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Resumo

Astaiza, W. A.Equações Parabólicas em Variedades Cônicas. 2024. 73 f. Tese (Doutorado)
- Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, 2024.

Apresentaremos resultados sobre equações parabólicas em variedades cônicas usando funções
cont́ınuas e Lp. Inicialmente, mostraremos a existência de soluções globais para uma t́ıpica
equação de reação-difusão. Consideramos espaços de Mellin Sobolev, que são espaços de funções
constrúıdos usando funções Lp.

Em segundo lugar, mostramos a sectorialidade de operadores diferenciais e pseudodifer-
enciais eĺıpticos agindo sobre funções cont́ınuas em variedades compactas sem bordo e sem
singularidades cônicas.

Por fim, para uma variedade cônica, estendemos as funções cont́ınuas e C1 para C0,γ(B) e
C1,γ(B), e mostramos que operadores diferenciais eĺıpticos definem operadores quase sectoriais
nesses espaços.

Palavras-chave: Variedades cônicas, espaços Mellin-Sobolev, operadores pseudodiferenciais,
operadores setoriais e quase setoriais.
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Abstract

Astaiza, W. A. Parabolic Equations on Conic Manifolds. 2024. 73f. Tese (Doutorado) -
Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, 2024.

We are going to present results about parabolic equations on conic manifolds using Lp
and continuous functions. First, we show existence of global solutions for a typical Reaction-
Diffusion equation on a conic manifold B. More precisely, we study the equation

∂u

∂t
= ∆Bu+ u− uq on B◦,

u(0, x) = u0(x) x ∈ B◦.

where q is odd. We consider Mellin-Sobolev spaces H0,γ
p (B). These are function spaces built

using Lp norms.

Second, we show sectoriality for elliptic differential and pseudodifferential operators acting
on continuous spaces on compact manifolds without boundary and without conical points.

Third, for a conic manifold B, we extend the continuous and C1 spaces to C0,γ(B) and C1,γ(B)
and we show that elliptic differential operators define almost sectorial operators on these spaces.

Keywords: Conic manifolds, Mellin-Sobolev spaces, Pseudodifferential operators, Sectorial
and almost sectorial operator.
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Chapter 1

Introduction

The study of partial differential equations is very important, since many phenomena in science
can be described by this mathematical tool, which tries to give solutions whenever they exist
and their respective properties. There is a lot of material about such equations and their so-
lutions by different methods. We want to contribute to parabolic equations on manifolds with
conical points by a combination of semigroup theory and pseudodifferential operators that we
will describe with more details later.

We recall that the parabolic equations are essential, because they model physical phenom-
ena as heat transfer, diffusion and it has many applications in real life. Several authors had
studied different ways to solve this type of problems on non-smooth manifolds and domains
such as Kondratiev, Kozlov, Grisvard, Dauge, among others. In the last decades, important
contributions have been given by schools such as the one led by B-W Schulze (see [11]), mainly
using Lp spaces to solve elliptic and parabolic equations on manifolds with singular points or
corners, which are the inspiration for this work.

Our main aim is to study solutions in different spaces based on Lp norms, Hölder and con-
tinuous spaces using techniques developed recently by [4] and [2] on conic manifolds. First,
we show how to use analytic semigroup theory and results provided by pseudodifferential op-
erators to obtain global solutions of a typical Reaction-Diffusion equation on conic manifolds
using Lp spaces, more precisely Mellin-Sobolev spaces. Second, we show how to use techniques
of pseudodifferential operators and estimates for integral operators in order to study the be-
haviour of the operators that compose the resolvent operators in the case of a manifold without
singularities and a conic manifold.

Analytic semigroups have important applications to parabolic equations. Using mild solu-
tions defined over the domain of fractional power of sectorial operators, Dlotko and Cholewa
showed existence of global attractors under some conditions in the nonlinear term and their
domains. For more details, see [6] and [10]. In order to use their technique we have used many
tools or pre requisites as for example pseudodifferential calculus that is continuously giving
important new results to partial differential equations and geometry. Relevant material that
we used can be found in [1], [5], [14], [20], [21], [29], [31].
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Inspired by Dore and Venni’s work, which is based on the behaviour of imaginary powers
and their use to regularity of evolution equations, E. Schrohe and J. Seiler have investigated
the resolvent for Cone Differential operators which appears in a natural way on Manifolds with
conical singularities. Their work was based on Sobolev spaces with weight, which they call
Mellin-Sobolev spaces. One of our aims is to extend their results to Hölder and continuous
spaces. For this purpose, we need to study the Pseudo-Differential Calculus as presented, for
instance, by Y. V. Egorov and B-W. Schulze, see [11]. The pseudodifferential calculus is based
on the Fourier transform. The idea is to built an approximation of the inverse operator called
parametrix using the symbols that we will introduce later. Similarly and connected with Fourier
transform, we have used the Mellin transform near to the conical points to describe a similar
calculus with other types of symbols and parameters that depend on a sector domain on the
complex plane. This calculus was developed by B.W. Schulze.

For simplicity, we emphasize that our computations are done using local coordinates on the
manifold. We have tried to give more information and to explain easily details that can be
difficult to read and understand in the papers. Besides, we give our contributions with new
definitions and build concepts that perhaps can be used in future by us or others interested
in this area. In a way, some of our results improve the ones obtained by Schrohe and Roidos
([23]) who have proved existence of local solutions of the Allen-Cahn equation, but have neither
given conditions to obtain global solutions nor studied the dynamics of them. Next, we show
how this material is organized.

In Chapter 2, we state our objectives and some important equations that we will study.
We want to show the importance of this type of problems and look at them from different
angles and to give directions that can be taken in the future. In particular, we present Sectorial
operators, Linear Semigroups, some aspects about interpolation spaces, nonlinear semigroups
and Pseudodifferential operators. Chapter 3 is concerned with the Lp theory and we give our
first contribution. Here, we define the Conic Manifolds, we present results on extensions of
unbounded operators defined by differential operators and a typical Reaction-Diffusion equa-
tion. Moreover, we prove existence of global solutions for that problem. In chapter 4, we work
with Λ-Elliptic operators on BUC and BUC1 spaces and we give applications for the case of
differential and pseudodifferential operators on manifolds without singularities.

Finally, in Chapter 5 we define the typical continuous and Hölder spaces on conic manifolds
and give our second main contribution. We describe the operators that appear in the structure
of the resolvent of elliptic operators. Besides, we present the Mellin Differential and Pseudo-
Differential Operators. Next, we show known results in H0,γ

p (B) spaces and the behaviour for
the operators that compose the resolvent operator in C0,γ(B) and C1,γ(B). We prove that cer-
tain elliptic operators are almost sectorial in a conic manifold and we give an example for an
equation with the Laplace operator in such spaces.

In a parallel work during the development of this thesis, I studied symmetric tensor power of
graphs under the sponsorship of The American Institute of Mathematics (AIM). As a result, we
have submited the pre print that can be found in https://arxiv.org/pdf/2309.13741v1.pdf.
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Chapter 2

Objectives and Preliminary results

The main aim of this work is to study parabolic equations on manifolds with conical singulari-
ties. We introduce new tools to show global well-posedness for this type of equation in Hs,γ

p (B)
spaces and we also prove well posedness in C0,γ(B) spaces, where Hs,γ

p (B) and C0,γ(B) are conical
versions of Lp and BUC (Bounded Uniformly Continuous) spaces. In this work we:

1) Study semilinear parabolic equations of the type

ut + Au = F (u),

where A can be a sectorial or almost sectorial operator and F is a nonlinear operator.
2) Introduce manifolds with a conic point and provide the most important information

about them that are relevant to this work.

3) Introduce the Mellin Sobolev spaces, Hs,γ
p (B).

4) Study semilinear parabolic equations using these spaces under suitable conditions.

5) Recall the definitions of BUC and Hölder spaces and we show that certain elliptic differ-
ential and pseudodifferential operators are sectorial in C(M), where M is a compact manifold
without singularities.

6) Introduce our new spaces Cs,γ(B) and we show that certain elliptic conic operators are
almost sectorial in C0,γ(B) and C1,γ(B).

7) Apply our theory to parabolic equations to the new Hölder and continuous spaces Cs,γ(B).

Let B be a conic manifold that we will define in following chapter. We will consider the
following semilinear heat equation on B:

∂u

∂t
= ∆Bu+ u− uq, x ∈ B, t > 0,

u(0, x) = u0(x), x ∈ B.
(2.1)
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In order to motivate our work, we first recall that a simple cone C on R3 can be defined by

C := {(r cos θ sinϕ, r sin θ sinϕ, r cosϕ), r ≥ 0, 0 < θ ≤ 2π},

where ϕ ∈ (0, π
2
) is fixed. Let us see how is the solution for the equation given by

∆u(r, θ) = 0 on C,

u(r, 0) = u(r, 2π).
(2.2)

Therefore, we are looking for periodic solutions in θ and we will proceed as follows. First, we
express the Laplace-Beltrami operator in spherical coordinates. Recalling that the angle ϕ is
constant, we see that

∆u(r, θ) =
1

r2

[
∂r(r

2∂ru) +
1

sin2 ϕ
∂2
θu

]
.

If we note that ∂r(r
2∂r) = (r∂r)

2 + r∂r then (2.2) is equivalent to[
(r∂r)

2 + r∂r +
1

sin2 ϕ
∂2
θ

]
u(r, θ) = 0,

u(r, 0) = u(r, 2π).

This problem can be transformed into an ODE of second order applying the Mellin transform
(see Definition 5.2.5 in Section 5.2) at the variable r[

z2 − z +
1

sin2 ϕ
∂2
θ

]
Mu(z, θ) = 0,

Mu(z, 0) = Mu(z, 2π).

(2.3)

Later we will define the Mellin transform and show some of its properties. After some compu-
tations we find that the solutions of (2.3) are given by Mu(z, θ) = c1 cos(kθ) + c2 sin(kθ) with

k ∈ Z and z = 1
2
∓
√

1
4
−
(

k
sinϕ

)2
. They can be expressed also as

Mu(z, θ) = c1 cos(| sinϕ|
√
z − z2θ) + c2 sin(| sinϕ|

√
z − z2θ)δ

z − 1

2
∓

√
1

4
−
(

k

sinϕ

)2
 .

Therefore, by linearity the solution can be written as

M−1

 l∑
k=1

(
c1k cos(| sinϕ|

√
z − z2θ) + c2k sin(| sinϕ|

√
z − z2θ)

)
δ

z − 1

2
∓

√
1

4
−
(

k

sinϕ

)2


=

l∑
k=1

1

2πi

∫
Γ 1

2

t−zc1k cos(| sinϕ|
√
z − z2θ) + c2k sin(| sinϕ|

√
z − z2θ)δ

z − 1

2
∓

√
1

4
−
(

k

sinϕ

)2
 dz,

where Γ 1
2
= {z ∈ C : Rez = 1

2}. Then, after replacing z =
1
2 + iβ, with β = ∓i

√
1
4 −

(
k

sinϕ

)2
, we have

that u(r, θ) is equal to

l∑
k=1

(
c1kr

1
2
+i

√
1
4
−( k

sinϕ
)2
+ c̃1kr

1
2
−i

√
1
4
−( k

sinϕ
)2
)
cos(kθ)+

(
c2kr

1
2
+i

√
1
4
−( k

sinϕ
)2
+ c̃2kr

1
2
−i

√
1
4
−( k

sinϕ
)2
)
sin(kθ).

(2.4)
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The behaviour of this solution near the conical point depends on the space where we are looking for
it. For example, the conic metric on this manifold is dr2 + r2 sin2 ϕd2θ and if we want the solution

with r
1
2
±i

√
1
4
−( k

sinϕ
)2

in Lp(C∩B(0, 1)), then we have to note that for k larger enough, 1
4 − ( k

sinϕ)
2 < 0.

In this case, the integral is∫ 1

0

∫ 2π

0

∣∣∣∣r 1
2
±i

√
1
4
−( k

sinϕ
)2
cos θ

∣∣∣∣p r sinϕdrdθ ≤ 2π

∫ 1

0

∣∣∣∣r1+ p
2
±p

√
− 1

4
+( k

sinϕ
)2
∣∣∣∣ drdθ.

The last integral is finite, if and only if, 1 + p
2 ± p

√
−1

4 +
(

k
sinϕ

)2
> −1, which is equivalent to

2 +
p

2
± p

√
−1

4
+

(
k

sinϕ

)2

> 0,

or equivalently,

k < sinϕ

√(
p+ 4

2p

)2

+
1

4
,

since sinϕ > 0. The previous example is just a motivation without rigorous arguments to study the
behaviour of solutions for equations on conic manifolds.

2.1 Sectorial and Almost Sectorial Operators

In this section, we define an important class of operators, the sectorial operators. From now on, for
a ∈ R, ϕ ∈ [0, 2π], we will denote by Λa(ϕ) the closed set in C defined by

Λa(ϕ) := {λ ∈ C : ϕ ≤ | arg(λ− a)|}. (2.5)

In principle, the sector depends on ϕ and a, but we just write Λ in order to simplify the notation.

ϕ
Λ

Complex plane− C

Re

Im

σ(A)− Spectrum of some operator A

a

In this section, X denotes a Banach space unless stated otherwise.

Definition 2.1.1. For an operator A : D(A) ⊂ X → X the set

{λ ∈ C : Im(λI −A)
||.||X

= X, (λI −A)−1 exist and is bounded on Im(λI −A)}

is called the resolvent of the operator A and is denoted by ρ(A). The set σ(A) := C/ρ(A) is called the
spectrum of A. For λ in ρ(A), we write the operator R(λ,A) := (λI − A)−1, also called the resolvent
operator. Here, ImB denotes the range of the operator B.
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Next, we define the class of operators that we need for our work. They are very important for the
theory of parabolic equations.

Definition 2.1.2. For a linear and closed defined operator A : D(A) ⊂ X → X we say that A is
sectorial if there exist a ∈ R, ϕ ∈ (0, π2 ) and M such that

i) The resolvent ρ(A) contains the sector Λ.

ii) ||(λI −A)−1|| ≤ M
|λ−a| for each λ ∈ Λ.

Remark 2.1.1. In this work we need to consider two cases: The first case is when the operator A

satisfies that D(A)
||·||X

= X. This is the case for X = Lp with 1 < p < ∞. The second case is when

D(A)
||·||X ⊊ X as for example for X = BUC,L∞. Therefore, as we will see later we will work with

analytic C0 semigroups (see Definition 2.2.1) for the first case and with just analytic semigroups in
the second case. In both cases, we can define the sectorial operators but we should be careful in which
case we are working. In particular, we can also define sectorial operators without requiring that A is
densely defined.

Example 1. If A : D(A) ⊂ X → X is a bounded operator, then A is sectorial.

Proof. In fact, we have that {λ ∈ C : |λ| > ||A||} ⊂ ρ(A), because λI − A = λ(I − 1
λA) and

||I − (I − 1
λA)|| = || 1λA|| =

1
|λ| ||A|| < 1. Then, the inverse of (I − 1

λA) exists and, when |λ| > ||A||, it
is given by

(λI −A)−1 =
1

λ
(I − 1

λ
A)−1 =

1

λ

∞∑
n=0

An

λn
.

In particular, if Λ ⊂ {λ ∈ C : |λ| > 2||A||}, then ||A||
|λ| <

1
2 . Hence,

||λR(λ,A)|| ≤
∞∑
n=0

(
||A||
|λ|

)n
≤

∞∑
n=0

(
1

2

)n
= 2

and A is a sectorial operator.

Definition 2.1.3. Let X be a Banach space, A : D(A) ⊂ X → X and γ ∈ (−1, 0). If

||(λI −A)−1||L(X) ≤ Cϕ|λ|γ

for all λ ∈ Λ0(ϕ), then we say that the operator A is almost sectorial.

2.2 C0 Semigroups

From now on, V is a metric space and X is a Banach space.

Definition 2.2.1. A one parameter family of maps T (t) : V → V , t ≥ 0, is called a C0 semigroup if :

i) T (0) is the identity map of V .

ii) T (t+ s) = T (t)T (s), for all t, s ≥ 0.
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iii) The function
[0,∞)× V ∋ (t, x) → T (t)x ∈ V

is continuous at each point (t, x) ∈ [0,∞)× V .

The existence of a certain limit involving the semigroup {T (t)} is important for the definition of
the generator of a linear C0 semigroup. So, we state the following definition.

Definition 2.2.2. Let T (t) : X → X be a linear C0 semigroup, that is, a C0 semigroup such that
T (t) is a bounded linear operator for each t ≥ 0. The linear operator A : D(A) ⊂ X → X defined by

D(A) := {x ∈ X : lim
t→0+

T (t)x− x

t
exists}

and

Ax := lim
t→0+

T (t)x− x

t
for x ∈ D(A)

is called the infinitesimal generator of a linear C0 semigroup {T (t) : t ≥ 0}.

We define the analytic semigroups complementing the definition 2.2.1 given before.

Definition 2.2.3. Let {T (t)} be a linear semigroup in X. We say that {T (t)} is a C0 analytic semi-
group if there exists a sector Λ = Λa(ϕ), here a = 0, as we defined in (2.5) of the complex plane and
linear operators T (z) that match with T (t) for t ≥ 0, such that

i) z → T (z) is analytic in Λc.

ii) limz→0,z∈Λc T (z)x = x for every x ∈ X.

iii) T (z1 + z2) = T (z1)T (z2) with z1, z2 ∈ Λc.

The following important theorem characterize the generator of C0 analytic semigroups and is very
important for this work. Before, we introduce the definition of a curve γ on the sector Λa(ϕ) which
will depend on this sector. Then, for r > 0 and η ∈ (θ, π/2), where θ is given by the sector Λ, we
define

γ = {λ ∈ C : |arg(λ− a)| = η, |λ| ≥ r} ∪ {λ ∈ C : |arg(λ− a)| ≥ η, |λ| = r} (2.6)

oriented counterclockwise.

Theorem 2.2.1. A densely defined linear operator A is a negative generator of an analytic semigroup
{T (t)} of bounded operators T (t) : X → X, t ≥ 0, if and only if −A is a sectorial operator in X with
sector Λa(ϕ) for a ∈ R and 0 ≤ ϕ < π

2 .

Proof. See [16].

Remark 2.2.1. Given a sectorial operator A : D(A) → X with sector Λa(ϕ) for a ∈ R and 0 ≤ ϕ < π
2 ,

we define T (t) : X → X by

T (t)x =
1

2πi

∫
γ
e−λt(λ−A)−1xdλ, (2.7)

where γ is a curve on the sector Λ as (2.6). T (t) is also denoted by T (t) = e−tA.

8



Remark 2.2.2. As noted before, it is possible to define analytic semigroups that are not C0 ana-
lytic semigroups. In fact, if A : D(A) → X is a sectorial operator with sector Λa(ϕ) for a ∈ R and
0 ≤ ϕ < π

2 , but D(A) is not dense in X, then the operator defined by (2.7) satisfies:

i) z ∈ Λ̃c → T (z) is analytic for some sector Λ̃.

ii) limz→0,z∈Λ̃c T (z)x = x ↔ x ∈ D(A)
||·||X

.

iii) T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ Λ̃c.

2.3 Intermediate Spaces: Real and Complex interpola-

tion and fractional powers

The interpolation theory tries to construct suitable families of intermediate interpolation spaces and
to study their properties. The most well known families are the real and complex interpolation spaces.
We present their most relevant information to study our problems in this work.

Let X,Y be two Banach spaces. The couple of Banach spaces (X,Y ) is said to be an interpolation
couple if both X and Y are continuously embedded in a Hausdorff topological vector space V. In this
case, X∩Y and X+Y are linear subspaces of V endowed with the norms ||v||X∩Y = max{||v||X , ||v||Y }
and ||v||X+Y = infx∈X,y∈Y :v=x+y{||x||X + ||y||Y } respectively. If (X,Y ) is an interpolation couple, an
intermediate space is any Banach space E such that

X ∩ Y ⊂ E ⊂ X + Y.

For the rest of this section, let (X,Y ) be an interpolation couple and let L(X) denote all bounded
operators T : X → X. We say that T ∈ L(X) ∩ L(Y ) if T : X + Y → X + Y and T|X ∈ L(X) and
T|Y ∈ L(Y ).

Definition 2.3.1. Let (X,Y ) be an interpolation couple. An interpolation space is any intermediate
space E such that for all T ∈ L(X) ∩ L(Y ), the restriction of T to E belongs to L(E).

Definition 2.3.2. For every x ∈ X + Y and t > 0, set

K(t, x,X, Y ) := inf
x=a+b,a∈X,b∈Y

||a||X + t||b||Y .

Remark 2.3.1. We note that K(1, x,X, Y ) = ||x||X+Y and for every t > 0, K(t, ·, X, Y ) defines an
equivalent norm to || · ||X+Y .

Definition 2.3.3. Let 0 < θ < 1, 1 ≤ p ≤ ∞, and set{
(X,Y )θ,p = {x ∈ X + Y : t→ t−θK(t, x,X, Y ) ∈ Lp((0,∞), dtt )},
||x||(X,Y )θ,p = ||t−θK(t, x,X, Y )||Lp((0,∞), dt

t
)

(2.8)

Such spaces are called real interpolation spaces and are Banach spaces. There is a well established
theory and many properties about these spaces are known, but we do not need to study all the theory
for our project. For more details, we can see [21]. Another important definition, when Y ⊂ X is (we
refer to [3], Section I.2 )

(X,Y )0θ,p := Y
(X,Y )θ,p

9



and it is known that, if Y ⊂ X, then by Proposition 1.17 of [21] we have

(X,Y )0θ,∞ = {x ∈ X : lim
t→0

t−θK(t, x,X, Y ) = 0}.

Now we consider (X,Y ) an interpolation couple of complex Banach spaces.

Definition 2.3.4. Let S be the strip {z ∈ C : 0 ≤ Re(z) ≤ 1}. We define F(X,Y ) as the space of all
functions f : S → X + Y such that:

i) f is holomorphic in the interior of S, continuous and bounded up to its boundary, with values
in X + Y .

ii) t→ f(it) ∈ BC(R, X), t→ f(1 + it) ∈ BC(R, Y ), and

||f ||F(X,Y ) = max

{
sup
t∈R

||f(it)||X , sup
t∈R

||f(1 + it)||Y
}
<∞,

where BC(R, X) is the set of bounded continuous functions.

Now, we define the complex interpolation spaces.

Definition 2.3.5. Let θ ∈ [0, 1]. The space defined by{
[X,Y ]θ = {f(θ), f ∈ F(X,Y )},
||a||[X,Y ]θ = inff∈F(X,Y ),f(θ)=a ||f ||F(X,Y ).

(2.9)

is the complex interpolation space between X and Y .

Remark 2.3.2. For θ ∈ (0, 1) we have that X ∩ Y ⊂ [X,Y ]θ ⊂ X + Y . The same for (X,Y )θ,p.

For more properties and other important facts we can see [21]. Other intermediate spaces can be
defined through fractional powers of sectorial operators as follows.

Definition 2.3.6. Let α ∈ (0,+∞) and A : D(A) → X be a sectorial operator with Reσ(A) > 0, is
that, σ(A) ⊂ {z ∈ C : Re(z) > 0}. Then, for all v ∈ X, we define the operators A−α : X → X by

A−αv =
1

Γ(α)

∫ +∞

0
tα−1e−Atvdt,

where Γ(α) =
∫ +∞
0 xα−1e−xdx denotes the gamma function.

Under the condition of sectoriality and Reσ(A) > 0 it can be shown that A−α is well defined and
these operators are bounded linear operators in X which have inverses denoted by Aα := (A−α)−1

and satisfy A−αA−β = A−(α+β) with α, β > 0. We will denote by Xα the domain for the operator
Aα. Note that Xα = Rank(A−α). We have an important relation for those spaces: if α ≥ β then
Xα ⊂ Xβ is a dense and continuous inclusion. For more details, see [6].
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2.4 Abstract Cauchy problems and Non-Linear Semi-

groups

In this work, we will deal with some problems that can be studied using the semigroups defined in
Section 2.3. Next, we define the type of solutions that we will consider for parabolic equations, which
is the subject of this work. For more details, one can consult [6]. In general, for a Banach space X,
we call an abstract parabolic equation an expression of the form

ut +Au = F (u), t > 0,

u(0) = u0,
(2.10)

where A : D(A) → X is a sectorial operator, Reσ(A) > 0 and F : Xα → X is a Lipschitz continuous
function on bounded subsets of Xα for some α ∈ [0, 1). Now, we present some important definitions.
They will be important for the proof of the existence of a global attractor, the definition of a nonlinear
semigroup and problems that we will study in the next sections.

Definition 2.4.1. If u0 ∈ Xα and for some real τ > 0, u ∈ C([0, τ), Xα)∩C1((0, τ), X)∩C((0, τ), D(A))
is such that (2.10) holds for all t ∈ (0, τ), then u is called a local Xα- solution of (2.10).

Another type of solution that we will use later for the initial valued problem

u′(t) = f(t, u(t)), t ≥ 0

u(0) = u0
(2.11)

where f : [0,+∞)×D → X is a nonlinear function and D is a continuously embedded subspace of X
is stated in the following definition.

Definition 2.4.2. A function u ∈ C1([0, τ);X) ∩ C([0, τ);D) that satisfies (2.11) for 0 ≤ t < τ is
said to be a strict solution in [0, τ).

Proposition 2.4.1. Under the assumptions of (2.10), there exists always a local Xα- solution. We
can always find a maximal local Xα-solution u : [0, τu0) → Xα such all local solution with u(0) = u0
is a restriction of the maximal solution. Finally, if supt∈[0,τu0 ) ||u(t)||Xα <∞, then τu0 = ∞.

Proof. See Theorem 2.1.1 in [6].

Definition 2.4.3. A solution u is called global Xα-solution if it fulfills all the requirements of Defi-
nition 2.4.1 with τ = +∞.

If for each initial value u0 ∈ Xα in (2.10) there is a global Xα - solution u(t, u0), we can define a
nonlinear C0 semigroup {T (t)} by

T (t)u0 = u(t, u0) for t ≥ 0. (2.12)

Proposition 2.4.2. If there exists a global Xα - solution of (2.10) for each u0 ∈ Xα, then the relation
T (t)u0 = u(t, u0) defines a nonlinear C0 semigroup for t ≥ 0.

Proof. In effect, T (0)u0 = u(0, u0) = u0 by the initial condition of (2.10) . For t, s ≥ 0 we have that

T (t)T (s)u0 = T (t)u(s, u0).

11



On the other hand, if we consider

ut +Au = F (u), t > 0,

u(0) = u(s, u0),
(2.13)

then u(t+ s, u0) is the unique Xα solution that in t = 0 is equal to u(s, u0). So, by the uniqueness of
solutions we have that T (t)u(s, u0) = u(t+ s, u0) = T (t+ s)u0, or, equivalently, T (t+ s) = T (t)T (s)
for all t, s ≥ 0. The continuity of the function [0,+∞) ×Xα → Xα is a consequence of Proposition
2.3.2 in [6].

Definition 2.4.4. Let (V, d) be a metric space and A ⊂ V be a nonempty set. We say that A is a
global attractor for a C0 semigroup {T (t)} if:

i) A is compact.

ii) T (t)A = A. Here, T (t)A = {T (t)x : x ∈ A}.

iii) limt→∞(supb∈B d(T (t)b,A)) = 0, for all B ⊂ V bounded, where d(T (t)b,A) = infa∈A d(T (t)b, a).

Let us consider two important conditions to show existence of global attractor that we need in
this work:

(A1) The relation (2.12) defines on Xα, corresponding to (2.10), a C0 semigroup {T (t)} of global
Xα solutions having orbits of bounded sets bounded. This means that, if B ⊂ Xα is bounded then⋃
t≥0 T (t)B is bounded.

(A2) It is possible to choose

• A Banach space Y , with D(A) ⊂ Y ,

• A locally bounded function c : [0,+∞) → [0,+∞)

• A nondecreasing function g : [0,+∞) → [0,+∞)

• A certain number θ ∈ [0, 1), such that, for every u0 ∈ Xα, both conditions

||u(t, u0)||Y ≤ c(||u0||Xα), ∀t ∈ (0, τu0),

and
||F (u(t, u0))||X ≤ g(||u(t, u0)||Y )(1 + ||u(t, u0)||θXα), ∀t ∈ (0, τu0)

hold, where τµ0 is the maximal interval of existence of the solution.

Theorem 2.4.1. Under the assumptions of (2.10) the conditions (A1) and (A2) are equivalent.

Proof. See Theorem 3.1.1 [6].
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2.5 Operator and Function Theory in an open set Ω ⊂ Rn

Next, we introduce the basic spaces and operators necessary to study the main problems in this work.
More information can be found in [20] or [6].

Definition 2.5.1. Let 1 ≤ p < ∞ and Ω ⊂ Rn be an open set. The Lp(Ω) space is the set of all
measurable functions f : Ω → C such that the integral

∫
Ω |f(x)|pdµ(x) < ∞, where dµ(x) denotes the

lebesgue measure.

Remark 2.5.1. Actually the elements in Lp(Ω) are equivalence classes, where f ∼ g if and only if
f = g almost everywhere. As usual, we just write f and understand that we work with the equivalence
class of f .

Definition 2.5.2. Let 1 ≤ p <∞ and m ∈ N0. We define the Sobolev spaces by

Hm
p (Ω) = {u ∈ Lp(Ω) : D

αu ∈ Lp(Ω) ∀α multi-index : |α| ≤ m}

More generally, we define

Definition 2.5.3. Let s ∈ R and 1 < p <∞. Then,

Hs
p(Rn) = {f ∈ S ′(Rn) : F−1[1 + |ξ|2]

s
2Ff ∈ Lp(Rn)},

where S ′(Rn) denote the usual dual of the Schwartz space, called tempered distributions, and F the
Fourier transform.

In this work, we use the following convention:

Fu(ξ) =

∫
Rn

e−ixξu(x)dx and F−1u(x) =
1

(2π)n

∫
Rn

eixξu(ξ)dξ.

Below we show a result that we will use later.

For −∞ < s0, s1 < +∞, 1 < p0, p1 < +∞, 0 < θ < 1, s0 ̸= s1,

s = (1− θ)s0 + θs1,
1

p
=

1− θ

p0
+

θ

p1

we have by Theorem 1, section 2.4.2 (Page 185) from [31] that

[Hs0
p0 (R

n), Hs1
p1 (R

n)]θ = Hs
p(Rn).

2.6 Pseudodifferential Operators

In this section, we are going to present some tools that are necessary to the study of the differential
operators that appear in this work. We state the most important part without going into great detail.
For more details, see for example [1], [5], [21].
Let us start with the subject of pseudodifferential operators on Rn. In this section, we use Dxj =

1
i ∂xj

with i the complex number such that i2 = −1. Moreover, we say that α = (α1, . . . , αn) ∈ Nn0 is a
multi-index. Here, N0 = {0, 1, 2, . . .} and N = {1, 2, . . .}.

Definition 2.6.1. Let m ∈ N and α ∈ Nn0 be a multi-index. For a linear operator P =
∑

|α|≤m cαD
α
x

with constant coefficients, the function p(ξ) =
∑

|α|≤m cαξ
α is called the symbol of P .
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Example 2. Let ∆ be the laplacian operator. If we recall that ∂xj = iDxj and define

αi = (0, . . . , 0, 2, 0, . . . , 0),

ith-entry
then

∆ =
n∑
i=1

∂x2i
=

n∑
i=1

(iDxi)
2 = −

n∑
i=1

Dαi
x

Therefore, its symbol is −|ξ|2.

Definition 2.6.2. Let m ∈ R and n ∈ N. Then Sm(Rn × Rn) is the vector-space of all smooth
functions p : Rn × Rn → C such that

|∂αξ ∂βxp(x, ξ)| ≤ cα,β(1 + |ξ|)m−|α|,

for all α, β ∈ Nn, where cα,β is independent of x, ξ ∈ Rn. The function p is called a pseudo-differential
symbol and m is called the order of p. Moreover,

S∞(Rn × Rn) = ∪m∈RS
m(Rn × Rn) and

S−∞(Rn × Rn) = ∩m∈RS
m(Rn × Rn).

Remark 2.6.1. If p ∈ Sm(Rn × Rn) is a symbol, then

p(x,Dx)f(x) := op(p)f(x) :=
1

(2π)n

∫
Rn

eix·ξp(x, ξ)F(f)(ξ)dξ, for all x ∈ Rn,

defines the associate pseudodifferential operator, where f ∈ S(Rn) (Schwartz space).

The pseudo differential operators are continuous on Sobolev spaces, as can be seen below.

Theorem 2.6.1. Let p ∈ Sm(Rn×Rn) be a symbol, 1 < q <∞ and s ∈ R. Then p(x,Dx) extends to
a bounded linear operator

p(x,Dx) : H
s+m
q (Rn) → Hs

q (Rn).

Proof. See Theorem 5.20 [1].

Definition 2.6.3. Let p ∈ Sm(Rn×Rn) and m ∈ R. A symbol p is called elliptic if there are C,R > 0
such that

|p(x, ξ)| ≥ C|ξ|m,

for all |ξ| ≥ R and x ∈ Rn.

Example 3. We have already seen that p(ξ) = −|ξ|2 is the symbol of the Laplacian operator. There-
fore, for C = 1 we have that |p(ξ)| ≥ |ξ|2, for all ξ ∈ Rn. Hence, we can choose any R > 0. We
conclude that p is an elliptic symbol of order 2.

The following two results are classical and necessary to this work.
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Theorem 2.6.2. Let p ∈ Sm(Rn × Rn), m ∈ R. Then the following conditions are equivalent.

1. p is elliptic.

2. There is some q ∈ S−m(Rn × Rn) such that

p(x,Dx)q(x,Dx) = I + r1(x,Dx)

and
q(x,Dx)p(x,Dx) = I + r2(x,Dx)

where r1, r2 ∈ S−∞(Rn × Rn).

Proof. See Theorem 3.24 in [1].

Theorem 2.6.3. Let p ∈ Sm(Rn × Rn) be elliptic, m ∈ R, and let 1 < q < ∞. Moreover, let
u ∈ Hr

q (Rn) be a solution of
p(x,Dx)u = f,

for some f ∈ Hs
q (Rn), where r, s ∈ R. Then u ∈ Hs+m

q (Rn). Moreover, there is some constant
Cr,s,q > 0 independent of u and f such that

||u||Hs+m
q (Rn) ≤ Cr,s,q

(
||f ||Hs

q (Rn) + ||u||Hr
q (Rn)

)
.

Proof. See Theorem 7.13 in [1].
Another important result for two symbols is stated below.

Proposition 2.6.1. Let pj ∈ Smj (Rn × Rn) be two pseudo-differential symbols, with j = 1, 2. Then
there is some r ∈ Sm1+m2−1(Rn × Rn) such that

[p1(x,Dx), p2(x,Dx)] = r(x,Dx),

where [A,B] := AB −BA denotes the commutator of two operators.

Proof. See Corollary 3.17 [1].
The following result is showed in Theorem 7.16 [1]. Here, we enunciate and provide its proof.

Later we will use this result for an important remark. (see Remark 3.2.1)

Theorem 2.6.4. Let p ∈ Sm(Rn × Rn), m ∈ R, be elliptic, s ∈ R and let 1 < q < ∞. Moreover, let
u ∈ ∪r∈RHr

q (Rn) be a solution of
p(x,Dx)u = f,

for some f ∈
⋃
r∈RH

r
q (Rn). Moreover, assume that there is some g ∈ Hs

q (Rn) such that f and g

coincides on some open set U ⊆ Rn. Then for every open bounded set V with V ⊂ U there is some
v ∈ Hs+m

q (Rn) such that u and v coincide on V .

Proof. Let us suppose that f ∈ Hr
q (Rn) for some r ∈ R. By Theorem 2.6.3, we know that u ∈

Hr+m
q (Rn) ↪→ Hr

q (Rn). The statement of the theorem follows from: For all k ∈ N0 and every bounded

open set V with V ⊂ U there is some v ∈ H
min{s+m,r+k}
q (Rn) such that u and v coincide on V . We note
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that if the previous claim is true, is enough to find some k ∈ N0 such that min{s+m, r+ k} = s+m
hence v ∈ Hs+m

q (Rn) in that case.
The proof of the claim can be showed by induction. In effect, for k = 0, with v := u ∈ Hr

q (Rn) ⊂
H

min{s+m,r}
q (Rn). Let us suppose that the claim is valid for some k ̸= 0. We will prove for k + 1. We

have two options: If r + k ≥ s +m then min{s +m, r + k + 1} = min{s +m, r + k} = s +m which

implies that v ∈ H
min{s+m,r+k+1}
q (Rn) = H

min{s+m,r+k}
q (Rn) and we are done. If s +m > r + k we

take ψ ∈ C∞
c (Rn) a function such that ψ = 1 on V and suppψ ⊂ U and v = ψu. Then, we notice

that for v = ψu, we have

p(x,D)ψu = ψp(x,D)u+ p(x,D)ψu− ψp(x,D)u = ψf + [p(x,D), ψ](u).

By Proposition 2.6.1, [p(x,D), ψ] ∈ Sm−1(Rn × Rn), because p(x,D) ∈ Sm(Rn × Rn) and ψ ∈
C∞
c (Rn) ⊂ S0(Rn×Rn) (ψ do not depend of ξ ∈ Rn). Hence, since g ∈ Hs

q (Rn) coincides with f on U

and u ∈ Hr+k
q (Rn) then by Theorem 2.6.1 we have that ψf + [p(x,D), ψ](u) = ψg + [p(x,D), ψ](u) ∈

Hs
q (Rn) + Hr+k−m+1

q (Rn) ⊂ H
min{s,r+k−m+1}
q (Rn). Then, if we apply Theorem 2.6.3 for v then

v ∈ H
min{s+m,r+k+1}
q (Rn). Hence, the statement is valid for k + 1 and, by induction, we conclude the

claim. Finally, for some k we have that min{s+m, r + k} = s+m.

Remark 2.6.2. The previous facts can be used to obtain the analogous results on manifolds using a
partition of unity and an atlas.

There are many more general symbol classes. Below, we show two of them, which we need for this
work.

Definition 2.6.4. Let µ, d ∈ R. The space of symbols of order µ and anisotropy d,

Sµ,d(Rmy × Rnη × Λ),

consists of all functions a ∈ C∞(Rm × Rn × Λ), which fulfill the estimates

|∂βy ∂αη ∂
γ
λa(y, η, λ)| ≤ Cαβγ(1 + |η|2 + |λ|

2
d )

µ−|α|−d|γ|
2 ,

for all multi-indices α ∈ Nn0 , β ∈ Nm0 and γ ∈ N2
0, where Λ denotes a complex sector in C.

Definition 2.6.5. Let γ, µ ∈ R. The space MSµ(R+ × Rn × Γn+1
2

−γ × Rn) consists of all functions

a ∈ C∞(R+ × Rn × Γn+1
2

−γ × Rn) which satisfy the estimates

|∂lτ (x∂x)k∂αξ ∂βy a(x, y,
n+ 1

2
− γ + iτ, ξ)| ≤ Cklαβ(1 + τ2 + |ξ|2)

−µ−l−|α|
2

for all l, k ∈ N0 and α, β ∈ Nn0 , where Γσ = {z ∈ C : Re(z) = σ}.
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Chapter 3

Lp Theory

In this chapter we study parabolic equations on a conic manifold. In order to do this, we first define
manifolds with conical singularities (see definition below). Then the important function spaces for the
applications are studied. We will use the theory presented in the following chapter.

3.1 Conic Manifolds

In our work, a conic manifold is defined as a pair B = (B, g), where:

1) B is a smooth (n+ 1) dimensional, compact manifold with boundary ∂B.

2) g is a Riemannian metric on B\∂B.

3) In some collar neighborhood of ∂B, [0, 1)× ∂B,

g = dx2 + x2h(x),

where h(x), with x ∈ [0, 1) is a family of Riemannian metrics on ∂B that is smooth and does not
degenerate in x = 0.

B

[0, 1)× ∂B

The set B \ ∂B with the metric g is also denoted by B◦.

The particular metric structure of these manifolds appears frequently. For instance, consider the
following easy example.
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Example 4. Consider the cone given by

{(x, y, z) ∈ R3 : x2 + y2 = z2 sin2 θ, z ≥ 0},

where θ is fixed.

X

Y

Z

θ(x, y, z)

Let us consider the vector (x, y, z) with size r, θ the angle between Z-axis and the vector (x, y, z)
and ϕ the angle between X-axis and the projection of the vector (x, y, z) on the plane XY . Hence,
we have the following relations:

x2 + y2 + z2 = r2,

sin θ =

√
x2+y2

r ,

cos θ = z
r ,

cosϕ = x√
x2+y2

,

sinϕ = y√
x2+y2

.

We note that if G(r, ϕ) = (x(r, ϕ), y(r, ϕ), z(r, ϕ)) represents the parametrization of the cone, then

g =

〈
∂G

∂r
,
∂G

∂r

〉
dr2 +

〈
∂G

∂r
,
∂G

∂ϕ

〉
drdϕ+

〈
∂G

∂ϕ
,
∂G

∂r

〉
dϕdr +

〈
∂G

∂ϕ
,
∂G

∂ϕ

〉
dϕ2.

From our relations above, we have that x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ. Moreover,
we have

dx = sin θ(dr cosϕ− r sinϕdϕ), dy = sin θ(dr sinϕ+ r cosϕdϕ), dz = dr cos θ.

Finally, we get that the metric on the cone is given by the relation

g = dx2 + dy2 + dz2 = dr2 + r2 sin2 θdϕ2,
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and we can see that ⟨∂G∂r ,
∂G
∂r ⟩ = 1, ⟨∂G∂r ,

∂G
∂ϕ ⟩ = 0 = ⟨∂G∂ϕ ,

∂G
∂r ⟩ and ⟨∂G∂ϕ ,

∂G
∂ϕ ⟩ = r2 sin2 θ.

We could associate a cone to a noncompact conic manifold. In this case, the conic manifold
would be B = [0, 1) × S1, where S1 ⊂ R2 is the unit circle. Here, ∂B is {0} × S1 and the metric is
g = dr2 + r2 sin2 θdϕ2, where r ∈ [0,∞) and ϕ ∈ S1. The family of metrics on S1 is h(r) = sin2 θdϕ2.
Note that the conical tip of the cone is associate to ∂B.

Definition 3.1.1. Let B = (B, g) be a conic manifold, s ∈ N0, γ ∈ R and 1 < p < ∞. Then Hs,γ
p (B)

denotes the space of all distributions u ∈ Hs
p,loc(B◦) such that

x
n+1
2

−γ(x∂x)
k∂αy (ωu)(x, y) ∈ Lp

(
[0, 1)× ∂B,

√
det[h(x)]

dx

x
dy

)
∀k ∈ N0, ∀α ∈ Nn0 : k + |α| ≤ s

for some cutoff function ω ∈ C∞([0, 1)). Here y belongs to a local chart of ∂B and x ∈ [0, 1). The
space [0, 1) × ∂B is identified with a collar neighborhood of B. Moreover, the definition of Hs,γ

p (B) is
independent of ω.

Here, ω(x) =


1 if x is close to 0,

0 if |x| ≥ 1− ϵ, ϵ ∈ (0, 1).

1

1

cutoff function ω(x)

To extend the definition for s ∈ R and γ ∈ R, we consider

Mγ : C∞
c (R+ × Rn) → C∞

c (Rn+1)

defined by

Mγu(x, y) = e(γ−
n+1
2

)xu(e−x, y).

Furthermore, we take a covering ki : Ui ⊂ ∂B → Rn with i = 1, . . . , N and N ∈ N\{0} of ∂B
by coordinate charts and let {ϕi}i=1...,N be a subordinated partition of unity. For any s ∈ R and
p ∈ (1,∞), Hs,γ

p (B) is the space of all distributions u on Bo such that

||u||Hs,γ
p (B) =

N∑
i=1

||Mγ(1⊗ ki)∗(ωϕiu)||Hs
p(Rn+1) + ||(1− ω)u||Hs

p(B)

is defined and finite, where ∗ refers to the push-forward of distributions. The space Hs,γ
p (B) is called

Mellin-Sobolev space and is independent of the choice of the cutoff function, the covering {ki}i=1,...,N
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and the partition of unity {ϕi}i=1,...,N . From now on, we will not use the term
√

det[h(x)] because
our neighborhood is compact, so those terms are bounded by above and below. Hence the norms are
equivalent.
In the particular case when s = 0, we have

H0,γ
p (B) =

{
u ∈ Lp,loc(B◦) : x

n+1
2

−γ(ωu)(x, y) ∈ Lp

(
[0, 1)× ∂B, dx

x
dy

)}
.

Note that

x
n+1
2

−γ(ωu)(x, y) ∈ Lp

(
[0, 1)× ∂B, dx

x
dy

)
↔
∫
∂B

∫ 1

0
|x

n+1
2

−γ(ωu)(x, y)|pdx
x
dy <∞.

The norm of H0,γ
p (B) is given by

||u||H0,γ
p (B) =

N∑
i=1

||Mγ(1⊗ ki)∗(ωϕiu)||Lp(Rn+1) + ||(1− ω)u||Lp(B).

For the above definitions, we have followed [6] where we can find more information. In particular,
using the measure induced by g we have

L2(B) = H0,0
2 (B) and Lp(B) = H0,γp

p (B)

with γp = (n+ 1)(12 − 1
p).

Remark 3.1.1. For clarity we remark that the push forward is evaluate as below:

Mγ ((1⊗ ki)∗(ωϕiu)(x, y)) =Mγ(ωϕi(u(1⊗ ki)(x, y)))

=Mγ(ωϕi(k
−1
i (y))u(x, k−1

i (y)))

= e(γ−
n+1
2

)xω(e−x)ϕi(ki(y))u(e
−x, k−1

i (y)).

We collect some important properties of Mellin-Sobolev spaces that we will use later. Their proof
can be found in [19]. For 1 < p <∞, we have that:

i) If q ≥ p, s ≥ t+ (n+ 1)(1p −
1
q ) and γ1 ≥ γ2, then Hs,γ1

p (B) ↪→ Ht,γ2
q (B).

ii) If q ≤ p, s ≥ t ≥ 0 and γ1 > γ2, then Hs,γ1
p (B) ↪→ Ht,γ2

q (B).

iii) (Green’s identity) If w and v belong to H1,1
2 (B) ⊕ Cω and ∆v ∈ H0,γ

2 (B) for some γ > −1.
Then, ∫

B
⟨∇w,∇v⟩gdµg = −

∫
B
w∆vdµg.

Where Cω is a finite dimensional space of functions that are locally constants close to singularities.
They are of the form

∑M
i=1 ciωi, where ci ∈ C, M is the number of connect components of ∂B and

ωi is the restriction of ω to each of those connect components. Recall that ω : [0, 1) × ∂B → R is
the cut off function described before. In particular, when we work with only one singularity, that is,
∂B is connected, then we denote this space as C. Besides, ⟨·, ·⟩g and dµg denote, respectively, the
Riemannian scalar product and the Riemannian measure with respect to the metric g. The gradient
associate to the metric g is denoted by ∇.
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Remark 3.1.2. If γ < n+1
2 − 1 then C ↪→ H1,1+γ

p (B). In fact, if u is a constant function different

from 0, then it belongs to H1,1+γ
p (B) if and only if∫

∂B

∫ 1

0
|x

n+1
2

−γ−1|pdx
x
dy =

∫
∂B

∫ 1

0
x(

n+1
2

−γ−1)p−1dxdy <∞,

and this happens if, and only if, n+1
2 − γ − 1 > 0. Hence, those values of γ imply H1,1+γ

p (B) ⊕ C =

H1,1+γ
p (B), for all p ∈ (1,∞).

The following important result will be needed later.

Theorem 3.1.1. Let B be a conic manifold of dimension n + 1. If s > n+1
p and γ > n+1

2 then

Hs,γ
p (B) ⊂ C(B). Moreover, |u(x, y)| ≤ Cxγ−

n+1
2 .

Proof. By the Collar Theorem (see Theorem 3.42. [15]), we can identify the neighborhood of ∂B
with [0, 1)× ∂B and let

ω : B → [0, 1],

be the scalar C∞ function such that ω = 1 on an open set that contains ∂B and 0 outside of the collar
neighborhood. We recall the function

Mγ : C∞
c (Rn+1

+ ) → C∞
c (Rn+1),

where Rn+1
+ = R+ × Rn, defined by

Mγu(x, y) = e(γ−
n+1
2

)xu(e−x, y).

The norm is given by

||u||Hs,γ
p (B) =

N∑
i=1

||Mγ(1⊗ ki)∗(ωϕiu)||Hs
p(Rn+1) + ||(1− ω)u||Hs

p(B).

Note that, (1− ω)u is smooth with compact support, and by the Sobolev Embedding Theorem, (see
Proposition 1.2.1, [6]) if s > n+1

p , then Hs
p(Rn+1) ⊂ BUC(Rn+1). The only problem is the factor ωu.

However, by the push-forward for distributions, we have

|Mγ [(1⊗ ki)∗(ωϕiu)(x, y)] | = |Mγ(ωϕi(u(1⊗ ki)(x, y)))|
= |Mγ(ωϕiu(x, k

−1
i (y)))|

= |e(γ−
n+1
2

)xω(e−x)ϕi(k
−1
i (y))u(e−x, k−1

i (y))| < C.

Therefore, Mγ [(1⊗ ki)∗(ωϕiu)(x, y)] is continuous and bounded. If x is big enough then e−x is small

(< 1). This implies that ω(e−x) = 1. So, inserting the term e(γ−
n+1
2

)x on the right side, we obtain

|ϕi(k−1
i (y))u(e−x, k−1

i (y))| < Ce(γ−
n+1
2

)(−x).

In this case, when (x, y) ∈ [0, 1)× ∂B, the above inequality implies

|ϕi(k−1
i (y))u(x, k−1

i (y))| < Cxγ−
n+1
2 .

Finally, if x is positive, we can see that

lim
x→0+

xγ−
n+1
2 = 0 when γ − n+ 1

2
> 0.

(
or γ >

n+ 1

2

)
That is, limx→0 u(x, y) = 0, or, equivalently, u is continuous on B.

The natural differential operators acting on the above spaces are known as conical operators.
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Definition 3.1.2. A cone differential operator of order µ ∈ N0 is an µ-th order differential operator
A with smooth coefficients in the interior Bo of B such that, when it is restricted to the collar part
[0, 1)× ∂B, it admits the following local form

A = x−µ
µ∑
k=0

ak(x)(−x∂x)k, where ak ∈ C∞([0, 1);Diff µ−k(∂B)).

We note that, locally, ak(·) =
∑

|α|≤µ−k akα(·, y)∂αy . Hence, A = x−µ
µ∑
k=0

∑
|α|≤µ−k

akα(x, y)(−x∂x)k∂αy ,

with x ∈ [0, 1) and y in a local chart of ∂B. These operators are also known as Operators of Fuchs
type.

Example 5. Let us see how is the Laplace-Beltrami on a collar neighborhood [0, 1)×∂B with a metric
given by

g = dx2 + x2h(x),

where x ∈ [0, 1) → h(x) is a family of Riemannian metrics. We know that (gij) =

(
1 0
0 x2(hij)

)
with

inverse matrix given by (gij) =

(
1 0
0 x−2(hij)

)
.

We denoted G = |det(gij)|
1
2 = | detx2(hij)|

1
2 = xnH, where H := |det(hij)|

1
2 .

Now, let k, j = 0, 1, . . . , n, where k = j = 0 is reference for the variable x0 = x, and xi = yi if
i ≥ 1. Then, we have

∆ = G−1
n∑
k=0

∂

∂xk

{
n∑
i=0

gikG
∂

∂xi

}

= G−1 ∂

∂x
(G

∂

∂x
) +G−1

n∑
k=1

∂

∂xk

{
n∑
i=1

gikG
∂

∂xi

}

= x−nH−1 ∂

∂x
(xnH

∂

∂x
) + x−nH−1

n∑
k=1

∂

∂xk

{
n∑
i=1

x−2hikxnH
∂

∂xi

}

= x−nH−1

(
nxn−1H

∂

∂x
+ xn

(
∂H

∂x

∂

∂x
+H

∂2

∂x2

))
+ x−2H−1

n∑
k=1

∂

∂xk

{
n∑
i=1

hikH
∂

∂xi

}

= nx−1 ∂

∂x
+H−1∂H

∂x

∂

∂x
+

∂2

∂x2
+ x−2H−1

n∑
k=1

∂

∂xk

{
n∑
i=1

hikH
∂

∂xi

}
= ⋆.

(3.1)

Note that 1
x2
(x ∂

∂x)(x
∂
∂x) =

1
x
∂
∂x + ∂2

∂x2
or, equivalently, ∂2

∂x2
= 1

x2
(x ∂

∂x)
2 − 1

x
∂
∂x . Besides,

∆h = H−1
n∑
k=0

∂

∂xk

{
n∑
i=0

hikH
∂

∂xi

}
.
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Therefore,

⋆ = nx−1 ∂

∂x
+H−1∂H

∂x

∂

∂x
+

1

x2
(x

∂

∂x
)2 − 1

x

∂

∂x
+ x−2∆h

=
1

x2

((
x
∂

∂x

)2

+ (n− 1)

(
x
∂

∂x

)
+H−1x

∂H

∂x

(
x
∂

∂x

)
+∆h

)

=
1

x2

((
x
∂

∂x

)2

+

[
(n− 1) +H−1x

∂H

∂x

](
x
∂

∂x

)
+∆h

)
.

(3.2)

There exists more advanced material with examples of Riemannian metrics and conical operators,
but we believe that the above examples are enough for our presentation.

3.2 Unbounded operators and closed extensions

This short section prepares us for applications using the Mellin-Sobolev spaces studied before. We
present some considerations about the domain of the Laplacian operator as an example of a sectorial
operator and we give some results without proofs for a general conic operator A. For the rest of this
chapter, we will consider only the case when ∂B is connected.
Consider the operator

∆ : H2,2+γ
p (B)⊕ C → H0,γ

p (B),

where C is the space of all constant functions in C∞(B◦).
For the rest of our work, we will always assume that γ is such that

n− 3

2
< γ < min

−1 +

√(
n− 1

2

)2

− λ1,
n+ 1

2

, (3.3)

where λ1 is the greatest non-zero eigenvalue of the boundary Laplacian ∆h(0). We recall that h(x) with
x ∈ [0, 1) is a family of Riemannian metrics on ∂B that is smooth and does not degenerate up to x = 0.

Remark 3.2.1. It is important to notice that when B is a compact manifold without boundary and
without a conical singularity, then u ∈ Lp(B) and ∆u ∈ Lp(B) imply that u ∈ H2

p (B), by elliptic
regularity. Here, 1 < p <∞. In fact, by Theorem 2.6.3, the equation

∆u = f

with u, f ∈ H0
p (B) = Lp(B) has local principal symbol

∑
i,j gijξ

iξj ∈ S2(Rn+1×Rn+1) that corresponds

to the laplacian operator. Hence, the solution u belongs to H0+2
p (B) = H2

p (B). When we have a conical

point, then u ∈ H0,γ
p (B) and ∆u ∈ H0,γ

p (B) do not imply that u ∈ H2,2+γ
p (B). In fact, for almost every

γ, by a result for M. Lesch ([17]), we have that u ∈ H2,2+γ
p (B) ⊕ E, where E is a finite dimensional

space of functions of the form ω(x)x−α lnh(x)v(y), v ∈ C∞(∂B), α ∈ [n−3
2 − γ, n+1

2 − γ) and h ∈ N0.

If we choose γ as in (3.3), then ∆ : H2,2+γ
p (B)⊕ C → H0,γ

p (B) is such that c−∆ is sectorial with
angle 0 for every c > 0. Moreover,

[H0,γ
p (B),H2,2+γ

p (B)⊕ C]α = D((c−∆)α),
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see [27].

Now we give some facts about closed extensions of conic operators. We follow [8] due to its
importance for our work. We remark that cone operators have many closed extensions but the resolvent
will have good properties only on few of them, see for example [17]. An important result is that for a
conic operator A of order µ, we have that

A : Hs+µ,γ+µ
p (B) → Hs,γ

p (B)

is continuous for any s and p, as we can see in Lemma 3.2, [19]. Next, we define three symbols for a
Fuchs differential operator that are important for our work.

Definition 3.2.1. Let A = x−µ
µ∑
k=0

∑
|α|≤µ−k

akα(x, y)(−x∂x)k∂αy be a Fuchs type operator, with x ∈

[0, 1) and y ∈ ∂B. Then,

i) The homogeneous principal symbol is σµψ(A)(x, y, η, ξ) := x−µ
∑

k+|α|=µ akα(x, y)(−ix)kηkξα for

(η, ξ) ∈ Rn+1, (η, ξ) ̸= (0, 0) and x > 0, in T ∗(B◦ \ {0}).

ii) The rescaled symbol is σ̃µψ(A)(y, η, ξ) :=
∑

k+|α|=µ akα(0, y)(−iη)kξα, for (η, ξ) ̸= (0, 0), in
T ∗(∂B × R \ {0}).

iii) The conormal symbol is σµM (A)(z) :=
∑

k+|α|≤µ

akα(0, y)∂
α
y z

k with z ∈ C.

Where T ∗ denote the cotangent bundle space.

Remark 3.2.2. For all s ∈ R the conormal symbol defines a family of continuous operators

σµM (A)(z) : Hs
p(∂B) → Hs−µ

p (∂B).

Definition 3.2.2. A is called elliptic with respect to γ + µ if

i) The principal symbol of A on B◦ is invertible (see Remark 3.2.3). In particular the homogeneous
principal symbol is invertible.

ii) The conormal symbol is an isomorphism for all z in the line Re(z) = n+1
2 − γ − µ.

Finally, if we consider A as the unbounded operator in H0,γ
p (B) with domain C∞

c (B◦), then there
exists a countable set C ⊂ C without accumulation points such that when γ ∈ C, then its closure is
given by

D(Amin) = Hµ,γ+µ
p (B),

and
D(Amax) =

{
u ∈ H0,γ

p (B) : Au ∈ H0,γ
p (B)

}
= D(Amin)⊕ E ,

where E is a finite dimensional space of smooth functions of the form ω(x)xk lnl(x)v(y) that belongs
to H0,γ

p (B), where v ∈ C∞(∂B).

Example 6. Let us recall the operator given in Example 5.

∆ =
1

x2

((
x
∂

∂x

)2

+

[
(n− 1) +H−1x

∂H

∂x

](
x
∂

∂x

)
+∆h

)
.
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Then,

σµψ(∆) =
1

x2

(
(−ix)2η2 − |ξ|2h(0)

)
=

1

x2

(
−x2η2 − |ξ|2h(0)

)
.

σ̃µψ(∆) = −η2 − |ξ|2h(0),

and
σµM (∆)(z) = z2 + (n− 1)z +∆h

where z ∈ C define the homogeneous principal, rescaled and conormal symbols respectively for the
Laplace-Beltrami operator ∆.

Remark 3.2.3. We recall the definition of ellipticity on an open set Ω ⊂ Rn and on a manifold
without conical point B. Let Ω ⊂ Rn and m ∈ N0. Given an operator A =

∑
|α|≤m aα(x)∂

α defined
over Ω, we say that A is an elliptic operator if for every x ∈ Ω and every non zero ξ ∈ Rn, we have∑

|α|=m aα(x)ξ
α ̸= 0. For a conic manifold B we say that A is elliptic over B if A is locally elliptic.

That means that for any local chart (U, ϕ) such that x ∈ U , we have∑
|α|=m

aα(ϕ
−1(x))ξα ̸= 0,

where locally,
∑

|α|≤m aα(ϕ
−1(x))∂α(u ◦ ϕ−1(x)) is the form of A.

3.3 Reaction-Diffusion equation on conic manifolds

In this section, we work following the ideas of the book Global Attractors in Abstract Parabolic
Problems by W. Cholewa & Tomasz Dlokto. In particular, our considerations are based on Chapter
6 of [6].

Let B be a conic manifold. We consider the following equation.

∂u

∂t
= ∆Bu+ u− uq on B◦,

u(0, x) = u0(x) x ∈ B◦.
(3.4)

Theorem 3.3.1. If (3.3) holds and u0 ∈ Xα, 2α+ γ ≥ n+1
2 , 2α > n+1

p . Then, there exist an unique

global solution u of (3.4). Moreover, u ∈ C1([0,∞),H0,γ(B)) ∩ C1((0,∞),H2,2+γ(B)⊕ C).

Proof. We use the following interpolation result that can be found in Lemma 4.5 ii) in [19]. For

α ∈ [0, 1] such that γ + 2α− 1 /∈
{
∓
√

(n−1
2 )2 − λj : j ∈ N

}
then

Xα := D((I −∆)α) = [H0,γ
p (B),H2,2+γ

p (B)⊕ C]α =

{
H2α,2α+γ
p (B)⊕ C if γ + 2α ≥ n+1

2 ,

H2α,2α+γ
p (B) if γ + 2α < n+1

2 .

Suppose that 2α+ γ ≥ n+1
2 and 2α > n+1

p . Then

Xα = [H0,γ
p (B),H2,2+γ

p (B)⊕ C]α = H2α,2α+γ
p (B)⊕ C ⊂ L∞(B).
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By Theorem 3.1.1, let us choose 2α > n+1
p , γ + 2α ≥ n+1

2 and consider

F : H2α,2α+γ
p (B)⊕ C → H0,γ

p (B)

defined by
F (ϕ) = ϕ− ϕq, ∀ϕ ∈ H2α,2α+γ

p (B)⊕ C.

We can show that F is Lipschitz continuous on bounded subsets of Xα = H2α,2α+γ
p (B)⊕C. In effect:

If ϕ̃ ∈ H2α,2α+γ
p (B)⊕ C, then ϕ̃ = ϕ+ c with ϕ ∈ H2α,2α+γ

p (B) and c ∈ C, with norm equal to

||ϕ̃||H2α,2α+γ
p (B)⊕C = ||ϕ||H2α,2α+γ

p (B) + |c|.

Taking this into account, we consider two functions ϕ̃, ψ̃ ∈ B where B ⊂ Xα is a bounded set, with
ϕ̃ = ϕ+c1, ψ̃ = ψ+c2, where ϕ, ψ ∈ H2α,2α+γ(B) and c1, c2 ∈ C. Hence, with 2α > n+1

p , γ+2α > n+1
2

and recalling that Xα ↪→ L∞(B), we have

||F (ϕ̃)− F (ψ̃)||H0,γ
p (B)

= ||ϕ̃− ϕ̃q − (ψ̃ − ψ̃q)||H0,γ
p (B)

= ||ϕ̃− ψ̃ − (ϕ̃q − ψ̃q)||H0,γ
p (B)

≤ ||ϕ̃− ψ̃||H0,γ
p (B) + ||ϕ̃q − ψ̃q||H0,γ

p (B)

= ||ϕ̃− ψ̃||H0,γ
p (B) + ||(ϕ̃− ψ̃)(ϕ̃q−1 + . . .+ ψ̃q−1)||H0,γ

p (B)

≤ ||ϕ̃− ψ̃||H0,γ
p (B) + ||ϕ̃− ψ̃||H0,γ

p (B)||ϕ̃
q−1 + . . .+ ψ̃q−1||L∞(B)

≤ ||ϕ̃− ψ̃||H0,γ
p (B) + ||ϕ̃− ψ̃||H0,γ

p (B)

(
qC sup

τ∈B
||τ ||q−1

Xα

)
=

(
1 + qC sup

τ∈B
||τ ||q−1

Xα

)
||ϕ̃− ψ̃||H0,γ

p (B)

=

(
1 + qC sup

τ∈B
||τ ||q−1

Xα

)
||ϕ+ c1 − (ψ + c2)||H0,γ

p (B)

=

(
1 + qC sup

τ∈B
||τ ||q−1

Xα

)
||ϕ− ψ + (c1 − c2)||H0,γ

p (B)

≤
(
1 + qC sup

τ∈B
||τ ||q−1

Xα

)(
||ϕ− ψ||H0,γ

p (B) + |c1 − c2|
)

≤
(
1 + qC sup

τ∈B
||τ ||q−1

Xα

)(
||ϕ− ψ||H2α,γ+2α

p (B) + |c1 − c2|
)
:= (⋆)

= C̃||ϕ̃− ψ̃||H2α,γ+2α
p (B)⊕C,

where, in (⋆) we have used that H2α,γ+2α
p (B) ↪→ H0,γ

p (B), (see Lemma 3.2, [19]). Finally, we have
proved that F is locally Lipschitz on bounded subsets and this implies the existence and uniqueness
of a local solution, see Section 2.4.

In order to show global solution of (3.4), we need to use Green’s identity on Mellin-Sobolev Spaces
(see Remark 9 and Lemma 4.3 in [19])∫

B
⟨∇u,∇v⟩gdµg = −

∫
B
u∆vdµg
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with u, v ∈ H1,1+γ
2 (B)⊕C, ∆v ∈ H0,γ

2 (B) and γ > −1. In our case, we use thatH1,1+γ
p (B) ↪→ H1,1+γ

2 (B)
and H0,γ

p (B) ↪→ H0,γ
2 (B) (see Remark 9 and Lemma 3.2 in [19]). So, in order to apply the Green’s

identity it is enough consider γ > −1. In this case, the identity holds for all u, v ∈ H1,1+γ
p (B)⊕C such

that ∆v ∈ H0,γ
p (B).

We are considering u ∈ H1,1+γ
p (B) ⊕ C with ∆Bu ∈ H0,γ

p (B) with γ > −1. Hence, multiplying by
u2m−1 and integrating to the equation (3.4), we have the following∫

B
u2m−1ut =

∫
B
u2m−1(∆Bu+ u− uq)

=

∫
B
u2m−1∆Bu+

∫
B
u2m−1(u− uq)

= −
∫
B
∇Bu

2m−1∇Bu+

∫
B
u2m −

∫
B
u2m+q−1

= −(2m− 1)

∫
B
u2m−2|∇Bu|2 +

∫
B
u2m −

∫
B
u2m+q−1

≤
∫
B
u2m −

∫
B
u2m+q−1 · 1

≤ −|B|−
q−1
2m

(∫
B
u2m

) 2m+q−1
2m

+

∫
B
u2m,

where in last inequality we used Hölder inequality for integrals with p′ = 2m+q−1
2m and q′ = 1 − p′.

Equivalently, we have proved that

d

dt
y(t) ≤ −2m|B|−

q−1
2m (y(t))

2m+q−1
2m + 2my(t),

where y(t) =
∫
B u

2m(t, u0)dx. By Bernoulli inequality (Lemma 1.2.4, [6]), we have

y(t) ≤ max{y(0), |B|},

lim
t→∞

sup y(t) ≤ |B|.

Taking m → ∞, we conclude that ||u||L∞ ≤ max{||u0||L∞ , 1} ≤ max{C||u0||Xα , 1} ≤ C1c(||u0||Xα),
where c := max{||u0||Xα , 1} is a locally bounded function and C1 = max{C, 1}.

Hence,

||F (u(t, u0))||pH0,γ
p (B)

= || − uq + u||p
H0,γ

p (B)

= ||1(−uq + u)||p
H0,γ

p (B)

=

∫
B◦\[0,1)×∂B

| − uq + u|pdz +
∫
∂B

∫ 1

0
|x

n+1
2

−γω(x)(−uq + u)|pdx
x
dy

≤
∫
B◦\[0,1)×∂B

| − uq + u|pdz +
∫
∂B

∫ 1

0
| − uq + u|px(

n+1
2

−γ)p−1dxdy

≤ |B◦ \ [0, 1)× ∂B||| − uq + u||pL∞(B◦\[0,1)×∂B) +

||x(
n+1
2

−γ)p−1||L1([0,1)×∂B)|| − uq + u||pL∞([0,1)×∂B)

≤ C1|| − uq + u||pL∞(B◦\[0,1)×∂B) + C2|| − uq + u||pL∞([0,1)×∂B)

≤ C
(
||u||qL∞(B) + ||u||L∞(B)

)p
.
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Next, if we define g : [0,∞) → [0,∞) by g(t) = C(tq + t)p then

||F (u(t, u0))||H0,γ
p (B) ≤ g(||u(t, u0)||L∞(B))

where g is a non-decreasing function and we conclude by the Theorem 2.4.1 that there exists global
solution for (3.4). Note that we used the space Y = L∞(B) such that Xα ⊂ Y .
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Chapter 4

Sectorial operators on BUC generated
by Λ - Elliptic Operators

In this chapter, we present the concept Λ- Ellipticity (see [12]) which we will use for our application.
Here we consider a sector Λa(θ) := Λ(θ) with a = 0 in the complex plane as we did in Section 2.1 and
an operator A : D(A) ⊂ X → X for some Banach space X such that that Λ(θ) \ {0} is contained
in the resolvent set of A, that ||λ(λ − A)||L(X) is uniformly bounded in 0 ̸= λ ∈ Λ(θ), and that A is
injective with dense range, σ(A) and ρ(A) represent the spectrum and the resolvent of the operator
A respectively. From now on, we fix the angle θ and only use Λ.

4.1 Λ - Ellipticity and continuity of pseudos with param-

eters in BUC

Definition 4.1.1. A symbol a ∈ Sm1,0(Rn×Rn) with m > 0 is called Λ-elliptic if there exists constants
0 < m, C0 ≥ 1, and R ≥ 0 such that:

(H1) For all x ∈ Rn and all |ξ| ≥ R we have a(x, ξ) ∈ Ωξ := {z ∈ C : 1
C0

⟨ξ⟩m < |z| < C0⟨ξ⟩m, z /∈
Λ}.

(H2) Given α, β ∈ Nn0 , there exists a C ≥ 0 such that for all x ∈ Rn, |ξ| ≥ R, and λ ∈ Λ,

|∂αξ ∂βxa(x, ξ)(λ− a(x, ξ))−1| ≤ C⟨ξ⟩−|α|.

4.2 Estimates in BUC

Here and below for t ∈ R, ⌊t⌋ denotes the largest integer smaller or equal to t.

Definition 4.2.1. For s ∈ R+\N, BUCs denotes all the functions f : Rn → C such that its derivatives
smaller or equal to ⌊s⌋ are bounded and uniformly continuous, and whose derivatives of order ⌊s⌋ are
uniformly (s− ⌊s⌋)-Hölder continuous. The norm is given by two cases. For s ∈ (0, 1), then

||u||BUCs := ||u||L∞ + sup
x ̸=y

|u(x)− u(y)|
|x− y|s

.
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And, for s > 1 then there exists s′ ∈ (0, 1) and k ∈ N0 such that s = k + s′. Then,

||u||BUCs :=
∑
|α|≤k

||Dαu||L∞ +
∑
|α|=k

sup
x ̸=y

|Dαu(x)−Dαu(y)|
|x− y|s

.

For s ∈ N we have a similar definition for BUCs.

Definition 4.2.2. Let s ∈ N0. We define

BUCs = {f : Rn → C : f and ∂αf are uniformly continuous and bounded for all |α| ≤ s}

with norm given by

||f ||BUCs =
∑
|α|≤s

||∂αf ||L∞ .

First we present some important results due to Amann (see [2]). Those results were the inspiration
for the results of Section 4.3 that will allow us to prove almost sectoriality on C0,γ(B) spaces. Let
m ∈ N0 and aα : Rn → C be bounded C∞ functions with bounded derivatives of any order for all α
multi index in Nn0 with |α| ≤ m, that is aα ∈ BUC∞(Rn) =

⋂
s≥0BUC

s(Rn). Moreover,

A =
∑

|α|≤m

aα(x)D
α

denotes a linear differential operator on Rn with values in C. Its symbol and principal symbol are
denoted by a(x, ξ) and σA. They are given by∑

|α|≤m

aα(x)ξ
α and

∑
|α|=m

aα(x)ξ
α,

respectively.

Definition 4.2.3. The operator µm+A is said elliptic by parameters if there exist C,R > 0 such that

|a(x, ξ, µ)| ≥ C⟨ξ, µ⟩m

for all ||(ξ, µ)|| ≥ R and x ∈ Rn, where ⟨ξ, µ⟩m = (1 + |ξ|2 + |µ|2)
m
2 and a(x, ξ, µ) = µm + a(x, ξ).

We defined the sector Λ0(ϕ) in Section 2.1. We will also use the complement of this set denoted
by Λc(ϕ) := Λc.

Definition 4.2.4. Let κ ≥ 1 and ϕ ∈ [0, π). The operator A is (κ, ϕ) elliptic if −σA(x, ξ) /∈ Λc for
all x ∈ Rn and ξ ̸= 0 and

|(λ+ σA)−1(x, ξ)| ≤ κ

1 + |λ|
for λ ∈ Λc, (x, ξ) ∈ Rn×Rn, |ξ| = 1. The operator A is ϕ-elliptic if it is (κ, ϕ) elliptic for some κ ≥ 1
and it is normally elliptic if it is π

2 -elliptic.

Lemma 4.2.1. If the operator µm +A is elliptic by parameters then A is (κ, ϕ)-elliptic.
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Proof. Let us suppose that A is elliptic by parameters. Then, there exists C,R > 0 such that

|a(x, ξ, µ)| ≥ ⟨ξ, µ⟩m

for ||(ξ, µ)|| ≥ R. Now, we see that

C⟨ξ, µ⟩m ≤ |µm+ a(x, ξ)| = |µm+
∑

|α|<m

aα(x)ξ
α+

∑
|α|=m

aα(x)ξ
α| = |µm+ σA+

∑
|α|<m

aα(x)ξ
α|. (4.1)

Therefore,

|µm + σA| ≥ C⟨ξ, µ⟩m − |
∑

|α|<m

aα(x)ξ
α|

≥ C⟨ξ, µ⟩m − C̃⟨ξ, µ⟩m−1

= ⟨ξ, µ⟩m
(
C − C̃⟨ξ, µ⟩−1

)
≥ C2⟨ξ, µ⟩m ≥ R,

(4.2)

where R is a sufficiently large constant. Therefore, in particular with |ξ| = 1 in Rn we have that
|µm + σA| ≥ C2⟨ξ, µ⟩m which implies

|(µm + σA)−1| ≤ C2⟨ξ, µ⟩−m ≤ C3

1 + |µm|
for µ large.

Hence, if we take λ = µm, the homogeneity of µm + σA implies that

|(λ+ σA)−1| ≤ C2⟨ξ, µ⟩−m ≤ C3

1 + |λ|
,

which completes the proof.
We set an important result where we use the previous definitions and find a relation with sectorial

operators.

Theorem 4.2.2. Let m ∈ N0 and A =
∑

|α|≤m aα(x)D
α be an operator such that µm+A is an elliptic

operator with parameters. Then, there exists two operators K∞(µ), T∞(µ) ∈ L(BUC(Rn)) such thatµm +
∑

|α|=m

aα(x)D
α

K∞(µ) = Id+ T∞(µ)

with
||K∞(µ)||L(BUC) ≤ C|µ|−m

and
||T∞(µ)||L(BUC) ≤ C|µ|−r,

for some r > 0 with |η| ≥ η0 > 0 and η ∈ Λc. As a consequence, we have that for λ := µm

||(λ+A)−1||L(BUC) ≤
C

|λ|
.

for large λ. In particular, A is a sectorial operator, see Definition 2.1.2.

Proof. See Theorem 5.10 in [2].
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4.3 Estimates of parameter dependent symbols on BUC

In this section, we obtain new estimates for the norms of pseudodifferential operators that depend
on parameters acting on BUC(Rn) spaces. First, we present a result due to Amann. It will be used
in Theorem 4.3.1. Finally, we apply our results to prove that some elliptic operators define analytic
semigroups in BUC(Rn) spaces.

Definition 4.3.1. We say that k ∈ BUC(Rn, L1(Rn)) if k : Rn × Rn → C is a measurable function
such that

1) The function k is integrable in the second variable and supx∈Rn

∫
Rn |k(x, y)|dy <∞.

2) For each ε > 0, there is an δ > 0 such that if |x− x̃| < δ, then
∫
Rn |k(x, y)− k(x̃, y)|dy < ε.

The set of functions BUC(Rn, L1(Rn)) is a Banach space with norm

∥k∥BUC(L1) := sup
x∈Rn

∫
Rn

|k(x, y)|dy <∞.

Proposition 4.3.1. If k ∈ BUC(Rn, L1(Rn)), then we can define a continuous linear map K∞ :
BUC(Rn) → BUC(Rn) by the formula below:

K∞u(x) =

∫
Rn

k(x, x− y)u(y)dy.

Moreover, ∥K∞∥L(BUC(Rn)) ≤ ∥k∥BUC(L1).

Proof. Let us prove by steps:
Step 1: ∥K∞u(x)∥L∞(Rn) ≤ ∥k∥BUC(L1)∥u∥L∞(Rn).
To prove this, we note that

|K∞u(x)| ≤
∫
Rn

|k(x, x− y)||u(y)|dy ≤
(∫

Rn

|k(x, x− y)|dy
)
∥u∥L∞(Rn)

≤
(∫

Rn

|k(x, z)|dz
)
∥u∥L∞(Rn) ≤ ∥k∥BUC(L1)∥u∥L∞(Rn).

Step 2: K∞u is uniformly continuous.
We note that

|K∞u(x)−K∞u(x̃)| = |
∫
Rn

(k(x, x− y)u(y)− k(x̃, x̃− y)u(y))dy|

= |
∫
Rn

(k(x, y)u(x− y)− k(x̃, y)u(x̃− y)) dy|

= |
∫
Rn

(k(x, y)− k(x̃, y))u(x− y) + k(x̃, y)(u(x− y)− u(x̃− y))dy|

≤
∫
Rn

|k(x, y)− k(x̃, y)||u(x− y)|dy +
∫
Rn

|k(x̃, y)||u(x− y)− u(x̃− y)|dy

≤
∫
Rn

|k(x, y)− k(x̃, y)|dy∥u∥L∞(Rn) + ∥k∥BUC(L1) sup
y∈Rn

|u(x− y)− u(x̃− y)|.

The result now follows from the uniform continuity of k and u.
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Corollary 4.3.1. Let Λ ⊂ C be a sector of the complex plane and k : Rn×Rn×Λ → C be a measurable
function. If for each η ∈ Λ, the function k(η) : Rn×Rn → C defined by k(η)(x, y) = k(x, y, η) belongs
to BUC(Rn, L1(Rn)) and ∥k(η)∥BUC(L1) ≤ C⟨η⟩r for some r > 0, then the function K∞(η) defined by

K∞(η)u(x) =

∫
Rn

k(x, x− y, η)u(y)dy

belongs to L(BUC(Rn)) and ∥K∞(η)∥L(BUC) ≤ C⟨η⟩r.

Theorem 4.3.1. Let p : Rn × Rn × Λ → C be a C∞ function.
i. Case 1) If µ > 0 and |∂βx∂αξ p(x, ξ, η)| ≤ Cαβ⟨ξ, η⟩−µ−|α|, then there exists a measurable function

k : Rn × Rn × Λ → C such that

op(p(η))u(x) =

∫
Rn

k(x, x− y, η)u(y)dy,

where k(η) : Rn × Rn → C defined by k(η)(x, y) = k(x, y, η) belongs to BUC(Rn, L1(Rn)) and
∥k(η)∥BUC(L1) ≤ C⟨η⟩−µ. In particular, op(p) ∈ L(BUC) and ||op(p)||L(BUC) ≤ C⟨η⟩−µ.

ii. Case 2) If µ ≥ 2, |∂βxp(x, ξ, η)| ≤ Cαβ⟨ξ, η⟩−µ, ∀β ∈ Nn0 , and |∂βx∂αξ p(x, ξ, η)| ≤ Cαβ⟨ξ, η⟩−2µ⟨ξ⟩µ−|α|,
∀α, β ∈ Nn0 , α ̸= 0, then there exists a measurable function k : Rn × Rn × Λ → C such that

op(p(η))u(x) =

∫
Rn

k(x, x− y, η)u(y)dy,

where k(η) : Rn × Rn → C defined by k(η)(x, y) = k(x, y, η) belongs to BUC(Rn, L1(Rn)) and
∥k(η)∥BUC(L1) ≤ C⟨η⟩−µ. In particular, op(p) ∈ L(BUC) and ||op(p)||L(BUC) ≤ C⟨η⟩−µ.

iii. Case 3) If µ ≥ 2 and |∂βx∂αξ p(x, ξ, η)| ≤ Cαβ⟨ξ, η⟩−µ⟨ξ⟩−|α|, then there exists a measurable
function k : Rn × Rn × Λ → C such that

op(p(η))u(x) =

∫
Rn

k(x, x− y, η)u(y)dy,

where k(η) : Rn × Rn → C defined by k(η)(x, y) = k(x, y, η) belongs to BUC(Rn, L1(Rn)) and
∥k(η)∥BUC(L1) ≤ C⟨η⟩−µ+ε. In particular, op(p) ∈ L(BUC) and ||op(p)||L(BUC) ≤ C⟨η⟩−µ+ε.

For the proof, we fix a function φ0 ∈ C∞
c (Rn) such that 0 ≤ φ0 ≤ 1, φ0(ξ) = 1 for |ξ| ≤ 1,

and φ0(ξ) = 0 for |ξ| ≥ 2. We also define φj(ξ) = φ0(2
−jξ) − φ0(2

−j+1ξ), for j ≥ 1. We note
that suppφj ⊂ {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1}. Notice that there exist constants c, C > 0 such that,

inside the support of φj , we have that c2j ≤ ⟨ξ⟩ ≤ C2j . Moreover, limN→∞
∑N

j=0 φj(ξ) → 1 and

|Dγ
ξφj | ≤ 2−j|γ|.
Let us prove by steps. First notice that

op(p(η))u(x) =
1

(2π)n

∫
Rn

eiξ·xp(x, ξ, η)û(ξ)dξ.

Note that û = limN→∞
∑N

j=0 φj(⟨η⟩−1ξ)û(ξ) in S(Rn). Since op(p(η)) : S(Rn) → S(Rn) is contin-
uous, we conclude that

op(p(η))u(x) =

∞∑
j=0

1

(2π)n

∫
Rn

eiξ·xp(x, ξ, η)φj(⟨η⟩−1ξ)û(ξ)dξ

=
∞∑
j=0

∫
Rn

(
1

(2π)n

∫
Rn

eiξ·(x−y)p(x, ξ, η)φj(⟨η⟩−1ξ)dξ

)
u(y)dy

=

∞∑
j=0

∫
Rn

kj(x, x− y, η)u(y)dy,
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where

kj(x, z, η) =
1

(2π)n

∫
Rn

eiξ·zp(x, ξ, η)φj(⟨η⟩−1ξ)dξ.

Lemma 4.3.2. The function kj satisfies:
i. Case 1) We have, for all N ∈ N, that

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cβ|z|−N ⟨η⟩n−µ2j(−µ+n−N).

ii. Case 2) We have, for N ∈ N such that, N ≤ n+ 1 that

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cβ|z|−N ⟨η⟩n−µ2j(−µ+n−N).

iii. Case 3) We have, for some M ∈ (n, n+ 1) and ε > ε̃ > 0, that

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cβ|z|−M ⟨η⟩n−µ⟨η⟩ε2j(−µ−ϵ̃).

And for N = 0, we have

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cβ⟨η⟩n−µ2j(n−µ).

Proof. Note that, for pj(x, ξ, η) = p(x, ξ, η)φj(⟨η⟩−1ξ), we have

(2π)nzγ∂βxkj(x, ⟨η⟩−1z, η) = zγ∂βx

∫
Rn

eiξ·⟨η⟩
−1zpj(x, ξ, η)dξ

=

∫
Rn

zγeiξ·⟨η⟩
−1z∂βxpj(x, ξ, η)dξ =

∫
Rn

⟨η⟩|γ|Dγ
ξ (e

iξ·⟨η⟩−1z)∂βxpj(x, ξ, η)dξ

= ⟨η⟩|γ|
∫
Rn

eiξ·⟨η⟩
−1zDγ

ξ

(
∂βxpj(x, ξ, η)

)
dξ

= ⟨η⟩|γ|⟨η⟩−|γ2|
∑

γ1+γ2=γ

cγ1,γ2

∫
Rn

eiξ·⟨η⟩
−1z

× ∂βxD
γ1
ξ p(x, ξ, η)D

γ2
ξ φj(⟨η⟩

−1ξ)dξ

= ⟨η⟩|γ|−|γ2|+n
∑

γ1+γ2=γ

cγ1,γ2

∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ.

Now we note that
⟨⟨η⟩ξ, η⟩2 = 1 + ⟨η⟩2|ξ|2 + |η|2 = ⟨η⟩2⟨ξ⟩2.

For the first case, we need that∣∣∣∣∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ

∣∣∣∣ ≤ C⟨η⟩−|γ1|−µ2j(−µ+n−|γ|),

for all γ ∈ Nn0 .
For the second case, we need that∣∣∣∣∫

Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ

∣∣∣∣ ≤ C⟨η⟩−|γ1|−µ2j(−µ+n−|γ|),

for all |γ| ≤ n+ 1.

34



For the third case, we need that∣∣∣∣∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ

∣∣∣∣ ≤ C⟨η⟩−|γ1|−µ ln(⟨η⟩)2j(−µ), |γ| = n,

and ∣∣∣∣∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ

∣∣∣∣ ≤ C⟨η⟩−n−|γ1|⟨η⟩2j(−µ−1), |γ| = n+ 1.

In fact, we have
|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cαβγ |z|−n⟨η⟩n−µ ln⟨η⟩2j(−µ).

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cαβγ |z|−n−1⟨η⟩n−µ+12j(−µ−1).

Hence,

|∂βxkj(x, ⟨η⟩−1z, η)| = |∂βxkj(x, ⟨η⟩−1z, η)|θ|∂βxkj(x, ⟨η⟩−1z, η)|1−θ

= cαβγ

(
|z|−n⟨η⟩n−µ ln⟨η⟩2j(−µ)

)θ (
|z|−n−1⟨η⟩n−µ+12j(−µ−1)

)1−θ
= cαβγ⟨η⟩n−µ|z|−n−(1−θ)2j(−µ+θ−1) (ln⟨η⟩)θ ⟨η⟩1−θ

≤ cαβγ⟨η⟩n−µ|z|−n−ε̃2j(−µ−ε̃)⟨η⟩ε,

where 0 < ε̃ := 1− θ < ε.
Case 1)
In this case, we have

|
∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ|

≤ cβγ2

∫
Rn

⟨⟨η⟩ξ, η⟩−µ−|γ1||Dγ2
ξ φj(ξ)|dξ

≤ cβγ2

∫
Rn

⟨η⟩−µ−|γ1|⟨ξ⟩−µ−|γ1||Dγ2
ξ φj(ξ)|dξ

≤ C⟨η⟩−µ−|γ1|2jn2j(−µ−|γ1|)2−j|γ2|,

where 2jn comes from
∫
suppφj

dφ.

Case 2)
Suppose j ̸= 0 or γ2 ̸= 0. In this case, suppDγ2

ξ φj(ξ) ⊂ Rn \B1(0), where B1(0) denotes the unit
ball. Then,

|
∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ|

≤ cβγ2

∫
Rn

⟨⟨η⟩ξ, η⟩−2µ⟨⟨η⟩ξ⟩µ−|γ1||Dγ2
ξ φj(ξ)|dξ

≤ cβγ2

∫
Rn

⟨η⟩−2µ⟨ξ⟩−2µ⟨η⟩µ−|γ1|⟨ξ⟩µ−|γ1||Dγ2
ξ φj(ξ)|dξ

≤ cβγ2

∫
Rn

⟨η⟩−µ−|γ1|⟨ξ⟩−µ−|γ1||Dγ2
ξ φj(ξ)|dξ

≤ C⟨η⟩−µ−|γ1|2jn2j(−µ−|γ1|)2−j|γ2|,
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where we have used that, for |ξ| ≥ 1, we have ⟨⟨η⟩ξ⟩−1 ≤ C⟨η⟩−1⟨ξ⟩−1, for some constant C > 0. This
can be seen from the following estimate: For |ξ| ≥ 1

⟨⟨η⟩ξ⟩2 = 1 + ⟨η⟩2|ξ|2 = 1 + ⟨η⟩2(1
2
|ξ|2 + 1

2
|ξ|2) ≥ 1 + ⟨η⟩2(1

2
+

1

2
|ξ|2)

= 1 +
1

2
⟨η⟩2(1 + |ξ|2)

≥ 1

2
⟨η⟩2⟨ξ⟩2.

(4.3)

Suppose j = 0 and |γ2| = 0.
We must prove that ∣∣∣∣∫

Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)φ0(ξ)dξ

∣∣∣∣ ≤ C⟨η⟩−|γ1|−µ.

We notice that for γ1 = 0 then

|
∫
Rn

eiξ·z∂βxp(x, ⟨η⟩ξ, η)φ0(ξ)dξ| ≤
∫
|ξ|≤2

|⟨⟨η, ξ⟩, η⟩−µ|dξ

≤
∫
|ξ|≤2

⟨η⟩−µ⟨ξ⟩−µdξ ≤ C⟨η⟩−µ.
(4.4)

For γ1 ̸= 0, we have

|
∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)φ0(ξ)dξ|

≤
∫
|ξ|≤2

|⟨⟨η⟩ξ, η⟩−2µ⟨⟨η⟩ξ⟩µ−|γ1||dξ

≤ ⟨η⟩−2µ

∫
|ξ|≤2

|⟨ξ⟩−2µ⟨⟨η⟩ξ⟩µ−|γ1||dξ

(Using ζ = ⟨η⟩ξ) ≤ ⟨η⟩−2µ

∫
|ζ|≤2⟨η⟩

|⟨⟨η⟩−1ζ⟩−2µ⟨ζ⟩µ−|γ1|⟨η⟩−n|dζ

(Using polar coordinates) ≤ C⟨η⟩−2µ−n

[∫ 1

0
|⟨ρ⟩µ−|γ1||ρn−1dρ+

∫ 2⟨η⟩

1
⟨ρ⟩µ−|γ1|ρn−1|dρ

]
≤ ⟨η⟩−2µ−n|C + C⟨η⟩µ−|γ1|+n| ≤ C1⟨η⟩−µ−|γ1|,

as long as µ+ n > |γ|. Since, µ ≥ 2, this is the case for |γ| ≤ n+ 1.
Case 3)
Suppose j ̸= 0 or γ2 ̸= 0.

We use again that ⟨⟨η⟩ξ⟩ ≤ C⟨η⟩⟨ξ⟩. Then, as we did above∣∣∣∣∫
Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)D

γ2
ξ φj(ξ)dξ

∣∣∣∣
≤
∫
Rn

|⟨⟨η⟩ξ, η⟩−µ⟨⟨η⟩ξ⟩−|γ1|Dγ2
ξ φj(ξ)|dξ

≤
∫
Rn

|⟨η⟩−µ−|γ1|⟨ξ⟩−µ−|γ1|Dγ2
ξ φj(ξ)|dξ

≤ C⟨η⟩−µ−|γ1|2j(−µ−|γ1|)2−j|γ2|2jn.
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Suppose j = 0 and |γ2| = 0.
First we prove that for |γ1| < n, we have∣∣∣∣∫

Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)φ0(ξ)dξ

∣∣∣∣ ≤ C⟨η⟩−|γ1|−µ.

In fact, if ζ = ⟨η⟩ξ and |ξ| ≤ 2, we have 1 ≥ ⟨⟨η⟩−1ζ⟩−µ ≥ ⟨⟨η⟩−12⟨η⟩⟩−µ = ⟨2⟩−µ which is
bounded. Then ∣∣∣∣∫

Rn

eiξ·z∂βxD
γ1
ξ p(x, ⟨η⟩ξ, η)φ0(ξ)dξ

∣∣∣∣
≤

∣∣∣∣∣
∫
|ξ|≤2

⟨⟨η⟩ξ, η⟩−µ⟨⟨η⟩ξ⟩−|γ1|dξ

∣∣∣∣∣
≤ ⟨η⟩−µ

∫
|ξ|≤2

|⟨ξ⟩−µ⟨⟨η⟩ξ⟩−|γ1||dξ

(Using ζ = ⟨η⟩ξ) ≤ ⟨η⟩−µ
∫
|ζ|≤2⟨η⟩

|⟨⟨η⟩−1ζ⟩−µ⟨ζ⟩−|γ1|⟨η⟩−n|dζ

(Using polar coordinates) ≤ C⟨η⟩−µ−n
[∫ 1

0
⟨ρ⟩−|γ1|ρn−1dρ+

∫ 2⟨η⟩

1
⟨ρ⟩−|γ1|ρn−1dρ

]
≤ ⟨η⟩−µ−n|C + C⟨η⟩−|γ1|+n| ≤ C1⟨η⟩−µ−|γ1|,

as long as n > |γ1|.
If |γ1| = n, then

⟨η⟩−µ−n
[∫ 1

0
⟨ρ⟩−|γ1|ρn−1dρ+

∫ 2⟨η⟩

1
⟨ρ⟩−|γ1|ρn−1dρ

]

≤ ⟨η⟩−µ−n
[∫ 1

0
⟨ρ⟩−|γ1|ρn−1dρ+

∫ 2⟨η⟩

1
ρ−1dρ

]
≤ ⟨η⟩−µ−n|C + ln⟨η⟩| ≤ C1⟨η⟩−µ−|γ1| ln⟨η⟩,

for ⟨η⟩ ≥ R > 1.
If |γ1| = n+ 1, then

⟨η⟩−µ−n
[∫ 1

0
⟨ρ⟩−|γ1|ρn−1dρ+

∫ 2⟨η⟩

1
⟨ρ⟩−|γ1|ρn−1dρ

]

≤ ⟨η⟩−µ−n
[∫ 1

0
⟨ρ⟩−|γ1|ρn−1dρ+

∫ 2⟨η⟩

1
ρ−2dρ

]
≤ ⟨η⟩−µ−n|C + C⟨η⟩−1| ≤ C⟨η⟩−µ−n = C⟨η⟩−µ−|γ1|⟨η⟩.

The proof of Lemma 4.3.2 is now complete.

Proposition 4.3.2. The function k =
∑∞

j=0 kj satisfies:

Case 1: Let β ∈ Nn.
|∂βxk(x, ⟨η⟩−1z, η)| ≤ Cϕ(z)⟨η⟩−µ+n

for some ϕ ∈ L1(Rn).
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Case 2: Let β ∈ Nn. Then,

|∂βxk(x, ⟨η⟩−1z, η)| ≤ Cϕ(z)⟨η⟩−µ+n,

for some ϕ ∈ L1(Rn).

Case 3: Let β ∈ Nn. Then,

|∂βxk(x, ⟨η⟩−1z, η)| ≤ Cϕ(z)⟨η⟩−µ+n+ε

for some ϕ ∈ L1(Rn).

Proof. Case 1: Step 1) Let 0 < |z| ≤ 1.
We recall that

N∑
j=0

rj


= N + 1, if r = 1,

≤ 1

1− r
, if r < 1,

≤ CrN , if r > 1.

First, we estimate the series for 2j ≤ |z|−1. In this case, for N = 0, we have

∑
2j≤|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ C⟨η⟩−µ+n
 ∑

2j≤|z|−1

2j(−µ+n)


= C⟨η⟩−µ+n

log2 |z|−1∑
j=0

(2−µ+n)j


≤


C⟨η⟩−µ+n|z|µ−n, if − µ+ n > 0,

C log2 |z|−1, if − µ+ n = 0,

C⟨η⟩−µ+n, if − µ+ n < 0.


On the other hand, for estimate the terms 2j ≥ |z|−1, we choose N > −µ+ n. Then, we have

∑
2j>|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ C|z|−N ⟨η⟩−µ+n
 ∑

2j>|z|−1

2j(−µ+n−N)


= C|z|−N ⟨η⟩−µ+n

 ∞∑
j=log2 |z|−1

2j(−µ+n−N)

 = C|z|−N ⟨η⟩−µ+n
 ∞∑
j=0

(2−µ+n−N )j+log2 |z|−1


= C|z|−N ⟨η⟩−µ+n

2(−µ+n−N) log2 |z|−1
∞∑
j=0

2j(−µ+n−N)


≤ C|z|−N ⟨η⟩−µ+n(C1|z|N+µ−n) = C̃|z|µ−n⟨η⟩−µ+n.
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Therefore,

|∂βxk(x, ⟨η⟩−1z, η)| = |
∞∑
j=0

∂βxkj(x, ⟨η⟩−1z, η)|

≤
∑

2j≤|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)|+
∑

2j>|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)

≤


C̃1⟨η⟩−µ+n|z|µ−n := ψ1(z), if − µ+ n > 0,

C log2 |z|−1 + C̃ := ψ2(z), if − µ+ n = 0,

(C + C̃|z|µ−n)⟨η⟩−µ+n := ψ3(z), if − µ+ n < 0.

 ∈ L1(B1(0))

(4.5)

Step 2) Let |z| > 1.

We choose M > n− µ and M > n to conclude that
∞∑
j=0

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cαβγ⟨η⟩−µ+n|z|−M
∞∑
j=0

2j(−µ+n−M)

≤ cαβγ⟨η⟩−µ+n|z|−M ∈ L1({z ∈ Rn : |z| > 1}).

Case 2: Step 1) Let 0 < |z| ≤ 1 and N = 0. We estimate the terms 2j ≤ |z|−1. Then,

∑
2j≤|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ C⟨η⟩−µ+n
log |z|−1∑
j=0

2j(−µ+n)

≤


C⟨η⟩−µ+n|z|µ−n, if − µ+ n > 0,

C log2 |z|−1, if − µ+ n = 0,

C⟨η⟩−µ+n, if − µ+ n < 0,

 ∈ L1(B1(0))

as we did above in Case 1, Step 1. For the terms 2j > |z|−1, we choose N = n+ 1. Then,∑
2j≤|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ |z|−n−1⟨η⟩n−µ
∞∑

j=log |z|−1

2j(−µ−1)

= |z|−n−1⟨η⟩n−µ2(−µ−1) log |z|−1
∞∑
j=0

2j(−µ−1)

≤ C|z|µ−n⟨η⟩n−µ ∈ L1(B1(0)).

(4.6)

Therefore,

|∂βxk(x, ⟨η⟩−1z, η)| = |
∞∑
j=0

∂βxkj(x, ⟨η⟩−1z, η)|

≤
∑

2j≤|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)|+
∑

2j>|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)

∈ L1(B1(0)).

(4.7)

Step 2). Let |z| > 1. We use N = n+ 1 in this case, −µ+ n−N = −µ− 1 < 0. Then,

∞∑
j=0

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ cαβγ⟨η⟩−µ+n|z|−n−1
∞∑
j=0

2j(−µ−1)

≤ cαβγ⟨η⟩−µ+n|z|−n−1 ∈ L1({z ∈ Rn : |z| > 1}).
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Case 3. Step 1) Let |z| > 1 and M ∈ (n, n+ 1). Then,

∞∑
j=0

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ |z|−M ⟨η⟩n−µ+ε
∞∑
j=0

2j(−µ−ε̃) ≤ C|z|−M ⟨η⟩n−µ+ε ∈ L1({z ∈ Rn : |z| > 1}).

(4.8)
because using polar coordinates∫

|z|>1
|z|−Mdz = C

∫ ∞

1
ρ−Mρn−1dρ <∞,

using that n < M . (n−M − 1 < −1).

Step 2) Let 0 < |z| ≤ 1. First, we estimate 2j < |z|−1 and we choose N = 0. Then,

∑
2j≤|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ ⟨η⟩−µ+n
log2 |z|−1∑
j=0

2j(−µ+n)

≤ C⟨η⟩−µ+nϕ(z) ∈ L1(B1(0)).

(4.9)

For 2j > |z|−1 we choose M ∈ (n, n+ 1). Then,∑
2j>|z|−1

|∂βxkj(x, ⟨η⟩−1z, η)| ≤ C|z|−M ⟨η⟩−µ+n+ε
∞∑

j=log2 |z|−1

2j(−µ−ε̃)

≤ C⟨η⟩−µ+n+ε|z|−M+µ+ε̃ ∈ L1(B1(0)),

(4.10)

because µ ≥ 2, which implies that µ + n ≥ 2 + n > M . Then, ε̃ + n + µ > M if and only if,
ε̃+ n+ µ−M > 0. In conclusion, we have that

∞∑
j=0

∂βxkj(x, ⟨η⟩−1z, η) =
∑

2j≤|z|−1

∂βxkj(x, ⟨η⟩−1z, η) +
∑

2j>|z|−1

∂βxkj(x, ⟨η⟩−1z, η)

≤ ⟨η⟩−µ+n+εϕ(z) ∈ L1(B1(0)).

(4.11)

Now we prove Theorem 4.3.1.
Proof. First we will prove that k satisfies the conditions in Definition 4.3.1.

Case 1. Let us prove by steps.
1) Changing the variables y = ⟨η⟩−1z and dy = ⟨η⟩−ndz, we have∫

Rn

|k(x, y, η)|dy =

∫
Rn

|k(x, ⟨η⟩−1z, η)|⟨η⟩−ndz

≤ ⟨η⟩−n
(∫

|z|≤1
ϕ(z)⟨η⟩−µ+n+εdz

)
,

(4.12)

where ϕ(z) is as in Proposition 4.3.2. Notice that ε = 0 in Case 1 and Case 2. In order to clarify
the statements above about integrability for the functions that appear in estimates of k, we prove for
some cases. The cases are analogous. For Case 1, we hold the cases, −µ + n > 0,−µ + n = 0, and
−µ+ n > 0. For −µ+ n > 0, we have∫

Rn

|k(x, y, η)|dy ≤ ⟨η⟩−n⟨η⟩n−µ+ε
∫
|z|≤1

ϕ(z)dz ≤ C⟨η⟩−n+ε. (4.13)
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2) Notice that for Case 1 and Case 2, we have∫
Rn

|k(x, y, η)− k(x̃, y, η)|dy =

∫
Rn

|
n∑
i=1

(x̃i − xi)

∫ 1

0
∂xik(x+ θ(x̃− x), y, η)dθ|dy

≤
n∑
i=1

∫
Rn

|x̃i − xi|
∫
Rn

∫ 1

0
|∂xik(x+ θ(x̃− x), y, η)|dθdy

≤
n∑
i=1

∫
Rn

|x̃i − xi|
∫
Rn

∫ 1

0
|∂xik(x+ θ(x̃− x), ⟨η⟩−1y, η)|dθ⟨η⟩−ndy

≤
n∑
i=1

(∫
Rn

ϕ(y)dy

)
⟨η⟩−µ|x̃i − xi| ≤ C⟨η⟩−µ∥x− x̃∥,

and the result follows easily. For Case 3 we have ⟨η⟩−µ+ε in place to ⟨η⟩−µ.

4.4 Applications on compact manifolds without singu-

larities

Let us study applications using the three cases of Theorem 4.3.1. The first and second cases of
Theorem 4.3.1 will be used for compact manifold without singularities and without boundary. As
for the third case, it will be applied to conic manifolds in Chapter 5. As we defined in Section 2.1,
Λ := Λa(ϕ) denotes a sector in the complex plane, with a ∈ R and ϕ ∈ [0, 2π) an angle.
First we use an adaptation of Theorem 5.1 proved by Shubin in [29], for Λ- Elliptic operators as we
saw in Definition 4.1.1. Then we study pseudodifferential operators using the approach of Seeley [28],
see also Escher/Seeley [12].

Remark 4.4.1. In [29] it was used the expression |ξ|+ |λ|
1
µ in place to 1 + |ξ|+ |λ|

1
µ . However, we

recall that the two terms are equivalent. In fact, for sufficiently large R > 0 such that |ξ|+ |λ|
1
µ ≥ R

then

1 + |ξ|+ |λ|
1
µ ≥ |ξ|+ |λ|

1
µ =

1

2

(
|ξ|+ |λ|

1
µ

)
+

1

2

(
|ξ|+ |λ|

1
µ

)
≥ R

2
+

1

2

(
|ξ|+ |λ|

1
µ

)
≥ min

{
R

2
,
1

2

}
(1 + |ξ|+ |λ|

1
µ ),

(4.14)

which prove that the two terms are equivalent. In the same way, in [29] it was used the term (1+ |η|+
|λ|

1
d ) instead of (1+ |η|2+ |λ|

2
d )

1
2 , which are equivalent too. Hence, we do not need to worry about the

difference between the terms from the reference and the terms that we are using in this work.

4.4.1 Differential operators

Now we consider differential operators in order to use Case 1 from Theorem 4.3.1.

Theorem 4.4.1. If P is a Λ-Elliptic differential operator of order µ, then there exists Bλ ∈ L−µ,µ(M,Λ)
such that

PBλ = I +R1

and
BλP = I +R2

where R1, R2 belong to L−∞(M,Λ).
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Proof. See Theorem 5.1 in [29].
Consider an compact manifold M without singularities, 1 < p <∞, µ ∈ R and the operator

P : Hµ
p (M) → Lp(M) (4.15)

where Hµ
p (M) is the usual Sobolev space. Let Λ be an sector as in Section 2.1. Let us suppose that

P is Λ-Elliptic as in Definition 4.1.1. That is, for any local chart, P has a symbol p that satisfies

|(∂αξ ∂βxp(x, ξ, λ))(λ− p(x, ξ, λ))−1| ≤ C⟨ξ⟩−|α|.

By Theorem 4.4.1 for larger λ, P is invertible. In fact, P−1 = Bλ(I + R1)
−1 = (I + R2)

−1Bλ. As
consequence we have the following proposition.

Proposition 4.4.1. For P as in (4.15) with D(P ) = {u ∈ C(M) : Pu ∈ C(M)}. Then P : D(P ) →
C(M) is a sectorial operator.

Remark 4.4.2. We note that

D(P ) ⊂ {u ∈ Lp(M) : Pu ∈ Lp(M)} = Hµ
p (M).

Proof. By [27] and references cited there, we know that for λ larger, λ − P : Hµ
p (M) → Lp(M) is a

bijection. Then, the restriction PC = P|D(P )
: D(P ) → C(M) is a bijection. In fact, the injection of

λ−PC is follows by injection of λ−P . For the surjection we choose p > n
µ , which implies by Sobolev

embedding theorem, that Hµ
p (M) ↪→ C(M). As a consequence, for f ∈ C(M) ⊂ Lp(M) there exists

u ∈ Hµ
p (M) such that (λ−P )u = f (Surjectivity of λ−P ). Therefore, u ∈ D(P ) and (λ−PC)u = f .

Moreover by the Theorem 4.3.1, Case 1, we have that

(λ− P )−1 : C(M) → C(M)

is continuous and ||(λ − P )−1||L(C(M)) ≤ C|λ|−1 for λ large. Finally, we conclude that P (λ) is a
sectorial operator in C(M).

4.4.2 Pseudodifferential operators

Now we will use the result of Escher and Seiler [12] in order to apply the Case 2 of Theorem 4.3.1.
We consider again a pseudodifferential operator of order µ as an operator

P : Hµ
p (M) → Lp(M).

Let a be the symbol associate to P and let us suppose that it is Λ − Elliptic as in Definition 4.1.1
with R = 0. In such case, we have the following result:

Theorem 4.4.2. There exists p ∈ C∞(Rn × Rn × Λ) such that

|∂αξ ∂βxp(x, ξ, λ)| ≤ C(⟨ξ⟩µ + |λ|)−1⟨ξ⟩−|α| (4.16)

uniformly in Rn × Rn × Λ for all α, β ∈ Nn0 , as well as

|∂αξ ∂βx (p(x, ξ, λ)− (λ− a(x, ξ))) ≤ C(⟨ξ⟩µ + |λ|)−3⟨ξ⟩2µ−1−|α|. (4.17)

Moreover,
p(x,D, λ)(λ− a(x,D)) = 1 + r0(x,D, λ),

(λ− a(x,D))p(x,D, λ) = 1 + r1(x,D, λ)

with remainders satisfying

sup
(x,ξ,λ)∈Rn×Rn×Λ

|∂αξ ∂βx rj(x, ξ, λ)|⟨λ⟩⟨ξ⟩N <∞ ∀α, β ∈ Nn0 ∀N ∈ N0.
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Proof. See Theorem 3.8 in [12].
Therefore, for λ larger, P is invertible and there exists P−1 with a symbol p satisfying Case 2.

In fact, for ηµ = |λ| and (4.16) we have with |α| = 0 the following estimate.

|∂βxp(x, ξ, η)| ≤ C(⟨ξ⟩µ + ηµ)−1 ≤ C⟨ξ, η⟩−µ.

In effect, let a := ⟨ξ⟩ and b := η. Then,

(a+ b)µ ≤ (2max{a, b})µ ≤ 2µ(aµ + bµ).

This is equivalent to aµ + bµ ≥ C(a + b)µ. On the other hand, we know that for positive terms by
Cauchy-Schwartz inequality

a+ b = (a, b) · (1, 1) ≤
√
2(a2 + b2)

1
2

then

(a2 + b2)
µ
2 ≥

√
2

−µ
2 (a+ b)µ.

Using the results above, we have

⟨ξ, η⟩−µ =
(
1 + |ξ|2 + η2

)−µ
2 =

(
⟨ξ⟩2 + η2

)−µ
2

≥ C(⟨ξ⟩+ η)−µ

≥ C2(⟨ξ⟩µ + ηµ)−1.

(4.18)

For |α| ≠ 0, we will use (4.17). Then, for |λ| = ηµ,

|∂βx∂αξ p(x, ξ, η)| = |∂βx∂αξ
(
p(x, ξ, η)− (ηµ − a(x, ξ))−1

)
+ ∂βx∂

α
ξ (η

µ − a(x, ξ))−1|
≤ |∂βx∂αξ

(
p(x, ξ, η)− (ηµ − a(x, ξ))−1

)
|+ |∂βx∂αξ (ηµ − a(x, ξ))−1|

≤ C(⟨ξ⟩µ + ηµ)−3⟨ξ⟩2µ−1−|α| + |∂βx∂αξ (ηµ − a(x, ξ))−1|

≤ C⟨ξ, η⟩−3µ⟨ξ⟩2µ−1−|α| + I

= C⟨ξ, η⟩−2µ⟨ξ, η⟩−µ⟨ξ⟩2µ−1−|α| + I

≤ C⟨ξ, η⟩−2µ⟨ξ⟩−µ⟨ξ⟩2µ−1−|α| + I = ⟨ξ, η⟩−2µ⟨ξ⟩µ−1−|α| + I

≤ C⟨ξ, η⟩−2µ⟨ξ⟩µ−|α| + I,

where we have used that ⟨ξ, η⟩−1 ≤ ⟨ξ⟩−1 and I = |∂βx∂αξ (ηµ − a(x, ξ))−1|. The only thing that we

need to prove is that I ≤ C1⟨ξ, η⟩−2µ⟨ξ⟩µ−|α|. For that, we use that for Λ-Elliptic operators, R = 0
and we describe as it was done in [12] without all details. For more information, we can see Theorem
3.8 in [12]. We notice that

|∂βx∂αξ (ηµ − a)−1| =
∑
finite

(ηµ − a)−1(∂β1x ∂
α1
ξ a)(ηµ − a)−1 . . . (ηµ − a)−1(∂βkx ∂αk

ξ a)(ηµ − a)−1.

Then, for each term in this sum, we have

≤ ⟨ξ, η⟩−µ⟨ξ⟩µ−|α1|⟨ξ, η⟩−µ⟨ξ⟩−|α2|⟨ξ⟩−|α3| . . . ⟨ξ⟩−|αn|

= ⟨ξ, η⟩−2µ⟨ξ⟩µ−|α|,

where we have used that, |(ηµ − a)−1| ≤ ⟨ξ, η⟩−µ, |∂β1x ∂α1
ξ a| ≤ ⟨ξ⟩µ−|α1| and |(∂βjx ∂

αj

ξ a)(ηµ − a)−1| ≤
⟨ξ⟩−|αj |. Therefore, |∂βx∂αξ (ηµ − a)−1| ≤ C1⟨ξ, η⟩−2µ⟨ξ⟩−µ−|α| and we are in the conditions of Case 2
from Theorem 4.3.1 for the symbols associated to the inverse of P . This implies that P : D(P ) →
C(M) is a sectorial operator by the same arguments of Proposition 4.4.1.
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Chapter 5

Continuous and Hölder continuous
Theory

In this chapter we will prove that elliptic operators on conic manifolds acting on a class of continuous
spaces are almost sectorial operators under some conditions. All the operators that we will be describe
from now on are part of the resolvent of such elliptic operators. More specifically, we will assume that
such operators we are studying satisfy that

(λ−A)−1 = ω
{
xµop

γ−n
2

M g(λ) +G(λ)
}
ω0 + (1− ω)P (λ)(1− ω1) +G∞(λ),

where ω, ω0, ω1 ∈ C∞
0 ([0, 1)) are cutoff functions satisfying ω1ω = ω1 and ωω0 = ω and we will describe

the spaces where such operators above belong later. The main goal is that:

1) The symbol associated to xµop
γ−n

2
M g(λ) and for (1 − ω)P (λ)(1 − ω1) have a boundedness as

Definition 4.1.1.

2) For G(λ) and G∞(λ) we have a faster decay in infinity which will help us in this and future
works.

5.1 C0,γ(B) and Cα,γ(B) -Spaces
Below, we give a new definition suitable to conic manifolds. Let B be a conic manifold. Let us define
the appropriate spaces for this chapter. (compare with definition 3.1.1 )

Definition 5.1.1. Let α ≥ 0 and γ ∈ R. The space Cα,γ(B) is defined as the set of all functions
u ∈ Cα(B◦) such that for any coordinates in the collar neighborhood of [0, 1) × ∂B, where ψ : V ⊂
∂B → Rn is a chart and ϕ ∈ C∞

c (V ), we have

ϕ ◦ ψ−1(y)ω(e−x)e(γ−
n+1
2

)xu(e−x, ψ−1(y)) ∈ BUCα(Rn+1),

for any cutoff function ω. Notice that u ∈ Cα(B◦) if and only if ψ : U ⊂ B◦ → Rn and ϕ ∈ C∞
c (U)

which implies that (ϕu) ◦ ψ−1 ∈ BUCα(Rn+1).

In particular, we see that

C0,γ(B) = {u ∈ C(B◦) : ω(e−x)e(γ−
n+1
2

)xu(e−x, y) ∈ BUC(Rn+1)}.
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Definition 5.1.2. We define the space BUCln(R+×Rn) as the set of all functions u ∈ BC(R+×Rn)
with the following property: for all ϵ > 0, there exists δ > 0 such that if

| lnx− lnx′|+ |y − y′| < δ, then |u(x, y)− u(x′, y′)| < ϵ.

Remark 5.1.1. We see that if x, x′ ∈ (0, 1], then | lnx− lnx′| = |
∫ x
x′
ds
s | ≥ |

∫ x
x′ ds| = |x− x′|. Hence,

if | lnx− lnx′| < δ, then |x− x′| < δ.

Proposition 5.1.1. Let u ∈ C(R+ × Rn) be a function. Then, u ∈ BUCln(R+ × Rn) if, and only if,
u(e−x, y) ∈ BUC(Rn+1).

Proof. If u ∈ BUCln(R+×Rn), then for all ϵ > 0 there exists δ > 0 such that | lnx−lnx′|+|y−y′| < δ
implies |u(x, y)− u(x′, y′)| < ϵ. In particular, if x = e−t and x′ = e−s we have

|s− t|+ |y − y′| < δ =⇒ |u(e−t, y)− u(e−s, y′)| < ϵ.

We conclude that u(e−x, y) ∈ BUC(Rn+1). In the same way, we prove the other implication.
As a consequence, we have

Corollary 5.1.1. u ∈ C0,γ(B) if, and only if, u ∈ C(B◦) and ω(x)x
n+1
2

−γu(x, y) ∈ BUCln(R+ × Rn),
where (x, y) are coordinates close to the collar neighborhood.

Proof. It is a consequence of the previous proposition. In fact, if u ∈ C0,γ(B), ψ : V ⊂ ∂B → Rn and
ϕ ∈ C∞

c (V ) then

ϕ ◦ ψ−1(y)ω(e−x)e(γ−
n+1
2

)xu(e−x, ψ−1(y)) ∈ BUC(Rn+1)

if, and only if, ϕ ◦ ψ−1(y)ω(x)x
n+1
2

−γu(x, ψ−1(y)) ∈ BUCln(R+ × Rn).

Proposition 5.1.2. For all ϵ > 0 and 1 < p <∞, we have that C0,γ(B) ⊂ H0,γ−ϵ
p (B).

Proof. In effect, if u ∈ C0,γ(B), then for some cutoff function ω,∫
[0,1)×∂B

|ω(x)x
n+1
2

−γ+ϵu(x, y)|pdx
x
dy ≤ ||u||pC0,γ(B)

∫
[0,1)×∂B

xϵp−1dxdy <∞. (5.1)

The other term (1 − ω(x))x
n+1
2

−γ+ϵu(x, y) has compact support. Therefore, its integral is finite on
B.

Another important definition for us is stated below.

Definition 5.1.3. Let s ∈ R+ and γ ∈ R. The space C̃s,γ(B) is defined as the set of all the functions
u : [0,∞)× ∂B → R such that

ϕ ◦ ψ−1(y)e(
n+1
2

−γ)xu(e−x, ψ−1y) ∈ BUCs(Rn+1),

where ψ : V ⊂ ∂B → Rn is a chart and ϕ ∈ C∞
c (V ). In particular, C̃0,γ(B) is the set of all functions

u : [0,∞)× ∂B such that

ϕ ◦ ψ−1(y)x
n+1
2

−γu(x, ψ−1(y)) ∈ BUCln(R+ × Rn),

where ||u||C̃0,γ(B) = ||x
n+1
2

−γu(x, y)||L∞(R+×∂B).
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5.2 Operators that compose the resolvent operator

In this section, we study the operators that compose the resolvent of elliptic operators and which are
important to show that they are sectorial. Most of the time, we need to use Mellin transform and
tools about pseudo-operators that will be defined later. We start with definitions that involve tensorial
product and a special type of symbol that we defined in Section 2.6.

Definition 5.2.1. Let X,Y be two sets and f, g two scalar functions defined on X and Y respectively.
Then, for x ∈ X and y ∈ Y the tensor product of f and g, f ⊗ g : X × Y → C, is defined by
f ⊗ g(x, y) := f(x)g(y).

Definition 5.2.2. Let X,Y two topological vector spaces. We call π-topology (or projective topology)
on X ⊗ Y the strongest locally convex topology on this vector space for which the canonical bilinear
mapping (x, y) 7→ x⊗ y of E × F into E ⊗ F is continuous. Provided with it, the space X ⊗ Y will be
denoted by X ⊗π Y .

Definition 5.2.3. By X⊗̂πY , we denote the completion of X ⊗π Y .

We will set an important theorem that we need next. For more details, see Theorem 45.1, [30].
Before, we recall what is a Fréchet space.

Definition 5.2.4. We say that a vectorial space E is a Fréchet space if there exist seminorms (pk)k∈N
such that (E, d) is a complete metric space, where d : E × E → R is the function

d(x, y) =

∞∑
j=1

1

2j
pj(x− y)

1 + pj(x− y)
.

Example 7. Let M be a smooth compact manifold. Then, C∞(M) is a Fréchet space with seminorms
defined by

pj(u) =
∑
|α|≤j

N∑
k=1

∥ϕk ◦ ψ−1
k Dα(u ◦ ψ−1

k )∥L∞(Rn),

where ψk : Uk ⊂M → Rn are local charts such that M =
⋃N
k=1 Uk and {ϕk} is a partition of unity.

Example 8. Let X be a smooth compact Riemannian manifold. The set L−∞(X) consists of all
operators K : C∞(X) → C∞(X) defined by

Ku(x) =

∫
X
k(x, y)u(y)dy,

where dy is the measure associated to the metric of X and k ∈ C∞(X ×X). Then K ∈ L−∞(X) 7→
k ∈ C∞(X × X) is a bijection. The set L−∞(X) is a Fréchet space with seminorms induced by
C∞(X ×X).

Theorem 5.2.1. Let X,Y be two Fréchet spaces. Every element θ ∈ X⊗̂πY is the sum of an absolutely
convergent series

θ =
∞∑
n=0

λnxn ⊗ yn,

where {λn} is a sequence of complex numbers such that
∑∞

n=0 |λn| <∞ and {xn}, {yn} are sequences
converging to zero in X and Y , respectively.

Proof. See Theorem 45.1, [30].
From now on, we will use ⊗ to denote ⊗̂π.
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5.2.1 Mellin Differential and Pseudodifferential Operators

We fix [·] as a smooth positive function z ∈ Λ → [z] ∈ [0,∞) in a sector Λ over the complex plane, as
we introduced in Section 2.1, such that [λ] = |λ| for large λ. Besides, we recall that γp := (n+1)(12−

1
p)

and B is a compact n+ 1 dimensional manifold with a conical point. Let A : C∞(B) → C∞(B) be a
conical differential operator of order µ that near the conical point has the form

A = x−µ
∑

|α|+j≤µ

aα(x, y)D
α
y (−x∂x)j , (5.2)

where aα ∈ C∞(R+, Diffµ−j(∂B)) and y is a local coordinate of ∂B, as we have studied in Defini-
tion 3.1.2. We know the importance of the Fourier transform to find solutions on smooth manifolds.
On the other hand, the Mellin transform is very useful to study the solutions in a neighbourhood of
the conical point and we will use this important tool from now on.

Definition 5.2.5. Let u ∈ C∞
c (R+) be a smooth function. The Mellin transform is defined by

Mu(z) =

∫ ∞

0
xz−1u(x)dx, (5.3)

where z ∈ C.

Remark 5.2.1. We recall some important properties of the Mellin transform. For more details see
[11, Section 7].

i) Mxγu(z) = Mu(z + γ).

ii) M(−x∂x)u(z) = zMu(z).

iii) The Mellin transform can be extended to an isomorphism M : L2(R+) → L2(Γ 1
2
), where the

set Γ 1
2
= {z ∈ C : Re(z) = 1

2} is a vertical line of C.

iv) If v(z) = Mu(z) with u ∈ C∞
c (R+). Then, u(x) = M−1v(x) where

M−1v(x) =
1

2πi

∫
Γα

x−zv(z)dz

for all α real number, with Γα = {z ∈ C : Re(z) = α}. If u ∈ L2(R+), then we must take α = 1
2 .

In the decomposition of the resolvent operator that we will use in this work, it appears the
operators: opγMf,G(λ), G∞(λ) and P (λ) that we will define from here on.

Proposition 5.2.1. Let A be a Fuchs type operator of order µ ∈ N0 as (5.2). Then, A can be written
as

x−µop
γ+µ−n

2
M (f),

where

[op
γ+µ−n

2
M (f)u](x) =

1

2πi

∫
Re(z)=n+1

2
−γ−µ

x−zf(x, z)Mu(z)dz (5.4)

and f(x, z) =
∑

|α|+j≤µ aα(x, y)D
α
y z

j, with u ∈ C∞
c ((0, 1)× ∂B) and γ is any real number.
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Proof. In effect, if we recall that M−1u(x) = 1
2πi

∫
Γn+1

2 −γ−µ

x−zu(z)dz denotes the inverse operator

of M, then we can rewrite (5.2) as

A = x−µ
∑

|α|+j≤µ

aα(x, y)D
α
y (−x∂x)j

= x−µ
∑

|α|+j≤µ

aα(x, y)D
α
yM−1M(−x∂x)j

= x−µM−1
∑

|α|+j≤µ

aα(x, y)D
α
y z

jM.

(5.5)

If we put f(x, z) =
∑

|α|+j≤µ aα(x, y)D
α
y z

j , then

A = x−µM−1f(x, z)M

= x−µop
γ+µ−n

2
M (f),

(5.6)

with op
γ+µ−n

2
M (f) given by (5.4).

Now, for the operator A we associate the cone operator in the Sobolev space over the infinite
cylinder R+×∂B, which we will denote by ∂B∧. For the next definition, let us suppose that ∂B =

⋃
Ωi

is a finite covering of ∂B and ψi : Ωi ⊂ ∂B → Ui ⊂ Rn are coordinate maps and {ϕi} is a subordinate
partition of unity.

R

Rn
ψi

[0, 1)× ∂B

B

Ωi

Definition 5.2.6. We say that u(x, y) ∈ Hs
p,cone(∂B∧) provided that for each i

v(x,y) = ϕi(y)u(x, y) ∈ Hs
p(R× Rn),

with y = ψ−1
i ( y

[x]).

Definition 5.2.7. Let B be a conic manifold, s, γ ∈ R and 1 < p <∞. The spaces Ks,γ
p (∂B∧) denote

all distributions u in ∂B∧ such that for some cutoff function ω

ωu ∈ Hs,γ
p (B) and (1− ω)u ∈ Hs

p,cone(∂B∧).

Finally, freezing the coefficients of A at t = 0, we obtain the model cone operator Â,

Â = x−µ
∑

|α|+j≤µ

aα(0, y)D
α
y (−x∂x)j .
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Remark 5.2.2. Near the boundary of B, if we work with h(x, z, λ) = xµλ− f(x, z) then

x−µop
γ+µ−n

2
M (h) = x−µop

γ+µ−n
2

M (xµλ− f) = λ−A.

We can also define Mellin Pseudodifferential operators. First we define their symbols. The following
definition is given in general for a compact manifold X. In particular, we state for the case X = ∂B.

Definition 5.2.8. (Pseudodifferential operators with parameters) For µ ∈ R and d > 0, Lµ,d(∂B,Λ)
is the space of all operators P (λ) such that, for any local chart ψ : U ⊂ ∂B → V ⊂ Rn and functions
ϕ1, ϕ2 ∈ C∞

c (V ) the operator Ploc(λ) : C
∞
c (V ) → C∞

c (V ) given by

Ploc(λ)(u) = [ϕ2P (λ)(ϕ1u ◦ ψ)] ◦ ψ−1

is equal to op(p)u, where p ∈ S−µ,d(Rn × Rn,Λ). In particular, we have that operators with kernel in
S(Λ, C∞(∂B)⊗ C∞(∂B)) belong to L−µ,µ(∂B,Λ).

Definition 5.2.9. For µ ∈ R and d > 0, Mµ,d
O (∂B,Λ) denotes all holomorphic functions g : C →

Lµ,d(∂B,Λ) for which
gβ(τ, λ) := g(β + iτ)(λ) ∈ Lµ,d(∂B,Rτ × Λ)

and it is locally bounded as a function of β.

For g ∈Mµ,d
O (∂B,Λ), we can define the Mellin Pseudodifferential operator op

γ+µ−n
2

M : C∞
c ((0,∞)×

∂B) → C∞
c ((0,∞)× ∂B) by

op
γ+µ−n

2
M g(λ)u =

1

2πi

∫
Γn+1

2 −γ−µ

x−zg(z)Mu(z)dz.

Locally, this operator can be written as

1

2πi

∫
Γn+1

2 −γ−µ

x−z
(

1

(2π)n

∫
Rn

eiyξg(x, y, z, ξ, λ)Fx→zMy→ξu(z, ξ)dξ

)
dz

where x ∈ (0,∞) and y is a local coordinate in ∂B and λ ∈ Λ.

5.2.2 G∞(λ)-Operators

In order to define the regularizing G∞(λ) operators, we need a new class of function.

Definition 5.2.10. Let γ ∈ R. The space C∞,γ(B) consist of all functions u in C∞(Bo) such that

||x
n+1
2

−γ lnl(x)(−x∂x)j∂αy u(x, y)||L∞([0,1]×K) ≤ CK , for all l, j ∈ N0, α ∈ Nn0 , (5.7)

where K is a compact subset in a coordinate neighborhood of ∂B. Notice that C∞,γ(B) ̸=
⋂
m∈N Cm,γ(B).

Beware: The new class C∞,γ(B) is different from the classes Cα,γ(B) defined previously.

Proposition 5.2.2. Let u ∈ C∞,γ+ϵ(B) be a function. Then, for all j ∈ N0 and α ∈ Nn0 the integral
below

I =

∫ 1

0

∫
∂B

|x
n+1
2

−γ(−x∂x)j∂αy u(x, y)|p
dx

x
dy

is finite. In particular, we have the inclusion C∞,γ+ϵ(B) ↪→ Hs,γ
p (B).
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Proof. In effect,

I =

∫ 1

0

∫
∂B

|x
n+1
2

−γ−ϵ(x∂x)
j∂αy u(x, y)|pxϵp−1dxdy

≤ CK

∫ 1

0

∫
∂B

|xϵp−1|dxdy <∞,

(5.8)

because for 0 < x ≤ 1, we have that
∫ 1
0 x

ϵp−1dx < ∞. Therefore, since u ∈ C∞(B◦), we have
u ∈ Hs,γ

p (B).

Definition 5.2.11. Sγ0 (∂B∧) is the space of all u ∈ C∞(∂B∧) which are rapidly decreasing on x→ ∞
and satisfies (5.7). This means that for any local chart ψ : V ⊂ ∂B → Rn and ϕ ∈ C∞

c (V ),

|xk∂lx∂αy (ϕu)(x, ψ−1(y))| <∞,

and
||x

n+1
2

−γ lnl x(x∂x)
k∂αy (ϕu)(x, ψ

−1(y))||L∞([0,1)×V ) <∞,

for all l, k ∈ N0 and α ∈ Nn0 .

Definition 5.2.12. We say that the operator G : C∞
c (B◦) → C∞(B◦) has a kernel k with respect to

the H0,0
2 (B) scalar product if

(Gu)(y) =

∫
B
k(y, y′)u(y′)dµg(y

′),

where locally in [0, 1] × V , with V ⊂ ∂B, dµg(y′) is xn
√

deth(x)dxdy′. Similarly for the K0,0
2 (∂B∧)

scalar product.

Definition 5.2.13. Let E be a Fréchet space with seminorms (pj)j∈N. We say that u : V → E,
V ⊂ Rm an open set, is of class C1 if u is continuous and there exist continuous functions ∂u

∂xk
: V → E,

for k ∈ {1, ...,m}, such that

lim
h→0

pj

(
u(x+ hek)− u(x)

h
− ∂u

∂xk
(x)

)
= 0, ∀j ∈ N,

where {e1, e2, . . . , en} is the conical basis of Rn. (ei = (0, 0, . . . , 1, . . . , 0) where 1 appears in the position
i) We say that u is of class C l, l ≥ 1, if ∂u

∂xk
are of class C l−1, for each k. Finally, we say that u is

of class C∞ if u is of class C l for each l.

Definition 5.2.14. Let E be a Frechet space with seminorms (pj)j∈N. We say that u ∈ S(Λ, E),
where Λ ⊂ C is an open set, if:

1) u ∈ C∞(Λ, E).

2) sup(x,y)∈Λ pj(x
lyp ∂

r+su
∂xr∂ys (x, y)) <∞, for each j, l, p, r, s ∈ N.

Definition 5.2.15. Let γ ∈ R. Then the space S(Λ, C∞,γ+ϵ(B)⊗C∞,−γ+ϵ(B)) consists of all functions
h : Λ×B×B → C that satisfies the condition of Definition 5.2.14 with E = C∞,γ+ϵ(B)⊗C∞,−γ+ϵ(B).
In particular, they locally satisfy

|λk ∂
m

∂λm
x

n+1
2

−γ−ϵ lnl(x)(−x∂x)jx′
n+1
2

+γ−ϵ lnl
′
(x′)(−x′∂x′)j

′
∂αy ∂

α′
y′ h(λ, x, y, x

′, y′)| ≤ Ck,m,j,l,j′,l′,α,α′ ,

for all k, l, l′, j, j′ ∈ N0, α, α
′ ∈ Nn0 .
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Recalling the definition of the space C∞,γ+ϵ(B) we have the following important statement, which
gives us a relationship between C∞,γ+ϵ(B) and C0,γ(B).

Proposition 5.2.3. The space C∞,γ+ϵ(B) is continuously embedded in C0,γ(B).

Proof. By definition we have that u ∈ C∞,γ+ϵ(B) implies that

||x
n+1
2

−γ−ϵ lnl(x)(−x∂x)j∂αy u(x, y)||L∞((0,1]×K) ≤ C,

where K is a compact subset of ∂B and y is a local coordinate. As a consequence, for l = 0 = j and
α = (0, . . . , 0), we have

|x
n+1
2

−γu(x, y)| = |x
n+1
2

−γ−ϵu(x, y)xϵ| ≤ C|xϵ| → 0,when x→ 0.

Therefore, we can extend the function x
n+1
2

−γu by 0 in x = 0. Its extension ũ is defined in [0, 1]× ∂B,
which is a compact set. So, our function belongs to BUC(R+ ×Rn). Hence, for all ϵ > 0 there exists
δ > 0 such that, |x − x′| + |y − y′| < δ implies that |ũ(x, y) − ũ(x′, y′)| < ϵ and by Remark 5.1.1, we
conclude that | lnx− lnx′|+ |y − y′| < δ implies that

|x
n+1
2

−γu(x, y)− x′
n+1
2

−γu(x′, y′)| = |ũ(x, y)− ũ(x′, y′)| < ϵ.

Therefore, u ∈ C0,γ(B).

Proposition 5.2.4. Let 1 < p <∞ and s, γ be real numbers. Then, the operator G(λ) maps Hs,γ
p (B)

into C∞,γ(B) if G has kernel in S(Λ, C∞,γ+ϵ(B)⊗ C∞,−γ+ϵ(B)).

Proof. In order to prove this, we see that for u ∈ Hs,γ
p (B) then G(λ)u(y) =

∫
B k(y, y

′)u(y′)dµg(y
′)

is well defined because k(y, y′) ∈ C∞,−γ+ϵ(B) ↪→ H−s,−γ
q (B) and by duality in the scalar product

over Hs,γ
p (B)×H−s,−γ

q (B) with 1
p +

1
q = 1, this integral is finite. Besides, using Proposition 5.2.2 and

dominate convergence theorem in local coordinates [0, 1)×V , with V a compact subset in ∂B, we have

x
n+1
2

−γ lnl(x)(−x∂x)j∂αyG(λ)u(y) =
∫
[0,1)×V

x
n+1
2

−γ lnl(x)(−x∂x)j∂αy k(y, y′)u(y′)dµg(y′),

and taking sup on [0, 1)× V , this integral is finite. Therefore, G(λ)u(·) ∈ C∞,γ(B).

Remark 5.2.3. Notice that G(λ) : Hs,γ
p (B) → C∞,γ+ϵ̃(B) is continuous for all ϵ̃ < ϵ.

Definition 5.2.16. The space C−∞
G (B,Λ, γ) consists of all operators G∞(λ) with kernel in S(Λ, C∞,γ+ϵ(B)⊗

C∞,γ−ϵ(B)).

5.2.3 G(λ)-Operators

Our final class of operator acts in [0, 1)× ∂B. They are the regularizing operators close to the conical
point.

Definition 5.2.17. For µ ∈ R and λ = x+ iy ∈ C, we say that

f ∈ Sµ(Λ) ↔ |∂jx∂kyf(λ)| ≤ C⟨λ⟩µ−j−k for all j, k ∈ N0.
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Definition 5.2.18. Let γ, µ ∈ R and d > 0. Rµ,dG (∂B∧,Λ, γ) is the space of all operator families G(λ)

that have a kernel with respect to the K0,0
2 (∂B∧) scalar product of the form

k(λ, x, y, x′, y′) = [λ]
n+1
d k̃(λ, [λ]

1
µx, y, [λ]

1
µx′, y′),

where k̃ ∈ S
µ
d (Λ)⊗ Sγ+ϵ0 (∂B∧)⊗ S−γ+ϵ

0 (∂B∧). In particular, this means that k̃ : Λ× ∂B∧ × ∂B∧ → C
satisfies∣∣∣∣∣[λ]−µ+|σ| ∂

|σ|

∂λσ
x

n+1
2

−γ−ϵ lnl(x)(−x∂x)jx′
n+1
2

+γ−ϵ lnl
′
(x′)(−x′∂x′)j

′
∂αy ∂

α′
y′ k̃(λ, x, y, x

′, y′)

∣∣∣∣∣ ≤ Cσ,j,l,j′,l′,α,α′ ,

with x, x′ ∈ [0, 1). Moreover,

G(λ)u(x, y) =

∫
∂B∧

[λ]
n+1
µ k̃(λ, [λ]

1
µx, y, [λ]

1
µx′, y′)u(x′, y′)x′ndx′dy′.

Here, dy′ is the measure induced on ∂B by the metric h(0). Similarly to Proposition 5.2.4, the operator
families G(λ) map Ks,γ

p (∂B∧) into Sγ0 (∂B∧) continuously.

5.3 Known results in H0,γ
p (B)

In this section we are going to state results in the space H0,γ
p (B) without proof. Among the references

that we have used, we can mention, for example, [5],[9],[8], [27] which contain more details.

For this section and the next, we assume that our operator A is elliptic with respect to Λ and
γ + µ. (see Definition below). With this in mind, we enunciate two very important results in H0,γ

p (B)
spaces that support the main ideas necessary for our goals in continuous and Hölder spaces.

Definition 5.3.1. An operator A is said elliptic by parameters with respect to γ + µ and Λ if

i) Both the homogeneous principal symbol σµψ(A) and the rescaled symbol σ̃µψ(A), have no spectrum
in Λ, pointwise on T ∗(B◦ \ 0) and T ∗(X × R \ 0), respectively.

ii) The model cone operator Â, as in Definition 5.2.7, has no spectrum in Λ \ 0.

Theorem 5.3.1. If A is as in Definition 3.2.2, then there exists R > 0 such that A has no spectrum
in Λ ∩ {|λ| > R} and

(λ−A)−1 = ω
{
xµop

γ−n
2

M g(λ) +G(λ)
}
ω0 + (1− ω)P (λ)(1− ω1) +G∞(λ),

where ω, ω0, ω1 ∈ C∞
0 ([0, 1)) are cutoff functions satisfying ω1ω = ω1 and ωω0 = ω and

i) g(x, z, λ) = g̃(x, z, xµλ) with g̃ ∈ C∞(R+,M
−µ,µ
O (∂B,Λ)),

ii) P (λ) ∈ L−µ,µ
cl (B◦,Λ),

iii) G(λ) ∈ R−µ,µ
G (∂B∧; Λ, γ),

iv) G∞(λ) ∈ C−∞
G (B; Λ, γ).
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Proof. See Theorem 1 in [8].

Theorem 5.3.2. Let A be as in Definition 3.2.2. Then, there exists a constant cp such that

||(λ−A)−1||L(H0,γ
p (B)) ≤

cp
|λ|
.

Proof. See Proposition 1 in [8].

5.4 Almost sectorial operators in C0,γ(B)
Now, we set the second main result of the thesis. In order to motivate the result, we consider A = ∆.
We recall that, for previous results in Chapter 3, we had a conic manifold B with dimension n+1 and
γ such that

n− 3

2
< γ < min

−1 +

√(
n− 1

2

)2

− λ1,
n+ 1

2

, (5.9)

where λ1 is the greatest non-zero eigenvalue of the boundary Laplacian ∆h(0), where h(x) with x ∈ [0, 1)
is a family of Riemannian metrics on ∂B that is smooth and does not degenerate up to x = 0. Then,
we have that

A : D(A) → H0,γ
p (B)

withD(A) = H2,2+γ
p (B)⊕C is sectorial. This implies that (λ−A)−1 : H0,γ

p (B) → H0,γ
p (B) is continuous.

In order to show that ∆ is almost sectorial in C0,γ(B), we extend (λ−A)−1 to a bounded operator on
this set. With this in mind, we prove the result below, which is the second main result of the thesis.

Theorem 5.4.1. Let A be as in Definition 5.3.1. For λ large enough and 1 < p <∞, we have that:

1) The operator
(λ−A)−1 : H0,γ

p (B) ∩ C0,γ(B) → H0,γ
p (B)

can be extended to a continuous operator

(λ−A)−1 : C0,γ(B) → C0,γ(B).

2) The image of (λ − A)−1 is independent of λ, i.e, (λ − A)−1(C0,γ(B)) = (µ − A)−1(C0,γ(B)).
Furthermore, if D(A) := (λ − A)−1(C0,γ(B)) for large λ, then c + A : D(A) → C0,γ(B) is an almost
sectorial operator for some c ∈ R, that is, for all λ ∈ Λ

||(λ− c−A)−1||L(C0,γ(B)) ≤ C|λ|−1+ϵ, for some ϵ ∈ (0, 1).

Proof. For the proof of 1) and the almost sectoriality of A in 2), we need to estimate the norm for
all terms that appear in the decomposition of (λ−A)−1. We shall do this later in this work. For the
statement of independence of λ in 2), we recall the identities for resolvent operators. More explicitly,
for µ ∈ C we use that

R(A, λ)−R(A, µ) = (µ− λ)R(A, λ)R(A, µ). (5.10)
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Therefore, for f ∈ (λ − A)−1(C0,γ(B)) there exists w ∈ C0,γ(B) such that f = (λ − A)−1w. Then, if
we use (5.10), we have

f = (µ−A)−1w − (µ−A)−1w + (λ−A)−1w

= (µ−A)−1w + (µ− λ)(µ−A)−1(λ−A)−1w

∈ (µ−A)−1(C0,γ(B)).

In fact, the first term after the second equality belongs clearly to (µ − A)−1(C0,γ(B)) and for the
second term we have used that (λ − A)−1 : C0,γ(B) → C0,γ(B), which implies that the composition
(µ−A)−1(λ−A)−1 belongs to (µ−A)−1(C0,γ(B)).

Now, we complete the proof of Theorem 5.4.1 by studying the extension of each term of (λ−A)−1

described by Theorem 5.3.1. Below, Λ denotes always the sector of the Theorem 5.3.1.

Proposition 5.4.1. The operator G∞(λ) satisfies

||G∞(λ)||L(C0,γ(B)) ≤
C

|λ|
,

where λ belongs to Λ.

Proof. First step: G∞(λ) ∈ L(C0,γ(B)).

For u ∈ C0,γ(B)) we have by the definition of the operator G∞(λ) that

G∞(λ)u(w) =

∫
B
k(λ,w,w′)u(w′)dµg(w

′),

where k ∈ S(Λ, C∞,γ+ϵ(B)⊗C∞,−γ+ϵ(B)). We do all the computations without the term det
√
det |h(x)|

because B is a compact manifold and this term is bounded from above and below, so we do not need
to worry about it.
By Theorem 5.2.1 , for every λ ∈ Λ,

k(λ) =
∞∑
n=0

αn(λ)an(λ)⊗ bn(λ),

where an(λ) ∈ C∞,γ+ϵ(B) and bn(λ) ∈ C∞,−γ+ϵ(B), where
∑∞

n=0 αn(λ) < ∞ and limn→∞ an(λ) = 0,
limn→∞ bn(λ) = 0 in C∞,γ+ϵ(B) and C∞,−γ+ϵ(B), respectively. First, we prove that G∞(λ)u ∈ C0,γ(B),
for all λ ∈ Λ. We divide the computations on [0, 1)× ∂B and B \ ([0, 1)× ∂B). For the first case, we
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have that, for dy′ denoting a volume metric on ∂B,

G∞(λ)u(x, y) =

∫
[0,1)×∂B

k(λ, x, y, x′, y′)u(x′, y′)x′ndx′dy′

=

∫
[0,1)×∂B

∞∑
n=0

αn(λ)an(λ, x, y)bn(λ, x
′, y′)u(x′, y′)x′ndx′dy′

=
∞∑
n=0

αn(λ)an(λ, x, y)

∫
[0,1)×∂B

bn(λ, x
′, y′)u(x′, y′)x′ndx′dy′

≤ C
∞∑
n=0

αn(λ)an(λ, x, y)||bn||C∞,−γ+ϵ(B)

∫
[0,1)×∂B

|x′−
n+1
2

−γ+ϵ
u(x′, y′)x′

n|dx′dy′

≤ C1

∞∑
n=0

αn(λ)an(λ, x, y)||bn||C∞,−γ+ϵ(B)||u||C0,γ(B)

∫
[0,1)×∂B

|x′−
n+1
2

−γ+ϵ
x′

−n+1
2

+γ
x′
n|dx′dy′

= C1

∞∑
n=0

αn(λ)an(λ, x, y))||bn||C∞,−γ+ϵ(B)||u||C0,γ(B)

∫
[0,1)×∂B

|x′−1+ϵ|dx′dy′

≤ C2

∞∑
n=0

αn(λ)an(λ, x, y))||bn||C∞,−γ+ϵ(B)||u||C0,γ(B)

<∞,

(5.11)

where we have used that bn(λ) ∈ C∞,−γ+ϵ(B) ↪→ C0,−γ(B) (See Proposition 5.2.3), where we have used
that

∑∞
n=0 αn(λ)an(λ) < ∞ in C∞,γ+ϵ(B), ||bn(λ)||C∞,−γ+ϵ(B) is bounded and C∞,γ+ϵ(B) ⊂ C0,γ(B),

we conclude the result. The integral on B \ {[0, 1) × ∂B} is the easy part, since we just need to
observe that the last set is compact and the integral as we did before is finite, because we do not have
singularities.

Second step: ||G∞(λ)||L(C0,γ(B)) ≤ C
|λ| .

Second, we show that ||G∞(λ)u||C0,γ(B) ≤ C
|λ| ||u||C0,γ(B). In order to complete the proof, let us choose

a partition of unity {ϕi} of ∂B and a coordinate system (Uj , ψj) such that suppϕj ⊂ Uj . Before, we
remark that for ω a cutoff function,

G∞(λ)u = (1− ω + ω)G∞(λ)(1− ω + ω)u

= (1− ω)G∞(λ)(1− ω)u+ (1− ω)G∞(λ)ωu

+ ωG∞(λ)(1− ω)u+ ωG∞(λ)ωu.

(5.12)

Further, we recall that the expression (ϕiu)(x, y) means ϕi(y)u(x, y) for all i. We analyse two terms.
The others are similar or even easier. Let us start with ωG∞(λ)ω. All the work will be done in a
chart U ⊂ ∂B and, by abuse of notation, we write u in place to ϕiu to do a clear computation and
to avoid the use of u(x, y) =

∑
i(ϕiu)(x, y). Therefore, there exists a compact set K ⊂⊂ U such that

55



u(x, y) = 0 if y ̸∈ K, so ||ωG∞(λ)ωu||C0,γ(B) is a finite sum of terms of the form below.

||ω(x)x
n+1
2

−γ
∫
[0,1)×U

k(λ, x, y, x′, y′)ω(x′)u(x′, y′)x′
n
dx′dy′||BUCln(R+×Rn)

≤ sup
x∈[0,1)

∫
[0,1)×U

|ω(x)x
n+1
2

−γ 1

|λ|
xγ+ϵ−

n+1
2 x′−γ+ϵ−

n+1
2 u(x′, y′)x′n|dx′dy′

≤ sup
x∈[0,1)

c

|λ|
|x|ϵ

∫
[0,1)×U

|x′−γ+ϵ−1+n+1
2 u(x′, y′)|dx′dy′

≤ c

|λ|
||u||C0,γ(B)

∫
[0,1)×U

|x′|ϵ−1dx′dy′

≤ C

|λ|
||u||C0,γ(B),

(5.13)

and we used that the support of the function ϕi is contained in some U . For the term ωG∞(λ)(1−ω),
we note that 1− ω(x′) for x′ ∈ [0, 1) is bounded, so we have the same estimate as above. For the rest
of the terms, we proceed in a similar way. Therefore, ||G∞(λ)||L(C0,γ(B)) ≤ C

|λ| .

Another important estimate that we need for the operator P (λ) is stated below.

Proposition 5.4.2. For the operator P (λ) ∈ L−µ,µ(B◦,Λ) we have that:

||(1− ω0)P (λ)(1− ω1)u||C0,γ(B) ≤
C1

|λ|
||u||C0,γ(B).

Proof. Now we will analyze the term (1 − ω0)P (λ)(1 − ω1). We note that the operator is acting
outside of ∂B because of the terms (1 − ω0) and (1 − ω1). Let us take a partition of unity {ϕi}
associate to supp(1− ω1) ∪ supp(1− ω0) and ψi : Ui ⊂ B → Rn such that suppϕi ⊂ Ui and such that
suppϕj ∪ suppϕk is contained in the same Ui if suppϕj ∩ suppϕk ̸= ∅, see for example Lemma 8.4 in
[14]. Hence, if we take u ∈ C0,γ(B), then (1− ω0)P (λ)(1− ω1)(u ◦ ψi) ◦ ψ−1

i ∈ BUC(Rn+1) for all i.

Let P̂ : C∞
c (Ui) → C∞

c (Ui) be defined by P̂ v = [P (v ◦ ψ)] ◦ ψ−1. Then, Pu = [P̂ (u ◦ ψ−1)] ◦ ψ. If,
P = ϕj(1−ω0)P (λ)(1−ω1)ϕk, then P̂ is as (λ+A)−1 in Theorem 4.2.2 and Case 1 in Theorem 4.3.1.
Therefore, ||P̂ ||L(BUC) ≤ C

|λ| , which implies that ||P ||L(C0,γ(B)) ≤ C
|λ| .

Lemma 5.4.2. Let ρ > 0 and γ ∈ R. Then the operator κρ : C̃0,γ(B) → C̃0,γ(B) defined by

κρu(x, y) = ρ
n+1
2 u(ρx, y)

is continuous and satisfies
||κρ||L(C̃0,γ(B)) = ργ .

Proof. In effect, by definition we have that

||κρu(x, y)||C̃0,γ(B) = ||x
n+1
2

−γρ
n+1
2 u(ρx, y)||L∞(R+×∂B)

= ||ργ(ρx)
n+1
2

−γu(ρx, y)||L∞(R+×∂B)

= ργ ||x
n+1
2

−γu(x, y)||L∞(R+×∂B)

= ργ ||u||C̃0,γ(B),

(5.14)
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which implies that ||κρ||L(C̃0,γ(B)) = ργ .
Most of the time, we use conjugation under appropriate operators in order to show necessary

estimates for our goals. We can see that in the following two lemmas below. The first result will show
the relation between the kernels involved with the operator G(λ).

Lemma 5.4.3. Let the operator G(λ) be defined in (5.2.18). Then,

κ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
u(x, y) =

∫
∂B∧

k̃(λ, x, y, x′, y′)u(x′, y′)x′ndx′dy′,

where k̃(λ, x, y, x′, y′) = [λ]
−n+1

µ k(λ, [λ]
− 1

µx, y, [λ]
− 1

µ s, y′) and k ∈ Sµ(Λ)⊗ Sγ+ϵ0 (∂B∧)⊗ S−γ+ϵ
0 (∂B∧).

Proof. In fact,

κ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
u(x, y) = κ−1

[λ]
1
µ

∫
∂B∧

k(λ, x, y, x′, y′)κ
[λ]

1
µ
u(x′, y′)x′ndx′dy′

= [λ]
−n+1

2µ

∫
∂B∧

k(λ, [λ]
− 1

µx, y, x′, y′)[λ]
n+1
2µ u([λ]

1
µx′, y′)x′ndx′dy′

=

∫
∂B∧

k(λ, [λ]
− 1

µx, y, x′, y′)u([λ]
1
µx′, y′)x′ndx′dy′

(By substitution s = [λ]
1
µx′) =

∫
∂B∧

k(λ, [λ]
− 1

µx, y, [λ]
− 1

µ s, y′)u(s, y′)([λ]
− 1

µ s)n[λ]
− 1

µdsdy′

=

∫
∂B∧

[λ]
−n+1

µ k(λ, [λ]
− 1

µx, y, [λ]
− 1

µ s, y′)u(s, y′)sndsdy′

=

∫
∂B∧

k̃(λ, x, y, x′, y′)u(x′, y′)x′ndx′dy′.

(5.15)

We have another important relation for the conjugation of G(λ) under κ
[λ]

1
µ
.

Lemma 5.4.4. For the operator G(λ) we have the following relation

||G(λ)||L(C̃0,γ(B)) ≤ ||κ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
||L(C̃0,γ(B)).

Proof. We note that

||G(λ)||L(C̃0,γ(B)) = ||κ
[λ]

1
µ
κ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
κ−1

[λ]
1
µ
||L(C̃0,γ(B))

(By Lemma 5.4.2) ≤ ||κ
[λ]

1
µ
||L(C̃0,γ(B))||κ

−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
||L(C̃0,γ(B))||κ

−1

[λ]
1
µ
||L(C̃0,γ(B))

= ||κ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
||L(C̃0,γ(B)).

(5.16)

Now, we will use that k(λ, x, y, x′, y′) ∈ Sµ(Λ) ⊗ Sγ+ϵ0 (∂B∧) ⊗ S−γ+ϵ
0 (∂B∧), where Sγ+ϵ0 (∂B∧) is

defined in Definition 5.2.11 to prove the next proposition.

Proposition 5.4.3. For the operator G(λ), we have that

||κ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
||L(C̃0,γ(B)) ≤

C

|λ|
.
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Proof. In this proof, we need to consider four cases. If x, x′ ∈ [0, 1), x ∈ [0, 1) and x′ > 1, x′ ∈ [0, 1)
and x > 1 and finally x, x′ > 1.

We start with the case x, x′ ∈ [0, 1). In this case, if u ∈ C̃0,γ(B)) then

sup
x∈[0,1)×∂B

|x
n+1
2

−γκ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
u|

= sup
x∈[0,1)×∂B

|x
n+1
2

−γ
∫
[0,1)×∂B

k̃(λ, x, y, x′, y′)u(x′, y′)x′ndx′dy′|

≤ C sup
x∈[0,1)×∂B

∫
[0,1)×∂B

|x
n+1
2

−γxγ+ϵ−
n+1
2 x′

−γ−n+1
2

+ϵ
u(x′, y′)x′

n|dx′dy′

=
C

|λ|

∫
[0,1)×∂B

sup
x∈[0,1)×∂B

|xϵx′ϵ−1
x′

n+1
2

−γ
u(x′, y′)|dx′dy′

≤ C

|λ|

∫
[0,1)×∂B

sup
x∈[0,1)

|xϵ||x′ϵ−1|||u||C̃0,γ(B)dx
′dy′

=
C||u||C̃0,γ(B)

|λ|

∫
[0,1)×∂B

x′
ϵ−1

dx′dy′

≤ C̃

|λ|
||u||C̃0,γ(B).

(5.17)

For the second case, x ∈ [0, 1) and x′ > 1, we need to use that k̃ decays to zero at infinity. First,
let us consider k̃(λ, x, y, x′, y′) = f(λ)a(x, y)b(x′, y′) with a ∈ Sγ+ϵ0 (∂B∧) and b ∈ S−γ+ϵ

0 (∂B∧) and
f ∈ Sµ(Λ). Therefore, for all m ∈ N0 we have that |b(x′, y′)| ≤ C|x′|−m. Now, with this in mind, we
have that

sup
(x,y)∈[0,1)×∂B

|x
n+1
2

−γκ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
u|

= sup
(x,y)∈[0,1)×∂B

|
∫
[1,∞)×∂B

x
n+1
2

−γ k̃(λ, x, y, x′, y′)u(x′, y′)x′n|dx′dy′

= sup
(x,y)∈[0,1)×∂B

|
∫
[1,∞)×∂B

x
n+1
2

−γf(λ)a(x, y)b(x′, y′)u(x′, y′)x′n|dx′dy′

= sup
(x,y)∈[0,1)×∂B

|
∫
[1,∞)×∂B

x
n+1
2

−γf(λ)a(x, y)b(x′, y′)x′−
n+1
2

+γx′
n+1
2

−γu(x′, y′)x′n|dx′dy′

= sup
(x,y)∈[0,1)×∂B

|
∫
[1,∞)×∂B

x
n+1
2

−γf(λ)a(x, y)b(x′, y′)x′
n−1
2

+γx′
n+1
2

−γu(x′, y′)|dx′dy′.

(5.18)

Here, by definition of the space Sγ+ϵ0 (∂B∧), we have |x
n+1
2

−γa(x, y)| ≤ K|x|ϵ for some K, ϵ > 0.

Then, supx∈[0,1)×∂B |x
n+1
2

−γa(x, y)| < ∞. Besides, as u ∈ C̃0,γ(B) it follows that |x′
n+1
2

−γu(x′, y′)| ≤
||u||C̃0,γ(B). Besides,

|x′
n−1
2

+γ
b(x′, y′)| ≤ C1|x′|−l,

for any l > 1 because b is rapidly decreasing when x′ goes to ∞. Therefore, its last term is an

integrable function in [1,∞). On the other hand, we recall that f(λ) is bounded by C̃
|λ| for some scalar

C̃. Therefore, (5.17) and (5.18) imply

sup
(x,y)∈[0,1)×∂B

|κ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
u(x, y)| ≤ C

|λ|
||u||C̃0,γ(B).
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For the case x′ ∈ [0, 1) and x ∈ [1,∞)

sup
(x,y)∈[1,∞)×∂B

|x
n+1
2

−γκ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
u|

≤ sup
(x,y)∈[1,∞)×∂B

|
∫
[0,1)×∂B

x
n+1
2

−γ k̃(λ, x, y, x′, y′)u(x′, y′)x′n|dx′dy′

= sup
(x,y)∈[1,∞)×∂B

∫
[0,1)×∂B

|x
n+1
2

−γf(λ)a(x, y)b(x′, y′)u(x′, y′)x′n|dx′dy′.

(5.19)

For this case, we use that |a(x, y)| ≤M |x|−l for some l such that n+1
2 − γ < l. Then,

sup
x∈[1,∞)

|x
n+1
2

−γa(x, y)| ≤M.

Besides, we have that

|b(x′, y′)u(x′, y′)x′n| = |x′
n+1
2

+γ−ϵb(x′, y′)x′
n+1
2

+γu(x′, y′)x′
−1+ϵ| ≤M ||u||C̃0,γ(B)|x

′|−1+ϵ. (5.20)

Since f(λ) is bounded by C
|λ| , then

sup
x∈[1,∞)×∂B

∣∣∣∣∣
∫
[0,1)×∂B

x
n+1
2

−γf(λ)a(x, y)b(x′, y′)u(x′, y′)x′n

∣∣∣∣∣ dx′dy′ ≤ M2

|λ|
||u||C̃0,γ(B).

Finally, when x, x′ > 1 we have

sup
(x,y)∈[1,∞)×∂B

|x
n+1
2

−γκ−1

[λ]
1
µ
G(λ)κ

[λ]
1
µ
u|

= sup
x∈[1,∞)×∂B

|
∫
[1,∞)×∂B

x
n+1
2

−γ k̃(λ, x, y, x′, y′)u(x′, y′)x′n|dx′dy′

= sup
x∈[1,∞)×∂B

|
∫
[1,∞)×∂B

x
n+1
2

−γf(λ)a(x, y)b(x′, y′)u(x′, y′)x′n|dx′dy′.

(5.21)

Now we use that x
n+1
2

−γa(x, y) is bounded by |x|p for some p < −1 and b(x′, y′)u(x′, y′)x′n is bounded
in the same way as we did above. Therefore, we can conclude by similar way the estimate that we
require. We remark that in our computations we have used constantly properties of the tensorial
product, see Theorem 5.2.1. The proof for general k follows by taking limits as in Theorem 5.2.1.

The last term that we will analyse is ω0x
µopγMg(λ)ω1. Before we do, we recall that g(x, y, z, λ) =

g̃(x, y, z, xµλ) with g̃ ∈ C∞(R+,M
−µ,µ
O (∂B,Λ)), which implies that

opγM g̃(λ)u =

∫
Rn

∫
Rez=n+1

2
−γ
x−zeixξ g̃(x, y,

n+ 1

2
− γ + iτ, ξ, λ)(MFu)(z, ξ)dτdξ

represents the general form.

Lemma 5.4.5. Let a : Rn+1
+ × Rn+1 × Λ → C be an operator given by

a(x, y, τ, ξ, λ) := ω(x)xµg̃(x, y, τ, ξ, xµλ).

Then,

|(x∂x)k∂βy ∂α(τ,ξ)a(x, y, τ, ξ, λ)| ≤ C(1 + |τ |+ |ξ|+ |λ|
1
µ )−µ(1 + |τ |+ |ξ|)−|α|

for all k ∈ N0, β, α ∈ Nn0 .
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Proof. First, let us suppose that k = |α| = |β| = 0. In this case, since we only need to consider
x ∈ [0, 1), we have

|ω(x)xµg̃(x, y, τ, ξ, xµλ)| ≤ xµ(1 + |τ |+ |ξ|+ |xµλ|
1
µ )−µ

=
xµ(1 + |τ |+ |ξ|+ |λ|

1
µ )µ

(1 + |τ |+ |ξ|+ |xµλ|
1
µ )µ

(1 + |τ |+ |ξ|+ |λ|
1
µ )−µ

=
xµ(1 + |τ |+ |ξ|+ |λ|

1
µ )µ

xµ(x−1(1 + |τ |+ |ξ|) + |λ|
1
µ )µ

(1 + |τ |+ |ξ|+ |λ|
1
µ )−µ

=
(1 + |τ |+ |ξ|+ |λ|

1
µ )µ

(x−1(1 + |τ |+ |ξ|) + |λ|
1
µ )µ

(1 + |τ |+ |ξ|+ |λ|
1
µ )−µ

≤ (1 + |τ |+ |ξ|+ |λ|
1
µ )−µ.

(5.22)

For the general case, we need to observe the general form for the derivatives that appear. So, we remark
that (x∂x)

kxµ = µkxµ and (x∂x)
kg̃(x, y, τ, ξ, xµλ) =

∑
k1+k2=k

xk2µλk2(x∂x)
k2∂k3λ g̃(x, y, τ, ξ, x

µλ).
Therefore, by the previous observation, we have that

|(x∂x)k∂βy ∂α(τ,ξ)ω(x)x
µg̃(x, y, τ, ξ, xµλ)| = |(x∂x)kω(x)xµ∂βy ∂α(τ,ξ)g̃(x, y, τ, ξ, x

µλ)|

≤
∑

k2+k3=k

|ω̃(x)x(k2+1)µλk2(x∂x)
k2∂k3λ ∂

β
y ∂

α
(τ,ξ)g̃(x, y, τ, ξ, x

µλ)|

≤
∑

k2+k3=k

C|xµλ|k2xµ(1 + |τ |+ |ξ|+ |xµλ|
1
µ )−µ−µk2−|α|

=
∑

k2+k3=k

C|xµλ|k2(1 + |τ |+ |ξ|+ |xµλ|
1
µ )−µk2xµ(1 + |τ |+ |ξ|+ |xµλ|

1
µ )−µ(1 + |τ |+ |ξ|+ |xµλ|

1
µ )−|α|

≤ C̃(1 + |τ |+ |ξ|+ |λ|
1
µ )−µ(1 + |τ |+ |ξ|)−|α|,

(5.23)

since we apply the same argument as we did in (5.22) to each term in last inequality of (5.23).

Proposition 5.4.4. Let g̃ ∈ C∞(R+,M
−µ,µ
O (∂B,Λ)). Then ωxµopγ−

n
2 (g̃(xµλ))ω0 has a continuous

extension to an operator in L(C0,γ(B)). Moreover,

∥ωxµopγ−
n
2 (g̃(xµλ))ω0∥L(C0,γ(B)) ≤

C

|λ|1−ε
,

for some ε > 0.

Proof. We use the following notation for the variables: x ∈ [0,∞), λ ∈ Λ and z is from the
holomorphic map z 7→ Lµ,−µ(∂B,Λ). In particular, for each (x, z, λ) fixed, we have g̃(x, z, xµλ) ∈
L−µ(∂B). Hence,

ωopγ−
n
2 (g̃(xµλ))ω0u(x) = ω(x)

1

2πi

∫
Γn+1

2 −γ

x−z g̃(x, z, xµλ)M(ω0u)(z)dz.
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In a local coordinate, the operator ωopγ−
n
2 (g̃(xµλ))ω0 can be written, modulo a regularizing op-

erator, in the form

1

2πi

∫
Γn+1

2 −γ

x−zω(x)g̃(x, z, xµλ)M(ω0u)(z)dz

=
1

2πi

∫
Γn+1

2 −γ

x−zω(x)
1

(2π)n

∫
Rn

eiyξ g̃(x, y, z, ξ, xµλ)Fy→ξMx→z(ω0u)(z, ξ)dξdz.

(5.24)

With some abuse of notation, we denote by g̃(x, y, τ, ξ, xµλ) and Fy→ξMx→z(ω0u)u(x, τ) the func-
tions g̃(x, y, n+1

2 − γ + iτ, ξ, xµλ) and Fy→ξMx→z(ω0u)u(x,
n+1
2 − γ + iτ), respectively.

We notice also that for z ∈ Γn+1
2

−γ , the Mellin transform can be transformed into the Fourier

transform, as follows:

Mx→zv(z) =

∫ ∞

0
xz−1v(x)dx =

∫ ∞

0
x

n+1
2

−γ+iτ−1v(x)dx =

∫ ∞

−∞
e−s(

n+1
2

−γ+iτ)v(e−s)ds

=

∫ ∞

−∞
e−isτe−s(

n+1
2

−γ)v(e−s)ds = Fs→τ

(
e−s(

n+1
2

−γ)v(e−s)
)
.

Hence, if x = e−s, then Equation (5.24) can be written as

1

2π

∫ ∞

−∞
x−

n+1
2

+γ−iτω(x)
1

(2π)n

∫
Rn

eiyξ g̃(x, y, τ, ξ, xµλ)

×Fy→ξFs→τ

(
e−s(

n+1
2

−γ)ω0(e
−s)u(e−s, y)

)
(τ, ξ)dξdτ

= e(
n+1
2

−γ)s 1

(2π)n+1

∫
Rn+1

eiτs+iyξω(e−s)g̃(e−s, y, τ, ξ, e−µsλ)

×Fy→ξFs→τ

(
e−(n+1

2
−γ)sω0(e

−s)u(e−s, y)
)
(τ, ξ)dξdτ.

Therefore, in order to finish the proof, we will show that op(ω(e−s)e−µsg̃(e−s, y, τ, ξ, e−µsλ))
satisfies the condition of Case 3 of Theorem 4.3.1. In fact, if we change x by e−s we have that
a(s, y, τ, ξ, λ) := ω(e−s)e−sµg̃(e−s, y, τ, ξ, e−sµλ) satisfies the conditions of Lemma 5.4.5. This, means
that

|∂β(s,y)∂
α
(τ,ξ)a(s, y, τ, ξ, λ)| ≤ C(1 + |τ |+ |ξ|+ |λ|

1
µ )−µ(1 + |τ |+ |ξ|)−|α|,

which is the case 3) in Theorem 4.3.1. Therefore, for u ∈ C0,γ(B) and using the estimates above, we
have that

∥x
n+1
2

−γωxµopγ−
n
2 (g̃(xµλ)u)ω0∥L∞(R+×Rn) ≤ C⟨η⟩−µ+ϵ = C

⟨|λ|
1
µ ⟩µ−ϵ

||x
n+1
2

−γu||L∞(R+×Rn),

where |λ|
1
µ = η, or equivalently,

∥ωxµopγ−
n
2 (g̃(xµλ)u)ω0∥L(C0,γ(B)) ≤

C

|λ|1−ε
.

Proposition 5.4.1,5.4.2,5.4.3,5.4.4 imply that A : D(A) → C0,γ(B) is an almost sectorial operator.
Therefore, we conclude the proof of Theorem 5.4.1.
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5.5 Almost sectorial operators in C1,γ(B)
In this section we will prove almost sectoriality for an elliptic operator defined on C1,γ(B) spaces. We
consider elliptic operators A that satisfy the condition of Definition 5.3.1 and we study each component
of the resolvent of A, which is given by

(λ−A)−1 = ω1(x
µopγMg(λ) +G(λ))ω2 + (1− ω1)P (λ)(1− ω3) +G∞(λ) (5.25)

as we have seen in Theorem 5.3.1. Next, we state two lemmas in order to prove the almost sectoriality
in C1,γ(B).

Lemma 5.5.1. Let p ∈ C∞(Rn ×Rn ×Λ) such that (x, ξ) 7→ p(x, ξ, λ) ∈ Sµ(Rn ×Rn), µ ∈ R, for all
λ ∈ Λ. Then, we have that:

∂xjop(p(x, ξ, λ))u = op(∂xjp(x, ξ, λ))u+ op(p(x, ξ, λ))∂xju

Proof. By definition,

∂xjop(p(x, ξ, λ))u

= ∂xj

(
1

(2π)n

∫
Rn

eix·ξp(x, ξ, λ)Fu(ξ)dξ

)
=

1

(2π)n

∫
Rn

iξje
ix·ξp(x, ξ, λ)Fu(ξ)dξ +

1

(2π)n

∫
Rn

eix·ξ∂xjp(x, ξ, λ)Fu(ξ)dξ

=
1

(2π)n

∫
Rn

eix·ξp(x, ξ, λ)F[∂xju](ξ)dξ +
1

(2π)n

∫
Rn

eix·ξ∂xjp(x, ξ, λ)Fu(ξ)dξ

= op(p(x, ξ, λ))∂xju+ op(∂xjp(x, ξ, λ))u,

(5.26)

or equivalently, with notation of commutator operator, [∂xj , op(p)] = op(∂xjp).

Lemma 5.5.2. Let p ∈ C∞(Rn × Rn × Λ) be a function that satisfies the conditions of Case 3 of
Theorem 4.3.1. Then, ||op(p)||BUC1(Rn) ≤ C

|λ|1−ε for some ε > 0. If p satisfies the conditions of Case

1 of Theorem 4.3.1, then, ||op(p)||BUC1(Rn) ≤ C
|λ| .

Proof. We prove for p satisfying Case 3 of Theorem 4.3.1. The other case is analogous and will be
omitted. By definition of the norm in BUC1(Rn), we have that

||op(p)u||BUC1(Rn) = ||op(p)u||BUC(Rn) +
n∑
j=1

||∂xjop(p)u||BUC(Rn)

≤ ||op(p)u||BUC(Rn) +

n∑
j=1

(
||op(p)∂xju||BUC(Rn) + ||op(∂xjp)u||BUC(Rn)

)
≤ C

|λ|1−ε
||u||BUC(Rn) +

n∑
j=1

(
C

|λ|1−ε
||∂xju||BUC(Rn) +

C

|λ|1−ε
||u||BUC(Rn)

)
≤ C1

|λ|1−ε
||u||BUC1(Rn).

(5.27)
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Theorem 5.5.3. Let A be as in Definition 5.3.1. For some c ∈ R, we have that

c+A : D(A) → C1,γ(B)

is an almost sectorial operator, where D(A) = (λ−A)−1(C1,γ(B)) for some λ ∈ Λ.

Remark 5.5.1. The following proof is based on Roidos and Schrohe, see Theorem 3.3 in [26].

Proof. In order to show this result, we will estimate all the terms that appear in (5.25) and we will
use that the norm in C1,γ(B) is given in terms of the norm in C0,γ(B). More specifically, we have
|| · ||C1,γ(B) = || · ||C0,γ(B) + ||x∂x(·)||C0,γ(B) +

∑n
i=1 ||∂yi(·)||C0,γ(B).

First, we study the term opγMg(λ).
For x∂x derivative, we have

(x∂x)(op
γ
Mg(λ)u(x, y))

= (x∂x)

∫
Γ
x−zg(x, y, z, λ)Mu(x, y)(z)dz

= (x∂x)

∫
Γ
x−zg(x, y, z, λ)

∫ ∞

0
x′z−1u(x′, y)dx′dz

= (x∂x)

∫
Γ

∫ ∞

0

(
x′

x

)z
g(x, y, z, λ)u(x′, y)

dx′

x′
dz

= (x∂x)

∫
Γ

∫ ∞

0

(
x′

x

)z
g̃(x, y, z, λxµ)u(x′, y)

dx′

x′
dz

=

∫
Γ

∫ ∞

0

[
(x∂x)

(
x′

x

)z
g̃(x, y, z, λxµ) +

(
x′

x

)z
(x∂x)g̃(x, y, z, λx

µ)

]
u(x′, y)

dx′

x′
dz

=

∫
Γ

∫ ∞

0
−z
(
x′

x

)z
g̃(x, y, z, λxµ)u(x′, y)

dx′

x′
dz +

∫
Γ

∫ ∞

0

(
x′

x

)z
x∂xg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz

+

∫
Γ

∫ ∞

0

(
x′

x

)z
λµxµ∂λg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz

= −
∫
Γ

∫ ∞

0

(
x′∂x′

(
x′

x

)z)
g̃(x, y, z, λxµ)u(x′, y)

dx′

x′
dz+∫

Γ

∫ ∞

0

(
x′

x

)z
x∂xg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz +

∫
Γ

∫ ∞

0

(
x′

x

)z
λµxµ∂λg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz

=

∫
Γ

∫ ∞

0

(
x′

x

)z
g̃(x, y, z, λxµ)

(
(x′∂x′)

u(x′, y)

x′

)
dx′dz+∫

Γ

∫ ∞

0

(
x′

x

)z
x∂xg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz +

∫
Γ

∫ ∞

0

(
x′

x

)z
λµxµ∂λg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz

=

∫
Γ

∫ ∞

0

(
x′

x

)z
g̃(x, y, z, λxµ)

(
x′∂x′u(x

′, y)
1

x′
− u(x′, y)

1

x′

)
dx′dz+∫

Γ

∫ ∞

0

(
x′

x

)z
x∂xg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz +

∫
Γ

∫ ∞

0

(
x′

x

)z
λµxµ∂λg̃(x, y, z, x

µλ)u(x′, y)
dx′

x′
dz

= L(g̃),

(5.28)
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where g̃ is given by the relation g(x, z, λ) = g̃(x, z, xµλ). In local charts, we have

||xµ(x∂x)opγMg(λ)u(x, y)||C0,γ(B)

= ||x
n+1
2

−γ+µ(x∂x)op
γ
Mg(λ)u(x, y)||L∞(R+×Rn)

≤ ||x
n+1
2

−γ+µopγM g̃(λ)(x∂xu)||L∞(R+×Rn) + ||x
n+1
2

−γ+µopγM g̃(λ)u||L∞(R+×Rn)

+ ||x
n+1
2

−γ+µopγM (x∂xg̃)(λ)(u)||L∞(R+×Rn) + ||λµxµx
n+1
2

−γ+µopγM (∂λg̃)(λ)(u)||L∞(R+×Rn).

(5.29)

Now we notice that all the terms have the same behaviour as opγMg(λ). As a consequence, we have
that

||xµ(x∂x)opγMg(λ)u(x, y)||C0,γ(B) ≤
M ||u||C1,γ(B)

|λ|1−ε
,

due to the term x∂x and Proposition 5.4.4.
On the other hand,

(x∂x)[ω1(x
µopγMg(λ))ω2] = (x∂xω1)x

µopγMg(λ)+µω1x
µopγMg(λ)ω2+ω1x

µopγMg(λ)(x∂xω2)+ω1x
µL(g̃)ω2.
(5.30)

We notice that all the terms in (5.30) are uniformly bounded in C0,γ(B) by M
|λ|1−ε for larger λ, hence

||(x∂x)[ω1(x
µopγMg(λ))ω2]u||C0,γ(B) ≤

M

|λ|1−ε
||u||C1,γ(B).

Below we analyse the terms with ∂yi . By Lemma 5.5.1 we have that

∂yjx
µopγMg(λ)u = xµopγMg(λ)∂yju+ xµopγM∂yjg(λ)u,

which is uniformly bounded in C0,γ(B) by M
|λ|1−ε for larger λ by a similar analysis as before, that is

||(∂yi)[ω1(x
µopγMg(λ))ω2]u||C0,γ(B) ≤

M

|λ|1−ε
||u||C1,γ(B).

As a consequence, by Lemma 5.5.2 we have that

∥ωxµopγ−
n
2 (g(λ))ω0u∥C1,γ(B) = ||ωxµopγ−

n
2 (g(λ))ω0u||C0,γ(B) + ||(x∂x)ωxµopγ−

n
2 (g(λ))ω0u||C0,γ(B)

+ ||
n∑
j=1

∂yjωx
µopγ−

n
2 (g(λ))ω0u||C0,γ(B)

≤ C

|λ|1−ε
∥u∥C0,γ(B) +

M1

|λ|1−ε
||x∂xu||C0,γ(B) +

n∑
j=1

Mj

|λ|1−ε
||∂ju||C0,γ(B)

≤ C̃

|λ|1−ε
∥u∥C1,γ(B),

(5.31)

Second, we study the behaviour of G∞(λ), G(λ) and P (λ).
For the term G(λ), we will estimate the terms (x∂x)G(λ) and ∂yG(λ). We note that since G(λ) ∈
R−µ,µ
G (∂B∧; Λ, γ), it has a kernel with respect to the K0,0

2 (∂B∧) scalar product of the form

k(λ, x, y, x′, y′) = [λ]
n+1
µ k̃(λ, [λ]

1
µx, y, [λ]

1
µx′, y′)
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where k̃ ∈ S−1(Λ)⊗ Sγ+ϵ0 (∂B∧)⊗ S−γ+ϵ
0 (∂B∧). Then,

(x∂x)G(λ)u(x, y) = (x∂x)

∫
∂B∧

[λ]
n+1
µ k̃(λ, [λ]

1
µx, y, [λ]

1
µx′, y′)u(x′, y′)x′ndx′dy′

=

∫
∂B∧

[λ]
n+1
µ (x∂x)k̃(λ, [λ]

1
µx, y, [λ]

1
µx′, y′)u(x′, y′)x′ndx′dy′,

(5.32)

and (x∂x)k̃(λ, [λ]
1
µx, y, [λ]

1
µx′, y′) = [λ]

1
µx∂xk̃(λ, [λ]

1
µx, y, [λ]

1
µx′, y′) = (x∂xk̃)(λ, [λ]

1
µx, y, [λ]

1
µx′, y′)

and x∂xk̃ ∈ S−1(Λ) ⊗ Sγ+ϵ0 (∂B∧) ⊗ S−γ+ϵ
0 (∂B∧). Analogously, we have the same estimate for the

term ∂yG(λ). Therefore, we have the same boundedness in L(C0,γ(B)). This implies that all the terms
are bounded in L(C1,γ(B)) by a constant M

|λ| . The operator G∞(λ) have behavior of order O(|λ|−N )
in the norm C1,γ(B) for any N ∈ N0. For the operator P (λ), we use Lemma 5.5.2. Therefore, using
Case 1, ||P (λ)||L(C1,γ(B)) is bounded by M

|λ| and with this, we finish the proof of the theorem.

5.6 Application for Almost Sectorial Operators

In order to finish this work, we give an application for almost sectorial operators (see Definition 2.1.3).
In this case, we will use Theorem 5.4.1. Let B be a conic manifold. Consider the following equation

ut = ∆u+ f(t, u) on B, t > 0

u(0, x) = u0(x) on B.
(5.33)

Let X be a complex Banach space. For ω ∈ (0, π2 ) we have the following definition. For more details,
see [10].

Definition 5.6.1. Let A : D(A) → X be an almost sectorial operator in Λ(ϕ). We define the family
of operators {T (t) : t ∈ C \ {0}, |arg t| < π

2 − ϕ} by

T (t) :=
1

2πi

∫
Γθ

e−tz(z −A)−1dz,

where Γθ = {re−iθ : r > 0} ∪ {reiθ : r > 0} with ϕ < θ < π
2 is oriented counter-clockwise.

The mild solution of (5.33) is defined by the continuous solution u : (0, T ] → X of the integral
equation

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s, u(s))ds.

For T > 0 and fixed δ > 0, we define the metric space

K(T, u0) = {v ∈ C((0, T ], X) : sup
0<t≤T

||v(t)− T (t)u0||X ≤ δ}.

The metric is defined as

ϱT (v1, v2) = sup
0<t≤T

||v1(t)− v2(t)||X for v1, v2 ∈ K(T, u0).

Remark 5.6.1. In order to show the existence of mild solution to (5.33) we notice that, for u0 ∈ D(A)
we have that the function [0,∞) ∋ t→ T (t)u0 ∈ X is continuous and the sets where ||x−T (t)u0|| ≤ δ
are bounded. For more details see [10].
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We use the following proposition.

Proposition 5.6.1. Let A : D(A) → X be an almost sectorial operator and f in (5.33) be a Lipschitz
continuous function. More precisely, we require that:

1) ∃L > 0, ∀0 < t ≤ T, ∀x, y ∈ X : ||x− T (t)u0||X , ||y − T (t)u0||X ≤ δ then ||f(t, x)− f(t, y)||X ≤
L||x− y||X . And that f is bounded there.

2) ∃N > 0, ∀0 < t ≤ T, ∀x ∈ X : ||x− T (t)u0||X ≤ δ then ||f(t, x)||X ≤ N .
Then for sufficiently small positive τ0 ≤ T there is a mild solution to (5.33) in K(T, u0).

Proof. See Proposition 2 in [12].
Finally, we show the application to (5.33) with the non linear term,

f : X → X,

with f(u) := ωu+(1−ω)u3 and X := C0,γ(B), where ω is a cutoff function defined in a neighborhood
of the conic manifold B and u0 ∈ D(A) = (λ −∆)−1(C0,γ(B)), for large λ ∈ Λ. We assume that γ is
such that ∆ satisfies the conditions of Definition 5.3.1, see [9]. We notice that

||f(u)− f(v)||C0,γ(B)

= ||ωu+ (1− ω)u3 − ωv − (1− ω)v3||C0,γ(B)

= ||ω(u− v) + (1− ω)(u3 − v3)||C0,γ(B)

≤ ||u− v||C0,γ(B) + ||(1− ω)(u3 − v3)||C0,γ(B)

= ||u− v||C0,γ(B) + ||(u− v)(1− ω)(u2 + uv + v2)||C0,γ(B)

≤ ||u− v||C0,γ(B)

(
1 + ||

√
(1− ω)u||2L∞(B) + ||

√
(1− ω)u||L∞(B)||

√
(1− ω)v||L∞(B) + ||

√
(1− ω)v||2L∞(B)

)
≤ ||u− v||C0,γ(B)

(
1 +

3

2
(||
√

(1− ω)u||2L∞(B) + ||
√

(1− ω)v||2L∞(B))

)
≤ L||u− v||C0,γ(B),

(5.34)

where we have used that far from the singularity || · ||C0,γ(B) = || · ||L∞(B) and u, v ∈ B ⊂ C0,γ(B), where
B is a bounded subset, see Remark 5.6.1. Moreover, with the same arguments we obtain

||f(u)||C0,γ(B) = ||ωu+ (1− ω)u3||C0,γ(B)

= ||ωu− (1− ω)u+ (1− ω)u+ (1− ω)u3||C0,γ(B)

≤ ||u||C0,γ(B) + ||(1− ω)(u3 − u)||C0,γ(B)

≤ ||u||C0,γ(B) + ||(1− ω)(u3 − u)||L∞(B)

≤ ||u||C0,γ(B)

(
1 + (||u||2C0,γ(B) + 1)

)
≤ N,

(5.35)

for some constant N . As a consequence, by Proposition 5.6.1 we prove that (5.33) with this particular
f has a mild solution in a conic manifold B.
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[12] J. Escher, J. Seiler, “Bounded H∞-Calculus for Pseudodifferential Operators and Applications to
the Dirichlet-Neumann Operator”, Transactions of the American Mathematical Society, Volume
360, Number 8, August 2008, Pages 3945-3973, S 0002-9947(08) 04589-3, Article electronically
published on March 13, 2008.

[13] Juan B. Gil, T. Krainer, G. A. Mendoza,“Resolvents of elliptic cone operators ”, Journal of
functional analysis 241(2006), 1-55.

[14] G. Grubb, “Distributions and operators”,Springer, 2010.

67



[15] A. Hatcher, “Algebraic Topology”, Coyright, Cambridge University Press, 2002.

[16] D. Henry , “Geometric Theory of semilinear parabolic equations”, Springer-Verlag Berlin Heidel-
berg New York, 1981.

[17] M. Lesch, “Operators of Fuchs type, conical singularities and asymptotic methods”, Teubner-
Texte zur Mathematik 136, Teubner-Verlag, Stuttgart, 1997.

[18] P. Lopes, N. Roidos “Existence of Global Attractors and Convergence for Solutions for the Cahn-
Hilliard Equation on manifolds with conical singularities”, Journal of Mathematical Analysis and
Applications, Volume 531, Issue 2, Part 2, 2024, 127851, ISSN 0022-247X.

[19] P. Lopes, N. Roidos “Smoothness and Long Time Existence for Solutions of the Cahn-Hilliard
Equation on manifolds with conical singularities”, Monatsh Math 197, 677–716 (2022).

[20] Alessandra Lunardi, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”,
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