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Resumo

DALLE VEDOVE, G.: Chaos and Turing Ma
hines on Bidimensional Models

at Zero Temperature. 2020. 89 f. Tese (Doutorado) - Instituto de Matemáti
a e

Estatísti
a, Universidade de São Paulo e E
ole Do
torale Mathématiques et Informatique,

Universidade de Bordeaux. São Paulo, 2020.

Em me
âni
a estatísti
a de equilíbrio ou formalismo termodinâmi
o um dos prin
ipais

objetivos é des
rever o 
omportamento das famílias de medidas de equilíbrio para um dado

poten
ial parametrizado pelo inverso da temperatura β. Entendemos aqui por medidas de

equilíbrio as medidas shift invariantes que mazimizam a pressão. Diversas 
onstruções já

demonstraram um 
omportamento 
aóti
o destas medidas quando o sistema 
ongela, ou

seja, β Ñ �8. Um dos prin
ipais exemplos é o 
onstruído por Chazottes e Ho
hman [11℄

onde eles 
onseguem provar a não 
onvergên
ia de uma família de medidas de equilíbrio

para um dado potential lo
almente 
onstante nos 
asos onde a dimensão é maior ou igual

a 3. Neste trabalho apresentaremos a 
onstrução de um exemplo no 
aso bidimensional

sobre um alfabeto �nito e um poten
ial lo
almente 
onstante tal que existe uma sequen
ia

pβkqk¥0 onde não o
orre a 
onvergên
ia para qualquer sequên
ia de medidas de equilíbrio

ao inverso da temperatura βk quando βk Ñ �8. Para tal, usaremos a 
onstrução des
rita

por Aubrun e Sablik em [2℄ que melhora o resultado de Ho
hman [19℄ usado na 
onstrução

de Chazottes e Ho
hman [11℄.

Palavras-
have: formalismo termodinâmi
o, medida de equilíbrio, subshift.
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Abstra
t

DALLE VEDOVE, G.: Chaos and Turing Ma
hines on Bidimensional Models at

Zero Temperature. 2020. 89 f. Thesis (Do
tor in S
ien
e) - Instituto de Matemáti
a e

Estatísti
a, Universty of São Paulo and E
ole Do
torale Mathématiques et Informatique,

University of Bordeaux. São Paulo, 2020.

In equilibrium statisti
al me
hani
s or thermodynami
s formalism one of the main

obje
tives is to des
ribe the behavior of families of equilibrium measures for a potential

parametrized by the inverse temperature β. Here we 
onsider equilibrium measures as the

shift invariant measures that maximizes the pressure. Other 
onstru
tions already prove

the 
haoti
 behavior of these measures when the system freezes, that is, when β Ñ �8.

One of the most important examples was given by Chazottes and Ho
hman [11℄ where

they prove the non-
onvergen
e of the equilibrium measures for a lo
ally 
onstant poten-

tial when the dimension is bigger than or equal to 3. In this work we present a 
onstru
tion

of a bidimensional example des
ribed by a �nite alphabet and a lo
ally 
onstant potential

in whi
h there exists a subsequen
e pβkqk¥0 where the non-
onvergen
e o

urs for any

sequen
e of equilibrium measures at inverse temperatures βk when βk Ñ �8. In order

to des
ribe su
h an example, we use the 
onstru
tion des
ribed by Aubrun and Sablik [2℄

whi
h improves the result of Ho
hman [19℄ used in the 
onstru
tion of Chazottes and

Ho
hman [11℄.

Keywords: thermodynami
 formalism, equilibrium measure, subshift.
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Résumé

DALLE VEDOVE, G.: Chaos and Turing Ma
hines on Bidimensional Models

at Zero Temperature. 2020. 89 f. Thèse (Do
torat) - Instituto de Matemáti
a e

Estatísti
a, Université de São Paulo e E
ole Do
torale Mathématiques et Informatique,

Université de Bordeaux. São Paulo, 2020.

En mé
anique statistique d'équilibre ou formalisme thermodynamique un des obje
-

tifs est de dé
rire le 
omportement des familles de mesures d'équilibre pour un potentiel

paramétré par la température inverse β. Nous 
onsidérons i
i une mesure d'équilibre


omme une mesure shift invariante qui maximise la pression. Il existe d'autres 
onstru
-

tions qui prouvent le 
omportement 
haotique de 
es mesures lorsque le système se �ge,


'est-à-dire lorsque β Ñ �8. Un des exemples les plus importants a été donné par Cha-

zottes et Ho
hman [11℄ où ils prouvent la non-
onvergen
e des mesures d'équilibre pour

un potentiel lo
alement 
onstant lorsque la dimension est supérieure à 3. Dans 
e travail,

nous présentons une 
onstru
tion et un exemple potentiel lo
alement 
onstant tel qu'il e-

xiste une suite pβkqk¥0 où la non-
onvergen
e est assurée pour toute 
hoix suite de mesures

d'équilibre à l'inverse de la température βk lorsque βk Ñ �8. Pour 
ela nous utilisons

la 
onstru
tion dé
rite par Aubrun et Sablik [2℄ qui améliore le résultat de Ho
hman [19℄

utilisé dans la 
onstru
tion de Chazottes et Ho
hman [11℄.

Mots 
lés: formalisme thermodynamique, measure d'équilibre, dé
alage.
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Chapter 1

Introdu
tion

One of the most important problems in equilibrium statisti
al me
hani
s 
onsists in des-


ribing families of Gibbs states for a given potential or an intera
tion family. We work

with 
lassi
al latti
e systems, whi
h means that our 
on�guration spa
e will be

Σd
pAq :� AZ

d

where A is a �nite set and d P N is the dimension of our latti
e. Let us introdu
e the

fun
tion

ϕ : Σd
pAq Ñ R

whi
h is 
alled per site potential and 
an be physi
ally interpreted as the energy 
on-

tribution of the origin of the latti
e for ea
h 
on�guration x P Σd
pAq, sin
e we are only


onsidering only translation invariant measures.

Given these elements we denote for every β ¡ 0 the set Gpβϕq whi
h is the set of Gibbs

measures asso
iated to βϕ at the inverse temperature β. The are several de�nitions we


ould 
onsider as a Gibbs measure, using 
onformal measures, DLR equations, thermo-

dynami
 limits et
. See Georgii [17℄, the 
lassi
al book about Gibbs measures and [25℄

for the equivalen
e of several of these de�nitions. By 
ompa
tness we know that this set

has at least one shift translation invariant Gibbs measure. In the present thesis we are

interested on the behavior of the set of Gibbs measures whi
h are translational-invariant

probability measures, 
alled equilibrium measures, when the temperature goes to zero,

that is, when β Ñ �8.

A probability measure µβ over Σd
pAq is an equilibrium measure (or equilibrium state)

at inverse temperature β ¡ 0 for a potential βϕ if it is a shift invariant (or translation

invariant) measure whi
h maximizes the pressure, that is if

P pβϕq :� sup
µPMσpΣ

d
pAqq

"

hpµq �

»

βϕdµ

*

� hpµβq �

»

βϕdµβ.

15



16 CHAPTER 1. INTRODUCTION

We will 
onsider later the whole set of equilibrium measures µβ whi
h maximize the

pressure P pβϕq above over all shift invariant probability measures on Σd
pAq. The fun
tion

hpνq in the expression of P pβϕq is the Kolmogorov-Sinai entropy of ν.

In the one-dimensional 
ase if a potential ϕ is Hölder 
ontinuous we always have a

unique Gibbs measure whi
h is also the only equilibrium measure. For a dimension d ¡ 1

the situation is dramati
ally di�erent and we 
an have multiple Gibbs states even for a

potential with �nite range, the most famous example is the Ising model.

The zero-temperature equilibrium states (ground states) are the shift invariant prob-

ability measures whi
h minimize

»

ϕdν

over all shift-invariant probability measures ν. In other words, given a potential, we have

that the weak* a

umulation points of equilibrium states as β Ñ �8 are ne
essarily

minimizing measures for the potential ϕ. A more detailed study on the limit when the

system freezes and how it is related with the 
on�gurations with minimal energy 
an be

found in [36℄.

Chazottes and Ho
hman [11℄ showed in the one-dimensional 
ase an example of a

Lips
hitz potential ϕ (but long-range) where the sequen
e µβϕ does not 
onverge when

β Ñ �8. Here µβϕ is the unique shift-invariant Gibbs measure (or the unique Gibbs

measure) at the inverse temperature β ¡ 0 (whi
h is also the unique equilibriummeasure).

On the other hand, [8, 10, 16, 27℄ showed that an intera
tion of �nite-range in the one-

dimensional 
ase over a �nite alphabet implies the 
onvergen
e of µβϕ. The 
ase when

A is a 
ountable set was also studied in [23℄. The breakthrough for the 
onstru
tion of

examples of the non-
onvergen
e was given by van Enter and W. Ruszel [37℄, where an

example of �nite range potential on a 
ontinuous state spa
e and 
haoti
 behavior was


onstru
ted. Re
ently the argument of van Enter and Ruszel was implemented for the


ase where A is a �nite set in [7, 3, 12℄.

Chazottes and Ho
hman [11℄ also showed that the same kind of non-
onvergen
e may

o

ur when the dimension is d ¥ 3 even for a lo
ally 
onstant potential. The 
onstru
tion

of their example is possible only for d ¥ 3 be
ause they rely heavily on the theory of

multidimensional subshifts of �nite type and Turing Ma
hines, developed by Ho
hman [19℄

that provides a method to transfer a one-dimensional 
onstru
tion to a higher-dimensional

subshift of �nite type. Thanks to Ho
hman's theorem, Chazottes and Ho
hman 
ould


onstru
t an example for d � 3 with a potential ϕ lo
ally 
onstant on a �nite state spa
e.

Their 
onstru
tion 
an be easily extended to any dimension d ¥ 3. These results led

us to believe that the statement is also true for d � 2. Our main result is two-fold: we

extend Chazottes-Ho
hman's theorem of 
haoti
 behavior to dimension 2 using a di�erent

approa
h involving the spa
e-time diagram of a Turing ma
hine developed by Aubrun-

Sablik and we 
larify the role of the re
onstru
tion and relative 
omplexity fun
tion of the
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extension by a subshift of �nite type that is missing in Chazottes-Ho
hman's arguments.

The main result of Aubrun and Sablik [2℄, 
alled simulation theorem, asserts that

any d-dimensional subshift de�ned by a set of forbidden patterns that is enumerated by

a Turing ma
hine is a suba
tion of a pd � 1q-dimensional subshift of �nite type. There

are other works in whi
h the simulation results obtained so far in this theory have been

improved [14, 15℄. In these works they improve the results obtained so far by de
reasing

the dimension of the subshift of �nite type whi
h generates the e�e
tive subshift, but they

are based on Kleene's �xed point theorem and they do not uses geometri
 arguments.

The 
onstru
tion of Aubrun and Sablik [2℄ improves the method of Ho
hman [19℄,

be
ause they in
rease the dimension by 1 and this leads us to improve the Chazottes and

Ho
hman [11℄ 
onstru
tion for the dimension 2.

In the se
ond 
hapter we present the main de�nitions of thermodynami
 formalism

and 
omputability, 
lassi
al results and standard notations. We begin with the de�nition

of subshifts and de�ne a spe
ial 
lass of subshifts based on the 
on
atenation of blo
ks of

the same size in order to form ea
h possible 
on�guration. In the se
ond se
tion of this


hapter we provide a brief review of entropy dealing with partitions, entropy of a partition,

metri
 and topologi
al entropy and the 
on
epts of pressure, equilibrium measure and

Gibbs measure. In the third se
tion we give a general idea of operations transforming a

subshift into another one based on [1℄ in order to 
omprehend the notion of simulating a

subshift by another one. Finally, we present a formal de�nition of a Turing ma
hine, how

to represent the work of a Turing ma
hine in a spa
e-time diagram and also an idea of

the 
onstru
tion of Aubrun and Sablik [2℄.

The third 
hapter is dedi
ated to de�ne and 
onstru
t our example that is inspired by

the 
onstru
tion presented in the work of Chazottes and Ho
hman [11℄. First we de�ne a

one-dimensional subshift based on an iteration pro
ess that gives us at ea
h step blo
ks of

the same length that are 
on
atenated to form a subshift as de�ned in Chapter 2. We prove

that the 
ontrol we have obtained over the set of forbidden words of this subshift, implies

there exists a Turing ma
hine that lists all of the forbidden words, that is, our subshift

is an e�e
tively 
losed subshift. From there we are able to use the simulation theorem of

Aubrun-Sablik [2℄ and obtain a bidimensional subshift of �nite type that simulates our

previous one-dimensional e�e
tively 
losed subshift. Also in the se
ond se
tion of this


hapter, we prove some important results that explain how to de
onstru
t a 
on�guration

in the 2-dimensional subshift as 
on
atenated patterns in a given di
tionary. In the third

and last part of this 
hapter, we de�ne a new 
oloring for the bidimensional subshift, as

in Chazottes and Ho
hman [11℄, that 
onsists in dupli
ating a distinguished symbol, in

order to transfer the entropy of the initial e�e
tive subshift to the simulated subshift of

�nite type.

After all these 
onstru
tions, we end up with a bidimensional SFT X de�ned over a

�nite alphabet A, an integer D ¥ 1 and a �nite set of forbidden patterns F � AJ1,DK2
.
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We then de�ne the following lo
ally 
onstant per site potential

ϕ : AZ2

� Σ2
pAq Ñ R

x ÞÑ ϕpxq � 1F pxq

where F is the 
lopen set equal to the union of 
ylinders generated by every pattern in

F .

The last 
hapter is dedi
ated to prove the main result whi
h is the following.

Theorem 1. There exists a lo
ally 
onstant potential ϕ : Σ2
pAq Ñ R, there exists a

subsequen
e pβkqk¥0 going to in�nity and two disjoint non-empty 
ompa
t invariant sets

XA, XB of Σ2
pAq, su
h that if µβk

is an equilibrium measure at inverse temperature βk

asso
iated to the potential βkϕ, the support of any weak

�

a

umulation point of pµβ2k
qk¥0

is in
luded in XB, the support of any weak

�

a

umulation point of pµβ2k�1
qk¥0 is in
luded

in XA.

The previous theorem asserts that there exists a subsequen
e pβkqkPN with βk Ñ �8

su
h that any 
hoi
e of equilibrium measure asso
iated with the potential βkϕ alternates

between two disjoint 
ompa
t sets of probability measures. That is there exists a lo
ally


onstant per site potential that exhibits a zero-temperature 
haoti
 
onvergen
e.

We 
ompute in the appendix an upper bound of the relative 
omplexity and re
on-

stru
tion fun
tions of the SFT given in [2℄; we thank S.B. for many dis
ussions on this

topi
.



Chapter 2

Subshifts

2.1 Forbidden words

In this 
hapter we establish the basi
 de�nitions, notations and main results of the obje
ts

that we use in this work. We begin by two de�nitions of a subshift: one topologi
al and

one 
ombinatorial. These two de�nitions 
oin
ide.

We will always work with a �nite set of letters that we 
all alphabet and we will denote

it with a 
ursive letter A. With this alphabet we 
onstru
t the set of 
on�gurations

de�ned over Z
d
where d ¥ 1 is the dimension.

De�nition 1. Let A be a �nite alphabet, and d ¥ 1. Let S � Z
d
be a subset. A

pattern with support S is an element of p of AS
. We write S � suppppq for the support

of the pattern p. If S 1 � S, the pattern p1 � p|S1 denotes the restri
tion of p to S 1. A


on�guration is a pattern with full support S � Z
d
.

When d � 1 a one-dimensional �nite pattern is 
alled a word.

The set of all possible Z
d
-
on�gurations de�ned over an alphabet A is denoted by

Σd
pAq :� AZd

. On this set we de�ne the shift a
tion as follows.

De�nition 2. The shift a
tion on a 
on�guration spa
e Σd
pAq is a 
olle
tion σ � pσu

quPZd

su
h that

σu : Σd
pAq Ñ Σd

pAq

x ÞÑ σu
pxq � y,where � v P Z

d, yv � xu�v.

We will use the same notation for the shift a
ting on a �nite pattern, that is, if S � Z
d

is a �nite set and p P AS
is a pattern, then we 
an write for all u P Z

d
the shift a
ting on

the pattern p as

σu
ppq � w P AS�u

where wv � uv�u, �v P S � u

Remark 1. Sometimes we will use the term shift invariant patterns for a 
lass of patterns

19



20 CHAPTER 2. SUBSHIFTS

p � q if and only if q � σu
ppq, for some u P Z

d
. In that sense, the shape of the support

of the pattern is �xed, but the form 
an be lo
ated in any translate of this support.

Let S, T � Z
d
are two subsets, and p, q be two patterns with support S and T ,

respe
tively. We say that p is a sub-pattern of q, if S � T and p � q|S. Similarly we

say that p is a sub-pattern of a 
on�guration x P AZd

, if p � x|S. We 
an also say that

a pattern p P AS
appears in another pattern q P AT

(respe
tively, in a 
on�guration

x P AZ
d

) if there exists a ve
tor u P Z
d
su
h that σu

ppq is a sub-pattern of q (respe
tively,

σu
ppq is a sub-pattern of x). In that 
ase we write p � q (respe
tively, p � x).

De�nition 3. If p P AS
is a pattern with support S, the 
ylinder generated by p, denoted

by rps, is the subset of 
on�gurations de�ned by

rps :� tx P Σd
pAq : x|S � pu.

For a P A and i P Z
d
we denote the 
ylinder

rasi � tx P Σd
pAq : xi � au.

De�nition 4. Let P � AS
be a subset of patterns of support S. The 
ylinder generated

by P is the subset,

rP s :�
¤

pPP

rps.

The following is the topologi
al de�nition of one of the most important obje
ts that

we work with.

De�nition 5. A subshift X is a 
losed subset of Σd
pAq whi
h is invariant under σu :

Σd
pAq Ñ Σd

pAq for all u P Z
d
, that is, σu

pXq � X .

As said before, there is a 
ombinatorial de�nition of a subshift, whi
h is given by the

set of forbidden patterns as presented below.

De�nition 6. Let X be a subset of Σd
pAq. We say that X is a subshift generated by a

set F of forbidden patterns if F �

�

R¥1
AJ1,RKd

is a subset of patterns with �nite support

and

X � Σd
pA,Fq :� tx P Σd

pAq : � p P F , p � xu.

The following proposition assures that every subshift is generated by a set of forbidden

patterns.

Proposition 1. The two de�nitions of subshift (De�nition 5 and De�nition 6) 
oin
ide.

The entire 
on�guration spa
e Σd
pAq � AZ

d

is a subshift, and we 
all it the full

shift. We will denote by pΣd
pAq,Bq the measurable spa
e where B is the Borel σ-algebra
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generated by the 
ylinder sets in Σd
pAq. We will des
ribe a 
lassi�
ation for the subshifts

based on the set of forbidden patterns. For the full shift the set of forbidden patterns is

empty. If the set of forbidden patterns is �nite we will say that subshift is a subshift of

�nite type or SFT. When the set of forbidden patterns 
an be enumerated by a Turing

ma
hine, then we say that the subshift is an e�e
tively 
losed subshift (we explain what

we are 
onsidering as a set enumerated by a Turing ma
hine in Se
tion 2.4).

Another way of des
ribing a subshift is by its language, that we de�ne next.

De�nition 7. Let A be a �nite alphabet, and d ¥ 1. Let X be a subshift of AZ
d

. The

language of X , denoted LpXq, is the set of square patterns that appear in X , or more

formally,

LpXq :�
§

ℓ¥1

!

p P AJ1,ℓKd : Dx P X, s.t. p � x
)

. (2.1)

We will denote the set of square patterns of a �xed length ℓ as

LpX, ℓq :�
!

p P AJ1,ℓKd : Dx P X, s.t. p � x|J1,ℓK2
)

. (2.2)

A di
tionary L of size ℓ and dimension d over the alphabet A is a subset of AJ1,ℓKd
.

A di
tionary is a spe
ialized subset of patterns. We say that a di
tionary L of size ℓ is a

sub-di
tionary of L1 of size ℓ1 (where both have the same dimension d), if every pattern

of L is a sub-pattern of a pattern of L1. Given a di
tionary we 
an de�ne the set of all


on�gurations obtained by the in�nite 
on
atenation of patterns of this di
tionary. In

fa
t, this subset is a subshift as des
ribed below.

De�nition 8. The 
on
atenated subshift of a di
tionary L of size ℓ and dimension d is

the subshift of the form

xLy �

¤

uPJ1,ℓKd

£

vPZd

σ�pu�vℓq
rLs,

�

!

x P Σd
pAq : Du P J1, ℓKd, � v P Z

d, pσu�ℓv
pxqq|J1,ℓKd P L

)

.

Another important 
on
ept 
on
erns the admissibility of a pattern. Given a set of

forbidden patterns, we de�ne lo
al and global admissibility.

De�nition 9. Let F � AJ1,DKd
for a �xed D ¥ 2. We say that a pattern w P AJ1,RKd

where R ¥ D is lo
ally F-admissible if

σu
pxq|J1,DKd R F , � u P J0, R�DKd,

that is, we do not �nd a pattern of F inside the pattern w. We say that a pattern



22 CHAPTER 2. SUBSHIFTS

w P AJ1,RKd
is globally F-admissible if there exists x P Σd

pA,Fq su
h that

x|J1,RKd � w.

It is 
lear that if a pattern is globally admissible, then it is lo
ally admissible, but

the reverse it not always true. The next proposition assures that for every d-dimensional

subshift, every really large pattern that is lo
ally admissible has a 
entral blo
k that is

globally admissible.

Proposition 2. Let X � Σd
pA,Fq be a subshift given by a set of forbidden patterns F .

There exists a fun
tion R : N Ñ N so that if q P AJ�Rpnq,RpnqKd
is lo
ally admissible, then

p � q|J�n,nKd, the restri
tion of q to AJ�n,nKd
, is globally admissible.

Proof. The proof follows from a standard 
ompa
tness argument as des
ribed in Lemma

4.3 of [5℄ in a more general setting.

Suppose su
h a fun
tion does not exist, then there exists n P N su
h that for every

m ¥ n there exists a lo
ally admissible pattern qm of size m su
h that pm � qm|J�n,nKd is

not globally admissible. Let xm P Σd
pAq be a 
on�guration su
h that xm|J�m,mKd � qm. By


ompa
tness of Σd
pAq, we may extra
t a 
onverging subsequen
e xmpkq whi
h 
onverges

to some x̄ P AZd

.

We 
laim x̄ P X . Indeed, if not, there is a forbidden pattern whi
h o

urs somewhere

in x̄. In parti
ular, there is k P N su
h that the pattern is 
ompletely 
ontained in

J�mpkq, mpkqKd. It follows by 
onvergen
e of the sequen
e txmpkqukPN that eventually

every pattern qmpkq 
ontains the forbidden pattern. This is a 
ontradi
tion be
ause qm is

lo
ally admissible. Hen
e x̄ P X .

As x̄ P X , then x̄|J�n,nKd is globally admissible, but this is equal to pm for some m P N

and thus not globally admissible. This is again a 
ontradi
tion. Therefore the fun
tion

R must exist. It is non-de
reasing as subpatterns of globally admissible patterns are

themselves globally admissible.

2.2 Entropy and variational prin
iple

We establish here some of the most important results about entropy of subshifts. The

results here were developed by several authors in di�erent approa
hes and they were able

to generalize these results even for amenable group a
tions and non-
ompa
t 
on�guration

spa
es. Here we fo
us on the Z
d
-a
tion over a 
ompa
t 
on�guration spa
e Σd

pAq � AZd

.

We always 
onsider Σd
pAq � AZ

d

and σ � pσu
quPZd the shift a
tion. We will denote

by M1pΣ
d
pAqq the set of all probability measures de�ned on Σd

pAq and by MσpΣ
d
pAqq

the set of shift-invariant probability measures. Here we always 
onsider pΣd
pAq,B, µq

as a probability spa
e where B is the sigma algebra generated by the 
ylinder sets and

µ PMσpΣ
d
pAqq.
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De�nition 10. A 
olle
tion P � tP1, P2, ..., Pnu of measurable sets is a �nite partition of

Σd
pAq if

• Pi X Pj � ∅ for i � j; and

•
�

i Pi � Σd
pAq.

For a probability spa
e pΣd
pAq,B, µq we 
all a 
olle
tion of measurable sets P � tP1, P2, ..., Pnu

a µ-partition if

• µpPiq ¡ 0, �i;

• µpPi X Pjq � 0, for i � j; and

• µ

�

Σd
pAqz

n
¤

i�1

Pi

�

� 0.

One of the most important 
on
epts in thermodynami
s is the entropy of a system.

Here we present the de�nition of Shannon entropy and some useful properties that we use

in this text. The de�nitions and results 
an be found in Keller [22℄ and Kerr-Li [24℄.

De�nition 11. The information of a µ-partition P � tP1, P2, ..., Pnu is the fun
tion

IP : Σd
pAq Ñ R de�ned as

IPpxq :� �

¸

PPP

logpµpP qq � 1P pxq.

The entropy of a partition with respe
t a measure µ is given by

HpP, µq :�

»

IPpxqdµ � �

ņ

i�1

µpPiq logpµpPiqq

We will use the notation HpPq � HpP, µq when there is no 
onfusion over whi
h

measure we are 
onsidering in order to not overload the notation.

Given two µ-partitions P � tP1, P2, ..., Pnu and Q � tQ1, ..., Qmu of a 
on�guration

spa
e Σd
pAq, we 
an de�ne the 
onditional information of P given Q as the fun
tion

IP|Q : Σd
pAq Ñ R de�ned as

IP|Qpxq :� �

ņ

i�1

m̧

j�1

log

�

µpPi XQjq

µpQjq




� 1PiXQj
pxq.

In the same fashion we 
an de�ne the 
onditional entropy of P given Q with respe
t to a

measure µ as the value

HpP|Q, µq :�

»

IP|Qdµ �

»

HpP, µQ
x qdµpxq (2.3)
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where pµQ
x qxPΣd

pAq is the family of 
onditional probabilities with respe
t to Q. We 
an

also express the 
onditional entropy as the sum

HpP|Q, µq � �

ņ

i�1

m̧

j�1

µpPi XQjq log

�

µpPi XQjq

µpQjq




.

As before we will use the notation HpP|Qq � HpP|Q, µq when there is no 
onfusion

over whi
h measure we are 
onsidering in order to not overload the notation.

We say that a partition P 1

is a re�nement of another partition P if every element of

P 1

is 
ontained in an element of P. We denote as P 1

© P.

We denote the 
ommon re�nement of two partitions denoted by P_Q as the partition

generated by

P _Q :� tPi XQj : Pi P P, Qj P Qu.

For a subset S � Z
d
we denote by

PS :�
ª

uPS

σ�uP

the 
ommon re�nement of the partitions σ�uP where u P S. A partition P is a µ-

generated partition of pΣd
pAq,B, µq if the sigma algebra generated by PS

for every �nite

subset S � Z
d
is equal to B mod µ.

The next lemma gives us the Jensen inequality that will be used many times.

Lemma 1 (Jensen's Inequality). Consider I � R an open interval and ψ : I Ñ R a


on
ave fun
tion. If f : Σd
pAq Ñ I a µ-integrable fun
tion, then the integral of ψ � f is

well de�ned and

ψ

�

»

fdµ




¥

»

ψ � fdµ.

If we 
onsider ψ : r0, 1s Ñ R de�ned as

ψpxq �

#

�x logpxq, 0   x ¤ 1

0, x � 0,
(2.4)

then ψ is a stri
tly 
on
ave fun
tion and therefore we obtain

ψ

�

ņ

i�1

λixi

�

¥

ņ

i�1

λiψpxiq, (2.5)

where xi P r0, 1s and λi ¡ 0 for ea
h i P J1, nK with

°n

i�1
λi � 1. We will use this

inequality for the proof of the next lemma whi
h presents some important properties of

the entropy.
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Lemma 2. Consider P � tP1, ..., Pnu and Q � tQ1, Q2, ..., Qmu two µ-partitions of

Σd
pAq. Then

piq 0 ¤ HpP|Qq ¤ HpPq ¤ log |P|;

piiq HpP _Qq � HpPq �HpQ|Pq;

piiiq HpPq ¤ HpQq �HpP|Qq;

pivq if Q © P, then HpP|Qq � 0.

pvq if Q © P, then HpP _Qq � HpQq ¥ HpPq;

Proof. piq The inequality 0 ¤ HpP|Qq follows from the de�nition of the entropy of a

partition. Now we will prove that if R � tC1, ..., Clu is a partition su
h that Q © R

we have that

HpP|Qq ¤ HpP|Rq. (2.6)

Denote

λk,j :�
µpBj X Ckq

µpCkq
and xj,i �

µpAi XBjq

µpBjq
.

As we are 
onsidering Q © R, µpBj X Ckq is equal to µpBjq or 0, be
ause either

Bj � Ck or Bj X Ck � ∅. Thus for a �xed i and k

m̧

j�1

λk,jxj,i �
¸

jPJ1,mK
Bj�Ck

µpAi XBjq

µpCkq
�

µpAi X Ckq

µpCkq
.

HpP|Qq �

ņ

i�1

m̧

j�1

�µpPi XQjq log

�

µpPi XQjq

µpQjq




�

ņ

i�1

m̧

j�1

µpQjqψpxj,iq

�

ņ

i�1

m̧

j�1

�

ļ

k�1

µpCkqλk,j

�

ψpxj,iq

�

ņ

i�1

ļ

k�1

µpCkq

m̧

j�1

λk,jψpxj,iq

¤

ņ

i�1

ļ

k�1

µpCkqψ

�

m̧

j�1

λk,jxj,i

�

� HpP|Rq.

If we take R � tΣd
pAqu the trivial partition, we obtain HpP|Qq ¤ HpPq.
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In (2.5) if we 
onsider xi � µpPiq and λi � 1{n we obtain that

�

1

n
log

�

1

n




� ψ

�

1

n




� ψ

�

1

n

ņ

i�1

µpPiq

�

¥

1

n

ņ

i�1

ψpµpPiqq

�

1

n
HpPq,

and therefore HpPq ¤ logpnq � log |P|.

piiq Ea
h element of the partition P _Q is of the form P XQ where P P P and Q P Q.

Then

IP_Qpxq � �

¸

PPP

¸

QPQ

logpµpP XQqq � 1PXQpxq

� �

¸

PPP

¸

QPQ

log

�

µpP XQq

µpP q
� µpP q




� 1PXQpxq

� �

¸

PPP

¸

QPQ

log

�

µpP XQq

µpP q




� 1PXQpxq �
¸

PPP

¸

QPQ

logpµpP qq � 1PXQpxq

� �

¸

PPP

¸

QPQ

log

�

µpP XQq

µpP q




� 1PXQpxq �
¸

PPP

logpµpP qq � 1P pxq

� IP|Qpxq � IPpxq.

By integrating with respe
t to a measure µ we obtain that

HpP _Qq � HpPq �HpQ|Pq.

piiiq By the previous items we obtain that

HpPq � HpP _Qq �HpQ|Pq

¤ HpP _Qq

� HpQq �HpP|Qq.

pivq For any two partitions P and Q, we have

HpP|Qq �

¸

PPP

¸

QPQ

�µpP XQq log

�

µppXQq

µpQq




�

¸

PPP

¸

QPQ

µpQq � ψ

�

µpP XQq

µpQq




.

If we 
onsider that Q © P ea
h Q P Q is 
ompletely 
ontained in an element P P P.
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Hen
e ea
h term of the sum above is equal to zero be
ause either

µpPXQq

µpQq
� 0 or

µpPXQq

µpQq
� 1, and in both 
ases we have that

HpP|Qq �
¸

PPP

¸

QPQ

µpQq � ψ

�

µpP XQq

µpQq




� 0.

pvq It follows from the items piiiq and pivq.

Lemma 3. Consider pΣd
pAq,B, µq a shift-invariant probability spa
e and P a �nite par-

tition of Σd
pAq. The dynami
al entropy relative to the partition P is given by

hpP, µq :� inf
n¥0

1

|Λn|
HpPΛn

q � lim
nÑ�8

1

|Λn|
HpPΛn

q

whi
h is well de�ned, where Λn :� J�n, nKd for n ¥ 1.

Proof. For ea
h n ¥ 1 we will 
onsider Λn :� J�n, nKd � Z
d
. For a �xed m ¥ 1 we denote

Λm � J�m,mKd and lm � 2m� 1. Consider the set

Vn :�
 

p P plmZq
2 : pp� Λmq X Λn � ∅

(

Then

Λn � Λ̃n :�
¤

uPVn

pΛm � uq .

Note that |Λ̃n| � |Vn| � |Λm| ¤ |Λn�m|. We obtain that

HpPΛn
q ¤ HpP Λ̃n

q

¤

¸

uPVn

Hpσ�uPΛm
q

� |Vn|HpP
Λm
q

¤

|Λn�m|

|Λm|
HpPΛm

q,

and therefore

lim sup
nÑ�8

1

|Λn|
HpPΛn

q ¤ lim sup
nÑ�8

|Λn�m|

|Λm|

1

|Λm|
HpPΛm

q �

1

|Λm|
HpPΛm

q.

The last estimate holds for every �xed m, thus we 
on
lude that

lim sup
nÑ�8

1

|Λn|
HpPΛn

q ¤ inf
m¡0

1

|Λm|
HpPΛm

q ¤ lim inf
mÑ�8

1

|Λm|
HpPΛm

q.
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Theorem 2 (Shannon-M
Millan-Breiman). Let pΣd
pAq,B, µq a shift-invariant probabil-

ity spa
e and P a �nite partition of Σd
pAq. Then

lim
nÑ�8

�

1

|Λn|
logpµpPΛn

qq � hpP, µq

pointwise a.e. and in L1.

The previous theorem has already been proved for a larger 
lass of group a
tions only

with the assumptions that the group is amenable [29, 24, 35℄. The proof for Theorem 2

as stated here 
an be found in Krengel [26℄.

Now we de�ne the Kolmogorov-Sinai entropy also 
alled dynami
al entropy of a mea-

sure.

De�nition 12. The entropy of the spa
e pΣd
pAq,B, µq, also known as the dynami
al

entropy of µ is given by

hpµq � sup
P

thpP, µq : P is a �nite partitionu .

De�nition 13. The topologi
al entropy of a subshift X � Σd
pAq is given by

htoppΣ
d
pAqq � lim

nÑ�8

1

|Λn|
logp|LpX, 2n� 1q|q.

In Chazottes-Meyerovit
h [20℄ they establish important results about the 
hara
teri-

zation of the entropy for multidimensional SFT. Next we present the variational prin
iple

for the entropy.

Theorem 3 (Variational Prin
iple). Let X � Σd
pAq be a subshift, then

htoppXq � sup
µ

hpµq

where the supremum is taken over the set of shift-invariant probability measuresMσpΣ
d
pAqq.

The Variational Prin
iple as stated above has already been proved for amenable group

a
tions in [24℄. One important result for the 
hara
terization of the dynami
al entropy of

a measure is given by the following theorem.

Theorem 4 (Kolmogorov-Sinai). If P is µ-generated partition for pΣd
pAq,B, µq and

HpPq   �8, then

hpµq � hpP, µq.

Proof. For any �nite subset we have that

hpPΛ, µq � hpP, µq. (2.7)
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Indeed, 
onsider a �xed N ¡ 0 su
h that Λ � ΛN , then we have that

hpPΛ, µq � lim
nÑ�8

1

|Λn|
H
�

pPΛ
q

Λn
�

¤ lim
nÑ�8

1

|Λn|
H
�

PΛn�N
�

¤ lim
nÑ�8

|Λn�N |

|Λn|

1

|Λn�N |
H
�

PΛn�N
�

� hpP, µq

¤ hpPΛ, µq

sin
e PΛ
© P.

Now 
onsider P a �nite µ-generated partition with �nite entropy and Q a �nite par-

tition. From 2.7 and Lemma 2 we obtain that

hpQ, µq ¤ hpPΛn , µq �HpQ|PΛn
q

� hpP, µq �HpQ|PΛn
q.

As limnÑ�8

HpQ|PΛn
q � HpQ|Bq � 0, it follows that for an arbitrary partition Q, is true

that hpQ, µq ¤ hpP, µq, and therefore the result follows.

2.3 Potential

A fun
tion f : Σd
pAq Ñ R is upper semi-
ontinuous if the set tx P Σd

pAq : fpxq   cu is

an open set for every c P R.

De�nition 14. A potential ϕ : Σd
pAq Ñ R is regular if

�8

¸

n�1

nd�1δnpϕq   �8,

where δnpϕq :� supt|ϕpwq � ϕpvq| : w, v P Σd
pAq, w|Λn

� v|Λn
u.

We say that a potential ψ has �nite range if there exists n0 P N su
h that δnpψq � 0,

for all n ¥ n0. If a potential has �nite range, then it is regular.

Next we de�ne the pressure of an upper semi-
ontinuous potential, the notion of an

equilibrium measure and re
all several results that 
hara
terize the equilibrium measures

for a 
ertain 
lass of potentials.

De�nition 15. The pressure of a upper semi-
ontinuous potential ϕ : Σd
pAq Ñ R at

inverse temperature β is the value

P pβϕq :� sup
µPMσpΣ

d
pAqq

"

hpµq �

»

βϕdµ

*

.
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De�nition 16. An equilibrium measure for a potential ϕ at inverse temperature β is a

measure µβϕ PMσpΣ
d
pAqq su
h that

P pβϕq � hpµβϕq �

»

βϕdµβϕ.

An important 
hara
terization for the set of equilibrium measures for a regular lo
al

potential is that it is exa
tly the set of invariant Gibbs measures. In order to state this

result, we present one possible de�nition of Gibbs measures based on [22℄.

Remark 2. Here we will de�ne all these notions and results for the full shift over a

�nite alphabet, but these de�nitions and results are also valid for a more general 
lass

of subshifts, for instan
e Muir [31℄ works with a 
ountable alphabet in multidimensional

subshifts and Israel [21℄ extended to general 
ompa
t spin spa
es and quantum systems

for the full shift.

Consider ϕ a regular potential on Σd
pAq and denote

ϕn :�
¸

gPΛn

ϕ � σg

where Λn � J�n, nKd. We are interested in how ψnpwq will 
hange if we alter �nitely many

sites. For that, we will introdu
e, as in Keller [22℄, a 
lass of lo
al homeomorphisms on

Σd
pAq.

De�nition 17. Let ϕ be a regular potential de�ned over Σd
pAq. We denote by εn the

set of all maps τ : Σd
pAq Ñ Σd

pAq su
h that

pτpwqqi �

#

τipwiq, i P Λn

wi, i R Λn

where τi : A Ñ A are permutations in the state spa
e. We denote by ε :�
�

n¡0
εn the

set of all homeomorphisms in Σd
pAq that 
hange only �nitely many 
oordinates.

Lemma 4. (Keller [22℄) Let ϕ be a regular potential and τ P ε. For n ¡ 0 de�ne

Ψn
τ : Σd

pAq Ñ R, Ψn
τ :� ϕn � τ

�1
� ϕn.

Then the limit

Ψτ :� lim
nÑ�8

Ψn
τ

exists uniformly on Σd
pAq.

De�nition 18. Let ϕ be a regular lo
al potential. We say that a probability measure
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µ PM1pΣ
d
pAqq is a Gibbs measure for the potential ϕ if

τ
�

µ � µ � eΨτ

for ea
h τ P ε.

The previous de�nition goes ba
k to Capo
a

ia [9℄ and does not involve 
onditional

measures as in a more 
lassi
al de�nition of Gibbs measure [17, 32℄.

As said before, there are several 
hara
terizations for a Gibbs measure (see Georgii [17℄

and Ruelle [32℄) and several results for the equivalen
e between these de�nitions (see

Kimura [25℄ and Keller [22℄) even for potentials de�ned over more general subshifts.

The next theorem from Keller [22℄ gives a important 
hara
terization of the set of

invariant Gibbs measures for a regular lo
al potential.

Theorem 5. Let Σd
pAq � AZd

be the full shift and ϕ : Σd
pAq Ñ R be a regular lo
al

potential. The set of equilibrium measures for ϕ is nonempty, 
ompa
t, 
onvex subset of

MσpΣ
d
pAqq and every equilibrium measure is also a Gibbs invariant probability measure.

Given a potential βϕ at inverse temperature β and ϕ a regular lo
al potential, the set

of equilibrium measures is exa
tly the set of Gibbs invariant measures for βϕ.

2.4 Turing Ma
hines and the Simulation Theorem

We present here the basi
 
on
epts of a Turing ma
hine and how we 
an 
hara
terize a

language based on its 
omputability. The automaton that we 
all Turing ma
hine was

�rst introdu
ed by Alan Turing in 1936 and is similar to a �nite automaton but with

unlimited and unrestri
ted memory. This model works on an in�nite tape and therefore

has unlimited memory. There is a head of 
al
ulation whi
h 
an read and write symbols

on the tape and move over the tape, both forward and ba
kward. We will introdu
e a

formal de�nition of a Turing ma
hine as in Sipser [34℄.

De�nition 19. A Turing ma
hine M is a 7�tuple pQ,A, T , δ, q0, qa, qrq, where

• Q is a �nite set of states of the head of 
al
ulation;

• A is the input alphabet whi
h does not 
ontain the blank symbol 7;

• T is the tape alphabet whi
h 
ontains the blank symbol 7 and A � T ;

• δ : Q� T Ñ Q� T � t�1,�1u is the transition fun
tion;

• q0 is the initial state of the head of 
al
ulation;

• qa P Q is the a

ept state; and
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• qr P Q is the reje
t state.

The ma
hine works on an in�nite tape divided into dis
rete boxes on whi
h the head

will a
t. If we think of Z as a bi-in�nite tape �lled with symbols of T , we 
an express the

Turing ma
hine M by des
ribing the state of the head and in whi
h box the head is.

We always start the 
al
ulation over a word de�ned on the alphabet A that will be

written on the tape of the ma
hine. The other boxes of the in�nite tape are �lled with

the blank symbols 7. The head will start on the leftmost symbol of the word with the

initial state q0. At ea
h step of its 
al
ulation the head a
ts (read/write) only on the box

where the head is lo
ated. Based on the symbol that the head reads and the state of the

head, the transition fun
tion will give us whi
h symbol the head must write in the box,

the new state of the head and in whi
h dire
tion the head should move, �1 if it should

move for the left box or �1 if it should move for the right box. It is possible to de�ne

the transition fun
tion with the possibility of the head staying in the same box after a


al
ulation, but the de�nitions are equivalent.

One way of representing the transition fun
tion is by a dire
ted graph where ea
h node

represents a state of the head of 
al
ulation and the arrows are tagged with the rules of

the transition fun
tion. See the transition represented below.

PSfrag repla
ements

qm qn
xÑ y,�1

y Ñ y,�1

Figure 2.1: Dire
ted graph representing two rules of some transition fun
tion δ.

If the head of 
al
ulation is in the state qm and it reads the symbol x, then the head

repla
es this symbol by y, 
hange of state to qn and move to the box to the right. If

instead the head is in the state qm and reads the symbol y, then the head keeps the

symbol y in that box, does not 
hange the state and moves to the box on the right.

The 
al
ulation of a Turing ma
hine stops when the head rea
hes the a

ept state qa

or the reje
t state qr. If the ma
hine never rea
hes one of these states the 
al
ulation will

never stop. As said before, the 
al
ulation of a Turing ma
hine starts over a �nite word

w de�ned over the alphabet A that is written over the tape. If the ma
hine rea
hes the

a

ept state after a number of valid transitions, we say that the initial word is a

epted

by this Turing ma
hine. A set of words L, also 
alled language, is re
ognized by a Turing

ma
hine if the ma
hine rea
hes the a

ept state for ea
h word in this set and never rea
hes

the a

ept state if the word is not in L (the ma
hine 
an rea
h a reje
t state or go into a

in�nite loop).
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De�nition 20. A set L of words over an alphabet A is 
alled re
ursive if there is a Turing

ma
hine that re
ognizes it. A set L of words over an alphabet A is 
alled re
ursively

enumerable if there is a Turing ma
hine that stops its 
al
ulation only on words of L.

As said before the ma
hine 
an also rea
h the reje
t state or enter in an in�nite loop

that never stops. There is a spe
ial 
lassi�
ation for the set of words for whi
h it is

possible to de�ne a Turing ma
hine that never enters in a in�nite loop, that is, for ea
h

�nite initial word the ma
hine always rea
hes qa or qr. In this 
ase we say that this Turing

ma
hine de
ides or, most popularly found in the literature, re
ognizes the language L.

These two 
on
epts of re
ognizability and re
ursive enumerability, although seemingly

equivalent, are two di�erent notions. There are 
ertain languages that only 
an be enumer-

ate by a Turing ma
hine. Now we present an example presented in [4℄ of a Turing ma
hine

that re
ognizes (and also enumerates) a language de�ned over the alphabet A � ta, bu.

Example 1. This ma
hine stops for every word that we write on the tape and it tells us

whether su
h word belongs or not to the language L � tanbn;n P Nu. The input alphabet

is A � ta, bu and the tape alphabet is T � ta, b, 7u, where 7 is the blank symbol. We start

with the word to be evaluated written on a bi-in�nite tape �lled with bla
k symbols 7 and

we set the head of 
al
ulation on the state q0 on the leftmost symbol of the word. This

Turing ma
hine has 9 states Q � tq0, q1, q2, q3, q4, q5, q6, qa, qru and the transition fun
tion

δ : Q� T Ñ Q� T � t�1,�1u is represented by the dire
ted graph in Figure 2.2.

We are representing the a

ept state by qa and the reje
t state by qr. Note that the

transition fun
tion is not de�ned for every possible pair inQ�T be
ause this 
on�guration

never o

urs in the 
al
ulation pro
ess. Another important aspe
t is that when the

transition fun
tion goes to qa or qr, we are not de�ning the symbol substitution or the

move that the head should do, be
ause it is irrelevant sin
e the 
al
ulation will stop after

this iteration.

Now we give a summary of the role played by ea
h of the eight states that the ma
hine


an rea
h:

q0: This state marks the beginning of the 
al
ulation. The head of the ma
hine begins

the 
al
ulation on the leftmost letter of the word written on the tape. If the head

reads the symbol a then the head repla
es the symbol by a blank symbol, moves to

the right and also 
hanges the state. If the head reads a symbol b then the head of

the ma
hine goes to the reje
t state and the 
omputation stops, whi
h means that

the word written on the tape does not belongs to the language.

q1: In this state the head of the ma
hine goes to the rightmost symbol a of the word

without 
hanging the symbols or the state of the ma
hine. When the ma
hine �nds

the �rst symbol b the head of the ma
hine does not 
hange the letter, but 
hanges

the state and moves to the right. In this state the ma
hine goes to the reje
t state
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PSfrag repla
ements

q0

q1 q2

q3

q4q5q6 qa

qr

aÑ 7,�1

aÑ a,�1

bÑ b, 1

bÑ b, 1

7 Ñ 7,�1

bÑ 7,�1

bÑ b,�1

bÑ b,�1

aÑ a,�1

aÑ a,�1

7 Ñ 7,�1

7

b

7 a

a

7

Figure 2.2: Dire
ted graph representing the transition fun
tion for the Turing ma
hine

that de
ides the language anbn.

if the head reads the blank symbol, whi
h means that the word written on the tape

has only the symbol a.

q2: This state makes the head of the ma
hine goes to the end of the word without 
hanging

the symbols b's that are written on the tape. The head goes to the last symbol b and

then when it �nds the �rst blank symbol this state makes the head go to the left,

but not repla
e the blank symbol. If the head is in this state and �nds a symbol

a, it means that in the word written on the tape exists the subword ba whi
h is

forbidden in the language L, so the head goes to the reje
t state and the 
al
ulation

stops.

q3: This state always appears on the head when it is on the last symbol b of the �nite

word written on the tape of 
al
ulation. The symbol b is repla
ed by a blank symbol

and the head of 
al
ulation moves to the box on the left. The symbol b is the only

possibility for the head to read.

q4: In this state if the head of the ma
hine reads the symbol b it means that there exists

still symbols written on the tape of 
al
ulation that are di�erent from the blank

symbol, then the head of the ma
hine does not repla
e the symbol b, but moves to

the left and 
hanges the state. If the head of the ma
hine in this state reads the

blank symbol it means that now, on the tape of 
al
ulation, there are only blank
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symbols, whi
h means that the ma
hine has repla
ed all of the symbols a's and b's

in the initial �nite word written and the number of a's and b's are the same. In

this 
ase the ma
hine 
hanges to the a

ept state whi
h means that the initial word

written on the tape belongs to the language L. The other possibility is that the

head of the ma
hine in this state reads the symbol a whi
h means that the number

of symbol a's is bigger than the number of symbol b's and then the ma
hine 
hanges

to the reje
t state.

q5: This state makes the head of the ma
hine rea
h the symbol a most to the right on

the word written on the tape. The head on this state when pla
ed on the symbol b,

does not repla
e the symbol b and only moves to the left without 
hanging the state.

When the head rea
hes one symbol a the ma
hine still moves to the left without

repla
ing the letter, but it 
hanges the state. If the head in this state rea
hes a

blank symbol this means that on the tape of 
al
ulation there are only letters b's

whi
h means that the number of symbol b's on the initial word is bigger than the

number of letters a's. In this 
ase the ma
hine 
hanges to the reje
t state whi
h

means that the ma
hine re
ognizes that the initial word written on the tape does

not belong to the language L.

q6: This state makes that the head of the 
al
ulation go to the leftmost symbol not blank

on the tape. If the head in this state reads the letter a, the head does not 
hange

the state but moves to the left. When the head rea
hes a blank symbol this means

that the head rea
hes the beginning of the word that is now written on the tape. In

this 
ase the head does not repla
e the blank symbol, 
hanges the state and moves

to the right leaving the head on the leftmost symbol on the word that is written on

the tape. In this state it is not possible that the head reads the letter b be
ause of

the 
onstru
tion and the way that the previous 
al
ulations o

ur.

qa: This is the a

ept state, whi
h means that if the head of the ma
hine rea
hes this

state then the initial word written on the tape belongs to the language L.

qr: This is the reje
t state, whi
h means that if the head of the ma
hine rea
hes this state

then the initial word written on the tape does not belong to the language L

The name 're
ursively enumerable' 
omes from a variation of the Turing ma
hine

presented that is 
alled enumerator. We 
an think of it as a general Turing ma
hine

atta
hed to a printer that prints some output words that the ma
hine has written on its

tape. An enumerator starts with a in�nite tape �lled with blank symbols. Ea
h word

that this ma
hine prints belongs to a language, that is why we say that this ma
hine

enumerates.

Proposition 3. Given a set of words L de�ned over an alphabet A. The set L is re
ur-

sively enumerable if and only if there is a Turing ma
hine that enumerates it.
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PSfrag repla
ements

qb� q
||

qa�qb��

q0
7 Ñ a,�1 7 Ñ b,�1
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bÑ b,�1

aÑ a,�1
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bÑ b,�1

|| Ñ b,�1

Figure 2.3: Dire
ted graph of the transition fun
tion δ of the enumerator for the language

anbn.

The next example from [1℄ shows a Turing ma
hine that enumerates the language

des
ribed in the previous example.

Example 2. We des
ribe an example of a Turing ma
hine that enumerates the language

L � tan, bn, n P Nu. The input alphabet is A � ta, bu and the tape alphabet is T �

ta, b, 7, ||u. This ma
hine has �ve possible states Q � tq0, qa�, qb�, qb��, q
||

u and it never

stops its 
al
ulation. The symbol || helps the ma
hine to know when it must print the

word written on the tape. The transition fun
tion will be δ : Q� T Ñ Q� T � t�1,�1u

given by Figure 2.3.

The following is a summary of the role played by ea
h of the �ve states that the

ma
hine 
an rea
h:

q0: This state begins the work of the ma
hine. In our 
ase it always o

urs in the bi-

in�nite tape �lled with the blank symbol. It marks the start of the 
al
ulation of

the ma
hine by repla
ing the blank symbol by a and moving the head to the right.

qb�: In this state the ma
hine repla
es the blank symbol by a letter b. This o

urs after

the head of the ma
hine arrives at the end of the word that is written on the tape

of 
al
ulation. This symbol b will be the rightmost b required to a
hieve the same

number of letters b's and letters a's in the word written on the tape.
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q
||

: When the ma
hine has this state and reads the blank symbol, that is pq
||

, 7q, the

ma
hine prints the word written on the tape be
ause it will be of the form anbn.

Besides that, this states is also responsible to return the head of 
al
ulation to the

rightmost symbol a on the tape. The head 
hanges the blank symbol by a marker ||

and moves to the left. The head goes to the left without making any 
hanges until

it a
hieves the rightmost symbol a on the tape. The ma
hine does not repla
e the

symbol a, but it 
hanges the state and moves to the right, leaving the head over the

leftmost symbol b written on the tape.

qa�: This state is responsible for adding a new symbol a into the word written on the

tape. It is the beginning of several 
hanges to a
hieve the next word in the language

anbn. The head in this state always reads the symbol b. It 
hanges to an a, it


hanges the state and it moves to the right.

qb��: In this state the head of the ma
hine goes to the end of the word written on the tape

without making any 
hanges, that is, the head goes to the marker || after all the

symbols b's that 
ompose the word on the tape. The head repla
es it by a symbol

b, it moves to the right and it 
hanges the state.

The a
tion of this Turing ma
hine 
an also be des
ribed by a spa
e-time diagram.

The horizontal dire
tion stands for the tape on whi
h the ma
hine works and the verti
al

dire
tion for the time evolution of the ma
hine.

The 
al
ulation of a Turing ma
hine, that is, the set of rules de�ned by the transition

fun
tion 
an be represented by a set of bidimensional patterns as proposed in [6℄. For

example, 
onsider the Turing ma
hine presented in the last example and the transition

fun
tion when the head of the ma
hine is in the state q
||

and reads the symbol a. In this


ase the head of the ma
hine does not 
hange the symbol a written on the tape, it 
hanges

its state to qa� and it moves to the right. This a
tion 
an be represented by the following

set of 3� 2 blo
ks or tiles des
ribed as below

s1 a pqa�, s3q

s1 pq
||

, aq s3

a pqa�, s2q s3

pq
||

, aq s2 s3

pqa�, s1q s2 s3

s1 s2 s3

s1 s2 a

s1 s2 pq
||

, aq

where s1, s2, s3 P T are the symbols that have previously been written on the tape. These

four patterns des
ribe all the possible 3�2 patterns that 
an be found in a bidimensional

representation of this Turing ma
hine for the rule δpq
||

, aq � pqa�, a,�1q. We 
an do this

representation for ea
h rule of the transition fun
tion. Sin
e there is a �nite number of

rules, the set that des
ribes all the possible 3 � 2 patterns is also �nite. Note that we
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � 7 a a a a b pqb��, bq || 7 7 � � �

� � � 7 a a a a pqb��, bq b || 7 7 � � �

� � � 7 a a a pqa�, bq b b || 7 7 � � �

� � � 7 a a pq
||

, aq b b b || 7 7 � � �

� � � 7 a a a pq
||

, bq b b || 7 7 � � �

� � � 7 a a a b pq
||

, bq b || 7 7 � � �

� � � 7 a a a b b pq
||

, bq || 7 7 � � �

� � � 7 a a a b b b pq
||

, 7q 7 7 � � �

� � � 7 a a a b b pqb�, 7q 7 7 7 � � �

� � � 7 a a a b pqb��, ||q 7 7 7 7 � � �

� � � 7 a a a pqb��, bq || 7 7 7 7 � � �

� � � 7 a a pqa�, bq b || 7 7 7 7 � � �

� � � 7 a pq
||

, aq b b || 7 7 7 7 � � �

� � � 7 a a pq
||

, bq b || 7 7 7 7 � � �

� � � 7 a a b pq
||

, bq || 7 7 7 7 � � �

� � � 7 a a b b pq
||

, 7q 7 7 7 7 � � �

� � � 7 a a b pqb�, 7q 7 7 7 7 7 � � �

� � � 7 a a pqb��, ||q 7 7 7 7 7 7 � � �

� � � 7 a pqa�, bq || 7 7 7 7 7 7 � � �

� � � 7 pq
||

, aq b || 7 7 7 7 7 7 � � �

� � � 7 a pq
||

, bq || 7 7 7 7 7 7 � � �

� � � 7 a b pq
||

, 7q 7 7 7 7 7 7 � � �

� � � 7 a pqb�, 7q 7 7 7 7 7 7 7 � � �

� � � 7 pq0, 7q 7 7 7 7 7 7 7 7 � � �

have to in
lude the pattern

s1 s2 s3

s1 s2 s3

where the head of the Turing ma
hine does not appear in this window that we are 
on-

sidering.

The set of all possible patterns 3� 2 in the alphabet

T Y pQ� T q Y pQ� T � t�1,�1uq

is �nite. Sin
e we are able to des
ribe the language with patterns of the form 3 � 2, we


an take the 
omplementary set from all the possible 3� 2 patterns and denote it as the

set of forbidden patterns. Therefore, it is always possible to des
ribe the 
al
ulation of a

Turing ma
hine by a SFT.

Based on the 
omputability of a set of forbidden words, we 
an de�ne another impor-

tant 
lass of subshifts.

De�nition 21. We say that a subshift X � AZ
is an e�e
tively 
losed subshift if there

exists a re
ursively enumerable set of words F su
h that X � Σd
pA,Fq, that is, the set

of forbidden words for the subshift X 
an be re
ognized by a Turing ma
hine.
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Here we de�ne this 
lass of subshifts only for one-dimensional subshifts, but it is

possible to de�ne the same 
lass for multidimensional subshifts. In our main 
onstru
tion

we des
ribe a one-dimensional e�e
tively 
losed subshift by an iteration pro
ess that builds

the language of the subshift.

2.5 The Aubrun-Sablik simulation theorem

The simulation theorem in Aubrun-Sablik [2℄ allows us to represent a one-dimensional

e�e
tively 
losed subshift as a suba
tion of a bidimensional SFT. We introdu
e some

operations in subshifts as de�ned in [1℄ so that we 
an give an idea of the 
onstru
tion

proposed by Aubrun-Sablik [2℄.

Let A and B be two �nite alphabets and X1 � Σd
pAq and X2 � Σd

pBq be two subshifts

of the same dimension d. If we 
onsider x1 P X1 and x2 P X2 two 
on�gurations in ea
h

subshift we de�ne

x1 � x2 � y P Σd
pA� Bq

su
h that

y � pyjqjPZd where yj � ppx1qj , px2qjq P A� B.

De�nition 22. Let be X1 � Σd
pAq and X2 � Σd

pBq. We de�ne the produ
t of X1 and

X2 as the subshift pX1 �X2q � Σd
pA� Bq

X1 �X2 � tx1 � x2 : xi P Xi, i � 1, 2u .

Note that the new alphabet is a produ
t alphabet A�B of the two previous alphabets

but the dimension of the subshift remains the same.

De�nition 23. Amorphism π : Σd
pAq Ñ Σd

pBq is a 
ontinuous fun
tion whi
h 
ommutes

with the shift a
tion, that is,

σu
� π � π � σu, �u P Z

d.

Hedlund [18℄ proved that su
h morphisms are blo
k fa
tors, that is, there exists a

�nite U � Z
d
that we 
all neighborhood and there exists a fun
tion π su
h that

π : AU
Ñ B

pwiqiPZd ÞÑ πpwqi � πpσi
pxq|Uq, �i P Z

d.

De�nition 24. Let π : Σd
pAq Ñ Σd

pBq be a morphism and X � Σd
pAq be a subshift.

We de�ne the topologi
al fa
tor of the subshift X by π as the subshift Xπ � Σd
pBq su
h

that

Xπ �

 

y P Σd
pBq : Dx P X su
h that πpxq � y

(

.
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Example 3. Consider two alphabets A � t0, 1, 2u and B � t0, 2u and de�ne X �

Σ1
pA,Fq where F � t00, 11, 02, 21u. Let π : A Ñ B be a one-to-one blo
k de�ned as

πp0q � πp1q � 0 and πp2q � 2.

We 
an de�ne a morphism π as

π : Σ1
pAq Ñ Σ1

pBq

pxiqiPZ ÞÑ pyiqiPZ � pπpxiqqiPZ.

Thus the topologi
al fa
tor of the subshift X by π is

Xπ �

 

x P Σ1
pBq : �nite blo
ks of 
onse
utive 0's are of even length

(

whi
h is 
alled the even shift. This subshift is not a subshift of �nite type be
ause we


annot represent the set of forbidden patterns by a �nite number of patterns, sin
e one

needs to ex
lude all arbitrarily large blo
ks of 
onse
utive 0's of odd lengths to des
ribe

it.

Remark 3. A so�
 subshift is a fa
tor of a subshift of �nite type. The 
lass of so�


subshifts is bigger than the 
lass of subshifts of �nite type and there exists several repre-

sentations for a so�
 subshift, see [28℄.

The following de�nitions of a proje
tive suba
tion and extension 
an be generalized

for any subgroup as in [1, 19℄, but for the purpose of our 
onstru
tion the proje
tive

Z-suba
tion and extension by dupli
ation are enough.

De�nition 25. Let X � Σ2
pAq be a bidimensional subshift de�ned over the alphabet A.

We de�ne the proje
tive Z-suba
tion as the one-dimensional subshift Y given by

Y � ty P Σ1
pAq : Dx P X, s.t. x|Z�t0u � yu,

that is, we are only 
onsidering the e1 � p1, 0q-a
tion on the subshift X .

De�nition 26. Let X � Σ1
pAq be a subshift. We de�ne the extension by dupli
ation of

the subshift X to be the bidimensional subshift X � Σ2
pAq given as

X :�
 

x P Σ2
pAq : x|Z�t0u P X and x|

pi,jq � x
pi,j�1q, �pi, jq P Z

2
(

.

Theorem 6 (Aubrun and Sablik [2℄, Durand Romas
henko and Shen [14℄). For every

e�e
tively 
losed Z-subshift Z � Σ1
pAq there exists an alphabet B, a Z

2
-subshift of �nite

type X � Σ2
pBq and a morphism π : Σ2

pBq Ñ Σ2
pAq so that

1. The topologi
al entropy of X is zero.
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2. The a
tion of e2 � p0, 1q on Xπ � Σ2
pAq is trivial, that is, the restri
tion of the

a
tion of the subgroup t0u � Z is the identity on Xπ.

3. The proje
tive Z-suba
tion of Xπ is equal to Z, that is, the one-dimensional e�e
-

tively 
losed subshift Z 
an be seen as a Z-suba
tion of the topologi
al proje
tion

of a bidimensional SFT X .

The proof of this theorem is 
onstru
tive and it uses several di�erent elements to


onstru
t the �nal subshift. Among the te
hniques that they use are the representation

of Turing ma
hines via a spa
e-time diagram as in the Example 2 as proposed by Berger [6℄

and the substitution theorem by Mozes [30℄. The �nal subshift is built as four di�erent

layers with four di�erent alphabets that are 
ombined in order to form a really large

alphabet in whi
h it is possible to des
ribe a �nite set of forbidden patterns that de�nes

a subshift that simulates our �rst subshift.

As said before, the subshift of �nite type X in the Aubrun-Sablik 
onstru
tion [2℄ is


omposed of four layers, that is, it is a subshift of a produ
t of four subshifts of �nite

type given by a �nite number of forbidden patterns whi
h impose 
onditions on how the

layers superpose. See Figure 14 of [2℄. The layers are:

1. Layer 1: The set of all 
on�gurations x P AZ
2

obtained by the extension by dupli-


ation as in De�nition 26.

2. Layer 2: T

Grid

A subshift of �nite type extension of a so�
 subshift whi
h is gener-

ated by the substitution given in Figure 3 of [2℄. The so�
 subshift indu
es in�nite

verti
al �strips� of 
omputation whi
h are of width 2n for every n P N and o

ur

with bounded gaps (horizontally) in any 
on�guration.

3. Layer 3: M
Forbid

A subshift of �nite type given by Wang tiles whi
h repli
ates the

spa
e-time diagram of a Turing ma
hine whi
h enumerates all forbidden patterns of

X and 
ommuni
ates this information to the fourth layer.

4. Layer 4: M
Sear
h

A subshift of �nite type given by Wang tiles whi
h simulates

a Turing ma
hine whi
h serves the purpose of 
he
king whether the patterns enu-

merated by the third layer appear in the �rst layer. �responsibility zone� whi
h is

determined by the hierar
hi
al stru
ture of Layer 2.

The rules between the four layers des
ribed in [2℄ for
e the Turing ma
hine spa
e-time

diagrams to o

ur in every strip, and to restart their 
omputation after an exponential

number of steps. This ensures that every 
on�guration restarts the 
omputation every-

where, and that every forbidden pattern is written on the tape by the Turing ma
hine

in every large enough strip. The fourth layer sear
hes for o

urren
es of the forbidden

patterns in the �rst layer and thus dis
ards any 
on�guration in the �rst layer where one

of these patterns o

urs.
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Based on their 
onstru
tion and the obje
ts that we will de�ne later, it will be possible

to have some important estimates.



Chapter 3

Main Constru
tion

In this 
hapter we present the main 
onstru
tion that allows us to de�ne our lo
ally


onstant potential. First we de�ne a one-dimensional e�e
tively 
losed subshift generated

by an iteration pro
ess that de�nes the language of this subshift. We prove that this

subshift is in fa
t e�e
tively 
losed. We prove also some important properties. Next we

apply the simulation theorem of Aubrun-Sablik [2℄ in order to get a bidimensional SFT

that simulates our initial subshift. We also prove some properties for this subshift and

de�ne a new 
oloring of this subshift.

3.1 One-dimensional e�e
tively 
losed subshift

Now we present a general lemma that we use in our 
onstru
tion. It gives us 
ertain

properties based on how we de�ne the iteration pro
ess that de�nes our one-dimensional

subshift. See De�nition 8 for 
on
atenated subshifts.

Lemma 5. Let A be a �nite alphabet. Let pℓkqk¥0 be a stri
tly in
reasing sequen
e of

integers, and pLkqk¥0 be a sequen
e of di
tionaries of size pℓkqk¥0 over the alphabet A, say

Lk � AJ1,ℓkK
. We assume that, for every k ¥ 0, every word in Lk�1 is the 
on
atenation

of words of Lk. Then

1. � k ¥ 0, xLk�1y � xLky,

2. X :�
�

k¥0
xLky � Σ1

pA,Fq where F �

�

k¥0
Fk and Fk is the set of words of length

ℓk that are not subwords of the 
on
atenation of two words of Lk.

If we assume in addition that every 
on
atenation of two words in Lk is a subword of the


on
atenation of two words of Lk�1, then

3. for every n ¥ 0, the 
on
atenation of two words of Ln is a word of the language of

X .

43
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Proof. For this proof we use the following notation: for ea
h k ¥ 0 and i P Z we denote

Ekpiq � Z as the set

Ekpiq :� Ji, i� ℓk � 1K � Z.

Consider x P xLk�1y. By de�nition there exists j P r1, ℓk�1s su
h that

x|Ek�1pj�1�iℓk�1q
P Lk�1, �i P Z

that is, x 
an be seen as an in�nite 
on
atenation of words in Lk�1. By our assumptions

every word in Lk�1 is a 
on
atenation of words in Lk. Then x P xLky and that means

xLk�1y � xLky.

Now we prove that X � Σ1
pA,Fq where F is the set of words of length ℓk, k ¥ 0,

that are not subwords of the 
on
atenation of two words of Lk. For a �xed k ¥ 0, denote

Fk the set of words of length ℓk that are not subwords of the 
on
atenation of two words

of Lk. In this 
ase the set Fk is �nite and if Σ1
pA,Fkq is the SFT generated by the set of

forbidden words Fk it is 
lear that xLky � Σ1
pA,Fkq. By our assumptions xLk�1y � xLky

for every k ¥ 0, thus
£

i¥k

xLiy � Σd
pA,Fkq.

Therefore

X �

£

k¥0

xLky �

£

k¥0

Σ1
pA,Fkq � Σ1

pA,Fq.

For every k ¥ 0, de�ne the interval

Ik :�
r
1�

Yℓk

2

℄

, ℓk �
Yℓk

2

℄z
.

If we 
onsider x P Σ1
pA,Fq, then x|Ik is a subword of length ℓk of the 
on
atenation

of two words of Lk. For every k P N we 
an assure that there exists a 
on�guration

yk P xLky su
h that x|Ik � yk|Ik . We may take a subsequen
e of indi
es k su
h that

pykqk¥0 
onverges to some y P AZ
. Sin
e yk P xLjy for every k ¥ j, by taking the limit in

k we obtain y P xLjy, for every j ¥ 0, thus y P X . For every k ¥ j, as Ij � Ik, we have

x|Ij � yk|Ij . Sin
e pykqk¥0 
onverges to y, x|Ij � y|Ij for every j ¥ 0, thus x � y P X .

Therefore X � Σ1
pA,Fq.

Consider two words uk, vk P Lk. There exists a 
on�guration xk P xLky su
h that

xk|J�ℓk,ℓk�1K � ukvk.

If the 
on
atenation ukvk 
an be found in a word of uk�1 P Lk�1, then it is enough to assure

there exists a 
on�guration x P X that x|J�ℓk,ℓk�1K � ukvk and therefore ukvk P LpXq.

If ukvk is not a subword of a word in Lk�1, then by our assumptions the 
on
atenation

ukvk 
an be seen as a subword of a 
on
atenation of two words in Lk�1, that is, there
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exists uk�1, vk�1 P Lk�1 su
h that ukvk � uk�1vk�1. We 
an assure again there exists

xk�1
P xLk�1y su
h that

xk�1
|J�ℓk�1,ℓk�1�1K � uk�1vk�1,

and therefore the word ukvk appears in the 
on�guration xk�1
. Hen
e we assure that for

every j ¥ k we 
an �nd a 
on�guration xj P xLjy and two words uj, vj P Lj su
h that

xj |J�ℓj,ℓj�1K � ujvj and ukvk � ujvj. We may take a subsequen
e of indexes j su
h that

xj 
onverges to some x P X . As we have lim
kÑ�8

ℓk � �8 we obtain a 
on�guration x P X

su
h that ukvk � x P X and therefore ukvk P LpXq.

First we des
ribe a one-dimensional 
onstru
tion that satis�es all of our previous

hypotheses and from there we des
ribe our bidimensional elements. We use the notation

with a marker � for the one-dimensional elements. Consider an alphabet Ã � t0, 1, 2u, a

sequen
e of integers ℓk, sets of blo
ks Ãk, B̃k � Ãℓk
(or ÃJ1,ℓkK

) and two auxiliary sequen
es

of integers pNkqk¥0 and pN
1

kqk¥0. We impose assumptions on these sequen
es in order to

properly build our example. We assume that N 1

k ¥ 4 and Nk is a multiple of N 1

k for ea
h

k ¥ 0.

Notation 1. For ea
h k ¥ 0 the sets Ãk and B̃k will be

Ãk � tak, 1
ℓk
u B̃k � tbk, 2

ℓk
u,

where ak, bk P ÃJ1,ℓkK
. We de�ne these blo
ks by an iteration pro
ess des
ribed below.

Start with ℓ0 � 2, a0 � 01 and b0 � 02, then we have

Ã0 � t01, 11u and B̃0 � t02, 22u.

If k ¥ 1 is odd we de�ne

ak � ak�1ak�1 � � � ak�1
looooooooomooooooooon

Nk-times

and

bk � bk�12
pNk�2qℓk�1bk�1;

(3.1)

and if k ¥ 2 is even we de�ne

ak � ak�11
pNk�2qℓk�1ak�1 and

bk � bk�1bk�1 � � � bk�1
loooooooomoooooooon

Nk-times

.
(3.2)

In our iteration pro
ess, for every k ¥ 0, the sets Ãk and B̃k are formed by two blo
ks
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of length ℓk and we always have 1ℓk P Ãk and 2ℓk P B̃k. The length of the blo
ks at ea
h

stage is given by

ℓk � Nkℓk�1.

Notation 2. Now we de�ne the sub-di
tionaries Ã1

k and B̃
1

k whi
h are made of subwords

of length ℓ1k � N 1

k � ℓk�1 that are either initial or terminal words of a word in Ãk and B̃k.

Formally,

1. if k is odd, Ã1

k � ta1k, 1
ℓ1
k
u, B̃1

k � tb1k, b
2

k, 2
ℓ1
k
u,

a1k :� ak�1ak�1 � � � ak�1, N 1

k times,

b1k :� bk�12
pN 1

k
�1qℓk�1

and

b2k :� 2pN
1

k
�1qℓk�1bk�1;

(3.3)

2. if k is even, Ã1

k � ta1k, a
2

k, 1
ℓ1
k
u, B̃1

k � tb1k, 2
ℓ1
k
u,

a1k :� ak�11
pN 1

k
�1qℓk�1 ,

a2k � 1pN
1

k
�1qℓk�1ak�1 and

bk :� bk�1bk�1 � � � bk�1, N 1

k times.

(3.4)

Noti
e that, as Nk is a multiple of N 1

k, we have xÃky � xÃ1

ky and xB̃ky � xB̃1

ky.

Remark 4. For ea
h k P N, we denote the blo
k of ℓk 
onse
utive 1's by 1k :� 1ℓk and,

in a similar fashion 2k :� 2ℓk .

The frequen
y of the symbol 0 in any word w̃ P ÃJ1,ℓkK
of length ℓk is denoted by

fkpw̃q :�
1

ℓk

ard

�

ti P J1, ℓkK : w̃piq � 0u
�

. (3.5)

We denote in the same fashion the frequen
y of the symbol 0 in words w̃ P ÃJ1,ℓ1
k
K
as

f 1kpw̃q :�
1

ℓ1k

ard

�

ti P J1, ℓ1kK : w̃piq � 0u
�

.

Let fA
k , f

B
k (resp. f 1k

A
, f 1k

B
) be the largest frequen
y of the symbol 0 in the words of

Ãk, B̃k (resp. Ã1

k, B̃
1

k).

Lemma 6. Let Ãk and B̃k be the two languages de�ned in Notation 1, Ã1

k and B̃1

k those

de�ned in Notation 2. Then
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1. if k ¥ 1 is odd, then

$

'

'

'

&

'

'

'

%

f 1k
A
� fA

k � fA
k�1, fB

k �

2

Nk

fB
k�1, f 1k

B
�

1

N 1

k

fB
k�1,

fA
k �

pk�1q{2
¹

i�1

�

2

N2i�2




fA
0
, fB

k �

pk�1q{2
¹

i�1

�

2

N2i�1




fB
0
,

with N0 � 2;

2. if k ¥ is even, then

$

'

'

'

&

'

'

'

%

fA
k �

2

Nk

fA
k�1

, f 1k
A
�

1

N 1

k

fA
k�1

, f 1k
B
� fB

k � fB
k�1

,

fA
k �

k{2
¹

i�1

�

2

N2i




fA
0 , fB

k �

k{2
¹

i�1

�

2

N2i�1




fB
0 .

Consider L̃k :� Ãk

�

B̃k (resp. L̃1k :� Ã1

k

�

B̃1

k). We will say that two words a, b P Ãℓ

overlap if there exists a non-trivial shift 0   s   ℓ su
h that the terminal segment of

length s of the word a 
oin
ides with the initial segment of the word b of the same length,

or vi
e-versa by permuting a and b. Note that we ex
lude the overlapping where a and b


oin
ide.

The next three lemmas are te
hni
al lemmas that 
on
ern some important properties

about the possible types of overlapping in the obje
ts that we des
ribed before. The �rst

one ensures that there is no possible overlapping between two words one of Ãk and the

other one from B̃k (resp. Ã1

k and B̃1

k). The next two lemmas 
hara
terize the possible

overlaps between any two words at ea
h stage k of the iteration pro
ess.

Lemma 7. In our 
onstru
tion des
ribed above, a word from Ã1

k and a word from B̃1

k

never overlap, neither 
an a word from Ãk and a word from B̃k overlap.

Proof. Every word in Ã1

k ends with the symbol 1 whi
h does not appear in any word in

B̃1

k. Conversely, every word in B̃1

k ends with the symbol 2 that does not appear in any

word in Ã1

k. The same argument is valid for the words in Ãk and B̃k.

The next lemma is formulated for the 
ase k even, but a similar lemma holds for the


ase k odd. First we need to �x some notations. Consider k ¥ 1 an even integer and the

even rules des
ribed in (3.2) and (3.4). We denote the initial segment of length ℓk�1 of

ak and a1k by aIk�1
; the terminal segment of length ℓk�1 of ak and a2k by aTk�1

; and the

remaining segment 1pN
1

k
�1qℓk�1

that we 
all marker. We 
an represent

ak � ak�1
loomoon

aI
k�1

1pNk�2qℓk�1 ak�1
loomoon

aT
k�1

,
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a1k � ak�1
loomoon

aI
k�1

1pN
1

k
�1qℓk�1

loooomoooon

marker

and a2k � 1pN
1

k
�1qℓk�1

loooomoooon

marker

ak�1
loomoon

aT
k�1

.

We de�ne similarly the initial and terminal segments of b1k and denoted as bIk�1
and

bTk�1
, respe
tively, as shown below

b1k � bk�1
loomoon

bI
k�1

b
pN 1

k
�2q

k�1
bk�1
loomoon

bT
k�1

.

Note that aIk�1
� aTk�1

� ak�1 and b
I
k�1

� bTk�1
� bk�1.

Lemma 8. Let k ¥ 1 be even, ak P Ãk and bk P B̃k as des
ribed in (3.2). Then

1. two words of the same type ak 
an only overlap on their initial and terminal segment,

that is, aIk�1
of one of the two words overlaps aTk�1

of the other word ak;

2. on the other hand, two words of the same type bk 
an overlap exa
tly on a multiple

of bk�1 or they have an overlap of length ℓk�2 between b
I
k�1

and bTk�1
.

Proof. 1. We 
onsider a non-trivial shift 0   s   ℓk and a word w P ÃJ1,s�ℓkK
made of

two overlapping ak:

ak � w|J1,ℓkJ, ãk :� w|s�J1,ℓkK, � i P J1, ℓkK, ãkps� iq � akpiq.

We assume �rst that 0   s   ℓk�1. Then on the one hand aTk�1
of ak starts with

the symbol 0 at the index i � pNk � 1qℓk�1 � 1. On the other hand the symbol 1

appears in ãk at the indi
es in the range J̃i, j̃K :� Js � ℓk�1 � 1, s � pNk � 1qℓk�1K.
Sin
e i P J̃i, j̃K we obtain a 
ontradi
tion.

We assume next that ℓk�1 ¤ s   pNk � 1qℓk�1. Then on the one hand the symbol

1 appears in ak at the indi
es in the range J̃i, j̃K :� Jℓk�1 � 1, pNk � 1qℓk�1K. On

the other hand ãk starts with the symbol 0 at the index i � s � 1. We obtain a


ontradi
tion.

We 
on
lude that s should satisfy s ¥ pNk � 1qℓk�1: two words of the form ak 
an

only overlap on their initial and terminal segments.

2. We noti
e that k � 1 is odd and bk�1 has the same stru
ture as ak in the �rst item.

Two words of the form bk�1 only overlap on their initial and terminal segments.

Then bk�1 
annot be a subword of the 
on
atenation c � bk�1bk�1 of two words bk�1

unless bk�1 
oin
ides with the �rst or the last bk�1 in c. If bk and b̃k overlap, either

b̃k has been shifted by a multiple of ℓk�1, s P tℓk�1, 2ℓk�1, . . . , pN
1

k � 1qℓk�1u. Note

that k � 1 is an odd number, then bk�1 has the same behavior as ak des
ribed in
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the previous item. Therefore, it is only possible to have an overlap of a word bk�2

of length ℓk�2 between b
T
k�1

and b̃Ik�1
.

Lemma 9. Let k ¥ 1 be an even integer and a1k and a2k as des
ribed in (3.4). Then the

following holds:

1. two words of the same form a1k never overlap; the same is true for two words of the

same form a2k;

2. two words a1k and a2k overlap if and only if they overlap either partially on their

marker or partially on their initial and terminal segments, respe
tively.

Proof. 1. We 
onsider a non trivial shift 0   s   ℓ1k and two overlapping words of the

form a1k shifted by s. Let be w P ÃJ1,s�ℓ1
k
K
su
h that

a1k � w|J1,ℓ1
k
K, ã1k :� w|s�J1,ℓ1

k
K, � i P J1, ℓ1kK, ã1kps� iq � a1kpiq.

We assume �rst that ℓk�1 ¤ s   ℓ1k. On the one hand, ã1k starts with the symbol

0, wps� 1q � 0; on the other hand, w|Jℓk�1�1,ℓ1
k
K 
ontains only the symbol 1. Sin
e

s� 1 P Jℓk�1 � 1, ℓ1kK we obtain a 
ontradi
tion.

We assume next that 0   s   ℓk�1. We observe that k � 1 is odd and the two

initial segments aIk�1
of a1k and ã1k are of the same form as bk in the se
ond item.

They overlap on a multiple of words of the form ak�2 or at their initial and terminal

segments. Ne
essarily s ¥ lk�2 ¥ 2. On the one hand, the initial segment of ã1k ends

with the symbols 01, wps� ℓk�1 � 1q � 0, on the other hand, w|Jℓk�1�1,ℓ1
k
K 
ontains

only the symbol 1. Sin
e s� ℓk�1 � 1 P Jℓk�1 � 1, ℓ1kK we obtain a 
ontradi
tion.

A similar proof works for a2k instead of a1k.

2. We divided our dis
ussion in two 
ases. We 
onsider �rst the 
ase,

a1k � w|J1,ℓ1
k
K, ã2k :� w|s�J1,ℓ1

k
K, � i P J1, ℓ1kK, ã2kps� iq � a2kpiq.

We assume that 0   s   ℓk�1. The terminal segment of ã2k is a word like ak�1 and

then it starts with the symbol 0 whi
h appears in w at the index s�pN 1

k � 1qℓk�1 P

Jℓk�1, ℓ
1

kK. On the other hand w|Jℓk�1,ℓ
1

k
K 
ontains only the symbol 1. We obtain a


ontradi
tion, then ne
essarily ℓk ¤ s and the two words a1k and a
2

k overlap (partially

or 
ompletely) on their markers.

We 
onsider next the 
ase,

a2k � w|J1,ℓ1
k
K, ã1k :� w|s�J1,ℓ1

k
K, � i P J1, ℓ1kK, ã1kps� iq � a1kpiq.
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Assume that 0   s   pN 1

k�1qℓk�1. The initial segment of ã1k starts with the symbol

0 whi
h is lo
ated at the index s � 1 P J1, pN 1

k � 1qℓk�1K in w. On the other hand

w|J1,pN 1

k
�1qℓk�1K is the marker of a2k and 
ontains only the symbol 1. We obtain a


ontradi
tion, then it is only possible to have s ¥ pN 1

k � 1qℓk�1, whi
h means that

the terminal segment of a2k overlaps with the initial segment of a1k. Both segments

are 
opies of ak�1 and as we 
onsider k ¥ 2 even, k � 1 is odd and ak�1 has the

same behavior des
ribed in Lemma 8 item 2. Therefore the possible overlap 
an

o

ur (partially or 
ompletely) on their initial and terminal segments by the rules

des
ribed as in Lemma 8 item 2.

As de�ned in (3.24) we 
onsider for ea
h k ¥ 0 the 
on
atenated subshifts generated

by the sets L̃k, Ãk and B̃k that are denoted as xL̃ky, xÃky and xB̃ky, respe
tively.

By the de�nition of these subshifts we have that for ea
h k ¥ 0

xÃky � xÃk�1y, xB̃ky � xB̃k�1y

and

xL̃k�1y � xL̃ky.

Lemma 10. Consider the iteration pro
ess des
ribed in Notation 1 and Notation 2. If

we denote L̃k � Ãk

�

B̃k and L̃1k � Ã1

k

�

B̃1

k for ea
h k P R, then

xL̃ky � xL̃1ky.

Proof. If we 
onsider the iteration pro
ess des
ribed in Notation 1 and Notation 2, then

N 1

k divides Nk. More than that, every word of Ãk, B̃k is obtained as 
on
atenation of

words of Ã1

k, B̃
1

k respe
tively. Therefore, the 
on
atenated subshift xL̃ky is a subset of

xL̃1ky, sin
e every pattern in L̃1k is a subpattern in L̃k.

We 
onsider

X̃ :�
£

kPN

xL̃ky. (3.6)

The 
onstru
tion presented here satis�es all the hypotheses of Lemma 5, therefore X̃ �

Σ1
pÃ,Fq is the subshift generated by the set of forbidden words F �

�

k¥0
F̃pℓkq, where

F̃pℓkq is the set of words of length ℓk that are not subwords of the 
on
atenation of two

words of L̃k.

From now on we give a spe
ialized algorithm whi
h produ
es our auxiliary sequen
es

(Nk, ℓk, N
1

k and ℓ
1

k) and also the 
hoi
e of βk for ea
h k. We introdu
e two integer numbers

ρAk and ρBk that 
ount the number of symbols 0 in the words ak and bk

ρAk :� ℓkf
A
k , ρBk :� ℓkf

B
k .
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De�nition 27 (The re
ursive sequen
es). We de�ne the partial re
ursive fun
tion S :

N
4
Ñ N

4

pℓk, βk, ρ
A
k , ρ

B
k q � Spℓk�1, βk�1, ρ

A
k�1

, ρBk�1
q.

satisfying ℓ0 � 2, β0 � 0, ρA
0
� ρB

0
� 1 and de�ned su
h that the following holds:

In the 
ase k is even:

1. N 1

k :�
QkρAk�1

ρBk�1

U

, ℓ1k � N 1

kℓk�1,

2. βk :�
Qℓ2k�1

2kℓ
1

k

pρBk�1
q

2

U

,

3. Nk :� N 1

k

Q kβk

N 1

kρ
B
k�1

U

, ℓk � Nkℓk�1,

4. ρAk � 2ρAk�1
, ρBk � Nkρ

B
k�1

,

In the 
ase k is odd:

5. pℓk, βk, ρ
A
k , ρ

B
k q are 
omputed as before with A and B permuted.

The following proposition assures there exists a Turing ma
hine that enumerates all

the forbidden patterns of X̃ , whi
h means that X̃ is an e�e
tively 
losed subshift. More

than that, this Turing ma
hine 
an be 
onstru
ted su
h that it enumerates the forbid-

den words in in
reasing length, it gives an exponential upper bound for the number of

steps to enumerate every forbidden word up to a given length and it also gives a trivial

re
onstru
tion fun
tion (Rpnq � n) that will be de�ned later (De�nition 30).

Proposition 4. Let X̃ be the subshift de�ned as in (3.6). Let F̃ :�
�

nPN F̃pnq where

F̃pnq is the set of words of length n that are not sub-words of the 
on
atenation of two

words of L̃k for some k ¥ 0 su
h that ℓk ¥ n.

Then the following holds:

1. X̃ � Σ1
pÃ, F̃q.

2. For every n ¥ 0, there exist unique integers k ¥ 1 and p ¥ 2 satisfying

ℓk�1   n ¤ ℓk and pp� 1qℓk�1   n ¤ pℓk�1.

We denote F̃ 1

pnq as the set of words of length n that are not sub-words of any word

of the form

ÝÑw1
�Ýw2 where

ÝÑw1 is a terminal segment of w1 of length pp� 1qℓk�1,
�Ýw2 is

an initial segment of w2 of length pp � 1qℓk�1, and w1 or w2 are either one of the

words ak, bk, 1k, 2k. Then

F̃ 1

pnq � F̃pnq.
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3. There exists a Turing ma
hine M that enumerates all patterns of F̃ in in
reasing

order (words of F̃pnq are enumerated before those in F̃pn � 1q). If we denote

by τ : N Ñ N the fun
tion τpnq that 
ounts the number of steps that M takes

to enumerate all patterns of F̃ up to length n, then τpnq ¤ P pnq|Ã|n, for some

polynomial P pnq.

The proof for the previous proposition is in Appendix A.

The next lemma gives that the sets LpxÃky, ℓkq and LpxB̃ky, ℓkq 
an be seen as the set

of all possible words of length ℓk that 
an be seen as a subword of a 
on
atenation of two

words of Ãk and B̃k, respe
tively.

Lemma 11. Given our 
onstru
tion of Ãk and B̃k we have that for ea
h k ¥ 0

LpxÃky, ℓkq �
!

w P ÃJ1,ℓkK : Da1, a2 P Ãk su
h that w � a1a2

)

(3.7)

and

LpxB̃ky, ℓkq �
!

w P ÃJ1,ℓkK : Db1, b2 P B̃k su
h that w � b1b2

)

. (3.8)

3.2 Bidimensional SFT

We 
an apply the 
onstru
tion of Aubrun-Sablik to our one-dimensional e�e
tively 
losed

subshift X̃ � Σ1
pÃ, F̃q and obtain a bidimensional SFT X̂ � Σ2

pÂq de�ned over an

alphabet Â � Ã�C. We are using the symbol ^ over the obje
ts that are de�ned for the

SFT generated by the Theorem 6. Let F̂ � AJ1,DK2
be a �nite set of forbidden patterns

su
h that

X̂ :� Σ2
pÂ, F̂q (3.9)

as the 
orresponding subshift generated by F̂ .

De�nition 28. Let V
�

be the set of forbidden patterns in Σ2
pÃq that are not verti
ally

aligned, that is,

V
�

:� tp P Ãt1u�J1,2K : pp1, 1q �� pp1, 2qu.

Let π : ÂÑ Ã de�ned as

#

π : Â � Ã� C Ñ Ã

pa, cq ÞÑ πpa, cq � a;
(3.10)

and let π : Σ2
pÂ, F̂q Ñ Σ2

pÃq be the proje
tion de�ned as

#

π : X̂ � Σ2
pÃ, F̂q Ñ Σ2

pÃq

x ÞÑ πpxq �
�

πpx
pi,jqq

�

pi,jqPZ2
.

(3.11)
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We denote

X̂π :�
!

πpxq : x P X̂
)

.

Note that X̃π � Σ2
pÃ,V

�

q sin
e F̂ 
ontains all the patterns that are not verti
ally aligned.

Remark 5. Here we always use the expression "verti
ally aligned" to express the verti
al

alignment over the the �rst 
oordinate of Â, that is, over the one-dimensional alphabet

Ã.

By Theorem 6, the proje
tive Z-suba
tion of X̂π is equal to X̃ , whi
h means that

X̂π � tx P Σ2
pÃ,V

�

q : x|Z�t0u P X̃u.

De�nition 29. We de�ne Ã1

k� � ÃJ1,ℓ1
k
K2
as the bidimensional di
tionary of linear size ℓ1k

of verti
ally aligned patterns that proje
t onto Ã1

k, formally de�ned as

Ã1

k� :�
 

p P ÃJ1,ℓ1
k
K2 : Dp̃ P Ã1

k, s.t. �, pi, jq P J1, ℓ1kK2, ppi, jq � p̃piq
(

.

B̃1

k� � ÃJ1,ℓ1
k
K2
is de�ned similarly. We use the notation π

�

: Ã1

k� Ñ Ã1

k (resp. π
�

: B̃1

k� Ñ

B̃1

k) to represent the proje
tion of a square pattern p P Ã1

k� (resp. B̃
1

k�) to its word p̃ P Ã
1

k

(resp. B̃1

k) that de�nes it.

We 
onsider a large pattern p P ÃJ1,nK2
and translates u of small squares of size 2ℓ1k

inside this pattern that are labeled by verti
ally aligned words of Ã1

k or B̃1

k. Let k ¥ 2,

n ¡ 2ℓ1k, and p P ÃJ1,nK2
. We denote

Ipp, ℓ1kq :�
!

u P J0, n� 2ℓ1kK2 : σu
ppq|J1,2ℓ1

k
K2 P LpX̂π, 2ℓ

1

kq

)

, (3.12)

IApp, ℓ1kq :�
!

u P J0, n� ℓ1kK2 : σu
ppq|J1,ℓ1

k
K2 P Ã

1

k�

)

(3.13)

and

JA
pp, ℓ1kq :�

¤

uPIApp,ℓ1
k
q

�

u� J1, ℓ1kK2
�

. (3.14)

We de�ne IBpp, ℓ1kq and J
B
pp, ℓ1kq similarly with repla
ing Ã1

k� for B̃
1

k� in (3.13) and (3.14),

respe
tively.

Lemma 12. Let k ¥ 2, n ¡ 2ℓ1k, p P ÃJ1,nK2
and the sets de�ned above. We will denote

τ 1k �: pℓ
1

k, ℓ
1

kq P N
2
. Then JA

pp, ℓ1kq X JB
pp, ℓ1kq � H and for ea
h u P Ipp, ℓ1kq

u� τ 1k P J
A
pp, ℓ1kq

§

JB
pp, ℓ1kq.

Proof. The fa
t that JA
pp, ℓ1kq and J

B
pp, ℓ1kq do not interse
t is a 
onsequen
e of Lemma

7. Let be u P Ipp, ℓ1kq and w
�

� σu
ppq|J1,2ℓ1

k
K2 . There exists w P LpxL̃ky, 2ℓ

1

kq su
h that
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w
�

pi, jq � wpiq for all pi, jq P J1, 2ℓ1kK2. By de�nition of xL̃ky, w � w1w2 is a subword

of the 
on
atenation of two words of L̃k. Note that, by Lemma 10 xL̃ky � xL̃1ky. Hen
e

LpxL̃ky, 2ℓ
1

kq � LpxL̃1ky, 2ℓ
1

kq

On the other hand, a word in L̃k is either a word of Ãk or a word of B̃k. As xÃky � xÃ1

ky

and xB̃ky � xB̃1

ky, w1 and w2 are obtained as a 
on
atenation of words of Ã1

k or B̃
1

k. There

exists 0 ¤ s   ℓ1k su
h that

σs
pwq|J1,ℓ1

k
K P Ã

1

k

§

B̃1

k.

Then

u� ps, sq P IApp, ℓ1kq
§

IBpp, ℓ1kq,

and therefore

u� τ 1k P J
A
pp, ℓ1kq

§

JB
pp, ℓ1kq.

PSfrag repla
ements

n

n

u
2ℓk

2ℓk

u� ps, sq

Figure 3.1: In the �gure we are taking a square pattern p P ÃJ0,nK2
shown as the biggest

square. We are 
onsidering that u P Ipp, ℓ1kq and therefore the patterns lo
ated in the

dashed square of size 2ℓ1k belong to LpX̂π, 2ℓ
1

kq. We know that the pattern lo
ated in the

most inner box of size ℓ1k belongs to Ã1

k

�

B̃1

k. The most inner dot represents u� τ 1k.

Lemma 13. Let k ¥ 2 be an even integer, n ¡ 2ℓ1k, and p P ÃJ1,nK2
. Let IApp, ℓ1kq,
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JA
pp, ℓ1kq, I

B
pp, ℓ1kq, J

B
pp, ℓ1kq be the sets de�ned in Lemma 12. De�ne

KA
pp, ℓ1kq � tv P JA

pp, ℓ1kq : ppvq � 0u, KB
pp, ℓ1kq � tv P JB

pp, ℓ1kq : ppvq � 0u. (3.15)

Then

1. 
ardpKB
pp, ℓ1kqq ¤

�

1�N�1

k�1

�

�1

ardpJB

pp, ℓ1kqqf
B
k�1,

2. 
ardpKA
pp, ℓ1kqq ¤

2

N 1

k


ardpJA
pp, ℓ1kqqf

A
k�1.

Proof. Let k ¥ 2 even, n ¡ 2ℓ1k and a �xed p P ÃJ1,nK2
. To simplify the notations, we

write IA � IApp, ℓ1kq, J
A
� JA

pp, ℓ1kq and so on. As the symbol 0 does not appear in the

markers 1N
1

k
ℓk�1

P Ã1

k and 2N
1

k
ℓk�1

P B̃1

k, we only need to 
onsider the subset of IA (resp.

IB) that 
orresponds to the translates u P J0, n� ℓ1kK2 and the subwords w
�

� σu
ppq|J1,ℓ1

k
K2

satisfying π
�

pw
�

q P ta1k, a
2

ku (resp. π�pw�q � b1k).

Item 1. We �rst enumerate IB � tu1, u2, . . . , uHu. Let be uh � puxh, u
y
hq P Z

2
. Let

JB :�

H
¤

h�1

Jh where Jh :� uh � J1, ℓ1kK2, π
�

pσuh
ppqq|J1,ℓ1

k
K2 � b1k,

that is, we are only 
onsidering the Jh elements of JB
pp, ℓ1kq su
h that the one-dimensional

proje
tion is the blo
k b1k. For ea
h box Jh we divide into N
1

k verti
al strips of length ℓk�1.

Formally we have

Jh �

N 1

k
¤

i�1

Jh,i where Jh,i :� uh � J1� pi� 1qℓk�1, iℓk�1K� J1, ℓ1kK.

We 
onstru
t a partition of JB
indu
tively by,

JB
�

H
§

h�1

J�h , J�
1
� J1, � h ¥ 2, J�h :� Jhz pJ1 Y � � � Y Jh�1q .

Let

K�

h :� tv P J�h : ppvq � 0u.

It will be enough to show that for every h P J1, HK


ardpK�

hq ¤

�

1�N�1

k�1

�

�1

ardpJ�h qf

B
k , (3.16)

By de�nition of uh, w̃h � π
�

pp|
puh�J1,ℓ1

k
K2qq is a translate of b1k P Ãℓ1

k
,

� i, j P J1, ℓkK2, w̃hpu
x
h � iq � b1kpiq.

Sin
e b1k is made of N 1

k subwords of the form bk�1, we denote by w̃h,i P Ãℓk�1
, the su

essive
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subwords, � 1 ¤ i ¤ N 1

k,

w̃h,i :� w̃h|
pux

h
�J1�pi�1qℓk�1,iℓk�1Kq and σ

ux
h
�pi�1qℓk�1

pw̃h,iq � bk�1.

We are 
onsidering a �xed h and we show that J�h is equal to a disjoint union of N 1

k

verti
al strips pJ�h,iq
N 1

k

i�1
of the following forms:

• the initial strip J�j,1,

uh � pJ1� ℓk�2, ℓk�1K � Jch,1, dh,1Kq � J�j,1 � puh � J1, ℓk�1Kq � Jah,1, bh,1K;

• the intermediate strips, J�h,i, 1   i   N 1

k,

J�h,i � uh � pJpi� 1qℓk�1 � 1, iℓk�1K � Jch,i, dh,iKq ; and

• the terminal strip J�h,N 1

k
,

uh � pJ1� pNk � 1qℓk�1, ℓk � ℓk�2K � Jch,Nk
, dh,Nk

Kq �
� J�h,N 1

k
� uh �

�

J1� pN 1

k � 1qℓk�1, ℓ
1

kK� Jah,N 1

k
, bh,N 1

k
K
�

.

Here for ea
h i P J1, N 1

kK, the values 1 ¤ ch,i, dh,i ¤ ℓk are integers that represent the

verti
al extent of ea
h strip and it will be possible that ch,i   dh,i to denote an empty

strip J�h,i.

Indeed, for a �xed 1 ¤ i ¤ N 1

k, we �rst 
onsider the previous Jg, 1 ¤ g   h, that

interse
ts the strip Jh,i so that the word w̃g overlaps w̃h on a multiple of bk�1 (see item 2

of Lemma 8). Then ch,i is the largest upper level of those Jg X Jh,i, more pre
isely,

ch,i � max
g

 

uyg � ℓ1k � 1 : uyg ¤ u
y
h,
�

uxh � pi� 1qℓk�1 � J1, ℓk�1K
�

�

�

uxg � J1, ℓ1kK
�(

. (3.17)

and similarly dh,i is the smallest lower level of those Jg X Jh,i, formally we have

dh,i � min
g

 

uyg � 1 : uyg ¥ u
y
h,
�

uxh � pi� 1qℓk�1 � J1, ℓk�1K
�

�

�

uxg � J1, ℓ1kK
�(

. (3.18)

We have just 
onstru
ted the intermediate strips J�h,i for 1   i   Nk.

We now 
onstru
t the initial strip (the terminal strip is 
onstru
ted similarly). We

interse
t the remaining Jg with Jh,1. The terminal segment bTk�1
of w̃g overlaps the initial

segment bIk�1
of w̃h. Thanks to item 1 of Lemma 8, as k � 1 is odd, bk�1 has the same

stru
ture as ak, the overlapping 
an only happen at their end segments of the form bk�2.

We have just proved that J�h,1 
ontains a small strip

�

uh� J1� ℓk�2, ℓk�1K
�

� Jch,1, dh,1K of
base bIk�1

zbk�2 and is in
luded in a larger strip

�

uh � J1, ℓk�1K
�

� Jch,1, dh,1K of base bk�1.
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PSfrag repla
ements
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uyg � ℓk

u
y
h � 1

u
y
h � ℓk

uyp � 1
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Figure 3.2: We are representing here the 
ase where there is an interse
tion but the strip

Jh,i is not 
ompletely 
overed by the previous squares Jg. The squares Jg and Jp are

already in the partition, then J�h,i is only the highlighted gray area.

For the initial and terminal strip the verti
al extension (Jch,1, dh,1K and Jch,N 1

k
, dh,N 1

k
K) of

the elements J�h,1 and J
�

h,N 1

k
are de�ned as in (3.17) and (3.18).

PSfrag repla
ements

Jh,1

Jh

Jg

Figure 3.3: The strip of length ℓk�1 � ℓk�2 is always 
ontained in J�h,1.

Let be K�

h,i :� tv P J�h,i : pv � 0u. We show that

� 1 ¤ i ¤ Nk, 
ardpK
�

h,iq ¤

�

1�N�1

k�1

�

�1

ardpJ�h,iqf

B
k . (3.19)
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For the intermediate strips J�h,i, where 1   i   N 1

k, we use the fa
t that J
�

h,i is a square

strip of base bk�1, and the fa
t that the frequen
y fB
k�1

of the symbol 0 in the word bk�1

is identi
al to the frequen
y fB
k of the symbol 0 in bk. We have,


ardpK�

h,iq � ℓk�1pdh,i � ch,i � 1qfB
k � 
ardpJ�h,iqf

B
k .

For the initial strip J�h,1, we use the fa
t that J�h,1 resembles largely a square strip of

base bk�1. We have,


ardp K�

h,iq ¤ ℓk�1pdh,1 � ch,1 � 1qfB
k

¤

ℓk�1

ℓk�1 � ℓk�2

pℓk�1 � ℓk�2qpdh,1 � ch,1 � 1qfB
k

¤

�

1�N�1

k�1

�

�1

ardpJ�h,iqf

B
k .

We have proved (3.19) and by summing over i P J1, N 1

kK we have proved (3.16).

Item 2. As before we will 
onsider IA (de�ned in (3.13), but only 
onsider the trans-

lates u P J0, n � ℓ1kK2 su
h that π
�

pσu
ppq|J1,ℓ1

k
K2q P ta1k, a

2

ku. If Jg X Jh � H, the two

proje
ted words w̃g � π
�

pσug
ppq|J1,ℓ1

k
K2q and w̃h � π

�

pσuh
ppq|J1,ℓ1

k
K2q may either 
oin
ide in

three ways: w̃g � w̃h, so u
x
g � uxh; overlap partially on their markers or overlap on their

initial and terminal segments as proved in Lemma 9.

We rede�ne again IA by 
lustering into a unique re
tangle adja
ent squares where the

overlap o

urs in the whole word, that is, we group the squares Jg and Jh that pairwise

satisfy Jg X Jh �� H, uxg � uxh, w̃g � w̃h, |u
y
g � u

y
h|   ℓ1k. Then, after reindexing IA, one

obtains,

JA
�

H
¤

h�1

Jh, Jh � uh � pJ1, ℓk�1K� J1, dhKq ,

where dh is the �nal height of ea
h re
tangle obtained after the 
lustering. Thus w�

h �

σuh
ppq|J1,ℓ1

k
K�J1,dhK is a verti
ally aligned pattern whose proje
tion w̃h � π

�

pw�

hq is a word

of the form a1k or a2k, and so that w̃g, w̃h never entirely 
oin
ide if Jg X Jh �� H.

We now show that an index v � pvx, vyq P JA
may belong to at most two re
tangles Jg

and Jh. Indeed, by 
onstru
tion, uxg �� uxh, if v
x
belongs to two overlapping words of the

form a1k, a
2

k, then vx belongs to either the interse
tion of the two markers 1pN
1

k
�1qℓk�1

or

the interse
tion of the terminal segment aTk�1
of a2k and the initial segment aIk�1

of a1k. In

both 
ases des
ribed in Lemma 9 we ex
lude the overlapping of a third word of the form

a1k, a
2

k, thus we ex
lude the fa
t that v may belong to a third re
tangle Jk with uxk �� uxg
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Figure 3.4: The biggest square has size n. On the left side the three squares of size ℓ1k
interse
t ea
h other and the bla
k dot belongs to ea
h of these squares. The highlighted

gray area belongs to both of the verti
ally aligned squares. After the 
lustering, on the

right side, the two previous dashed squares emerge into one box of size ℓ1k � dh and thus

the point represented in the �gure only belong to two boxes.

and uxk �� uxh. Then


ardpKA
q �

¸

vPJA

1
pppvq�0q

¤

Ḩ

h�1

¸

vPpuh�J1,ℓ1
k
K�J1,dhKq

1
pppvq�0q ¤

Ḩ

h�1

fA
k�1ℓk�1dh

¤

fA
k�1

ℓk�1

ℓ1k

Ḩ

h�1

¸

vPJA

1vPpuh�J1,ℓ1
k
K�J1,dhKq �

fA
k�1

N 1

k

¸

vPJA

Ḩ

h�1

1
pvPJhq

¤

2fA
k�1

N 1

k


ardpJA
q.

3.3 The new 
oloring

Based on our previous 
onstru
tion we de�ne a new 
oloring for the SFT generated by

the Aubrun-Sablik 
onstru
tion. This new subshift will be de�ned using the alphabet

A � B � C̃, where B � t01, 02, 1, 2u. Consider A � B � C̃, γ : A Ñ Â obtained by


ollapsing the two symbols 01, 02 to 0, that is,

� c P C,

#

γp01, cq � p0, cq, γp02, cq � p0, cq,

γp1, cq � p1, cq, γp2, cq � p2, cq,
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and

Γ : Σ2
pAq Ñ Σ2

pÂq (3.20)

be the 1-blo
k 
anoni
al proje
tion.

Remember that we are denoting Â � Ã � C and Ã � t0, 1, 2u. Let π : Â Ñ Ã be

the �rst proje
tion over the alphabet Ã as de�ned in (3.10). We set Π̂ : Σ2
pÂq Ñ Σ1

pÃq

de�ned as

#

Π̂ : Σ2
pÂq Ñ Σ1

pÃq

x ÞÑ y � pπpx
pi,0qqqiPZ.

(3.21)

We will always apply Π̂ for 
on�gurations that are verti
ally aligned for the symbols in Ã

and therefore there is no problem in sele
ting the zero row with indi
es pi, 0q where i P Z.

Let F be the pullba
k of F̂ by Γ and X be the subshift generated by F ,

F :� tp P AJ1,DK2 : Γppq P F̂u, X :� Γ�1
pX̂q � Σ2

pA,Fq.

Let be

π � π � γ and Π � Π̂ � Γ. (3.22)

Observation 1. We will also use the proje
tion Π as de�ned before for �nite patterns

without any distin
tion. Note that the extended set of forbidden patterns F for
es every

lo
ally admissible 
on�guration to be verti
ally aligned with respe
t to the initial alphabet

Ã provided we identify the two dupli
ated symbols 01 and 02.

We 
an de�ne the bidimensional subshifts generated by ea
h step of the iteration

pro
ess. Consider k large enough su
h that we have ℓk ¡ D where D ¥ 2 is de�ned by

the set of forbidden patterns F � AJ1,DK2
. We will denote

Lk :� LpX, ℓkq (3.23)

that is, the language of X of size ℓk as de�ned in (2.2). We say that a pattern w belongs to

Lk if and only if it is globally admissible with respe
t to X . Let xLky be the 
orresponding


on
atenated subshift as de�ned in De�nition 8, that is,

xLky :�
¤

uPJ1,ℓkK2

£

vPZ2

σ�pu�vℓkq
rLks. (3.24)

Note that every pattern in Lk�1 is obtained by 
on
atenating N2

k patterns of Lk and the

subshifts satisfy xLk�1y � xLky.

We de�ne two intermediate sub-languages of X̂ of size ℓk by,

� k ¥ 0,

#

Âk :� tw P LpX̂, ℓkq : Πpwq P LpxÃky, ℓkqu,

B̂k :� tw P LpX̂, ℓkq : Πpwq P LpxB̃ky, ℓkqu,
(3.25)
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and two sub-languages of X ,

� k ¥ 0,

#

Ak :� tw P AJ1,ℓkK2 : Γpwq P Âku,

Bk :� tw P AJ1,ℓkK2 : Γpwq P B̂ku

(3.26)

Every pattern of Ak�1 (respe
tively Bk�1) is made of N2

k patterns of Ak (respe
tively Bkq.

In parti
ular xAk�1y � xAky, xBk�1y � xBky.

We re
all two de�nitions. The re
onstru
tion fun
tion is asso
iated to a subshift

generated by a set of forbidden words whi
h was also des
ribed in [13, 33℄ on a di�erent


ontext. The relative 
omplexity fun
tion is asso
iated to a shift equivariant extension

of a dynami
al system. The role of the re
onstru
tion fun
tion is 
learly put forward in

Chazottes-Ho
hman [11℄. The fa
t that the subshift of �nite type obtained in Aubrun-

Sablik [2℄ or [11℄ has zero entropy is relatively easy to prove. We a
tually need a more

pre
ise estimate of the growth of the 
omplexity. An exponential growth proportional

to the boundary of a square (not proportional to the volume of a square) is enough for

instan
e. This issue seems to be missing in [11℄.

De�nition 30. Let Â be a �nite alphabet, D ¥ 1, F̂ � ÂJ1,DK2
, and X̂ � Σ2

pÂ, F̂q

be the subshift generated by the forbidden patterns F̂ , as de�ned before. We de�ne the

re
onstru
tion fun
tion of the subshift X̂ as the fun
tion RX̂ : N�

Ñ N
�

whi
h asso
iates

to every ℓ the smallest R su
h that every lo
ally F̂-admissible word in AJ1,2RK2
admits a

globally F̂ -admissible restri
tion in its 
entral blo
k of length ℓ.

We will denote by MpF̂ , Rq � ÂJ1,RK2
the set of all square patterns of size R in Â su
h

that no pattern of F̂ appears inside, that is,

MpF̂ , Rq :� tw P ÂJ1,RK2 : � p P F̂ , � u P J0, R�DK2, p � σu
pwqu (3.27)

We will use the re
onstru
tion fun
tion for the subshift X̂ and the sequen
e pR1

kqk¥0

de�ned as

R1

k :� RX̂
p2ℓ1kq � inftR ¡ 2ℓ1k : �w PMpF̂ , Rq, D x P X, w|Qp2ℓ1

k
,Rq � x|Qp2ℓ1

k
,Rqu, (3.28)

where Qp2ℓ1k, Rq is the 
entral blo
k of length 2ℓ1k, formally de�ned as

Qp2ℓ1k, Rq :� T p2ℓ1k, Rq � J1, 2ℓ1kK2, (3.29)

where T p2ℓ1k, Rq �
�Y

R
2
� ℓ1k

℄

,
Y

R
2
� ℓ1k

℄	

P Z
2
.

Remark 6. The re
onstru
tion fun
tion exists for every subshift as stated in Proposi-

tion 2, but establishing its growth or 
omputability is not always possible.
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De�nition 31. Let X̃ � Σ1
pÃq be the e�e
tively 
losed subshift des
ribed before and

X̂ � Σ2
pÂq be the SFT given by the simulation Theorem 6 that simulates X̃ . The relative


omplexity fun
tion of the simulation is the fun
tion CX̂ : N�

Ñ N
�

de�ned by

CX̂
pℓq :� sup

w̃PLpX̃,ℓq


ard

�

tŵ P LpX̂, ℓq : Π̂pŵq � w̃u
�

.

The two following propositions give us an idea of the growth of ea
h of the fun
-

tions (re
onstru
tion and relative 
omplexity). The proofs of these two results are in

Appendix A. They are very te
hni
al proofs that are based on the 
onstru
tion des
ribed

by Aubrun-Sablik [2℄ and the iteration pro
ess des
ribed previously.

Proposition 5. Let X̃ be the one-dimensional e�e
tively 
losed subshift de�ned before

and X̂ be the bidimensional SFT from the Aubrun-Sablik theorem. There is a 
onstant

K ¡ 0 and a polynomial P pnq su
h that

RX̂
pnq � P pnqKn.

Proposition 6. Let X̂ be the Z
2
-SFT in the Aubrun-Sablik 
onstru
tion. There is a


onstant K ¡ 0 and a polynomial P pnq su
h that

CX̂
pnq � P pnqKn.

As a result of these two propositions, we have the next lemma that gives us important

bounds for the re
onstru
tion fun
tion and the relative 
omplexity fun
tion that will be

ne
essary in our �nal proof.

Lemma 14 (A priori estimates). Let RX̂
and CX̂

be the re
onstru
tion and relative


omplexity fun
tion of the SFT given by Aubrun-Sablik, then

1. lim sup
nÑ�8

1

n
lnpCX̂

pnqq   �8,

2. lim sup
nÑ�8

1

n
lnpRX̂

pnqq   �8.

The demonstration of these properties is more te
hni
al and uses 
omputability theory

and Turing ma
hines. These proofs 
an be found in Appendix A but for now on we will

assume that they are true.

To simplify the notations, we write

R1

k :� RX̂
p2ℓ1kq, C 1

k :� CX̂
pℓ1kq,

Q1

k :� Qp2ℓ1k2, R
1

kq � Z
2, T 1

k :� T p2ℓ1k, R
1

kq P Z
2,

M̂ 1

k �MpF̂ , R1

kq � ÂJ1,R1

k
K2 , M 1

k � Γ�1
pM̂ 1

kq � AJ1,R1

k
K2 .

(3.30)



3.3. THE NEW COLORING 63

We denote by rM 1

ks the 
ylinder generated by the set M 1

k, whi
h 
onsists of the 
on-

�gurations that are F -lo
ally admissible in J1, R1

kK2. We 
ompute the topologi
al entropy

of patterns that are most of the time (in terms of translations of Z
2
) globally admissible

with respe
t to F̂ . We naturally point out the relative 
omplexity fun
tion. Noti
e that

the relative entropy is 
omputed using the volume of the square.

Lemma 15. Let n ¡ 2ℓ ¡ 2 be some integers, ε P p0, 1q be some real number, and

S � J0, n� 2ℓK2 be a subset satisfying 
ardpSq ¥ n2
p1� εq. Let Ê be the set

Ê :�
 

w P ÂJ1,nK2 : � u P S, σu
pwq|J1,2ℓ K2 P LpX̂, 2ℓq

(

.

Then

1

n2
lnp
ardpÊqq ¤

1

ℓ
lnp
ardpÃqq �

1

ℓ2
lnpCX̂

pℓqq � ε lnp
ardpÂqq.

Proof. Here we 
onsider n as a multiple of ℓ in order to simplify the notations sin
e we

are interested in the limit when nÑ �8 there is no problem. We de
ompose the square

J1, nK2 into a disjoint union of squares of size ℓ,

J1, nK2 �
¤

vPJ0,n
ℓ
�1K2

�

ℓv � J1, ℓK2
�

.

We de�ne the set of indi
es v that interse
t S, more pre
isely, we have

V :�

"

v P
r
0,
n

ℓ
� 2

z2

:
�

ℓv � J0, ℓ� 1K2
�

£

S � ∅

*

.

Then for every w P Ê, v P V , and u P
�

ℓv � J0, ℓ� 1K2
�

�

S, therefore

�

ℓv � J1� ℓ, 2ℓK2
�

�

�

u� J1, 2ℓK2
�

.

Sin
e we are taking u P S we have that

σu
pwq|J1,2ℓK2 P LpX̂, 2ℓq,

and then

σℓv�pℓ,ℓq
pwq|J1,ℓK2 P LpX̂, ℓq.

The restri
tion of w on every square

�

ℓv � J1 � ℓ, 2ℓK2
�

is globally admissible with

respe
t to F̂ . Note that these squares are pairwise disjoint and the 
ardinality of their

union is at least n2
p1� εq, sin
e


ard

�

¤

vPV

�

ℓv � J1� ℓ, 2ℓK2
�

�

� 
ard

�

¤

vPV

�

ℓv � J0, ℓ� 1K2
�

�

¥ 
ardpSq.
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Hen
e we have proved that Ê is a subset of the set of patterns w made of independent

and disjoint words pwvqvPV , with wv P LpX̂, ℓq, and of arbitrary symbols on J0, n� 2ℓK2zS
of size at most εn2

. Using the trivial bound 
ardpLpX̃, ℓqq ¤ 
ardpÃqℓ, we have


ardpÊq ¤
�


ardpÃqℓ � CX̂
pℓq

	

pn{ℓq2

� 
ardpÂqεn
2

and therefore

1

n2
lnp
ardpÊqq ¤

1

ℓ
lnp
ardpÃqq �

1

ℓ2
lnpCX̂

pℓqq � ε lnp
ardpÂqq.



Chapter 4

Analysis of the zero-temperature limit

Consider the full shift Σ2
pAq and the �nite set of forbidden patterns F for the subshift

X . We denote by F the 
ylinder de�ned by

F :� rF s. (4.1)

We 
onsider

#

ϕ : Σ2
pAq Ñ R

x ÞÑ ϕpxq � 1F pxq.
(4.2)

We 
onsider pβkqk¥0 as in De�nition 27. We denote by Gpβkϕq � M1pΣ
2
pAqq the set of

the equilibrium measures for the potential ϕ at inverse temperature βk.

Sin
e our potential ϕ has �nite range, it is regular and as in Theorem 5 the set of

equilibrium measures for βϕ is equal to the set of shift invariant Gibbs measures. Our

main goal is to prove that for su
h a sequen
e pβkqk¥0 when βk Ñ �8 any sequen
e of

equilibrium measures µβk
does not 
onverge when k Ñ �8.

An invariant measure that has support inside X gives zero mass to F . We quantify in

the following lemma this estimate when the support of the measure is 
lose to X , that is

inside xLky.

Lemma 16. Let be k ¥ 0 and ν be an ergodi
 probability measure on Σ2
pAq su
h that

supppνq � xLky. Then

νpF q ¤
2D

ℓk

Proof. We assume that supppνq � xLky where Lk � LpX, ℓkq the language of size ℓk of

the subshift X � Σ2
pA,Fq. By Birkho�'s ergodi
 theorem, for ν-almost every point x

νpF q � lim
nÑ�8


ardptu P Λn : σu
pxq P F uq


ardpΛnq
.

We 
hoose su
h a point x P xLky and s P J1, ℓkK2 su
h that σs
pxq and all its translates

yt � σs�tℓk
pxq, t P Z

2
, satisfy yt|J1,ℓkK2 P Lk. We take a sub-sequen
e Λ̃n of Λn with size a

65
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multiple of ℓk de�ned as

Λ̃n :� J�nℓk, nℓk � 1K.

Note that

νpF q � lim
nÑ�8


ardptu P Λ̃n � s : σu
pxq P F uq


ardpΛ̃nq

, y � σs
pxq.

� lim
nÑ�8


ardptu P Λ̃n : σu
pyq P F uq


ardpΛ̃nq

.

By de�nition of Lk as des
ribed in (3.23) we have that

x P xLky ñ �w P Z
2, σs�wℓk

pxq � σwℓk
pyq|J1,ℓkK2 P Lk

and

�v P J0, ℓk �DK2, �w P Z
2, σv�wℓk

pyq|J1,DK2 R F .

Thus for a �xed w P Z
2
we have that the number of possible v P J0, ℓk � 1K2 su
h that

σpv � wℓkqpyq P F is bounded by


ard

�

J0, ℓk � 1K2zJ0, ℓk �DK2
�

¤ 2Dℓk.

Therefore if we 
al
ulate this bound in the box Λ̃n we obtain that


ardptu P Λ̃n : σu
pyq P F uq ¤ p2nq22Dℓk.

Sin
e 
ardpΛ̃nq � p2nq2ℓ2k, we take the quotient on ea
h side and take the limit with

nÑ �8 we obtain νpF q ¤ 2D{ℓk.

We show in the following lemma that an equilibrium measure at low temperature have

most of its support 
lose to the largest 
ompa
t invariant set on whi
h the potential is

zero. We quantify more pre
isely the speed of 
onvergen
e of the measure on the set of

lo
ally admissible patterns as the size of the box goes to in�nity.

Lemma 17. For every k and every equilibrium measure µβk
,

µβk

�

Σ2
pAqzrM 1

ks

�

¤

R12

k

βk
lnp
ardpAqq �: εk (4.3)

where R1

k as de�ned in (3.28) and M 1

k as de�ned in (3.30).

Proof. If x R rM 1

ks, there exists u P J1, R1

k � DK2 su
h that σu
pxq P F and therefore
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ϕpσu
pxqq � 1. Thus we obtain

»

βkϕdµβk
�

»

βk1F pyqdµβk
pyq

¥ βkR
12

k � µβk
pΣzrM 1

ksq ,

and therefore

�βk

»

ϕdµβk
¤ �βkR

12

k � µβk
pΣzrM 1

ksq .

We have that P pβkϕq ¥ 0 and also by the variational prin
iple we obtain

0 ¤ P pβkϕq � hpµβk
q � βk

»

ϕdµβk
¤ htoppΣq � βkR

12

k � µβk
pΣzrM 1

ksq .

Sin
e htoppΣq ¤ lnp
ardpAqq we have

µβk
pΣzrM 1

ksq ¤
R12

k

βk
lnp
ardpAqq.

The following lemma shows that the topologi
al entropy of the extension depends on

the frequen
y of the symbol 0 and not on the topologi
al entropy of the base dynami
s. By

lifting patterns of the 1D subshift we 
an only expe
t an exponential growth proportional

to the size of the boundary of a box. As the Aubrun-Sablik extension has zero entropy, we

use, as in Chazottes-Ho
hman [11℄, the idea of dupli
ating the zero symbol in the verti
al

dire
tion of Z
2
in order to obtain an exponential growth proportional to the size of the

volume of a box.

Lemma 18. For every k ¥ 0,

lnp2qfB
k ¤ htop

�

xBky

�

A similar estimate holds for xAky.

Proof. Sin
e xBky is the 
on
atenated subshift generated by the di
tionary Bk as de�ned

in (8), we have

htoppxBkyq �
1

ℓ2k
lnp
ardpBkqq.

Let be w̃ P LpxB̃ky, ℓkq su
h that fkpw̃q � fB
k . w̃ 
an be seen as a subword of a


on
atenation bb1 of two words of B̃k. By Lemma 5, bb1 is a subword of some 
on�guration

x̃ P X̃ .

By our 
onstru
tion there exists x̂ P X̂ su
h that x̃ � Π̂px̂q and w̃ � Π̂pŵq where
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ŵ � x̂|J1,ℓkK2 P B̂k. Thus we obtain


ardpBkq ¥ 
ardptw P AJ1,ℓkK2 : Γpwq � ŵuq � 2ℓ
2

k
fkpw̃q,

and therefore

htoppxBkyq ¥ lnp2qfB
k .

The following 
orollary is our �rst main estimate of the pressure. We bound from below

the pressure by taking the pressure of the maximal entropy measure of the 
on
atenated

subshifts xAky or xBky. We use here the large s
ale ℓk be
ause βk has already been de�ned

using the small s
ale ℓ1k (see De�nition 27).

Corollary 1. For every k ¥ 1,

P pβkϕq ¥ maxpfA
k , f

B
k q lnp2q � 2D

βk

ℓk
.

Proof. Follows from Lemma 18 and Lemma 16.

Next, we will need to de�ne some notations for standard de�nitions. Consider Σ2
pAq

and µ be a σ-invariant probability measure. The 
anoni
al generating partition of Σ2
pAq

is the partition

G :� tras0 : a P Au. (4.4)

We will denote the base generating partition as the partition

G
�

:� tG�

0 , G
�

1 , G
�

2u where G�

ã :�
 

x P Σ2
pAq : πpxp0qq � ã

(

, ã P Ã.

For ea
h k P N, we will denote by Uk the partition

Uk :�
!

rM 1

ks, Σ
2
pAqzrM 1

ks

)

. (4.5)

For ea
h ε P p0, 1q we will de�ne

Hpεq :� �ε lnpεq � p1� εq lnp1� εq. (4.6)

We introdu
e a notion of relative entropy whi
h measures the dynami
al entropy of a

measure 
onditioned to be 
lose to X .

De�nition 32. The relative dynami
al entropy of size k of an invariant probability mea-

sure µ is the quantity

hrelpµq :� sup
P

"

lim
nÑ�8

1

n2
H
�

PJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�RkK2

k , µ
	

*
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where the supremum is taken over every �nite partition P.

The relative dynami
al entropy is well de�ned for ea
h k and we 
an use a version of the

Kolmogov-Sinai Theorem (Theorem 4) for hrel. This theorem gives us that the supremum

of the de�nition is attained by a generating partition of the σ-algebra of Σ2
pAq.

For ea
h n P N 
onsider the set Vn � Σ de�ned as

Vn :�
 

x P Σ2
pAq : πpx

pi,j1qq � πpx
pi,j2qq, �i, j1, j2 P J1, nK

(

,

that is, the set of 
on�gurations that are verti
ally aligned over the proje
tion π on the

alphabet Ã in the box J1, nK2. If we 
onsider µβk
some equilibrium measure at inverse

temperature β we have that

lim
nÑ�8

µβk

�

Σ2
pAqzVn

�

� 0.

Note that

hrelpµβk
q � sup

P

"

lim
nÑ�8

1

n2
H
�

PJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�RkK2

k , µβk

�

*

� lim
nÑ�8

1

n2
H
�

GJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�RkK2

k , µβk

�

� lim
nÑ�8

�

»

Vn

HpGJ1,nK2 , µxqdµβk
pxq �

»

Σ2
pAqzVn

HpGJ1,nK2 , µxqdµβk
pxq

�

,

where pµxqxPΣ is a family of 
onditional measures with respe
t to G
J1,nK2

�

�

U
J0,n�RkK2

k .

Hen
e if we 
onsider a 
on�guration x P Vn, the number of possible 
on�gurations in

GJ1,nK2
is bounded by 
ardpAqn. Therefore

HpGJ1,nK2, µxq ¤ n � lnp
ardpAqq,

and then hrelpµβk
q   �8.

The next lemma gives us an upper bound of the entropy of the equilibrium measure

µβk
for ea
h k P N.

Lemma 19. For every k and every equilibrium measure µβk

hpµβk
q ¤ hrelpµβk

q �

�

8

R1

k

� εk




lnp
ardpÃqq �Hpεkq.

Proof. We take the supremum over all �nite partitions of Σ2
pAq, so we 
an always 
onsider

that we are taking P © G
�

and P © Uk and therefore P © G̃
�

Uk. For 
onsequen
e we
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obtain

PJ1,nK2
© GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k .

By the de�nition of relative entropy

H
�

PJ1,nK2 , µβk

	

� H
�

PJ1,nK2
ª

GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k , µβk

	

� H
�

PJ1,nK2
| G̃J1,nK2

ª

U
J0,n�R1

k
K2

k , µβk

	

�

�H
�

GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k , µβk

	

� H
�

PJ1,nK2
| GJ1,nK2

�

ª

U
J0,n�R1

k
K2

k , µβk

	

�

�H
�

GJ1,nK2

�

| U
J0,n�R1

k
K2

k , µβk

	

�H
�

U
J0,n�R1

k
K2

k , µβk

	

.

The �rst term of the right hand side is 
omputed using the relative dynami
al entropy

(De�nition 32). The third term is bounded from above using Lemma 17 (provided εk  

e�1
),

H
�

U
J0,n�R1

k
K2

k , µβk

�

�

¸

PPU
J0,n�R1

k
K2

k

�µβk
pP q lnpµβk

pP qq

¤ n2HpUk, µβk
q

¤ n2Hpεkq.

We now 
ompute the term in the middle. We 
hoose ε1k ¡ εk and de�ne

Un :�
!

x P Σ2
pAq : 
ard

 

u P J0, n�R1

kK2 : σu
pxq P rM 1

ks

(

¥ n2
p1� ε1kq

)

.

By Birkho� ergodi
 theorem we have that

lim
nÑ�8

µβk
pUnq � 1.

Note that

H
�

GJ1,nK2

�

| U
J0,n�RkK2

k , µβk

	

�

»

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq

�

»

Un

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq�

�

»

Σ2
pAqzUn

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq

¤

»

Un

H
�

GJ1,nK2

�

, µx

	

dµβk
pxq�

�n2µβk

�

Σ2
pAqzUn

�

lnp
ardpAqq,
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and therefore

lim sup
nÑ�8

1

n2
H
�

GJ1,nK2

�

| U
J0,n�R1

k
K2

k , µβk

	

¤ lim sup
nÑ�8

»

Un

1

n2
H
�

GJ1,nK2

�

, µx

	

dµβk
pxq,

where pµxqxPΣ is the family of 
onditional measures with respe
t to U
J0,n�R1

k
K

k .

Now 
onsider a �xed x P Un. We 
ompute the 
ardinality of elements in G
J1,nK2

�

that

are 
ompatible with the 
onstraint


ardtu P J0, n�R1

kK2 : σu
pxq P rM 1

ksu ¥ n2
p1� ε1kq.

Note that

GJ1,nK2

�

�

ª

uPJ1,nK2

σ�u
pG

�

q

where G
�

� tG�

0
, G�

1
, G�

2
u and here we refer to the elements of this partition as patterns

de�ned in ÃJ1,nK2
be
ause there is a unique equivalen
e between these obje
ts.

We denote by Ipxq � I � J0, n�R1

kK2 su
h that

I :�
 

u P J0, n�R1

kK2 : σu
pxq P rM 1

ks

(

.

Sin
e x P Un, then


ardpIq

n2
¥ 1� ε1k.

Let J � I be a maximal subset satisfying for every u, v P J ,

}u� v}
8

¥

1

2
R1

k.

For every u P J , 
onsider

Iu :� tv P I : }u� v}
8

 

1

2
R1

ku

Then I �

�

uPJ Iu. We �rst observe that the sets

�

u �
q
1, rR1

k{2s
y2
	

uPJ
are pairwise

disjoint. Then


ardpJq ¤
4n2

R12

k

.

We also observe that for every v1, v2 P Iu, }v1 � v2}8   R1

k and

�

v1 � J1, R1

kK2
	

£

�

v2 � J1, R1

kK2
	

� H.

For ea
h u P I let be

Ku :�
¤

vPIu

�

v � J1, R1

kK2
�

� J1, nK2.
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For v P Iu, we have that

x|v�J1,R1

k
K2 P rM

1

ks

and therefore this pattern is lo
ally F -admissible and also satis�es the 
onstraint that all

the Ã-symbols are verti
ally aligned in v � J1, RkK2 and also in Ku.

The width of Ku is less than 2R1

k, so the 
ardinality of possible patterns p P ÃKu

satisfying the 
onstraint of verti
ally aligning of Ã-symbols is bounded by 
ardpÃq2R
1

k
.

The 
ardinality of possible patterns over the support

¤

uPJ

Ku is thus bounded by

�


ardpÃq2R
1

k

	4n2
{R12

k

� exp

��

2R1

k �
4n2

R12

k

�

lnp
ardpÃqq




� exp

�

8n2

R1

k

lnp
ardpÃqq




.

Sin
e

¤

uPJ

Ku 
overs I, the 
ardinality of the set of possible patterns over the support

J1, nK2z
¤

uPJ

Ku is bounded by 
ardpÃqn
2ε1

k
. We have proved that, for every x P Un,

H
�

GJ1,nK2

�

, µx

	

¤

�

2R1

k �
4n2

R12

k

� n2ε1k

	

lnp
ardpÃqq.

We 
on
lude by letting nÑ �8 and ε1k Ñ εk.

The following lemma is the se
ond main estimate on the pressure. We bound from

above the pressure assuming that the generi
 patterns of the equilibrium measure exhibit

a positive frequen
y (here 1{4) of the symbol 1. Sin
e the potential is non-negative, it is

enough to bound from above the pressure by the entropy of µβk
.

We denote as Π : Σ2
pÂq Ñ Σ2

pÃq the proje
tion on the �rst 
oordinate. Using (3.20)

we set

Π
�

� Γ � Π : Σ2
pAq Ñ Σ2

pÃq (4.7)

the proje
tion on the bidimensional 
on�gurations over the alphabet Ã.

Lemma 20. Let k ¥ 2 be an integer and µβk
be any equilibrium measure. Then

1. µβk
pr0sq ¤

2

N 1

k

fA
k�1

� p1�N�1

k�1
q

�1fB
k�1

� εk,

2. if k is even and µβk
pr1sq ¡ 1

4
,

hrelpµβk
q ¤

� 2

N 1

k

fA
k�1

� p1�N�1

k�1
q

�1

�3

4
� εk

	

fB
k�1

	

lnp2q

�

1

ℓ1k
lnp
ardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnp2
ardpÂqq,

3. if k is odd and µβk
pr2sq ¡ 1

4
, the previous estimate is valid with fA

k�1
and fB

k�1

permuted,
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where for ea
h ã P Ã, µβk
prãsq is the measure µβk

of the 
ylinder Π�1
�

prãs
p0,0qq �: Π

�1
�

rãs �

Σ2
pAq.

Proof. Let be Π
�

: Σ2
pAq Ñ Σ2

pÃq the proje
tion over the �rst letter on the Ã-alphabet.

By Birkho� ergodi
 theorem and Lemma 17, for almost every x P Σ2
pAq,

lim
nÑ�8

1

n2

ard

� 

u P J0, n�R1

kK2 : σu
pxq P rM 1

ks

(�

� µβk
prM 1

ksq

and

lim
nÑ�8

1

n2

ard

� 

u P J1, nK2 : πpxpuqq � ã
(�

� µβk
prãsq, � ã P Ã.

Here we are denoting µβk
prãsq for the measure µβk

of the 
ylinder Π�1
�

rãs, but we suppress

the pre-image of the proje
tion π to simplify our notation.

We 
hoose n ¡ R1

k. An element of the partition G
J1,nK2

�

�

U J0,n�R1

k
J2

is of the form

G�

p X US where p P ÃJ1,nK2
is a pattern and S � J0, n�R1

kK2 is a subset, that satis�es

US :�
 

x P Σ2
pAq : � u P S, σu

pxq P rM 1

ks, � u P J0, n�R1

kK2zS, σu
pxq R rM 1

ks

(

,

G�

p :�
 

x P Σ2
pAq : pΠ

�

pxqq |J1,nK2 � p
(

.

We set ε ¡ εk and η   µβk
pr0sq. By the Lemma 17 we have that µβk

�

Σ2
pAqzrM 1

ks

�

¤ εk

and then

lim
nÑ�8

µβk

�

¤

S

 

US : 
ardpSq ¥ n2
p1� εq

(

	

� 1.

For n large enough, we 
hoose S � J0, n�R1

kK2 su
h that US �� H and 
ardpSq ¥ n2
p1�εq.

By de�nition of M 1

k and T 1

k, if x P US , then for every u P S, σu
pxq|J1,R1

k
K2 is a lo
ally

admissible pattern with respe
t to F and

σu�T 1

k
pxq|J1,2ℓ1

k
K2 P LpX, 2ℓ1kq.

De�ne for every n ¡ R1

k and every pattern p P ÃJ1,nK2
the set

Knppq :� tu P J1, nK2 : ppuq � 0u.

As we are 
onsidering µβk
pr0sq ¡ η

lim
nÑ�8

µβk

�

¤

p

 

G�

p : 
ardpKnppqq ¡ n2
� η
(

	

� 1.

We may 
hoose p su
h that US X G�

p �� H and 
ardpKpq ¡ n2η. Using the obje
ts as

de�ned in (3.12), (3.13), (3.14) and (3.15), one obtains

T 1

k � S � Ipp, ℓ1kq and τ 1k � Ipp, ℓ1kq � JA
pp, ℓ1kq

§

JB
pp, ℓ1kq �: J

A
§

JB,
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therefore by our 
hoi
e of S we obtain

n2
p1� εq ¤ 
ardpSq � 
ardpτ 1k � T 1

k � Sq ¤ 
ard

�

JA
§

JB
�

¤ n2. (4.8)

Besides that we have

n2η ¤ 
ardpKnppqq ¤ 
ardpKA
§

KB
q � n2ε

and by the Lemma 13 we have


ardpKnppqq ¤
2

N 1

k


ardpJA
qfA

k�1 �

�

1�N�1

k�1

�

�1

ardpJB

qfB
k�1 � n2ε.

We divide ea
h term by n2
and take the limit with nÑ �8, εÑ εk, and η Ñ µβk

pr0sq.

Thus we proved the �rst item of this lemma.

We now assume that k is even and µβk
pr1sq ¡ 1

4
. We 
hoose p P ÃJ1,nK2

su
h that

G�

p X US �� H and


ard

� 

u P J1, nK2 : ppuq � 1
(�

¡

n2

4
. (4.9)

Let be x P G�

p XUS and pµxqxPΣ be the family of 
onditional measures with respe
t to the

partition G
J1,nK2

�

�

U J0,n�RkJ2
. We use the trivial upper bound of the entropy, so

HpGJ1,nK2 , µxq ¤ lnp
ardpEp,Sqq (4.10)

where

Ep,S :�
 

w P AJ1,nK2 : πpwq � p and �u P S, σu�T 1

k
pwq|J1,2ℓ1

k
K2 P LpX, 2ℓ1kq

(

.

Also 
onsider

Êp,S :� ΓpEp,Sq.

Note that every word in Ep,S is obtained from a word in Êp,S by dupli
ating twi
e a

symbol 0 and by Lemma 15 we 
an 
on
lude that

lnp
ardpEp,Sqq ¤ lnp
ardpÊp,Sqq � 
ardpKpq lnp2q and

1

n2
lnp
ardpÊp,Sqq ¤

1

ℓ1k
lnp
ardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnp
ardpÂqq,
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thus

1

n2
lnp
ardpEp,Sqq ¤

� 2

N 1

k


ardpJA
qfA

k�1
� p1�N�1

k�1
q

�1

ardpJB

qfB
k�1

� n2εk

	 lnp2q

n2
�

�

1

ℓ1k
lnp
ardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnp
ardpÂqq.

(4.11)

The symbol 1 does not appear in JB
� JB

pp, ℓ1kq, so we 
an a�rm

 

u P J1, nK2 : ppuq � 1
(

� JA
§

�

J1, nK2zpJA
§

JB
q

	

.

Sin
e we are assuming (4.9) and using (4.8) we obtain that


ardpJA
q ¥ n2

�1

4
� εk

	

and 
ardpJB
q ¤ n2

�3

4
� εk

	

. (4.12)

By repla
ing the upper bound for 
ardpJB
q given in (4.12) and 
ardpJA

q ¤ n2
in (4.11)

we obtain that

1

n2
lnp
ardpEp,Sqq ¤

�

2

N 1

k

fA
k�1

� p1�N�1

k�1
q

�1

�

3

4
� εk




fB
k�1

� εk




lnp2q�

�

1

ℓ1k
lnp
ardpÃqq �

1

ℓ1k
2
lnpC 1

kq � εk lnp
ardpÂqq.
(4.13)

By integrating with respe
t to µβk
in both sides and taking the limit when n Ñ �8 we

obtain item 2 of this lemma. Item 3 has an analogous proof.

Theorem 7. Let X � Σ2
pA,Fq be the bidimensional SFT des
ribed before, whi
h is

generated by the �nite set of forbidden patterns F � AJ1,DK2
de�ned over the alphabet

A. Let F be the 
ylinder generated by the set F as des
ribed in (4.1) and ϕ : Σ2
pAq Ñ R

be the lo
ally 
onstant potential de�ned as ϕ � 1F . Let XA, respe
tively XB, be the


ompa
t sets of 
on�gurations in X that have only the symbol 1, respe
tively 2, in terms

of the Ã alphabet, therefore, XA and XB are two disjoint invariant 
ompa
t sets. Then

there exists a sequen
e of inverse temperatures pβkqk¥0 su
h that for every equilibrium

measure µβk
asso
iated to the potential βkϕ, the support of every a

umulation point µA

8

or µB
8

, of the subsequen
e pµβ2k�1
qk¥0 or pµβ2k

qk¥0, is in
luded in XA or XB.

Proof. We 
onsider X � Σ2
pA,Fq the SFT as des
ribed before, F as in (4.1) and ϕ � 1F .

We denote by µβk
an equilibrium measure at inverse temperature βk. We will prove that

as βk Ñ �8 the sequen
e pµβk
qk¡0 does not 
onverge.

Assume k is an even number and µβk
pr1sq ¡ 1

4
. Let µB

k be the measure of maximal

entropy of the subshift xLky. On the one hand, from Corollary 1 we have that

P pβkϕq ¥ hpµB
k q �

»

βkϕdµ
B
k ¥ fB

k lnp2q � 2D
βk

ℓk
.
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By the item 3 of De�nition 27 we have that

Nk ¥ N 1

k �
kβk

N 1

kρ
B
k�1

�

kβk

ℓ1kf
B
k�1

ñ

βk

ℓk
¤

βk

ℓ1k
¤

1

k
fB
k�1

.

Sin
e k is even, fB
k�1

� fB
k , one obtains,

fB
k lnp2q � 2D

βk

ℓk
¥

kβk

ℓ1k
� 2D

βk

ℓk
¡ 0ñ 2D

βk

ℓk
¤ fB

k lnp2q.

On the other hand

P pβkϕq ¤
� 2

N 1

k

fA
k�1 � p1�N�1

k�1
q

�1

�3

4
� εk

	

fB
k�1

	

lnp2q

�

1

ℓ1k
lnp
ardpÃqq �

1

ℓ1k
2
lnpCpX̂, ℓ1kqq � εk lnp2
ardpÂqq

�

� 8

RpX̂, ℓ1kq
� εk

	

lnp
ardpÃqq �Hpεkq.

We have that

εk ! fB
k�1 and Hpεkq ! fB

k�1.

Indeed, from item 2 of Lemma 14 shows that there exist 
onstants Ξ, ξ su
h that

� k ¥ 1, R1

k ¤ Ξ2ξℓ
1

k .

Re
alling the de�nition of εk �
R1

k
2

βk
lnp
ardpAqq given in (4.3) and using item 2 of De�ni-

tion 27, one gets,

εk

pfB
k�1

q

2
¤

εkβk

2kℓ
1

k

�

R1

k
2
lnp
ardpAqq

2kℓ
1

k

¤ Ξ2 lnp
ardpAqq2p2ξ�kqℓ1
k
! 1,

and therefore

εk

fB
k�1

¤

εk

pfB
k�1

q

2
ñ εk ! fB

k�1 and

Hpεkq ¤ 2εk ln
� 1

εk

	

!

?

εk ! fB
k�1.

As ℓkf
B
k 
ounts the number of 0's in the word bk and at ea
h step of the 
onstru
tion

the number is at least multiplied by 2, we have ℓk�1f
B
k�1

¥ 2k�1
,

1

ℓ1k
�

1

N 1

kℓk�1

! fB
k�1

, R1

k ¥ ℓ1k,
1

RpX̂, ℓ1kq
! fB

k�1
.
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Item 1 of Lemma 14 implies

1

ℓ1k
2
lnpC 1

kq ! fB
k�1.

Item 1 of De�nition27 shows,

fA
k�1

N 1

k

¤

fB
k�1

k
,

fA
k�1

N 1

k

! fB
k�1.

We proved that P pβkφq is bounded from below by a quantity equivalent to fB
k lnp2q and

bounded from above by a quantity equivalent to

3

4
fB
k lnp2q. We obtain a 
ontradi
tion.

We have proved that µβk
pr1sq ¤ 1

4
for every even k and every equilibrium measure µβk

.

Similarly µβk
pr2sq ¤ 1

4
for every odd k and every equilibrium measure µβk

. As

µβk
pr0sq ¤

2

N 1

k

fA
k�1 � p1�N�1

k�1
q

�1fB
k�1 � pfB

k�1q
2
R1

k lnp
ardpAqq

exppkℓ1kq
,

we have proved

lim inf
kÑ�8

inf
µ

 

µpr2sq : µ is an equilibrium measure at β2k
(

¥

3

4
,

lim inf
kÑ�8

inf
µ

 

µpr1sq : µ is an equilibrium measure at β2k�1

(

¥

3

4
,

and therefore pµβk
qk¥0 does not 
onverge.
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Appendix A

Computability results

We thank Sebastian Barbieri for his help to 
ompute the upper bounds for the relative


omplexity and for the re
onstru
tion fun
tion. Sebastian stimulated us to prove that

we 
an enumerate F̃ in an in
reasing way and with a exe
ution time that is at most

exponential.

First we prove the upper bound for the relative 
omplexity fun
tion given by Propo-

sition 6.

Proof of Proposition 6. Let us denote by CnpLayerkpX̂qq the 
omplexity of the proje
tion

to the k-th layer. and by CnpLayerkpX̂q|LayerjpX̂qq the 
omplexity of the proje
tion to

the k-th layer given that there is a �xed pattern on the j-th layer. Clearly we have that

CX̂
pnq ¤ CnpLayer1pX̂qq � CnpLayer2pX̂qq � CnpLayer3pX̂q|Layer2pX̂qq�

� CnpLayer4pX̂q|Layer2pX̂qq.

• Layer 1: As this layer is given by all x P ÃZ
2

so that xu � xu�p0,1q for every u P Z
2
,

a trivial upper bound for the 
omplexity is

CnpLayer1pX̂qq � Op|Ã|nq.

In fa
t, as in the end the only 
on�gurations whi
h are allowed are those whose

horizontal proje
tion lies in the e�e
tive subshift Z, a better bound is given by

CnpLayer1pX̂qq � Opexppn h
top

pX̂qqq. For simpli
ity, we shall just keep the trivial

bound.

• Layer 2: The 
omplexity of every substitutive subshift in Z
2
is Opn2

q. To see

this, suppose that the substitution sends symbols of some alphabet A2 to n1 � n2

arrays of symbols. By de�nition, every pattern of size n o

urs in a power of the

substitution. If k is su
h that mintn1, n2u
k�1

¤ n ¤ mintn1, n2u
k
, then ne
essarily

any pattern of size n o

urs in the 
on
atenation of at most 4 k-powers of the

79
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substitution. There are |A2|
4

hoi
es for the k-powers and at most pmaxtn1, n2u

k
q

2
¤

pnmaxtn1, n2uq
2

hoi
es for the position of the pattern. It follows that there are at

most p|A2|
4maxtn1, n2u

2
qn2

� Opn2
q patterns of size n. We obtain,

CnpLayer2pX̂qq � Opn2
q

• Layer 3: It 
an be 
he
ked dire
tly from the Aubrun-Sablik 
onstru
tion that the

symbols on the third layer satisfy the following property: if the symbols on the

substitution layer are �xed, then for every u P Z
2
the symbol at position u is

uniquely determined by the symbols at positions u�p0, 1q, u�p1, 1q and u�p�1, 1q.

In 
onsequen
e, it follows that knowing the symbols at positions in the �U shaped

region�

U � pt0u � J1, n� 1Kq Y pJ0, n� 1K� t0uq Y ptn� 1u � J1, n� 1Kq


ompletely determines the pattern. Therefore, if this layer has an alphabet A3, we

have

CnpLayer3pX̂q|Layer2pX̂qq ¤ |A3|
3n�2

¤ OpKn
1 q,

for some positive integer K1.

• Layer 4: M
Sear
h

The same argument for Layer 3 holds for Layer 4. Therefore, if

the alphabet of layer 4 is A4 we have that for some positive integer K2,

CnpLayer4pX̂q|Layer2pX̂qq ¤ |A4|
3n�2

¤ OpKn
2
q.

Putting the previous bounds together, we 
on
lude that there is some 
onstant K ¡ 0

su
h that

CX̂
pnq � Opn2Kn

q.

Corollary 2. Let X̂ be the Z
2
-SFT in the Aubrun-Sablik 
onstru
tion. There is a


onstant KC ¡ 0 su
h that

lim sup
nÑ8

1

n
logpCnpXqq ¤ KC .

Now we will work on the upper bound for the re
onstru
tion fun
tion. We �x a

Turing ma
hine M that enumerates F̃ see below the set of forbidden words that de�ne

X̃ � ΣpÃ, F̃q. In general, the re
onstru
tion fun
tion RX̂
as de�ned in (3.28) of the

Aubrun-Sablik 
onstru
tion is not 
omputable, but in our 
onstru
tion we 
an obtain the

properties as stated in Proposition 4 that we prove below.
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Proof of Proposition 4. If the integer n ¥ 1 is su
h that p � Nk, then F̃ 1

pnq � F̃pnq.

We will 
onsider now the 
ase where the integer n ¥ 1 is su
h that p   Nk. We have

obviously F̃pnq � F̃ 1

pnq. If we assume that k is even, from Notation 1 we have that

ak � ak�1p1
ℓk�1

q

Nk�2ak�1 and bk � pbk�1q
Nk .

We set

�Ýakp1q �
ÝÑakp1q � ak�1,

�Ý

bk p1q �
ÝÑ

bk p1q � bk�1,

�Ñ

1k p1q � 1k�1 :� 1ℓk�1
and

�Ñ

2k p1q � 2k�1 :� 2ℓk�1.

Then we de�ne by indu
tion if 2 ¤ p   Nk then

�Ýakppq �
�Ýakpp� 1q1k�1 � ak�1p1k�1q

p�1

and

ÝÑakppq � 1k�1
ÝÑakpp� 1q � p1k�1q

p�1ak�1,

else

�ÝakpNkq �
ÝÑakpNkq � ak. We also de�ne

�Ý

bk ppq �
�Ý

bk pp� 1qbk�1 � pbk�1q
p,

ÝÑ

bk ppq � bk�1

ÝÑ

bk pp� 1q � pbk�1q
p,

�Ñ

1k ppq �
�Ñ

1k pp� 1q1k�1 � p1k�1q
p

and

�Ñ

2k ppq �
�Ñ

2k pp� 1q1k�1 � p2k�1q
p.

If w has length less than pℓk�1 and is a sub-word of some w1w2, say w1 � ak and w2 �

bk, by dragging w from the left end point of w1w2 to the right end point of w1w2, the word

w appears su

essively as a sub-word of

�Ýakpp�1q,
�Ñ

1k pp�1q, ÝÑakpp�1q, ÝÑakpp�1q
�Ý

bkpp�1q,
�Ý

bk pp � 1q. A similar reasoning is also true for w1 � bk and w2 � ak. We have proved

F̃pnq � F̃ 1

pnq.

We have also proved that X̃ � Σ1
pÃ, F̃ q, be
ause we have proved that it is enough

to list all the forbidden words of length n and for that it is su�
ient to sear
h in the


on
atenation of subwords of length pp� 1q � ℓk�1 as des
ribed before. Thus

Σ1
pÃ,Fq � Σ1

pÃ, F̃q.

To 
ompute the time to enumerate su

essively the words of F̃pnq when ℓk�1   n ¤ ℓk,

we produ
e an algorithm given in Table A.1. The time to read/write on the tapes, to
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update the words p

�Ýakppq,
ÝÑakppq,

�Ý

bk ppq,
ÝÑ

bk ppq,
�Ñ

1k ppq,
�Ñ

2k ppqq by adding a word of length ℓk�1,

to 
on
atenate two words

ÝÑw1
�Ýw2 from that list, and to 
he
k that a given word w of length

n is a sub-word of

ÝÑw1
�Ýw2 is polynomial in n. Therefore, the time to enumerate every word

up to length n in an alphabet Ã is bounded by P pnq|Ã|n where P pnq is a polynomial.

Denote by RX̃ : NÑ N the re
onstru
tion fun
tions of X̃ given F̃ . From Lemma 5 we

know there exists a 
onstant C1 ¡ 0 su
h that RX̃
pnq ¤ C1n.

For n P N, let N � 2n�1 be the length of the sides of the square Bn :� J�n, nK2 � Z
2
,

and let k P N su
h that 4k�1
  N ¤ 4k.

As before, let X̂ � ΣpÂ, F̂q be the Z2
-SFT in the Aubrun-Sablik 
onstru
tion asso
i-

ated to X̃ and the Turing ma
hine M. Now we will give estimates on the re
onstru
tion

fun
tion RX̂ : N Ñ N of X̂ given F̂ . Of 
ourse, a formal proof of these estimates would

require a restatement of the 
onstru
tion of Aubrun-Sablik with all its details, whi
h is

out of the s
ope of this thesis. Instead, we shall argue that the bounds we give su�
e,

making referen
e to the properties of the Aubrun-Sablik 
onstru
tion.

A des
ription of F̂ is given in [2℄ in an (almost) expli
it manner for all layers ex
ept

the substitution layer. For the substitution layer, a des
ription of the forbidden patterns


an be extra
ted in an expli
it way from the arti
le of Mozes [30℄.

The behavior of layers 2,3 and 4 in the Aubrun-Sablik 
onstru
tion is mostly indepen-

dent of layer 1, ex
ept for the dete
tion of forbidden patterns whi
h leads to the forbidden

halting state of the ma
hine in the third layer. Be
ause of that reason the analysis of the

re
onstru
tion fun
tion RX̂

an be split into two parts:

1. Stru
tural: Assuming that the 
ontents of the �rst layer are globally admissible

(the 
on�guration in the �rst layer is an extension of a 
on�guration from X̃),

we give a bound that ensures that the 
ontents of layers 2, 3 and 4 are globally

admissible, that is:

• The 
ontents of layer 2 
orrespond to a globally admissible pattern in the

substitutive subshift and the 
lo
k.

• The 
ontents of layer 3 and 4 
orrespond to valid spa
e-time diagrams of Turing

ma
hines that 
orre
tly align with the 
lo
ks.

2. Re
ursive: A bound that ensures that the 
ontents of the �rst layer are globally

admissible. This bound will of 
ourse depend upon RX̃
and τ .

Finally, we are able to prove the upper bound for the re
onstru
tion fun
tion given by

Proposition 5.

Proof of Proposition 5. Let us begin with the stru
tural part, as it is simpler and does

not depend upon X̃. Let p be a pattern with support Bn and assume that the �rst layer

of p is thus globally admissible.
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A program enumerating the set of forbidden words

# Initialize pℓ0, β0, ρ
A
0
, ρB

0
q

pℓ
�

, β
�

, ρA
�

, ρB
�

q � p2, 0, 1, 1q

# Allo
ate and Initialize 4 tapes pak, bk, 1k, 2kq

pa
�

, b
�

, 1
�

, 2
�

q � p01, 02, 11, 22q

# Allo
ate and Initialize 6 tapes p

�Ýakp1q,
ÝÑakp1q,

�Ý

bk p1q,
ÝÑ

bk p1q,
�Ñ

1k p1q,
�Ñ

2k p1qq

p

�Ýa
�

,ÝÑa
�

,
�Ý

b
�

,
ÝÑ

b
�

,
�Ñ

1
�

,
�Ñ

2
�

q � pa
�

, a
�

, b
�

, b
�

, 1
�

, 2
�

q

# Compute re
ursively the next length ℓ1
pℓ
�

, β
�

, ρA
�

, ρB
�

q � Spℓ
�

, β
�

, ρA
�

, ρB
�

q

N
�

� ℓ
�

{ℓ
�

; parity � even ; n� 3 ; p� 2

# Allo
ate and Initialize an intermediate tape re
ording a possibly forbidden word

w �H

while (n ¥ 1)

if (n � ℓ
�

� 1q then

# Remember the previous pℓk�1, βk�1, ρ
A
k�1

, ρBk�1
q and update the new one

pℓ
�

, β
�

, ρA
�

, ρB
�

q � pℓ
�

, β
�

, ρA
�

, ρB
�

q ; pℓ
�

, β
�

, ρA
�

, ρB
�

q � Spℓ
�

, β
�

, ρA
�

, ρB
�

q

# Remember pak�1, bk�1, 1k�1, 2k�1q

pa
�

, b
�

, 1
�

, 2
�

q � p

�Ýa
�

,
�Ý

b
�

,
�Ñ

1
�

,
�Ñ

2
�

q

N
�

� ℓ
�

{ℓ
�

; parity � Permute(parity) ; p� 2

end if

if (n � pp� 1qℓ
�

� 1) then

Update p

�Ýa
�

,ÝÑa
�

,
�Ñ

1
�

,
�Ý

b
�

,
ÝÑ

b
�

,
�Ñ

2
�

q a

ording to parity and the two parti
ular


ases p � 2 or p � N
�

by 
on
atenating words from pa
�

, b
�

, 1
�

, 2
�

q

# Build the set of words obtained by 
on
atenating two words of length ℓk�1

W � t

ÝÑa
�

�Ý

b
�

, ÝÑa
�

�Ñ

2 ,
�Ñ

1
�Ý

b
�

,
�Ñ

1
�Ñ

2 ,
ÝÑ

b
�

�Ýa
�

,
ÝÑ

b
�

�Ñ

1 ,
�Ñ

2 �Ýa
�

,
�Ñ

2
�Ñ

1 u

p� p� 1

end if

for (m � 0, 3n ex
luded)

w � write m in base 3 with n letters in t0, 1, 2u

is_forbidden� true

for (w1w2 P W )

if (w is a sub-word of w1w2) then is_forbidden� false

end for

if (is_forbidden) then Print the word w

end for

n� n� 1

end while

Table A.1: Algorithm that enumerates F̃ .
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From Mozes's 
onstru
tion of SFT extensions for substitutions [30℄ it 
an be 
he
ked

that any lo
ally admissible pattern of support Bn of Mozes's SFT extension of a primi-

tive substitution (The Aubrun-Sablik substitution is primitive) is automati
ally globally

admissible. Let us take a support large enough su
h that the se
ond layer of p o

urs

within four 4k�2k ma
rotiles of the substitution in any lo
ally admissible pattern of that

support.

Next, a 
lo
k runs on every strip of the Aubrun-Sablik 
onstru
tion. By the previous

argument, the largest zone whi
h interse
ts p in more than one position is of level at most

k. Therefore its largest 
omputation strip has horizontal length 2k. In order to ensure

that the 
lo
k starts on a 
orre
t 
on�guration on every strip 
ontained in p, we need to

witness this pattern inside a lo
ally admissible pattern whi
h sta
ks 22
k

� 2 ma
rotiles

of level k verti
ally. Therefore, the pattern p must o

ur inside four lo
ally admissible

patterns of length 4k�2kp22
k

�2q. This ensures that the 
lo
ks in p are globally admissible.

Finally, if every 
lo
k o

urring in p starts somewhere, then the 
ontents of the third

layer are automati
ally 
orre
t, as they are determined by 
lo
k every time it restarts.

To 
he
k that the fourth layer is 
orre
t, we just need extend the horizontal length of our

pattern twi
e, so that the responsibility zone of the largest strip is 
ontained in it.

By the previous arguments, it would su�
e to witness p inside a lo
ally admissible

pattern whi
h 
ontains in its 
enter a 4 � 2 array of ma
rotiles of size 4k � 2kp22
k

� 2q.

As 4k�1
  N ¤ 4k, there is a 
onstant C0 ¡ 0 su
h that an estimate for this part of the

re
onstru
tion fun
tion 
an be written as

RX̂
Struct

pnq � Op
?

nC
?

n
0
q.

Let us now deal with the re
ursive part. We need to �nd a bound su
h that the word

of length N o

urring in the �rst layer of p is globally admissible. By de�nition of RX̃
, it

su�
es to have p inside a pattern with support B
RX̃

pNq
and 
he
k that the �rst layer is

lo
ally admissible with respe
t to F̃ . In other words, we need to have the Turing ma
hines


he
k all forbidden words of length RX̃
pNq in this pattern. Lu
kily, the number of steps in

order to do this is already 
omputed in Aubrun and Sablik's arti
le. After Fa
t 4.3 of [2℄

they show that, if p0, p1, . . . , pr are the �rst r � 1 patterns enumerated by M, then the

number of steps Spp0, . . . , prq needed in a 
omputation zone to 
ompletely 
he
k whether

a pattern from tp0, . . . , pru o

urs in its responsibility zone of level m satis�es the bound,

Spp0, . . . , prq ¤ T pp0, . . . , prq � pr � 1qmaxp|p0|, . . . , |pr|qm
223m�1,

where T pp0, . . . , prq is the number of steps needed by M to enumerate the patterns

p0, p1, . . . , pr.

Spe
i�
ally in our 
onstru
tion, we may rewrite their formula so that the number

SpRX̃
pNqq of steps needed to 
he
k that all forbidden patterns of length at most RX̃

pNq



85

in a responsibility zone of level m satis�es the bound

SpRX̃
pNqq ¤ τpRX̃

pNqq � |Ã|R
X̃
pNq�1RX̃

pNqk223k�1

¤ P pnq|Ã|N � |Ã|C1N�1C1Nm
223m�1

Simplifying the above bound, it follows that there exists 
onstants C2, C3 ¡ 0 su
h that

SpRX̃
pNqq ¤ C2m

223m�C3N .

AsN is 
onstant, it follows that there is a smallest m̄ � m̄pNq P N su
h that 2m̄ ¥ C4N

(so that the tape on the 
omputation zone of level m̄ 
an hold words of size RZpNq) and

su
h that

C2m̄
223m̄�C3N

¤ 22
m̄

� 2,

so that the number 22
m̄

�2 of 
omputation steps in the zone of level m̄ is enough to 
he
k

all the words of size RX̃
pNq. It follows that a bound for the re
ursive part of RX̂

is given

by

RX̂
recursive

pnq � Op2m̄�2m̄pNq

q.

In order to turn this into an expli
it asymptoti
 expression we need to �nd a suitable

bound for m̄pNq. Noti
e that if m ¥ 6 we simultaneously have that m2
¤ 2m and

4m ¤ 2m�1
. We may then write for m ¥ 6,

C2m
223meC3N

¤ C22
4m�C3N

¤ C22
C3N22

m�1

.

Therefore, it su�
es to �nd m̄ � m̄pNq su
h that

C22
C3N

¤ 22
m̄�1

.

From here, it follows that there is a 
onstant C5 ¡ 0 su
h that any value of m̄ satisfying

m̄ ¥ C5 � log2pNq,

satis�es the above bound. We get that

RX̂
recursivepnq � OpN2C5N

q � n4C5n.

Finally, putting together the stru
tural and re
ursive asymptoti
s, we obtain that

there is a 
onstant K ¡ 0 su
h that

RX̂
pnq � Opmaxt

?

nC
?

n
0
,Opn4C5n

quq � OpnKn
q.
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Corollary 3. Under the same hypotheses as in Proposition 5, there is a 
onstant K ¡ 0

su
h that

lim sup
nÑ8

1

n
logpRX̂pnqq ¤ K.
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