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Resumo

DALLE VEDOVE, G.: Chaos and Turing Mahines on Bidimensional Models

at Zero Temperature. 2020. 89 f. Tese (Doutorado) - Instituto de Matemátia e

Estatístia, Universidade de São Paulo e Eole Dotorale Mathématiques et Informatique,

Universidade de Bordeaux. São Paulo, 2020.

Em meânia estatístia de equilíbrio ou formalismo termodinâmio um dos prinipais

objetivos é desrever o omportamento das famílias de medidas de equilíbrio para um dado

potenial parametrizado pelo inverso da temperatura β. Entendemos aqui por medidas de

equilíbrio as medidas shift invariantes que mazimizam a pressão. Diversas onstruções já

demonstraram um omportamento aótio destas medidas quando o sistema ongela, ou

seja, β Ñ �8. Um dos prinipais exemplos é o onstruído por Chazottes e Hohman [11℄

onde eles onseguem provar a não onvergênia de uma família de medidas de equilíbrio

para um dado potential loalmente onstante nos asos onde a dimensão é maior ou igual

a 3. Neste trabalho apresentaremos a onstrução de um exemplo no aso bidimensional

sobre um alfabeto �nito e um potenial loalmente onstante tal que existe uma sequenia

pβkqk¥0 onde não oorre a onvergênia para qualquer sequênia de medidas de equilíbrio

ao inverso da temperatura βk quando βk Ñ �8. Para tal, usaremos a onstrução desrita

por Aubrun e Sablik em [2℄ que melhora o resultado de Hohman [19℄ usado na onstrução

de Chazottes e Hohman [11℄.

Palavras-have: formalismo termodinâmio, medida de equilíbrio, subshift.
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Abstrat

DALLE VEDOVE, G.: Chaos and Turing Mahines on Bidimensional Models at

Zero Temperature. 2020. 89 f. Thesis (Dotor in Siene) - Instituto de Matemátia e

Estatístia, Universty of São Paulo and Eole Dotorale Mathématiques et Informatique,

University of Bordeaux. São Paulo, 2020.

In equilibrium statistial mehanis or thermodynamis formalism one of the main

objetives is to desribe the behavior of families of equilibrium measures for a potential

parametrized by the inverse temperature β. Here we onsider equilibrium measures as the

shift invariant measures that maximizes the pressure. Other onstrutions already prove

the haoti behavior of these measures when the system freezes, that is, when β Ñ �8.

One of the most important examples was given by Chazottes and Hohman [11℄ where

they prove the non-onvergene of the equilibrium measures for a loally onstant poten-

tial when the dimension is bigger than or equal to 3. In this work we present a onstrution

of a bidimensional example desribed by a �nite alphabet and a loally onstant potential

in whih there exists a subsequene pβkqk¥0 where the non-onvergene ours for any

sequene of equilibrium measures at inverse temperatures βk when βk Ñ �8. In order

to desribe suh an example, we use the onstrution desribed by Aubrun and Sablik [2℄

whih improves the result of Hohman [19℄ used in the onstrution of Chazottes and

Hohman [11℄.

Keywords: thermodynami formalism, equilibrium measure, subshift.
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Résumé

DALLE VEDOVE, G.: Chaos and Turing Mahines on Bidimensional Models

at Zero Temperature. 2020. 89 f. Thèse (Dotorat) - Instituto de Matemátia e

Estatístia, Université de São Paulo e Eole Dotorale Mathématiques et Informatique,

Université de Bordeaux. São Paulo, 2020.

En méanique statistique d'équilibre ou formalisme thermodynamique un des obje-

tifs est de dérire le omportement des familles de mesures d'équilibre pour un potentiel

paramétré par la température inverse β. Nous onsidérons ii une mesure d'équilibre

omme une mesure shift invariante qui maximise la pression. Il existe d'autres onstru-

tions qui prouvent le omportement haotique de es mesures lorsque le système se �ge,

'est-à-dire lorsque β Ñ �8. Un des exemples les plus importants a été donné par Cha-

zottes et Hohman [11℄ où ils prouvent la non-onvergene des mesures d'équilibre pour

un potentiel loalement onstant lorsque la dimension est supérieure à 3. Dans e travail,

nous présentons une onstrution et un exemple potentiel loalement onstant tel qu'il e-

xiste une suite pβkqk¥0 où la non-onvergene est assurée pour toute hoix suite de mesures

d'équilibre à l'inverse de la température βk lorsque βk Ñ �8. Pour ela nous utilisons

la onstrution dérite par Aubrun et Sablik [2℄ qui améliore le résultat de Hohman [19℄

utilisé dans la onstrution de Chazottes et Hohman [11℄.

Mots lés: formalisme thermodynamique, measure d'équilibre, déalage.
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Chapter 1

Introdution

One of the most important problems in equilibrium statistial mehanis onsists in des-

ribing families of Gibbs states for a given potential or an interation family. We work

with lassial lattie systems, whih means that our on�guration spae will be

Σd
pAq :� AZ

d

where A is a �nite set and d P N is the dimension of our lattie. Let us introdue the

funtion

ϕ : Σd
pAq Ñ R

whih is alled per site potential and an be physially interpreted as the energy on-

tribution of the origin of the lattie for eah on�guration x P Σd
pAq, sine we are only

onsidering only translation invariant measures.

Given these elements we denote for every β ¡ 0 the set Gpβϕq whih is the set of Gibbs

measures assoiated to βϕ at the inverse temperature β. The are several de�nitions we

ould onsider as a Gibbs measure, using onformal measures, DLR equations, thermo-

dynami limits et. See Georgii [17℄, the lassial book about Gibbs measures and [25℄

for the equivalene of several of these de�nitions. By ompatness we know that this set

has at least one shift translation invariant Gibbs measure. In the present thesis we are

interested on the behavior of the set of Gibbs measures whih are translational-invariant

probability measures, alled equilibrium measures, when the temperature goes to zero,

that is, when β Ñ �8.

A probability measure µβ over Σd
pAq is an equilibrium measure (or equilibrium state)

at inverse temperature β ¡ 0 for a potential βϕ if it is a shift invariant (or translation

invariant) measure whih maximizes the pressure, that is if

P pβϕq :� sup
µPMσpΣ

d
pAqq

"

hpµq �

»

βϕdµ

*

� hpµβq �

»

βϕdµβ.

15



16 CHAPTER 1. INTRODUCTION

We will onsider later the whole set of equilibrium measures µβ whih maximize the

pressure P pβϕq above over all shift invariant probability measures on Σd
pAq. The funtion

hpνq in the expression of P pβϕq is the Kolmogorov-Sinai entropy of ν.

In the one-dimensional ase if a potential ϕ is Hölder ontinuous we always have a

unique Gibbs measure whih is also the only equilibrium measure. For a dimension d ¡ 1

the situation is dramatially di�erent and we an have multiple Gibbs states even for a

potential with �nite range, the most famous example is the Ising model.

The zero-temperature equilibrium states (ground states) are the shift invariant prob-

ability measures whih minimize

»

ϕdν

over all shift-invariant probability measures ν. In other words, given a potential, we have

that the weak* aumulation points of equilibrium states as β Ñ �8 are neessarily

minimizing measures for the potential ϕ. A more detailed study on the limit when the

system freezes and how it is related with the on�gurations with minimal energy an be

found in [36℄.

Chazottes and Hohman [11℄ showed in the one-dimensional ase an example of a

Lipshitz potential ϕ (but long-range) where the sequene µβϕ does not onverge when

β Ñ �8. Here µβϕ is the unique shift-invariant Gibbs measure (or the unique Gibbs

measure) at the inverse temperature β ¡ 0 (whih is also the unique equilibriummeasure).

On the other hand, [8, 10, 16, 27℄ showed that an interation of �nite-range in the one-

dimensional ase over a �nite alphabet implies the onvergene of µβϕ. The ase when

A is a ountable set was also studied in [23℄. The breakthrough for the onstrution of

examples of the non-onvergene was given by van Enter and W. Ruszel [37℄, where an

example of �nite range potential on a ontinuous state spae and haoti behavior was

onstruted. Reently the argument of van Enter and Ruszel was implemented for the

ase where A is a �nite set in [7, 3, 12℄.

Chazottes and Hohman [11℄ also showed that the same kind of non-onvergene may

our when the dimension is d ¥ 3 even for a loally onstant potential. The onstrution

of their example is possible only for d ¥ 3 beause they rely heavily on the theory of

multidimensional subshifts of �nite type and Turing Mahines, developed by Hohman [19℄

that provides a method to transfer a one-dimensional onstrution to a higher-dimensional

subshift of �nite type. Thanks to Hohman's theorem, Chazottes and Hohman ould

onstrut an example for d � 3 with a potential ϕ loally onstant on a �nite state spae.

Their onstrution an be easily extended to any dimension d ¥ 3. These results led

us to believe that the statement is also true for d � 2. Our main result is two-fold: we

extend Chazottes-Hohman's theorem of haoti behavior to dimension 2 using a di�erent

approah involving the spae-time diagram of a Turing mahine developed by Aubrun-

Sablik and we larify the role of the reonstrution and relative omplexity funtion of the
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extension by a subshift of �nite type that is missing in Chazottes-Hohman's arguments.

The main result of Aubrun and Sablik [2℄, alled simulation theorem, asserts that

any d-dimensional subshift de�ned by a set of forbidden patterns that is enumerated by

a Turing mahine is a subation of a pd � 1q-dimensional subshift of �nite type. There

are other works in whih the simulation results obtained so far in this theory have been

improved [14, 15℄. In these works they improve the results obtained so far by dereasing

the dimension of the subshift of �nite type whih generates the e�etive subshift, but they

are based on Kleene's �xed point theorem and they do not uses geometri arguments.

The onstrution of Aubrun and Sablik [2℄ improves the method of Hohman [19℄,

beause they inrease the dimension by 1 and this leads us to improve the Chazottes and

Hohman [11℄ onstrution for the dimension 2.

In the seond hapter we present the main de�nitions of thermodynami formalism

and omputability, lassial results and standard notations. We begin with the de�nition

of subshifts and de�ne a speial lass of subshifts based on the onatenation of bloks of

the same size in order to form eah possible on�guration. In the seond setion of this

hapter we provide a brief review of entropy dealing with partitions, entropy of a partition,

metri and topologial entropy and the onepts of pressure, equilibrium measure and

Gibbs measure. In the third setion we give a general idea of operations transforming a

subshift into another one based on [1℄ in order to omprehend the notion of simulating a

subshift by another one. Finally, we present a formal de�nition of a Turing mahine, how

to represent the work of a Turing mahine in a spae-time diagram and also an idea of

the onstrution of Aubrun and Sablik [2℄.

The third hapter is dediated to de�ne and onstrut our example that is inspired by

the onstrution presented in the work of Chazottes and Hohman [11℄. First we de�ne a

one-dimensional subshift based on an iteration proess that gives us at eah step bloks of

the same length that are onatenated to form a subshift as de�ned in Chapter 2. We prove

that the ontrol we have obtained over the set of forbidden words of this subshift, implies

there exists a Turing mahine that lists all of the forbidden words, that is, our subshift

is an e�etively losed subshift. From there we are able to use the simulation theorem of

Aubrun-Sablik [2℄ and obtain a bidimensional subshift of �nite type that simulates our

previous one-dimensional e�etively losed subshift. Also in the seond setion of this

hapter, we prove some important results that explain how to deonstrut a on�guration

in the 2-dimensional subshift as onatenated patterns in a given ditionary. In the third

and last part of this hapter, we de�ne a new oloring for the bidimensional subshift, as

in Chazottes and Hohman [11℄, that onsists in dupliating a distinguished symbol, in

order to transfer the entropy of the initial e�etive subshift to the simulated subshift of

�nite type.

After all these onstrutions, we end up with a bidimensional SFT X de�ned over a

�nite alphabet A, an integer D ¥ 1 and a �nite set of forbidden patterns F � AJ1,DK2
.
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We then de�ne the following loally onstant per site potential

ϕ : AZ2

� Σ2
pAq Ñ R

x ÞÑ ϕpxq � 1F pxq

where F is the lopen set equal to the union of ylinders generated by every pattern in

F .

The last hapter is dediated to prove the main result whih is the following.

Theorem 1. There exists a loally onstant potential ϕ : Σ2
pAq Ñ R, there exists a

subsequene pβkqk¥0 going to in�nity and two disjoint non-empty ompat invariant sets

XA, XB of Σ2
pAq, suh that if µβk

is an equilibrium measure at inverse temperature βk

assoiated to the potential βkϕ, the support of any weak

�

aumulation point of pµβ2k
qk¥0

is inluded in XB, the support of any weak

�

aumulation point of pµβ2k�1
qk¥0 is inluded

in XA.

The previous theorem asserts that there exists a subsequene pβkqkPN with βk Ñ �8

suh that any hoie of equilibrium measure assoiated with the potential βkϕ alternates

between two disjoint ompat sets of probability measures. That is there exists a loally

onstant per site potential that exhibits a zero-temperature haoti onvergene.

We ompute in the appendix an upper bound of the relative omplexity and reon-

strution funtions of the SFT given in [2℄; we thank S.B. for many disussions on this

topi.



Chapter 2

Subshifts

2.1 Forbidden words

In this hapter we establish the basi de�nitions, notations and main results of the objets

that we use in this work. We begin by two de�nitions of a subshift: one topologial and

one ombinatorial. These two de�nitions oinide.

We will always work with a �nite set of letters that we all alphabet and we will denote

it with a ursive letter A. With this alphabet we onstrut the set of on�gurations

de�ned over Z
d
where d ¥ 1 is the dimension.

De�nition 1. Let A be a �nite alphabet, and d ¥ 1. Let S � Z
d
be a subset. A

pattern with support S is an element of p of AS
. We write S � suppppq for the support

of the pattern p. If S 1 � S, the pattern p1 � p|S1 denotes the restrition of p to S 1. A

on�guration is a pattern with full support S � Z
d
.

When d � 1 a one-dimensional �nite pattern is alled a word.

The set of all possible Z
d
-on�gurations de�ned over an alphabet A is denoted by

Σd
pAq :� AZd

. On this set we de�ne the shift ation as follows.

De�nition 2. The shift ation on a on�guration spae Σd
pAq is a olletion σ � pσu

quPZd

suh that

σu : Σd
pAq Ñ Σd

pAq

x ÞÑ σu
pxq � y,where � v P Z

d, yv � xu�v.

We will use the same notation for the shift ating on a �nite pattern, that is, if S � Z
d

is a �nite set and p P AS
is a pattern, then we an write for all u P Z

d
the shift ating on

the pattern p as

σu
ppq � w P AS�u

where wv � uv�u, �v P S � u

Remark 1. Sometimes we will use the term shift invariant patterns for a lass of patterns

19



20 CHAPTER 2. SUBSHIFTS

p � q if and only if q � σu
ppq, for some u P Z

d
. In that sense, the shape of the support

of the pattern is �xed, but the form an be loated in any translate of this support.

Let S, T � Z
d
are two subsets, and p, q be two patterns with support S and T ,

respetively. We say that p is a sub-pattern of q, if S � T and p � q|S. Similarly we

say that p is a sub-pattern of a on�guration x P AZd

, if p � x|S. We an also say that

a pattern p P AS
appears in another pattern q P AT

(respetively, in a on�guration

x P AZ
d

) if there exists a vetor u P Z
d
suh that σu

ppq is a sub-pattern of q (respetively,

σu
ppq is a sub-pattern of x). In that ase we write p � q (respetively, p � x).

De�nition 3. If p P AS
is a pattern with support S, the ylinder generated by p, denoted

by rps, is the subset of on�gurations de�ned by

rps :� tx P Σd
pAq : x|S � pu.

For a P A and i P Z
d
we denote the ylinder

rasi � tx P Σd
pAq : xi � au.

De�nition 4. Let P � AS
be a subset of patterns of support S. The ylinder generated

by P is the subset,

rP s :�
¤

pPP

rps.

The following is the topologial de�nition of one of the most important objets that

we work with.

De�nition 5. A subshift X is a losed subset of Σd
pAq whih is invariant under σu :

Σd
pAq Ñ Σd

pAq for all u P Z
d
, that is, σu

pXq � X .

As said before, there is a ombinatorial de�nition of a subshift, whih is given by the

set of forbidden patterns as presented below.

De�nition 6. Let X be a subset of Σd
pAq. We say that X is a subshift generated by a

set F of forbidden patterns if F �

�

R¥1
AJ1,RKd

is a subset of patterns with �nite support

and

X � Σd
pA,Fq :� tx P Σd

pAq : � p P F , p � xu.

The following proposition assures that every subshift is generated by a set of forbidden

patterns.

Proposition 1. The two de�nitions of subshift (De�nition 5 and De�nition 6) oinide.

The entire on�guration spae Σd
pAq � AZ

d

is a subshift, and we all it the full

shift. We will denote by pΣd
pAq,Bq the measurable spae where B is the Borel σ-algebra
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generated by the ylinder sets in Σd
pAq. We will desribe a lassi�ation for the subshifts

based on the set of forbidden patterns. For the full shift the set of forbidden patterns is

empty. If the set of forbidden patterns is �nite we will say that subshift is a subshift of

�nite type or SFT. When the set of forbidden patterns an be enumerated by a Turing

mahine, then we say that the subshift is an e�etively losed subshift (we explain what

we are onsidering as a set enumerated by a Turing mahine in Setion 2.4).

Another way of desribing a subshift is by its language, that we de�ne next.

De�nition 7. Let A be a �nite alphabet, and d ¥ 1. Let X be a subshift of AZ
d

. The

language of X , denoted LpXq, is the set of square patterns that appear in X , or more

formally,

LpXq :�
§

ℓ¥1

!

p P AJ1,ℓKd : Dx P X, s.t. p � x
)

. (2.1)

We will denote the set of square patterns of a �xed length ℓ as

LpX, ℓq :�
!

p P AJ1,ℓKd : Dx P X, s.t. p � x|J1,ℓK2
)

. (2.2)

A ditionary L of size ℓ and dimension d over the alphabet A is a subset of AJ1,ℓKd
.

A ditionary is a speialized subset of patterns. We say that a ditionary L of size ℓ is a

sub-ditionary of L1 of size ℓ1 (where both have the same dimension d), if every pattern

of L is a sub-pattern of a pattern of L1. Given a ditionary we an de�ne the set of all

on�gurations obtained by the in�nite onatenation of patterns of this ditionary. In

fat, this subset is a subshift as desribed below.

De�nition 8. The onatenated subshift of a ditionary L of size ℓ and dimension d is

the subshift of the form

xLy �

¤

uPJ1,ℓKd

£

vPZd

σ�pu�vℓq
rLs,

�

!

x P Σd
pAq : Du P J1, ℓKd, � v P Z

d, pσu�ℓv
pxqq|J1,ℓKd P L

)

.

Another important onept onerns the admissibility of a pattern. Given a set of

forbidden patterns, we de�ne loal and global admissibility.

De�nition 9. Let F � AJ1,DKd
for a �xed D ¥ 2. We say that a pattern w P AJ1,RKd

where R ¥ D is loally F-admissible if

σu
pxq|J1,DKd R F , � u P J0, R�DKd,

that is, we do not �nd a pattern of F inside the pattern w. We say that a pattern
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w P AJ1,RKd
is globally F-admissible if there exists x P Σd

pA,Fq suh that

x|J1,RKd � w.

It is lear that if a pattern is globally admissible, then it is loally admissible, but

the reverse it not always true. The next proposition assures that for every d-dimensional

subshift, every really large pattern that is loally admissible has a entral blok that is

globally admissible.

Proposition 2. Let X � Σd
pA,Fq be a subshift given by a set of forbidden patterns F .

There exists a funtion R : N Ñ N so that if q P AJ�Rpnq,RpnqKd
is loally admissible, then

p � q|J�n,nKd, the restrition of q to AJ�n,nKd
, is globally admissible.

Proof. The proof follows from a standard ompatness argument as desribed in Lemma

4.3 of [5℄ in a more general setting.

Suppose suh a funtion does not exist, then there exists n P N suh that for every

m ¥ n there exists a loally admissible pattern qm of size m suh that pm � qm|J�n,nKd is

not globally admissible. Let xm P Σd
pAq be a on�guration suh that xm|J�m,mKd � qm. By

ompatness of Σd
pAq, we may extrat a onverging subsequene xmpkq whih onverges

to some x̄ P AZd

.

We laim x̄ P X . Indeed, if not, there is a forbidden pattern whih ours somewhere

in x̄. In partiular, there is k P N suh that the pattern is ompletely ontained in

J�mpkq, mpkqKd. It follows by onvergene of the sequene txmpkqukPN that eventually

every pattern qmpkq ontains the forbidden pattern. This is a ontradition beause qm is

loally admissible. Hene x̄ P X .

As x̄ P X , then x̄|J�n,nKd is globally admissible, but this is equal to pm for some m P N

and thus not globally admissible. This is again a ontradition. Therefore the funtion

R must exist. It is non-dereasing as subpatterns of globally admissible patterns are

themselves globally admissible.

2.2 Entropy and variational priniple

We establish here some of the most important results about entropy of subshifts. The

results here were developed by several authors in di�erent approahes and they were able

to generalize these results even for amenable group ations and non-ompat on�guration

spaes. Here we fous on the Z
d
-ation over a ompat on�guration spae Σd

pAq � AZd

.

We always onsider Σd
pAq � AZ

d

and σ � pσu
quPZd the shift ation. We will denote

by M1pΣ
d
pAqq the set of all probability measures de�ned on Σd

pAq and by MσpΣ
d
pAqq

the set of shift-invariant probability measures. Here we always onsider pΣd
pAq,B, µq

as a probability spae where B is the sigma algebra generated by the ylinder sets and

µ PMσpΣ
d
pAqq.
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De�nition 10. A olletion P � tP1, P2, ..., Pnu of measurable sets is a �nite partition of

Σd
pAq if

• Pi X Pj � ∅ for i � j; and

•
�

i Pi � Σd
pAq.

For a probability spae pΣd
pAq,B, µq we all a olletion of measurable sets P � tP1, P2, ..., Pnu

a µ-partition if

• µpPiq ¡ 0, �i;

• µpPi X Pjq � 0, for i � j; and

• µ

�

Σd
pAqz

n
¤

i�1

Pi

�

� 0.

One of the most important onepts in thermodynamis is the entropy of a system.

Here we present the de�nition of Shannon entropy and some useful properties that we use

in this text. The de�nitions and results an be found in Keller [22℄ and Kerr-Li [24℄.

De�nition 11. The information of a µ-partition P � tP1, P2, ..., Pnu is the funtion

IP : Σd
pAq Ñ R de�ned as

IPpxq :� �

¸

PPP

logpµpP qq � 1P pxq.

The entropy of a partition with respet a measure µ is given by

HpP, µq :�

»

IPpxqdµ � �

ņ

i�1

µpPiq logpµpPiqq

We will use the notation HpPq � HpP, µq when there is no onfusion over whih

measure we are onsidering in order to not overload the notation.

Given two µ-partitions P � tP1, P2, ..., Pnu and Q � tQ1, ..., Qmu of a on�guration

spae Σd
pAq, we an de�ne the onditional information of P given Q as the funtion

IP|Q : Σd
pAq Ñ R de�ned as

IP|Qpxq :� �

ņ

i�1

m̧

j�1

log

�

µpPi XQjq

µpQjq




� 1PiXQj
pxq.

In the same fashion we an de�ne the onditional entropy of P given Q with respet to a

measure µ as the value

HpP|Q, µq :�

»

IP|Qdµ �

»

HpP, µQ
x qdµpxq (2.3)
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where pµQ
x qxPΣd

pAq is the family of onditional probabilities with respet to Q. We an

also express the onditional entropy as the sum

HpP|Q, µq � �

ņ

i�1

m̧

j�1

µpPi XQjq log

�

µpPi XQjq

µpQjq




.

As before we will use the notation HpP|Qq � HpP|Q, µq when there is no onfusion

over whih measure we are onsidering in order to not overload the notation.

We say that a partition P 1

is a re�nement of another partition P if every element of

P 1

is ontained in an element of P. We denote as P 1

© P.

We denote the ommon re�nement of two partitions denoted by P_Q as the partition

generated by

P _Q :� tPi XQj : Pi P P, Qj P Qu.

For a subset S � Z
d
we denote by

PS :�
ª

uPS

σ�uP

the ommon re�nement of the partitions σ�uP where u P S. A partition P is a µ-

generated partition of pΣd
pAq,B, µq if the sigma algebra generated by PS

for every �nite

subset S � Z
d
is equal to B mod µ.

The next lemma gives us the Jensen inequality that will be used many times.

Lemma 1 (Jensen's Inequality). Consider I � R an open interval and ψ : I Ñ R a

onave funtion. If f : Σd
pAq Ñ I a µ-integrable funtion, then the integral of ψ � f is

well de�ned and

ψ

�

»

fdµ




¥

»

ψ � fdµ.

If we onsider ψ : r0, 1s Ñ R de�ned as

ψpxq �

#

�x logpxq, 0   x ¤ 1

0, x � 0,
(2.4)

then ψ is a stritly onave funtion and therefore we obtain

ψ

�

ņ

i�1

λixi

�

¥

ņ

i�1

λiψpxiq, (2.5)

where xi P r0, 1s and λi ¡ 0 for eah i P J1, nK with

°n

i�1
λi � 1. We will use this

inequality for the proof of the next lemma whih presents some important properties of

the entropy.
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Lemma 2. Consider P � tP1, ..., Pnu and Q � tQ1, Q2, ..., Qmu two µ-partitions of

Σd
pAq. Then

piq 0 ¤ HpP|Qq ¤ HpPq ¤ log |P|;

piiq HpP _Qq � HpPq �HpQ|Pq;

piiiq HpPq ¤ HpQq �HpP|Qq;

pivq if Q © P, then HpP|Qq � 0.

pvq if Q © P, then HpP _Qq � HpQq ¥ HpPq;

Proof. piq The inequality 0 ¤ HpP|Qq follows from the de�nition of the entropy of a

partition. Now we will prove that if R � tC1, ..., Clu is a partition suh that Q © R

we have that

HpP|Qq ¤ HpP|Rq. (2.6)

Denote

λk,j :�
µpBj X Ckq

µpCkq
and xj,i �

µpAi XBjq

µpBjq
.

As we are onsidering Q © R, µpBj X Ckq is equal to µpBjq or 0, beause either

Bj � Ck or Bj X Ck � ∅. Thus for a �xed i and k

m̧

j�1

λk,jxj,i �
¸

jPJ1,mK
Bj�Ck

µpAi XBjq

µpCkq
�

µpAi X Ckq

µpCkq
.

HpP|Qq �

ņ

i�1

m̧

j�1

�µpPi XQjq log

�

µpPi XQjq

µpQjq




�

ņ

i�1

m̧

j�1

µpQjqψpxj,iq

�

ņ

i�1

m̧

j�1

�

ļ

k�1

µpCkqλk,j

�

ψpxj,iq

�

ņ

i�1

ļ

k�1

µpCkq

m̧

j�1

λk,jψpxj,iq

¤

ņ

i�1

ļ

k�1

µpCkqψ

�

m̧

j�1

λk,jxj,i

�

� HpP|Rq.

If we take R � tΣd
pAqu the trivial partition, we obtain HpP|Qq ¤ HpPq.
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In (2.5) if we onsider xi � µpPiq and λi � 1{n we obtain that

�

1

n
log

�

1

n




� ψ

�

1

n




� ψ

�

1

n

ņ

i�1

µpPiq

�

¥

1

n

ņ

i�1

ψpµpPiqq

�

1

n
HpPq,

and therefore HpPq ¤ logpnq � log |P|.

piiq Eah element of the partition P _Q is of the form P XQ where P P P and Q P Q.

Then

IP_Qpxq � �

¸

PPP

¸

QPQ

logpµpP XQqq � 1PXQpxq

� �

¸

PPP

¸

QPQ

log

�

µpP XQq

µpP q
� µpP q




� 1PXQpxq

� �

¸

PPP

¸

QPQ

log

�

µpP XQq

µpP q




� 1PXQpxq �
¸

PPP

¸

QPQ

logpµpP qq � 1PXQpxq

� �

¸

PPP

¸

QPQ

log

�

µpP XQq

µpP q




� 1PXQpxq �
¸

PPP

logpµpP qq � 1P pxq

� IP|Qpxq � IPpxq.

By integrating with respet to a measure µ we obtain that

HpP _Qq � HpPq �HpQ|Pq.

piiiq By the previous items we obtain that

HpPq � HpP _Qq �HpQ|Pq

¤ HpP _Qq

� HpQq �HpP|Qq.

pivq For any two partitions P and Q, we have

HpP|Qq �

¸

PPP

¸

QPQ

�µpP XQq log

�

µppXQq

µpQq




�

¸

PPP

¸

QPQ

µpQq � ψ

�

µpP XQq

µpQq




.

If we onsider that Q © P eah Q P Q is ompletely ontained in an element P P P.
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Hene eah term of the sum above is equal to zero beause either

µpPXQq

µpQq
� 0 or

µpPXQq

µpQq
� 1, and in both ases we have that

HpP|Qq �
¸

PPP

¸

QPQ

µpQq � ψ

�

µpP XQq

µpQq




� 0.

pvq It follows from the items piiiq and pivq.

Lemma 3. Consider pΣd
pAq,B, µq a shift-invariant probability spae and P a �nite par-

tition of Σd
pAq. The dynamial entropy relative to the partition P is given by

hpP, µq :� inf
n¥0

1

|Λn|
HpPΛn

q � lim
nÑ�8

1

|Λn|
HpPΛn

q

whih is well de�ned, where Λn :� J�n, nKd for n ¥ 1.

Proof. For eah n ¥ 1 we will onsider Λn :� J�n, nKd � Z
d
. For a �xed m ¥ 1 we denote

Λm � J�m,mKd and lm � 2m� 1. Consider the set

Vn :�
 

p P plmZq
2 : pp� Λmq X Λn � ∅

(

Then

Λn � Λ̃n :�
¤

uPVn

pΛm � uq .

Note that |Λ̃n| � |Vn| � |Λm| ¤ |Λn�m|. We obtain that

HpPΛn
q ¤ HpP Λ̃n

q

¤

¸

uPVn

Hpσ�uPΛm
q

� |Vn|HpP
Λm
q

¤

|Λn�m|

|Λm|
HpPΛm

q,

and therefore

lim sup
nÑ�8

1

|Λn|
HpPΛn

q ¤ lim sup
nÑ�8

|Λn�m|

|Λm|

1

|Λm|
HpPΛm

q �

1

|Λm|
HpPΛm

q.

The last estimate holds for every �xed m, thus we onlude that

lim sup
nÑ�8

1

|Λn|
HpPΛn

q ¤ inf
m¡0

1

|Λm|
HpPΛm

q ¤ lim inf
mÑ�8

1

|Λm|
HpPΛm

q.
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Theorem 2 (Shannon-MMillan-Breiman). Let pΣd
pAq,B, µq a shift-invariant probabil-

ity spae and P a �nite partition of Σd
pAq. Then

lim
nÑ�8

�

1

|Λn|
logpµpPΛn

qq � hpP, µq

pointwise a.e. and in L1.

The previous theorem has already been proved for a larger lass of group ations only

with the assumptions that the group is amenable [29, 24, 35℄. The proof for Theorem 2

as stated here an be found in Krengel [26℄.

Now we de�ne the Kolmogorov-Sinai entropy also alled dynamial entropy of a mea-

sure.

De�nition 12. The entropy of the spae pΣd
pAq,B, µq, also known as the dynamial

entropy of µ is given by

hpµq � sup
P

thpP, µq : P is a �nite partitionu .

De�nition 13. The topologial entropy of a subshift X � Σd
pAq is given by

htoppΣ
d
pAqq � lim

nÑ�8

1

|Λn|
logp|LpX, 2n� 1q|q.

In Chazottes-Meyerovith [20℄ they establish important results about the harateri-

zation of the entropy for multidimensional SFT. Next we present the variational priniple

for the entropy.

Theorem 3 (Variational Priniple). Let X � Σd
pAq be a subshift, then

htoppXq � sup
µ

hpµq

where the supremum is taken over the set of shift-invariant probability measuresMσpΣ
d
pAqq.

The Variational Priniple as stated above has already been proved for amenable group

ations in [24℄. One important result for the haraterization of the dynamial entropy of

a measure is given by the following theorem.

Theorem 4 (Kolmogorov-Sinai). If P is µ-generated partition for pΣd
pAq,B, µq and

HpPq   �8, then

hpµq � hpP, µq.

Proof. For any �nite subset we have that

hpPΛ, µq � hpP, µq. (2.7)
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Indeed, onsider a �xed N ¡ 0 suh that Λ � ΛN , then we have that

hpPΛ, µq � lim
nÑ�8

1

|Λn|
H
�

pPΛ
q

Λn
�

¤ lim
nÑ�8

1

|Λn|
H
�

PΛn�N
�

¤ lim
nÑ�8

|Λn�N |

|Λn|

1

|Λn�N |
H
�

PΛn�N
�

� hpP, µq

¤ hpPΛ, µq

sine PΛ
© P.

Now onsider P a �nite µ-generated partition with �nite entropy and Q a �nite par-

tition. From 2.7 and Lemma 2 we obtain that

hpQ, µq ¤ hpPΛn , µq �HpQ|PΛn
q

� hpP, µq �HpQ|PΛn
q.

As limnÑ�8

HpQ|PΛn
q � HpQ|Bq � 0, it follows that for an arbitrary partition Q, is true

that hpQ, µq ¤ hpP, µq, and therefore the result follows.

2.3 Potential

A funtion f : Σd
pAq Ñ R is upper semi-ontinuous if the set tx P Σd

pAq : fpxq   cu is

an open set for every c P R.

De�nition 14. A potential ϕ : Σd
pAq Ñ R is regular if

�8

¸

n�1

nd�1δnpϕq   �8,

where δnpϕq :� supt|ϕpwq � ϕpvq| : w, v P Σd
pAq, w|Λn

� v|Λn
u.

We say that a potential ψ has �nite range if there exists n0 P N suh that δnpψq � 0,

for all n ¥ n0. If a potential has �nite range, then it is regular.

Next we de�ne the pressure of an upper semi-ontinuous potential, the notion of an

equilibrium measure and reall several results that haraterize the equilibrium measures

for a ertain lass of potentials.

De�nition 15. The pressure of a upper semi-ontinuous potential ϕ : Σd
pAq Ñ R at

inverse temperature β is the value

P pβϕq :� sup
µPMσpΣ

d
pAqq

"

hpµq �

»

βϕdµ

*

.
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De�nition 16. An equilibrium measure for a potential ϕ at inverse temperature β is a

measure µβϕ PMσpΣ
d
pAqq suh that

P pβϕq � hpµβϕq �

»

βϕdµβϕ.

An important haraterization for the set of equilibrium measures for a regular loal

potential is that it is exatly the set of invariant Gibbs measures. In order to state this

result, we present one possible de�nition of Gibbs measures based on [22℄.

Remark 2. Here we will de�ne all these notions and results for the full shift over a

�nite alphabet, but these de�nitions and results are also valid for a more general lass

of subshifts, for instane Muir [31℄ works with a ountable alphabet in multidimensional

subshifts and Israel [21℄ extended to general ompat spin spaes and quantum systems

for the full shift.

Consider ϕ a regular potential on Σd
pAq and denote

ϕn :�
¸

gPΛn

ϕ � σg

where Λn � J�n, nKd. We are interested in how ψnpwq will hange if we alter �nitely many

sites. For that, we will introdue, as in Keller [22℄, a lass of loal homeomorphisms on

Σd
pAq.

De�nition 17. Let ϕ be a regular potential de�ned over Σd
pAq. We denote by εn the

set of all maps τ : Σd
pAq Ñ Σd

pAq suh that

pτpwqqi �

#

τipwiq, i P Λn

wi, i R Λn

where τi : A Ñ A are permutations in the state spae. We denote by ε :�
�

n¡0
εn the

set of all homeomorphisms in Σd
pAq that hange only �nitely many oordinates.

Lemma 4. (Keller [22℄) Let ϕ be a regular potential and τ P ε. For n ¡ 0 de�ne

Ψn
τ : Σd

pAq Ñ R, Ψn
τ :� ϕn � τ

�1
� ϕn.

Then the limit

Ψτ :� lim
nÑ�8

Ψn
τ

exists uniformly on Σd
pAq.

De�nition 18. Let ϕ be a regular loal potential. We say that a probability measure
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µ PM1pΣ
d
pAqq is a Gibbs measure for the potential ϕ if

τ
�

µ � µ � eΨτ

for eah τ P ε.

The previous de�nition goes bak to Capoaia [9℄ and does not involve onditional

measures as in a more lassial de�nition of Gibbs measure [17, 32℄.

As said before, there are several haraterizations for a Gibbs measure (see Georgii [17℄

and Ruelle [32℄) and several results for the equivalene between these de�nitions (see

Kimura [25℄ and Keller [22℄) even for potentials de�ned over more general subshifts.

The next theorem from Keller [22℄ gives a important haraterization of the set of

invariant Gibbs measures for a regular loal potential.

Theorem 5. Let Σd
pAq � AZd

be the full shift and ϕ : Σd
pAq Ñ R be a regular loal

potential. The set of equilibrium measures for ϕ is nonempty, ompat, onvex subset of

MσpΣ
d
pAqq and every equilibrium measure is also a Gibbs invariant probability measure.

Given a potential βϕ at inverse temperature β and ϕ a regular loal potential, the set

of equilibrium measures is exatly the set of Gibbs invariant measures for βϕ.

2.4 Turing Mahines and the Simulation Theorem

We present here the basi onepts of a Turing mahine and how we an haraterize a

language based on its omputability. The automaton that we all Turing mahine was

�rst introdued by Alan Turing in 1936 and is similar to a �nite automaton but with

unlimited and unrestrited memory. This model works on an in�nite tape and therefore

has unlimited memory. There is a head of alulation whih an read and write symbols

on the tape and move over the tape, both forward and bakward. We will introdue a

formal de�nition of a Turing mahine as in Sipser [34℄.

De�nition 19. A Turing mahine M is a 7�tuple pQ,A, T , δ, q0, qa, qrq, where

• Q is a �nite set of states of the head of alulation;

• A is the input alphabet whih does not ontain the blank symbol 7;

• T is the tape alphabet whih ontains the blank symbol 7 and A � T ;

• δ : Q� T Ñ Q� T � t�1,�1u is the transition funtion;

• q0 is the initial state of the head of alulation;

• qa P Q is the aept state; and
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• qr P Q is the rejet state.

The mahine works on an in�nite tape divided into disrete boxes on whih the head

will at. If we think of Z as a bi-in�nite tape �lled with symbols of T , we an express the

Turing mahine M by desribing the state of the head and in whih box the head is.

We always start the alulation over a word de�ned on the alphabet A that will be

written on the tape of the mahine. The other boxes of the in�nite tape are �lled with

the blank symbols 7. The head will start on the leftmost symbol of the word with the

initial state q0. At eah step of its alulation the head ats (read/write) only on the box

where the head is loated. Based on the symbol that the head reads and the state of the

head, the transition funtion will give us whih symbol the head must write in the box,

the new state of the head and in whih diretion the head should move, �1 if it should

move for the left box or �1 if it should move for the right box. It is possible to de�ne

the transition funtion with the possibility of the head staying in the same box after a

alulation, but the de�nitions are equivalent.

One way of representing the transition funtion is by a direted graph where eah node

represents a state of the head of alulation and the arrows are tagged with the rules of

the transition funtion. See the transition represented below.

PSfrag replaements

qm qn
xÑ y,�1

y Ñ y,�1

Figure 2.1: Direted graph representing two rules of some transition funtion δ.

If the head of alulation is in the state qm and it reads the symbol x, then the head

replaes this symbol by y, hange of state to qn and move to the box to the right. If

instead the head is in the state qm and reads the symbol y, then the head keeps the

symbol y in that box, does not hange the state and moves to the box on the right.

The alulation of a Turing mahine stops when the head reahes the aept state qa

or the rejet state qr. If the mahine never reahes one of these states the alulation will

never stop. As said before, the alulation of a Turing mahine starts over a �nite word

w de�ned over the alphabet A that is written over the tape. If the mahine reahes the

aept state after a number of valid transitions, we say that the initial word is aepted

by this Turing mahine. A set of words L, also alled language, is reognized by a Turing

mahine if the mahine reahes the aept state for eah word in this set and never reahes

the aept state if the word is not in L (the mahine an reah a rejet state or go into a

in�nite loop).
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De�nition 20. A set L of words over an alphabet A is alled reursive if there is a Turing

mahine that reognizes it. A set L of words over an alphabet A is alled reursively

enumerable if there is a Turing mahine that stops its alulation only on words of L.

As said before the mahine an also reah the rejet state or enter in an in�nite loop

that never stops. There is a speial lassi�ation for the set of words for whih it is

possible to de�ne a Turing mahine that never enters in a in�nite loop, that is, for eah

�nite initial word the mahine always reahes qa or qr. In this ase we say that this Turing

mahine deides or, most popularly found in the literature, reognizes the language L.

These two onepts of reognizability and reursive enumerability, although seemingly

equivalent, are two di�erent notions. There are ertain languages that only an be enumer-

ate by a Turing mahine. Now we present an example presented in [4℄ of a Turing mahine

that reognizes (and also enumerates) a language de�ned over the alphabet A � ta, bu.

Example 1. This mahine stops for every word that we write on the tape and it tells us

whether suh word belongs or not to the language L � tanbn;n P Nu. The input alphabet

is A � ta, bu and the tape alphabet is T � ta, b, 7u, where 7 is the blank symbol. We start

with the word to be evaluated written on a bi-in�nite tape �lled with blak symbols 7 and

we set the head of alulation on the state q0 on the leftmost symbol of the word. This

Turing mahine has 9 states Q � tq0, q1, q2, q3, q4, q5, q6, qa, qru and the transition funtion

δ : Q� T Ñ Q� T � t�1,�1u is represented by the direted graph in Figure 2.2.

We are representing the aept state by qa and the rejet state by qr. Note that the

transition funtion is not de�ned for every possible pair inQ�T beause this on�guration

never ours in the alulation proess. Another important aspet is that when the

transition funtion goes to qa or qr, we are not de�ning the symbol substitution or the

move that the head should do, beause it is irrelevant sine the alulation will stop after

this iteration.

Now we give a summary of the role played by eah of the eight states that the mahine

an reah:

q0: This state marks the beginning of the alulation. The head of the mahine begins

the alulation on the leftmost letter of the word written on the tape. If the head

reads the symbol a then the head replaes the symbol by a blank symbol, moves to

the right and also hanges the state. If the head reads a symbol b then the head of

the mahine goes to the rejet state and the omputation stops, whih means that

the word written on the tape does not belongs to the language.

q1: In this state the head of the mahine goes to the rightmost symbol a of the word

without hanging the symbols or the state of the mahine. When the mahine �nds

the �rst symbol b the head of the mahine does not hange the letter, but hanges

the state and moves to the right. In this state the mahine goes to the rejet state
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PSfrag replaements

q0

q1 q2

q3

q4q5q6 qa

qr

aÑ 7,�1

aÑ a,�1

bÑ b, 1

bÑ b, 1

7 Ñ 7,�1

bÑ 7,�1

bÑ b,�1

bÑ b,�1

aÑ a,�1

aÑ a,�1

7 Ñ 7,�1

7

b

7 a

a

7

Figure 2.2: Direted graph representing the transition funtion for the Turing mahine

that deides the language anbn.

if the head reads the blank symbol, whih means that the word written on the tape

has only the symbol a.

q2: This state makes the head of the mahine goes to the end of the word without hanging

the symbols b's that are written on the tape. The head goes to the last symbol b and

then when it �nds the �rst blank symbol this state makes the head go to the left,

but not replae the blank symbol. If the head is in this state and �nds a symbol

a, it means that in the word written on the tape exists the subword ba whih is

forbidden in the language L, so the head goes to the rejet state and the alulation

stops.

q3: This state always appears on the head when it is on the last symbol b of the �nite

word written on the tape of alulation. The symbol b is replaed by a blank symbol

and the head of alulation moves to the box on the left. The symbol b is the only

possibility for the head to read.

q4: In this state if the head of the mahine reads the symbol b it means that there exists

still symbols written on the tape of alulation that are di�erent from the blank

symbol, then the head of the mahine does not replae the symbol b, but moves to

the left and hanges the state. If the head of the mahine in this state reads the

blank symbol it means that now, on the tape of alulation, there are only blank
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symbols, whih means that the mahine has replaed all of the symbols a's and b's

in the initial �nite word written and the number of a's and b's are the same. In

this ase the mahine hanges to the aept state whih means that the initial word

written on the tape belongs to the language L. The other possibility is that the

head of the mahine in this state reads the symbol a whih means that the number

of symbol a's is bigger than the number of symbol b's and then the mahine hanges

to the rejet state.

q5: This state makes the head of the mahine reah the symbol a most to the right on

the word written on the tape. The head on this state when plaed on the symbol b,

does not replae the symbol b and only moves to the left without hanging the state.

When the head reahes one symbol a the mahine still moves to the left without

replaing the letter, but it hanges the state. If the head in this state reahes a

blank symbol this means that on the tape of alulation there are only letters b's

whih means that the number of symbol b's on the initial word is bigger than the

number of letters a's. In this ase the mahine hanges to the rejet state whih

means that the mahine reognizes that the initial word written on the tape does

not belong to the language L.

q6: This state makes that the head of the alulation go to the leftmost symbol not blank

on the tape. If the head in this state reads the letter a, the head does not hange

the state but moves to the left. When the head reahes a blank symbol this means

that the head reahes the beginning of the word that is now written on the tape. In

this ase the head does not replae the blank symbol, hanges the state and moves

to the right leaving the head on the leftmost symbol on the word that is written on

the tape. In this state it is not possible that the head reads the letter b beause of

the onstrution and the way that the previous alulations our.

qa: This is the aept state, whih means that if the head of the mahine reahes this

state then the initial word written on the tape belongs to the language L.

qr: This is the rejet state, whih means that if the head of the mahine reahes this state

then the initial word written on the tape does not belong to the language L

The name 'reursively enumerable' omes from a variation of the Turing mahine

presented that is alled enumerator. We an think of it as a general Turing mahine

attahed to a printer that prints some output words that the mahine has written on its

tape. An enumerator starts with a in�nite tape �lled with blank symbols. Eah word

that this mahine prints belongs to a language, that is why we say that this mahine

enumerates.

Proposition 3. Given a set of words L de�ned over an alphabet A. The set L is reur-

sively enumerable if and only if there is a Turing mahine that enumerates it.
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qb� q
||

qa�qb��

q0
7 Ñ a,�1 7 Ñ b,�1

7 Ñ ||,�1

bÑ b,�1

aÑ a,�1

bÑ a,�1

bÑ b,�1

|| Ñ b,�1

Figure 2.3: Direted graph of the transition funtion δ of the enumerator for the language

anbn.

The next example from [1℄ shows a Turing mahine that enumerates the language

desribed in the previous example.

Example 2. We desribe an example of a Turing mahine that enumerates the language

L � tan, bn, n P Nu. The input alphabet is A � ta, bu and the tape alphabet is T �

ta, b, 7, ||u. This mahine has �ve possible states Q � tq0, qa�, qb�, qb��, q
||

u and it never

stops its alulation. The symbol || helps the mahine to know when it must print the

word written on the tape. The transition funtion will be δ : Q� T Ñ Q� T � t�1,�1u

given by Figure 2.3.

The following is a summary of the role played by eah of the �ve states that the

mahine an reah:

q0: This state begins the work of the mahine. In our ase it always ours in the bi-

in�nite tape �lled with the blank symbol. It marks the start of the alulation of

the mahine by replaing the blank symbol by a and moving the head to the right.

qb�: In this state the mahine replaes the blank symbol by a letter b. This ours after

the head of the mahine arrives at the end of the word that is written on the tape

of alulation. This symbol b will be the rightmost b required to ahieve the same

number of letters b's and letters a's in the word written on the tape.
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q
||

: When the mahine has this state and reads the blank symbol, that is pq
||

, 7q, the

mahine prints the word written on the tape beause it will be of the form anbn.

Besides that, this states is also responsible to return the head of alulation to the

rightmost symbol a on the tape. The head hanges the blank symbol by a marker ||

and moves to the left. The head goes to the left without making any hanges until

it ahieves the rightmost symbol a on the tape. The mahine does not replae the

symbol a, but it hanges the state and moves to the right, leaving the head over the

leftmost symbol b written on the tape.

qa�: This state is responsible for adding a new symbol a into the word written on the

tape. It is the beginning of several hanges to ahieve the next word in the language

anbn. The head in this state always reads the symbol b. It hanges to an a, it

hanges the state and it moves to the right.

qb��: In this state the head of the mahine goes to the end of the word written on the tape

without making any hanges, that is, the head goes to the marker || after all the

symbols b's that ompose the word on the tape. The head replaes it by a symbol

b, it moves to the right and it hanges the state.

The ation of this Turing mahine an also be desribed by a spae-time diagram.

The horizontal diretion stands for the tape on whih the mahine works and the vertial

diretion for the time evolution of the mahine.

The alulation of a Turing mahine, that is, the set of rules de�ned by the transition

funtion an be represented by a set of bidimensional patterns as proposed in [6℄. For

example, onsider the Turing mahine presented in the last example and the transition

funtion when the head of the mahine is in the state q
||

and reads the symbol a. In this

ase the head of the mahine does not hange the symbol a written on the tape, it hanges

its state to qa� and it moves to the right. This ation an be represented by the following

set of 3� 2 bloks or tiles desribed as below

s1 a pqa�, s3q

s1 pq
||

, aq s3

a pqa�, s2q s3

pq
||

, aq s2 s3

pqa�, s1q s2 s3

s1 s2 s3

s1 s2 a

s1 s2 pq
||

, aq

where s1, s2, s3 P T are the symbols that have previously been written on the tape. These

four patterns desribe all the possible 3�2 patterns that an be found in a bidimensional

representation of this Turing mahine for the rule δpq
||

, aq � pqa�, a,�1q. We an do this

representation for eah rule of the transition funtion. Sine there is a �nite number of

rules, the set that desribes all the possible 3 � 2 patterns is also �nite. Note that we
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � 7 a a a a b pqb��, bq || 7 7 � � �

� � � 7 a a a a pqb��, bq b || 7 7 � � �

� � � 7 a a a pqa�, bq b b || 7 7 � � �

� � � 7 a a pq
||

, aq b b b || 7 7 � � �

� � � 7 a a a pq
||

, bq b b || 7 7 � � �

� � � 7 a a a b pq
||

, bq b || 7 7 � � �

� � � 7 a a a b b pq
||

, bq || 7 7 � � �

� � � 7 a a a b b b pq
||

, 7q 7 7 � � �

� � � 7 a a a b b pqb�, 7q 7 7 7 � � �

� � � 7 a a a b pqb��, ||q 7 7 7 7 � � �

� � � 7 a a a pqb��, bq || 7 7 7 7 � � �

� � � 7 a a pqa�, bq b || 7 7 7 7 � � �

� � � 7 a pq
||

, aq b b || 7 7 7 7 � � �

� � � 7 a a pq
||

, bq b || 7 7 7 7 � � �

� � � 7 a a b pq
||

, bq || 7 7 7 7 � � �

� � � 7 a a b b pq
||

, 7q 7 7 7 7 � � �

� � � 7 a a b pqb�, 7q 7 7 7 7 7 � � �

� � � 7 a a pqb��, ||q 7 7 7 7 7 7 � � �

� � � 7 a pqa�, bq || 7 7 7 7 7 7 � � �

� � � 7 pq
||

, aq b || 7 7 7 7 7 7 � � �

� � � 7 a pq
||

, bq || 7 7 7 7 7 7 � � �

� � � 7 a b pq
||

, 7q 7 7 7 7 7 7 � � �

� � � 7 a pqb�, 7q 7 7 7 7 7 7 7 � � �

� � � 7 pq0, 7q 7 7 7 7 7 7 7 7 � � �

have to inlude the pattern

s1 s2 s3

s1 s2 s3

where the head of the Turing mahine does not appear in this window that we are on-

sidering.

The set of all possible patterns 3� 2 in the alphabet

T Y pQ� T q Y pQ� T � t�1,�1uq

is �nite. Sine we are able to desribe the language with patterns of the form 3 � 2, we

an take the omplementary set from all the possible 3� 2 patterns and denote it as the

set of forbidden patterns. Therefore, it is always possible to desribe the alulation of a

Turing mahine by a SFT.

Based on the omputability of a set of forbidden words, we an de�ne another impor-

tant lass of subshifts.

De�nition 21. We say that a subshift X � AZ
is an e�etively losed subshift if there

exists a reursively enumerable set of words F suh that X � Σd
pA,Fq, that is, the set

of forbidden words for the subshift X an be reognized by a Turing mahine.
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Here we de�ne this lass of subshifts only for one-dimensional subshifts, but it is

possible to de�ne the same lass for multidimensional subshifts. In our main onstrution

we desribe a one-dimensional e�etively losed subshift by an iteration proess that builds

the language of the subshift.

2.5 The Aubrun-Sablik simulation theorem

The simulation theorem in Aubrun-Sablik [2℄ allows us to represent a one-dimensional

e�etively losed subshift as a subation of a bidimensional SFT. We introdue some

operations in subshifts as de�ned in [1℄ so that we an give an idea of the onstrution

proposed by Aubrun-Sablik [2℄.

Let A and B be two �nite alphabets and X1 � Σd
pAq and X2 � Σd

pBq be two subshifts

of the same dimension d. If we onsider x1 P X1 and x2 P X2 two on�gurations in eah

subshift we de�ne

x1 � x2 � y P Σd
pA� Bq

suh that

y � pyjqjPZd where yj � ppx1qj , px2qjq P A� B.

De�nition 22. Let be X1 � Σd
pAq and X2 � Σd

pBq. We de�ne the produt of X1 and

X2 as the subshift pX1 �X2q � Σd
pA� Bq

X1 �X2 � tx1 � x2 : xi P Xi, i � 1, 2u .

Note that the new alphabet is a produt alphabet A�B of the two previous alphabets

but the dimension of the subshift remains the same.

De�nition 23. Amorphism π : Σd
pAq Ñ Σd

pBq is a ontinuous funtion whih ommutes

with the shift ation, that is,

σu
� π � π � σu, �u P Z

d.

Hedlund [18℄ proved that suh morphisms are blok fators, that is, there exists a

�nite U � Z
d
that we all neighborhood and there exists a funtion π suh that

π : AU
Ñ B

pwiqiPZd ÞÑ πpwqi � πpσi
pxq|Uq, �i P Z

d.

De�nition 24. Let π : Σd
pAq Ñ Σd

pBq be a morphism and X � Σd
pAq be a subshift.

We de�ne the topologial fator of the subshift X by π as the subshift Xπ � Σd
pBq suh

that

Xπ �

 

y P Σd
pBq : Dx P X suh that πpxq � y

(

.
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Example 3. Consider two alphabets A � t0, 1, 2u and B � t0, 2u and de�ne X �

Σ1
pA,Fq where F � t00, 11, 02, 21u. Let π : A Ñ B be a one-to-one blok de�ned as

πp0q � πp1q � 0 and πp2q � 2.

We an de�ne a morphism π as

π : Σ1
pAq Ñ Σ1

pBq

pxiqiPZ ÞÑ pyiqiPZ � pπpxiqqiPZ.

Thus the topologial fator of the subshift X by π is

Xπ �

 

x P Σ1
pBq : �nite bloks of onseutive 0's are of even length

(

whih is alled the even shift. This subshift is not a subshift of �nite type beause we

annot represent the set of forbidden patterns by a �nite number of patterns, sine one

needs to exlude all arbitrarily large bloks of onseutive 0's of odd lengths to desribe

it.

Remark 3. A so� subshift is a fator of a subshift of �nite type. The lass of so�

subshifts is bigger than the lass of subshifts of �nite type and there exists several repre-

sentations for a so� subshift, see [28℄.

The following de�nitions of a projetive subation and extension an be generalized

for any subgroup as in [1, 19℄, but for the purpose of our onstrution the projetive

Z-subation and extension by dupliation are enough.

De�nition 25. Let X � Σ2
pAq be a bidimensional subshift de�ned over the alphabet A.

We de�ne the projetive Z-subation as the one-dimensional subshift Y given by

Y � ty P Σ1
pAq : Dx P X, s.t. x|Z�t0u � yu,

that is, we are only onsidering the e1 � p1, 0q-ation on the subshift X .

De�nition 26. Let X � Σ1
pAq be a subshift. We de�ne the extension by dupliation of

the subshift X to be the bidimensional subshift X � Σ2
pAq given as

X :�
 

x P Σ2
pAq : x|Z�t0u P X and x|

pi,jq � x
pi,j�1q, �pi, jq P Z

2
(

.

Theorem 6 (Aubrun and Sablik [2℄, Durand Romashenko and Shen [14℄). For every

e�etively losed Z-subshift Z � Σ1
pAq there exists an alphabet B, a Z

2
-subshift of �nite

type X � Σ2
pBq and a morphism π : Σ2

pBq Ñ Σ2
pAq so that

1. The topologial entropy of X is zero.
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2. The ation of e2 � p0, 1q on Xπ � Σ2
pAq is trivial, that is, the restrition of the

ation of the subgroup t0u � Z is the identity on Xπ.

3. The projetive Z-subation of Xπ is equal to Z, that is, the one-dimensional e�e-

tively losed subshift Z an be seen as a Z-subation of the topologial projetion

of a bidimensional SFT X .

The proof of this theorem is onstrutive and it uses several di�erent elements to

onstrut the �nal subshift. Among the tehniques that they use are the representation

of Turing mahines via a spae-time diagram as in the Example 2 as proposed by Berger [6℄

and the substitution theorem by Mozes [30℄. The �nal subshift is built as four di�erent

layers with four di�erent alphabets that are ombined in order to form a really large

alphabet in whih it is possible to desribe a �nite set of forbidden patterns that de�nes

a subshift that simulates our �rst subshift.

As said before, the subshift of �nite type X in the Aubrun-Sablik onstrution [2℄ is

omposed of four layers, that is, it is a subshift of a produt of four subshifts of �nite

type given by a �nite number of forbidden patterns whih impose onditions on how the

layers superpose. See Figure 14 of [2℄. The layers are:

1. Layer 1: The set of all on�gurations x P AZ
2

obtained by the extension by dupli-

ation as in De�nition 26.

2. Layer 2: T

Grid

A subshift of �nite type extension of a so� subshift whih is gener-

ated by the substitution given in Figure 3 of [2℄. The so� subshift indues in�nite

vertial �strips� of omputation whih are of width 2n for every n P N and our

with bounded gaps (horizontally) in any on�guration.

3. Layer 3: M
Forbid

A subshift of �nite type given by Wang tiles whih repliates the

spae-time diagram of a Turing mahine whih enumerates all forbidden patterns of

X and ommuniates this information to the fourth layer.

4. Layer 4: M
Searh

A subshift of �nite type given by Wang tiles whih simulates

a Turing mahine whih serves the purpose of heking whether the patterns enu-

merated by the third layer appear in the �rst layer. �responsibility zone� whih is

determined by the hierarhial struture of Layer 2.

The rules between the four layers desribed in [2℄ fore the Turing mahine spae-time

diagrams to our in every strip, and to restart their omputation after an exponential

number of steps. This ensures that every on�guration restarts the omputation every-

where, and that every forbidden pattern is written on the tape by the Turing mahine

in every large enough strip. The fourth layer searhes for ourrenes of the forbidden

patterns in the �rst layer and thus disards any on�guration in the �rst layer where one

of these patterns ours.
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Based on their onstrution and the objets that we will de�ne later, it will be possible

to have some important estimates.



Chapter 3

Main Constrution

In this hapter we present the main onstrution that allows us to de�ne our loally

onstant potential. First we de�ne a one-dimensional e�etively losed subshift generated

by an iteration proess that de�nes the language of this subshift. We prove that this

subshift is in fat e�etively losed. We prove also some important properties. Next we

apply the simulation theorem of Aubrun-Sablik [2℄ in order to get a bidimensional SFT

that simulates our initial subshift. We also prove some properties for this subshift and

de�ne a new oloring of this subshift.

3.1 One-dimensional e�etively losed subshift

Now we present a general lemma that we use in our onstrution. It gives us ertain

properties based on how we de�ne the iteration proess that de�nes our one-dimensional

subshift. See De�nition 8 for onatenated subshifts.

Lemma 5. Let A be a �nite alphabet. Let pℓkqk¥0 be a stritly inreasing sequene of

integers, and pLkqk¥0 be a sequene of ditionaries of size pℓkqk¥0 over the alphabet A, say

Lk � AJ1,ℓkK
. We assume that, for every k ¥ 0, every word in Lk�1 is the onatenation

of words of Lk. Then

1. � k ¥ 0, xLk�1y � xLky,

2. X :�
�

k¥0
xLky � Σ1

pA,Fq where F �

�

k¥0
Fk and Fk is the set of words of length

ℓk that are not subwords of the onatenation of two words of Lk.

If we assume in addition that every onatenation of two words in Lk is a subword of the

onatenation of two words of Lk�1, then

3. for every n ¥ 0, the onatenation of two words of Ln is a word of the language of

X .

43
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Proof. For this proof we use the following notation: for eah k ¥ 0 and i P Z we denote

Ekpiq � Z as the set

Ekpiq :� Ji, i� ℓk � 1K � Z.

Consider x P xLk�1y. By de�nition there exists j P r1, ℓk�1s suh that

x|Ek�1pj�1�iℓk�1q
P Lk�1, �i P Z

that is, x an be seen as an in�nite onatenation of words in Lk�1. By our assumptions

every word in Lk�1 is a onatenation of words in Lk. Then x P xLky and that means

xLk�1y � xLky.

Now we prove that X � Σ1
pA,Fq where F is the set of words of length ℓk, k ¥ 0,

that are not subwords of the onatenation of two words of Lk. For a �xed k ¥ 0, denote

Fk the set of words of length ℓk that are not subwords of the onatenation of two words

of Lk. In this ase the set Fk is �nite and if Σ1
pA,Fkq is the SFT generated by the set of

forbidden words Fk it is lear that xLky � Σ1
pA,Fkq. By our assumptions xLk�1y � xLky

for every k ¥ 0, thus
£

i¥k

xLiy � Σd
pA,Fkq.

Therefore

X �

£

k¥0

xLky �

£

k¥0

Σ1
pA,Fkq � Σ1

pA,Fq.

For every k ¥ 0, de�ne the interval

Ik :�
r
1�

Yℓk

2

℄

, ℓk �
Yℓk

2

℄z
.

If we onsider x P Σ1
pA,Fq, then x|Ik is a subword of length ℓk of the onatenation

of two words of Lk. For every k P N we an assure that there exists a on�guration

yk P xLky suh that x|Ik � yk|Ik . We may take a subsequene of indies k suh that

pykqk¥0 onverges to some y P AZ
. Sine yk P xLjy for every k ¥ j, by taking the limit in

k we obtain y P xLjy, for every j ¥ 0, thus y P X . For every k ¥ j, as Ij � Ik, we have

x|Ij � yk|Ij . Sine pykqk¥0 onverges to y, x|Ij � y|Ij for every j ¥ 0, thus x � y P X .

Therefore X � Σ1
pA,Fq.

Consider two words uk, vk P Lk. There exists a on�guration xk P xLky suh that

xk|J�ℓk,ℓk�1K � ukvk.

If the onatenation ukvk an be found in a word of uk�1 P Lk�1, then it is enough to assure

there exists a on�guration x P X that x|J�ℓk,ℓk�1K � ukvk and therefore ukvk P LpXq.

If ukvk is not a subword of a word in Lk�1, then by our assumptions the onatenation

ukvk an be seen as a subword of a onatenation of two words in Lk�1, that is, there
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exists uk�1, vk�1 P Lk�1 suh that ukvk � uk�1vk�1. We an assure again there exists

xk�1
P xLk�1y suh that

xk�1
|J�ℓk�1,ℓk�1�1K � uk�1vk�1,

and therefore the word ukvk appears in the on�guration xk�1
. Hene we assure that for

every j ¥ k we an �nd a on�guration xj P xLjy and two words uj, vj P Lj suh that

xj |J�ℓj,ℓj�1K � ujvj and ukvk � ujvj. We may take a subsequene of indexes j suh that

xj onverges to some x P X . As we have lim
kÑ�8

ℓk � �8 we obtain a on�guration x P X

suh that ukvk � x P X and therefore ukvk P LpXq.

First we desribe a one-dimensional onstrution that satis�es all of our previous

hypotheses and from there we desribe our bidimensional elements. We use the notation

with a marker � for the one-dimensional elements. Consider an alphabet Ã � t0, 1, 2u, a

sequene of integers ℓk, sets of bloks Ãk, B̃k � Ãℓk
(or ÃJ1,ℓkK

) and two auxiliary sequenes

of integers pNkqk¥0 and pN
1

kqk¥0. We impose assumptions on these sequenes in order to

properly build our example. We assume that N 1

k ¥ 4 and Nk is a multiple of N 1

k for eah

k ¥ 0.

Notation 1. For eah k ¥ 0 the sets Ãk and B̃k will be

Ãk � tak, 1
ℓk
u B̃k � tbk, 2

ℓk
u,

where ak, bk P ÃJ1,ℓkK
. We de�ne these bloks by an iteration proess desribed below.

Start with ℓ0 � 2, a0 � 01 and b0 � 02, then we have

Ã0 � t01, 11u and B̃0 � t02, 22u.

If k ¥ 1 is odd we de�ne

ak � ak�1ak�1 � � � ak�1
looooooooomooooooooon

Nk-times

and

bk � bk�12
pNk�2qℓk�1bk�1;

(3.1)

and if k ¥ 2 is even we de�ne

ak � ak�11
pNk�2qℓk�1ak�1 and

bk � bk�1bk�1 � � � bk�1
loooooooomoooooooon

Nk-times

.
(3.2)

In our iteration proess, for every k ¥ 0, the sets Ãk and B̃k are formed by two bloks
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of length ℓk and we always have 1ℓk P Ãk and 2ℓk P B̃k. The length of the bloks at eah

stage is given by

ℓk � Nkℓk�1.

Notation 2. Now we de�ne the sub-ditionaries Ã1

k and B̃
1

k whih are made of subwords

of length ℓ1k � N 1

k � ℓk�1 that are either initial or terminal words of a word in Ãk and B̃k.

Formally,

1. if k is odd, Ã1

k � ta1k, 1
ℓ1
k
u, B̃1

k � tb1k, b
2

k, 2
ℓ1
k
u,

a1k :� ak�1ak�1 � � � ak�1, N 1

k times,

b1k :� bk�12
pN 1

k
�1qℓk�1

and

b2k :� 2pN
1

k
�1qℓk�1bk�1;

(3.3)

2. if k is even, Ã1

k � ta1k, a
2

k, 1
ℓ1
k
u, B̃1

k � tb1k, 2
ℓ1
k
u,

a1k :� ak�11
pN 1

k
�1qℓk�1 ,

a2k � 1pN
1

k
�1qℓk�1ak�1 and

bk :� bk�1bk�1 � � � bk�1, N 1

k times.

(3.4)

Notie that, as Nk is a multiple of N 1

k, we have xÃky � xÃ1

ky and xB̃ky � xB̃1

ky.

Remark 4. For eah k P N, we denote the blok of ℓk onseutive 1's by 1k :� 1ℓk and,

in a similar fashion 2k :� 2ℓk .

The frequeny of the symbol 0 in any word w̃ P ÃJ1,ℓkK
of length ℓk is denoted by

fkpw̃q :�
1

ℓk
ard

�

ti P J1, ℓkK : w̃piq � 0u
�

. (3.5)

We denote in the same fashion the frequeny of the symbol 0 in words w̃ P ÃJ1,ℓ1
k
K
as

f 1kpw̃q :�
1

ℓ1k
ard

�

ti P J1, ℓ1kK : w̃piq � 0u
�

.

Let fA
k , f

B
k (resp. f 1k

A
, f 1k

B
) be the largest frequeny of the symbol 0 in the words of

Ãk, B̃k (resp. Ã1

k, B̃
1

k).

Lemma 6. Let Ãk and B̃k be the two languages de�ned in Notation 1, Ã1

k and B̃1

k those

de�ned in Notation 2. Then



3.1. ONE-DIMENSIONAL EFFECTIVELY CLOSED SUBSHIFT 47

1. if k ¥ 1 is odd, then

$

'

'

'

&

'

'

'

%

f 1k
A
� fA

k � fA
k�1, fB

k �

2

Nk

fB
k�1, f 1k

B
�

1

N 1

k

fB
k�1,

fA
k �

pk�1q{2
¹

i�1

�

2

N2i�2




fA
0
, fB

k �

pk�1q{2
¹

i�1

�

2

N2i�1




fB
0
,

with N0 � 2;

2. if k ¥ is even, then

$

'

'

'

&

'

'

'

%

fA
k �

2

Nk

fA
k�1

, f 1k
A
�

1

N 1

k

fA
k�1

, f 1k
B
� fB

k � fB
k�1

,

fA
k �

k{2
¹

i�1

�

2

N2i




fA
0 , fB

k �

k{2
¹

i�1

�

2

N2i�1




fB
0 .

Consider L̃k :� Ãk

�

B̃k (resp. L̃1k :� Ã1

k

�

B̃1

k). We will say that two words a, b P Ãℓ

overlap if there exists a non-trivial shift 0   s   ℓ suh that the terminal segment of

length s of the word a oinides with the initial segment of the word b of the same length,

or vie-versa by permuting a and b. Note that we exlude the overlapping where a and b

oinide.

The next three lemmas are tehnial lemmas that onern some important properties

about the possible types of overlapping in the objets that we desribed before. The �rst

one ensures that there is no possible overlapping between two words one of Ãk and the

other one from B̃k (resp. Ã1

k and B̃1

k). The next two lemmas haraterize the possible

overlaps between any two words at eah stage k of the iteration proess.

Lemma 7. In our onstrution desribed above, a word from Ã1

k and a word from B̃1

k

never overlap, neither an a word from Ãk and a word from B̃k overlap.

Proof. Every word in Ã1

k ends with the symbol 1 whih does not appear in any word in

B̃1

k. Conversely, every word in B̃1

k ends with the symbol 2 that does not appear in any

word in Ã1

k. The same argument is valid for the words in Ãk and B̃k.

The next lemma is formulated for the ase k even, but a similar lemma holds for the

ase k odd. First we need to �x some notations. Consider k ¥ 1 an even integer and the

even rules desribed in (3.2) and (3.4). We denote the initial segment of length ℓk�1 of

ak and a1k by aIk�1
; the terminal segment of length ℓk�1 of ak and a2k by aTk�1

; and the

remaining segment 1pN
1

k
�1qℓk�1

that we all marker. We an represent

ak � ak�1
loomoon

aI
k�1

1pNk�2qℓk�1 ak�1
loomoon

aT
k�1

,
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a1k � ak�1
loomoon

aI
k�1

1pN
1

k
�1qℓk�1

loooomoooon

marker

and a2k � 1pN
1

k
�1qℓk�1

loooomoooon

marker

ak�1
loomoon

aT
k�1

.

We de�ne similarly the initial and terminal segments of b1k and denoted as bIk�1
and

bTk�1
, respetively, as shown below

b1k � bk�1
loomoon

bI
k�1

b
pN 1

k
�2q

k�1
bk�1
loomoon

bT
k�1

.

Note that aIk�1
� aTk�1

� ak�1 and b
I
k�1

� bTk�1
� bk�1.

Lemma 8. Let k ¥ 1 be even, ak P Ãk and bk P B̃k as desribed in (3.2). Then

1. two words of the same type ak an only overlap on their initial and terminal segment,

that is, aIk�1
of one of the two words overlaps aTk�1

of the other word ak;

2. on the other hand, two words of the same type bk an overlap exatly on a multiple

of bk�1 or they have an overlap of length ℓk�2 between b
I
k�1

and bTk�1
.

Proof. 1. We onsider a non-trivial shift 0   s   ℓk and a word w P ÃJ1,s�ℓkK
made of

two overlapping ak:

ak � w|J1,ℓkJ, ãk :� w|s�J1,ℓkK, � i P J1, ℓkK, ãkps� iq � akpiq.

We assume �rst that 0   s   ℓk�1. Then on the one hand aTk�1
of ak starts with

the symbol 0 at the index i � pNk � 1qℓk�1 � 1. On the other hand the symbol 1

appears in ãk at the indies in the range J̃i, j̃K :� Js � ℓk�1 � 1, s � pNk � 1qℓk�1K.
Sine i P J̃i, j̃K we obtain a ontradition.

We assume next that ℓk�1 ¤ s   pNk � 1qℓk�1. Then on the one hand the symbol

1 appears in ak at the indies in the range J̃i, j̃K :� Jℓk�1 � 1, pNk � 1qℓk�1K. On

the other hand ãk starts with the symbol 0 at the index i � s � 1. We obtain a

ontradition.

We onlude that s should satisfy s ¥ pNk � 1qℓk�1: two words of the form ak an

only overlap on their initial and terminal segments.

2. We notie that k � 1 is odd and bk�1 has the same struture as ak in the �rst item.

Two words of the form bk�1 only overlap on their initial and terminal segments.

Then bk�1 annot be a subword of the onatenation c � bk�1bk�1 of two words bk�1

unless bk�1 oinides with the �rst or the last bk�1 in c. If bk and b̃k overlap, either

b̃k has been shifted by a multiple of ℓk�1, s P tℓk�1, 2ℓk�1, . . . , pN
1

k � 1qℓk�1u. Note

that k � 1 is an odd number, then bk�1 has the same behavior as ak desribed in
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the previous item. Therefore, it is only possible to have an overlap of a word bk�2

of length ℓk�2 between b
T
k�1

and b̃Ik�1
.

Lemma 9. Let k ¥ 1 be an even integer and a1k and a2k as desribed in (3.4). Then the

following holds:

1. two words of the same form a1k never overlap; the same is true for two words of the

same form a2k;

2. two words a1k and a2k overlap if and only if they overlap either partially on their

marker or partially on their initial and terminal segments, respetively.

Proof. 1. We onsider a non trivial shift 0   s   ℓ1k and two overlapping words of the

form a1k shifted by s. Let be w P ÃJ1,s�ℓ1
k
K
suh that

a1k � w|J1,ℓ1
k
K, ã1k :� w|s�J1,ℓ1

k
K, � i P J1, ℓ1kK, ã1kps� iq � a1kpiq.

We assume �rst that ℓk�1 ¤ s   ℓ1k. On the one hand, ã1k starts with the symbol

0, wps� 1q � 0; on the other hand, w|Jℓk�1�1,ℓ1
k
K ontains only the symbol 1. Sine

s� 1 P Jℓk�1 � 1, ℓ1kK we obtain a ontradition.

We assume next that 0   s   ℓk�1. We observe that k � 1 is odd and the two

initial segments aIk�1
of a1k and ã1k are of the same form as bk in the seond item.

They overlap on a multiple of words of the form ak�2 or at their initial and terminal

segments. Neessarily s ¥ lk�2 ¥ 2. On the one hand, the initial segment of ã1k ends

with the symbols 01, wps� ℓk�1 � 1q � 0, on the other hand, w|Jℓk�1�1,ℓ1
k
K ontains

only the symbol 1. Sine s� ℓk�1 � 1 P Jℓk�1 � 1, ℓ1kK we obtain a ontradition.

A similar proof works for a2k instead of a1k.

2. We divided our disussion in two ases. We onsider �rst the ase,

a1k � w|J1,ℓ1
k
K, ã2k :� w|s�J1,ℓ1

k
K, � i P J1, ℓ1kK, ã2kps� iq � a2kpiq.

We assume that 0   s   ℓk�1. The terminal segment of ã2k is a word like ak�1 and

then it starts with the symbol 0 whih appears in w at the index s�pN 1

k � 1qℓk�1 P

Jℓk�1, ℓ
1

kK. On the other hand w|Jℓk�1,ℓ
1

k
K ontains only the symbol 1. We obtain a

ontradition, then neessarily ℓk ¤ s and the two words a1k and a
2

k overlap (partially

or ompletely) on their markers.

We onsider next the ase,

a2k � w|J1,ℓ1
k
K, ã1k :� w|s�J1,ℓ1

k
K, � i P J1, ℓ1kK, ã1kps� iq � a1kpiq.
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Assume that 0   s   pN 1

k�1qℓk�1. The initial segment of ã1k starts with the symbol

0 whih is loated at the index s � 1 P J1, pN 1

k � 1qℓk�1K in w. On the other hand

w|J1,pN 1

k
�1qℓk�1K is the marker of a2k and ontains only the symbol 1. We obtain a

ontradition, then it is only possible to have s ¥ pN 1

k � 1qℓk�1, whih means that

the terminal segment of a2k overlaps with the initial segment of a1k. Both segments

are opies of ak�1 and as we onsider k ¥ 2 even, k � 1 is odd and ak�1 has the

same behavior desribed in Lemma 8 item 2. Therefore the possible overlap an

our (partially or ompletely) on their initial and terminal segments by the rules

desribed as in Lemma 8 item 2.

As de�ned in (3.24) we onsider for eah k ¥ 0 the onatenated subshifts generated

by the sets L̃k, Ãk and B̃k that are denoted as xL̃ky, xÃky and xB̃ky, respetively.

By the de�nition of these subshifts we have that for eah k ¥ 0

xÃky � xÃk�1y, xB̃ky � xB̃k�1y

and

xL̃k�1y � xL̃ky.

Lemma 10. Consider the iteration proess desribed in Notation 1 and Notation 2. If

we denote L̃k � Ãk

�

B̃k and L̃1k � Ã1

k

�

B̃1

k for eah k P R, then

xL̃ky � xL̃1ky.

Proof. If we onsider the iteration proess desribed in Notation 1 and Notation 2, then

N 1

k divides Nk. More than that, every word of Ãk, B̃k is obtained as onatenation of

words of Ã1

k, B̃
1

k respetively. Therefore, the onatenated subshift xL̃ky is a subset of

xL̃1ky, sine every pattern in L̃1k is a subpattern in L̃k.

We onsider

X̃ :�
£

kPN

xL̃ky. (3.6)

The onstrution presented here satis�es all the hypotheses of Lemma 5, therefore X̃ �

Σ1
pÃ,Fq is the subshift generated by the set of forbidden words F �

�

k¥0
F̃pℓkq, where

F̃pℓkq is the set of words of length ℓk that are not subwords of the onatenation of two

words of L̃k.

From now on we give a speialized algorithm whih produes our auxiliary sequenes

(Nk, ℓk, N
1

k and ℓ
1

k) and also the hoie of βk for eah k. We introdue two integer numbers

ρAk and ρBk that ount the number of symbols 0 in the words ak and bk

ρAk :� ℓkf
A
k , ρBk :� ℓkf

B
k .
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De�nition 27 (The reursive sequenes). We de�ne the partial reursive funtion S :

N
4
Ñ N

4

pℓk, βk, ρ
A
k , ρ

B
k q � Spℓk�1, βk�1, ρ

A
k�1

, ρBk�1
q.

satisfying ℓ0 � 2, β0 � 0, ρA
0
� ρB

0
� 1 and de�ned suh that the following holds:

In the ase k is even:

1. N 1

k :�
QkρAk�1

ρBk�1

U

, ℓ1k � N 1

kℓk�1,

2. βk :�
Qℓ2k�1

2kℓ
1

k

pρBk�1
q

2

U

,

3. Nk :� N 1

k

Q kβk

N 1

kρ
B
k�1

U

, ℓk � Nkℓk�1,

4. ρAk � 2ρAk�1
, ρBk � Nkρ

B
k�1

,

In the ase k is odd:

5. pℓk, βk, ρ
A
k , ρ

B
k q are omputed as before with A and B permuted.

The following proposition assures there exists a Turing mahine that enumerates all

the forbidden patterns of X̃ , whih means that X̃ is an e�etively losed subshift. More

than that, this Turing mahine an be onstruted suh that it enumerates the forbid-

den words in inreasing length, it gives an exponential upper bound for the number of

steps to enumerate every forbidden word up to a given length and it also gives a trivial

reonstrution funtion (Rpnq � n) that will be de�ned later (De�nition 30).

Proposition 4. Let X̃ be the subshift de�ned as in (3.6). Let F̃ :�
�

nPN F̃pnq where

F̃pnq is the set of words of length n that are not sub-words of the onatenation of two

words of L̃k for some k ¥ 0 suh that ℓk ¥ n.

Then the following holds:

1. X̃ � Σ1
pÃ, F̃q.

2. For every n ¥ 0, there exist unique integers k ¥ 1 and p ¥ 2 satisfying

ℓk�1   n ¤ ℓk and pp� 1qℓk�1   n ¤ pℓk�1.

We denote F̃ 1

pnq as the set of words of length n that are not sub-words of any word

of the form

ÝÑw1
�Ýw2 where

ÝÑw1 is a terminal segment of w1 of length pp� 1qℓk�1,
�Ýw2 is

an initial segment of w2 of length pp � 1qℓk�1, and w1 or w2 are either one of the

words ak, bk, 1k, 2k. Then

F̃ 1

pnq � F̃pnq.
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3. There exists a Turing mahine M that enumerates all patterns of F̃ in inreasing

order (words of F̃pnq are enumerated before those in F̃pn � 1q). If we denote

by τ : N Ñ N the funtion τpnq that ounts the number of steps that M takes

to enumerate all patterns of F̃ up to length n, then τpnq ¤ P pnq|Ã|n, for some

polynomial P pnq.

The proof for the previous proposition is in Appendix A.

The next lemma gives that the sets LpxÃky, ℓkq and LpxB̃ky, ℓkq an be seen as the set

of all possible words of length ℓk that an be seen as a subword of a onatenation of two

words of Ãk and B̃k, respetively.

Lemma 11. Given our onstrution of Ãk and B̃k we have that for eah k ¥ 0

LpxÃky, ℓkq �
!

w P ÃJ1,ℓkK : Da1, a2 P Ãk suh that w � a1a2

)

(3.7)

and

LpxB̃ky, ℓkq �
!

w P ÃJ1,ℓkK : Db1, b2 P B̃k suh that w � b1b2

)

. (3.8)

3.2 Bidimensional SFT

We an apply the onstrution of Aubrun-Sablik to our one-dimensional e�etively losed

subshift X̃ � Σ1
pÃ, F̃q and obtain a bidimensional SFT X̂ � Σ2

pÂq de�ned over an

alphabet Â � Ã�C. We are using the symbol ^ over the objets that are de�ned for the

SFT generated by the Theorem 6. Let F̂ � AJ1,DK2
be a �nite set of forbidden patterns

suh that

X̂ :� Σ2
pÂ, F̂q (3.9)

as the orresponding subshift generated by F̂ .

De�nition 28. Let V
�

be the set of forbidden patterns in Σ2
pÃq that are not vertially

aligned, that is,

V
�

:� tp P Ãt1u�J1,2K : pp1, 1q �� pp1, 2qu.

Let π : ÂÑ Ã de�ned as

#

π : Â � Ã� C Ñ Ã

pa, cq ÞÑ πpa, cq � a;
(3.10)

and let π : Σ2
pÂ, F̂q Ñ Σ2

pÃq be the projetion de�ned as

#

π : X̂ � Σ2
pÃ, F̂q Ñ Σ2

pÃq

x ÞÑ πpxq �
�

πpx
pi,jqq

�

pi,jqPZ2
.

(3.11)
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We denote

X̂π :�
!

πpxq : x P X̂
)

.

Note that X̃π � Σ2
pÃ,V

�

q sine F̂ ontains all the patterns that are not vertially aligned.

Remark 5. Here we always use the expression "vertially aligned" to express the vertial

alignment over the the �rst oordinate of Â, that is, over the one-dimensional alphabet

Ã.

By Theorem 6, the projetive Z-subation of X̂π is equal to X̃ , whih means that

X̂π � tx P Σ2
pÃ,V

�

q : x|Z�t0u P X̃u.

De�nition 29. We de�ne Ã1

k� � ÃJ1,ℓ1
k
K2
as the bidimensional ditionary of linear size ℓ1k

of vertially aligned patterns that projet onto Ã1

k, formally de�ned as

Ã1

k� :�
 

p P ÃJ1,ℓ1
k
K2 : Dp̃ P Ã1

k, s.t. �, pi, jq P J1, ℓ1kK2, ppi, jq � p̃piq
(

.

B̃1

k� � ÃJ1,ℓ1
k
K2
is de�ned similarly. We use the notation π

�

: Ã1

k� Ñ Ã1

k (resp. π
�

: B̃1

k� Ñ

B̃1

k) to represent the projetion of a square pattern p P Ã1

k� (resp. B̃
1

k�) to its word p̃ P Ã
1

k

(resp. B̃1

k) that de�nes it.

We onsider a large pattern p P ÃJ1,nK2
and translates u of small squares of size 2ℓ1k

inside this pattern that are labeled by vertially aligned words of Ã1

k or B̃1

k. Let k ¥ 2,

n ¡ 2ℓ1k, and p P ÃJ1,nK2
. We denote

Ipp, ℓ1kq :�
!

u P J0, n� 2ℓ1kK2 : σu
ppq|J1,2ℓ1

k
K2 P LpX̂π, 2ℓ

1

kq

)

, (3.12)

IApp, ℓ1kq :�
!

u P J0, n� ℓ1kK2 : σu
ppq|J1,ℓ1

k
K2 P Ã

1

k�

)

(3.13)

and

JA
pp, ℓ1kq :�

¤

uPIApp,ℓ1
k
q

�

u� J1, ℓ1kK2
�

. (3.14)

We de�ne IBpp, ℓ1kq and J
B
pp, ℓ1kq similarly with replaing Ã1

k� for B̃
1

k� in (3.13) and (3.14),

respetively.

Lemma 12. Let k ¥ 2, n ¡ 2ℓ1k, p P ÃJ1,nK2
and the sets de�ned above. We will denote

τ 1k �: pℓ
1

k, ℓ
1

kq P N
2
. Then JA

pp, ℓ1kq X JB
pp, ℓ1kq � H and for eah u P Ipp, ℓ1kq

u� τ 1k P J
A
pp, ℓ1kq

§

JB
pp, ℓ1kq.

Proof. The fat that JA
pp, ℓ1kq and J

B
pp, ℓ1kq do not interset is a onsequene of Lemma

7. Let be u P Ipp, ℓ1kq and w
�

� σu
ppq|J1,2ℓ1

k
K2 . There exists w P LpxL̃ky, 2ℓ

1

kq suh that
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w
�

pi, jq � wpiq for all pi, jq P J1, 2ℓ1kK2. By de�nition of xL̃ky, w � w1w2 is a subword

of the onatenation of two words of L̃k. Note that, by Lemma 10 xL̃ky � xL̃1ky. Hene

LpxL̃ky, 2ℓ
1

kq � LpxL̃1ky, 2ℓ
1

kq

On the other hand, a word in L̃k is either a word of Ãk or a word of B̃k. As xÃky � xÃ1

ky

and xB̃ky � xB̃1

ky, w1 and w2 are obtained as a onatenation of words of Ã1

k or B̃
1

k. There

exists 0 ¤ s   ℓ1k suh that

σs
pwq|J1,ℓ1

k
K P Ã

1

k

§

B̃1

k.

Then

u� ps, sq P IApp, ℓ1kq
§

IBpp, ℓ1kq,

and therefore

u� τ 1k P J
A
pp, ℓ1kq

§

JB
pp, ℓ1kq.

PSfrag replaements

n

n

u
2ℓk

2ℓk

u� ps, sq

Figure 3.1: In the �gure we are taking a square pattern p P ÃJ0,nK2
shown as the biggest

square. We are onsidering that u P Ipp, ℓ1kq and therefore the patterns loated in the

dashed square of size 2ℓ1k belong to LpX̂π, 2ℓ
1

kq. We know that the pattern loated in the

most inner box of size ℓ1k belongs to Ã1

k

�

B̃1

k. The most inner dot represents u� τ 1k.

Lemma 13. Let k ¥ 2 be an even integer, n ¡ 2ℓ1k, and p P ÃJ1,nK2
. Let IApp, ℓ1kq,
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JA
pp, ℓ1kq, I

B
pp, ℓ1kq, J

B
pp, ℓ1kq be the sets de�ned in Lemma 12. De�ne

KA
pp, ℓ1kq � tv P JA

pp, ℓ1kq : ppvq � 0u, KB
pp, ℓ1kq � tv P JB

pp, ℓ1kq : ppvq � 0u. (3.15)

Then

1. ardpKB
pp, ℓ1kqq ¤

�

1�N�1

k�1

�

�1
ardpJB

pp, ℓ1kqqf
B
k�1,

2. ardpKA
pp, ℓ1kqq ¤

2

N 1

k

ardpJA
pp, ℓ1kqqf

A
k�1.

Proof. Let k ¥ 2 even, n ¡ 2ℓ1k and a �xed p P ÃJ1,nK2
. To simplify the notations, we

write IA � IApp, ℓ1kq, J
A
� JA

pp, ℓ1kq and so on. As the symbol 0 does not appear in the

markers 1N
1

k
ℓk�1

P Ã1

k and 2N
1

k
ℓk�1

P B̃1

k, we only need to onsider the subset of IA (resp.

IB) that orresponds to the translates u P J0, n� ℓ1kK2 and the subwords w
�

� σu
ppq|J1,ℓ1

k
K2

satisfying π
�

pw
�

q P ta1k, a
2

ku (resp. π�pw�q � b1k).

Item 1. We �rst enumerate IB � tu1, u2, . . . , uHu. Let be uh � puxh, u
y
hq P Z

2
. Let

JB :�

H
¤

h�1

Jh where Jh :� uh � J1, ℓ1kK2, π
�

pσuh
ppqq|J1,ℓ1

k
K2 � b1k,

that is, we are only onsidering the Jh elements of JB
pp, ℓ1kq suh that the one-dimensional

projetion is the blok b1k. For eah box Jh we divide into N
1

k vertial strips of length ℓk�1.

Formally we have

Jh �

N 1

k
¤

i�1

Jh,i where Jh,i :� uh � J1� pi� 1qℓk�1, iℓk�1K� J1, ℓ1kK.

We onstrut a partition of JB
indutively by,

JB
�

H
§

h�1

J�h , J�
1
� J1, � h ¥ 2, J�h :� Jhz pJ1 Y � � � Y Jh�1q .

Let

K�

h :� tv P J�h : ppvq � 0u.

It will be enough to show that for every h P J1, HK

ardpK�

hq ¤

�

1�N�1

k�1

�

�1
ardpJ�h qf

B
k , (3.16)

By de�nition of uh, w̃h � π
�

pp|
puh�J1,ℓ1

k
K2qq is a translate of b1k P Ãℓ1

k
,

� i, j P J1, ℓkK2, w̃hpu
x
h � iq � b1kpiq.

Sine b1k is made of N 1

k subwords of the form bk�1, we denote by w̃h,i P Ãℓk�1
, the suessive
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subwords, � 1 ¤ i ¤ N 1

k,

w̃h,i :� w̃h|
pux

h
�J1�pi�1qℓk�1,iℓk�1Kq and σ

ux
h
�pi�1qℓk�1

pw̃h,iq � bk�1.

We are onsidering a �xed h and we show that J�h is equal to a disjoint union of N 1

k

vertial strips pJ�h,iq
N 1

k

i�1
of the following forms:

• the initial strip J�j,1,

uh � pJ1� ℓk�2, ℓk�1K � Jch,1, dh,1Kq � J�j,1 � puh � J1, ℓk�1Kq � Jah,1, bh,1K;

• the intermediate strips, J�h,i, 1   i   N 1

k,

J�h,i � uh � pJpi� 1qℓk�1 � 1, iℓk�1K � Jch,i, dh,iKq ; and

• the terminal strip J�h,N 1

k
,

uh � pJ1� pNk � 1qℓk�1, ℓk � ℓk�2K � Jch,Nk
, dh,Nk

Kq �
� J�h,N 1

k
� uh �

�

J1� pN 1

k � 1qℓk�1, ℓ
1

kK� Jah,N 1

k
, bh,N 1

k
K
�

.

Here for eah i P J1, N 1

kK, the values 1 ¤ ch,i, dh,i ¤ ℓk are integers that represent the

vertial extent of eah strip and it will be possible that ch,i   dh,i to denote an empty

strip J�h,i.

Indeed, for a �xed 1 ¤ i ¤ N 1

k, we �rst onsider the previous Jg, 1 ¤ g   h, that

intersets the strip Jh,i so that the word w̃g overlaps w̃h on a multiple of bk�1 (see item 2

of Lemma 8). Then ch,i is the largest upper level of those Jg X Jh,i, more preisely,

ch,i � max
g

 

uyg � ℓ1k � 1 : uyg ¤ u
y
h,
�

uxh � pi� 1qℓk�1 � J1, ℓk�1K
�

�

�

uxg � J1, ℓ1kK
�(

. (3.17)

and similarly dh,i is the smallest lower level of those Jg X Jh,i, formally we have

dh,i � min
g

 

uyg � 1 : uyg ¥ u
y
h,
�

uxh � pi� 1qℓk�1 � J1, ℓk�1K
�

�

�

uxg � J1, ℓ1kK
�(

. (3.18)

We have just onstruted the intermediate strips J�h,i for 1   i   Nk.

We now onstrut the initial strip (the terminal strip is onstruted similarly). We

interset the remaining Jg with Jh,1. The terminal segment bTk�1
of w̃g overlaps the initial

segment bIk�1
of w̃h. Thanks to item 1 of Lemma 8, as k � 1 is odd, bk�1 has the same

struture as ak, the overlapping an only happen at their end segments of the form bk�2.

We have just proved that J�h,1 ontains a small strip

�

uh� J1� ℓk�2, ℓk�1K
�

� Jch,1, dh,1K of
base bIk�1

zbk�2 and is inluded in a larger strip

�

uh � J1, ℓk�1K
�

� Jch,1, dh,1K of base bk�1.
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Figure 3.2: We are representing here the ase where there is an intersetion but the strip

Jh,i is not ompletely overed by the previous squares Jg. The squares Jg and Jp are

already in the partition, then J�h,i is only the highlighted gray area.

For the initial and terminal strip the vertial extension (Jch,1, dh,1K and Jch,N 1

k
, dh,N 1

k
K) of

the elements J�h,1 and J
�

h,N 1

k
are de�ned as in (3.17) and (3.18).
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Jh,1

Jh
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Figure 3.3: The strip of length ℓk�1 � ℓk�2 is always ontained in J�h,1.

Let be K�

h,i :� tv P J�h,i : pv � 0u. We show that

� 1 ¤ i ¤ Nk, ardpK
�

h,iq ¤

�

1�N�1

k�1

�

�1
ardpJ�h,iqf

B
k . (3.19)
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For the intermediate strips J�h,i, where 1   i   N 1

k, we use the fat that J
�

h,i is a square

strip of base bk�1, and the fat that the frequeny fB
k�1

of the symbol 0 in the word bk�1

is idential to the frequeny fB
k of the symbol 0 in bk. We have,

ardpK�

h,iq � ℓk�1pdh,i � ch,i � 1qfB
k � ardpJ�h,iqf

B
k .

For the initial strip J�h,1, we use the fat that J�h,1 resembles largely a square strip of

base bk�1. We have,

ardp K�

h,iq ¤ ℓk�1pdh,1 � ch,1 � 1qfB
k

¤

ℓk�1

ℓk�1 � ℓk�2

pℓk�1 � ℓk�2qpdh,1 � ch,1 � 1qfB
k

¤

�

1�N�1

k�1

�

�1
ardpJ�h,iqf

B
k .

We have proved (3.19) and by summing over i P J1, N 1

kK we have proved (3.16).

Item 2. As before we will onsider IA (de�ned in (3.13), but only onsider the trans-

lates u P J0, n � ℓ1kK2 suh that π
�

pσu
ppq|J1,ℓ1

k
K2q P ta1k, a

2

ku. If Jg X Jh � H, the two

projeted words w̃g � π
�

pσug
ppq|J1,ℓ1

k
K2q and w̃h � π

�

pσuh
ppq|J1,ℓ1

k
K2q may either oinide in

three ways: w̃g � w̃h, so u
x
g � uxh; overlap partially on their markers or overlap on their

initial and terminal segments as proved in Lemma 9.

We rede�ne again IA by lustering into a unique retangle adjaent squares where the

overlap ours in the whole word, that is, we group the squares Jg and Jh that pairwise

satisfy Jg X Jh �� H, uxg � uxh, w̃g � w̃h, |u
y
g � u

y
h|   ℓ1k. Then, after reindexing IA, one

obtains,

JA
�

H
¤

h�1

Jh, Jh � uh � pJ1, ℓk�1K� J1, dhKq ,

where dh is the �nal height of eah retangle obtained after the lustering. Thus w�

h �

σuh
ppq|J1,ℓ1

k
K�J1,dhK is a vertially aligned pattern whose projetion w̃h � π

�

pw�

hq is a word

of the form a1k or a2k, and so that w̃g, w̃h never entirely oinide if Jg X Jh �� H.

We now show that an index v � pvx, vyq P JA
may belong to at most two retangles Jg

and Jh. Indeed, by onstrution, uxg �� uxh, if v
x
belongs to two overlapping words of the

form a1k, a
2

k, then vx belongs to either the intersetion of the two markers 1pN
1

k
�1qℓk�1

or

the intersetion of the terminal segment aTk�1
of a2k and the initial segment aIk�1

of a1k. In

both ases desribed in Lemma 9 we exlude the overlapping of a third word of the form

a1k, a
2

k, thus we exlude the fat that v may belong to a third retangle Jk with uxk �� uxg
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Figure 3.4: The biggest square has size n. On the left side the three squares of size ℓ1k
interset eah other and the blak dot belongs to eah of these squares. The highlighted

gray area belongs to both of the vertially aligned squares. After the lustering, on the

right side, the two previous dashed squares emerge into one box of size ℓ1k � dh and thus

the point represented in the �gure only belong to two boxes.

and uxk �� uxh. Then

ardpKA
q �

¸

vPJA

1
pppvq�0q

¤

Ḩ

h�1

¸

vPpuh�J1,ℓ1
k
K�J1,dhKq

1
pppvq�0q ¤

Ḩ

h�1

fA
k�1ℓk�1dh

¤

fA
k�1

ℓk�1

ℓ1k

Ḩ

h�1

¸

vPJA

1vPpuh�J1,ℓ1
k
K�J1,dhKq �

fA
k�1

N 1

k

¸

vPJA

Ḩ

h�1

1
pvPJhq

¤

2fA
k�1

N 1

k

ardpJA
q.

3.3 The new oloring

Based on our previous onstrution we de�ne a new oloring for the SFT generated by

the Aubrun-Sablik onstrution. This new subshift will be de�ned using the alphabet

A � B � C̃, where B � t01, 02, 1, 2u. Consider A � B � C̃, γ : A Ñ Â obtained by

ollapsing the two symbols 01, 02 to 0, that is,

� c P C,

#

γp01, cq � p0, cq, γp02, cq � p0, cq,

γp1, cq � p1, cq, γp2, cq � p2, cq,
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and

Γ : Σ2
pAq Ñ Σ2

pÂq (3.20)

be the 1-blok anonial projetion.

Remember that we are denoting Â � Ã � C and Ã � t0, 1, 2u. Let π : Â Ñ Ã be

the �rst projetion over the alphabet Ã as de�ned in (3.10). We set Π̂ : Σ2
pÂq Ñ Σ1

pÃq

de�ned as

#

Π̂ : Σ2
pÂq Ñ Σ1

pÃq

x ÞÑ y � pπpx
pi,0qqqiPZ.

(3.21)

We will always apply Π̂ for on�gurations that are vertially aligned for the symbols in Ã

and therefore there is no problem in seleting the zero row with indies pi, 0q where i P Z.

Let F be the pullbak of F̂ by Γ and X be the subshift generated by F ,

F :� tp P AJ1,DK2 : Γppq P F̂u, X :� Γ�1
pX̂q � Σ2

pA,Fq.

Let be

π � π � γ and Π � Π̂ � Γ. (3.22)

Observation 1. We will also use the projetion Π as de�ned before for �nite patterns

without any distintion. Note that the extended set of forbidden patterns F fores every

loally admissible on�guration to be vertially aligned with respet to the initial alphabet

Ã provided we identify the two dupliated symbols 01 and 02.

We an de�ne the bidimensional subshifts generated by eah step of the iteration

proess. Consider k large enough suh that we have ℓk ¡ D where D ¥ 2 is de�ned by

the set of forbidden patterns F � AJ1,DK2
. We will denote

Lk :� LpX, ℓkq (3.23)

that is, the language of X of size ℓk as de�ned in (2.2). We say that a pattern w belongs to

Lk if and only if it is globally admissible with respet to X . Let xLky be the orresponding

onatenated subshift as de�ned in De�nition 8, that is,

xLky :�
¤

uPJ1,ℓkK2

£

vPZ2

σ�pu�vℓkq
rLks. (3.24)

Note that every pattern in Lk�1 is obtained by onatenating N2

k patterns of Lk and the

subshifts satisfy xLk�1y � xLky.

We de�ne two intermediate sub-languages of X̂ of size ℓk by,

� k ¥ 0,

#

Âk :� tw P LpX̂, ℓkq : Πpwq P LpxÃky, ℓkqu,

B̂k :� tw P LpX̂, ℓkq : Πpwq P LpxB̃ky, ℓkqu,
(3.25)
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and two sub-languages of X ,

� k ¥ 0,

#

Ak :� tw P AJ1,ℓkK2 : Γpwq P Âku,

Bk :� tw P AJ1,ℓkK2 : Γpwq P B̂ku

(3.26)

Every pattern of Ak�1 (respetively Bk�1) is made of N2

k patterns of Ak (respetively Bkq.

In partiular xAk�1y � xAky, xBk�1y � xBky.

We reall two de�nitions. The reonstrution funtion is assoiated to a subshift

generated by a set of forbidden words whih was also desribed in [13, 33℄ on a di�erent

ontext. The relative omplexity funtion is assoiated to a shift equivariant extension

of a dynamial system. The role of the reonstrution funtion is learly put forward in

Chazottes-Hohman [11℄. The fat that the subshift of �nite type obtained in Aubrun-

Sablik [2℄ or [11℄ has zero entropy is relatively easy to prove. We atually need a more

preise estimate of the growth of the omplexity. An exponential growth proportional

to the boundary of a square (not proportional to the volume of a square) is enough for

instane. This issue seems to be missing in [11℄.

De�nition 30. Let Â be a �nite alphabet, D ¥ 1, F̂ � ÂJ1,DK2
, and X̂ � Σ2

pÂ, F̂q

be the subshift generated by the forbidden patterns F̂ , as de�ned before. We de�ne the

reonstrution funtion of the subshift X̂ as the funtion RX̂ : N�

Ñ N
�

whih assoiates

to every ℓ the smallest R suh that every loally F̂-admissible word in AJ1,2RK2
admits a

globally F̂ -admissible restrition in its entral blok of length ℓ.

We will denote by MpF̂ , Rq � ÂJ1,RK2
the set of all square patterns of size R in Â suh

that no pattern of F̂ appears inside, that is,

MpF̂ , Rq :� tw P ÂJ1,RK2 : � p P F̂ , � u P J0, R�DK2, p � σu
pwqu (3.27)

We will use the reonstrution funtion for the subshift X̂ and the sequene pR1

kqk¥0

de�ned as

R1

k :� RX̂
p2ℓ1kq � inftR ¡ 2ℓ1k : �w PMpF̂ , Rq, D x P X, w|Qp2ℓ1

k
,Rq � x|Qp2ℓ1

k
,Rqu, (3.28)

where Qp2ℓ1k, Rq is the entral blok of length 2ℓ1k, formally de�ned as

Qp2ℓ1k, Rq :� T p2ℓ1k, Rq � J1, 2ℓ1kK2, (3.29)

where T p2ℓ1k, Rq �
�Y

R
2
� ℓ1k

℄

,
Y

R
2
� ℓ1k

℄	

P Z
2
.

Remark 6. The reonstrution funtion exists for every subshift as stated in Proposi-

tion 2, but establishing its growth or omputability is not always possible.
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De�nition 31. Let X̃ � Σ1
pÃq be the e�etively losed subshift desribed before and

X̂ � Σ2
pÂq be the SFT given by the simulation Theorem 6 that simulates X̃ . The relative

omplexity funtion of the simulation is the funtion CX̂ : N�

Ñ N
�

de�ned by

CX̂
pℓq :� sup

w̃PLpX̃,ℓq

ard

�

tŵ P LpX̂, ℓq : Π̂pŵq � w̃u
�

.

The two following propositions give us an idea of the growth of eah of the fun-

tions (reonstrution and relative omplexity). The proofs of these two results are in

Appendix A. They are very tehnial proofs that are based on the onstrution desribed

by Aubrun-Sablik [2℄ and the iteration proess desribed previously.

Proposition 5. Let X̃ be the one-dimensional e�etively losed subshift de�ned before

and X̂ be the bidimensional SFT from the Aubrun-Sablik theorem. There is a onstant

K ¡ 0 and a polynomial P pnq suh that

RX̂
pnq � P pnqKn.

Proposition 6. Let X̂ be the Z
2
-SFT in the Aubrun-Sablik onstrution. There is a

onstant K ¡ 0 and a polynomial P pnq suh that

CX̂
pnq � P pnqKn.

As a result of these two propositions, we have the next lemma that gives us important

bounds for the reonstrution funtion and the relative omplexity funtion that will be

neessary in our �nal proof.

Lemma 14 (A priori estimates). Let RX̂
and CX̂

be the reonstrution and relative

omplexity funtion of the SFT given by Aubrun-Sablik, then

1. lim sup
nÑ�8

1

n
lnpCX̂

pnqq   �8,

2. lim sup
nÑ�8

1

n
lnpRX̂

pnqq   �8.

The demonstration of these properties is more tehnial and uses omputability theory

and Turing mahines. These proofs an be found in Appendix A but for now on we will

assume that they are true.

To simplify the notations, we write

R1

k :� RX̂
p2ℓ1kq, C 1

k :� CX̂
pℓ1kq,

Q1

k :� Qp2ℓ1k2, R
1

kq � Z
2, T 1

k :� T p2ℓ1k, R
1

kq P Z
2,

M̂ 1

k �MpF̂ , R1

kq � ÂJ1,R1

k
K2 , M 1

k � Γ�1
pM̂ 1

kq � AJ1,R1

k
K2 .

(3.30)
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We denote by rM 1

ks the ylinder generated by the set M 1

k, whih onsists of the on-

�gurations that are F -loally admissible in J1, R1

kK2. We ompute the topologial entropy

of patterns that are most of the time (in terms of translations of Z
2
) globally admissible

with respet to F̂ . We naturally point out the relative omplexity funtion. Notie that

the relative entropy is omputed using the volume of the square.

Lemma 15. Let n ¡ 2ℓ ¡ 2 be some integers, ε P p0, 1q be some real number, and

S � J0, n� 2ℓK2 be a subset satisfying ardpSq ¥ n2
p1� εq. Let Ê be the set

Ê :�
 

w P ÂJ1,nK2 : � u P S, σu
pwq|J1,2ℓ K2 P LpX̂, 2ℓq

(

.

Then

1

n2
lnpardpÊqq ¤

1

ℓ
lnpardpÃqq �

1

ℓ2
lnpCX̂

pℓqq � ε lnpardpÂqq.

Proof. Here we onsider n as a multiple of ℓ in order to simplify the notations sine we

are interested in the limit when nÑ �8 there is no problem. We deompose the square

J1, nK2 into a disjoint union of squares of size ℓ,

J1, nK2 �
¤

vPJ0,n
ℓ
�1K2

�

ℓv � J1, ℓK2
�

.

We de�ne the set of indies v that interset S, more preisely, we have

V :�

"

v P
r
0,
n

ℓ
� 2

z2

:
�

ℓv � J0, ℓ� 1K2
�

£

S � ∅

*

.

Then for every w P Ê, v P V , and u P
�

ℓv � J0, ℓ� 1K2
�

�

S, therefore

�

ℓv � J1� ℓ, 2ℓK2
�

�

�

u� J1, 2ℓK2
�

.

Sine we are taking u P S we have that

σu
pwq|J1,2ℓK2 P LpX̂, 2ℓq,

and then

σℓv�pℓ,ℓq
pwq|J1,ℓK2 P LpX̂, ℓq.

The restrition of w on every square

�

ℓv � J1 � ℓ, 2ℓK2
�

is globally admissible with

respet to F̂ . Note that these squares are pairwise disjoint and the ardinality of their

union is at least n2
p1� εq, sine

ard

�

¤

vPV

�

ℓv � J1� ℓ, 2ℓK2
�

�

� ard

�

¤

vPV

�

ℓv � J0, ℓ� 1K2
�

�

¥ ardpSq.
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Hene we have proved that Ê is a subset of the set of patterns w made of independent

and disjoint words pwvqvPV , with wv P LpX̂, ℓq, and of arbitrary symbols on J0, n� 2ℓK2zS
of size at most εn2

. Using the trivial bound ardpLpX̃, ℓqq ¤ ardpÃqℓ, we have

ardpÊq ¤
�

ardpÃqℓ � CX̂
pℓq

	

pn{ℓq2

� ardpÂqεn
2

and therefore

1

n2
lnpardpÊqq ¤

1

ℓ
lnpardpÃqq �

1

ℓ2
lnpCX̂

pℓqq � ε lnpardpÂqq.



Chapter 4

Analysis of the zero-temperature limit

Consider the full shift Σ2
pAq and the �nite set of forbidden patterns F for the subshift

X . We denote by F the ylinder de�ned by

F :� rF s. (4.1)

We onsider

#

ϕ : Σ2
pAq Ñ R

x ÞÑ ϕpxq � 1F pxq.
(4.2)

We onsider pβkqk¥0 as in De�nition 27. We denote by Gpβkϕq � M1pΣ
2
pAqq the set of

the equilibrium measures for the potential ϕ at inverse temperature βk.

Sine our potential ϕ has �nite range, it is regular and as in Theorem 5 the set of

equilibrium measures for βϕ is equal to the set of shift invariant Gibbs measures. Our

main goal is to prove that for suh a sequene pβkqk¥0 when βk Ñ �8 any sequene of

equilibrium measures µβk
does not onverge when k Ñ �8.

An invariant measure that has support inside X gives zero mass to F . We quantify in

the following lemma this estimate when the support of the measure is lose to X , that is

inside xLky.

Lemma 16. Let be k ¥ 0 and ν be an ergodi probability measure on Σ2
pAq suh that

supppνq � xLky. Then

νpF q ¤
2D

ℓk

Proof. We assume that supppνq � xLky where Lk � LpX, ℓkq the language of size ℓk of

the subshift X � Σ2
pA,Fq. By Birkho�'s ergodi theorem, for ν-almost every point x

νpF q � lim
nÑ�8

ardptu P Λn : σu
pxq P F uq

ardpΛnq
.

We hoose suh a point x P xLky and s P J1, ℓkK2 suh that σs
pxq and all its translates

yt � σs�tℓk
pxq, t P Z

2
, satisfy yt|J1,ℓkK2 P Lk. We take a sub-sequene Λ̃n of Λn with size a

65
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multiple of ℓk de�ned as

Λ̃n :� J�nℓk, nℓk � 1K.

Note that

νpF q � lim
nÑ�8

ardptu P Λ̃n � s : σu
pxq P F uq

ardpΛ̃nq

, y � σs
pxq.

� lim
nÑ�8

ardptu P Λ̃n : σu
pyq P F uq

ardpΛ̃nq

.

By de�nition of Lk as desribed in (3.23) we have that

x P xLky ñ �w P Z
2, σs�wℓk

pxq � σwℓk
pyq|J1,ℓkK2 P Lk

and

�v P J0, ℓk �DK2, �w P Z
2, σv�wℓk

pyq|J1,DK2 R F .

Thus for a �xed w P Z
2
we have that the number of possible v P J0, ℓk � 1K2 suh that

σpv � wℓkqpyq P F is bounded by

ard

�

J0, ℓk � 1K2zJ0, ℓk �DK2
�

¤ 2Dℓk.

Therefore if we alulate this bound in the box Λ̃n we obtain that

ardptu P Λ̃n : σu
pyq P F uq ¤ p2nq22Dℓk.

Sine ardpΛ̃nq � p2nq2ℓ2k, we take the quotient on eah side and take the limit with

nÑ �8 we obtain νpF q ¤ 2D{ℓk.

We show in the following lemma that an equilibrium measure at low temperature have

most of its support lose to the largest ompat invariant set on whih the potential is

zero. We quantify more preisely the speed of onvergene of the measure on the set of

loally admissible patterns as the size of the box goes to in�nity.

Lemma 17. For every k and every equilibrium measure µβk
,

µβk

�

Σ2
pAqzrM 1

ks

�

¤

R12

k

βk
lnpardpAqq �: εk (4.3)

where R1

k as de�ned in (3.28) and M 1

k as de�ned in (3.30).

Proof. If x R rM 1

ks, there exists u P J1, R1

k � DK2 suh that σu
pxq P F and therefore



67

ϕpσu
pxqq � 1. Thus we obtain

»

βkϕdµβk
�

»

βk1F pyqdµβk
pyq

¥ βkR
12

k � µβk
pΣzrM 1

ksq ,

and therefore

�βk

»

ϕdµβk
¤ �βkR

12

k � µβk
pΣzrM 1

ksq .

We have that P pβkϕq ¥ 0 and also by the variational priniple we obtain

0 ¤ P pβkϕq � hpµβk
q � βk

»

ϕdµβk
¤ htoppΣq � βkR

12

k � µβk
pΣzrM 1

ksq .

Sine htoppΣq ¤ lnpardpAqq we have

µβk
pΣzrM 1

ksq ¤
R12

k

βk
lnpardpAqq.

The following lemma shows that the topologial entropy of the extension depends on

the frequeny of the symbol 0 and not on the topologial entropy of the base dynamis. By

lifting patterns of the 1D subshift we an only expet an exponential growth proportional

to the size of the boundary of a box. As the Aubrun-Sablik extension has zero entropy, we

use, as in Chazottes-Hohman [11℄, the idea of dupliating the zero symbol in the vertial

diretion of Z
2
in order to obtain an exponential growth proportional to the size of the

volume of a box.

Lemma 18. For every k ¥ 0,

lnp2qfB
k ¤ htop

�

xBky

�

A similar estimate holds for xAky.

Proof. Sine xBky is the onatenated subshift generated by the ditionary Bk as de�ned

in (8), we have

htoppxBkyq �
1

ℓ2k
lnpardpBkqq.

Let be w̃ P LpxB̃ky, ℓkq suh that fkpw̃q � fB
k . w̃ an be seen as a subword of a

onatenation bb1 of two words of B̃k. By Lemma 5, bb1 is a subword of some on�guration

x̃ P X̃ .

By our onstrution there exists x̂ P X̂ suh that x̃ � Π̂px̂q and w̃ � Π̂pŵq where
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ŵ � x̂|J1,ℓkK2 P B̂k. Thus we obtain

ardpBkq ¥ ardptw P AJ1,ℓkK2 : Γpwq � ŵuq � 2ℓ
2

k
fkpw̃q,

and therefore

htoppxBkyq ¥ lnp2qfB
k .

The following orollary is our �rst main estimate of the pressure. We bound from below

the pressure by taking the pressure of the maximal entropy measure of the onatenated

subshifts xAky or xBky. We use here the large sale ℓk beause βk has already been de�ned

using the small sale ℓ1k (see De�nition 27).

Corollary 1. For every k ¥ 1,

P pβkϕq ¥ maxpfA
k , f

B
k q lnp2q � 2D

βk

ℓk
.

Proof. Follows from Lemma 18 and Lemma 16.

Next, we will need to de�ne some notations for standard de�nitions. Consider Σ2
pAq

and µ be a σ-invariant probability measure. The anonial generating partition of Σ2
pAq

is the partition

G :� tras0 : a P Au. (4.4)

We will denote the base generating partition as the partition

G
�

:� tG�

0 , G
�

1 , G
�

2u where G�

ã :�
 

x P Σ2
pAq : πpxp0qq � ã

(

, ã P Ã.

For eah k P N, we will denote by Uk the partition

Uk :�
!

rM 1

ks, Σ
2
pAqzrM 1

ks

)

. (4.5)

For eah ε P p0, 1q we will de�ne

Hpεq :� �ε lnpεq � p1� εq lnp1� εq. (4.6)

We introdue a notion of relative entropy whih measures the dynamial entropy of a

measure onditioned to be lose to X .

De�nition 32. The relative dynamial entropy of size k of an invariant probability mea-

sure µ is the quantity

hrelpµq :� sup
P

"

lim
nÑ�8

1

n2
H
�

PJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�RkK2

k , µ
	

*
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where the supremum is taken over every �nite partition P.

The relative dynamial entropy is well de�ned for eah k and we an use a version of the

Kolmogov-Sinai Theorem (Theorem 4) for hrel. This theorem gives us that the supremum

of the de�nition is attained by a generating partition of the σ-algebra of Σ2
pAq.

For eah n P N onsider the set Vn � Σ de�ned as

Vn :�
 

x P Σ2
pAq : πpx

pi,j1qq � πpx
pi,j2qq, �i, j1, j2 P J1, nK

(

,

that is, the set of on�gurations that are vertially aligned over the projetion π on the

alphabet Ã in the box J1, nK2. If we onsider µβk
some equilibrium measure at inverse

temperature β we have that

lim
nÑ�8

µβk

�

Σ2
pAqzVn

�

� 0.

Note that

hrelpµβk
q � sup

P

"

lim
nÑ�8

1

n2
H
�

PJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�RkK2

k , µβk

�

*

� lim
nÑ�8

1

n2
H
�

GJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�RkK2

k , µβk

�

� lim
nÑ�8

�

»

Vn

HpGJ1,nK2 , µxqdµβk
pxq �

»

Σ2
pAqzVn

HpGJ1,nK2 , µxqdµβk
pxq

�

,

where pµxqxPΣ is a family of onditional measures with respet to G
J1,nK2

�

�

U
J0,n�RkK2

k .

Hene if we onsider a on�guration x P Vn, the number of possible on�gurations in

GJ1,nK2
is bounded by ardpAqn. Therefore

HpGJ1,nK2, µxq ¤ n � lnpardpAqq,

and then hrelpµβk
q   �8.

The next lemma gives us an upper bound of the entropy of the equilibrium measure

µβk
for eah k P N.

Lemma 19. For every k and every equilibrium measure µβk

hpµβk
q ¤ hrelpµβk

q �

�

8

R1

k

� εk




lnpardpÃqq �Hpεkq.

Proof. We take the supremum over all �nite partitions of Σ2
pAq, so we an always onsider

that we are taking P © G
�

and P © Uk and therefore P © G̃
�

Uk. For onsequene we
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obtain

PJ1,nK2
© GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k .

By the de�nition of relative entropy

H
�

PJ1,nK2 , µβk

	

� H
�

PJ1,nK2
ª

GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k , µβk

	

� H
�

PJ1,nK2
| G̃J1,nK2

ª

U
J0,n�R1

k
K2

k , µβk

	

�

�H
�

GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k , µβk

	

� H
�

PJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k , µβk

	

�

�H
�

GJ1,nK2

�

| U
J0,n�R1

k
K2

k , µβk

	

�H
�

U
J0,n�R1

k
K2

k , µβk

	

.

The �rst term of the right hand side is omputed using the relative dynamial entropy

(De�nition 32). The third term is bounded from above using Lemma 17 (provided εk  

e�1
),

H
�

U
J0,n�R1

k
K2

k , µβk

�

�

¸

PPU
J0,n�R1

k
K2

k

�µβk
pP q lnpµβk

pP qq

¤ n2HpUk, µβk
q

¤ n2Hpεkq.

We now ompute the term in the middle. We hoose ε1k ¡ εk and de�ne

Un :�
!

x P Σ2
pAq : ard

 

u P J0, n�R1

kK2 : σu
pxq P rM 1

ks

(

¥ n2
p1� ε1kq

)

.

By Birkho� ergodi theorem we have that

lim
nÑ�8

µβk
pUnq � 1.

Note that

H
�

GJ1,nK2

�

| U
J0,n�RkK2

k , µβk

	

�

»

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq

�

»

Un

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq�

�

»

Σ2
pAqzUn

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq

¤

»

Un

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq�

�n2µβk

�

Σ2
pAqzUn

�

lnpardpAqq,
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and therefore

lim sup
nÑ�8

1

n2
H
�

GJ1,nK2

�

| U
J0,n�R1

k
K2

k , µβk

	

¤ lim sup
nÑ�8

»

Un

1

n2
H
�

GJ1,nK2

�

, µx

	

dµβk
pxq,

where pµxqxPΣ is the family of onditional measures with respet to U
J0,n�R1

k
K

k .

Now onsider a �xed x P Un. We ompute the ardinality of elements in G
J1,nK2

�

that

are ompatible with the onstraint

ardtu P J0, n�R1

kK2 : σu
pxq P rM 1

ksu ¥ n2
p1� ε1kq.

Note that

GJ1,nK2

�

�

ª

uPJ1,nK2

σ�u
pG

�

q

where G
�

� tG�

0
, G�

1
, G�

2
u and here we refer to the elements of this partition as patterns

de�ned in ÃJ1,nK2
beause there is a unique equivalene between these objets.

We denote by Ipxq � I � J0, n�R1

kK2 suh that

I :�
 

u P J0, n�R1

kK2 : σu
pxq P rM 1

ks

(

.

Sine x P Un, then

ardpIq

n2
¥ 1� ε1k.

Let J � I be a maximal subset satisfying for every u, v P J ,

}u� v}
8

¥

1

2
R1

k.

For every u P J , onsider

Iu :� tv P I : }u� v}
8

 

1

2
R1

ku

Then I �

�

uPJ Iu. We �rst observe that the sets

�

u �
q
1, rR1

k{2s
y2
	

uPJ
are pairwise

disjoint. Then

ardpJq ¤
4n2

R12

k

.

We also observe that for every v1, v2 P Iu, }v1 � v2}8   R1

k and

�

v1 � J1, R1

kK2
	

£

�

v2 � J1, R1

kK2
	

� H.

For eah u P I let be

Ku :�
¤

vPIu

�

v � J1, R1

kK2
�

� J1, nK2.
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For v P Iu, we have that

x|v�J1,R1

k
K2 P rM

1

ks

and therefore this pattern is loally F -admissible and also satis�es the onstraint that all

the Ã-symbols are vertially aligned in v � J1, RkK2 and also in Ku.

The width of Ku is less than 2R1

k, so the ardinality of possible patterns p P ÃKu

satisfying the onstraint of vertially aligning of Ã-symbols is bounded by ardpÃq2R
1

k
.

The ardinality of possible patterns over the support

¤

uPJ

Ku is thus bounded by

�

ardpÃq2R
1

k

	4n2
{R12

k

� exp

��

2R1

k �
4n2

R12

k

�

lnpardpÃqq




� exp

�

8n2

R1

k

lnpardpÃqq




.

Sine

¤

uPJ

Ku overs I, the ardinality of the set of possible patterns over the support

J1, nK2z
¤

uPJ

Ku is bounded by ardpÃqn
2ε1

k
. We have proved that, for every x P Un,

H
�

GJ1,nK2

�

, µx

	

¤

�

2R1

k �
4n2

R12

k

� n2ε1k

	

lnpardpÃqq.

We onlude by letting nÑ �8 and ε1k Ñ εk.

The following lemma is the seond main estimate on the pressure. We bound from

above the pressure assuming that the generi patterns of the equilibrium measure exhibit

a positive frequeny (here 1{4) of the symbol 1. Sine the potential is non-negative, it is

enough to bound from above the pressure by the entropy of µβk
.

We denote as Π : Σ2
pÂq Ñ Σ2

pÃq the projetion on the �rst oordinate. Using (3.20)

we set

Π
�

� Γ � Π : Σ2
pAq Ñ Σ2

pÃq (4.7)

the projetion on the bidimensional on�gurations over the alphabet Ã.

Lemma 20. Let k ¥ 2 be an integer and µβk
be any equilibrium measure. Then

1. µβk
pr0sq ¤

2

N 1

k

fA
k�1

� p1�N�1

k�1
q

�1fB
k�1

� εk,

2. if k is even and µβk
pr1sq ¡ 1

4
,

hrelpµβk
q ¤

� 2

N 1

k

fA
k�1

� p1�N�1

k�1
q

�1

�3

4
� εk

	

fB
k�1

	

lnp2q

�

1

ℓ1k
lnpardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnp2ardpÂqq,

3. if k is odd and µβk
pr2sq ¡ 1

4
, the previous estimate is valid with fA

k�1
and fB

k�1

permuted,
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where for eah ã P Ã, µβk
prãsq is the measure µβk

of the ylinder Π�1
�

prãs
p0,0qq �: Π

�1
�

rãs �

Σ2
pAq.

Proof. Let be Π
�

: Σ2
pAq Ñ Σ2

pÃq the projetion over the �rst letter on the Ã-alphabet.

By Birkho� ergodi theorem and Lemma 17, for almost every x P Σ2
pAq,

lim
nÑ�8

1

n2
ard

� 

u P J0, n�R1

kK2 : σu
pxq P rM 1

ks

(�

� µβk
prM 1

ksq

and

lim
nÑ�8

1

n2
ard

� 

u P J1, nK2 : πpxpuqq � ã
(�

� µβk
prãsq, � ã P Ã.

Here we are denoting µβk
prãsq for the measure µβk

of the ylinder Π�1
�

rãs, but we suppress

the pre-image of the projetion π to simplify our notation.

We hoose n ¡ R1

k. An element of the partition G
J1,nK2

�

�

U J0,n�R1

k
J2

is of the form

G�

p X US where p P ÃJ1,nK2
is a pattern and S � J0, n�R1

kK2 is a subset, that satis�es

US :�
 

x P Σ2
pAq : � u P S, σu

pxq P rM 1

ks, � u P J0, n�R1

kK2zS, σu
pxq R rM 1

ks

(

,

G�

p :�
 

x P Σ2
pAq : pΠ

�

pxqq |J1,nK2 � p
(

.

We set ε ¡ εk and η   µβk
pr0sq. By the Lemma 17 we have that µβk

�

Σ2
pAqzrM 1

ks

�

¤ εk

and then

lim
nÑ�8

µβk

�

¤

S

 

US : ardpSq ¥ n2
p1� εq

(

	

� 1.

For n large enough, we hoose S � J0, n�R1

kK2 suh that US �� H and ardpSq ¥ n2
p1�εq.

By de�nition of M 1

k and T 1

k, if x P US , then for every u P S, σu
pxq|J1,R1

k
K2 is a loally

admissible pattern with respet to F and

σu�T 1

k
pxq|J1,2ℓ1

k
K2 P LpX, 2ℓ1kq.

De�ne for every n ¡ R1

k and every pattern p P ÃJ1,nK2
the set

Knppq :� tu P J1, nK2 : ppuq � 0u.

As we are onsidering µβk
pr0sq ¡ η

lim
nÑ�8

µβk

�

¤

p

 

G�

p : ardpKnppqq ¡ n2
� η
(

	

� 1.

We may hoose p suh that US X G�

p �� H and ardpKpq ¡ n2η. Using the objets as

de�ned in (3.12), (3.13), (3.14) and (3.15), one obtains

T 1

k � S � Ipp, ℓ1kq and τ 1k � Ipp, ℓ1kq � JA
pp, ℓ1kq

§

JB
pp, ℓ1kq �: J

A
§

JB,
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therefore by our hoie of S we obtain

n2
p1� εq ¤ ardpSq � ardpτ 1k � T 1

k � Sq ¤ ard

�

JA
§

JB
�

¤ n2. (4.8)

Besides that we have

n2η ¤ ardpKnppqq ¤ ardpKA
§

KB
q � n2ε

and by the Lemma 13 we have

ardpKnppqq ¤
2

N 1

k

ardpJA
qfA

k�1 �

�

1�N�1

k�1

�

�1
ardpJB

qfB
k�1 � n2ε.

We divide eah term by n2
and take the limit with nÑ �8, εÑ εk, and η Ñ µβk

pr0sq.

Thus we proved the �rst item of this lemma.

We now assume that k is even and µβk
pr1sq ¡ 1

4
. We hoose p P ÃJ1,nK2

suh that

G�

p X US �� H and

ard

� 

u P J1, nK2 : ppuq � 1
(�

¡

n2

4
. (4.9)

Let be x P G�

p XUS and pµxqxPΣ be the family of onditional measures with respet to the

partition G
J1,nK2

�

�

U J0,n�RkJ2
. We use the trivial upper bound of the entropy, so

HpGJ1,nK2 , µxq ¤ lnpardpEp,Sqq (4.10)

where

Ep,S :�
 

w P AJ1,nK2 : πpwq � p and �u P S, σu�T 1

k
pwq|J1,2ℓ1

k
K2 P LpX, 2ℓ1kq

(

.

Also onsider

Êp,S :� ΓpEp,Sq.

Note that every word in Ep,S is obtained from a word in Êp,S by dupliating twie a

symbol 0 and by Lemma 15 we an onlude that

lnpardpEp,Sqq ¤ lnpardpÊp,Sqq � ardpKpq lnp2q and

1

n2
lnpardpÊp,Sqq ¤

1

ℓ1k
lnpardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnpardpÂqq,
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thus

1

n2
lnpardpEp,Sqq ¤

� 2

N 1

k

ardpJA
qfA

k�1
� p1�N�1

k�1
q

�1
ardpJB

qfB
k�1

� n2εk

	 lnp2q

n2
�

�

1

ℓ1k
lnpardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnpardpÂqq.

(4.11)

The symbol 1 does not appear in JB
� JB

pp, ℓ1kq, so we an a�rm

 

u P J1, nK2 : ppuq � 1
(

� JA
§

�

J1, nK2zpJA
§

JB
q

	

.

Sine we are assuming (4.9) and using (4.8) we obtain that

ardpJA
q ¥ n2

�1

4
� εk

	

and ardpJB
q ¤ n2

�3

4
� εk

	

. (4.12)

By replaing the upper bound for ardpJB
q given in (4.12) and ardpJA

q ¤ n2
in (4.11)

we obtain that

1

n2
lnpardpEp,Sqq ¤

�

2

N 1

k

fA
k�1

� p1�N�1

k�1
q

�1

�

3

4
� εk




fB
k�1

� εk




lnp2q�

�

1

ℓ1k
lnpardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnpardpÂqq.
(4.13)

By integrating with respet to µβk
in both sides and taking the limit when n Ñ �8 we

obtain item 2 of this lemma. Item 3 has an analogous proof.

Theorem 7. Let X � Σ2
pA,Fq be the bidimensional SFT desribed before, whih is

generated by the �nite set of forbidden patterns F � AJ1,DK2
de�ned over the alphabet

A. Let F be the ylinder generated by the set F as desribed in (4.1) and ϕ : Σ2
pAq Ñ R

be the loally onstant potential de�ned as ϕ � 1F . Let XA, respetively XB, be the

ompat sets of on�gurations in X that have only the symbol 1, respetively 2, in terms

of the Ã alphabet, therefore, XA and XB are two disjoint invariant ompat sets. Then

there exists a sequene of inverse temperatures pβkqk¥0 suh that for every equilibrium

measure µβk
assoiated to the potential βkϕ, the support of every aumulation point µA

8

or µB
8

, of the subsequene pµβ2k�1
qk¥0 or pµβ2k

qk¥0, is inluded in XA or XB.

Proof. We onsider X � Σ2
pA,Fq the SFT as desribed before, F as in (4.1) and ϕ � 1F .

We denote by µβk
an equilibrium measure at inverse temperature βk. We will prove that

as βk Ñ �8 the sequene pµβk
qk¡0 does not onverge.

Assume k is an even number and µβk
pr1sq ¡ 1

4
. Let µB

k be the measure of maximal

entropy of the subshift xLky. On the one hand, from Corollary 1 we have that

P pβkϕq ¥ hpµB
k q �

»

βkϕdµ
B
k ¥ fB

k lnp2q � 2D
βk

ℓk
.
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By the item 3 of De�nition 27 we have that

Nk ¥ N 1

k �
kβk

N 1

kρ
B
k�1

�

kβk

ℓ1kf
B
k�1

ñ

βk

ℓk
¤

βk

ℓ1k
¤

1

k
fB
k�1

.

Sine k is even, fB
k�1

� fB
k , one obtains,

fB
k lnp2q � 2D

βk

ℓk
¥

kβk

ℓ1k
� 2D

βk

ℓk
¡ 0ñ 2D

βk

ℓk
¤ fB

k lnp2q.

On the other hand

P pβkϕq ¤
� 2

N 1

k

fA
k�1 � p1�N�1

k�1
q

�1

�3

4
� εk

	

fB
k�1

	

lnp2q

�

1

ℓ1k
lnpardpÃqq �

1

ℓ1k
2
lnpCpX̂, ℓ1kqq � εk lnp2ardpÂqq

�

� 8

RpX̂, ℓ1kq
� εk

	

lnpardpÃqq �Hpεkq.

We have that

εk ! fB
k�1 and Hpεkq ! fB

k�1.

Indeed, from item 2 of Lemma 14 shows that there exist onstants Ξ, ξ suh that

� k ¥ 1, R1

k ¤ Ξ2ξℓ
1

k .

Realling the de�nition of εk �
R1

k
2

βk
lnpardpAqq given in (4.3) and using item 2 of De�ni-

tion 27, one gets,

εk

pfB
k�1

q

2
¤

εkβk

2kℓ
1

k

�

R1

k
2
lnpardpAqq

2kℓ
1

k

¤ Ξ2 lnpardpAqq2p2ξ�kqℓ1
k
! 1,

and therefore

εk

fB
k�1

¤

εk

pfB
k�1

q

2
ñ εk ! fB

k�1 and

Hpεkq ¤ 2εk ln
� 1

εk

	

!

?

εk ! fB
k�1.

As ℓkf
B
k ounts the number of 0's in the word bk and at eah step of the onstrution

the number is at least multiplied by 2, we have ℓk�1f
B
k�1

¥ 2k�1
,

1

ℓ1k
�

1

N 1

kℓk�1

! fB
k�1

, R1

k ¥ ℓ1k,
1

RpX̂, ℓ1kq
! fB

k�1
.
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Item 1 of Lemma 14 implies

1

ℓ1k
2
lnpC 1

kq ! fB
k�1.

Item 1 of De�nition27 shows,

fA
k�1

N 1

k

¤

fB
k�1

k
,

fA
k�1

N 1

k

! fB
k�1.

We proved that P pβkφq is bounded from below by a quantity equivalent to fB
k lnp2q and

bounded from above by a quantity equivalent to

3

4
fB
k lnp2q. We obtain a ontradition.

We have proved that µβk
pr1sq ¤ 1

4
for every even k and every equilibrium measure µβk

.

Similarly µβk
pr2sq ¤ 1

4
for every odd k and every equilibrium measure µβk

. As

µβk
pr0sq ¤

2

N 1

k

fA
k�1 � p1�N�1

k�1
q

�1fB
k�1 � pfB

k�1q
2
R1

k lnpardpAqq

exppkℓ1kq
,

we have proved

lim inf
kÑ�8

inf
µ

 

µpr2sq : µ is an equilibrium measure at β2k
(

¥

3

4
,

lim inf
kÑ�8

inf
µ

 

µpr1sq : µ is an equilibrium measure at β2k�1

(

¥

3

4
,

and therefore pµβk
qk¥0 does not onverge.
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Appendix A

Computability results

We thank Sebastian Barbieri for his help to ompute the upper bounds for the relative

omplexity and for the reonstrution funtion. Sebastian stimulated us to prove that

we an enumerate F̃ in an inreasing way and with a exeution time that is at most

exponential.

First we prove the upper bound for the relative omplexity funtion given by Propo-

sition 6.

Proof of Proposition 6. Let us denote by CnpLayerkpX̂qq the omplexity of the projetion

to the k-th layer. and by CnpLayerkpX̂q|LayerjpX̂qq the omplexity of the projetion to

the k-th layer given that there is a �xed pattern on the j-th layer. Clearly we have that

CX̂
pnq ¤ CnpLayer1pX̂qq � CnpLayer2pX̂qq � CnpLayer3pX̂q|Layer2pX̂qq�

� CnpLayer4pX̂q|Layer2pX̂qq.

• Layer 1: As this layer is given by all x P ÃZ
2

so that xu � xu�p0,1q for every u P Z
2
,

a trivial upper bound for the omplexity is

CnpLayer1pX̂qq � Op|Ã|nq.

In fat, as in the end the only on�gurations whih are allowed are those whose

horizontal projetion lies in the e�etive subshift Z, a better bound is given by

CnpLayer1pX̂qq � Opexppn h
top

pX̂qqq. For simpliity, we shall just keep the trivial

bound.

• Layer 2: The omplexity of every substitutive subshift in Z
2
is Opn2

q. To see

this, suppose that the substitution sends symbols of some alphabet A2 to n1 � n2

arrays of symbols. By de�nition, every pattern of size n ours in a power of the

substitution. If k is suh that mintn1, n2u
k�1

¤ n ¤ mintn1, n2u
k
, then neessarily

any pattern of size n ours in the onatenation of at most 4 k-powers of the

79
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substitution. There are |A2|
4
hoies for the k-powers and at most pmaxtn1, n2u

k
q

2
¤

pnmaxtn1, n2uq
2
hoies for the position of the pattern. It follows that there are at

most p|A2|
4maxtn1, n2u

2
qn2

� Opn2
q patterns of size n. We obtain,

CnpLayer2pX̂qq � Opn2
q

• Layer 3: It an be heked diretly from the Aubrun-Sablik onstrution that the

symbols on the third layer satisfy the following property: if the symbols on the

substitution layer are �xed, then for every u P Z
2
the symbol at position u is

uniquely determined by the symbols at positions u�p0, 1q, u�p1, 1q and u�p�1, 1q.

In onsequene, it follows that knowing the symbols at positions in the �U shaped

region�

U � pt0u � J1, n� 1Kq Y pJ0, n� 1K� t0uq Y ptn� 1u � J1, n� 1Kq

ompletely determines the pattern. Therefore, if this layer has an alphabet A3, we

have

CnpLayer3pX̂q|Layer2pX̂qq ¤ |A3|
3n�2

¤ OpKn
1 q,

for some positive integer K1.

• Layer 4: M
Searh

The same argument for Layer 3 holds for Layer 4. Therefore, if

the alphabet of layer 4 is A4 we have that for some positive integer K2,

CnpLayer4pX̂q|Layer2pX̂qq ¤ |A4|
3n�2

¤ OpKn
2
q.

Putting the previous bounds together, we onlude that there is some onstant K ¡ 0

suh that

CX̂
pnq � Opn2Kn

q.

Corollary 2. Let X̂ be the Z
2
-SFT in the Aubrun-Sablik onstrution. There is a

onstant KC ¡ 0 suh that

lim sup
nÑ8

1

n
logpCnpXqq ¤ KC .

Now we will work on the upper bound for the reonstrution funtion. We �x a

Turing mahine M that enumerates F̃ see below the set of forbidden words that de�ne

X̃ � ΣpÃ, F̃q. In general, the reonstrution funtion RX̂
as de�ned in (3.28) of the

Aubrun-Sablik onstrution is not omputable, but in our onstrution we an obtain the

properties as stated in Proposition 4 that we prove below.
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Proof of Proposition 4. If the integer n ¥ 1 is suh that p � Nk, then F̃ 1

pnq � F̃pnq.

We will onsider now the ase where the integer n ¥ 1 is suh that p   Nk. We have

obviously F̃pnq � F̃ 1

pnq. If we assume that k is even, from Notation 1 we have that

ak � ak�1p1
ℓk�1

q

Nk�2ak�1 and bk � pbk�1q
Nk .

We set

�Ýakp1q �
ÝÑakp1q � ak�1,

�Ý

bk p1q �
ÝÑ

bk p1q � bk�1,

�Ñ

1k p1q � 1k�1 :� 1ℓk�1
and

�Ñ

2k p1q � 2k�1 :� 2ℓk�1.

Then we de�ne by indution if 2 ¤ p   Nk then

�Ýakppq �
�Ýakpp� 1q1k�1 � ak�1p1k�1q

p�1

and

ÝÑakppq � 1k�1
ÝÑakpp� 1q � p1k�1q

p�1ak�1,

else

�ÝakpNkq �
ÝÑakpNkq � ak. We also de�ne

�Ý

bk ppq �
�Ý

bk pp� 1qbk�1 � pbk�1q
p,

ÝÑ

bk ppq � bk�1

ÝÑ

bk pp� 1q � pbk�1q
p,

�Ñ

1k ppq �
�Ñ

1k pp� 1q1k�1 � p1k�1q
p

and

�Ñ

2k ppq �
�Ñ

2k pp� 1q1k�1 � p2k�1q
p.

If w has length less than pℓk�1 and is a sub-word of some w1w2, say w1 � ak and w2 �

bk, by dragging w from the left end point of w1w2 to the right end point of w1w2, the word

w appears suessively as a sub-word of

�Ýakpp�1q,
�Ñ

1k pp�1q, ÝÑakpp�1q, ÝÑakpp�1q
�Ý

bkpp�1q,
�Ý

bk pp � 1q. A similar reasoning is also true for w1 � bk and w2 � ak. We have proved

F̃pnq � F̃ 1

pnq.

We have also proved that X̃ � Σ1
pÃ, F̃ q, beause we have proved that it is enough

to list all the forbidden words of length n and for that it is su�ient to searh in the

onatenation of subwords of length pp� 1q � ℓk�1 as desribed before. Thus

Σ1
pÃ,Fq � Σ1

pÃ, F̃q.

To ompute the time to enumerate suessively the words of F̃pnq when ℓk�1   n ¤ ℓk,

we produe an algorithm given in Table A.1. The time to read/write on the tapes, to
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update the words p

�Ýakppq,
ÝÑakppq,

�Ý

bk ppq,
ÝÑ

bk ppq,
�Ñ

1k ppq,
�Ñ

2k ppqq by adding a word of length ℓk�1,

to onatenate two words

ÝÑw1
�Ýw2 from that list, and to hek that a given word w of length

n is a sub-word of

ÝÑw1
�Ýw2 is polynomial in n. Therefore, the time to enumerate every word

up to length n in an alphabet Ã is bounded by P pnq|Ã|n where P pnq is a polynomial.

Denote by RX̃ : NÑ N the reonstrution funtions of X̃ given F̃ . From Lemma 5 we

know there exists a onstant C1 ¡ 0 suh that RX̃
pnq ¤ C1n.

For n P N, let N � 2n�1 be the length of the sides of the square Bn :� J�n, nK2 � Z
2
,

and let k P N suh that 4k�1
  N ¤ 4k.

As before, let X̂ � ΣpÂ, F̂q be the Z2
-SFT in the Aubrun-Sablik onstrution assoi-

ated to X̃ and the Turing mahine M. Now we will give estimates on the reonstrution

funtion RX̂ : N Ñ N of X̂ given F̂ . Of ourse, a formal proof of these estimates would

require a restatement of the onstrution of Aubrun-Sablik with all its details, whih is

out of the sope of this thesis. Instead, we shall argue that the bounds we give su�e,

making referene to the properties of the Aubrun-Sablik onstrution.

A desription of F̂ is given in [2℄ in an (almost) expliit manner for all layers exept

the substitution layer. For the substitution layer, a desription of the forbidden patterns

an be extrated in an expliit way from the artile of Mozes [30℄.

The behavior of layers 2,3 and 4 in the Aubrun-Sablik onstrution is mostly indepen-

dent of layer 1, exept for the detetion of forbidden patterns whih leads to the forbidden

halting state of the mahine in the third layer. Beause of that reason the analysis of the

reonstrution funtion RX̂
an be split into two parts:

1. Strutural: Assuming that the ontents of the �rst layer are globally admissible

(the on�guration in the �rst layer is an extension of a on�guration from X̃),

we give a bound that ensures that the ontents of layers 2, 3 and 4 are globally

admissible, that is:

• The ontents of layer 2 orrespond to a globally admissible pattern in the

substitutive subshift and the lok.

• The ontents of layer 3 and 4 orrespond to valid spae-time diagrams of Turing

mahines that orretly align with the loks.

2. Reursive: A bound that ensures that the ontents of the �rst layer are globally

admissible. This bound will of ourse depend upon RX̃
and τ .

Finally, we are able to prove the upper bound for the reonstrution funtion given by

Proposition 5.

Proof of Proposition 5. Let us begin with the strutural part, as it is simpler and does

not depend upon X̃. Let p be a pattern with support Bn and assume that the �rst layer

of p is thus globally admissible.
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A program enumerating the set of forbidden words

# Initialize pℓ0, β0, ρ
A
0
, ρB

0
q

pℓ
�

, β
�

, ρA
�

, ρB
�

q � p2, 0, 1, 1q

# Alloate and Initialize 4 tapes pak, bk, 1k, 2kq

pa
�

, b
�

, 1
�

, 2
�

q � p01, 02, 11, 22q

# Alloate and Initialize 6 tapes p

�Ýakp1q,
ÝÑakp1q,

�Ý

bk p1q,
ÝÑ

bk p1q,
�Ñ

1k p1q,
�Ñ

2k p1qq

p

�Ýa
�

,ÝÑa
�

,
�Ý

b
�

,
ÝÑ

b
�

,
�Ñ

1
�

,
�Ñ

2
�

q � pa
�

, a
�

, b
�

, b
�

, 1
�

, 2
�

q

# Compute reursively the next length ℓ1
pℓ
�

, β
�

, ρA
�

, ρB
�

q � Spℓ
�

, β
�

, ρA
�

, ρB
�

q

N
�

� ℓ
�

{ℓ
�

; parity � even ; n� 3 ; p� 2

# Alloate and Initialize an intermediate tape reording a possibly forbidden word

w �H

while (n ¥ 1)

if (n � ℓ
�

� 1q then

# Remember the previous pℓk�1, βk�1, ρ
A
k�1

, ρBk�1
q and update the new one

pℓ
�

, β
�

, ρA
�

, ρB
�

q � pℓ
�

, β
�

, ρA
�

, ρB
�

q ; pℓ
�

, β
�

, ρA
�

, ρB
�

q � Spℓ
�

, β
�

, ρA
�

, ρB
�

q

# Remember pak�1, bk�1, 1k�1, 2k�1q

pa
�

, b
�

, 1
�

, 2
�

q � p

�Ýa
�

,
�Ý

b
�

,
�Ñ

1
�

,
�Ñ

2
�

q

N
�

� ℓ
�

{ℓ
�

; parity � Permute(parity) ; p� 2

end if

if (n � pp� 1qℓ
�

� 1) then

Update p

�Ýa
�

,ÝÑa
�

,
�Ñ

1
�

,
�Ý

b
�

,
ÝÑ

b
�

,
�Ñ

2
�

q aording to parity and the two partiular

ases p � 2 or p � N
�

by onatenating words from pa
�

, b
�

, 1
�

, 2
�

q

# Build the set of words obtained by onatenating two words of length ℓk�1

W � t

ÝÑa
�

�Ý

b
�

, ÝÑa
�

�Ñ

2 ,
�Ñ

1
�Ý

b
�

,
�Ñ

1
�Ñ

2 ,
ÝÑ

b
�

�Ýa
�

,
ÝÑ

b
�

�Ñ

1 ,
�Ñ

2 �Ýa
�

,
�Ñ

2
�Ñ

1 u

p� p� 1

end if

for (m � 0, 3n exluded)

w � write m in base 3 with n letters in t0, 1, 2u

is_forbidden� true

for (w1w2 P W )

if (w is a sub-word of w1w2) then is_forbidden� false

end for

if (is_forbidden) then Print the word w

end for

n� n� 1

end while

Table A.1: Algorithm that enumerates F̃ .
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From Mozes's onstrution of SFT extensions for substitutions [30℄ it an be heked

that any loally admissible pattern of support Bn of Mozes's SFT extension of a primi-

tive substitution (The Aubrun-Sablik substitution is primitive) is automatially globally

admissible. Let us take a support large enough suh that the seond layer of p ours

within four 4k�2k marotiles of the substitution in any loally admissible pattern of that

support.

Next, a lok runs on every strip of the Aubrun-Sablik onstrution. By the previous

argument, the largest zone whih intersets p in more than one position is of level at most

k. Therefore its largest omputation strip has horizontal length 2k. In order to ensure

that the lok starts on a orret on�guration on every strip ontained in p, we need to

witness this pattern inside a loally admissible pattern whih staks 22
k

� 2 marotiles

of level k vertially. Therefore, the pattern p must our inside four loally admissible

patterns of length 4k�2kp22
k

�2q. This ensures that the loks in p are globally admissible.

Finally, if every lok ourring in p starts somewhere, then the ontents of the third

layer are automatially orret, as they are determined by lok every time it restarts.

To hek that the fourth layer is orret, we just need extend the horizontal length of our

pattern twie, so that the responsibility zone of the largest strip is ontained in it.

By the previous arguments, it would su�e to witness p inside a loally admissible

pattern whih ontains in its enter a 4 � 2 array of marotiles of size 4k � 2kp22
k

� 2q.

As 4k�1
  N ¤ 4k, there is a onstant C0 ¡ 0 suh that an estimate for this part of the

reonstrution funtion an be written as

RX̂
Struct

pnq � Op
?

nC
?

n
0
q.

Let us now deal with the reursive part. We need to �nd a bound suh that the word

of length N ourring in the �rst layer of p is globally admissible. By de�nition of RX̃
, it

su�es to have p inside a pattern with support B
RX̃

pNq
and hek that the �rst layer is

loally admissible with respet to F̃ . In other words, we need to have the Turing mahines

hek all forbidden words of length RX̃
pNq in this pattern. Lukily, the number of steps in

order to do this is already omputed in Aubrun and Sablik's artile. After Fat 4.3 of [2℄

they show that, if p0, p1, . . . , pr are the �rst r � 1 patterns enumerated by M, then the

number of steps Spp0, . . . , prq needed in a omputation zone to ompletely hek whether

a pattern from tp0, . . . , pru ours in its responsibility zone of level m satis�es the bound,

Spp0, . . . , prq ¤ T pp0, . . . , prq � pr � 1qmaxp|p0|, . . . , |pr|qm
223m�1,

where T pp0, . . . , prq is the number of steps needed by M to enumerate the patterns

p0, p1, . . . , pr.

Spei�ally in our onstrution, we may rewrite their formula so that the number

SpRX̃
pNqq of steps needed to hek that all forbidden patterns of length at most RX̃

pNq
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in a responsibility zone of level m satis�es the bound

SpRX̃
pNqq ¤ τpRX̃

pNqq � |Ã|R
X̃
pNq�1RX̃

pNqk223k�1

¤ P pnq|Ã|N � |Ã|C1N�1C1Nm
223m�1

Simplifying the above bound, it follows that there exists onstants C2, C3 ¡ 0 suh that

SpRX̃
pNqq ¤ C2m

223m�C3N .

AsN is onstant, it follows that there is a smallest m̄ � m̄pNq P N suh that 2m̄ ¥ C4N

(so that the tape on the omputation zone of level m̄ an hold words of size RZpNq) and

suh that

C2m̄
223m̄�C3N

¤ 22
m̄

� 2,

so that the number 22
m̄

�2 of omputation steps in the zone of level m̄ is enough to hek

all the words of size RX̃
pNq. It follows that a bound for the reursive part of RX̂

is given

by

RX̂
recursive

pnq � Op2m̄�2m̄pNq

q.

In order to turn this into an expliit asymptoti expression we need to �nd a suitable

bound for m̄pNq. Notie that if m ¥ 6 we simultaneously have that m2
¤ 2m and

4m ¤ 2m�1
. We may then write for m ¥ 6,

C2m
223meC3N

¤ C22
4m�C3N

¤ C22
C3N22

m�1

.

Therefore, it su�es to �nd m̄ � m̄pNq suh that

C22
C3N

¤ 22
m̄�1

.

From here, it follows that there is a onstant C5 ¡ 0 suh that any value of m̄ satisfying

m̄ ¥ C5 � log2pNq,

satis�es the above bound. We get that

RX̂
recursivepnq � OpN2C5N

q � n4C5n.

Finally, putting together the strutural and reursive asymptotis, we obtain that

there is a onstant K ¡ 0 suh that

RX̂
pnq � Opmaxt

?

nC
?

n
0
,Opn4C5n

quq � OpnKn
q.
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Corollary 3. Under the same hypotheses as in Proposition 5, there is a onstant K ¡ 0

suh that

lim sup
nÑ8

1

n
logpRX̂pnqq ¤ K.
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