),max(X, dj−1(i)))

• For any Y , we have d1(i+ 1) = min(d1(i), X)

We want to prove by induction that dj(i) ≤ d̂j(i) for all 1 ≤ j ≤ k and i ∈ Z. Thus, if we
additionally assume that dj(i) ≤ d̂j(i) for all 1 ≤ j ≤ k and some fixed i ∈ Z, we have that

• If Y = 1, then d1(i+ 1) =

{
min(X, d1(i)) ≤ min(X̂, d̂2(i)) = d̂1(i+ 1), on Z1

min(X, d1(i)) ≤ min(X̂, d̂1(i)) = d̂1(i+ 1), on Z{
1

• If Y = 1 and 1 < j ≤ k, then

dj(i+ 1) = min(dj(i),max(X, dj−1(i)))

≤

dj(i) ≤ max(min(X̂, d̂j+1(i)), d̂j(i) = d̂j(i+ 1)), on ∪j−1

l=1 Zl

min(max(X̂, d̂j−1(i)), d̂j+1(i)) = d̂j(i+ 1)), on Zj
min(max(X̂, d̂j−1(i)), d̂j(i)) = d̂j(i+ 1)), on ∪kl=j+1 Zl

• If Y = 1, then

dk(i+ 1) = min(dk(i),max(X, dk−1(i)))

≤
{

max(X, dk−1(i)) ≤ max(X̂, d̂k−1(i)) = d̂k(i+ 1), if Z = 1

max(X, dk−1(i)) ≤ max(X̂, d̂k(i)) = d̂k(i+ 1), if Z = 0

• If Y = 0, then

dj(i+ 1) ≤ min(dj(i),max(X, dj−1(i))) ≤ min(d̂j(i),max(X̂, d̂j−1(i))) = d̂j(i+ 1)

d1(i+ 1) ≤ min(d1(i), X) ≤ min(d̂1(i), X̂) = d̂j(i+ 1)

meaning that dj(i + 1) ≤ d̂j(i + 1) for all 1 ≤ j ≤ k. Now, we want to prove that this is valid
for some relatively small i∗ ∈ N+. Let i∗ be the first time step in which all the connection are
established for the case p > 0 (notice that i∗ is a random variable). Then, by construction, D̂(i∗)
will be a set of k i.i.d uniform random variables. On the other hand, since for the case p = 0 all the
connection were already established since i = k, we have:

dj(i
∗) ≤ dj(k)

and since dj(k) ∼ d̂j(i
∗), given that both sets D̂(i∗) and D(k) are constituted by k i.i.d uniform

random variables, we finally have

P{d̂j(i∗) ≥ x} ≥ P{dj(i∗) ≥ x}

that finishes our proof.

2.3.1 Bounds on the probability of acceptance for p > 0

To estimate a bound to the probability of acceptance of a given request, with no further infor-
mation about the accepting node, we need to calculate the probability distribution of the number
of Poisson events of this node’s acceptance process since the last expiration of its connections. We
first assume that the time since the last expiration is given by a uniform random variable in the
interval (t− T, t). Then, we proceed in two different manners:

1. assuming that the requests were received by the accepting node exactly every 1
λ units of time

(that is to say, the incoming requests do not configure a Poisson process anymore)

20 THE RANDOM AUTO PEERING MODEL 2.3

2. assuming that the requests were received as a Poisson process of rate λ

The following two propositions will present bounds to the probability of acceptance of a request,
for each of these two cases.

Proposition 2.3.2. The probability of acceptance p̂A of a request, if the requests are received by
the accepting node exactly every 1

λ units of time, is bounded by

p̂A ≥ pA ≈

k

λT

[
1 + log

(
λT

k

)]
, if λT > k

1, if λT ≤ k
(2.10)

Proof. It follows from theorem 2.2.4. We have that, for λT > k:

p̂A ≥ pA =
∞∑
i=1

pI(i)P{asking a node that has been requested i− 1 times}

=
k∑
i=1

1

Tλ
+

λT∑
i=k+1

1

Tλ

k

i
=

k

Tλ
(1 +HTλ −Hk)

where Hj stands for the jth harmonic number9. In order to estimate the value of this function, we
bound the harmonic number as follows ([You91])

1

2(n+ 1)
< Hn − log(n)− γ < 1

2n

where γ is the Euler-Mascheroni constant. Then:∣∣∣∣HTλ −Hk − log

(
λT

k

)∣∣∣∣ < 1

2k
− 1

2(1 + λT)

and finally

p̂A ≥ pA ≈
k

Tλ

[
1 + log

(
λT

k

)]
Analogously, for λT ≤ k, we will have :

p̂A ≥ pA =
∞∑
i=1

pI(i)P{asking a node that has been requested i− 1 times}

=

Tλ∑
i=1

1

Tλ
= 1

Notice that lim
T→∞

pA = lim
T→∞

k

Tλ

[
1 + log

(
λT

k

)]
= lim

T→∞

k2

λ2T
= 0. This behaviour is consistent

with the results found in the last section, since if T →∞, the distribution of the acceptance metric
of the farthest connection will tend to get smaller over time (see Figure 2.1).

Analogously to the last proposition, we now present a bound to the probability of acceptance
of a request (given the last time since expiration of the queried node’s connections), for the case
where the requests arrive following a Poisson Process of rate λ.

Proposition 2.3.3. Given that the auto peering starting point of a given node n was t units of time
ago and requests are received following a Poisson process of rate λ, the probability p̂t of a request

9Hx =
∑x

i=1
1
i

2.3 ANOTHER PRACTICAL APPLICATION TO THE SYNCHRONIZED SOLUTION 21

Figure 2.3: Exact expression for the bound p on the probability of acceptance of a request, for some values
of k, under the assumption that the requests are received by the accepting node exactly every 1

λ units of time.

Figure 2.4: Approximated expression for the bound p on the probability of acceptance of a request, under
the assumption that the requests are received by the accepting node exactly every 1

λ units of time.

being accepted by this node is bounded by:

p̂t ≥ pt =
λtΓ(k, λt)− Γ(k + 1, λt) + kΓ(k)

λtΓ(k)
(2.11)

22 THE RANDOM AUTO PEERING MODEL 2.4

Proof.

p̂t ≥ pt =

∞∑
i=1

P{a node receiving i− 1 requests in t seconds}pI(i)

=
k∑
i=1

P{a node receiving i− 1 requests in t seconds}

+
∞∑

i=k+1

P{a node receiving i− 1 requests in t seconds}k
i

= exp(−λt)
k∑
i=1

(λt)i−1

(i− 1)!
+
k exp(−λt)

λt

∞∑
i=k+1

(λt)i

i!

=
λtΓ(k, λt)− Γ(k + 1, λt) + kΓ(k)

λtΓ(k)

2.4 Solutions for the generalized (p > 0) model

In this section, we find the equations governing the distribution of the variables dj(i), for j =
1, . . . ,min(k, i) and i ∈ N, as defined previously (in other words, the jth smallest acceptance metric
among the realised connections of a node after the ith request has taken place), for the case p > 0.
A major difference between the two models is that the present one does depend on the order that
the requests were made. For instance, take the first accepted request: no matter how small is its
acceptance metric, it will have a probability of at least 1−

(
1− p

k

)n of being dropped after n other
requests were received. For that reason, we treat the present model differently, finding relations
between subsequently sets (dj(i))j=1,...,min(k,i) and (dj(i+ 1))j=1,...,min(k,i+1).

Let us call Zj the event of probability p/k of the jth smallest accepted connection (i.e., the one
with the jth smallest acceptance metric dj(i)) being dropped by the requester and Z = ∪Zj (recall
that at most one of the connections might get dropped, so these events are actually disjoint). Let
us also call Xi the acceptance metric of the request received at step i of the process. By the law of
total probability, we have that, for 1 < n < k:

P {dn(i+ 1) ≤ x} = P
{
dn(i+ 1) ≤ x|Z{

}
P
{
Z{
}

+ P
{
dn(i+ 1) ≤ x|

n−1⋃
j=1

Zj

}
P
{ n−1⋃
j=1

Zj

}
+ P {dn(i+ 1) ≤ x|Zn}P {Zn}

+ P
{
dn(i+ 1) ≤ x|

k⋃
j=n+1

Zj

}
P
{ k⋃
j=n+1

Zj

}

2.4 SOLUTIONS FOR THE GENERALIZED (P > 0) MODEL 23

Since P {Zj} = p
k for each j and P{Z{} = 1− p, we have:

P {dn(i+ 1) ≤ x} = P
{
dn(i+ 1) ≤ x|Z{

}
(1− p)

+ P
{
dn(i+ 1) ≤ x|

n−1⋃
j=1

Zj

}p(n− 1)

k

+ P {dn(i+ 1) ≤ x|Zn}
p

k
(2.12)

+ P
{
dn(i+ 1) ≤ x|

k⋃
j=n+1

Zj

}p(k − n)

k

Now, let us reason about the four terms on the right. First, the event of dn(i+ 1) being smaller
than x, given that none of the connections is dropped will occur if and only if one of the following
conditions is satisfied:

• dn(i) is smaller than x and Xi+1 is larger than x or

• dn−1(i) is smaller than x and Xi+1 is smaller than x

Hence, concretely, we have{
dn(i+ 1) ≤ x|Z{

}
= {dn(i) ≤ x;Xi+1 > x}

⋃
{dn−1(i) ≤ x;Xi+1 ≤ x}

Analogously, we can find the following relations for the other three events on equation (2.12):

{
dn(i+ 1) ≤ x|

n−1⋃
j=1

Zj

}
= {dn+1(i) ≤ x;Xi+1 > x}

⋃
{dn(i) ≤ x;Xi+1 ≤ x}

{dn(i+ 1) ≤ x|Zn} = {dn+1(i) ≤ x;Xi+1 > x}
⋃
{dn−1(i) ≤ x;Xi+1 ≤ x}{

dn(i+ 1) ≤ x|
k⋃

j=n+1

Zj

}
= {dn(i) ≤ x;Xi+1 > x}

⋃
{dn−1(i) ≤ x;Xi+1 ≤ x}

Since Xi+1 is a uniform random variable in the interval [0, 1], independent of dn(i), dn+1(i) and
dn−1(i), we have, for any 1 ≤ m ≤ k:

P {dm(i) ≤ x;Xi+1 > x} = P {dm(i) ≤ x}P {Xi+1 > x} = P {dm(i) ≤ x} (1− x)

P {dm(i) ≤ x;Xi+1 ≤ x} = P {dm(i) ≤ x}P {Xi+1 ≤ x} = P {dm(i) ≤ x}x

Substituting the above relations into equation (2.12), results:

P{dn(i+ 1) ≤ x} = P{dn(i) ≤ x}
[
(1− p)(1− x) +

p(n− 1)

k
x+

p(k − n)

k
(1− x)

]
+ P{dn−1(i) ≤ x}

[
p

k
x+ (1− p)x+

p(k − n)

k
x

]
+ P{dn+1(i) ≤ x}

[
p(n− 1)

k
(1− x) +

p

k
(1− x)

]

24 THE RANDOM AUTO PEERING MODEL 2.4

With analogous calculations for n = 1 and n = k, we find:

P {d1(i+ 1) ≤ x} = P
{
d1(i+ 1) ≤ x|Z{

}
P
{
Z{
}

+ P {d1(i+ 1) ≤ x|Z1}P {Z1}

+ P
{
d1(i+ 1) ≤ x|

k⋃
j=2

Zj

}
P
{ k⋃
j=2

Zj

}
= x+ [k − kx− p+ px]

1

k
P{d1(i) ≤ x}+

p

k
(1− x)P{d2(i) ≤ x}

P {dk(i+ 1) ≤ x} = P
{
dk(i+ 1) ≤ x|Z{

}
P
{
Z{
}

+ P
{
dk(i+ 1) ≤ x|

k−1⋃
j=1

Zj

}
P
{ k−1⋃
j=1

Zj

}
+ P {dk(i+ 1) ≤ x|Zk}P {Zk}
= [−pk + p+ k]

x

k
P{dk−1(i) ≤ x}

+ [k − kx− pk + 2pkx− px]
1

k
P{dk(i) ≤ x}

The last three equations describe the evolution of the process and will be used in the next
section to find the stationary distribution of the problem.

2.4.1 Stationary distribution

Let us find the stationary distributions (dS1 , . . . , d
S
k) of the problem, given by the system of

functional equations10:

kx+ [−kx− p+ px]P{dS1 ≤ x}+ p(1− x)P{dS2 ≤ x} = 0

[−pn+ p+ k]xP{dSn−1 ≤ x}+ [−kx− pn+ 2pnx− px]P{dSn ≤ x}
+ pn(1− x)P{dSn+1 ≤ x} = 0 if 1 < n < k

[−pk + p+ k]xP{dSk−1 ≤ x}+ [−kx− pk + 2pkx− px]P{dSk ≤ x} = 0

(2.13)

Proposition 2.4.1. The solution to the system (2.13) is, for 1 ≤ n ≤ k:

P (dSn ≤ x) =

∑k
i=n

(
x

1−x

)i∏i
j=1

−pj+k+p
jp

1 +
∑k

i=1

(
x

1−x

)i∏i
j=1

−pj+k+p
jp

(2.14)

Proof. First notice that the system above can be represented as Mkxk = yk, where:

Mk =

a1 b1
c1 a2 b2

c2
.
. bk−1

ck−1 ak

 , xk =

P{dS1 ≤ x}
P{dS2 ≤ x}

...
P{dSk−1 ≤ x}
P{dSk ≤ x}

 and yk =

−kx

0
...
0
0

 .

10In order to (dS1 , . . . , d
S
k) be a stationary distribution, the system (2.13) must hold for all x ∈ [0, 1]

2.4 SOLUTIONS FOR THE GENERALIZED (P > 0) MODEL 25

and

an = −kx− pn+ 2pnx− px
bn = pn(1− x)

cn−1 = (−pn+ p+ k)x

Then, the determinant of the matrix Mk can be calculated using the following recursive relation:

det(Mn) = an det(Mn−1)− bn−1cn−1 det(Mn−2),

with

{
det(M1) = a1

det(M2) = a1a2 − c1b1

Since an, bn and cn are always polynomials of degree one on the variable x, det(Mn) will be a
polynomial of degree at most n (also on the variable x); in other words, the determinant of Mk will
be a polynomial of degree at most k, that must vanish either only on a set of at most k isolated
points or in the whole real line. To check that the polynomial is not identically zero, let det(M̄n),
ān, b̄n and c̄n be defined as the particular case of det(Mn), an, bn and cn for x = 1. Then, we have:

and

ān = −k + pn− p
b̄n = 0

c̄n−1 = −pn+ p+ k

=⇒ det(M̄k) =
k∏
i=1

p(i− 1)− k 6= 0

Since for x = 1, det(Mk) is not zero, we know that det(Mk) is not the null polynomial. Then, for
almost every x ∈ [0, 1], the matrix Mk is invertible and then the solution to the system (2.13) must
be unique, hence it suffices to verify by substitution that equation (2.14) holds. This substitution
is straightforward and is not going to be explicited here.

Note that, for p = 1, the solution will be:

P (dSn ≤ x) =

∑k
i=n

(
x

1−x

)i∏i
j=1

−j+k+1
j

1 +
∑k

i=1

(
x

1−x

)i∏i
j=1

−j+k+1
j

=

∑k
i=n(1− x)k−ixi

(
k
i

)
(1− x)k +

∑k
i=1(1− x)k−ixi

(
k
i

)
=

k∑
i=n

(1− x)k−ixi
(
k

i

)
=P{Bin(k, x) ≥ n}

that is the probability of having at least n successes in k attempts of success chance x, i.e., the
probability of having n of k uniform random variables in the interval [0, 1] smaller than x, as
calculated in the past sections. This was already expected, since for p = 1 the set of acceptance
metrics of the connections will indeed be distributed as k i.i.d. uniform random variables in the
interval [0, 1]. On the other hand, for p→ 0 and any x > 0:

lim
p→0

P (dSn ≤ x) =lim
p→0

∑k
i=n

(
x

1−x

)i
pk−i

∏i
j=1

−pj+k+p
j

pk +
∑k

i=1

(
x

1−x

)i
pk−i

∏i
j=1

−pj+k+p
j

= 1

and, for x = 0, lim
p→0

P (dSn ≤ x) = 0, meaning that for p = 0, the stationary distribution is (δ0, . . . , δ0)

where δ0 stands for the Dirac delta around the point x = 0. This was also an expected result, since
-as already stated in the past sections- the metrics dj(i) decrease with the increment of i.

26 THE RANDOM AUTO PEERING MODEL 2.4

2.4.2 Some approximations

Now, let us analyze the process under the point of view of the requester. In the stationary
regime, to get its request accepted, the acceptance metric X has to be smaller than the acceptance
metric of the farthest realised connection of the requested node. Since the requested nodes are
chosen in such a way that the acceptance metrics are not affected (because the requested node’s
choice is made based only on the request metric), we can assume that the acceptance metrics
of their farthest connections, in the stationary regime, will follow the distribution fdSk

. Then, on
average, the probability of being accepted will be given by

P{U [0, 1] < dSk } =

∫ 1

0
P{U [0, 1] < x}fdSk (x)dx = E(dSk)

= 1−
∫ 1

0
P (XS

k ≤ x)dx

= 1−
∫ 1

0

∏k
j=1

jc+b
ja

1 +
∑k

i=1

∏i
j=1

jc+b
ja

dx

= 1−
∫ 1

0

∏k
j=1(−jp+k+p)

k! xk

pk(1− x)k +
∑k

i=1 p
k−i(1− x)k−ixi

∏i
j=1(−jp+k+p)

i!

dx

The integral above does not have any simple solution, so we must find some approximations to
it. The first hypothesis used is that p � 1. In this case, (j − 1)p � k for all 1 ≤ j ≤ k and then
p+ k − jp ≈ k, resulting:

P{U [0, 1] < dSk } ≈ 1−
∫ 1

0

kk

k! x
k∑k

i=0 p
k−i(1− x)k−ixi k

i

i!

dx

The fraction on the equation above can be approximated by one with a less complicated integral.
First notice that, setting w = p

k
1−x
x , the integrand will be:

kk

k! x
k∑k

i=0 p
k−i(1− x)k−ixi k

i

i!

=

[
k∑
i=0

wk−i
k!

i!

]−1

(2.15)

Now, for each of the regions w > 1 and w < 1, we will find different suitable approximations to
this function.

2.4 SOLUTIONS FOR THE GENERALIZED (P > 0) MODEL 27

Approximations for w < 1

For w < 1, we approximate the multiplicative inverse of the function by its two terms of lower
order on w, resulting:[

k∑
i=0

wk−i
k!

i!

]−1

=

[
k∑

i=k−1

wk−i
k!

i!

]−1

+

[

k∑
i=0

wk−i
k!

i!

]−1

−
[

k∑
i=k−1

wk−i
k!

i!

]−1

=

[
k∑

i=k−1

wk−i
k!

i!

]−1 [
1−

∑k−2
i=0 w

k−i k!
i!∑k

i=0w
k−i k!

i!

]

=
1

1 + wk
[1−Rw2 (w)]

where

Rw2 (w) =

∑k−2
i=0 w

k−i k!
i!∑k

i=0w
k−i k!

i!

= w2
wk−2

0! + wk−3

1! + · · ·+ w
(k−3)! + 1

(k−2)!

wk

0! + wk−1

1! + · · ·+ w
(k−1)! + 1

k!

≤ k(k − 1)w2

This does not appear, at first sight, to be a really promising approximation, since k might be as
large as we want. Nevertheless, notice that our goal is to find an approximation for an integral
taken over the variable x, and the part of the domain where the quality of the approximation is not
that good (for w ≈ 1) corresponds to a small interval on the x variable (see figure 2.5, that depicts
the transformation w −→ x(w) = p

p+wk for some values of p
k to check the distortion between the

spaces).

Figure 2.5: Transformation w −→ x(w) = p
p+wk for some values of p

k

Then, defining the function Rx2(x) = Rw2
(p
k

1−x
x

)
for p

p+k < x < 1, we have that

Rx2(x) ≤ p2k − 1

k

(
1− x
x

)2

< p2

(
1− x
x

)2

and

kk

k! x
k∑k

i=0 p
k−i(1− x)k−ixi k

i

i!

=
x

x+ p(1− x)
[1−Rx2(x)] (2.16)

28 THE RANDOM AUTO PEERING MODEL 2.4

The approximation given by (2.16) will be later used to estimate the integral of (2.15).

Approximations for w > 1

For w > 1, we approximate the multiplicative inverse of the function by its two terms of higher
order on w, resulting:[

k∑
i=0

wk−i
k!

i!

]−1

=

[
1∑
i=0

wk−i
k!

i!

]−1

+

[

k∑
i=0

wk−i
k!

i!

]−1

−
[

1∑
i=0

wk−i
k!

i!

]−1

=

[
1∑
i=0

wk−i
k!

i!

]−1 [
1−

∑k
i=2w

k−i k!
i!∑k

i=0w
k−i k!

i!

]

=
1

k!

(
1

w

)k−1 1

1 + w

[
1−Rw−2(w)

]

where

Rw−2(w) =

∑k
i=2w

k−i k!
i!∑k

i=0w
k−i k!

i!

= w−2
wk−2

2! + wk−3

3! + · · ·+ w
(k−1)! + 1

k!

wk−2

0! + wk−3

1! + · · ·+ w−1

(k−1)! + w−2

k!

≤ w−2

2

Then, analogously to the case w < 1, defining the function Rx−2(x) = Rw−2

(p
k

1−x
x

)
for 0 < x < p

p+k ,
we have that

Rx−2(x) ≤ 1

2

(
kx

p(1− x)

)2

and

kk

k! x
k∑k

i=0 p
k−i(1− x)k−ixi k

i

i!

=
1

k!

(
kx

p(1− x)

)k−1 kx

kx+ p(1− x)

[
1−Rx−2(x)

]
(2.17)

Hence, finally, we approximate:

kk

k! x
k∑k

i=0 p
k−i(1− x)k−ixi k

i

i!

≈

 1
k!

(
kx

p(1−x)

)k−1
kx

kx+p(1−x) , if 0 < x < p
p+k

x
x+p(1−x) , if

p
p+k < x < 1

The absolute difference between the two solutions is depicted in figure 2.6, for both domains
w ∈ R+ and x ∈ [0, 1], for some selected values of k and p. The approximation given by (2.17) will
be later used to estimate the integral of (2.15).

2.4 SOLUTIONS FOR THE GENERALIZED (P > 0) MODEL 29

Figure 2.6: Absolute difference between the exact and approximated solutions for some selected values of k
and p

Calculation of the integral

Using the approximations previously found, we can estimate the integral I+ over the interval
[p
k+p , 1], given by:

I+ =

∫ 1

p
p+k

kk

k! x
k∑k

i=0 p
k−i(1− x)k−ixi k

i

i!

dx =

∫ 1

p
p+k

x

p(1− x) + x
[1−Rx2(x)] dx

=
1

1− p

[
x− p

1− p log

(
p

1− p + x

)]∣∣∣∣1
p

p+k

−
∫ 1

p
p+k

x

p(1− x) + x
Rx2(x)dx

=
k

(1− p)(k + p)
+

p

(1− p)2
log

(
(k + 1)p

k + p

)
︸ ︷︷ ︸

I+
1

−
∫ 1

p
p+k

x

p(1− x) + x
Rx2(x)dx︸ ︷︷ ︸

I+
2

But since

0 ≤ Rx2(x) ≤ p2k − 1

k

(
1− x
x

)2

< p2

(
1− x
x

)2

then

0 ≤ I+
2 =

∫ 1

p
p+k

x

p(1− x) + x
Rx2(x)dx ≤ p2k − 1

k

∫ 1

p
p+k

x

p(1− x) + x

(
1− x
x

)2

dx

= p
k − 1

k

[
p

(1− p)
k

k + p
+

1

(1− p)2
log

(
(k + 1)p

k + p

)
− log

(
p

k + p

)]

30 THE RANDOM AUTO PEERING MODEL 2.4

Analogously, in the interval [0, p
k+p] we can integrate the function to calculate I−, given by:

I− =

∫ p
p+k

0

kk

k! x
k∑k

i=0 p
k−i(1− x)k−ixi k

i

i!

dx

=

∫ p
p+k

0

1

k!

(
kx

p(1− x)

)k−1 kx

kx+ p(1− x)

[
1−Rx−2(x)

]
dx

=

∫ p
p+k

0

1

k!

(
kx

p(1− x)

)k−1 kx

kx+ p(1− x)
dx︸ ︷︷ ︸

I−1

−
∫ p

p+k

0

1

k!

(
kx

p(1− x)

)k−1 kx

kx+ p(1− x)
Rx−2(x)dx︸ ︷︷ ︸

I−2

Since the function f(x) = 1
k!

(
kx

p(1−x)

)k−1
kx

kx+p(1−x) is convex
11, then its integral will be bounded

by the area of the triangle defined by the points (0, f(0)), (p
p+k , f(p

p+k)) and (p
p+k , f(0)), resulting:

0 ≤ I−1 =

∫ p
p+k

0

1

k!

(
kx

p(1− x)

)k−1 kx

kx+ p(1− x)
dx ≤ 1

2

p

p+ k

[
f

(
p

p+ k

)
− f(0)

]
=

1

4

p

p+ k

1

k!

Analogously, we find that the function g(x) = 1
2

1
k!

(
kx

p(1−x)

)k−1
kx

kx+p(1−x)

(
kx

p(1−x)

)2
is convex,

resulting:

0 ≤ I−2 ≤
∫ p

p+k

0

1

2

1

k!

(
kx

p(1− x)

)k−1 kx

kx+ p(1− x)

(
kx

p(1− x)

)2

dx

≤ 1

2

p

p+ k

[
g

(
p

p+ k

)
− g(0)

]
=

1

8

p

p+ k

1

k!

Finally, combining the bounds for I+
1 , I+

2 , I−1 , and I−2 , and defining I as the exact integral of
the function (2.15), we have (in the following equation we use the fact that all the terms I+

1 , I−1 ,
I+

2 and I−2 are positive):

I − I+
1 = I−1 − I+

2 − I−2 ≤ I−1 + I+
2 + I−2

≤ pk − 1

k

[
p

(1− p)
k

k + p
+

1

(1− p)2
log

(
(k + 1)p

k + p

)
− log

(
p

k + p

)]
+

3

8

p

p+ k

1

k!

= O
(
p
k − 1

k

[
p

(1− p)
k

k + p
+ log (k + 1)

]
+

3

8

p

p+ k

1

k!

)
= O

(
p
k − 1

k
log (k + 1) +

3

8

p

p+ k

1

k!

)
= O

(
p
k − 1

k
log (k + 1)

)
11Notice that its derivative, given by:

f ′(x) =
kp
(

kx
p(1−x)

)k
((k − 1)x+ p(1− x))

xk!(kx− px+ p)2

is always positive and monotonically increasing for k > 1.

2.4 SOLUTIONS FOR THE GENERALIZED (P > 0) MODEL 31

So:

I =
k

(1− p)(k + p)
+

p

(1− p)2
log

(
(k + 1)p

k + p

)
+O

(
p
k − 1

k
log (k + 1)

)
Then, finally, we have:

E(dSk) = 1− 1

1− p
k

p+ k
− 1

1− p
p

1− p log

(
p(k + 1)

p+ k

)
+O

(
p
k − 1

k
log (k + 1)

)
=
k2 + 2k + 2

2(k + 1)2

√
p+O

(
p
k − 1

k
log (k + 1)

)
(2.18)

2.4.3 Heuristic approximations

In this section we present a heuristic approximation, whose error could not be properly calculated
but that, in practice, has been shown to achieve better quality than the errors in the last section.
Notice that the function being approximated, when represented as a function of the variable w =
p(1−x)
kx , has the following approximately exponential behaviour:

Figure 2.7: Exact solution fex for some selected values of k.

that lead to the ansatz : [
k∑
i=0

wk−i
k!

i!

]−1

≈ exp(−ckw)

Since the largest part of the relevant domain lies on 0 ≤ w ≤ 1, we opted for interpolate the

ansatz in that region; in other words, we chose the parameter ck to be such that
[∑k

i=0
k!
i!

]−1
=

exp(−ck), resulting ck = 1 + log(Γ(k + 1, 1)) and, consequently:[
k∑
i=0

wk−i
k!

i!

]−1

= exp(−w[1 + log(Γ(k + 1, 1))]) (2.19)

Figure 2.8 represents the logarithm of both functions (the exact solution fex =
[∑k

i=0w
k−i k!

i!

]−1

and the approximated fapp = exp(−w[1 + log(Γ(k + 1, 1))])), for some values of k.
Figure 2.9 represents the absolute difference between the functions, for some values of k and p.

32 THE RANDOM AUTO PEERING MODEL 2.4

Figure 2.8: Logarithm of the exact and empirically approximated solutions for some selected values of k

Figure 2.9: Absolute difference between the exact and empirically approximated solutions for some selected
values of k and p

Calculation of the integral

Integrating the approximation found in the last section, given by equation (2.19), we finally
find:

P{U [0, 1] < dSk } ≈ 1−
∫ 1

0
exp

(
−p(1− x)

kx
[1 + log(Γ(k + 1, 1))]

)
dx

= −
p(log(Γ(k + 1, 1)) + 1)e

p(log(Γ(k+1,1))+1)
k Ei

(
−p(log(Γ(k+1,1))+1)

k

)
k

= z exp(z)Ei(−z)

for z = p(log(Γ(k+ 1, 1)) + 1)/k and where Ei stands for the exponential integral function, defined
as Ei(z) =

∫∞
−z exp(−t)/tdt.

Chapter 3

Results

In this final chapter of the first part we present answers to the questions introduced in the first
chapter; in other words, we analyse if the presented algorithm provides:

1. a negligible probability of successfully being attacked by a malicious actor

2. a reasonable message overhead

3. a reasonable distribution of the numbers of peers of a node

We start by proving the following lemma:

Lemma 3.0.1. Let {pi}i∈N be any sequence of i.i.d random variables with values over the interval
[0, 1] and let Xi ∼ Ber(pi). Then, the distribution of the number of trials needed to find the first
success of the sequence {Xi}i∈N will be Geo(E(p1)).

Proof. If {pi}i∈N are i.i.d random variables with values over the interval [0, 1], then the joint distri-
bution of {pi}i∈N will be

fp1,p2,...,pn(x1, x2, . . . , xn) =
n∏
i=1

fpi(xi)

Now let Xi ∼ Ber(pi) and j ∈ N ∪ ∞ the random variable that denotes the number of Bernoulli
trials until the first success (we say that j = ∞ if all Bernoulli trials are failures). The variable j
will have the following distribution:

P{j = n} =

∫
x1,x2,...,xn∈[0,1]n

P{j = n|pi = xi for i = 1, . . . , n}fp1,p2,...,pn(x1, x2, . . . , xn)

=

∫
x1,x2,...,xn∈[0,1]n

(1− x1)(1− x2) . . . (1− xn−1)xn

n∏
i=1

fpi(xi)

=

∫
xn∈[0,1]

xnfpn(xn)
n−1∏
i=1

∫
xi∈[0,1]

(1− xi)fpi(xi)

= E(pn)

n−1∏
i=1

(1− E(pi)) = E(p1)(1− E(p1))n−1 = P{Geo(E(p1)) = n}

that completes our proof.

33

34 RESULTS 3.1

3.1 The life cycle of a connection

Now we analyze the life cycle of a connection; in other words, we calculate how long it takes to
a connection to being established, for how long this connection will last, among other properties of
the present problem.

Proposition 3.1.1. On the stationary regime, the number of required trials nacc before acceptance
behaves as a geometric distribution with parameter p+ (1− p)E(dSk).

Proof. Suppose that, at each time step i ∈ N+, a node N requests a connection to one of the other
nodes, let us say Ni. Also, let d̂k(i), for i ∈ N+, be the acceptance metric of the farthest connection
to Ni at each time step i. Recall that, on the stationary regime, all the connections’ acceptance
metrics distributions behave as the stationary distribution dSi calculated in the last chapter, thus
d̂k(i) ∼ dSk for all i ∈ N+.

At each time step, the connection will be accepted with a probability p+ (1− p)d̂k(i), since this
event will occur if and only if one of the two following disjoints events is true:

• A connection of the accepting node Ni is dropped by its requester (which has a probability
p).

• None of the connections of the accepting node Ni is dropped by its requester but the accep-
tance metric X of the new request is smaller than d̂k(i) (which has a probability (1−p)d̂k(i)).

Then, by Lemma 3.0.1, the number of requests needed until being accepted will be a random variable
distributed as a geometric Geo(p+ (1− p)E(dSk)).

Corollary 3.1.2. On average, a node will send m = E(nacc) = 1
p+(1−p)E(dSk)

messages to get a
request accepted.

Corollary 3.1.3. If we assume that the nodes respond instantly to the requests (which means that
a node will receive the answer to each request in 2h units of time after the query, where h is the
network delay), then the time tacc until acceptance will be given by tacc ∼ 2hGeo(p+ (1− p)E(dSk)),
that has an average value of E(tacc) = 2h

p+(1−p)E(dSk)
= 2hm.

Proposition 3.1.4. The number of steps nsur for which a connection will survive can be approxi-
mated by:

nsur ∼ YGeo
(
p+ (1− p)E(dSk)

k

)
+ (1− Y)Geo

(
p

k
+ (1− p)1 + E(dSk)

2

)
where Y ∼ Ber

(
E(dSk)

E(dSk)+p(1−E(dSk))

)
.

Proof. In the last proposition, we could assume that d̂k(i) was distributed as dSk because we were
picking nodes at random and looking at its farthest connection. Nevertheless, when calculating the
survival probability we assume that a connection has just been established, so we are not looking
at the whole space of events anymore. Then, we cannot just say that a connection will not survive
with probability p + (1 − p)dSk , because dSk is not the distribution of the farthest connection after
one acceptance.

To calculate the probability of not surviving after one trial, we divide the event “being accepted”
into two disjoint events (here we call X the acceptance metric of the new connection and d0

k the
acceptance metric of the farthest node just before the request has taken place):

• E1: being accepted and X < d0
k: This event has a probability d0

k, since X < d0
k always implies

being accepted.

• E2: being accepted and X > d0
k: In that case, we know that a connection has been dropped

by its requester. Then, this event has a probability p(1− d0
k).

3.1 THE LIFE CYCLE OF A CONNECTION 35

First, for the sake of simplicity, we assume that, given that a connection was just established, it
will be the ith closest connection to the node (for i = 1, . . . , k) with a constant probability1 of 1/k.
Then, in the first case, we know that the probability of not surviving for the first trial will be around
p+(1−p)d0

k
k . In the second case, the probability of not surviving for the first trial will be p

k +(1−p)X.
Now, for the sake of simplification, we assume that the probability of survival for one trial is

constant over time2. Then, the number of time steps n1 for which the connection will survive given
E1 is given by

n1 ∼ Geo
(
p+ (1− p)d0

k

k

)
∼ Geo

(
p+ (1− p)E(dSk)

k

)
where the second equivalence is an implication of Lemma 3.0.1. Additionally (and analogously), the
number of steps n2 for which the connection will survive given E2 is given by

n2 ∼ Geo
(p
k

+ (1− p)X
)
∼ Geo

(p
k

+ (1− p)E(X)
)
∼ Geo

(
p

k
+ (1− p)1 + E(dSk)

2

)
Finally, the number of steps nsur for which a connection will survive will be given by (here, we

say Z ∼ Ber
(

d0
k

d0
k+p(1−d0

k)

)
and approximate Z by Y ∼ Ber

(
E(dSk)

E(dSk)+p(1−E(dSk))

)
∼ Ber(E(dSk)m)):

nsur ∼ YGeo
(
p+ (1− p)E(dSk)

k

)
+ (1− Y)Geo

(
p

k
+ (1− p)1 + E(dSk)

2

)
∼ YGeo

(
1

km

)
+ (1− Y)Geo

(
1

2m
+

1

2
+
p(1− k)

k

)

Corollary 3.1.5. On average, a connection will survive for a number E(nsur) of time steps, with
E(nsur) given by:

E(nsur) = E(dSk)km2 +
2(1− E(dSk))kpm

(E(dSk) + 1)k(1− p) + 2p

Corollary 3.1.6. A connection will survive for tsur = nsur
λ units of time, where λ is the average

rate of incoming requests of a node (then, on average, the survival time will be E(tsur) = E(nsur)
λ)

units of time.

Corollary 3.1.7. The total lifetime LT of a connection will be

LT = 2hnacc +
nsur

λ
(3.1)

Corollary 3.1.8. The average proportion of connected time propconn of a connection will be given
by

propconn =
E(tsurv)

E(LT)
=

E(nsur)

2hλE(nacc) + E(nsur)

=

(
2hλ

k

1

E(dSk)m+ (1− E(dSk)m) 2
k+mk+2mp(1−k)

+ 1

)−1

(3.2)

Proposition 3.1.9. The average rate λ of messages received by a node will be

λ = (1− E(dSk)m)(1− p) k
2h

(E(dSk)(k − 2) + k)

(E(dSk) + 1)k(1− p) + 2p
(3.3)

1Note that this is not true in general, but it is only an assumption made to ease the calculations.
2Again, this is not true in general, but it is only an assumption made for the sake of simplicity.

36 RESULTS 3.1

Proof. The average rate of sent messages λS will be

λS =
mk

E(LT)
=

1
2h
k + E(nsur)

mkλ

By symmetry, we have that λ = λS and then (since we want the positive solution to the equation
above):

λ =
km− E(nsur)

2hm
= (1− E(dSk)m)(1− p) k

2h

(E(dSk)(k − 2) + k)

(E(dSk) + 1)k(1− p) + 2p

Proposition 3.1.10. The probability p of one connection being dropped by its requester, at each
time step, is given by the solution3 to the equation:

T

h
p = f̂(k, p, E(dSk)) ≈ f(k, p) (3.4)

where

f̂(k, p, E(dSk)) =
2h

T
(p+ (1− p)E(dSk))

(E(dSk) + 1)k(1− p) + 2p

(1− E(dSk))(1− p)p(E(dSk)(k − 2) + k)

and

f(k, p) =

4(k + 1)4

(
(k2+2k+2)(1−p)

(k+1)2 + 2
√
p

)(
k(k2+2k+2)

√
p(1−p)

2(k+1)2 + k(1− p) + 2p

)
(p− 1)

√
p
(

4 (k2 + 2k + 2) (k + 1)2√p+ (k − 2) (k2 + 2k + 2)2 p− 4k(k + 1)4
)

Proof. A node will always drop each of its requesting connection once at each period before expi-
ration of T seconds, i.e., after an average of λT events of the Poisson process. Then, by symmetry,
the probability of one of all the accepted connections of a node being dropped by its requester will
k
Tλ at each time step. Then, the probability p will given by

p(k, h, T,E(dSk)) =
k

Tλ
=

2h

T

(E(dSk) + 1)k(1− p) + 2p

(1− E(dSk)m)(1− p)(E(dSk)(k − 2) + k)

=
2h

T
(p+ (1− p)E(dSk))

(E(dSk) + 1)k(1− p) + 2p

(1− E(dSk))(1− p)p(E(dSk)(k − 2) + k)

Substituting the approximation (2.18) (i.e., E(dSk) ≈ k2+2k+2
2(k+1)2

√
p) found in the last chapter, we

have:

p(k, h, T) ≈ h

T
f(k, p)

where:

f(k, p) =

4(k + 1)4

(
(k2+2k+2)(1−p)

(k+1)2 + 2
√
p

)(
k(k2+2k+2)

√
p(1−p)

2(k+1)2 + k(1− p) + 2p

)
(p− 1)

√
p
(

4 (k2 + 2k + 2) (k + 1)2√p+ (k − 2) (k2 + 2k + 2)2 p− 4k(k + 1)4
)

3If this equation does not have a solution in the interval p ∈ [0, 1], then the parameters of the problem do not
define a realistic system.

3.1 THE LIFE CYCLE OF A CONNECTION 37

Figure 3.1 depicts the function f(k, p) for some selected values of k. Notice that the function f(k, p)

Figure 3.1: Values of function f(k, p) for some selected values of k

is decreasing in k, for each fixed p. Also, recall that we assumed that the probability p was small;
then, we are interested on the solutions for this equation on the left part of the Figure above. Since
f(k, p) is decreasing in k, by continuity, we know that all the possible solutions to equation (3.4)
will be determined by the intersection of the line T

h p and some curve in the region defined by the
graphs of f(2, p) and lim

k→+∞
f(k, p), depicted in Figure 3.2.

Figure 3.2: Region defined by the graphs of the functions f(2, p) and lim
k→+∞

f(k, p), for small p

Finally, Table 3.1 shows the solution to our model’s equation, for k = 2, k → ∞ and some
values of T/h. For any k, the solution to equation (3.4) will be in the interval defined by the two
values presented in the table.

Proposition 3.1.11. Each node will have a number of Nc ∼ Bin(k, propconn) of connections, with
an average value of:

E(Nc) = k

(
2hλ

k

1

E(dSk)m+ (1− E(dSk)m) 2
k+mk+2mp(1−k)

+ 1

)−1

(3.5)

38 RESULTS 3.1

T/h Solution for k = 2 Solution for k →∞ T/h Solution for k = 2 Solution for k →∞
10 - 0.427262 1000 0.013261 0.0117528
20 - 0.235953 2000 0.00797921 0.00716711
30 0.27873 0.168779 3000 0.00595767 0.00538295
40 0.198655 0.133674 4000 0.00485123 0.00439873
50 0.157395 0.111818 5000 0.00414045 0.00376335
60 0.131609 0.0967768 6000 0.00363974 0.00331421
70 0.113789 0.0857299 7000 0.00326512 0.00297728
80 0.100663 0.0772365 8000 0.00297267 0.00271371
90 0.0905524 0.0704807 9000 0.00273704 0.00250099
100 0.082502 0.0649643 10000 0.00254248 0.0023251
200 0.046002 0.038315 20000 0.00156988 0.00144213
300 0.0332415 0.0283007 30000 0.00118651 0.00109222
400 0.0265434 0.02288 40000 0.000973495 0.000897284
500 0.0223511 0.0194249 50000 0.000835312 0.000770607
600 0.0194516 0.0170055 60000 0.000737274 0.000680622
700 0.0173122 0.0152041 70000 0.000663522 0.000612863
800 0.0156604 0.0138034 80000 0.000605691 0.000559692
900 0.0143416 0.0126787 90000 0.000558924 0.000516666

Table 3.1: Relevant solutions on the range [0, 1] for equation (3.4) and k = 2 and k →∞

Proof. Recall that each connection will not be realized all the time; in fact, a connection will only
be realized for a fraction propconn (given by equation (3.2)) of its life time. Then, when picking
a (uniformly) random point in time, there will be a probability propconn of this connection being
realized. Since the connections of a node are all independent, the number of connections of a node
will be given by Nc ∼ Bin(k, propconn), that has an average as given by this proposition.

Proposition 3.1.12. Suppose an attacker can -by trial and error- obtain N non suspicious requests,
i.e. their requests metrics are reasonably small. The probability of successfully initiating at least i
connections with a certain node will approximately be:

PEC(N, i, k) = P

{
Bin

(
N,

k − i+ 1

k
E(dk)

)
≥ i
}

(3.6)

Proof. Suppose an attacker can mine N non suspicious requests. In order to successfully initiate at
least i connections with a certain node, the requests will have to present at least i accepting metrics
smaller than dk−i+1. The probability of success will be approximately:

PEC(N, i, k) = P {Bin (N,E(dk−i+1)) ≥ i}

Since the expression above is not easily calculated, we approximate E(dk−i+1) ≈ k−i+1
k E(dk),

resulting in the probability in this proposition.

3.1.1 A Real Life Example

Finally, in this section we analyze the problem applied to a real world example. We base our
parameters setting in the ones used in the IOTA4 network.

We estimate the network delay in about 5 seconds, and the time until expiration of the connec-
tions in 30 minutes. Applying equations (3.4) and (2.18) we find some values for p and E(dSk), for
k between two and ten, which are shown in the following Table 3.2:

With the values above, we can find all other parameters, as m, λ (eq (3.3)), LT (eq (3.1)),
propconn) (eq (3.2)) as Nc (eq (3.5)), whose values are represented in the following Table 3.3. In

4see www.iota.org

3.2 FINAL REMARKS 39

k p E(dSk)
2 0.02881 0.09429
3 0.02708 0.08742
4 0.02633 0.08437
5 0.02592 0.08273
6 0.02566 0.08172
7 0.02549 0.08107
8 0.02537 0.08062
9 0.02528 0.08029
10 0.0252 0.08002

Table 3.2: Values of p and E(dSk), for values of k = 2, . . . , 10 and
T

h
= 360

the IOTA network, we want to establish a total of eight connections (i.e., we want an effective k of
four), so we want to aim at k = 5 connections.

k m λ LT propconn Nc
2 8.30629 0.03856 430.74739 0.80716 1.61433
3 8.91781 0.06152 434.86393 0.79492 2.38478
4 9.21775 0.08437 436.96713 0.78905 3.15620
5 9.38878 0.10714 438.12675 0.78570 3.92853
6 9.49747 0.12983 438.89427 0.78360 4.70162
7 9.56950 0.15248 439.28760 0.78215 5.47511
8 9.62023 0.17510 439.51162 0.78111 6.24892
9 9.65776 0.19769 439.66058 0.78033 7.02302
10 9.68881 0.22023 439.92987 0.77976 7.79764

Table 3.3: Values of m, λ, LT, propconn and Nc, for values of k = 2, . . . , 10 and
T

h
= 360

3.2 Final remarks

In this work, we modeled the governing equations of the auto peering stochastic process. We
found the solution to the equations for two different cases: to what we called the transient regime of
the particular case with p = 0, and to the stationary regime of the general problem with p ≥ 0. We
also proved that the solution of the transient regime problem, for the particular case p = 0 will be
a bound to the solution of the transient regime of the general problem. Nevertheless, even though
the relation between the transient regime and the stationary regime can be intuitive, we did not
prove the convergence to the stationary regime of the problem yet.

Let S be the space of possible events of the problem (i.e., each vector ~d(i) = (d1(i), . . . , dk(i))
belongs to S). For any ~d(i), there is a strictly positive probability that the process will reach a
certain open set B ⊂ σ with positive Lebesgue measure, where σ is the Borel σ-algebra of S. In
fact, notice that any B ⊂ σ will have a subset with positive measure B̂ = (a1, b1)×· · ·×(ak, bk) ⊂ σ
with (ai, bi), i = 1, . . . , k being disjoint intervals. The probability of reaching B in exactly k steps,
starting from any ~d(i), will be never smaller than the probability of every connection being dropped
by its requesters and the new connections belonging to B̂; in other words, if p > 0:

P{~d(i+ k) ∈ B|~d(i)} ≥ P{~d(i+ k) ∈ B̂|~d(i)} ≥ k!
(p
k

)k k∏
i=1

(bi − ai) > 0

Then, the probability of not reaching B in k steps will be smaller than one, and the probability
of never reaching B will be zero. This way, the Markov chain defined by this problem will be

40 RESULTS 3.2

irreducible and recurrent. Also, the Markov chain cannot be periodic (with period larger than one),
since, for any p < 1 there is a positive probability of returning to any state in only one step of
time (recall that the connections can stay the same for some time steps). Last, for p > 0, the mean
recurrence time MB of B will be bounded by:

MB ≤ kE
[
Geo(P{~d(i+ k) ∈ B|~d(i)})

]
≤ kE

[
Geo

(
k!
(p
k

)k k∏
i=1

(bi − ai)
)]

≤ k

k!
(p
k

)k∏k
i=1(bi − ai)

<∞

that implies the ergodicity of the chain. Then, from π-almost every initial condition ~d(0), the system
will converge to the stationary distribution π given by the derivative of equation (2.14).

Let us suppose that the convergence velocity is fast enough, meaning that the model is indeed
adequate. Then, we conclude that the nodes should aim at a number of connections not that larger
than the expected ones (compare the first and last columns of Table 3.3). In the current practical
case presented, the nodes should aim at only five connections instead of four to have a number of
requested realized connections given by a Bin(5, 0.78570).

The message overhead also presented a reasonable behaviour (see the second columns of Table
3.3), with a influx of messages at the nodes around 40 messages/LT.

Additionally, the probability of a node getting eclipsed in our practical scenario will be given
by5:

PEC(N, 4, 5) = P {Bin (N, 0.0331) ≥ 4} (3.7)

whose numerical values are shown in Figure 3.3. Notice that, to have a reasonably large probability,
the attacker must be able to mine around a hundred non suspicious requests and still would be
susceptible to being dropped by the target.

Figure 3.3: Values of the eclipsing probability PEC(N, 4, 5)

5Notice that we need to aim at k = 5 to get an average value of four connections. To eclipse a node, i.e., to have
more than half of all its connections (accepted and requested) malicious. Since the malicious actor does not have
control about the connections that the target initiate, he must control at least four of the five accepted connections
of the target.

3.2 FINAL REMARKS 41

Finally, we conclude that the system will be safe against eclipsing if and only if the price of
mining one non suspicious request is reasonably high. If mining requests comes for free, any malicious
node try can to eclipse a target with virtually no cost. Therefore -in the case where mining new
requests is tied to some scarce (and hence valuable) resource-, the present auto peering scheme
presents the desired properties introduced in the first chapter.

3.2.1 Open questions

Despite having proved that the problem indeed converges to the stationary regime problem
solved, it is still not clear how long does it take to convergence. If after λT time steps the problem
is still too far from the stationary regime solution, the model might not be that precise. This
assumption might be addressed in future studies.

Additionally, future studies could investigate the effects on the properties of the system by
changing the fixed value k for a random variable. More specifically, with a random variable k
depending on the total number of connections of the system it could be possible to stabilize the
variability over time of the total number of edges of the realized connection’s graph.

42 RESULTS 3.2

Part II

Part Two - Nash Equilibria and Tip
Selection Algorithms

43

Chapter 4

Equilibria in the Tangle

In this chapter, we present the paper “Equilibria in the Tangle” (from Serguei Popov, Olivia
Saa and Paulo Finardi) [PSF19]. The objective of this article is to study the Tangle stochastic
process from a game theoretical point of view. In other words, we define a game where each player
pli attaches a new vertex (with some additional rules that are going to be later explained) to a
certain subset of vertices of a graph, following independent Poisson processes of rate λi. We call
the rules that these players use the default strategy. We also define a certain cost function to each
new vertex, related to the probability of having future new vertices attached to it, when using the
default strategy. Then, if a small subset of players (called selfish players) decide not to follow the
default strategy, they will have a different average cost than the other players, depending on which
strategy they choose. We prove the existence of “almost symmetric” Nash equilibria for this system
and present simulations showing that the selfish players will not have sufficient incentives to use a
strategy considerably different that the default one.

4.1 Article - Equilibria in the Tangle

We analyse the Tangle — a DAG-valued stochastic process where new vertices get attached to
the graph at Poissonian times, and the attachment’s locations are chosen by means of random walks
on that graph. These new vertices, also thought of as “transactions”, are issued by many players
(which are the nodes of the network), independently. The main application of this model is that it
is used as a base for the IOTA cryptocurrency system1. We prove existence of “almost symmetric”
Nash equilibria for the system where a part of players tries to optimize their attachment strategies.
Then, we also present simulations that show that the “selfish” players will nevertheless cooperate
with the network by choosing attachment strategies that are similar to the “recommended” one.

Keywords: random walk, Nash equilibrium, directed acyclic graph, cryptocurrency, tip selection,
IOTA

AMS 2010 subject classifications: Primary 91A15. Secondary 60J20, 68M14.

4.2 Introduction

In this paper we study the Tangle, a stochastic process on the space of (rooted) Directed Acyclic
Graphs (DAGs). This process “grows” in time, in the sense that new vertices are attached to the
graph according to a Poissonian clock, but no vertices/edges are ever deleted. When that clock
rings, a new vertex appears and attaches itself to locations that are chosen with the help of certain
random walks on the state of the process in the recent past (this is to model the network propagation
delays); these random walks therefore play the key role in the model.

1http://www.iota.org/

45

46 EQUILIBRIA IN THE TANGLE 4.2

Random walks on random graphs can be thought of as a particular case of Random Walks in
Random Environments: here, the transition probabilities are functions of the graph only, i.e., there
are no additional variables, such as conductances2 etc., attached to the vertices and/or edges of
the graph. Still, this subject is very broad, and one can find many related works in the literature.
One can mention the internal DLA models (e.g. [JLS14] and references therein), random walks
on Erdös-Rényi graphs ([CFP17, JLS14]), or random walks on the preferential attachment graphs
([CF07]), which most closely resembles the model of this paper.

The motivation for studying the particular model presented in this paper stems from the fact
that it is applied in the IOTA cryptocurrency ([Pop15]). The IOTA is an ambitious project started
in 2015, it aims to provide a globally scalable system capable of processing payments and storing
data. One of its distinguishing features is that it uses (nontrivial) DAGs as the primary ledger for the
transactions’ data3. This is different from “traditional” cryptocurrencies such as the Bitcoin, where
that data is stored in a sequence of blocks4, also known as blockchain. An important observation,
which motivates the use of more general DAGs instead of blockchains is that the latter scale poorly.
Indeed, it is not hard to see that the chain of blocks of finite size, which can only be produced
at regular discrete time intervals, produces a throughput bottleneck and leads to high transaction
fees that need to be paid to the miners (which is by design). Also, when the network is large, it is
difficult for it to achieve consensus on which blocks are “valid” in the situations when the new blocks
come too frequently. If one wants to remove the fees and allow the system to scale, the natural idea
would thus be to eliminate the bottleneck and the miners.

This is, of course, easier said than done — it raises all sorts of new questions. Where should the
next block/transaction/vertex be attached? Who will vet the transactions for consistency and why?
How can it be secure against possible attacks? How will consensus be achieved? These questions
do not have trivial answers. The paper [Pop15] presented an idea for an architecture which could
potentially resolve these issues. In that system, each transaction, represented by a vertex in the
graph, would approve two previous transactions it selects using a particular class of random walks.
To eliminate the transaction fees, it was necessary to first eliminate the miners — after all, if one
wants to design a feeless system, there cannot be a dichotomy of “miners” who serve the “simple
users”. This bifurcation of roles between the miners and transactors naturally leads to transaction
fees because the miners have some kind of resource that others do not have and they will use
this monopoly power to extract rents, in the form of transaction fees, or block rewards, or both.
Therefore, to eliminate the fees, all the users would have to fend for themselves. The main principle
of such a system would be “help others, and others will help you”.

You can help others by approving their transactions; others can help you by approving your
transactions. Let us call “tips” the transactions which do not yet have any approvals; all new-coming
transactions are tips at first. The idea is that, by approving a transaction, you also indirectly
approve all its “predecessors”. It is intuitively clear that, to help the system progress, the incoming
transactions must approve tips because this adds new information to the system. However, due to
the network delays, it is not practical to impose that this must happen — how can one be sure that
what one believes to be a tip has not already been approved by someone else maybe 0.1 seconds
ago?

In any case, if everybody collaborates with everybody — only approving recent and “good”
(non-contradicting) transactions, then we are in a good shape. On the other hand, for someone who
only cares about themself, a natural strategy would just be to choose a couple of old transactions
and approve them all the time without having to do the more cumbersome work of checking new
transactions for consistency thereby adding new information to the system. If everybody behaves
in this way, then no new transactions will be approved, and the network will effectively come to
a halt. Thus, if we want it to work, we need to incentivize the participants to collaborate and
approve each other’s recent transactions. Therefore, in some sense, it is all about the incentives.

2this refers to the well-known relation between reversible Markov chains and electric networks, see e.g. the classical
book [DS84].

3we also cite [Bai16, Chu16, Ler15, SLZ16] which deal with other approaches to using DAGs as distributed ledgers
4that is, the underlying graph is essentially Z+ (after discarding finite forks)

4.3 DESCRIPTION OF THE MODEL 47

Everybody wants to be helped by others, but, not everybody cares about helping others themselves.
To resolve this without having to introduce monetary rewards, we could instead think of a reward
as simply not being punished by others. So, we need to slightly amend the above main principle —
it now reads: “Help others, and the others will help you; however, if you choose not to help others,
others will not help you either”. When a new transaction references two previous transactions, it
is a statement of “I vouch for these transactions which have not been vouched for before, as well
as all their predecessors, and their success is tied to my success”. It was suggested in [Pop15] that
the Markov Chain Monte Carlo (MCMC) tip selection algorithm (more precisely, the family of tip
selection algorithms) would have these properties.

This paper mainly deals with the following question: what if some participants of the network
are trying to minimize their costs by adopting a behavior different from the “default” one? How will
the system behave in such circumstances? In other words, are there enough incentives for the partic-
ipants to “behave well”? To address these kinds of questions, we first provide general arguments to
prove existence of “almost symmetric” Nash equilibria for the system, see Section 4.4. Although one
can hardly access the explicit form of these equilibria in a purely analytical way, simulations pre-
sented in Section 4.5 show that the “selfish” players will typically still choose attachment strategies
that are similar to the default one, meaning that they would prefer cooperating with the network
rather than simply using it).

Let us stress also that, in this paper, we consider only “selfish” players, i.e., those who only care
about their own costs but still want to use the network in a legitimate way5. We do not consider
the case when there are “malicious” ones, i.e., those who want to disrupt the network even at a cost
to themselves. We are going to treat several types of attacks against the network in the subsequent
papers.

This paper is organized in the following way. In Section 4.3 we first introduce some notations
and define the objects we are working with; then, in Section 4.3.1 we describe the “recommended”
algorithm of how the nodes choose where to attach a new transaction, and then discuss some basic
properties of it, also formulating an open problem about the asymptotic behavior of the total number
of tips. Section 4.4 contains the main “theoretical” advances of this paper. There, we first discuss
what is a “strategy” that could be used by a selfish player, and then (Section 4.4.1) make some
further assumptions necessary to formulate our main results (which are placed in Section 4.4.2).
Then, we prove these results in Section 4.4.3.

Section 4.5 discusses some simulation results, mainly in the case where the selfish players try
to use a very natural “greedy” attachment strategy (Section 4.5.1). In Section 4.6 one will find
conclusions and some final remarks.

4.3 Description of the model

In the following we introduce the mathematical model describing the Tangle ([Pop15]).
Let card(A) stand for the cardinality of (multi)set A. Consider an oriented multigraph T =

(V,E), where V is the set of vertices6 and E is the multiset of edges. For u, v ∈ V , we say that u
approves v, if (u, v) ∈ E. For a vertex v ∈ V , let us denote by

degin(v) = card{e = (u1, u2) ∈ E : u2 = v},
degout(v) = card{e = (u1, u2) ∈ E : u1 = v}

the “incoming” and “outgoing” degrees of the vertex v (counting the multiple edges). In the following,
we refer to multigraphs simply as graphs. We use the notation A(u) for the set of the vertices
approved by u. We say that u ∈ V references v ∈ V if there is a sequence of sites u = x0, x1, . . . , xk =
v such that xj ∈ A(xj−1) for all j = 1, . . . , k, i.e., there is a directed path from u to v. If degin(w) = 0
(i.e., there are no edges pointing to w), then we say that w ∈ V is a tip.

5i.e., want to issue valid transactions and have them confirmed by the rest of the network
6one can think of vertices as transactions

48 EQUILIBRIA IN THE TANGLE 4.3

℘

Figure 4.1: On the DAGs we are considering: the genesis vertex is on the left, and the tips are grey

Let G be the set of all directed acyclic graphs (also known as DAGs, that is, oriented graphs
without cycles) G = (V,E) with the following properties (see Figure 4.1).

• The graph G is finite and the multiplicity of any edge is at most two (i.e., there are at most
two edges linking the same vertices).

• There is a distinguished vertex ℘ ∈ V such that degout(v) = 2 for all v ∈ V \ {℘}, and
degout(℘) = 0. This vertex ℘ is called the genesis.

• Any v ∈ V such that v 6= ℘ references ℘; that is, there is an oriented path7 from v to ℘.

We now describe the tangle as a continuous-time Markov process on the space G. The state of the
tangle at time t ≥ 0 is a DAG T (t) = (VT (t), ET (t)), where VT (t) is the set of vertices and ET (t)
is the multiset of directed edges at time t. The process’s dynamics are described in the following
way:

• The initial state of the process is defined by VT (0) = ℘, ET (0) = ∅.

• The tangle grows with time, that is, VT (t1) ⊂ VT (t2) and ET (t1) ⊂ ET (t2) whenever 0 ≤ t1 <
t2.

• For a fixed parameter λ > 0, there is a Poisson process of incoming transactions; these
transactions then become the vertices of the tangle.

• Each incoming transaction chooses8 two vertices v′ and v′′ (which, in general, may coincide),
and we add the edges (v, v′) and (v, v′′). We say in this case that this new transaction was
attached to v′ and v′′ (equivalently, v approves v′ and v′′).

• Specifically, if a new transaction v arrived at time t′, then VT (t′+) = VT (t′) ∪ {v}, and
ET (t′+) = ET (t) ∪ {(v, v′), (v, v′′)}.

Let us write

P(t)(x) =
{
y ∈ T (t) : y is referenced by x

}
,

F (t)(x) =
{
z ∈ T (t) : z references x

}
for the “past” and the “future” with respect to x (at time t). Note that these introduce a partial
order structure on the tangle. Observe that, if t0 is the time moment when x was attached to the
tangle, then P(t)(x) = P(t0)(x) for all t ≥ t0. We also define the cumulative weight H(t)

x of the
vertex x at time t by

H(t)
x = 1 + card

(
F (t)(x)

)
; (4.1)

that is, the cumulative weight of x is one9 plus the number of vertices that reference it. Observe
that, for any t > 0, if y approves x then H(t)

x −H(t)
y ≥ 1, and the inequality is strict if and only if

7not necessarily unique
8the precise selection mechanism will be described below
9its “own weight”

4.3 DESCRIPTION OF THE MODEL 49

there are vertices different from y which also approve x. Also note that the cumulative weight of
any tip is equal to 1.

There is some data associated to each vertex (transaction), created at the moment when that
transaction was attached to the tangle. The precise nature of that data is not relevant for the
purposes of this paper, so we assume that it is an element of some (unspecified, but finite) set D;
what is important, however, is that there is a natural way to say if the set of vertices is consistent
with respect to the data they contain10. When it is necessary to emphasize that the vertices of
G ∈ G contain some data, we consider the marked DAG G[d] to be (G, d) = (V,E, d), where d is a
function V → D. We define G[d] to be the set of all marked DAGs (G, d), where G ∈ G.

A note on terminology: we reserve the term “node” for entities that participate in the system by
issuing transactions (which are, by their turn, vertices of the tangle graph). That is, the “players”
mentioned in Section 4.2 are nodes.

4.3.1 On attaching a new transaction to the Tangle

There is one very important detail that has not been explained, namely: how does a newly ar-
rived transaction choose which two vertices in the tangle it will approve, i.e., what is the attachment
strategy? Notice that, in principle, it would be good11 for the whole system if the new transactions
always prefer to select tips as attachment places, since this way more transactions would be “con-
firmed”12. In any case, it is quite clear that the appropriate choice of the attachment strategy is
essential for the correct functioning of the system, whatever this could mean.

It is also important to comment that the attachment strategy of a network node is something
“internal” to it; what others can see, are the attachment choices of the node, but the mechanism
behind them need not be publicly known. For this reason, an attachment strategy cannot be imposed
in the protocol.

We now describe a possible choice of the attachment strategy, used to determine where the
incoming transaction will be attached. It is also known as the recommended tip selection algorithm
([Pop15]), since, due to reasons described above, the recommended nodes’ behavior is always to try
to approve tips. We stress again, however, that approving only tips is not imposed in the protocol,
since there is usually no way to know if a node “knew” if the transaction it approved was already
approved by someone else before (also, there is no way to know which approving transaction was
the first).

Let us denote by L(t) the set of all vertices that are tips at time t, and let L(t) = card(L(t)).
To model the network propagation delays, we introduce a parameter h > 0, and assume that at
time t only T (t − h) is known to the entity that issued the incoming transaction. We then define
the tip-selecting random walk, in the following way. It depends on a parameter q (the backtracking
probability) and on a function f . The initial state of the random walk is the genesis ℘13, and it
is stopped upon hitting the set L(t − h). It is important to observe that v ∈ L(t − h) does not
necessarily mean that v is still a tip at time t. Let f : R+ → R+ be a monotone non-increasing
function. The transition probabilities of the walkers are defined in the following way: the walk
backtracks (i.e., jumps to a randomly chosen site it approves) with probability q ∈ [0, 1/2); if y

10one may think that the data refers to value transactions between accounts, and consistency means that no account
has negative balance as a result, and/or the total balance has not increased

11good in the sense described in Section 4.2
12we discuss the exact meaning of this later; for now, think that “confirmed” means “referenced by many other

transactions”
13although in practical implementations one may start it in some place closer to the tips

50 EQUILIBRIA IN THE TANGLE 4.3

approves x 6= ℘, then the transition probability P (f)
xy is proportional to f(Hx −Hy), that is,

P (f)
xy =

q

card(A(x))
, if y ∈ A(x),

(1− q)f(H(t−h)
x −H(t−h)

y)∑
z:x∈A(z) f(H(t−h)

x −H(t−h)
z)

, if x ∈ A(y),

0, otherwise;

(4.2)

for x = ℘ we define the transition probabilities as above, but with q = 0. In words, the walker
backtracks (i.e., moves one step away from the tips) with (total) probability q, and advances one
step towards the tips with (total) probability (1− q) and relative weights as above. Note that the
fact that q < 1/2 guarantees that the random walk eventually reaches a tip14 almost surely. In what
follows, we will mostly assume that f(s) = exp(−αs) for some α ≥ 0. We use the notation P (α) for
the transition probabilities in this case. Intuitively, the smaller is the value of α, the more random
the walk is15. It is worth observing that the case q = 0 and α → ∞ corresponds to the GHOST
protocol of [SZ13] (more precisely, to the obvious generalization of the GHOST protocol to the case
when a tree is substituted by a DAG).

Now, to select two tips w1 and w2 where our transaction will be attached, just run two indepen-
dent random walks as above, and stop when on the first hit L(t− h). One can also require that w1

should be different from w2; for that, one may re-run the second random walk in the case its exit
point happened to be the same as that of the first random walk. Observe that (T (t), t ≥ 0) is a
continuous-time transient Markov process on G; since the state space is quite large, it is difficult
to analyse this process. In particular, for a fixed time t, it is not easy to study the above random
walk since it takes place on a random graph, e.g., can be viewed as a random walk in a random
environment; it is common knowledge that random walks in random environments are notoriously
hard to deal with.

Some motivation for choosing the attachment strategy in the above way is provided in [Pop15].
Very briefly, it encourages the nodes to choose recent transactions for approval (since a transaction
which approved a couple of old transactions, also known as lazy tip, is unlikely to be chosen by the
above random walk, due to the large difference in cumulative weights in the argument of f in (4.2))
and also gives protection against certain kinds of attacks (e.g., the double-spending attack).

Let γ0 ∈ (0, 1) be some number, typically close to 1. We say that a transaction is confirmed
with confidence γ0 if, with probability at least γ0, the large-α random walk16 ends in a tip which
references that transaction. It may happen that a transaction does not get confirmed (even, possible,
does not get approved a single time), and becomes orphaned forever. Let us define the event

U = {every transaction eventually gets approved}.

We believe that the following statement holds true; however, we have only a heuristical argument
in its favor, not a rigorous proof. In any case, it is mostly of theoretical interest, since, as explained
below, in practice we will find ourselves in the situation where P[U] = 0. We therefore state it as

Conjecture 4.3.1. It holds that

P[U] =

0, if

∫ +∞

0
f(s) ds <∞,

1, if
∫ +∞

0
f(s) ds =∞.

(4.3)

14more precisely, reaches a vertex that the node assumes to be a tip
15physicists would call the case of small α high temperature regime, and the case of large α low temperature regime

(that is, α stands for the inverse temperature)
16recall that the large-α random walk is “more deterministic”

4.3 DESCRIPTION OF THE MODEL 51

℘

v0

u0

w0

Figure 4.2: The walk on the tangle and tip selection. Tips are circles, and transactions which were approved
at least once are disks.

Explanation. First of all, it should be true that P[U] ∈ {0, 1} since U is a tail event with respect
to the natural filtration; however, it does not seem to be very easy to prove the 0–1 law in this
context – recall that we are dealing with a transient Markov process on an infinite state space.
Next, consider a tip v0 which got attached to the tangle at time t0, and assume that it is still a
tip at time t � t0; also, assume that, among all tips, v0 is “closest”, in some suitable sense, to the
genesis. Let us now think of the following question: what is the probability that v0 will still be a
tip at time t+ 1?

Look at Figure 4.2: during the time interval [t, t + 1), O(1) new particles will arrive, and the
corresponding walks will travel from the genesis ℘ looking for tips. Each of these walks will have to
cross the dotted vertical segment on the picture, and with positive probability at least one of them
will pass through w0, one of the vertices approved by v0. Assume that w0 was already confirmed,
i.e., it is connected to the right end of the tangle via some other transaction u0 that approves w0.
Then, it is clear (but not easy to prove!) that the cumulative weight of both u0 and w0 should
be O(t), and so, when in w0, the walk will jump to the tip v0 with probability f(O(t)).

This suggests that the probability that v0 ∈ L(t + 1) (i.e., that v0 still is tip at time t + 1)
is f(O(t)), and the Borel-Cantelli lemma17 gives that the probability that v0 will be eventually
approved is less than 1 or equal to 1 depending on whether

∑
n f(n) converges or diverges; the

convergence (divergence) of the sum is equivalent to convergence (divergence) of the integral in (4.3)
due to the monotonicity of the function f . A standard probabilistic argument18 would then imply
that if the probability that a given tip remains orphaned forever is uniformly positive, then the
probability that at least one tip remains orphaned forever is equal to 1.

One may naturally think that it would be better to choose the function f in such a way that,
almost surely, every tip eventually gets confirmed. However, as explained in Section 4.1 of [Pop15],
there is a good reason to choose a rapidly decreasing function f , because this defends the system
against nodes’ misbehavior and attacks. The idea is then to assume that a transaction which did not
get confirmed during a sufficiently long period of time is “unlucky”, and needs to be reattached19

to the tangle. Let us fix some K > 0: it stands for the time when an unlucky transaction is
reissued (because there is already very little hope that it would be confirmed “naturally”). We call
a transaction issued less than K time units ago “unconfirmed”, and if a transaction was issued
more than K time units ago and was not confirmed, we call it “orphaned”. In the following, we
assume that the system is stable, in the sense that the “recent” unconfirmed transactions do not
accumulate and the time until a transaction is confirmed does not depend a lot on the moment
when it appeared in the system20. We prefer not to elaborate on the exact mathematical definition
of stability here, since it requires considering a certain compactification of the space of DAGs (which
essentially amounts to considering DAGs with “genesis at minus infinity”), but, hopefully, the idea
is intuitively clear anyway.

17to be precise, a bit more refined argument is needed since the corresponding events are not independent
18which is also not so easy to formalize in these circumstances
19in fact, the nodes of the network may adopt a rule that instructs to delete the transactions that are older than K

and still are tips from their databases
20simulations indicate that this is indeed the case when α is small ([KG18]); however, it is not guaranteed to

happen for large values of α

52 EQUILIBRIA IN THE TANGLE 4.4

In that stable regime, let p be the probability that a transaction is confirmed K time units
after it was issued for the first time; the number of times a transaction should be issued to achieve
confirmation is then a Geometric random variable with parameter p (and, therefore, with expected
value p−1); so, the mean time until the transaction is confirmed is K/p. Let us then recall the
following remarkable fact belonging to the queuing theory, known as the Little’s formula (sometimes
also referred to as the Little’s theorem or the Little’s identity):

Proposition 4.3.2. Suppose that λa is the arrival rate, µ is the mean number of customers in the
system, and T is the mean time a customer spends in the system. Then T = µ/λa.

Proof. See e.g. Section 5.2 of [Coo81]. To understand intuitively why this fact holds true, one may
reason in the following way: assume that, while in the system, each customer pays money to the
system with rate 1. Then, at large time t, the total amount of money earned by the system would
be (approximately) µt on one hand, and Tλat on the other hand. Dividing by t and then sending t
to infinity, we obtain µ = Tλa.

Little’s formula then implies21 the following (recall that λ is the rate of the incoming transactions
flow, not counting reattachments)

Proposition 4.3.3. The average number of unconfirmed transactions22 in the system is equal to
p−1λK.

Proof. Indeed, apply Proposition 4.3.2 with λa = λ (think of a transaction which was reattached as
a customer which returns to the server after an insuccessful service attempt; this way, the incoming
flow of customers still has rate λ). As observed before, the mean time spent by a customer in the
system is equal to K/p.

When the tangle contains data, this, in principle, can make transactions incompatible between
each other. In this case one may choose more sophisticated methods of tip selection. As we already
mentioned23, selecting tips with larger values of α provides better defense against attacks and mis-
behavior; however, smaller values of α make the system more stable with respect to the transactions’
confirmation times. An example of “mixed-α” strategy is the following. Define the “model tip” w0

as a result of the random walk with large α, then select two tips w1 and w2 with random walks
with small α, but check that

P(t−h)(w0) ∪ P(t−h)(w1) ∪ P(t−h)(w2)

is consistent.

4.4 Selfish nodes and Nash equilibria

Now, we are going to study the situation when some participants of the network are “selfish”
and want to use a customized attachment strategy, in order to improve the confirmation time of
their transactions (possibly at the expense of the others).

For a finite set A let us denote byM(A) the set of all probability measures on A, that is

M(A) =
{
µ : A→ R such that µ(a) ≥ 0 for all a ∈ A and

∑
a∈A

µ(a) = 1
}
.

Let
M =

⋃
G=(V,E)∈G

M(V × V)

21in the language of queuing systems, a reissued transaction is a customer which goes back to the server after an
unsuccessful service attempt

22we regard all reattachments as a single trasaction, and if one of the reattachments is confirmed, the transaction
is considered confirmed

23recall the discussion around f(s) = exp(−αs) right after (4.2)

4.4 SELFISH NODES AND NASH EQUILIBRIA 53

be the union of the sets of all probability measures on the pairs of (not necessarily distinct) vertices
of DAGs belonging to G. Then, a general mixed attachment strategy S is a map

S : G[d] →M (4.4)

with the property S(V,E, d) ∈ M(V × V) for any G[d] = (V,E, d) ∈ G[d]; that is, for any G ∈ G
with data attached to the vertices (which corresponds to the state of the tangle at a given time)
there is a corresponding probability measure on the set of pairs of the vertices. Note also that in
the above we considered ordered pairs of vertices, which, of course, does not restrict the generality.

Let κ > 0 be a fixed number. We now assume that, for a large N , there are κN nodes that
follow the default tip selection algorithm, and N “selfish” nodes that try to minimize their “cost”,
whatever it could mean24. Assume that all nodes issue transactions with the same rate λ

(κ+1)N ,
independently. The overall rate of “honest” transactions in the system is then equal to λκ

κ+1 , and the
overall rate of transactions issued by selfish nodes equals λ

κ+1 . We also justify the assumption that
the number of selfish nodes is large by observing that

• a small number of nodes that do not want to disrupt the system but just want to obtain
some advantages for themselves (like e.g. faster confirmations times) are unlikely to “globally”
influence the system in any considerable way, even if they do obtain those advantages for
themselves;

• however, when it becomes known that it is possible to obtain advantages by deviating from
the “recommended” behavior, it is reasonable to expect that a large number of independent
entities would try to do it.

4.4.1 Some further assumptions and definitions

Let us now recall that, in practice, the nodes are computers running a specialized software, so
they are selecting the places to attach their transactions in some algorithmic way, using limited
physical resourses. In such situation, it is unrealistic to assume that a general strategy as in (4.4)
could be implemented “directly”, since the space G[d] is infinite; for the same reason, even working
with simple attachment strategies (which are maps that take an element of G[d] as an input and
produce a deterministic pair of its vertices as an output) is unrealistic.

Therefore, it looks like a good idea to restrict the strategy space we are working with. First, we
consider the following simplifying assumption (which is, by the way, also quite reasonable, since,
in practice, one would hardly use the genesis as the starting vertex for the random walks due to
runtime issues):

Assumption L. There is n1 > 0 such that the attachment strategies of all nodes (including those
that use the default attachment strategy) only depend on the restriction of the tangle to the last n1

transactions that they see.

Observe that, under the above assumption, the set of all such strategies can be thought of as a
compact convex subset of Rd, where d = d(n1) is sufficiently large.

In this section we use a different approach to model the network propagation delays: instead
of assuming that an incoming transaction does not have information about the state of the tangle
during last h units of time, we rather assume that it does not have information about the last n0

transactions attached to the tangle, where n0 < n1 is some fixed positive number (so, effectively, the
strategies would depend on subgraphs induced by n1−n0 transactions, although the results of this
section do not rely on this assumption). Clearly, these two approaches are quite similar in spirit;
however, the second one permits us to avoid certain technical difficulties related to randomness of

24for example, the cost may be the expected confirmation time of a transaction (conditioned that it is eventually
confirmed), the probability that it was not approved during certain (fixed) time interval, etc.; below in (4.6) we
provide the exact definition of the cost function we are working with in this paper

54 EQUILIBRIA IN THE TANGLE 4.4

the number of unseen transactions in the first case. Also, it will be more natural and convenient to
pass from continuous to discrete time.

Now, even with the restrictions as above, it is still unrealistic to work with the simple strategies
of the sort “choose a fixed pair of transactions for each possible restriction of the tangle to the set of
last n1 transactions”, because implementing it in practive would require effectively dealing with sets
indexed by all possible restrictions, and the size of the latter set clearly grows exponentially in n1.
Instead, as hinted in the beginning of this subsection, we think of different “attachment methods”
as simple strategies. Formally, let G[d]

n1 be the set of all possible sub-DAGs of G[d] with n1 vertices,
and Mn1 be the set of all probability measures on the vertices’ pairs of elements of G[d]

n1 . Clearly,
the set G[d]

n1 is finite. An attachment method is then a map

J : G[d]
n1
→Mn1 ;

it is thought of as a (randomized) polynomial-time polynomial-memory algorithm which takes the
last n1 transactions and returns a pair of those transactions which would serve as attachment’s
locations. Then, the available simple strategies are attachment methods

{Jβ, β ∈ A},

where A is some (unspecified) index set. It is also important to observe that this approach does not
restricts generality. We then denote by Q the set of all mixed strategies of the form JΞ, where Ξ is
a random variable on A. Observe also that the set of simple strategies can be thought of as a subset
of Rd (which we assume also to be compact), where d = d(n1) is sufficiently large, and Q would be
then its convex hull.

Let S1, . . . ,SN ∈ Q be the attachment strategies used by the selfish nodes. To evaluate the
“goodness” of a strategy, one has to choose and then optimize some suitable observable (that stands
for the “cost”); as usual, there are several “reasonable” ways to do this. We decided to choose the
following one, for definiteness and also for technical reasons (to guarantee the continuity of a certain
function used below); one can probably extend our arguments to other reasonable cost functions.
Assume that a transaction v was attached to the tangle at time tv, so v ∈ VT (t) for all t ≥ tv. Fix
some (typically large) M0 ∈ N. Let t(v)

1 , . . . , t
(v)
M0

be the moments when the subsequent M0 (after v)

transactions were attached to the tangle. For k = 1 . . . ,M0 let R(v)
k be the event that the default

tip-selecting walk25 on T
(
t
(v)
k

)
stops in a tip that does not reference v. We then define the random

variable
W (v) = 1

R
(v)
1

+ · · ·+ 1
R

(v)
M0

(4.5)

to be the number of times that the M0 “subsequent” tip selection random walks do not reference v
(in the above, 1A is the indicator function of an event A). Intuitively, the smaller is the value
of W (v)/M0, the bigger is the chance that v is quickly confirmed.

Next, assume that (v
(k)
j , j ≥ 1) are the transactions issued by the kth (selfish) node. We define

C(k)(S1, . . . ,SN) = M−1
0 lim

n→∞

W (v
(k)
1) + · · ·+W (v

(k)
n)

n
, (4.6)

to be the mean cost of the kth node given that S1, . . . ,SN are the attachment strategies of the
selfish nodes.

Definition 4.4.1. We say that a set of strategies (S1, . . . ,SN) ∈ QN is a Nash equilibrium if

C(k)(S1, . . . ,Sk−1,Sk,Sk+1, . . . ,SN) ≤ C(k)(S1, . . . ,Sk−1,S ′,Sk+1, . . . ,SN)

for any k and any S ′ ∈ Q.
25i.e., the one used by nodes following the default attachment strategy

4.4 SELFISH NODES AND NASH EQUILIBRIA 55

Observe that, since the nodes are indistinguishable, the fact that (S1, . . . ,SN) is a Nash equi-
librium implies that so is (Sσ1 , . . . ,Sσ(N)) for any permutation σ.

4.4.2 Main results

From now on, we assume that vertices contain no data, i.e., the set D is empty; this is not
absolutely necessary because, with the data, the proof will be essentially the same; however, the
notations would become much more cumbersome. Also, there will be no reattachments; again,
this would unnecessarily complicate the proofs (one would have to work with decorated Poisson
processes). In fact, we are dealing with a so-called random-turn game here, see e.g. Chapter 9 of
[KP17] for other examples.

Consider, for the moment, the situation when all nodes use the same attachment strategy (i.e.,
there are no selfish nodes). The restriction of the tangle on the last n1 transactions then becomes
a Markov chain on the state space Gn1 . We now make the following technical assumption on that
Markov chain:

Assumption D. The above Markov chain is irreducible and aperiodic.

It is important to observe that Assumption D is not guaranteed to hold for every natural
attachment strategy; however, still, this is not a very restrictive assumption in practice because
every finite Markov chain may be turned into an irreducible and aperiodic one by an arbitrarily
small perturbation of the transition matrix.

Then, we are able to prove the following

Theorem 4.4.2. Under Assumptions L and D, the system has at least one Nash equilibrium.

Symmetric games do not always have symmetric Nash equilibria, as shown in [Fey12]. Also, even
when such equilibria exist in the class of mixed strategies, they may be “inferior” to asymmetric pure
equilibria; for example, this happens in the classical “Battle of the sexes” game (see e.g. Section 7.2
of [KP17]).

Now, the goal is to prove that, if the number of selfish nodes N is large, then for any equilibrium
state the costs of distinct nodes cannot be significantly different. Let us recall the notations we use:
S1, . . . ,SN are the strategies of the N selfish nodes, and C(k)(S1, . . . ,SN), k = 1, . . . , N , are the
mean costs of the selfish nodes, defined in (4.6). Now, we have the following

Theorem 4.4.3. For any ε > 0 there exists N0 (depending on the default attachment strategy) such
that, for all N ≥ N0 and any Nash equilibrium (S1, . . . ,SN) it holds that∣∣C(k)(S1, . . . ,SN)− C(j)(S1, . . . ,SN)

∣∣ < ε (4.7)

for all k, j ∈ {1, . . . , N}.
Now, let us define the notion of approximate Nash equilibrium:

Definition 4.4.4. For a fixed ε > 0, we say that a set of strategies (S1, . . . ,SN) ∈ QN is an
ε-equilibrium if

C(k)(S1, . . . ,Sk−1,Sk,Sk+1, . . . ,SN) ≤ C(k)(S1, . . . ,Sk−1,S ′,Sk+1, . . . ,SN) + ε

for any k and any S ′ ∈ Q.
The motivation for introducing this notion is that, if ε is very small, then, in practice, ε-equilibria

are essentially indistinguishable from the “true” Nash equilibria.

Theorem 4.4.5. For any ε > 0 there exists N0 (depending on the default attachment strategy)
such that, for all N ≥ N0 and any Nash equilibrium (S1, . . . ,SN) it holds that (S, . . . ,S) is an
ε-equilibrium, where

S =
1

N

N∑
k=1

S(k) (4.8)

56 EQUILIBRIA IN THE TANGLE 4.4

(that is, all selfish nodes use the same “averaged” strategy defined above). The costs of all selfish
nodes are then equal to

1

N

N∑
k=1

C(k)(S1, . . . ,SN),

that is, the average cost in the Nash equilibrium.

In other words, for large N one can essentially assume that all selfish nodes follow the same
attachment strategy. This result will be important in Section 4.5, because it makes it possible to use
(practical) simulations in order to find the Nash equilibria of systems with large number of selfish
players.

4.4.3 Proofs

First, we need the following technical result:

Lemma 4.4.6. Let P be the transition matrix of an irreducible and aperiodic discrete-time Markov
chain on a finite state space E. Let P̂ be a continuous map from a compact set F ⊂ Rd to the set
of all stochastic matrices on E (equipped by the distance inherited from the usual matrix norm on
the space of all matrices on E). Fix θ ∈ (0, 1), denote P̃ (s) = θP + (1 − θ)P̂ (s), and let πs be the
(unique) stationary measure of P̃ (s). Then πs is also continuous (as a function of s).

Proof. In the following we give a (rather) probabilistic proof of this fact via the Kac’s lemma,
although, of course, a purely analytic proof is also possible. Irreducibility and aperiodicity of P
imply that, for some m0 ∈ N and ε0 > 0

Pm0
xy ≥ ε0 (4.9)

for all x, y ∈ E, where Pm0 = (Pm0
xy , x, y ∈ E) is the transition matrix in m0 steps. Now, (4.9)

implies that
P̃m0
xy (s) ≥ θm0ε0 (4.10)

for all x, y ∈ E and all s ∈ F .
Being (Xn, n ≥ 0) a stochastic process on E, let us define

τ(x) = min{k ≥ 1 : Xk = x}

(with the convention min ∅ =∞) to be the hitting time of the site x ∈ E by the stochastic processX.
Now, let P(s)

x and E(s)
x be the probability and the expectation with respect to the Markov chain with

transition matrix P̃ (s) starting from x ∈ E. We now recall the Kac’s lemma (cf. e.g. Theorem 1.22
of [Dur12]): for all x ∈ E it holds that

πs(x) =
1

E(s)
x τ(x)

. (4.11)

Now, (4.10) readily implies that, for all x ∈ E and n ∈ N,

P(s)
x [τ(x) ≥ n] ≤ c1e

−c2n (4.12)

for some positive constants c1,2 which do not depend on s. This in its turn implies that the series

E(s)
x τ(x) =

∞∑
n=1

P(s)
x [τ(x) ≥ n]

converges uniformly in s and so E(s)
x τ(x) is uniformly bounded from above26; also, the Uniform Limit

26and, of course, it is also bounded from below by 1

4.4 SELFISH NODES AND NASH EQUILIBRIA 57

Theorem (see e.g. Section D.6.2 of [Ok07]) implies that E(s)
x τ(x) is continuous in s. Therefore, for

any x ∈ E, (4.11) implies that πs(x) is also a continuous function of s.

Proof of Theorem 4.4.2. The authors were unable to find a result available in the literature that
implies Theorem 4.4.2 directly; nevertheless, its proof is quite standard and essentially follows
Nash’s original paper ([Nas50]) (see also [Fin64]). There is only one technical difficulty, which we
intend to address via the above preparatory steps: one needs to prove the continuity of the cost
function.

Denote by πS the invariant measure of the Markov chain given that the (selfish) nodes use
the “strategy vector” s = (S1, . . . ,SN). Then, the idea is to use Lemma 4.4.6 with θ = κ

κ+1 , P
the transition matrix obtained from the default attachment strategy, and P̂ (s) is the transition
matrix obtained from the strategy S ′ = N−1

∑N
k=1 Sk (observe that N nodes using the strate-

gies S1, . . . ,SN , is the same as one node with strategy S ′ issuing transactions N times faster).
Assumption D together with Lemma 4.4.6 then imply that πs := πS′ is a continuous function of s.

Let ES,ŜπS′ be the expectation with respect to the following procedure: take the “starting” graph
according to πS′ , then attach to it a transaction according to the strategy S, and then keep attaching
subsequent transactions according to the strategy Ŝ (instead of S ′ and Ŝ we may also use the
strategy vectors; S ′ and Ŝ would be then their averages). Let also W (k) be the random variable
defined as in (4.5) for an arbitrary transaction v issued by the kth node. Then, the Ergodic Theorem
for Markov chains (see e.g. Theorem 1.23 of [Dur12]) implies that

C(k)(S) = ESk,S
′

πS′
W (k). (4.13)

It is not difficult to see that the above expression is a polynomial of the S’s coefficients (i.e., the
corresponding probabilities) and πS′-values, and hence it is a continuous function on the space of
strategies Mn1 . Using this, the rest of the proof is standard, it is obtained as a consequence of the
Kakutani’s fixed point theorem ([Kak41]), also with the help of the Berge’s Maximum Theorem
(see e.g. Chapter E.3 of [Ok07]).

Proof of Theorem 4.4.3. Without restricting generality we may assume that

C(1)(S1, . . . ,SN) = max
k=1,...,N

C(k)(S1, . . . ,SN),

C(2)(S1, . . . ,SN) = min
k=1,...,N

C(k)(S1, . . . ,SN),

so we then need to proof that C(1)(s)− C(2)(s) < ε, where s = (S1, . . . ,SN). Now, the main idea of
the proof is the following: if C(1)(s) is considerably larger than C(2)(s), then the owner of the first
node may decide to adopt the strategy used by the second one. This would not necessarily decrease
his costs to the former costs of the second node since a change in an individual strategy leads to
changes in all costs; however, when N is large, the effects of changing the strategy of only one node
would be small, and (if the difference of C(1)(s) and C(2)(s) were not small) this would lead to a
contradiction to the assumption that s was a Nash equilibrium.

So, let us denote s′ = (S2,S2,S3, . . . ,SN), the strategy vector after the first node adopted the
strategy of its “more successful” colleague, see Figure 4.3. Let

S =
1

N

(
S1 + · · ·+ SN

)
and S ′ = 1

N

(
2S2 + S3 + · · ·+ SN

)
be the two “averaged” strategies. In the following, we are going to compare C(2)(s) = E(S2,S)

πS W (2)

(the “old” cost of the second node) with C(1)(s′) = E(S2,S′)
πS′ W (1) (the “new” cost of the first node,

after it adopted the second node’s strategy). We need the following

58 EQUILIBRIA IN THE TANGLE 4.4

S1 S2 S3 SN

. . .

S2 S2 S3

. . .

SN

Figure 4.3: On the main idea of the proof of Theorem 4.4.3. The node with the highest cost will switch to
the strategy of the node with the lowest cost. That will not guarantee exactly that same cost to the former
node, but the difference will be rather small since N is large (so the change in one component of the strategy
vector will not influence a lot the outcome).

Lemma 4.4.7. For any measure π on Gn1 and any strategy vectors s = (S1, . . . ,SN) and s′ =
(S ′1, . . . ,S ′N) such that Sk = S ′k for all k = 2, . . . , N , we have

∣∣E(Sj ,S)
π W (j) − E

(S′j ,S′)
π W (j)

∣∣ ≤ M0

N
(4.14)

for all j = 2, . . . , N .

Proof. Let us define the event

A = {among the M0 transactions there is at least one issued by the first node},

and observe that, by the union bound, the probability that it occurs is at most M0/N . Then,
using the fact that E(Sj ,S)

π (W (j)1Ac) = E(Sj ,S′)
π (W (j)1Ac) (since, on Ac, the first node does not

“contribute” to W (j)), write∣∣E(Sj ,S)
π W (j) − E

(S′j ,S′)
π W (j)

∣∣
=
∣∣E(Sj ,S)
π (W (j)1A) + E(Sj ,S)

π (W (j)1Ac)− E(Sj ,S′)
π (W (j)1A)− E(Sj ,S′)

π (W (j)1Ac)
∣∣

=
∣∣E(Sj ,S)
π (W (j)1A)− E(Sj ,S′)

π (W (j)1A)
∣∣

≤ M0

N
,

where we also used that W (j) ≤ 1. This concludes the proof of Lemma 4.4.7.

We continue proving Theorem 4.4.3. First, by symmetry, we have

E(S2,S′)
πS′

W (1) = E(S2,S′)
πS′

W (2). (4.15)

Also, it holds that ∣∣E(S2,S′)
πS′

W (2) − E(S2,S)
πS′

W (2)
∣∣ ≤ M0

N
(4.16)

by Lemma 4.4.7. Then, similarly to the proof of Theorem 4.4.2, we can obtain that the function

(S,S ′,S ′′) 7→ E(S,S′)
πS′′

W (2)

is continuous; since it is defined on a compact, it is also uniformly continuous. That is, for any ε′ > 0

4.4 SELFISH NODES AND NASH EQUILIBRIA 59

there exist δ′ > 0 such that if ‖(S,S ′,S ′′)− (S̃, S̃ ′, S̃ ′′)‖ < δ′, then∣∣E(S,S′)
πS′′

W (2) − E(S̃,S̃′)
πS̃′′

W (2)
∣∣ < ε′.

Choose N0 = d1/δ′e. We then obtain from the above that∣∣E(S2,S)
πS′

W (2) − E(S2,S)
πS W (2)

∣∣ < ε′. (4.17)

The relations (4.15), (4.16), and (4.17) imply that∣∣E(S2,S′)
πS′

W (1) − E(S2,S)
πS W (2)

∣∣ ≤ ε′ + M0

N
.

On the other hand, since we assumed that s is a Nash equilibrium, it holds that

E(S2,S′)
πS′

W (1) = C(1)(s′) ≥ C(1)(s) = E(S1,S)
πS W (1), (4.18)

which implies that

E(S1,S)
πS W (1) − E(S2,S)

πS W (2) ≤ ε′ + M0

N
.

This concludes the proof of Theorem 4.4.3.

Proof of Theorem 4.4.5. To begin, we observe that the proof of the second part is immediate,
since, as already noted before, for an external observer, the situation where there are N nodes with
strategies (S1, . . . ,SN) is indistinguishable from the situation with one node with averaged strategy.

Now, we need to prove that, for any fixed ε′ > 0 it holds that

C(1)(S, . . . ,S) ≤ C(1)(S̃,S, . . . ,S) + ε′ (4.19)

for all large enough N (the claim would then follow by symmetry). Recall that we have

C(1)(S, . . . ,S) = E(S,S)
πS W (1), (4.20)

C(1)(S1, . . . ,SN) = E(S1,S)
πS W (1), (4.21)

and

C(1)(S̃,S, . . . ,S) = E(S̃,S′)
πS′

W (1), (4.22)

where
S ′ = 1

N

(
S̃ + (N − 1)S

)
=

1

N

(
S̃ +

N − 1

N
(S1 + · · ·+ SN)

)
.

Now, the second part of this theorem together with Theorem 4.4.3 imply27 that, for any fixed
ε > 0 ∣∣E(S,S)

πS W (1) − E(S1,S)
πS W (1)

∣∣ < ε (4.23)

for all large enough N .
Next, let us denote

S ′′ = 1

N
(S̃ + S2 + · · ·+ SN).

Then, again using the uniform continuity argument (as in the proof of Theorem 4.4.3), we obtain
that, for any ε′′ > 0 ∣∣E(S̃,S′)

πS′
W (1) − E(S̃,S′′)

πS′′
W (1)

∣∣ < ε′′ (4.24)

27note that Theorem 4.4.3 implies that, when N is large, the nodes already have “almost” the same cost in the
Nash equilibrium (S1, . . . ,SN)

60 EQUILIBRIA IN THE TANGLE 4.5

T (t) T (t+∆)

Figure 4.4: Why the “greedy” tip selection strategy will not work (the two “best” tips are shown as larger
circles).

for all large enough N . However,

E(S̃,S′′)
πS′′

W (1) = C(1)(S̃,S2, . . . ,SN) ≥ C(1)(S1,S2, . . . ,SN) = E(S1,S)
πS W (1),

since (S1, . . . ,SN) is a Nash equilibrium. Then, (4.23)–(4.24) imply that∣∣E(S,S)
πS W (1) − E(S̃,S′)

πS′
W (1)

∣∣ < ε+ ε′′,

and, recalling (4.20) and (4.22), we conclude the proof of Theorem 4.4.5.

4.5 Simulations

In this section we investigate Nash equilibria between selfish nodes via simulations. As discussed
in Section 4.2, this is motivated by the following important question: since the choice of an attach-
ment strategy is not enforced, there may indeed be nodes which would prefer to “optimise” their
strategies in order to decrease the mean confirmation time of their transactions. So, can this lead
to a situation where the corresponding Nash equilibrium is “bad for everybody”, effectively leading
to the system’s malfunctioning?

Due to Theorem 4.4.5 we may assume that all selfish nodes use the same attachment strategy.
Even then, it is probably unfeasible to calculate that strategy exactly; instead, we resort to simu-
lations, which indeed will show that the equilibrium strategy of the selfish nodes will not be much
different from the (suitably chosen) default strategy, at least in the (very natural) situation below.
But, before doing that, let us explain the intuition behind this fact. Naively, a reasonable strategy
for a selfish node would be the following:

(1) Calculate the exit distribution of the tip-selecting random walk.

(2) Find the two tips where this distribution attains its “best”28 values.

(3) Approve these two tips.

However, this strategy fails when other selfish nodes are present. To understand this, look at
Figure 4.4: many selfish nodes attach their transactions to the two “best” tips. As a result, the
“neighborhood” of these two tips becomes “overcrowded”: there is so much competition between the
transactions issued by the selfish nodes, that the chances of them being approved soon actually
decrease29.

To illustrate this fact, several simulations have been done. All the results depicted here were
generated using (4.2) as the transition probabilities, with q = 1/3, and a network delay of h = 1
second. Also, a transaction will be reattached if the two following criteria are met:

28i.e., the maximum and the second-to-maximum
29the “new” best tips are not among them, as shown on Figure 4.4 on the right

4.5 SIMULATIONS 61

(1) the transaction is older than 20 seconds

(2) the transaction is not referenced by the tip selected by a random walk with α =∞30.

This way, we guarantee not only that the unconfirmed transactions will be eventually confirmed,
but also that all transactions that were never reattached are referenced by most of the tips. Note
that when the reattachment is allowed in the simulations, if a new transaction references an old,
already reattached transaction together with its newly reissued counterpart, there will be a double
spending. Even though the odds of that are low (since when a transaction is re-emitted, it will be
old enough to be almost never chosen by the random walk algorithm), a specific procedure was
included in the simulations in order to not allow double spendings.

The average costs were simulated as defined at equations (4.5) and (4.6), so a certain value of
M0 had to be chosen. Since the value ofW (v)/λ is related to the time of approval of v (whenever the
transaction is indeed approved before t(v)

M0
), we want M0 to be sufficiently large, in order to capture

the effect of most of the approvals. Figure 4.5 depicts the typical cumulative distribution of the time
of the first approval, for several values of α and λ. Note that roughly 95% of the transactions will
be approved before t = 5s, and almost its totality will be approved before t = 10s. For that reason,
in both cases (λ = 25 and λ = 50), the mean cost was calculated over the transactions attached
during a time interval of approximately 10s (M0 = 500 for λ = 50 and M0 = 250 for λ = 25), so
almost the totality of approvals will be “seen” by the average cost.

0 2 4 6 8 10 12

Time of first approval (s)

0.2

0.4

0.6

0.8

1.0

Li
ke

lih
oo

d
of

oc
cu

rr
en

ce

λ = 25;α = 0.01

λ = 25;α = 0.05

λ = 25;α = 0.5

λ = 25;α = 1.0

λ = 50;α = 0.01

λ = 50;α = 0.05

λ = 50;α = 0.5

λ = 50;α = 1.0

Figure 4.5: Cumulative distribution of time of approvals for several values of α and λ

4.5.1 One dimensional Nash equilibria

In this section, we will study the Nash equilibria (S1, . . . ,SN) of the tangle problem, considering
the following strategy space: {

(1− θ)S0 + θS1, 0 ≤ θ ≤ 1
}

where the simple strategies S0 and S1 are the default tip selection strategy and the “greedy” strategy
(defined in the beginning of this section) correspondingly; that is, Si = (1 − θi)S0 + θiS1 where
θi ∈ [0, 1], i = 1, . . . , N . The goal is to find the Nash equilibria relative to the costs defined in the
last section (equations (4.6) and (4.5)). The selfish nodes will try to optimise their transaction cost
with respect to θi.

30here, when the random walk must choose among n transactions with the same weight, it will choose randomly,
with equal probabilities

62 EQUILIBRIA IN THE TANGLE 4.5

By Theorem 4.4.5, each Nash equilibrium in this form will be equivalent to another Nash
equilibrium with “averaged” strategies, i.e.:

S =

(
1− 1

N

N∑
k=1

θi

)
S0 +

1

N

N∑
k=1

θiS1 = (1− θ)S0 + θS1 for each i = 1, . . . , N,

Now, suppose that we have a fixed fraction γ of selfish nodes, that choose a strategy among the
possible S. The non-selfish nodes will not be able to choose their strategy, so they will be restricted,
as expected, to S0. Note that, since they cannot choose their strategy, they will not “play” the game.
Since the costs are linear over S, such mixed strategy game will be equivalent31 to a game where
only a fraction p = γθ ≤ γ of the nodes chooses S1 over S0, and the rest of the nodes chooses S0

over S1. Note that this equivalence does not contradict the theorems proved in the last sections,
that state:

• all the nodes will have the same average costs when the system is at a Nash equilibrium;

• any Nash equilibrium has an equivalent Nash equilibrium with “averaged” strategies, where
all the nodes will have the same strategies.

From now on, we will refer (unless stated otherwise) to this second pure strategy game. Fig-
ure 4.6(a) represents a typical graph of average costs of transactions issued under S0 and S1, as a
function of the fraction p, for a low α and two different values of λ. As already demonstrated, when
in equilibrium, the selfish nodes should issue transactions with the same average costs. That means
that the system should reach equilibrium in one of the following states:

(1) some selfish nodes choose S0 and the rest choose S1 (0 < p < γ), all of them with the same
average costs;

(2) all selfish nodes choose S1 (p = γ);

(3) all selfish nodes choose S0 (p = 0).

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5
p

0.60

0.65

0.70

0.75

0.80

co
st

s1, λ=25
s0, λ=25
s1, λ=50
s0, λ=50

0.0 0.1 0.2 0.3 0.4 0.5
p

−0.15

−0.10

−0.05

0.00

0.05

δ

δ, λ=25
δ , λ=50

Figure 4.6: Dotted lines are the raw data. Solid lines were fitted with least squares polynomials of four-degree.
Costs (a) and gain of the strategy S1 over S0; (b) for α = 0.01.

If the two curves on the graphs do not intersect, the equilibrium should be clearly at state (2)
or (3), depending on which of the average costs is larger. If the two curves on the graphs intercept

31this way, we deal with just one variable (p) instead of two (γ and θ) and none of the parameters of the system
is lost

4.5 SIMULATIONS 63

C

p

S0

S1

p−p̄p+

C(s̄)
C(s−) = C(s+)

C

p

S1

S0

p−p̄p+

C(s̄)
C(s−) = C(s+)

Figure 4.7: Different Nash equilibrium points in systems with similar curves

each other, we will also have the intersection point as a Nash equilibrium candidate. We call s̄ the
vector of strategies on equilibrium and p̄ the fraction of nodes that will issue transactions under S1

when the system is in s̄. We define p− = p̄− γ
N and p+ = p̄+ γ

N , meaning that p− and p+ will be
deviations from p̄, that result from one node switching strategies, from S0 to S1 and from S1 to S0,
respectively. We also define s̄− and s̄+ as strategy vectors related to p− and p+. Note on Figure 4.7
that this kind of Nash equilibrium candidate may not be a real equilibrium. In the first example
(4.7(a)), when the system is at point p̄ and a node switches strategies from S0 to S1 (moving from
p̄ to p+), the cost actually decreases, so p̄ cannot be a Nash equilibrium. On the other hand, the
second example (4.7(b)) shows a Nash equilibrium at point p̄, since deviations to p− and p+ will
increase costs.

Now, let us re-examine Figure 4.6(a). Here, the Nash equilibrium will occur at the point p̄, since
we have a situation as on Figure 4.7(b). That point is easily found at Figure 4.6(b), when δ = 0.
Note that the Nash equilibrium for a larger λ will be at a smaller θ0 than the Nash equilibrium
for a smaller λ. This was already expected, since, for a larger λh, the tips will be naturally more
“overcrowded”, so the effect depicted at Figure 4.4 will be amplified. Thus, the Nash equilibrium
for the higher λh cases must occur with a smaller proportion of transactions issued with the pure
strategy S1.

Let us now again consider the mixed strategy game. In the case when all the nodes are allowed
to choose between the two pure strategies (S0 and S1), the Nash equilibrium will be indeed at
θ0 = p̄ (as expected, since in this case γ = 1). If just a fraction γ = p/θ > p̄ of the nodes is selfish,
then the Nash equilibrium will occur when θ0 = p̄/γ. Now, if γ ≤ p̄, the costs of the nodes will not
coincide32. In that case, the average cost of transactions under S1 will always be smaller than the
average cost of transactions under S0, meaning that the Nash equilibrium will be met at θ0 = 1.
Summing up, the Nash equilibrium θ0, in these cases, will be met at:

θ0 = min{p̄/γ, 1}.

Figure 4.8(a) represents a typical graph of average costs of transactions under S0 and transac-
tions under S1 as a function of fraction p, for a higher α. In that case, even though the average
costs of transactions under S0 and transactions under S1 do not coincide for any reasonable p
(meaning that, here, the Nash equilibrium will be met at θ = 1), the typical difference between the
possible pure strategies (that, from now on, we will call absolute gains) will be low, as depicted on
Figure 4.8(b).

Figure 4.9 shows the average cost increase imposed on the nodes following the default strategy
by the nodes issuing transactions under S1. Let W (p) be the non-greedy nodes costs depicted in
Figure 4.8(a). The cost increase is calculated as (W (p) −W (0))/W (0), so it will be the relative
difference of the cost of a non-selfish node in the presence of a fraction p of selfish transactions and
the cost of a non-selfish node when there are no selfish transactions at all. This difference is low,

32that is the case for the range of studied parameters

64 EQUILIBRIA IN THE TANGLE 4.5

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5
p

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

co
st

s1, λ=25
s0, λ=25
s1, λ=50
s0, λ=50

0.0 0.1 0.2 0.3 0.4 0.5
p

0.08

0.10

0.12

0.14

0.16

0.18

0.20

δ

δ, λ=25
δ , λ=50

Figure 4.8: Costs (a) and gain (b) of the strategy S1 over S0; for α = 0.5.

0.0 0.1 0.2 0.3 0.4 0.5
p

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

co
st
 in

cr
ea

se
 o
f S

0 i
nd

uc
ed

 b
y
S 1

α=0.01 , λ=25
α=0.01 , λ=50
α=0.05 , λ=25
α=0.05 , λ=50
α=0.5 , λ=25
α=0.5 , λ=50
α=1 , λ=25
α=1 , λ=50

Figure 4.9: Relative cost increase of the transactions issued by the strategy S0 induced by the presence of
transactions emitted by the strategy S1.

4.6 CONCLUSIONS AND FUTURE WORK 65

meaning that the presence of selfish nodes do not harm the efficiency of the non-selfish nodes. Note
that this difference is small for all reasonable values of p, but even for the larger simulated values of
p, the difference is still less than 25%. An interesting phenomenon, as shown in the same graph, is
that the average cost increase imposed on the non-greedy nodes may actually be negative. For low
values of α, just a small fraction of the transactions under S0 will share the approved tips with the
transactions under S1. This fraction of transactions will approve overcrowded tips, and will have
their costs increased. All the other transactions under S0 will have their sites less crowded, since
an increase in S1 will mean a decrease in competition over these transactions. Finally, on average,
the honest nodes will have their costs decreased.

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5
p

0.50

0.55

0.60

0.65

0.70

co
st

s1, λ=25
s0, λ=25
s1, λ=50
s0, λ=50

0.0 0.1 0.2 0.3 0.4 0.5
p

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

δ

δ, λ=25
δ , λ=50

Figure 4.10: Costs (a) and gain (b) of the strategy S1 over S0; for α = 0.05.

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5
p

0.750

0.775

0.800

0.825

0.850

0.875

0.900

co
st

s1, λ=25
s0, λ=25
s1, λ=50
s0, λ=50

0.0 0.1 0.2 0.3 0.4 0.5
p

0.05

0.06

0.07

0.08

0.09

0.10

δ

δ, λ=25
δ , λ=50

Figure 4.11: Costs (a) and gain (b) of the strategy S1 over S0; for α = 1.

Figures 4.10 and 4.11 are analogous to the first figures, for other values of α and λh; part (a)
of each figure represents average costs and part (b) absolute gains.

4.6 Conclusions and future work

In the first part of this paper, we prove the existence of (“almost symmetric”) Nash equilibria
for a game in the tangle where a part of players tries to optimise their attachment strategies. In the

66 EQUILIBRIA IN THE TANGLE

second part of the paper, we numerically determine, for a simple space strategy and some range of
parameters, where these equilibria are located.

Our results show that the studied selfish strategy outperform the non-selfish ones by a reasonable
order of magnitude. The data show a 25% (in the most extreme scenario) difference in the nodes
gains, which in some situations, may be large enough. Nevertheless, the computational cost of
a selfish strategy is intrinsically larger than the computational cost of the non-selfish strategies,
since the selfish strategy uses the probability distribution of the tips, which is costly to calculate
for a random walk with backtracking. They will also have to monitor the tangle, to know its
parameters (like λ, h etc) and act accordingly. Also, even a extreme scenario, where almost half
of the transactions were issued by a selfish node, is not enough to harm the non-selfish ones in a
meaningful way.

On the other hand, our results raise further questions. The obtained data exhibit a deep qualita-
tive dependence on the parameter α of the simulation. This parameter is related to the randomness
of the random walk: a low α implies a high randomness; a higher α implies a low randomness,
meaning that the walk will be almost deterministic. Further simulations will be done in order to
study the effect of that variable in the equilibria. Also, we only studied equilibria for a given cost,
relative to the probability of confirmation of the transactions in a certain interval of time. Since
this probability depends heavily on the interval of time chosen (because the probability distribution
of the confirmations is far from uniform), another time intervals, that will have another practical
meaning, must be analysed.

Finally, the equilibrium in the multidimensional strategy space should be studied in a more
quantitative and analytic way, since it should depend strongly on α and p; and until now it was
studied in just a narrow range of parameters. Further research will also be done in order to optimise
the default tip selection strategy in a way that minimises this cost imposed by the selfish strategies.
Through implementing research methods and techniques from the cross-reactive fields of measure
theory, game theory, and graph theory, progress towards resolving the tangle-related open problems
has been well under way and will continue to be under investigation.

As already mentioned, in this paper we consider only “selfish” players, i.e., those who only care
about their own costs but still want to use the network in a legitimate way. We do not consider
at all the case when there are “malicious” ones, i.e., those who want to disrupt the network even
at a cost to themselves. We are going to treat several types of attacks against the network in the
subsequent papers. Some preview of this ongoing work is available in [Pop18].

Bibliography

[Anh08] Nguyen Hoang Anh. Peer-to-peer systems : " a shared social network ". 2008. vii, 7

[Bai16] L. Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance.
2016.
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf. 46

[Bar01] David Barkai. Peer-to-Peer Computing: Technologies for Sharing and Collaborating on the
Net. Intel Press, 2001. 5

[CF07] C. Cooper e A. Frieze. The cover time of the preferential attachment graph. J. Comb.
Theory B, 97(2):269–290, 2007. 46

[CFP17] C. Cooper, A. Frieze e S. Pett. The covertime of a biased random walk on gn,p. 2017.
arXiv:1708.04908. 46

[Chu16] A. Churyumov. Byteball: a decentralized system for storage and transfer of value. 2016.
https://byteball.org/Byteball.pdf. 46

[Coo81] R. B. Cooper. Introduction to Queueing Theory (2nd Ed). North Holland., 1981. 52

[DS84] P. G. Doyle e J. L. Snell. Random Walks and Electric Networks. 1984. Carus Mathematical
Monographs 22, Mathematical Association of America, Washington. 46

[Dur12] R. Durrett. Essentials of Stochastic Processes. Springer., 2012. 56, 57

[Fey12] M. Fey. Symmetric games with only asymmetric equilibria. Games Econ. Behavior, 75
(1):424–427, 2012. 55

[Fin64] A. M. Fink. Equilibrium in a stochastic n-person game. J. Sci. Hiroshima Univ. Ser. A-I
Math., 28 (1):89–93, 1964. 57

[JLS14] D. Jerison, L. Levine e S. Sheffield. Internal dla and the gaussian free field. Duke Math.
J., 163 (2):267–308, 2014. 46

[Kak41] S. Kakutani. A generalization of brouwer’s fixed point theorem. Duke Math. J., 8 (3):457–
459, 1941. 57

[KG18] B. Kuśmierz e A. Gal. Probability of being left behind and probability of becoming per-
manent tip in the tangle. 2018.
https://www.iota.org/research/academic-papers. 51

[KP17] A. R. Karlin, e Y. Peres. Game Theory, Alive. American Mathematical Society., 2017. 55

[Ler15] S. D. Lerner. Dagcoin: a cryptocurrency without blocks. 2015.
https://bitslog.wordpress.com//09/11/dagcoin/. 46

[Nas50] J. F. Nash. Equilibrium points in n-person games. Proc. Natl. Acad. Sci., 36(1):48–49,
1950. 57

67

68 BIBLIOGRAPHY

[Ok07] E. A. Ok. Real Analysis with Economics Applications. Princeton University Press., 2007.
57

[Pop15] S. Popov. The tangle. 2015. https://iota.org/IOTA Whitepaper.pdf. 46, 47, 49,
50, 51

[Pop18] S. Popov. Local modifiers in the tangle. 2018.
https://www.iota.org/research/academic-papers. 66

[PSF19] Serguei Popov, Olivia Saa e Paulo Finardi. Equilibria in the tangle. Computers Industrial
Engineering, 136:160–172, Oct 2019. 45

[Sch01] R. Schollmeier. A definition of peer-to-peer networking for the classification of peer-to-peer
architectures and applications. Em Proceedings First International Conference on Peer-to-
Peer Computing, páginas 101–102, 2001. 5

[SLZ16] Y. Sompolinsky, Y. Lewenberg e A. Zohar. Spectre: Serialization of proof-of-work events:
Confirming transactions via recursive elections. 2016.
https://eprint.iacr.org//1159.pdf. 46

[SZ13] Y. Sompolinsky e A. Zohar. Secure high-rate transaction processing in bitcoin. 2013.
https://eprint.iacr.org//881.pdf. 50

[You91] Robert M. Young. 75.9 euler’s constant. The Mathematical Gazette, 75, 06 1991. 20

	List of Figures
	List of Tables
	Organization of the work
	I Part One - Random Auto Peering
	Introduction
	Distributed systems and peer-to-peer networks - from ARPA to DLTs
	Peering Algorithms
	A Particular Auto Peering Algorithm

	The Random Auto Peering Model
	Definition of the Mathematical Model
	A transient regime solution for the synchronized problem
	Probability Distribution of the Acceptance Metrics of the Realised Connections
	Additional Properties of the Process

	Another practical application to the synchronized solution
	Bounds on the probability of acceptance for p>0

	Solutions for the generalized (p>0) model
	Stationary distribution
	Some approximations
	Heuristic approximations

	Results
	The life cycle of a connection
	A Real Life Example

	Final remarks
	Open questions

	II Part Two - Nash Equilibria and Tip Selection Algorithms
	Equilibria in the Tangle
	Article - Equilibria in the Tangle
	Introduction
	Description of the model
	On attaching a new transaction to the Tangle

	Selfish nodes and Nash equilibria
	Some further assumptions and definitions
	Main results
	Proofs

	Simulations
	One dimensional Nash equilibria

	Conclusions and future work

	Bibliography

