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Resumo

Astaiza, W. A. EquagGes Parabdlicas em Variedades Cénicas. 2024. 73 f. Tese (Doutorado)
- Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2024.

Apresentaremos resultados sobre equacoes parabdlicas em variedades conicas usando fungoes
continuas e L,. Inicialmente, mostraremos a existéncia de solugoes globais para uma tipica
equagao de reacao-difusao. Consideramos espacos de Mellin Sobolev, que sao espacos de fungoes
construidos usando funcoes L,,.

Em segundo lugar, mostramos a sectorialidade de operadores diferenciais e pseudodifer-
enciais elipticos agindo sobre fungoes continuas em variedades compactas sem bordo e sem
singularidades conicas.

Por fim, para uma variedade conica, estendemos as fungoes continuas e C! para C%7(B) e
C'7(B), e mostramos que operadores diferenciais elipticos definem operadores quase sectoriais
nesses espagos.

Palavras-chave: Variedades conicas, espagos Mellin-Sobolev, operadores pseudodiferenciais,
operadores setoriais e quase setoriais.



Abstract

Astaiza, W. A. Parabolic Equations on Conic Manifolds. 2024. 73f. Tese (Doutorado) -
Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2024.

We are going to present results about parabolic equations on conic manifolds using L,
and continuous functions. First, we show existence of global solutions for a typical Reaction-
Diffusion equation on a conic manifold B. More precisely, we study the equation

Ou
ot
u(0,z) = up(x) x € B°.

=Apu+u—u? on B°

where ¢ is odd. We consider Mellin-Sobolev spaces H%”(IB%). These are function spaces built
using L, norms.

Second, we show sectoriality for elliptic differential and pseudodifferential operators acting
on continuous spaces on compact manifolds without boundary and without conical points.

Third, for a conic manifold B, we extend the continuous and C"! spaces to C*?(B) and C'7(B)
and we show that elliptic differential operators define almost sectorial operators on these spaces.

Keywords: Conic manifolds, Mellin-Sobolev spaces, Pseudodifferential operators, Sectorial
and almost sectorial operator.
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Chapter 1

Introduction

The study of partial differential equations is very important, since many phenomena in science
can be described by this mathematical tool, which tries to give solutions whenever they exist
and their respective properties. There is a lot of material about such equations and their so-
lutions by different methods. We want to contribute to parabolic equations on manifolds with
conical points by a combination of semigroup theory and pseudodifferential operators that we
will describe with more details later.

We recall that the parabolic equations are essential, because they model physical phenom-
ena as heat transfer, diffusion and it has many applications in real life. Several authors had
studied different ways to solve this type of problems on non-smooth manifolds and domains
such as Kondratiev, Kozlov, Grisvard, Dauge, among others. In the last decades, important
contributions have been given by schools such as the one led by B-W Schulze (see [11]), mainly
using L, spaces to solve elliptic and parabolic equations on manifolds with singular points or
corners, which are the inspiration for this work.

Our main aim is to study solutions in different spaces based on L, norms, Holder and con-
tinuous spaces using techniques developed recently by [4] and [2] on conic manifolds. First,
we show how to use analytic semigroup theory and results provided by pseudodifferential op-
erators to obtain global solutions of a typical Reaction-Diffusion equation on conic manifolds
using L, spaces, more precisely Mellin-Sobolev spaces. Second, we show how to use techniques
of pseudodifferential operators and estimates for integral operators in order to study the be-
haviour of the operators that compose the resolvent operators in the case of a manifold without
singularities and a conic manifold.

Analytic semigroups have important applications to parabolic equations. Using mild solu-
tions defined over the domain of fractional power of sectorial operators, Dlotko and Cholewa
showed existence of global attractors under some conditions in the nonlinear term and their
domains. For more details, see [6] and [I0]. In order to use their technique we have used many
tools or pre requisites as for example pseudodifferential calculus that is continuously giving
important new results to partial differential equations and geometry. Relevant material that
we used can be found in [1, [5], [14], [20], [21], [29], [31].



Inspired by Dore and Venni’s work, which is based on the behaviour of imaginary powers
and their use to regularity of evolution equations, E. Schrohe and J. Seiler have investigated
the resolvent for Cone Differential operators which appears in a natural way on Manifolds with
conical singularities. Their work was based on Sobolev spaces with weight, which they call
Mellin-Sobolev spaces. One of our aims is to extend their results to Holder and continuous
spaces. For this purpose, we need to study the Pseudo-Differential Calculus as presented, for
instance, by Y. V. Egorov and B-W. Schulze, see [11]. The pseudodifferential calculus is based
on the Fourier transform. The idea is to built an approximation of the inverse operator called
parametrix using the symbols that we will introduce later. Similarly and connected with Fourier
transform, we have used the Mellin transform near to the conical points to describe a similar
calculus with other types of symbols and parameters that depend on a sector domain on the
complex plane. This calculus was developed by B.W. Schulze.

For simplicity, we emphasize that our computations are done using local coordinates on the
manifold. We have tried to give more information and to explain easily details that can be
difficult to read and understand in the papers. Besides, we give our contributions with new
definitions and build concepts that perhaps can be used in future by us or others interested
in this area. In a way, some of our results improve the ones obtained by Schrohe and Roidos
([23]) who have proved existence of local solutions of the Allen-Cahn equation, but have neither
given conditions to obtain global solutions nor studied the dynamics of them. Next, we show
how this material is organized.

In Chapter 2, we state our objectives and some important equations that we will study.
We want to show the importance of this type of problems and look at them from different
angles and to give directions that can be taken in the future. In particular, we present Sectorial
operators, Linear Semigroups, some aspects about interpolation spaces, nonlinear semigroups
and Pseudodifferential operators. Chapter 3 is concerned with the L, theory and we give our
first contribution. Here, we define the Conic Manifolds, we present results on extensions of
unbounded operators defined by differential operators and a typical Reaction-Diffusion equa-
tion. Moreover, we prove existence of global solutions for that problem. In chapter 4, we work
with A-Elliptic operators on BUC and BUC" spaces and we give applications for the case of
differential and pseudodifferential operators on manifolds without singularities.

Finally, in Chapter 5 we define the typical continuous and Holder spaces on conic manifolds
and give our second main contribution. We describe the operators that appear in the structure
of the resolvent of elliptic operators. Besides, we present the Mellin Differential and Pseudo-
Differential Operators. Next, we show known results in 7-[2”(]]33) spaces and the behaviour for
the operators that compose the resolvent operator in C%7(B) and C'7(B). We prove that cer-
tain elliptic operators are almost sectorial in a conic manifold and we give an example for an
equation with the Laplace operator in such spaces.

In a parallel work during the development of this thesis, I studied symmetric tensor power of
graphs under the sponsorship of The American Institute of Mathematics (AIM). As a result, we
have submited the pre print that can be found in https://arxiv.org/pdf/2309.13741v1.pdf.


https://arxiv.org/pdf/2309.13741v1.pdf

Chapter 2

Objectives and Preliminary results

The main aim of this work is to study parabolic equations on manifolds with conical singulari-
ties. We introduce new tools to show global well-posedness for this type of equation in H>7(B)
spaces and we also prove well posedness in C*7(B) spaces, where H57(B) and C*(B) are conical
versions of L, and BUC' (Bounded Uniformly Continuous) spaces. In this work we:

1) Study semilinear parabolic equations of the type
u + Au = F(u),

where A can be a sectorial or almost sectorial operator and F' is a nonlinear operator.
2) Introduce manifolds with a conic point and provide the most important information
about them that are relevant to this work.

3) Introduce the Mellin Sobolev spaces, H," (B).

4) Study semilinear parabolic equations using these spaces under suitable conditions.

5) Recall the definitions of BUC' and Holder spaces and we show that certain elliptic differ-
ential and pseudodifferential operators are sectorial in C'(M), where M is a compact manifold

without singularities.

6) Introduce our new spaces C*7(B) and we show that certain elliptic conic operators are
almost sectorial in C%7(B) and C*(B).

7) Apply our theory to parabolic equations to the new Holder and continuous spaces C*7(B).

Let B be a conic manifold that we will define in following chapter. We will consider the
following semilinear heat equation on B:

ou

_— = — 4

BT Agu+u—u?, xeB,t>0, 2.1)
u(0,z) = up(x), z € B.



In order to motivate our work, we first recall that a simple cone C on R? can be defined by
C :={(rcosfsin¢,rsinfsin g, rcosp),r > 0,0 < 0 < 27},
where ¢ € (0, %) is fixed. Let us see how is the solution for the equation given by
Au(r,0) =0 onC,
u(r,0) = u(r,2m).

Therefore, we are looking for periodic solutions in 6 and we will proceed as follows. First, we
express the Laplace-Beltrami operator in spherical coordinates. Recalling that the angle ¢ is
constant, we see that

(2.2)

Au(r,0) = r_12 {Gr(vg&nu)

qb@eu] .
If we note that 9,(r20,) = (r9,)* + r0, then (2.2)) is equlvalent to

{onar) 70, + (ﬂ] u(r,0) =0,
u(r,0) = u(r, 2r).

This problem can be transformed into an ODE of second order applying the Mellin transform
(see Definition in Section at the variable r

{z —z+ . ¢89} Mu(z,0) =0, (2.3)
Mu(z,0) = Mu(z,2).

Later we will define the Mellin transform and show some of its properties. After some compu-
tations we find that the solutions of (2.3) are given by Mu(z, 8) = ¢; cos(kf) + c3 sin(k#) with

kEZandz:%$ i—( k

2
- ¢> . They can be expressed also as

1 1 ko
Mu(z,0) = ¢ cos(|sin |V z — 220) + cosin(|sin |V z — 220)0 | z — ST\~ ( ; )
Therefore, by linearity the solution can be written as

2
M~ 1{ <clkc0s (|sin ¢V z — 2260) + cop sin( s1n¢]\/z—z29> ( %:F i( _k ))]

5

k=1

MN

=
Il

1

|~

DO
d.

1 1 kE\°
/ t~%cyp cos(| sin @|V 2z — 220) + cop sin(| squbh/ﬁ@ ( sF\ 1~ < - > )dz,
r

1
2

that u(r,0) is equal to

! 1, /1_ k )2 1_, l_( _k_ )2 1 1, /1 _(_k_ )2
Z (c 2ty + G172 4 sing ) cos(k@)+ <02kr2 4 + CopT? 1~ Gag ) sin(k@).
k=1

(2.4)



The behaviour of this solution near the conical point depends on the space where we are looking for
it. For example, the conic metric on this manifold is dr? + r?sin® ¢d?# and if we want the solution

Vo [Tk
with r2 TV~ (@s)" iy L,(CNB(0,1)), then we have to note that for k larger enough, 3 — (-£-)? < 0.

In this case, the integral is

[

2
The last integral is finite, if and only if, 1 + £ £p —i + (silrfqﬁ) > —1, which is equivalent to

1 k2
2+ +p + >0,
sin ¢

2
. p+4 1
k Fr= -
< sin ¢ < o > —|-4,

since sin ¢ > 0. The previous example is just a motivation without rigorous arguments to study the
behaviour of solutions for equations on conic manifolds.

sin ¢

1 1 p

1 1 k
4 sln¢)2 COSH T1+gip _Z+(sin¢)2

drdf.

rsin ¢pdrdf < 27r/
0

or equivalently,

2.1 Sectorial and Almost Sectorial Operators

In this section, we define an important class of operators, the sectorial operators. From now on, for
a € R, ¢ €[0,27], we will denote by A,(¢) the closed set in C defined by

Ao(¢) ={A € C: ¢ < |arg(A—a)l|}. (2.5)
In principle, the sector depends on ¢ and a, but we just write A in order to simplify the notation.

Im

Complex plane — C

— Spectrum of some operator A

In this section, X denotes a Banach space unless stated otherwise.

Definition 2.1.1. For an operator A: D(A) C X — X the set

eC:Im — AN Z x, (A1 = A eaist and is bounded on Im(A — A)}

is called the resolvent of the operator A and is denoted by p(A). The set o(A) := C/p(A) is called the
spectrum of A. For X\ in p(A), we write the operator R(\, A) := (M — A)™L, also called the resolvent
operator. Here, JmB denotes the range of the operator B.



Next, we define the class of operators that we need for our work. They are very important for the
theory of parabolic equations.

Definition 2.1.2. For a linear and closed defined operator A : D(A) C X — X we say that A is

sectorial if there exist a € R, ¢ € (0, %) and M such that

i) The resolvent p(A) contains the sector A.

i) ||(AM — A) | < G5 for each A € A

Remark 2.1.1. In this work we need to consider two cases: The first case is when the operator A
satisfies that (A)H'HX = X. This is the case for X = L, with 1 < p < co. The second case is when

D(A)”'HX C X as for example for X = BUC, Lo,. Therefore, as we will see later we will work with
analytic C° semigroups (see Definition for the first case and with just analytic semigroups in
the second case. In both cases, we can define the sectorial operators but we should be careful in which
case we are working. In particular, we can also define sectorial operators without requiring that A is

densely defined.

Example 1. If A: D(A) C X — X is a bounded operator, then A is sectorial.

Proof. In fact, we have that {A € C : [\ > ||A||} C p(A), because A\ — A = A(I — $A) and

11— (I—3A)| =34 = T§\|||AH < 1. Then, the inverse of (I — }A) exists and, when || > ||4]|, it
is given by
1 1 1 o= A"
MN-A)t=—T--4)"t=2) =
( ) )\( A ) AL A
In particular, if A C {\ € C: [A| > 2||4]|}, then w < 1. Hence,
RO, )| <3 (””) <3 () i
n=0 ‘)\’ n=0 2
and A is a sectorial operator. O

Definition 2.1.3. Let X be a Banach space, A: D(A) C X — X and v € (—-1,0). If
AL = A)7Hlgx) < ColAl

for all X € Ao(¢), then we say that the operator A is almost sectorial.

2.2 (' Semigroups
From now on, V' is a metric space and X is a Banach space.

Definition 2.2.1. A one parameter family of maps T(t) : V — V, t >0, is called a C° semigroup if :
i) T'(0) is the identity map of V.

it) T(t+s) =T(t)T(s), for all t,s > 0.



iii) The function
[0,00) x V3 (t,x) = T(t)r eV

is continuous at each point (t,z) € [0,00) x V.

The existence of a certain limit involving the semigroup {7'(¢)} is important for the definition of
the generator of a linear C° semigroup. So, we state the following definition.

Definition 2.2.2. Let T(t) : X — X be a linear C° semigroup, that is, a C° semigroup such that
T(t) is a bounded linear operator for each t > 0. The linear operator A : D(A) C X — X defined by

T(t)x —
D(A) :={zr € X : lim )z exists}
t—0+
and Tt
Az = lim Tte—z for x € D(A)
t—0+ t

is called the infinitesimal generator of a linear C° semigroup {T(t) : t > 0}.
We define the analytic semigroups complementing the definition [2.2.1] given before.

Definition 2.2.3. Let {T(t)} be a linear semigroup in X. We say that {T'(t)} is a C° analytic semi-
group if there exists a sector A = Ay(¢), here a = 0, as we defined in (2.5)) of the complex plane and
linear operators T'(z) that match with T(t) for t > 0, such that

i) z — T(z) is analytic in A°.
i) im,_y0 senc T'(2)x = x for every z € X.

iii) T(z1 + 22) = T(21)T(22) with 21,22 € A°.

The following important theorem characterize the generator of C° analytic semigroups and is very
important for this work. Before, we introduce the definition of a curve v on the sector A,(¢) which
will depend on this sector. Then, for » > 0 and n € (,7/2), where 6 is given by the sector A, we
define

y={AeC:larglA—a)|=n,|A\| >r}U{A e C: |arg(A —a)| > n, |\ =7} (2.6)

oriented counterclockwise.

Theorem 2.2.1. A densely defined linear operator A is a negative generator of an analytic semigroup
{T'(t)} of bounded operators T'(t) : X — X, t >0, if and only if —A is a sectorial operator in X with
sector Ay(¢) fora € R and 0 < ¢ < 3.

Proof. See [16]. O

Remark 2.2.1. Given a sectorial operator A : D(A) — X with sector Ay(¢) fora € R and0 < ¢ < F,
we define T'(t) : X — X by
1

Tt =5~ / e M\ — A) " lzd), (2.7)
2l

where vy is a curve on the sector A as ([2.6). T(t) is also denoted by T(t) = e 4.



Remark 2.2.2. As noted before, it is possible to define analytic semigroups that are not C° ana-
lytic semigroups. In fact, if A : D(A) — X is a sectorial operator with sector Ay(¢p) for a € R and
0<¢ <5, but D(A) is not dense in X, then the operator defined by (2.7)) satisfies:

i) z € A¢ = T(2) is analytic for some sector A.

i) lim,_, ;. T(R)Jz=2 <+ =€ (A)H’HX.

ii) T(z1 + 20) = T(21)T(22) for 21,20 € A°.

2.3 Intermediate Spaces: Real and Complex interpola-
tion and fractional powers

The interpolation theory tries to construct suitable families of intermediate interpolation spaces and
to study their properties. The most well known families are the real and complex interpolation spaces.
We present their most relevant information to study our problems in this work.

Let X,Y be two Banach spaces. The couple of Banach spaces (X,Y") is said to be an interpolation
couple if both X and Y are continuously embedded in a Hausdorff topological vector space V. In this
case, XNY and X +Y are linear subspaces of V endowed with the norms ||v||xny = max{||v||x, ||v|]y}
and ||v|| x4y = infeex yevi—aty{l|z||x + ||y|ly} respectively. If (X,Y) is an interpolation couple, an
intermediate space is any Banach space E such that

XNYCECX+Y.

For the rest of this section, let (X,Y’) be an interpolation couple and let L(X) denote all bounded
operators T : X — X. Wesay that T € L(X)NL(Y)#fT: X +Y = X +Y and T}, € L(X) and
T, € L(Y).

Definition 2.3.1. Let (X,Y") be an interpolation couple. An interpolation space is any intermediate
space E such that for all T € L(X)NL(Y), the restriction of T to E belongs to L(E).

Definition 2.3.2. For everyx € X +Y andt > 0, set

K(t,z, X,Y) = [lallx + [ [bl]y-

inf
rz=a+b,aeX,beY

Remark 2.3.1. We note that K(1,z,X,Y) = ||z||x+y and for every t > 0, K(t,-,X,Y) defines an
equivalent norm to || - || x4y -

Definition 2.3.3. Let 0 <6 < 1,1 <p < oo, and set

(X,Y)op, ={zeX+Y :t=t9K(tz,XY)eLy(0,00),%)}, 2.8
"w"(X,Y)g,p :HtfeK(t,x,X,Y)HLP((OOO%%)

Such spaces are called real interpolation spaces and are Banach spaces. There is a well established
theory and many properties about these spaces are known, but we do not need to study all the theory
for our project. For more details, we can see [2I]. Another important definition, when ¥ C X is (we
refer to [3], Section 1.2 )

(X Y)g . ?(X7Y)9,p
) 7p .

9



and it is known that, if Y C X, then by Proposition 1.17 of [2I] we have

(X, V) = { € X s lim =K (1,2, X,Y) = 0}.
' —

Now we consider (X,Y’) an interpolation couple of complex Banach spaces.

Definition 2.3.4. Let S be the strip {z € C: 0 < Re(z) < 1}. We define F(X,Y) as the space of all
functions f : S — X +Y such that:

i) f is holomorphic in the interior of S, continuous and bounded up to its boundary, with values
in X +Y.

i) t — f(it) € BC(R,X), t — f(1+it) € BC(R,Y), and

£l 7(x,y) = max {Sup Lf(@t)||x,sup || f(1+ Z'lt)IIY} < 00,
teR teR
where BC(R, X)) is the set of bounded continuous functions.
Now, we define the complex interpolation spaces.

Definition 2.3.5. Let 6 € [0,1]. The space defined by

{[x, Yo =1{f0),f € FX,Y)}, (2.9)

lallix,yl, = infrercxy),ro)=a Ifll7(x,v)-
18 the complex interpolation space between X andY .

Remark 2.3.2. For 6 € (0,1) we have that X NY C [X,Y]g C X +Y. The same for (X,Y )qp.

For more properties and other important facts we can see [21]. Other intermediate spaces can be
defined through fractional powers of sectorial operators as follows.

Definition 2.3.6. Let o € (0,4+00) and A : D(A) — X be a sectorial operator with Reo(A) > 0, is
that, 0(A) C {z € C:Re(z) > 0}. Then, for allv € X, we define the operators A=* : X — X by

1 [t
A % = / toLe=Atydt,
0

where T'(a)) = f0+°° 2 le=%dx denotes the gamma function.

Under the condition of sectoriality and fRec(A) > 0 it can be shown that A~ is well defined and
these operators are bounded linear operators in X which have inverses denoted by A® := (A=)~!
and satisfy A=*A—# = A=(@+F) with a, 8 > 0. We will denote by X® the domain for the operator
A®. Note that X¢ = Rank(A~%). We have an important relation for those spaces: if & > § then
X c XP is a dense and continuous inclusion. For more details, see [6].

10



2.4 Abstract Cauchy problems and Non-Linear Semi-
groups

In this work, we will deal with some problems that can be studied using the semigroups defined in
Section 2.3. Next, we define the type of solutions that we will consider for parabolic equations, which
is the subject of this work. For more details, one can consult [6]. In general, for a Banach space X,
we call an abstract parabolic equation an expression of the form

ug + Au= F(u), t>0,

2(0) = g (2.10)

where A : D(A) — X is a sectorial operator, BRec(A) > 0 and F' : X* — X is a Lipschitz continuous
function on bounded subsets of X for some « € [0,1). Now, we present some important definitions.
They will be important for the proof of the existence of a global attractor, the definition of a nonlinear
semigroup and problems that we will study in the next sections.

Definition 2.4.1. Ifug € X and for some real T > 0, u € C([0,7), X*)NC*((0,7), X)NC((0,7), D(A))
is such that (2.10) holds for allt € (0,7), then u is called a local X*- solution of (2.10]).

Another type of solution that we will use later for the initial valued problem

u'(t) = f(tu(t), t=0

£(0) = uo (2.11)

where f : [0, 4+00) x D — X is a nonlinear function and D is a continuously embedded subspace of X
is stated in the following definition.

Definition 2.4.2. A function v € C*([0,7); X) N C([0,7); D) that satisfies (2.11)) for 0 < t < 7 is
said to be a strict solution in [0,T).

Proposition 2.4.1. Under the assumptions of (2.10)), there exists always a local X*- solution. We
can always find a mazimal local X*-solution u : [0,T,,) — X% such all local solution with u(0) = ug
is a restriction of the mazimal solution. Finally, if supycpo -, ) [|u(t)||xe < oo, then T, = co.

Proof. See Theorem 2.1.1 in [6].

Definition 2.4.3. A solution u is called global X“-solution if it fulfills all the requirements of Defi-
nition with T = +00.

If for each initial value up € X® in (2.10)) there is a global X - solution wu(t,ug), we can define a
nonlinear C° semigroup {7T'(t)} by

T(t)up = u(t,ug) for t>0. (2.12)

Proposition 2.4.2. If there exists a global X* - solution of (2.10)) for each ug € X, then the relation
T(t)uo = u(t,up) defines a nonlinear C° semigroup for t > 0.

Proof. In effect, T'(0)ug = u(0,up) = up by the initial condition of (2.10)) . For ¢,s > 0 we have that

T(t)T(s)up = T(t)u(s, uo).

11



On the other hand, if we consider

us + Au= F(u), t>0,

u(0) = u(s, up), (2.13)

then u(t + s,up) is the unique X solution that in ¢ = 0 is equal to u(s, up). So, by the uniqueness of
solutions we have that T'(t)u(s, up) = u(t + s,up) = T'(t + s)uo, or, equivalently, T'(t +s) = T'(¢)T'(s)
for all ¢,s > 0. The continuity of the function [0, 4+00) x X% — X is a consequence of Proposition
2.3.2 in [6]. O

Definition 2.4.4. Let (V,d) be a metric space and A C V be a nonempty set. We say that A is a
global attractor for a C° semigroup {T(t)} if:

i) A is compact.
it) T(t)A = A. Here, T(t)A={T(t)x: x € A}.

#48) limy o0 (Suppe g d(T'()b, A)) = 0,  for all B C V bounded, where d(T'(t)b, A) = infae 4 d(T'(t)b, a).

Let us consider two important conditions to show existence of global attractor that we need in
this work:

(A1) The relation (2.12) defines on X©, corresponding to (2.10]), a C° semigroup {T(¢)} of global
X solutions having orbits of bounded sets bounded. This means that, if B C X is bounded then
Uiso T'(t) B is bounded.
(Ag) It is possible to choose
e A Banach space Y, with D(A) C Y,
e A locally bounded function ¢ : [0,400) — [0, 400)
e A nondecreasing function g : [0, +00) — [0, +00)

e A certain number 6 € [0, 1), such that, for every uy € X, both conditions

[u(t, wo)ly < c(||uollxe),  Vt € (0, Tup),

and
|| F (u(t, uo))l|x < g[[u(t, uo)lly) (1 + [|ult, uo)|l%a), ¥t € (0,7u)

hold, where 7, is the maximal interval of existence of the solution.

Theorem 2.4.1. Under the assumptions of (2.10)) the conditions (A1) and (As) are equivalent.

Proof. See Theorem 3.1.1 [6]. O
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2.5 Operator and Function Theory in an open set () C R"

Next, we introduce the basic spaces and operators necessary to study the main problems in this work.
More information can be found in [20] or [6].

Definition 2.5.1. Let 1 < p < oo and © C R™ be an open set. The L,(2) space is the set of all
measurable functions f : Q — C such that the integral [, |f(z)Pdu(x) < oo, where du(x) denotes the
lebesgue measure.

Remark 2.5.1. Actually the elements in Ly(S) are equivalence classes, where f ~ g if and only if
f = g almost everywhere. As usual, we just write f and understand that we work with the equivalence
class of f.

Definition 2.5.2. Let 1 < p < oo and m € Ng. We define the Sobolev spaces by
H)'(Q) = {u € Lp() : D% € Ly(Q) Va multi-index: |af < m}
More generally, we define
Definition 2.5.3. Let s € R and 1 < p < co. Then,
HIR™) = {f € S'(R™) : 51+ [¢[55f € L,(RM)},

where §'(R™) denote the usual dual of the Schwartz space, called tempered distributions, and § the
Fourier transform.

In this work, we use the following convention:

Fu(€) :/nemgu(:c)dm and F tu(z) = G /n e (€)dE.

Below we show a result that we will use later.

For —oco < sp,81 < +00, 1 < pg,p1 < +00, 0< 0 < 1, sg # s1,

1 1—-6 0
s=(1—-60)sg+0s1, —= +—
p Po P1

we have by Theorem 1, section 2.4.2 (Page 185) from [31] that

[Hpg (R™), Hy ! (R")]g = Hy(R™).

2.6 Pseudodifferential Operators

In this section, we are going to present some tools that are necessary to the study of the differential
operators that appear in this work. We state the most important part without going into great detail.
For more details, see for example [I], [5], [21].

Let us start with the subject of pseudodifferential operators on R™. In this section, we use D,; = %8%
with i the complex number such that i> = —1. Moreover, we say that a = (ag,...,q,) € Ng is a
multi-index. Here, Ny ={0,1,2,...} and N={1,2,...}.

Definition 2.6.1. Let m € N and o € N} be a multi-index. For a linear operator P = Zla\<m ca DS
with constant coefficients, the function p(§) = Z|a|§m ca&® is called the symbol of P.

13



Example 2. Let A be the laplacian operator. If we recall that 0., = iD,, and define

a; = (0,...,0,20,...,0),

ith_entry

then

n n

=1

i=1 i=1

Therefore, its symbol is —|&|%.

Definition 2.6.2. Let m € R and n € N. Then S™(R"™ x R") is the vector-space of all smooth
functions p : R™ x R® — C such that

0207 p(w, €)] < cap(1+ €)™ 1,

for all o, B € N, where cq g is independent of x,&§ € R"™. The function p is called a pseudo-differential
symbol and m is called the order of p. Moreover,

S°(R™ x R") = UperS™(R™ x R?) and
S™®(R™ x R") = MnerS™(R™ x R™).

Remark 2.6.1. Ifp € S™(R™ x R™) is a symbol, then

o D) f(a) = op(p)f (@) = 5 [ p( TN, Jor all € B,

2m)" Jr
defines the associate pseudodifferential operator, where f € S(R™) (Schwartz space).
The pseudo differential operators are continuous on Sobolev spaces, as can be seen below.

Theorem 2.6.1. Let p € S™(R™ x R™) be a symbol, 1 < ¢ < 0o and s € R. Then p(x, D) extends to
a bounded linear operator
p(z, Dg) : HIP™(R™) — H(R™).

Proof. See Theorem 5.20 [1]. O

Definition 2.6.3. Let p € S™(R" xR™) and m € R. A symbol p is called elliptic if there are C, R > 0
such that

Ip(z, E)| = ClE™,
for all |¢§] > R and x € R™.

Example 3. We have already seen that p(¢) = —|¢|? is the symbol of the Laplacian operator. There-
fore, for C = 1 we have that |p(&)| > |€|%, for all € € R™. Hence, we can choose any R > 0. We
conclude that p is an elliptic symbol of order 2.

The following two results are classical and necessary to this work.
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Theorem 2.6.2. Let p € S™(R™ x R™), m € R. Then the following conditions are equivalent.
1. p is elliptic.
2. There is some ¢ € S™™(R™ x R™) such that
p(z, Dy)q(z, Dy) = I + ri(x, Dy)
and

q(a:,Dx)p(a:,Dx) =1+ T2(x>Dm)

where r1,79 € ST®(R™ x R").

Proof. See Theorem 3.24 in [I]. O

Theorem 2.6.3. Let p € S™(R™ x R™) be ellipticc m € R, and let 1 < q < oo. Moreover, let
u € Hy(R™) be a solution of

p(z, Dy)u = f,
for some f € H;(R"), where r,s € R. Then u € H;t"™(R"™). Moreover, there is some constant
Cr.s,q > 0 independent of w and f such that

[ull gz gy < Crasa (1 llzrgceny + lullzgceny ) -

Proof. See Theorem 7.13 in [I]. O
Another important result for two symbols is stated below.

Proposition 2.6.1. Let p; € S™i(R"™ x R™) be two pseudo-differential symbols, with j = 1,2. Then
there is some r € S™+M2=LR" x R") such that

[pl(l" Da:)vPQ(xa D:c)] = T(l" Da:)v

where [A, B] := AB — BA denotes the commutator of two operators.

Proof. See Corollary 3.17 [1]. O
The following result is showed in Theorem 7.16 [I]. Here, we enunciate and provide its proof.
Later we will use this result for an important remark. (see Remark [3.2.1))

Theorem 2.6.4. Let p € S™(R"™ x R™), m € R, be elliptic, s € R and let 1 < g < co. Moreover, let
u € UperHy (R™) be a solution of
p(x, Dx)u = f,

for some f € \J,cg Hy(R™). Moreover, assume that there is some g € H;(R") such that f and g
coincides on some open set U C R™. Then for every open bounded set V with V. C U there is some
v e HJ™(R") such that w and v coincide on V.

Proof. Let us suppose that f € Hy(R") for some r € R. By Theorem we know that u €
Hjt"™(R™) < Hy(R™). The statement of the theorem follows from: For all k& € Ny and every bounded

H;nin{s+m,r+k} (Rn)

open set V with V' C U there is some v € such that v and v coincide on V. We note
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that if the previous claim is true, is enough to find some k € Ny such that min{s +m,r +k} = s+m
hence v € H;*™(R") in that case.

The proof of the claim can be showed by induction. In effect, for & = 0, with v := v € H (R") C
Hy' in{sJﬂn’T}(R”). Let us suppose that the claim is valid for some k # 0. We will prove for k£ + 1. We
have two options: If r + k > s+ m then min{s + m,r + k + 1} = min{s +m,r + k} = s + m which
implies that v € H;nin{erm’HkH}(R”) = H;lin{s+m’r+k}(]1§") and we are done. If s +m > r+ k we
take ¢ € C°(R™) a function such that ¢ = 1 on V and supp® C U and v = tu. Then, we notice

that for v = vYu, we have

p($, D)¢u = ¢P($7 D)u +p($, DWU - ¢p(l‘, D)u =¢f+ [p(.T, D)a 1/)](“)

By Proposition [p(z, D),y] € S™L(R™ x R"), because p(z,D) € S™(R" x R") and ¢ €
Ce(R™) € S°(R™ x R™) (¢ do not depend of £ € R"). Hence, since g € H3(R") coincides with f on U
and u € H;"+k(]R”) then by Theorgm we have that ¥ f + [p(z, D), ¢¥|(u) = ¥g + [p(x, D), ¥](u) €
HE(R™) + HPF=m+L(R") C H;mn{s’ﬂrk_mﬂ}(R”). Then, if we apply Theorem [2.6.3| for v then
ve H(I]Tlin{8+m,7’+k+1}(Rn)

. Hence, the statement is valid for k£ + 1 and, by induction, we conclude the
claim. Finally, for some k we have that min{s + m,r + k} = s+ m. O

Remark 2.6.2. The previous facts can be used to obtain the analogous results on manifolds using a
partition of unity and an atlas.

There are many more general symbol classes. Below, we show two of them, which we need for this
work.

Definition 2.6.4. Let u,d € R. The space of symbols of order p and anisotropy d,
d(mm n
SEAURY x Ry x A),
consists of all functions a € C°(R™ x R™ x A), which fulfill the estimates

p=la|—dly]|

2, p=lo—dy|
1000507 a(y,n, N)| < Capy(L+ > +|A[4) =,
for all multi-indices a € N2, 8 € Ni* and v € N3, where A denotes a complex sector in C.

Definition 2.6.5. Let v, € R. The space MSH(Ry x R™ x | AFESHNRS R™) consists of all functions
2
a€ C®Ry xR" x | PSR R™) which satisfy the estimates
2

—p—l—|o

a n+1 .
0% (20,) 02 8} a(z, y, —5 — VO] < Criap(l + T2 [E7) T

for alll,k € Ny and o, 5 € N}, where 'y = {z € C: Re(z) = 0}.
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Chapter 3

L, Theory

In this chapter we study parabolic equations on a conic manifold. In order to do this, we first define
manifolds with conical singularities (see definition below). Then the important function spaces for the
applications are studied. We will use the theory presented in the following chapter.

3.1 Conic Manifolds

In our work, a conic manifold is defined as a pair B = (B, g), where:
1) B is a smooth (n + 1) dimensional, compact manifold with boundary 05.
2) g is a Riemannian metric on B\0B5.

3) In some collar neighborhood of 9B, [0,1) x 9B,
g = dz* + 2*h(z),

where h(z), with z € [0,1) is a family of Riemannian metrics on 0B that is smooth and does not
degenerate in z = 0.

[0,1) x OB

The set B\ 0B with the metric g is also denoted by B°.

The particular metric structure of these manifolds appears frequently. For instance, consider the
following easy example.
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Example 4. Consider the cone given by
{(z,y,2) € R : 2?2 + 3% = 2%sin?0, 2> 0},

where 0 is fized.

X

Let us consider the vector (x,y, z) with size 7, 6 the angle between Z-axis and the vector (z,y, 2)
and ¢ the angle between X-axis and the projection of the vector (z,y, z) on the plane XY. Hence,
we have the following relations:

22 492 422 =12

sinf =

We note that if G(r, ¢) = (x(r, @), y(r, ¢), 2(r, $)) represents the parametrization of the cone, then

_[96 06N L, 0G 9G 2G 3G 06 96\ .,
g_<8r’8r>dr +<ar,a¢>drd¢+<a¢, ar>d¢dr+<8¢,a¢>d¢.

From our relations above, we have that x = rsinf cos ¢, y = rsinfsin ¢ and z = r cos #. Moreover,
we have

dx = sin0(dr cos ¢ — rsin¢dp), dy = sinf(drsin ¢ + rcos ¢d¢), dz = drcos@.
Finally, we get that the metric on the cone is given by the relation

g = da® + dy® + dz* = dr® + r? sin® 0d¢?,
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oG 8G’>:17 <8G 8G>

and we can see that (37, 5° =0 = (99 96y and (99 Gy — 124in2 g,

oG O
¢ e

We could associate a cone to a noncompact conic manifold. In this case, the conic manifold
would be B = [0,1) x S*, where S! C R? is the unit circle. Here, OB is {0} x S! and the metric is
g = dr? +r?sin? 0d¢?, where r € [0,00) and ¢ € S*. The family of metrics on S! is h(r) = sin? §d¢?.
Note that the conical tip of the cone is associate to JB.

Definition 3.1.1. Let B = (B, g) be a conic manifold, s € Ny, v € R and 1 < p < co. Then H)"(B)
denotes the space of all distributions u € Hy,,.(B°) such that

Jloc

xy»;rl_v(xax)kag(wu)(:n,y) €L, <[0, 1) x 9B, Vdet[h(az)]fdy) Vk € No,Va e Ny : k+ |a] < s

for some cutoff function w € C*([0,1)). Here y belongs to a local chart of OB and x € [0,1). The
space [0,1) x OB is identified with a collar neighborhood of B. Moreover, the definition of Hy" (B) is
independent of w.

1 if x iscloseto O,

Here, w(z) =
0 if |z|>1—¢e€(0,1).

cutoff function w(x)

To extend the definition for s € R and v € R, we consider
M, : C®(RY x R™) — C(R™)
defined by
n+1
Myu(e,y) = 075" u(e ™, y).

Furthermore, we take a covering k; : U; C OB — R"” with i = 1,...,N and N € N\{0} of 9B
by coordinate charts and let {¢;};=1.. n be a subordinated partition of unity. For any s € R and
p € (1,00), Hp"(B) is the space of all distributions u on B° such that

N
lullaggrey = D 1My (1 ® ki) (wdin) | mg@nsry + 111 = w)ul s (s
=1

is defined and finite, where * refers to the push-forward of distributions. The space H,”(B) is called
Mellin-Sobolev space and is independent of the choice of the cutoff function, the covering {k;}i=1 ..~
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and the partition of unity {¢;}i=1,. n. From now on, we will not use the term /det[h(x)] because
our neighborhood is compact, so those terms are bounded by above and below. Hence the norms are
equivalent.

In the particular case when s = 0, we have

+1

MO (B) = {1 € LyaaeB) 0"F o) ) € L, (10.1) % 05, C ) |

Note that

n+1

2" (wu) (2, y) € ([o 1) x 9B, dy> /68/ |25 = (wu)(z, )|Pd§dy<oo.

The norm of #y” (B) is given by

N
[ull 0 gy = S M (1 © k) (i), sy + (11— el 1,

For the above definitions, we have followed [6] where we can find more information. In particular,
using the measure induced by g we have

Ly(B) = Hy'(B) and L,(B) = H,""(B)

with 7, = (n + 1)(3 — %)

Remark 3.1.1. For clarity we remark that the push forward is evaluate as below:

My (L@ ki)s(woiu) (@, ) = My (woi(u(l @ ki) (z,y)))
= My (woi(ki (y))ul@, k(1))

—ntly _ —r -
= e (e )i (ki(y)ule ™, k()
We collect some important properties of Mellin-Sobolev spaces that we will use later. Their proof
can be found in [I9]. For 1 < p < oo, we have that:

i) Ifqu,sZt—i—(n—i—l)( )and Y1 > 2, then Hy ™ (B) < Hy?(B).
ii) If ¢ < p, s>t >0and v, > 72, then Hy" (B) < H;"(B).

iii) (Green’s identity) If w and v belong to Hy'(B) & C, and Av € HJ7(B) for some v > —1.
Then,

/(Vw,Vv)Qd,ug = —/wAvd,ug.
B B

Where C,, is a finite dimensional space of functions that are locally constants close to singularities.
They are of the form Zi‘il c;w;, where ¢; € C, M is the number of connect components of 9B and
w; is the restriction of w to each of those connect components. Recall that w : [0,1) x IB — R is
the cut off function described before. In particular, when we work with only one singularity, that is,
OB is connected, then we denote this space as C. Besides, (-, )4 and dpu, denote, respectively, the
Riemannian scalar product and the Riemannian measure with respect to the metric g. The gradient
associate to the metric g is denoted by V.
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Remark 3.1.2. If v < "TH — 1 then C — HZI,’IJW(IBB). In fact, if u is a constant function different
from 0, then it belongs to H1’1+7(B) if and only if

/ / |x”‘§1 -7- 1|p / / ("5t —y—1)p— Ldzdy < oo,
oB oB

and this happens if, and only if, "TH —~v—1> 0. Hence, those values of v imply 7—[11,’1+7(IB3) e C=
Hpy ' TV(B), for all p € (1,00).

The following important result will be needed later.
Theorem 3.1.1. Let B be a conic manifold of dimension n + 1. If s > "Tfl and v > "TH then
37 (B) C C(B). Moreover, |u(z,y)| < Ca7~ "%

Proof. By the Collar Theorem (see Theorem 3.42. [15]), we can identify the neighborhood of 0B
with [0,1) x B and let
w:B —[0,1],

be the scalar C'*° function such that w = 1 on an open set that contains 9B and 0 outside of the collar
neighborhood. We recall the function

M, : ORI - O (R,
where RT‘I =Ry x R”, defined by

( n+41

M’Yu(x7 y) =€ 7_7)xu(€_x7 y)

The norm is given by

lullzg ) = ZIIM i)« (Woiw)|| g rnsty + (1 = w)ul by )

Note that, (1 — w)u is smooth with compact support, and by the Sobolev Embedding Theorem, (see
Proposition 1.2.1, [6]) if s > "T'fl, then HS(R"*!) ¢ BUC(R"*!). The only problem is the factor wu.
However, by the push-forward for distributions, we have

[ My [(1 @ Ki)s(wdin) (2, y)] | = [My (wi(u(l @ ki) (,

= | M, (woiu(z, ki ()

= |0 570 (e™)gu (k7 () Jule ™, K (1)) < C.

Therefore, M, [(1 ® k;)«(wo;u)(x,y)] is continuous and bounded. If z is big enough then e™* is small
(< 1). This implies that w(e™®

y)
|

) = 1. So, inserting the term (=312 on the right side, we obtain

[Gilk @)ule ™, k7 ()] < CO— 2,
In this case, when (z,y) € [0,1) x 9B, the above inequality implies

01 (i )yl b ()] < Cad =75

Finally, if = is positive, we can see that

1 1
lim 27" =0 when ’y—i>0 or ’y>n+
z—0t 2 2
That is, lim,_,o u(z,y) = 0, or, equivalently, u is continuous on B. O

The natural differential operators acting on the above spaces are known as conical operators.
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Definition 3.1.2. A cone differential operator of order p € Ny is an p-th order differential operator
A with smooth coefficients in the interior B° of B such that, when it is restricted to the collar part
[0,1) x OB, it admits the following local form

"
A=zF Zak(x)(—xam)k, where ay € C*°([0,1); Diff*~*(0B)).

k=0

o

We note that, locally, ax(-) = Z|a\§,u—k aka(‘,y)ﬁg‘. Hence, A = :U*“Z Z am(a:,y)(—m(‘)z)k(‘);‘,
k=0]a|<p—k

with x € [0,1) and y in a local chart of OB. These operators are also known as Operators of Fuchs

type.

Example 5. Let us see how is the Laplace-Beltrami on a collar neighborhood [0, 1) x OB with a metric
given by
g = dz* + 2*h(z),
where x € [0,1) — h(x) is a family of Riemannian metrics. We know that (gi;) = <(1) $28L )> with
ij
inverse matriz given by (¢¥) = L 0
g y\g —\o x_2(h”) :
We denoted G = \det(gij)ﬁ = | det x2(hij)|% =a"H, where H := |det(hij)|%.

Now, let k,7 = 0,1,...,n, where k = 7 = 0 is reference for the variable xo = x, and x; = y; if
i > 1. Then, we have

A, B (LR
A:Glzamk{ngGaxi}
0 0
L I Ry {Z a}

) ) - , )
_ _—nyr—1 n —n rr—1 —211k _n
=z "H p (x H—ax) +2"H gz 92r {;1 A H—axi } (3.1)
0 o0H 0 H? "9 L 0
_ o —nrr—1 n—1 —27r—1 ik
=z "H (mc H e +x < 97 Oz + H 8x2>) +x °H ’;:1 B {;_1 h'*H oz }

0
0 OH 0 02 0
.19 1o 0 0% 9 T
- 8$+H 8x8x+ g o i Z xk{zh Haxi} *

Note that m%(:):a%)(x%) =10 4 53—;2 or, equivalently, 88—;2 = z%(x@)Q - i@. Besides,

T Ox
1§ : § : zk 0
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Therefore,

L0 gadHO 10, 10

ohn o 1 0.5 10 )
oz axaw—i—a}?(x@a}) x@a:—i_m An

(R e (R ) ) e

*x =N

-5 () a2 (e2) < o).

There exists more advanced material with examples of Riemannian metrics and conical operators,
but we believe that the above examples are enough for our presentation.

3.2 Unbounded operators and closed extensions

This short section prepares us for applications using the Mellin-Sobolev spaces studied before. We
present some considerations about the domain of the Laplacian operator as an example of a sectorial
operator and we give some results without proofs for a general conic operator A. For the rest of this
chapter, we will consider only the case when JB is connected.

Consider the operator

A HZ*T(B) © C — H)"'(B),

where C is the space of all constant functions in C*°(B°).
For the rest of our work, we will always assume that ~ is such that

-3 —1\? 1
nT<7<min —1—|—\/<n2 ) —)\1,”;— , (3.3)

where A is the greatest non-zero eigenvalue of the boundary Laplacian Ay, ). We recall that h(zx) with
x € [0,1) is a family of Riemannian metrics on 9B that is smooth and does not degenerate up to = = 0.

Remark 3.2.1. It is tmportant to notice that when B is a compact manifold without boundary and
without a conical singularity, then v € L,(B) and Au € Ly(B) imply that u € Hg(IB%), by elliptic
reqularity. Here, 1 < p < oo. In fact, by Theorem[2.6.3, the equation

Au=f

with u, f € HS(B) = L,(B) has local principal symbol Z” 9i;€1¢7 € SR x R™TY) that corresponds
to the laplacian operator. Hence, the solution u belongs to HS”(IB%) = Hg(IB%). When we have a conical

point, then u € Hy'(B) and Au € Hy" (B) do not imply that w € Hy*™"(B). In fact, for almost every
v, by a result for M. Lesch ([17]), we have that u € Hy* ™ (B) & &, where & is a finite dimensional
space of functions of the form w(z)z~*In"(z)v(y), v € C®(dB), a € ["T_?’ -7, ”T‘H —7) and h € Ny.

If we choose 7 as in (3.3), then A : #5°17(B) @ C — Hy”(B) is such that ¢ — A is sectorial with
angle 0 for every ¢ > 0. Moreover,

[#H,7(B), Hy* " (B) ® Cla = D((c — A)7),
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see [27].

Now we give some facts about closed extensions of conic operators. We follow [§] due to its
importance for our work. We remark that cone operators have many closed extensions but the resolvent
will have good properties only on few of them, see for example [I7]. An important result is that for a
conic operator A of order u, we have that

A HSTRITI(B) - M (B)

is continuous for any s and p, as we can see in Lemma 3.2, [19]. Next, we define three symbols for a
Fuchs differential operator that are important for our work.

I

Definition 3.2.1. Let A = x_”Z Z aka(m,y)(—max)kﬁj be a Fuchs type operator, with v €
k=0]a|<p—k

[0,1) and y € OB. Then,

i) The homogeneous principal symbol is afZ A)(z,y,n, &) = aH Zk+|a|=u ape(x,y)(—iz)knke for
(n.€) € R™1, (n,€) # (0,0) and = > 0, in T*(B° \ {0}).

it) The rescaled symbol is &i(A)(y, n,&) == Zk+|a\:u ara(0,y)(—in)*E®, for (n,€) # (0,0), in
T*(0B x R\ {0}).

i1) The conormal symbol is o'y, (A)(z) = Z am((),y)é)g‘zk with z € C.
k+|o|<p
Where T denote the cotangent bundle space.

Remark 3.2.2. For all s € R the conormal symbol defines a family of continuous operators
ol (A)(z) H,(0B) — H, " (0B).

Definition 3.2.2. A is called elliptic with respect to v + p if

i) The principal symbol of A on B° is invertible (see Remark. In particular the homogeneous
principal symbol is invertible.

i1) The conormal symbol is an isomorphism for all z in the line Re(z) = ”TH -y — W

Finally, if we consider A as the unbounded operator in #y” (B) with domain C2°(B°), then there
exists a countable set C C C without accumulation points such that when v € C, then its closure is
given by

D(Amin) = HETH(B),

and
D(Amax) = {u € HOV(B) : Au € HOV(B)} = D(Amin) ® €,

where £ is a finite dimensional space of smooth functions of the form w(z)z* In'(x)v(y) that belongs
to 7—[3’7(183), where v € C*(0B).

Example 6. Let us recall the operator given in Exzample [3]

A= % <<x5x>2+ [(n— 1) —I—H_lx%[;] (xi) +Ah> .
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Then,
(i ~ 6B o))
= (-7~ IR

T (A) = =1 — €l o),

and
o (A)(2) =22+ (n— 1)z + Ay

where z € C define the homogeneous principal, rescaled and conormal symbols respectively for the
Laplace-Beltrami operator A.

Remark 3.2.3. We recall the definition of ellipticity on an open set Q@ C R™ and on a manifold
without conical point B. Let Q@ C R" and m € No. Given an operator A = 3, <., aa(x)0% defined
over ), we say that A is an elliptic operator if for every x € Q and every non zero & € R™, we have
Z|a|:m aq ()€Y # 0. For a conic manifold B we say that A is elliptic over B if A is locally elliptic.
That means that for any local chart (U, ¢) such that x € U, we have

D aale (@)E" £0,

|lal=m

where locally, 3, 1<, aa (¢~ H(x))0%(uo ¢~ 1(x)) is the form of A.

3.3 Reaction-Diffusion equation on conic manifolds

In this section, we work following the ideas of the book Global Attractors in Abstract Parabolic
Problems by W. Cholewa & Tomasz Dlokto. In particular, our considerations are based on Chapter
6 of [0].

Let B be a conic manifold. We consider the following equation.

0
a—?:ABu—}—u—uq on B°,

uw(0,z) = up(z) =€ B°.

(3.4)

Theorem 3.3.1. If (3.3) holds and up € X<, 2a + v > ”T‘H, 200 > ”Tfl. Then, there exist an unique
global solution u of (3.4). Moreover, u € C1([0,00), H*(B)) N C1((0,00), H**™7(B) & C).

Proof. We use the following interpolation result that can be found in Lemma 4.5 ii) in [19]. For
a € [0,1] such that v+ 2o — 1 ¢ {:F (%2 —Nj g EN} then

H P (B) @ C if oy + 20 > 2L

o, ay 0, 2,2+ _
X% = D((I — A) ) = [HP'Y(IB),HP 'Y(B) @C]a = {7_[12)@,2014-7(18) if y+2a< nT-H )

Suppose that 2a + v > ”TH and 2« > ”T‘fl. Then
X =[H)V(B), H* T (B) @ Cla = H)»**T(B) @ C C Loo(B).
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By Theorem let us choose 2a > "T‘fl, v+ 20 > "TH and consider

F 1% (B) @ C — Hy) (B)

defined by
F(¢)=¢—¢7, Vo e M (B)aC.

We can show that F' is Lipschitz continuous on bounded subsets of X< = H%a’2a+7(183) @ C. In effect:
If ¢ € Hf,a’2a+7(lﬁ%) @ C, then ¢ = ¢ + ¢ with ¢ € Hga’zaJﬂy(B) and ¢ € C, with norm equal to
||¢HHZ2,“’2“+7(IB%)@(C = Hqs”ygavza*V(]B) + |c|

Taking this into account, we consider two functions qb ¥ € B where B C X is a bounded set, with
b = ¢+c1, ¥ = h+co, where ¢, p € H2* 2047(B) and ¢, ca € C. Hence, with 2o > ”+1, y+2a > "'H
and recalling that X — L°°(B), we have

1F(9) = F()l307 s
=116 -7~ <w wmw

S ||§g - Tﬁr[;H’HgW(B) + ||€gq - &qHH%’Y(B)
=l - @IIHM(B) 1@ =)+ T o g
<116 = Dllyom ) + 16— Bllagoo gy 165+ + 971w

<116 -9l M@)H@—&HHON(B (qcsggnfuzal)

—i—quupHTH (B)

+qC’supHT|| |6+ 1 — w—l-cz)HHOv

IN

1+ aCsup 17l ) (116 = $llgoe) + ler —eal)

1+quupH7'H )W Y+ 01—02)”9{07

1+ qCsup 7] (116 = ®llyz0r20 gy + le1 = cal) 1= (+)

I
Qz/\/\/—\/—\/\

Hd) - ¢| "Hgo""/“'za(]]g)@@a

where, in (x) we have used that Hza TR <y Hg’ﬂy(B), (see Lemma 3.2, [19]). Finally, we have
proved that F' is locally Lipschitz on bounded subsets and this implies the existence and uniqueness
of a local solution, see Section

In order to show global solution of (3.4]), we need to use Green’s identity on Mellin-Sobolev Spaces
(see Remark 9 and Lemma 4.3 in [19])

/(Vu, V) gdpg = —/uAvdug
B B
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with u,v € Ho'T7(B)BC, Av € HY(B) and v > —1. In our case, we use that Hy' ™7 (B) — Hy' 77 (B)
and HY7 (B) < ’Hg"y( ) (see Remark 9 and Lemma 3.2 in [19]). So, in order to apply the Green’s
identity it is enough consider v > —1. In this case, the identity holds for all u,v € 7-[1 "(B) @ C such
that Av € 7-[ 7(B).

We are considering u € 'Hl 1+7(B) @ C with Agu € ’HS’V(B) with v > —1. Hence, multiplying by
u?™~1 and integrating to the equation , we have the following

/uQm_lut :/uzm_l(ABu—i-u—uq)
B B
:/u2m_1ABu+/u2m_l(u—uq)
B B
:_/V]Bu2m_1v15§u+/u2m_/u2m+q_1
B B B
__(Qm_1>/u2mQIVBuIQ_i_/uZm_/uQmeql
B B B
</u2m_/u2m+q—1'1
JB B

2m—+4qg—1
_g-1 2m
< —|B|-% </ u2m> +/u2m,
B B

where in last inequality we used Holder inequality for integrals with p’ =
Equivalently, we have proved that

2m+q—1
77”;3 and ¢ = 1—7p.

d 1 2miq—1

ay(t)§—2m|B|_%7m(y(t)) 2 4 2my(t),

where y(t fB "(t,up)dz. By Bernoulli inequality (Lemma 1.2.4, [6]), we have
y(t) < max{y(0), B},
. < Bl
Jim supy(t) < [B|

Taking m — oo, we conclude that ||ul|r., < max{||uo||z..,1} < max{C||ug||xe,1} < Cic(|luol|xe),
where ¢ := max{||ug||x«, 1} is a locally bounded function and C = max{C,1}.

Hence,
HF(U(t7 uO))HZ{S,’Y(B) = H - uq + UHZ;_[%W(B)
= (=t + W)l

7 (B)

n d
/ |—uq+u]pdz+/ / ]x%l’"’w )(—uq+u)\p—xdy
B°\[0,1)x8B €z

g/ |—uq+u|pdz+/ / | — ud 4 ufPat e —y)p— Ldzdy
B\[0,1)x 9B

< |B°\ [0,1) x 9B]|| — u? + u||

(n+1

o (BO\[0,1)x0B) T
122 =P L qoywomy || = u? + ullf_j0.1)xom)

< Cill = +ullf_ govjo.1yxam) + Coll = v +ully__0.1)x0m)

p
<C (Ilull] @ + ullram) -
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Next, if we define g : [0,00) — [0,00) by g(t) = C(t? + )P then
1 (u(t, uo))l 300 () < 9([[ult, wo)l| Lo (m))

where ¢ is a non-decreasing function and we conclude by the Theorem that there exists global
solution for (3.4). Note that we used the space Y = Lo (B) such that X* C Y. O
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Chapter 4

Sectorial operators on BUC generated
by A - Elliptic Operators

In this chapter, we present the concept A- Ellipticity (see [12]) which we will use for our application.
Here we consider a sector Ay (f) := A(f) with a = 0 in the complex plane as we did in Section [2.1{ and
an operator A : D(A) C X — X for some Banach space X such that that A(#) \ {0} is contained
in the resolvent set of A, that [[A\(A — A)||(x) is uniformly bounded in 0 # A € A(f), and that A is
injective with dense range, o(A) and p(.A) represent the spectrum and the resolvent of the operator
A respectively. From now on, we fix the angle 6 and only use A.

4.1 A - Ellipticity and continuity of pseudos with param-
eters in BUC

Definition 4.1.1. A symbol a € ST(R"™ x R™) with m > 0 is called A-elliptic if there exists constants
0<m, Cy>1, and R > 0 such that:

(H1) For all x € R™ and all || > R we have a(z,§) € Q¢ :={z € C: C%)(@m <|z| < Co(§)™, z ¢
A}.

(H2) Given o, p € N{j, there exists a C > 0 such that for all z € R", |§| > R, and X € A,

0807 a(z, £)(A - a(z, €))7 < C(&)°.

4.2 Estimates in BUC

Here and below for ¢t € R, |t] denotes the largest integer smaller or equal to ¢.

Definition 4.2.1. For s € Ry \N, BUC* denotes all the functions f : R™ — C such that its derivatives
smaller or equal to |s| are bounded and uniformly continuous, and whose derivatives of order |s| are
uniformly (s — | s|)-Hélder continuous. The norm is given by two cases. For s € (0,1), then

l|ul|Brcs == ||ul|Lo + sup M
sty |z =yl
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And, for s > 1 then there exists s' € (0,1) and k € Ny such that s =k + s'. Then,

DOu(z) — D
|[ullpucs = Z ||D%ul|., + Z Sup| “(rx)_ : U(y)|.
la|<k la|=k T#Y Yy

For s € N we have a similar definition for BUC?.
Definition 4.2.2. Let s € Ny. We define
BUC* ={f:R" = C:f and 0%f are uniformly continuous and bounded for all |a| < s}

with norm given by

IfllBucs = D 110%fll Lo

|| <s

First we present some important results due to Amann (see [2]). Those results were the inspiration
for the results of Section 4.3 that will allow us to prove almost sectoriality on C*7(B) spaces. Let
m € Ny and a,, : R” — C be bounded C*° functions with bounded derivatives of any order for all «
multi index in Nf with || < m, that is a, € BUC®(R") =[5, BUC*(R"). Moreover,

denotes a linear differential operator on R™ with values in C. Its symbol and principal symbol are
denoted by a(z, &) and 0. A. They are given by

Z aq ()€ and Z aq ()€,
|a|<m |a|=m

respectively.

Definition 4.2.3. The operator ™ + A is said elliptic by parameters if there exist C, R > 0 such that

la(z, &, p)| > C(&, )™
for all ||(&, p)]| = R and x € R™, where (&, )™ = (1+ €[>+ |u/?) % and a(z, &, p) = 1™ + a(z, €).

We defined the sector Ag(¢) in Section We will also use the complement of this set denoted
by A¢(¢) := A°.

Definition 4.2.4. Let Kk > 1 and ¢ € [0,7). The operator A is (k, ) elliptic if —oA(x,&) ¢ A° for

allz € R" and € # 0 and
K

1+ |Al

for X € A¢, (x,&) € R" xR"™, || = 1. The operator A is ¢-elliptic if it is (k, @) elliptic for some k > 1
and it is normally elliptic if it is -elliptic.

(A +0A) "z, )| <

Lemma 4.2.1. If the operator ™ + A is elliptic by parameters then A is (k, ¢)-elliptic.
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Proof. Let us suppose that A is elliptic by parameters. Then, there exists C, R > 0 such that

la(z, &, p)| = (& m)™
for ||(&, 1)|| > R. Now, we see that

CEmW™ < ™ +a(z, O = 1"+ > aa(@)t®+ Y aa(@)E = |p™ + oA+ > aa(2)6?]. (4.1)

lo|<m |a|=m lo|<m
Therefore,
"+ oAl > CE ™ = Y aala
laj<m

> O, p)™ = Clg, ™! (4.2)

= (&m™ (0= Clem™)

> o6, )™ 2 R,
where R is a sufficiently large constant. Therefore, in particular with |{| = 1 in R™ we have that

™ + o Al > Co(&, u)™ which implies

C3
My o A)TH <Oy, )T < —2— for large.
(e )T < Colé, ) S T po larg
Hence, if we take A = p™, the homogeneity of u™ + oA implies that

Cs
1+ A

A+ A7 < Colé, )™ <

which completes the proof. O
We set an important result where we use the previous definitions and find a relation with sectorial
operators.

Theorem 4.2.2. Let m € No and A =}, <., @a(x)D* be an operator such that ™ + A is an elliptic
operator with parameters. Then, there exists two operators Koo(pt), Too(p) € L(BUC(R™)) such that

p" Z aa(2) DY | Koo(pt) = Id + Too(p)

|laf=m

with

[ Kool zBucy < Clu|™™
and

[ Too (W) cBUC) < Clul™",

for some r > 0 with |n| > 19 >0 and n € A°. As a consequence, we have that for \ := p™

_ C
(A +A) 1HL(BUC) < B
for large X. In particular, A is a sectorial operator, see Definition[2.1.5.
Proof. See Theorem 5.10 in [2]. O
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4.3 Estimates of parameter dependent symbols on BUC

In this section, we obtain new estimates for the norms of pseudodifferential operators that depend
on parameters acting on BUC(R") spaces. First, we present a result due to Amann. It will be used
in Theorem [£.3.1] Finally, we apply our results to prove that some elliptic operators define analytic
semigroups in BUC(R™) spaces.

Definition 4.3.1. We say that k € BUC(R", L1(R™)) if k : R™ x R™ — C is a measurable function
such that

1) The function k is integrable in the second variable and sup,egn [pn |k(2,y)|dy < co.
2) For each € > 0, there is an § > 0 such that if |x — Z| < 0§, then [g, |k(x,y) — k(Z,y)|dy < e.

The set of functions BUC(R™, L;(R™)) is a Banach space with norm

[ F—— / k(.3 |dy < oo.

reR”™

Proposition 4.3.1. If k € BUC(R", L1(R")), then we can define a continuous linear map K :
BUC(R™) — BUC(R™) by the formula below:

Koou(x) = / k(z,z — y)u(y)dy.
Moreover, || K| c(Bucwny) < lkllBucry)-

Proof. Let us prove by steps:

Step 1: ||Koou($)||Loo(Rn) < ||k”BUC(L1)HU||LOQ(Rn)-
To prove this, we note that

Kot < [ Ihto =l < ( |

Rn

(a0 = )ldy ) Pl e
< </an \k(x,z)’dz> ull £ ®e) < 1l Brcmn 1l . @n-

Step 2: Koou is uniformly continuous.
We note that

[Koou() — Koou(i) (k(z, z —y)uly) — k(Z, 2 — y)u(y))dy|

| =
R’I’L

= | . (k(z, y)u(z —y) — k(Z, y)u(@ — y)) dy|

= | Rn(k(ﬂc, y) — k(Z,y))u(z —y) + k(Z,y)(u(z — y) — u(Z — y))dy|

< / |k, y) — k(Z,y)|lu(z — y)ldy + /R k(2 y)llu(z —y) — u(E —y)|dy
< / k@, y) = k@ y)ldyllel o @) + IRl uoy) sup Jul@ —y) —u@ = y)|
n y n

The result now follows from the uniform continuity of £ and w.
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Corollary 4.3.1. Let A C C be a sector of the complex plane and k : R xR" x A — C be a measurable
function. If for each n € A, the function k(n) : R" x R™ — C defined by k(n)(x,y) = k(x,y,n) belongs
to BUC(R™, L1(R")) and ||[k(n)||suc(r,) < C{n)" for some r > 0, then the function K (n) defined by

Koo(n)u(z) = /n k(x,z —y,m)u(y)dy

belongs to LIBUC(R™)) and ||Keo(n)lzBuc) < Cn)".

Theorem 4.3.1. Let p: R" x R® x A — C be a C* function.
i. Case 1) If u >0 and |8§8§‘p($,£,7])| < Cap(é, n)~H=lel, then there exists a measurable function
k:R"™ xR"™ x A — C such that

op(pln))ule) = [ K(ao— ym)u(u)dy

where k(n) : R™ x R" — C defined by k(n)(z,y) = k(x,y,n) belongs to BUC(R™, L1(R"™)) and
Ikl Buc(rL,) < C{m)~*. In particular, op(p) € LIBUC) and |lop(p)|zsuc) < Cn)™

ii. Case 2) If 1> 2, |00p(w,€,m)| < Cagl€,m) ™+, Y8 € N, and 0202 p(z,€,m)| < Cas(€,m)~2(&)0—el,
Va, B € N§, a # 0, then there exists a measurable function k : R™ x R" x A = C such that

op(pln))ue) = [ K(ao— ym)u(w)dy

where k(n) : R" x R® — C defined by k(n)(z,y) = k(x,y,n) belongs to BUC(R™, Li(R"™)) and
Ikl BucL,y < C{n)~". In particular, op(p) € L(BUC) and |lop(p)||cuc) < Cln ™

iii. Case 3) If p > 2 and |0£8g‘p(x,§,77)| < Copl&,n) (€)7ol then there exists a measurable
function k : R™ x R™ x A — C such that

op /R’“ Ju(y)dy,

where k(n) : R" x R® — C defined by k(n)(z,y) = k(x,y,n) belongs to BUC(R™, Li(R"™)) and
k() Buc(L,) < Cn)~#*e. In particular, op(p) € L(BUC) and ||op(p)||zsucy < C(n)~HFe.

For the proof, we fix a function ¢y € C°(R"™) such that 0 < ¢g < 1, ¢o(§) = 1 for [£| < 1,
and @g(¢) = 0 for [¢] > 2. We also define ¢;(£) = ¢o(277¢) — po(2~ ”15), for 7 > 1. We note
that suppy; C {€ € R™ : 2771 < |¢| < 2971}, Notice that there exist constants ¢, C' > 0 such that,
inside the support of ¢;, we have that ¢2/ < (£) < C2/. Moreover, limy_; 0 Z;V:o ;&) — 1 and
|D530]| < 2-ihl,

Let us prove by steps. First notice that

1

0 u(z) = e Tp(x U .
po(n)u(e) = o [ (e i)

Note that @ = limy_00 Z;-V:O o ((M~r)a(€) in S(R™). Since op(p(n)) : S(R™) — S(R™) is contin-
uous, we conclude that

1
‘ 0(27T
j O/R"
> /.

J

op(p(n))u(x) [ cenla. & me i) ae)ds

)n

<(2717)n /Rn eig'(xy)l’(%faﬁ)@j((ﬁ)1§)d§> u(y)dy
( y

1M 102 T

kj(z,x —y,n)u(y)dy,
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where

k(o) = g [ et niey ()

Lemma 4.3.2. The function k; satisfies:
i. Case 1) We have, for all N € N, that

08k (x, () L2, m)| < cplz| TN (n)nH2ipEn=N),
ii. Case 2) We have, for N € N such that, N <n+1 that
00k (z, (n) ' 2,m)| < Cg‘z|_N<n>”_N2j(—u+n—N)‘
iti. Case 3) We have, for some M € (n,n+ 1) and e > £ > 0, that
07k, m) "2, m)| < cle] M () ()°2 10,
And for N =0, we have

07k (. ()~ 2 m)| < e (m)" 7277,
Proof. Note that, for p;(x,&, 1) = p(z,&,n)p;((n) 1), we have

(2m)" 2708k (x, ()2, m) = 270 / eV (i, € e

n

= /R 008, (€, ) = /R () DY (7" 2)0 p; (€ m)de
= ()" / €007 (9ps (. €.m) ) d

]Rn
= (n)(m)~hel Z %w/Rneig'm“z

Y1+y2=Y
x 0y DY p(x, &) DL p;((n) =€) dg
=@ S e, [ SR e ) )D€
Yit+y2=Y

Now we note that
(me&m? =14 MEP + > = (n)*(©)*.

For the first case, we need that

/ ¢S=08 D} pla, ()€, n)DZQSOj(f)d&‘ < O(y)~hilgiCretnhb,

for all v € N{.
For the second case, we need that

/ eié'zf)nglp(m, ()€, U)Dg2¢j(§)df‘ < C<n>*|71|*u2j(*u+nf\'v|)’

for all |[y| <n+ 1.
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For the third case, we need that

/IR 9D p(, <n>5,n>D32soj<£>d5' < Cln)~ M In(()27CH, |y =,

and

/ 207 DY p(x, <n>§,n)D§2@j(£)df‘ < Ol Ml 2?CrY gl =n+ 1.

In fact, we have |
07 k; (, () 2,m)] < Cagnlz| ()" )27,

102k, ) ™2, m)| < caps 2]~ () 1ICHD),
Hence,
023, ) ™22, m)| = 102Ks (o, )22, m) V0K o ()2 )1
= oy (I ) im0 (J2f = gyt i2ionD)
= Cagy ()" [ A02CHD) (10 )P (10
< Cagy ()2 IR,

1-6

where 0 < €:=1—-0 <e.
Case 1)
In this case, we have

. 0] D" p(w, ()€, n) D0, (€)de|

< oy —enlgy el D, (€)|de

N ROl e G
()
.

< C(n)~H=Inlgimgi(=p=ing=ihel

where 2/™ comes from fsupp@ de.

Case 2)

Suppose j # 0 or 2 # 0. In this case, supp D£ ©;(§) C R™\ B1(0), where B;(0) denotes the unit
ball. Then,

s 9] DL pl, (n)€,n) DL o (€)d€|

(m&) D p;(6)|de

< Cpyy

| e
< e [ 7O e P D €l
| g

< gy —#—|71|< —u—mupgﬁw(g)‘dé

Rn”

< C(n)~r=mlgingi(=r=imbg=iheal

35



where we have used that, for |¢| > 1, we have ((n)¢)~! < C{n)~1{¢)~1, for some constant C > 0. This
can be seen from the following estimate: For || > 1

(me) = 1+ (IR = 14+ m> GIER + 51EP) > 14+ m(5 + 5leP)
= 14 0+ ) (4.3
> 2 e

Suppose j =0 and |y2| = 0.
We must prove that

[ 02Dz via, (e nen(©)ie| < Clny i

We notice that for v; = 0 then

[ €S58 p(a, (e, m)po(€)de] < / (. €),m) | de
R™ 1€]<2

(4.4)
< / () (€)HdE < C )"
[€1<2

For ~; # 0, we have
s €207 DY p(x, ()€, m)po(&)dE|
< / (e my~2# (e e
|€]<2
<[l e ae
1€1<2

(Using €= (e < =2 [ 1400 )l

[¢1<2(n)

el e il e
J R T B
)

< ()OOt < O

(Using polar coordinates) < C'(n)~2~"

—p—|m] ’

as long as p+mn > |vy|. Since, p > 2, this is the case for |y| <n+ 1.
Case 3)

Suppose j # 0 or o # 0.
We use again that ((n)¢) < C(n)(¢). Then, as we did above

€7 0) DY p(, ()€, m) D p;(£)d¢

&)~ MIDPp;(&)]de

[ 1t
/ —p— m o |71|D72 i (6)]de
C(n

—n=Inlgi(=p=lnl)g=ilrzloin

IN

IN
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Suppose j = 0 and |y2| = 0.
First we prove that for |y;| < n, we have

[ 02Dy pia, (e nen©)de| < Clny

In fact, if ¢ = (n)¢ and €] < 2, we have 1 > ((n)~1¢)™* > ((n)~12(n))™# = (2)7# which is
bounded. Then

[ esorpzate e

<

[ e ioneylag
1€1<2

—p —p — |l
< (n) /{ e lag

(Using ¢ = ())<= (o [ 10714400l

1 il net 2(n) T
/0<p> npt dp+/1 {(p) """ dp
< ()P C + C<77>—|71|+n| < Cl<77>_”“_|71|,

(Using polar coordinates) < C(n) #™"

as long as n > |y1].
If |71| = n, then

1 2(n)
()~ rm [/0 <,0>'”1'p’”‘1dp+/1 ' <p>“'p”1dp]

1 il et 2(n) .
/O<p> " dp+/1 pdp

< (n)7"7"C + ()| < Ci{n) 7 ),

< ("

for (n) > R > 1.
If |y1| = n+ 1, then

0 1

1 il et 2(n) .
/0<p> p™ dp+/1 p~“dp

<O+ O < ClyyTH = Clmy ).

1 2(n)
(n)~H—m [/ (p>_'71'p"‘1dp+/ ' <p>‘“'p”‘1dp]

The proof of Lemma [4.3.2]is now complete. O

Proposition 4.3.2. The function k =372 k; satisfies:

Case 1: Let g € N™,
02k, ()" z,m)| < Co(2) )"
for some ¢ € L1(R").
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Case 2: Let g € N*. Then,

02k (, ()~ 2,m)| < Colz)(n) 7,
for some ¢ € Li(R"™).

Case 3: Let g € N*. Then,

’afk(l’, (L2, n)| < Co(z)(n) Himte
for some ¢ € Ly (R™).

Proof. Case 1: Step 1) Let 0 < |z| < 1.
We recall that
=N+1, ifr=1,
i<
R T
<corN, ifr> 1.

ifr <1,

M-

First, we estimate the series for 27 < |z|~!. In this case, for N = 0, we have

S ki, )z < Oyt [T 29k

27 <|z|~1 27 <]z| 1
log |2 7"
=oY@y
§=0
Cly) ", i —p+n>0,
< Clogy |z| ™Y, if —p+n=0,

C{n)=™#*" if —pu+n<O0.

On the other hand, for estimate the terms 2/ > |z|~!, we choose N > —pu + n. Then, we have

Yo 10k, () ) < Clef TN @y Y 2

27 >|z|~1 20> |21
e oo
= C|z|_N<n>—u+n Z 9i(=pt+n—N) | _ C|z|_N<77> —p4n Z<2_M+n_N)j+log2 2|1
Jj=logy 2|1 j=0

0

= C|Z|—N<n>—#+n 2(—u+n—N) log, |2|~1 Z 2j(—u+n—N)
7=0

< C|Z|_N<T]>_‘u+n(01‘Z|N+u_n) _ C~1|Z|/,L—n<,'7>—p,+n.
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Therefore,

|05k, ()" zom)| = Y 0Fkj(x, ()~ m)]
5=0

IN

S 100k, )z + Y (05K (@, () 2n)

20< 2|t 25>z~ 1 (4.5)
Cr{n) ™z = (2), if —p+n>0,
Clogy |2| ™ + Ci=1a(2), if —p+n=0,p € Li(Bi(0))
(C+ Cl* ™) () # " == 4s(2), if —p+n<0.

IN

Step 2) Let |z| > 1.

We choose M >n — p and M > n to conclude that

D107k (x, ()~ 20| < capy (m) 7MY D 2R TAD
j=0 j=0

< capy ) 2 M € Li(fz € R” : 2] > 1)),

Case 2: Step 1) Let 0 < |z| <1 and N = 0. We estimate the terms 2/ < |z|~!. Then,

log |z|~1
Z ‘agkj(x7 <77>712777)| < C<77>7“+n Z 2](*M+n)
21 <|z|~1 =
Clp) ™M, i —ptn >0,
<3 Clogyle| ! if —p+n=0 5 € Li(Bi(0))

C{n)™#"  if —pu+n <0,

as we did above in Case 1, Step 1. For the terms 27 > |z|~!, we choose N =n + 1. Then,

S 00k ) ) < e e ST e
25 <zt j=log|z|1
= |Z|—”—1<n>n—u2(—u—1)10g\z|*1 Zgj(—u—l) (4.6)
j=0
< Ol () € Ly(By(0)).
Therefore,
o0
02k, () "z )| = | 0%kj(w, ()~ z,m)]
j=0
< S k(e ) )+ S 10k, () 2m) (4.7)

21 <|z| -1 20>[z| 71
€ Ll(Bl(O))
Step 2). Let |z| > 1. We use N =n+ 1 in this case, —u+n— N = —u — 1 < 0. Then,

Z |a$ﬁk](x’ <n>7lza 77)’ < Caﬁ,y<17>7“+n|z|*nfl Z 23‘(,#71)
j=0 =
< Capy () M2 TP € Li({z € R : 2] > 1)),
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Case 3. Step 1) Let |z| > 1 and M € (n,n+ 1). Then,
Y107k (@, ()~ )| < Jo M ) Y 2R < O M () T € Li({z € R [2] > 1)),
=0 =0

(4.8)
because using polar coordinates
oo
/ 12| M dz = C/ pMpn~ldp < o,
|z|>1 1
using that n < M. (n— M —1 < —1).
Step 2) Let 0 < |z| < 1. First, we estimate 2/ < |2|~! and we choose N = 0. Then,
logy [~
o 1Rk )z < (e Y e
2 <|z|- — (4.9)
Sl 3=0
< Cn)™""¢(2) € L1(B1(0)).
For 27 > |z|~! we choose M € (n,n + 1). Then,
0 . ~
> 108k, () rzm) < Ol My Y 20
275[z|-1 j=logy |21 (4.10)

< Oy e TR € Ly(B1(0)),

because p > 2, which implies that u +n > 24+ mn > M. Then, € + n+ p > M if and only if,
E4+n+pu— M > 0. In conclusion, we have that

S ki e = Y ki mm S ke ) L)
j=0 2 <|z|~1 2>|z|~1 (4.11)

< () THTE(2) € Li(B1(0)).

O
Now we prove Theorem
Proof. First we will prove that k satisfies the conditions in Definition [4.3.1
Case 1. Let us prove by steps.
1) Changing the variables y = (n) "'z and dy = () "dz, we have
| kamldn = [ ke @ sl s
(4.12)

<" ( | <1¢(Z)<77>“+”+5d2) ,

where ¢(z) is as in Proposition Notice that ¢ = 0 in Case I and Case 2. In order to clarify
the statements above about integrability for the functions that appear in estimates of k, we prove for
some cases. The cases are analogous. For Case 1, we hold the cases, —pu+mn > 0,—u+n = 0, and
—u+n>0. For —u+n >0, we have

/n |k(z,y,m)|dy < <77>"<n>"“+5/ P(z)dz < C(n)~"*e. (4.13)

l2|<1
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2) Notice that for Case 1 and Case 2, we have

n 1
/ \/€(=’Jc,y,77)—k(rfc,y,n)\dy=/]R \Z(fci—wi)/o O k(@ +0(Z — ), y,m)db|dy
=1
n 1
<y / 13 -z / / Oa.k(z + 0(F — 2),,m)|dbdy
i=1 /R? /o
n 1
<y / & — ol / /0 B0,k + 0(F — ), () g, )| dO(n) " dy
=1

<3~ ([, o) 445l < OO 1o =31

and the result follows easily. For Case 3 we have (n)~#*¢ in place to (n) H. O

4.4 Applications on compact manifolds without singu-
larities

Let us study applications using the three cases of Theorem The first and second cases of
Theorem [4.3.1] will be used for compact manifold without singularities and without boundary. As
for the third case, it will be applied to conic manifolds in Chapter 5. As we defined in Section
A := A,(¢) denotes a sector in the complex plane, with a € R and ¢ € [0,27) an angle.

First we use an adaptation of Theorem 5.1 proved by Shubin in [29], for A- Elliptic operators as we
saw in Definition Then we study pseudodifferential operators using the approach of Seeley [28],
see also Escher/Seeley [12].

i 1 1
Remark 4.4.1. In [29] it was used the expression ||+ |[A|# in place to 1+ |&| + |A|». However, we

recall that the two terms are equivalent. In fact, for sufficiently large R > 0 such that |£| + |)\|i >R
then
1 101 1 1 1
L lgl+ A > Jel+ A = 5 (lgl+ M) + 5 (Iel + A1)

R 1 R 1
5+ 5 (14 ) 2 min {521 1+ lel+ A,

(4.14)

Y

2 2 272

which prove that the two terms are equivalent. In the same way, in [29] it was used the term (1+ |n|+

\)\ﬁ) instead of (1+ |n|* + \)\\%)%, which are equivalent too. Hence, we do not need to worry about the
difference between the terms from the reference and the terms that we are using in this work.

4.4.1 Differential operators

Now we consider differential operators in order to use Case 1 from Theorem [4.3.1

Theorem 4.4.1. If P is a A-Elliptic differential operator of order u, then there exists By € L™HH (M, A)
such that
PB)\ =1+ Rl

and
B\P =1+ Ry

where Ry, Ry belong to L™°°(M, A).
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Proof. See Theorem 5.1 in [29]. O
Consider an compact manifold M without singularities, 1 < p < oo, p € R and the operator

P:HJ(M) — Ly(M) (4.15)
where H}' (M) is the usual Sobolev space. Let A be an sector as in Section Let us suppose that
P is A-Elliptic as in Definition That is, for any local chart, P has a symbol p that satisfies

(98072, € A) (A = pla, &, 1) < €)7o

By Theorem for larger A, P is invertible. In fact, P~! = By\(I + R1)™' = (I + R2)"'B). As
consequence we have the following proposition.

Proposition 4.4.1. For P as in (4.15) with D(P) ={u € C(M): Pue C(M)}. Then P : D(P) —
C(M) is a sectorial operator.

Remark 4.4.2. We note that
D(P)c{ue Ly(M):PuecL,(M)}= HIQ‘(M)

Proof. By [27] and references cited there, we know that for A larger, A\ — P : H) (M) — L,(M) is a
bijection. Then, the restriction Po = P, : D(P) — C(M) is a bijection. In fact, the injection of
A — Pp is follows by injection of A — P. For the surjection we choose p > %, which implies by Sobolev

embedding theorem, that H) (M) < C(M). As a consequence, for f € C(M) C L,(M) there exists
w € Hp (M) such that (A — P)u = f (Surjectivity of A — P). Therefore, u € D(P) and (A — Po)u = f.
Moreover by the Theorem Case 1, we have that

A=P) L) = C(M)

is continuous and [|[(A — P)7|zcry) < C|A[7! for A large. Finally, we conclude that P()) is a
sectorial operator in C'(M).

4.4.2 Pseudodifferential operators

Now we will use the result of Escher and Seiler [12] in order to apply the Case 2 of Theorem m
We consider again a pseudodifferential operator of order u as an operator

P: HY(M) — Ly(M).

Let a be the symbol associate to P and let us suppose that it is A — Elliptic as in Definition
with R = 0. In such case, we have the following result:

Theorem 4.4.2. There exists p € C°(R™ x R™ x A) such that

|0 p(, &, M) < CUEH +A) () (4.16)
uniformly in R™ x R" x A for all a, f € Nij, as well as
0807 (p(w, &, 2) — (A = a(x,€))) < CUE* + [A]) ()21l (4.17)

Moreover,

p(ana )‘)(A - a(va)) =1+ TO(:I"’D7>\)7
()‘ - G(JI,D))])(JI,D,)\) =1+ Tl(‘er?)‘)
with remainders satisfying

sup 000 rj(x, &, V(MY <o Va,B € Nj VN € N.
(z,£,N\)ER? XR™ X A
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Proof. See Theorem 3.8 in [12]. O
Therefore, for A larger, P is invertible and there exists P~! with a symbol p satisfying Case 2.
In fact, for n* = |A| and (4.16)) we have with |a| = 0 the following estimate.

|07p(x, &,m)| < CUE* + )~ < O m) ™
In effect, let a := (¢) and b := 7. Then,
(a+b)* < (2max{a,b})" < 2#(a* + bM).

This is equivalent to a* + b* > C(a + b)*. On the other hand, we know that for positive terms by
Cauchy-Schwartz inequality
1
a+b=(a,b)-(1,1) < V2(a®+b%)2
then

i 22
2

(a®>+b%)% > V272 (a+b)"

Using the results above, we have

- —K
2

Em =0+l +n?)
C((g) +mn)* (4.18)

For |a| # 0, we will use (4.17). Then, for |A| = nH,

0708 p(x, €. m)| = 10708 (p(z,&, 1) — (" — al,€))7!) + 8708 (" — a(x,€)) |
< 0708 (p(x,€,m) = (0" — a(w,€)") | + 10708 (" — al, €)'

(
< CEm
= C(& )2 m)y el o T
< Clgm) ) gl 1 = (g )Tyl 4 T
< Clgm) AP T,

where we have used that (¢,7)71 < ()~ and I = \8?8?(77“ —a(z,€))7|. The only thing that we

need to prove is that I < C1(&,n)~2#(€)*~lel. For that, we use that for A-Elliptic operators, R = 0
and we describe as it was done in [12] without all details. For more information, we can see Theorem
3.8 in [12]. We notice that

D2 (" —a) M = S (' — @) (OO ) — ). (i — @) (OO a) (i — a) .
finite

Then, for each term in this sum, we have

< (&myHg)onlie myr(g) Tleelig)lesl L (g)lend
= (&,m) gyl

_ _ o o B; A _
where we have used that, |(n* —a)™| < (&, n)7H, |8£18§1a| < (g)#=leal and |(a;,;]8§]a)(77“ —a)7 Y <

(€)1l Therefore, |6§8§‘(7]" —a)7 ! < g, n) "2 (g)~+lel and we are in the conditions of Case 2
from Theorem for the symbols associated to the inverse of P. This implies that P : D(P) —
C(M) is a sectorial operator by the same arguments of Proposition m
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Chapter 5

Continuous and Holder continuous
Theory

In this chapter we will prove that elliptic operators on conic manifolds acting on a class of continuous
spaces are almost sectorial operators under some conditions. All the operators that we will be describe
from now on are part of the resolvent of such elliptic operators. More specifically, we will assume that
such operators we are studying satisfy that

n

A=A =w {xﬂop};fg(x) + G()\)} wo + (1 — )P (1 — wi) + Gao(N),

where w, wp, w1 € C§°([0,1)) are cutoff functions satisfying wjw = wy and wwy = w and we will describe
the spaces where such operators above belong later. The main goal is that:

1) The symbol associated to a:“op;(/[
Definition 4111

%g()\) and for (1 — w)P(A)(1 — w1) have a boundedness as

2) For G(\) and G (M) we have a faster decay in infinity which will help us in this and future
works.

5.1 C"(B) and (C*7(B) -Spaces

Below, we give a new definition suitable to conic manifolds. Let B be a conic manifold. Let us define
the appropriate spaces for this chapter. (compare with definition )

Definition 5.1.1. Let « > 0 and v € R. The space C*7(B) is defined as the set of all functions
u € C*(B°) such that for any coordinates in the collar neighborhood of [0,1) x OB, where ¢ : V. C
OB — R" is a chart and ¢ € C°(V'), we have

n+1

¢ oy~ (ywle )T u(e™, 7! (y) € BUC(R™),

for any cutoff function w. Notice that u € C*(B°) if and only if v : U C B® — R™ and ¢ € C°(U)
which implies that (¢u) oy~ € BUC*(R™ 1),
In particular, we see that

n+1

CO»V(B) ={u e C(B°) :w(e—m)e(v— ) )wu(e—x’y) c BUO(R”+1)}.

44



Definition 5.1.2. We define the space BUCY, (R4 x R™) as the set of all functions u € BC'(R4 x R™)
with the following property: for all € > 0, there exists § > 0 such that if

’lDCL' - IDCL',| + |y - y,| < 57 then |U(ZL‘,y) - u(x’,y')| < €.

Remark 5.1.1. We sce that if z,2’ € (0,1], then |Inz —Ina’| = | [, 2| > | [T ds| = |v — 2'|. Hence,
if | Inz — Ina’| < §, then |z — 2| < 4.

Proposition 5.1.1. Let u € C(Ry x R™) be a function. Then, u € BUC), (R4 x R™) if, and only if,
u(e™®,y) € BUC(R"H1).
Proof. If u € BUC, (R4 xR™), then for all € > 0 there exists 6 > 0 such that |Inz—Ina/|+|y—y/| <
implies |u(z,y) — u(2’,y’)| < €. In particular, if x = e~* and 2/ = ¢~* we have

s =t +ly —y'| <= lu(e™",y) —ule™,y)| <e

We conclude that u(e™*,y) € BUC(R""!). In the same way, we prove the other implication. O
As a consequence, we have

Corollary 5.1.1. u € C%(B) if, and only if, u € C(B°) and w(x)anﬂf'yu(:p,y) € BUCKR(Ry x R™),
where (x,y) are coordinates close to the collar neighborhood.

Proof. It is a consequence of the previous proposition. In fact, if u € C%Y(B), v : V C 9B — R" and
¢ € CP(V) then

n+1

¢ oy (yw(e e u(e™", ¢ (y)) € BUCR™)
if, and only if, ¢ o w_l(y)w(:n)anﬂfﬁL(az,w_l(y)) € BUC|,(Ry x R™).

Proposition 5.1.2. For alle > 0 and 1 < p < 0o, we have that C°V(B) C Hy" ™ “(B).

Proof. In effect, if u € C7(B), then for some cutoff function w,

ntl o dr ep—
/ w(@)a™F 7 u(w, )P dy < [l B 5 / 2P dady < oo, (5.1)
[0,1)x8B Z [0,1)x8B

The other term (1 — w(m))anH_wreu(:n,y) has compact support. Therefore, its integral is finite on
B. O
Another important definition for us is stated below.

Definition 5.1.3. Let s € Ry and v € R. The space CNSW(]B%) 1s defined as the set of all the functions
u: [0,00) x OB — R such that

pop(y)e" NTu(e™" ~y) € BUCSR™Y),

where 3 : V. C OB — R™ is a chart and ¢ € CX°(V). In particular, CO(B) is the set of all functions
u: [0,00) x OB such that

oy L y)x T u(z, v (y) € BUCK(R, x RY),
n+1l
where [[ullgoqmy = 1272 (@, Y)l Lo () x0B)-
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5.2 Operators that compose the resolvent operator

In this section, we study the operators that compose the resolvent of elliptic operators and which are
important to show that they are sectorial. Most of the time, we need to use Mellin transform and
tools about pseudo-operators that will be defined later. We start with definitions that involve tensorial
product and a special type of symbol that we defined in Section

Definition 5.2.1. Let X, Y be two sets and f, g two scalar functions defined on X and Y respectively.
Then, for x € X and y € Y the tensor product of f and g, f® g : X xY — C, is defined by
f®gla,y) = f(x)g(y).

Definition 5.2.2. Let X,Y two topological vector spaces. We call w-topology (or projective topology)
on X ®Y the strongest locally convex topology on this vector space for which the canonical bilinear

mapping (x,y) = x®y of E X F into E® F is continuous. Provided with it, the space X @ Y will be
denoted by X QY.

Definition 5.2.3. By X®,Y, we denote the completion of X @, Y.

We will set an important theorem that we need next. For more details, see Theorem 45.1, [30].
Before, we recall what is a Fréchet space.

Definition 5.2.4. We say that a vectorial space E is a Fréchet space if there exist seminorms (pg)ren
such that (E,d) is a complete metric space, where d : E x E — R is the function

oo

L pile—y)
R SE )

Example 7. Let M be a smooth compact manifold. Then, C*°(M) is a Fréchet space with seminorms
defined by

N
pi(w) =D > llow oty D (uo ) (eny.
la|<j k=1
where Yy, : U, C M — R™ are local charts such that M = U]k,vzl U and {¢r} is a partition of unity.

Example 8. Let X be a smooth compact Riemannian manifold. The set L=°°(X) consists of all
operators K : C*°(X) — C*(X) defined by

Ku(z) = /X Bz, y)u(y)dy,

where dy is the measure associated to the metric of X and k € C*°(X x X). Then K € L™°(X)
k€ C®(X x X) is a bijection. The set L=°(X) is a Fréchet space with seminorms induced by
C®(X x X).

Theorem 5.2.1. Let X, Y be two Fréchet spaces. Every element @ € X®,Y is the sum of an absolutely

convergent series

o0
0= Z AnTn @ Yn,
n=0
where {\,} is a sequence of complex numbers such that Y " o |A\n| < 0o and {z,},{yn} are sequences
converging to zero in X and Y, respectively.

Proof. See Theorem 45.1, [30]. O
From now on, we will use ® to denote ®.

46



5.2.1 Mellin Differential and Pseudodifferential Operators

We fix [] as a smooth positive function z € A — [z] € [0, 00) in a sector A over the complex plane, as
we introduced in Section such that [A] = || for large A. Besides, we recall that 7, := (n+1)(3 — %)
and B is a compact n + [ dimensional manifold with a conical point. Let A : C*°(B) — C°°(B) be a
conical differential operator of order p that near the conical point has the form

A=z Y an(2,y)Dy(—20,), (5.2)

lo+5<p

where a, € C®(Ry, Diff*=7(dB)) and y is a local coordinate of 9B, as we have studied in Defini-
tion We know the importance of the Fourier transform to find solutions on smooth manifolds.
On the other hand, the Mellin transform is very useful to study the solutions in a neighbourhood of
the conical point and we will use this important tool from now on.

Definition 5.2.5. Let u € C°(Ry) be a smooth function. The Mellin transform is defined by
Mu(z) = / ¥ tu(z)de, (5.3)
0

where z € C.
Remark 5.2.1. We recall some important properties of the Mellin transform. For more details see
[11, Section 7].

i) MxYu(z) = Mu(z +7).

i) M(—203)u(z) = 2Mu(z).

iii) The Mellin transform can be extended to an isomorphism M : La(Ry) — Lo(T
set 't = {2z € C: Re(z) = 3} is a vertical line of C.
2

), where the

1
2

) If v(z) = Mu(z) with u € CP(Ry). Then, u(r) = M~ 1v(z) where

1
M (z) = i )i x *v(z)dz

for all o real number, with T = {z € C : Re(z) = a}. If u € Ly(Ry), then we must take o = 3.

In the decomposition of the resolvent operator that we will use in this work, it appears the
operators: op),f,G(A), Goo(A) and P(X) that we will define from here on.

Proposition 5.2.1. Let A be a Fuchs type operator of order u € Ny as (5.2]). Then, A can be written

as .
zopy "2 (f),
where )
lopsy" 2 (Ful(@) = 5~ 27 f (2, 2) Mu(z)dz (5.4)
270 JRe(2)="4 —y—n

and f(z,2) =3 014j<p ao(,y) D2, with u € C((0,1) x dB) and ~ is any real number.
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Proof. In effect, if we recall that M~tu(x) =
of M, then we can rewrite (5.2 as

x~*u(z)dz denotes the inverse operator

1
21 frnH
e

A=a 3 aale,y)Dy(~2d,)

| +5<p
=27" Y aa(z,y) DM M(~20,) (5.5)
loe|+5<p
=z FM! Z aa(:c,y)Dg‘zj/\/l.
ol +i<p
If we put f(z,2) = ZlaHjSu aa(ac,y)D;‘zj, then
A=z PM 1 f(z,2)M (56)
n 5.6
_ +u—2
=2t opy, " 2 (f),
with opx/;m_%( f) given by ([5.4)). O

Now, for the operator A we associate the cone operator in the Sobolev space over the infinite
cylinder R, x OB, which we will denote by B”. For the next definition, let us suppose that 98 = [ J ;
is a finite covering of 9B and v; : Q; C OB — U; C R™ are coordinate maps and {¢;} is a subordinate
partition of unity.

i

/—\) R"™
B

[0,1) x OB

Definition 5.2.6. We say that u(z,y) € HS

p,cone

(OB") provided that for each i
v(z,y) = ¢i(y)u(z,y) € Hy(R x R"),
with y = ;" ()-

Definition 5.2.7. Let B be a conic manifold, s,y € R and 1 < p < co. The spaces Ky (OB") denote
all distributions u in OB such that for some cutoff function w

wu € HY'(B) and (1—w)ue H) .. (0B").

p,cone

Finally, freezing the coefficients of A at t =0, we obtain the model cone operator A,

A=a 3" aa(0,y)Dy(—20,).

laf+i<p
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Remark 5.2.2. Near the boundary of B, if we work with h(x,z,\) = a#X — f(x, z) then
x “0p7+# 2(h) =z “0p7 a 2’( FX—f)=x—-A

We can also define Mellin Pseudodifferential operators. First we define their symbols. The following
definition is given in general for a compact manifold X. In particular, we state for the case X = 0B.

Definition 5.2.8. (Pscudodifferential operators with parameters) For y € R and d > 0, L% (0B, A)
is the space of all operators P(\) such that, for any local chart ) : U C OB — V C R™ and functions
@1, 02 € C(V) the operator Pye(N) : CX(V) — CX(V) given by

Proc(N)(u) = [$2P(A)(¢ruo )] oy~

is equal to op(p)u, where p € STHI(R™ x R™,A). In particular, we have that operators with kernel in
S(A,C>®(0B) @ C*(9B)) belong to L~ (9B, A).

Definition 5.2.9. For y € R and d > 0, Mg’d(aB, A) denotes all holomorphic functions g : C —
LH4 (OB, A) for which
gs(T, \) := g(B+it)(\) € LB, R, x A)

and it is locally bounded as a function of (.

For g € M“’ (0B, A), we can define the Mellin Pseudodifferential operator op7 . : C°((0,00) x
oB) — C((0, oo) x 0B) by

+pu—2 1 .
OpL : g()\)u =5 x *g(z) Mu(z)dz
T —
Locally, this operator can be written as
1 x ! / eV g(x, 1, 2, & N Fos My eu(z, )dE ) dz
2i (27_[_)n - g\, Y, 2, G, Tz y—E& )

I
nFl

where z € (0,00) and y is a local coordinate in 9B and X € A.

5.2.2 G (A)-Operators

In order to define the regularizing G (\) operators, we need a new class of function.

Definition 5.2.10. Let v € R. The space C°*7(B) consist of all functions u in C>°(B°) such that
275 =7 I (2) (—202 Y 05w, ) | o (0,1)x1) < Cc for alll, j € No, o € N, (5.7)

where K is a compact subset in a coordinate neighborhood of 9OB. Notice that C°7(B) # (,,en €™ (B).

Beware: The new class C°7(B) is different from the classes C*7(B) defined previously.

Proposition 5.2.2. Let u € C°7T(B) be a function. Then, for all j € Ny and o € NI the integral

below
/ / —20y )]8 u(z,y)[? —dy
oB

is finite. In particular, we have the inclusion C7¢(B) — Hy" (B).
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Proof. In effect,

1
=[] @ o opue, ) e dady
0 JoB

1
< C’K/ / |zP~ Y dedy < oo,
0 JoB

because for 0 < z < 1, we have that fol 2P~ ldr < oo. Therefore, since u € C*(B°), we have
u € Hy ' (B). O

(5.8)

Definition 5.2.11. S (0B") is the space of all u € C*°(IB") which are rapidly decreasing on x — oo
and satisfies (5.7). This means that for any local chart ) :' V C OB — R™ and ¢ € C°(V),

%8, (du) (2,9~ (y))] < oo,

and )
o5

for alll,k € Ng and o € Njj.

"I’ 2 (28;) 0y (¢u) (2, ™ (W) Lo 0,1y V) < 00,

Definition 5.2.12. We say that the operator G : C°(B°) — C*°(B°) has a kernel k with respect to
0,0 .
the Hy" (B) scalar product if

(Gu)(y) = /B By, o )ul g (o).

where locally in [0,1] x V., with V C 0B, dug(y') is x™/det h(z)dzdy'. Similarly for the K5 (OB")

scalar product.

Definition 5.2.13. Let E be a Fréchet space with seminorms (pj)jen. We say that u : 'V — E,

V C R™ an open set, is of class C' if u is continuous and there exist continuous functions C%‘k V> F,
for k€ {1,...,m}, such that

. u(x + heg) —u(x)  Ou ,
1 . — =
hli%pj ( h &vk (x) O’ VJ < N’
where {e1, ez, ..., ey} is the conical basis of R™. (e; = (0,0,...,1,...,0) where 1 appears in the position

i) We say that u is of class C', 1 > 1, if % are of class C'=Y, for each k. Finally, we say that u is
of class C™ if u is of class C' for each l.

Definition 5.2.14. Let E be a Frechet space with seminorms (pj)jen. We say that u € S(A, E),
where A C C is an open set, if:
1)ue C®(AE).
r+s .
2) SUP(g.yyen P (@Y7 Lol (2,)) < 00, for cach j,1,p,r, s € N.

Definition 5.2.15. Lety € R. Then the space S(A, C*°7T¢(B)@C°~71¢(B)) consists of all functions
h:AxBxB — C that satisfies the condition of Definition|5.2.14 with E = C*7T¢(B) @ C°~71¢(B).
In particular, they locally satisfy

am n . n ’ -/ /
e T @) (a0, e W (@) (~a/ 0, 9505 h(h 2, 9,2 y)] < Crmgagrvaar

for all kLU, 4,5 € Ng, o, € Nj.
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Recalling the definition of the space C°*7T¢(B) we have the following important statement, which
gives us a relationship between C°*7+¢(B) and C%7(B).

Proposition 5.2.3. The space C°7+¢(B) is continuously embedded in C*(B).

Proof. By definition we have that v € C°7*¢(B) implies that
L‘H‘_ _ .
[[x=2 7 6hfll(33)(—ilcaac)Jag(fU(?Ca1/)||Loo((0,1]xK) <C,

where K is a compact subset of 9B and y is a local coordinate. As a consequence, for [ = 0 = j and
a=(0,...,0), we have

|$nT+1*’Yu(x,y)‘ = ]anH*V*CU(a:,y):zﬂ < Clz°| = 0,when z — 0.

Therefore, we can extend the function "y by 0 in = 0. Its extension @ is defined in [0, 1] x 9B,
which is a compact set. So, our function belongs to BUC (R x R™). Hence, for all € > 0 there exists
§ > 0 such that, [z — 2| + |y — ¢/| < § implies that |@(z,y) — @(2’,y’)| < € and by Remark [5.1.1] we
conclude that |Inz — Ina’| 4+ |y — ¢/| < 0 implies that

n+1 ,n+1
2

22 u(z,y) — a2 T y)| = Ja(e,y) — alal,y)] <e.

Therefore, u € C%7(B). O

Proposition 5.2.4. Let 1 < p < oo and s,7y be real numbers. Then, the operator G(\) maps H," (B)
into C°7(B) if G has kernel in S(A, C°7T¢(B) @ C°~71¢(B)).

Proof. In order to prove this, we see that for u € Hy”"(B) then G(ANu(y) = [g k(y, v )u(y)dug(y')
is well defined because k(y,y’) € C°777¢(B) — H,” 7(B) and by duality in the scalar product
over Hy"(B) x Hqy ¥ 7(B) with % + % = 1, this integral is finite. Besides, using Proposition m and

dominate convergence theorem in local coordinates [0,1) x V, with V a compact subset in B, we have

Pl @) (a0, OGO uly) = [l a) (00, 0 k(o July ()
0,1)xV
and taking sup on [0,1) x V, this integral is finite. Therefore, G(\)u(-) € C°7(B). O

Remark 5.2.3. Notice that G(A) : Hp" (B) — C*7TE(B) is continuous for all € < e.
Definition 5.2.16. The space C;* (B, A,~) consists of all operators Goo(\) with kernel in S(A, C**7(B)®
Ce4(B)).

5.2.3 G(M)-Operators

Our final class of operator acts in [0,1) x 0B. They are the regularizing operators close to the conical
point.

Definition 5.2.17. For p € R and A = x + iy € C, we say that

feSHA) & [L0F F(N)| < CNI7F for all  j,k € No.
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Definition 5.2.18. Let v, u € R and d > 0. Ré’d(aB/\, A,~) is the space of all operator families G(X)
that have a kernel with respect to the IC(Q)’O((?IB%A) scalar product of the form

1

EOw a2l y) = N7 B, N,y N o),

where k € S4(A) ® Sy (BN ® Sy TT(OBN). In particular, this means that k : A x 9B" x 9B" — C
satisfies

8|0| n - n / v ’~
11 O 5=l ) (P I () (00 0 R 2,27 1) < Coya et

with x, 2’ € [0,1). Moreover,

n+1l ~ 1 1
©

GNu(a,y) = [ [N = k(X [Nra,y, [Nra g )u(a’,y )" da'dy'.

OBA

Here, dy' is the measure induced on OB by the metric h(0). Similarly to Proposition the operator
families G(X\) map Kp7 (OB") into Sy (OB") continuously.

5.3 Known results in ) (B)

In this section we are going to state results in the space 7—[2’7(18%) without proof. Among the references
that we have used, we can mention, for example, [5],[9],[8], [27] which contain more details.

For this section and the next, we assume that our operator A is elliptic with respect to A and

v+ p. (see Definition below). With this in mind, we enunciate two very important results in Hg”(lﬁ%)
spaces that support the main ideas necessary for our goals in continuous and Hélder spaces.

Definition 5.3.1. An operator A is said elliptic by parameters with respect to v + u and A if

i) Both the homogeneous principal symbol UZ(.A) and the rescaled symbol 6;(.,4), have no spectrum
in A, pointwise on T*(B° \ 0) and T*(X x R\ 0), respectively.

it) The model cone operator fl, as Deﬁmtion has no spectrum in A\ 0.

Theorem 5.3.1. If A is as in Definition[3.2.9, then there exists R > 0 such that A has no spectrum
in AN{|A\| > R} and

(A=A =w {arop); P g() + GO fen + (1 - w) PO —w1) + Gao(N),
where w,wp,w1 € C§([0,1)) are cutoff functions satisfying wiw = wy and wwy = w and
i) g(z,z,A) = g(z, z, 2" X) with g € C°(R4, M,"" (0B, A)),
i) P(X) € L/""(B°,A),
i) G(A) € R (0B"; A, ),
W) Goo(N) € Cn(Bs A, 7).
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Proof. See Theorem 1 in [g]. O

Theorem 5.3.2. Let A be as in Definition[3.2.2. Then, there exists a constant ¢, such that

Proof. See Proposition 1 in [§]. O

5.4 Almost sectorial operators in C"(B)

Now, we set the second main result of the thesis. In order to motivate the result, we consider 4 = A.
We recall that, for previous results in Chapter 3, we had a conic manifold B with dimension n+ 1 and

~ such that
-3 -1\° 1
nT<'y<min —1+\/<n2 > —/\1,n—2|— , (5.9)

where )\; is the greatest non-zero eigenvalue of the boundary Laplacian Ay, where h(x) with x € [0,1)
is a family of Riemannian metrics on 0B that is smooth and does not degenerate up to x = 0. Then,
we have that

A: D(A) = M) (B)

with D(A) = H2*T7 (B)@C is sectorial. This implies that (A—A)~! : #37 (B) — Hy(B) is continuous.
In order to show that A is almost sectorial in C%?(B), we extend (A —.A)~! to a bounded operator on
this set. With this in mind, we prove the result below, which is the second main result of the thesis.

Theorem 5.4.1. Let A be as in Definition|5.3.1 For X\ large enough and 1 < p < oo, we have that:
1) The operator
(A=A~ HY(B) N COT(B) — HY' (B)

can be extended to a continuous operator
(A=A~ Co(B) — O (B).

2) The image of (A — A)~1 is independent of A, i.e, (A — A)~HC"(B)) = (u — A)~1(C*7(B)).
Furthermore, if D(A) :== (A — A)~1(C*7(B)) for large \, then ¢ + A : D(A) — C%(B) is an almost
sectorial operator for some ¢ € R, that is, for all A € A

A = c— A) | gconmy < CIATHTS, for some e € (0,1).

Proof. For the proof of 1) and the almost sectoriality of A in 2), we need to estimate the norm for
all terms that appear in the decomposition of (A — .A)~1. We shall do this later in this work. For the
statement of independence of A in 2), we recall the identities for resolvent operators. More explicitly,

for i € C we use that
R(A,N) = R(A, ) = (= N R(A, A R(A, ). (5.10)
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Therefore, for f € (A — A)71(C%7(B)) there exists w € C*7(B) such that f = (A — A)"lw. Then, if
we use , we have
f=p—=A"w—(p— A w+ A=A w
(5= AVt (= N~ A) - A)
€ (u—A)~HC™M(B)).

In fact, the first term after the second equality belongs clearly to (u — .A)~1(C%7(B)) and for the
second term we have used that (A — .A)~! : C®7(B) — C%7(B), which implies that the composition
(p— A)~"H(A = A)~! belongs to (u —.A)~HCY(B)).
O
Now, we complete the proof of Theorem by studying the extension of each term of (A —.A)~1
described by Theorem [5.3.1] Below, A denotes always the sector of the Theorem [5.3.1

Proposition 5.4.1. The operator G (\) satisfies

|G oo (M £cor @) < o

where X belongs to A.
Proof. First step: Goo(A) € L(C*7(B)).

For u € C*7(B)) we have by the definition of the operator Goo(\) that
Goo(Nu(w) = / k(N w, w)u(w')dug(w'),
B

where k € S(A, C®7¢(B)@C>~7T¢(B)). We do all the computations without the term det /det |h(x)]
because B is a compact manifold and this term is bounded from above and below, so we do not need

to worry about it.
By Theorem , for every A € A,

where a,(X) € C°7(B) and by(A\) € C°77¢(B), where > o7 ) ay(A) < 0o and limy, 00 an(X) = 0,
lim,, 00 by (A) = 0 in C°7T¢(B) and C°~77¢(B), respectively. First, we prove that G (\)u € C%(B),
for all A € A. We divide the computations on [0,1) x 9B and B\ ([0,1) x 9B). For the first case, we
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have that, for dy’ denoting a volume metric on 9B,

Goo(Nu(z,y) = / kN 2y, 2y (', y) 2™ da'dy’
[0,1)x0B

/ Zan Yan(\, 2, )b (N, 2y u(2!, ) )" da' dy’
[0,1)x08B

= Zan Jan (A, x y)/ b\, 2’y Yyu(a o )2 da' dyf
[0,1)x9B
<CZOzn an(A, x y)Hb Hcoo 7+6(B)/[01) o ’x/—LH—W-FE ($/7y/)$/n‘dx’dy/
X
_ntl .. ,_ntl n
<Clzan Jan (A, 2, Y)|[bn||coor—v+e(m) ||u||C0’YIB)/ o T T T da dy
n=0

—clzan Yan (A 2, 9))1Bn ooy l1tllco s) / e
X

0,1

< szan Jan(A, 2, y))|[bn|lcoe —+<(m)llullco (B)

< 00,
(5.11)

where we have used that b, (\) € C~7¢(B) — C%~7(B) (See Proposition, where we have used
that > 0% an(X)an(X) < oo in CVTE(B), |[by(A)]|gee.—r+e(m) is bounded and C°7+¢(B) C C(B),
we conclude the result. The integral on B\ {[0,1) x 9B} is the easy part, since we just need to
observe that the last set is compact and the integral as we did before is finite, because we do not have
singularities.

Second step: |[Goo(A)|[ (o m)) < ™ |
Second, we show that |[Goo(A)ul|cor @) < o ||| o ~v®)- In order to complete the proof, let us choose

a partition of unity {¢;} of OB and a coordinate system (Uj,4;) such that supp ¢; C U;. Before, we
remark that for w a cutoff function,

GooMNu=(1—-w+w)Goo(A\)(1 —w+w)u
= (1 -w)Gooc(N)(1 —w)u+ (1 = w)Goo(Nwu (5.12)

+ WG (M) (1 — w)u + WG oo (N wu.
Further, we recall that the expression (¢;u)(x,y) means ¢;(y)u(x,y) for all i. We analyse two terms.
The others are similar or even easier. Let us start with wGs(A\)w. All the work will be done in a

chart U C 9B and, by abuse of notation, we write u in place to ¢;u to do a clear computation and
to avoid the use of u(z,y) = >, (¢iu)(z,y). Therefore, there exists a compact set K CC U such that
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u(z,y) = 0if y € K, so [|[wGoo(N)wul|coq(g) is a finite sum of terms of the form below.

n+1 n
HW(.%')lt 2 ’Y/[Ol) k(A7$>y7$/)y,)w($,)u($,ay/)x, dx/dy,HBUC’ln(R+><R")

n 1 n
S A A R CR T
2€[0,1) [0 1) Al
< sup ]:U| / |x/_7+6_1+n7+1u($/,y')]dx/dy' (5.13)
o) 1Al DxU
c
< lul|po, / z efldm/dy/
‘)\‘H HC 7(B) 01 ><U‘ ‘
< ol
= [y llem @

and we used that the support of the function ¢; is contained in some U. For the term wGoo(A)(1 —w),
we note that 1 —w(2’) for 2’ € [0,1) is bounded, so we have the same estimate as above. For the rest
of the terms, we proceed in a similar way. Therefore, ||Goo(N)||z(com @) < I%I O

Another important estimate that we need for the operator P(\) is stated below.

Proposition 5.4.2. For the operator P(\) € L™**(B°, A) we have that:

1
(1 = wo) P(A) (1 — wi)ul|co @) < B |HU|’cM(B)

Proof. Now we will analyze the term (1 — wo)P(A)(1 — wy). We note that the operator is acting
outside of OB because of the terms (1 — wp) and (1 — wi). Let us take a partition of unity {¢;}
associate to supp(l — wy) Usupp(l — wp) and v; : U; C B — R™ such that supp ¢; C U; and such that
supp ¢; U supp ¢y, is contained in the same U; if supp ¢; Nsupp ¢y # 0, see for example Lemma 8.4 in
[14]. Hence, if we take u € C%7(B), then (1 — wo)P(A)(1 — wi)(uo ;) otb; ' € BUC(R™?) for all 4.
Let P : C°(U;) — C°(U;) be defined by Pv = [P(v o) oyt Then, Pu = [P(uoy )] o. If,
P =¢;j(1—wy)P(N)(1— wl)qﬁk, then P is as (A\+.4)~" in Theorem and Case 1 in Theorem
Therefore, ”PHE(BUC) < IM’ which implies that || P||co~m)) < o

O
Lemma 5.4.2. Let p > 0 and v € R. Then the operator k,, : COY(B) — COV(B) defined by
Kou(,y) = p" ulpz, y)

is continuous and satisfies

||’€,0HL(C~07’Y(B)) =p’.
Proof. In effect, by definition we have that

51z, 9l o gy =W%Lm%%mxwmﬂMwm
= [|p” (Pl‘) En “Tu(pe, y)HLoo (R4 x8B) (5.14)

:PVHQC En 7u(ﬂC,ZJ)HLOQ(meaﬁ’)

= o |[ullgo-
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which implies that |[rpl] o gy = £ O

Most of the time, we use conjugation under appropriate operators in order to show necessary
estimates for our goals. We can see that in the following two lemmas below. The first result will show
the relation between the kernels involved with the operator G(\).

Lemma 5.4.3. Let the operator G(\) be defined in (5.2.18]). Then,

L GO

L vu(,y) = [ kN2 g2y (@, y)a " da' dy
(A1~

R 1

(A7 OBA
where k(A z,y,2',y) = [)\]_nTHk()\, [A]_%x, v, [)\]_%s,y’) and k € S*(A) @ S7T(OB") @ Sy 7 (OB).
Proof. In fact,

-1

G(A
Km% <)Kw%
n+1

=m25/kmmhmdwwwmmﬂwwww
OB

T

(By substitution s = [)\]%a:’) = /8 (A, [)\]_%x, Y, [)\]_%s,y’)u(s, y')([)\]_%s)"[)\]_idsdy'
= [T RO e s uls, )" dsdy

=/ k(A 2y, 2y yu(a!, y )™ da' dy .

OBA
(5.15)
O
We have another important relation for the conjugation of G(\) under /Qm 1
Lemma 5.4.4. For the operator G(\) we have the following relation
—1
HGO‘)H[:(éOw(B)) < ||"0[/\}%G()‘)’i[)\]%||c(c”0w(13))'
Proof. We note that
B _ —1 —1 3
|’G(>\)Hg(c0,v(B)) = ||K[/\ﬁK[,\]%G()\)K[M%K[,\ﬁ ||L(c0n(15;))
- -1 - -1 -
(By Lemma [5.4.2) < ||"f[/\ﬁ HE(COW(IB%))||’{[/\]%G()‘)’{[/\ﬁ Hﬁ(CO'V(B))HK[M% Hl;(co,w(]gg)) (5.16)
— -1 -
= ||’Q[>\}%G(>‘)’i[>\]ﬁ ||_/;(C0,w(]g))~
O

Now, we will use that k(\, z,y,2',y") € S*(A) ® Sg"(9B") @ S, " (9B"), where Sy (IB") is
defined in Definition [5.2.11] to prove the next proposition.

Proposition 5.4.3. For the operator G(\), we have that

C
-1

G(A 5 < —
||HP\]% ( )H[A}%HL(COW(B)) = ’/\’
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Proof. In this proof, we need to consider four cases. If 2,2’ € [0,1), x € [0,1) and 2’ > 1, 2/ € [0,1)
and x > 1 and finally z, 2’ > 1.

We start with the case z, 2’ € [0,1). In this case, if u € C%7(B)) then

n+1

il 1
sup |z 2z Tk GN)E_ 1]
z€[0,1)x 9B [A]i [AJ#
= sup Il‘n;l_”/ k(N 2,y 2’y Yu(a!,y )™ da' dyf |
2€[0,1)xdB 0,1)x9B
<C sup / |:l:ni+1*7x7+ﬁni+1 ot u(x’,y )" |dx' dyf
z€[0,1)x0B J[0,1)x 0B
¢ re=1 g3t —y 1o I
sup |zf2" T2t 2 Tu(al, y)|de'dy
~ A Jj0.1)x08 scfo.1)xo8 (5.17)
¢ -1
<& sup. ol g 5 'l
IAl Jjo,1)x 08 zefo,1)
_ C||“Hc~0,~/(13)

re=1 5 141
' Tdr'dy
Al [0,1)x 98B

< Sl
= ylleon @)

For the second case, x € [O 1) and 2/ > 1, we need to use that k decays to zero at infinity. First,

let us consider k(\, z,y,2,y') = f(Na(z,y)b(z',y') with a € S7T(OB") and b € S; 7 (OB") and
f € SH(A). Therefore, for all m € Ny we have that |b(2/,y')| < Cla’|~™. Now, with this in mind, we
have that
ntl_ 1
sup |72 77k G(N)Kk. 1 uf
(2,y)€[0,1)x 0B NG D

= sup \/ 2T TR 3y, 2y y )™ e dy
(z,y)€[0,1)x0B J[1,00)x0B

= sup \/ 2T T (Nalz, )b,y )ula’,y )™ | da’ dyf (5.18)
(z,y)€[0,1)x0B J[1,00)xIB

_ "—“f'y b 1=ty gl m de’ du’

= sup | fNa(z,y)b(a’,y")x 25 (! y )2 da' dy
(z,y)€[0,1)x0B J[1,00)xIB

= sup | LH_Vf( Na(z, )b(x’,y')x'nT4+7x’nT+l_7u(x/,y’)]dm’dy'.

(z,y)€[0,1)x0B J[1,00)x0B

Here, by definition of the space Sy (OB"), we have |:EnT+1_ a(z,y)| < K|z|¢ for some K,e > 0.

Then, sup,co.1)xaB P En “Ya(x,y)| < co. Besides, as u € COV(B) it follows that |z’ En “u(2,y)| <
HUHcM (B)- Besides,

n—1
o' (@ y)| < Cule|

for any I > 1 because b is rapidly decreasing when 2’ goes to co. Therefore, its last term is an
integrable function in [1,00). On the other hand, we recall that f(\) is bounded by % for some scalar

C. Therefore, (5.17) and (5.18) imply
1

C
sup LGN e u(z,y)| < —|ul|s.
(a:,y)e[o,l)xazg‘ N7 () N (z,)] |)\|H |lgor (g)
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For the case 2’ € [0,1) and z € [1,00)

ntl . _9q
sup x 2 kLGN 1w
(x,y)G[l,oo)X@B‘ Nk ( [A]# |
< sup I/ 2RO w2y 'y )2 da dy (5.19)
(z,y)€[1,00)x8B  J[0,1)xdB )

n+1

= sup / jz72 7 f(Na(z, y)b(a’, v )u(a’,y")2"™ |dx'dy'.
(z,y)€[1,00)xOB J[0,1)xIB

For this case, we use that |a(z,y)| < M|z|~! for some [ such that 21 —~ < I. Then,

sup |$HTH*7a(z,y)\ < M.
z€[1,00)

Besides, we have that
b(a, v (', )2’ = |2/ b2,y )2’ (e, ) < M |[ul|go. yla’] 7 (5.20)

Since f(A) is bounded by %, then

sup
z€[1,00) X OB

ntl n M-
/ 2" T f(Na(z, y)b(@, Y )u(@’,y )2’ | da'dy < T2H“||C~°”(B)'
[0,1)xB Al

Finally, when z, 2’ > 1 we have

ntl o 1
sup lz72 Tk, G(N)Kk._1ul
(2,y)€[1,00) x B NG (A7
n+l__ ~ n
— sup | r 2z Yk(\x,y, 2y (' y )2 da' dy’ (5.21)
z€[l,00)x0B J[1,00)x0B
=  sup | 25 T f(Nalz, y)b(a' Y @,y )2 dx'dy .

z€[1,00)x0B J[1,00)x0B

Now we use that mnTH_“’a(:L", y) is bounded by |z|P for some p < —1 and b(z, ¥/ )u(z’,y' )z’ is bounded

in the same way as we did above. Therefore, we can conclude by similar way the estimate that we
require. We remark that in our computations we have used constantly properties of the tensorial
product, see Theorem The proof for general k follows by taking limits as in Theorem O

m

The last term that we will analyse is woz*op),;g(A)wi. Before we do, we recall that g(z,y, z, ) =
g(z,y, z,z"X) with g € C°(Ry, M,"" (9B, A)), which implies that

~ —z izl n+1 :
nh@Nu= [ [ e e = i € ) (M) = drde
" ez=—F——7

represents the general form.
Lemma 5.4.5. Let a: ]R’};H x R x A — C be an operator given by
a(x,y, 7,8, A) = w(@)atg(z, y, 7, 2"N).
Then,
(@) FOBO (i, y, 7, € M| < C(L+ 7] + €] + N[#) (1 + || + [¢)) 1
forall k € Ng, 5, € Njj.
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Proof. First, let us suppose that £ = |a| = || = 0. In this case, since we only need to consider
x € [0,1), we have

@) G,y 7, €, N)| < (1 + [+ €] + AL )
1
ot (1 4+ |7] + €] + [A[#)* -
e R O P
(L[] + 18] + [ Al)#
1
B(1 A L ES
__ T (LA ||+ [€] +] |“)l (1+‘T|+|§’+|/\|i)*# (5.22)
o (@ (14 ||+ [€]) + [A[=)»
1
(L4 ||+ [€] + [A[=)*
= 1
(@=L + 7]+ [5]) + [A[)#

1
S (47l + A=)~

(1+ 7] + €] + [A[#)

For the general case, we need to observe the general form for the derivatives that appear. So, we remark
that (v0,)*x* = pFat and (20.)Fg(z,y,7,& 2HN) = D by tho—k wkap \k2 (:1:(955)1”8’/\“35(1', y, T, &, xHN).
Therefore, by the previous observation, we have that

|(28:2)* 0, OF; gy (@)t g(x,y, 7,6, & V)| = |(€0) w()a" O] ¢ G2, y. 7, €, 2" N)]

< Y |@(@)at RN (20,208 0008 G(,y, T, €, 2N
ko+ks=k
< 3 Cle ARt (L[] + €] + |a#Afx ) o whalal
ko+ks=k
1 1 1
= Y ClAR @+ ||+ (€] + |2 A[m) TRt (L 7]+ [€] + |2 A[0) THA ]+ €]+ | a7
ko+ks=k
~ 1 la
< C(L+ 7]+ €]+ [AF) T+ 7]+ [eh) 7T,
(5.23)

since we apply the same argument as we did in (5.22)) to each term in last inequality of (5.23)). O

Proposition 5.4.4. Let § € C®(Ry, My"" (9B, A)). Then wtop”™2 (g(z"\))wo has a continuous
extension to an operator in L(C%7(B)). Moreover,

o, C
|zt op?™2 (g(x" A))wo | ico )y < DR

for some € > 0.

Proof. We use the following notation for the variables: z € [0,00), A € A and z is from the
holomorphic map z — L*~#(9B,A). In particular, for each (z,z,\) fixed, we have g(z,z,z")\) €
L~#(0B). Hence,

wop” 2 (G(a"N))wou(z) = w(z)=— r 7 g(z, z, M A) M(wou) (2)dz.
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In a local coordinate, the operator wop”‘g(ﬁ(x”)\))wo can be written, modulo a regularizing op-
erator, in the form

1
L~ u
3t o rFw(x)g(z, z, 2 \) M(wou) (2)dz

1
%,7

1 1
= x *w(x)

2m Jr o
nfl

(5.24)

/ VoG (x,y, 2,6, TN FyseMansa (wou) (2, §)dEdz.
Rn

With some abuse of notation, we denote by g(x,y, 7, &, 2#\) and Fy_se My, (wou)u(x, 7) the func-
tions g(z, vy, ”T‘H — v+, & 2k N) and Fy e My, (wou)u(z, "TH — 7 + iT), respectively.
We notice also that for z € T'nga oy the Mellin transform can be transformed into the Fourier
2

transform, as follows:

Mysv(z) = / ¥ o (x)de = / :UTLTH_'YHT_lv(x)d:U = / e_s(nTH_”HT)v(e_s)ds
0 0 —00
= / efiSTefs(nTﬂfv)v(efs)ds = Fsyr (efs(nTﬂf )v(efs)) .

Hence, if x = e~*, then Equation (5.24) can be written as

1 / .
e g(z,y, 7, & A
By o O )
X FyseFarr (€05 (e *Yule™,y)) (v, €)dedr

1 S -
(2m)ntt /R T w(eT g ey T g e

n+1

X Fy—seFsor (e_(T_'Y)Swo(e_s)u(e_s, y)) (1,&)d&dr.

1 [ _an
T 2

il +y—iT
o ) w(z)

ntl
2

— ol )s

Therefore, in order to finish the proof, we will show that op(w(e™*)e #g(e %, y,7,& e H X))
satisfies the condition of Case 3 of Theorem In fact, if we change = by e~ ° we have that
a(s,y, 7,6, N) = w(e %)e *Hg(e %y, 1,&, e 5 \) satisfies the conditions of Lemma This, means
that

1. _
07, )08 a5, 7, & N < O(1+ 7] + €] + ) (1 + [+ [¢l) !,

which is the case 3) in Theorem Therefore, for u € C%?(B) and using the estimates above, we
have that

ntl _n o _ C ntl
|z 2 Twatop” 2(9($“)\)U)WOHLOO(R+an) <C(n) e = 17’\1’ 2 VU||Lo<,(JR+xJ1M)a
([A[m)p—e
where ])\|i =1, or equivalently,
o3 (Gla" V)| < o
wx"op glx Uu)wo L(COY(B)) = |>\|1_€.

Proposition [5.4.1)f5.4.2ll5.4.3[5.4.4] imply that A : D(A) — C%7(B) is an almost sectorial operator.
Therefore, we conclude the proof of Theorem [5.4.1 O
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5.5 Almost sectorial operators in C'(B)

In this section we will prove almost sectoriality for an elliptic operator defined on C7(B) spaces. We
consider elliptic operators A that satisfy the condition of Definition and we study each component
of the resolvent of A, which is given by

A=A = wi(ztoplg(N) + G(A))wz + (1 — w1)P(A)(1 — w3) + Goo(N) (5.25)

as we have seen in Theorem Next, we state two lemmas in order to prove the almost sectoriality
in C(B).

Lemma 5.5.1. Let p € C®°(R™ x R™ x A) such that (z,&) — p(x,&,\) € SH(R™ x R"™), u € R, for all
A€ A. Then, we have that:

Du;0p(p(, &, N))u = op(0z,;p(x, &, N))u + op(p(x, €, X)) O u
Proof. By definition,
Du;0p(p(, &, N))u
_ i€
=0, (s [ o€ N )
Gl e NFu(E)de +
Rn

—_

ei;r-f ol u .
(27" /Rn Ou;p(, &, \)Fu(§)ds (5.26)

3

(2m)"
271r)" /nez‘mfp(x,f, A)S[awju](ﬁ)df—i—

= op(p(x, &, \))0z;u + op(0z;p(w, &, N))u,

(271r)n /Rn €0, p(, & N Tu(&)dg

—

or equivalently, with notation of commutator operator, [0;,, op(p)] = op(0z,p). O

Lemma 5.5.2. Let p € C®(R"™ x R® x A) be a function that satisfies the conditions of Case 3 of
Theorem |4.3.1. Then, ||op(p)||prcr(@r) < P\I% for some € > 0. If p satisfies the conditions of Case
1 of Theorem 4.5.1) then, ||op(p)||prct (mn) < %

Proof. We prove for p satisfying Case 3 of Theorem The other case is analogous and will be
omitted. By definition of the norm in BUC*(R"), we have that

n

llop(p)ul|prcr ey = llop()ull pro@n) + > 110x,0p(p)ull prcEn)
j=1

< llop(p)ull prc@m) + Y, (1op(p)a; ul| rcny + |op(Oe; p)ul By @)

J=1 (5.27)
C " C C
< A= [ull Bucmny + Z ()\’1_5 |10z ul| Buo@ny + r‘l_a ||U|BUC’(R”)>
j=1
Cq

< ’)\’1_5Hu||BU01(R")-
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Theorem 5.5.3. Let A be as in Definition|5.3.1. For some ¢ € R, we have that
c+A:D(A) — CH(B)
is an almost sectorial operator, where D(A) = (A — A)~Y(C(B)) for some A € A.

Remark 5.5.1. The following proof is based on Roidos and Schrohe, see Theorem 3.3 in [26].

Proof. In order to show this result, we will estimate all the terms that appear in ([5.25) and we will
use that the norm in C17(B) is given in terms of the norm in C%Y(B). More specifically, we have

- Mlera@) = Il - lleorm) + 11202 (Mo @y + 2251 110y, (Dllcon m)-
First, we study the term op},g(\).
For x0, derivative, we have

(202) (oprr9(Nu(z, y))
= (x@x)/:L'_Zg(:):,y,z,)\)./\/lu(x,y)(z)dz
r

= (x&x)/x_zg(x,y,z,)\)/ 2 (!, y)da' dz
r 0

o0 / z /
@) [ (%) stemz e ) s
/
(x0z) // ( > g9(z,y, z, Azt )u(z ',y)di/dz
T
- 2 \* - , dx
- / / @on) (2 =) + (5 @0n)ite,y, 200 | ute ) % d
rJo x T x
o0 ZCI z d:E/ o0 SU/ z d.’E,
= =z =) 7 B ) il - il % ! ) =
/F/O 2(33) g(x,y, z, At )u(z', y) = dz+/r/0 (x> 0.g(x,y, z, 2" Nu(z', y) 4z
o0 I\ % /
+// (Z) /\ux“axﬁ(x,y,z,w“A)U(w’,y)%dz
I'Jo
o0 I\ % /
- / / (:ca (”““) )a<x,y,z,m“>u<x',y>dfdz+

/

; 20:9(x,y, z, " Nu(x, y) dz+// <> At ong(z, y, z, 2" Nu (2, y)didz
(x g(z,y, z, Azt) <( '0) (;r y)) da'dz+

x z!

/ /
< ) 10.g(z,y, z, " Nu(z', y) dz+// <) Aum“@,\ﬁ(az,y,z,x“)\)u(aj’,y)di/dz
x

IG)
<

8 B[R

g9(z,y, z, Azt) <:c Opru(z’, y)l —u(2’,y)— > dz'dz+

<~ 8

/

d
> 20.g(z,y, z, " N)u(z', y) dz+// () )\ux“(?,\g(x,y,z,:c“)\)u(x’,y)%dz

8]

5 |

= L
(5.28)
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where g is given by the relation g(x, z, A) = g(z, z,2*\). In local charts, we have

[|2#(202)op g (N ul@, y)llco By

= |lz"2 (205 )op} g (N (. Y)| 1. (R xR

(5.29)
<l ”*“OPMQ( ) (@001 ey rm) + |25 ”*“OPMQ( VUl Lo (& xB7)

+ a5 T Hop] (20:9) (V) (W) Lo (R <) + | Atz 2 N T Hop ] (00G) (M) (W] 1o (ry xR

Now we notice that all the terms have the same behaviour as op&g()\). As a consequence, we have

that
M|ul|e1~(m)

12" (202 )opi g Ve, Ylleos@) < — 3=

due to the term z0, and Proposition
On the other hand,

(azﬁx)[wl(a:“op’]{é,g()\))wg] = (xaggwl)x“op’]{/[g()\)—f—uwlx“opLg(A)wg—i—wlm“opX/[g()\)(x@xwg)—l-wlx”L@)wg.
(5.30)
We notice that all the terms in (5.30]) are uniformly bounded in C%(B) by W% for larger A, hence

M
(202 [wr (2" 0p}, g () Jwa]ull o (5) < WHUHCLV(By

Below we analyse the terms with J,,. By Lemma we have that
Oy, xtoprg(Nu = xHoplg(N)dy,u+ xtop} 0y, 9(N)u,
which is uniformly bounded in C%7(B) by P\I% for larger A by a similar analysis as before, that is

M
[1(0y,) [wr (z#0pyg(N))walull o ) < i [luller(@)-

As a consequence, by Lemma we have that
lwatop™2 (g(A))wouller @y = |lwarop?™ 2 (g(A) )woul|con sy + ||(20z)wa*op™™ 2 (g(A) wor|con (m)

1D 0y, watop” 2 (g(A))woul o (5
j=1
C My M;
< N l|ullcon m) + wTa‘|x89ﬂu"C0’7(IB) + Z wfj_eﬂaju\’covv(ﬁ)
j=1

C
< |>\‘1—E ||u”C17'Y(B)7

(5.31)

Second, we study the behaviour of G.(\), G(\) and P(A).
For the term G()), we will estimate the terms (z0,)G(A\) and 9,G()\). We note that since G(\) €
R (OB"; A, ), it has a kernel with respect to the ICS’O((?IB%A) scalar product of the form

+1 ~ 1 1

kO zy,2'y) = [N % kO ey, [N, )
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where k € S~'(A) ® SJT(0B") ® S, 7T (9B"). Then,

(@0)Gule) = w0 [ I RO W W (e oo dy
1 1 (5.32)

= / [)\]nTH(xax)ff()\, N#x,y, [N e,y u(, ¢ )2 da' dy
oBN

and (20,)k(\ Wi, N 5o/ /) = Nrad k(N 5e,y, N7 y) = @ok) WFa, g, X5’ y)
and 0,k € S~ (A) ® SJT(OB) @ S, 7T (OB"). Analogously, we have the same estimate for the
term 9,G()). Therefore, we have the same boundedness in £(C%7(B)). This implies that all the terms
are bounded in £(C17(B)) by a constant % The operator G ()\) have behavior of order O(|]A|~)

in the norm C7(B) for any N € Ny. For the operator P()\), we use Lemma Therefore, using
Case 1, |[P(N)||z(c1~(m)) is bounded by % and with this, we finish the proof of the theorem. O

5.6 Application for Almost Sectorial Operators

In order to finish this work, we give an application for almost sectorial operators (see Definition [2.1.3)).
In this case, we will use Theorem Let B be a conic manifold. Consider the following equation

up = Au—+ f(t,u) on B, t>0

u(0,z) = up(z) on B. (5.33)

Let X be a complex Banach space. For w € (0, §) we have the following definition. For more details,
see [10].

Definition 5.6.1. Let A: D(A) — X be an almost sectorial operator in A(¢). We define the family
of operators {T'(t) : t € C\ {0},|arg t| < § — ¢} by

T(t) := ! e (2 — A)7ldz,

=50t Jo.
where Tg = {re=* : r > 0} U {re? : r > 0} with ¢ <0 < % is oriented counter-clockwise.

The mild solution of ([5.33)) is defined by the continuous solution w : (0,7] — X of the integral
equation

t
u(t) =T(t)ug + / T(t—s)f(s,u(s))ds.
0
For T > 0 and fixed § > 0, we define the metric space

K(Tu0) = {v € (0.1, X) : sup_ [Io(t) = T ()l < 3.

The metric is defined as

or(vi,ve) = sup |Jvi(t) —va(t)||x for vy, ve € K(T,up).
0<t<T

Remark 5.6.1. In order to show the existence of mild solution to (5.33)) we notice that, for ug € D(A)
we have that the function [0,00) 3t — T'(t)up € X is continuous and the sets where ||z — T (t)up|| <
are bounded. For more details see [10].
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We use the following proposition.

Proposition 5.6.1. Let A: D(A) — X be an almost sectorial operator and f in (5.33)) be a Lipschitz
continuous function. More precisely, we require that:

1)3L>0,Y0 <t <TVa,y € X : [l — T()uol|x, [ly — T(t)uol|x <0 then [|f(t,2) — ft,y)llx <
L|lx — y||x. And that f is bounded there.

2)3AN >0,V0 <t <T,Vx e X :||lz—T(t)uol|x <9 then ||f(t,x)||lx < N.
Then for sufficiently small positive 1o < T there is a mild solution to (5.33) in K (T, up).

Proof. See Proposition 2 in [12]. O
Finally, we show the application to ([5.33)) with the non linear term,

f: X=X

with f(u) := wu+ (1 —w)u?® and X := C%(B), where w is a cutoff function defined in a neighborhood
of the conic manifold B and ug € D(A) = (A — A)~1(C%7(B)), for large A € A. We assume that 7 is
such that A satisfies the conditions of Definition [5.3.1] see [9]. We notice that

[1f (w) = f(©)llco )
= l|wu+ (1 —w)u® —wv — (1 — w)v3||co,~,(B)

= |lw(u —v) + (1 — w) (@’ = v%)||eon (g

< lu = vlleon ) + (1 = w)(u® = v°)l|con(w)

— = olleon z + 11— 0)(1 — w) (6 + v+ 0?)] o ey

< Jlu = vllenn ey (1 + 1V~ ul}_ sy + IV~ @l @l 1V~ ol + VT~ D010
3
< llu = lleony (14 S0V =Tl + VTl o)

< Ll|u — vl|coq(m),
(5.34)

where we have used that far from the singularity || ||co.~m) = || || 1o, (8) and u,v € B C C%7(B), where
B is a bounded subset, see Remark Moreover, with the same arguments we obtain
1S (W)llcon @) = llwu + (1 = w)u?||co(m)
=|lwu—(1—-wu+(1—-wu+(1l- w)u?’Hcoﬁ(B)
< Jlullensga + 11 = )@ = )l |con ey (5.35)
< lulleon @y + 1(1 = ) (u® = )l Lo (@)
< lluleoqwy (1 + (luliZon ey + 1) < W,

for some constant N. As a consequence, by Proposition we prove that (5.33) with this particular
f has a mild solution in a conic manifold B. O
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