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Resumo

DALLE VEDOVE, G.: Chaos and Turing Machines on Bidimensional Models
at Zero Temperature. 2020. 89 f. Tese (Doutorado) - Instituto de Matemética e
Estatistica, Universidade de Sao Paulo e Ecole Doctorale Mathématiques et Informatique,
Universidade de Bordeaux. Sao Paulo, 2020.

Em mecéanica estatistica de equilibrio ou formalismo termodinamico um dos principais
objetivos é descrever o comportamento das familias de medidas de equilibrio para um dado
potencial parametrizado pelo inverso da temperatura §. Entendemos aqui por medidas de
equilibrio as medidas shift invariantes que mazimizam a pressao. Diversas construcoes ja
demonstraram um comportamento cadtico destas medidas quando o sistema congela, ou
seja, 8 — +o00. Um dos principais exemplos é o construido por Chazottes e Hochman [11]
onde eles conseguem provar a nao convergéncia de uma familia de medidas de equilibrio
para um dado potential localmente constante nos casos onde a dimensao ¢ maior ou igual
a 3. Neste trabalho apresentaremos a construcao de um exemplo no caso bidimensional
sobre um alfabeto finito e um potencial localmente constante tal que existe uma sequencia
(Br)k=0 onde ndo ocorre a convergéncia para qualquer sequéncia de medidas de equilibrio
ao inverso da temperatura 3 quando ; — +oco. Para tal, usaremos a construcao descrita
por Aubrun e Sablik em [2] que melhora o resultado de Hochman [19] usado na construcao
de Chazottes e Hochman [11].

Palavras-chave: formalismo termodinamico, medida de equilibrio, subshift.






Abstract

DALLE VEDOVE, G.: Chaos and Turing Machines on Bidimensional Models at
Zero Temperature. 2020. 89 f. Thesis (Doctor in Science) - Instituto de Matemaética e
Estatistica, Universty of Sao Paulo and Ecole Doctorale Mathématiques et Informatique,

University of Bordeaux. Sao Paulo, 2020.

In equilibrium statistical mechanics or thermodynamics formalism one of the main
objectives is to describe the behavior of families of equilibrium measures for a potential
parametrized by the inverse temperature 5. Here we consider equilibrium measures as the
shift invariant measures that maximizes the pressure. Other constructions already prove
the chaotic behavior of these measures when the system freezes, that is, when g — +oo.
One of the most important examples was given by Chazottes and Hochman [11] where
they prove the non-convergence of the equilibrium measures for a locally constant poten-
tial when the dimension is bigger than or equal to 3. In this work we present a construction
of a bidimensional example described by a finite alphabet and a locally constant potential
in which there exists a subsequence (fx)r=0 where the non-convergence occurs for any
sequence of equilibrium measures at inverse temperatures 3, when 5, — +00. In order
to describe such an example, we use the construction described by Aubrun and Sablik [2]
which improves the result of Hochman [19] used in the construction of Chazottes and
Hochman [11].

Keywords: thermodynamic formalism, equilibrium measure, subshift.
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Résumé

DALLE VEDOVE, G.: Chaos and Turing Machines on Bidimensional Models
at Zero Temperature. 2020. 89 f. Theése (Doctorat) - Instituto de Matemética e
Estatistica, Université de Sao Paulo e Ecole Doctorale Mathématiques et Informatique,

Université de Bordeaux. Sao Paulo, 2020.

En mécanique statistique d’équilibre ou formalisme thermodynamique un des objec-
tifs est de décrire le comportement des familles de mesures d’équilibre pour un potentiel
paramétré par la température inverse 5. Nous considérons ici une mesure d’équilibre
comme une mesure shift invariante qui maximise la pression. Il existe d’autres construc-
tions qui prouvent le comportement chaotique de ces mesures lorsque le systéme se fige,
c’est-a-dire lorsque 8 — +00. Un des exemples les plus importants a été donné par Cha-
zottes et Hochman [11] ou ils prouvent la non-convergence des mesures d’équilibre pour
un potentiel localement constant lorsque la dimension est supérieure a 3. Dans ce travail,
nous présentons une construction et un exemple potentiel localement constant tel qu’il e-
xiste une suite (ﬁk) k>0 Ol la non-convergence est assurée pour toute choix suite de mesures
d’équilibre a l'inverse de la température [, lorsque (5, — +00. Pour cela nous utilisons
la construction décrite par Aubrun et Sablik [2] qui améliore le résultat de Hochman [19]

utilisé dans la construction de Chazottes et Hochman [11].

Mots clés: formalisme thermodynamique, measure d’équilibre, décalage.
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Chapter 1
Introduction

One of the most important problems in equilibrium statistical mechanics consists in des-
cribing families of Gibbs states for a given potential or an interaction family. We work

with classical lattice systems, which means that our configuration space will be
D4 A) = A%

where A is a finite set and d € N is the dimension of our lattice. Let us introduce the
function

¢:2A) >R

which is called per site potential and can be physically interpreted as the energy con-
tribution of the origin of the lattice for each configuration z € X%(A), since we are only

considering only translation invariant measures.

Given these elements we denote for every S > 0 the set G(8y) which is the set of Gibbs
measures associated to S at the inverse temperature . The are several definitions we
could consider as a Gibbs measure, using conformal measures, DLR equations, thermo-
dynamic limits etc. See Georgii [17], the classical book about Gibbs measures and [25|
for the equivalence of several of these definitions. By compactness we know that this set
has at least one shift translation invariant Gibbs measure. In the present thesis we are
interested on the behavior of the set of Gibbs measures which are translational-invariant
probability measures, called equilibrium measures, when the temperature goes to zero,
that is, when g — +o0.

A probability measure ug over X%(A) is an equilibrium measure (or equilibrium state)
at inverse temperature 5 > 0 for a potential S if it is a shift invariant (or translation

invariant) measure which maximizes the pressure, that is if

P(Bp) = sup {h(u) - fﬁs@du} = h(ug) — Jﬁ@dﬂﬁ-

peMo (34(A))

15



16 CHAPTER 1. INTRODUCTION

We will consider later the whole set of equilibrium measures pz which maximize the
pressure P(S¢) above over all shift invariant probability measures on ¥¢(A). The function

h(v) in the expression of P(fB¢) is the Kolmogorov-Sinai entropy of v.

In the one-dimensional case if a potential ¢ is Holder continuous we always have a
unique Gibbs measure which is also the only equilibrium measure. For a dimension d > 1
the situation is dramatically different and we can have multiple Gibbs states even for a

potential with finite range, the most famous example is the Ising model.

The zero-temperature equilibrium states (ground states) are the shift invariant prob-

J wdv

over all shift-invariant probability measures v. In other words, given a potential, we have

ability measures which minimize

that the weak™ accumulation points of equilibrium states as § — +oo are necessarily
minimizing measures for the potential . A more detailed study on the limit when the
system freezes and how it is related with the configurations with minimal energy can be
found in [36].

Chazottes and Hochman [11| showed in the one-dimensional case an example of a
Lipschitz potential ¢ (but long-range) where the sequence (i3, does not converge when
f — +oo. Here pg, is the unique shift-invariant Gibbs measure (or the unique Gibbs
measure) at the inverse temperature 5 > 0 (which is also the unique equilibrium measure).
On the other hand, [8, 10, 16, 27| showed that an interaction of finite-range in the one-
dimensional case over a finite alphabet implies the convergence of pg,. The case when
A is a countable set was also studied in [23]. The breakthrough for the construction of
examples of the non-convergence was given by van Enter and W. Ruszel [37]|, where an
example of finite range potential on a continuous state space and chaotic behavior was
constructed. Recently the argument of van Enter and Ruszel was implemented for the

case where A is a finite set in |7, 3, 12].

Chazottes and Hochman [11] also showed that the same kind of non-convergence may
occur when the dimension is d > 3 even for a locally constant potential. The construction
of their example is possible only for d > 3 because they rely heavily on the theory of
multidimensional subshifts of finite type and Turing Machines, developed by Hochman [19]
that provides a method to transfer a one-dimensional construction to a higher-dimensional
subshift of finite type. Thanks to Hochman’s theorem, Chazottes and Hochman could
construct an example for d = 3 with a potential ¢ locally constant on a finite state space.
Their construction can be easily extended to any dimension d > 3. These results led
us to believe that the statement is also true for d = 2. Our main result is two-fold: we
extend Chazottes-Hochman’s theorem of chaotic behavior to dimension 2 using a different
approach involving the space-time diagram of a Turing machine developed by Aubrun-

Sablik and we clarify the role of the reconstruction and relative complexity function of the
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extension by a subshift of finite type that is missing in Chazottes-Hochman’s arguments.

The main result of Aubrun and Sablik [2]|, called simulation theorem, asserts that
any d-dimensional subshift defined by a set of forbidden patterns that is enumerated by
a Turing machine is a subaction of a (d + 1)-dimensional subshift of finite type. There
are other works in which the simulation results obtained so far in this theory have been
improved [14, 15]. In these works they improve the results obtained so far by decreasing
the dimension of the subshift of finite type which generates the effective subshift, but they
are based on Kleene’s fixed point theorem and they do not uses geometric arguments.

The construction of Aubrun and Sablik [2] improves the method of Hochman [19],
because they increase the dimension by 1 and this leads us to improve the Chazottes and
Hochman [11] construction for the dimension 2.

In the second chapter we present the main definitions of thermodynamic formalism
and computability, classical results and standard notations. We begin with the definition
of subshifts and define a special class of subshifts based on the concatenation of blocks of
the same size in order to form each possible configuration. In the second section of this
chapter we provide a brief review of entropy dealing with partitions, entropy of a partition,
metric and topological entropy and the concepts of pressure, equilibrium measure and
Gibbs measure. In the third section we give a general idea of operations transforming a
subshift into another one based on [1] in order to comprehend the notion of simulating a
subshift by another one. Finally, we present a formal definition of a Turing machine, how
to represent the work of a Turing machine in a space-time diagram and also an idea of
the construction of Aubrun and Sablik [2].

The third chapter is dedicated to define and construct our example that is inspired by
the construction presented in the work of Chazottes and Hochman [11]. First we define a
one-dimensional subshift based on an iteration process that gives us at each step blocks of
the same length that are concatenated to form a subshift as defined in Chapter 2. We prove
that the control we have obtained over the set of forbidden words of this subshift, implies
there exists a Turing machine that lists all of the forbidden words, that is, our subshift
is an effectively closed subshift. From there we are able to use the simulation theorem of
Aubrun-Sablik [2] and obtain a bidimensional subshift of finite type that simulates our
previous one-dimensional effectively closed subshift. Also in the second section of this
chapter, we prove some important results that explain how to deconstruct a configuration
in the 2-dimensional subshift as concatenated patterns in a given dictionary. In the third
and last part of this chapter, we define a new coloring for the bidimensional subshift, as
in Chazottes and Hochman [11], that consists in duplicating a distinguished symbol, in
order to transfer the entropy of the initial effective subshift to the simulated subshift of
finite type.

After all these constructions, we end up with a bidimensional SF'T X defined over a
finite alphabet A, an integer D > 1 and a finite set of forbidden patterns F < ALLI.
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We then define the following locally constant per site potential

p: AP =3%(A) - R
z = p(r) =1p(z)

where F' is the clopen set equal to the union of cylinders generated by every pattern in
F.

The last chapter is dedicated to prove the main result which is the following.

Theorem 1. There exists a locally constant potential ¢ : ¥?(A) — R, there exists a
subsequence (B )r=0 going to infinity and two disjoint non-empty compact invariant sets
X, Xp of ¥%(A), such that if pg, is an equilibrium measure at inverse temperature Sy,
associated to the potential S, the support of any weak* accumulation point of (14,, )k=0
is included in Xp, the support of any weak® accumulation point of (yg,, ,,)r=0 is included
in X4.

The previous theorem asserts that there exists a subsequence (8k)ren With S — +00
such that any choice of equilibrium measure associated with the potential S alternates
between two disjoint compact sets of probability measures. That is there exists a locally
constant per site potential that exhibits a zero-temperature chaotic convergence.

We compute in the appendix an upper bound of the relative complexity and recon-
struction functions of the SFT given in [2]; we thank S.B. for many discussions on this

topic.



Chapter 2

Subshifts

2.1 Forbidden words

In this chapter we establish the basic definitions, notations and main results of the objects
that we use in this work. We begin by two definitions of a subshift: one topological and
one combinatorial. These two definitions coincide.

We will always work with a finite set of letters that we call alphabet and we will denote
it with a cursive letter [A. With this alphabet we construct the set of configurations

defined over Z¢ where d > 1 is the dimension.

Definition 1. Let A be a finite alphabet, and d > 1. Let S < Z% be a subset. A
pattern with support S is an element of p of A5. We write S = supp(p) for the support
of the pattern p. If S" < S, the pattern p’ = p|s denotes the restriction of p to S’. A
configuration is a pattern with full support S = Z¢.

When d = 1 a one-dimensional finite pattern is called a word.

The set of all possible Z?-configurations defined over an alphabet A is denoted by
$4(A) := AZ. On this set we define the shift action as follows.

Definition 2. The shift action on a configuration space X(A) is a collection 0 = (0%) ez4

such that
ot YA — XA

v +— o%(z) =y, where YveZd y, =144,

We will use the same notation for the shift acting on a finite pattern, that is, if S < Z¢
is a finite set and p € A° is a pattern, then we can write for all u € Z? the shift acting on

the pattern p as
o' (p) =wEe A5 wwhere wy, = Uysy, YV E S —u

Remark 1. Sometimes we will use the term shift invariant patterns for a class of patterns

19



20 CHAPTER 2. SUBSHIFTS

p ~ ¢ if and only if ¢ = o%(p), for some u € Z%. In that sense, the shape of the support

of the pattern is fixed, but the form can be located in any translate of this support.

Let S, T — Z% are two subsets, and p,q be two patterns with support S and T,
respectively. We say that p is a sub-pattern of ¢, if S € T and p = ¢|s. Similarly we
say that p is a sub-pattern of a configuration x € A if p = x|s. We can also say that
a pattern p € A appears in another pattern ¢ € A7 (respectively, in a configuration
z € AZ") if there exists a vector u € Z% such that o (p) is a sub-pattern of ¢ (respectively,

o"(p) is a sub-pattern of ). In that case we write p = ¢ (respectively, p = x).

Definition 3. If p € A% is a pattern with support S, the cylinder generated by p, denoted
by [p], is the subset of configurations defined by

[p] := {o e B(A) : afs = p}.
For a € A and i € Z¢ we denote the cylinder
[a]; = {x € XY (A) : z; = a}.

Definition 4. Let P < A° be a subset of patterns of support S. The cylinder generated
by P is the subset,

peP

The following is the topological definition of one of the most important objects that

we work with.

Definition 5. A subshift X is a closed subset of $%(.A) which is invariant under o :
Y4(A) — ¥4 A) for all u € Z4, that is, o%(X) = X.

As said before, there is a combinatorial definition of a subshift, which is given by the

set of forbidden patterns as presented below.

Definition 6. Let X be a subset of X¢(A). We say that X is a subshift generated by a
set F of forbidden patternsif F < | |5, AR {5 3 subset of patterns with finite support

and
X =YY A F):={reX¥A):Ype F, pot 2}

The following proposition assures that every subshift is generated by a set of forbidden

patterns.
Proposition 1. The two definitions of subshift (Definition 5 and Definition 6) coincide.

The entire configuration space L4(A) = A% is a subshift, and we call it the full
shift. We will denote by (X¢(A), B) the measurable space where B is the Borel o-algebra
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generated by the cylinder sets in X4(A). We will describe a classification for the subshifts
based on the set of forbidden patterns. For the full shift the set of forbidden patterns is
empty. If the set of forbidden patterns is finite we will say that subshift is a subshift of
finite type or SFT. When the set of forbidden patterns can be enumerated by a Turing
machine, then we say that the subshift is an effectively closed subshift (we explain what
we are considering as a set enumerated by a Turing machine in Section 2.4).

Another way of describing a subshift is by its language, that we define next.

Definition 7. Let A be a finite alphabet, and d > 1. Let X be a subshift of A%’. The
language of X, denoted L£(X), is the set of square patterns that appear in X, or more

formally,
L(X):= |_| {p e A" 3z X, st.pc x} (2.1)

=1

We will denote the set of square patterns of a fixed length ¢ as
L(X,0):= {p e AL 3pe X, st p = x|[[174]2}. (2.2)

A dictionary L of size £ and dimension d over the alphabet A is a subset of ALY
A dictionary is a specialized subset of patterns. We say that a dictionary L of size £ is a
sub-dictionary of L' of size ¢’ (where both have the same dimension d), if every pattern
of L is a sub-pattern of a pattern of L'. Given a dictionary we can define the set of all
configurations obtained by the infinite concatenation of patterns of this dictionary. In

fact, this subset is a subshift as described below.

Definition 8. The concatenated subshift of a dictionary L of size ¢ and dimension d is
the subshift of the form

@y = |J ()o@,

ue[1,£]% vezd
- {x e N A): Jue [1, 07 Yve Z4, (0" (@) € L}.

Another important concept concerns the admissibility of a pattern. Given a set of

forbidden patterns, we define local and global admissibility.

Definition 9. Let F < AILPI for a fixed D > 2. We say that a pattern w e ALE"
where R > D is locally F-admissible if

O'u(.l’)|[[17D]]d ¢F, Yue [[O,R — D]]d,

that is, we do not find a pattern of F inside the pattern w. We say that a pattern
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w e AR is globally F-admissible if there exists z € Y4(A, F) such that
{L'|[[1,R]]d = Ww.

It is clear that if a pattern is globally admissible, then it is locally admissible, but
the reverse it not always true. The next proposition assures that for every d-dimensional
subshift, every really large pattern that is locally admissible has a central block that is
globally admissible.

Proposition 2. Let X = %4(A, F) be a subshift given by a set of forbidden patterns F.
There exists a function R: N — N so that if ¢ € AIFRM-EMI? ig Jocally admissible, then
P = ql[—n,n]a, the restriction of ¢ to Alnnl? g globally admissible.

Proof. The proof follows from a standard compactness argument as described in Lemma
4.3 of [5] in a more general setting.

Suppose such a function does not exist, then there exists n € N such that for every
m = n there exists a locally admissible pattern gy, of size m such that p,, = g |j—nnpe i3
not globally admissible. Let z,, € ¥¢(A) be a configuration such that T |[=m,m]d = @m- By
compactness of $¢(A), we may extract a converging subsequence Tm(k) Which converges
to some 7 € A%’

We claim z € X. Indeed, if not, there is a forbidden pattern which occurs somewhere
in z. In particular, there is k € N such that the pattern is completely contained in
[=m(k), m(k)]?. Tt follows by convergence of the sequence {x,,)}ren that eventually
every pattern g, contains the forbidden pattern. This is a contradiction because gy, is
locally admissible. Hence = € X.

As 7 € X, then Z|[_,, ,« is globally admissible, but this is equal to p,, for some m € N
and thus not globally admissible. This is again a contradiction. Therefore the function
R must exist. It is non-decreasing as subpatterns of globally admissible patterns are

themselves globally admissible. O

2.2 Entropy and variational principle

We establish here some of the most important results about entropy of subshifts. The
results here were developed by several authors in different approaches and they were able
to generalize these results even for amenable group actions and non-compact configuration
spaces. Here we focus on the Z%-action over a compact configuration space 24(A) = A%".

We always consider 24(A) = A% and 0 = (0™),ez¢ the shift action. We will denote
by M1(X4(A)) the set of all probability measures defined on $¢(A4) and by M, (24(A))
the set of shift-invariant probability measures. Here we always consider (3¢(A), B, u)

as a probability space where B is the sigma algebra generated by the cylinder sets and

p € My (34(A)).
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Definition 10. A collection P = {Py, P, ..., P,} of measurable sets is a finite partition of
YA(A) if

o P,nP; = fori# j; and
° UiPi:Zd(A).

For a probability space (X%(A), B, i) we call a collection of measurable sets P = { P}, P, ..., P,}

a p-partition if
o u(F;) >0, Vi

o (P P;) =0, fori+# j; and

u <Ed(A)\OP¢> = 0.

One of the most important concepts in thermodynamics is the entropy of a system.
Here we present the definition of Shannon entropy and some useful properties that we use
in this text. The definitions and results can be found in Keller [22] and Kerr-Li [24].

Definition 11. The information of a p-partition P = {Py, P, ..., P,} is the function
Ip : X% (A) > R defined as

— 3 log(u(P)) - Lp(a).

PeP

The entropy of a partition with respect a measure p is given by

n

H(P.g) = [ Ip(w)dp = = Y n(P) log(u(P)
i=1
We will use the notation H(P) = H(P,pu) when there is no confusion over which
measure we are considering in order to not overload the notation.
Given two p-partitions P = {Py, P,, ..., P,} and Q = {Q1, ..., Q,} of a configuration

space Y¢(A), we can define the conditional information of P given Q as the function
Ipio : BY(A) — R defined as

Iro(@) = — 313 log ( Pgﬂ?ﬂ)>-1m@j(x).

i=1j5=1

In the same fashion we can define the conditional entropy of P given Q with respect to a

measure /. as the value

HPIQ. 1) i= | Ipiadn = | HP.1P)du(o) (23)
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where (u2),exa() i the family of conditional probabilities with respect to Q. We can
also express the conditional entropy as the sum

HPIQ ) =~ 3 S (P~ Q) log (%) |

i=1j=1

As before we will use the notation H(P|Q) = H(P|Q, 1) when there is no confusion
over which measure we are considering in order to not overload the notation.

We say that a partition P’ is a refinement of another partition P if every element of
P’ is contained in an element of P. We denote as P’ > P.

We denote the common refinement of two partitions denoted by P v Q as the partition

generated by
PvQ:={PnQ;j:PeP, Q;ecQ}

For a subset S < Z? we denote by
PS = \/07“77
ueS

the common refinement of the partitions ¢ “P where v € S. A partition P is a u-
generated partition of (X4(A), B, 1) if the sigma algebra generated by P for every finite
subset S < Z% is equal to B mod .

The next lemma gives us the Jensen inequality that will be used many times.

Lemma 1 (Jensen’s Inequality). Consider I < R an open interval and ¢ : I — R a

concave function. If f : ¥%(A) — I a p-integrable function, then the integral of 1 o f is

well defined and
w(jfdu) > [vo fin

If we consider ¢ : [0,1] — R defined as

—zlog(x), 0<x <1
0, xz =0,

then ) is a strictly concave function and therefore we obtain

(G <z"] )\z‘%‘) = i&@/)(%‘), (2.5)

where z; € [0,1] and A; > 0 for each ¢ € [1,n] with }" A, = 1. We will use this
inequality for the proof of the next lemma which presents some important properties of

the entropy.
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Lemma 2. Consider P = {P,,...,P,} and Q@ = {Q1,Qs,...,Qn} two p-partitions of

24(A). Then

(1) 0 < H(P|Q) < H(P) < log|P|;
(it) H(Pv Q) = H(P) + H(Q|P);
(é11) H(P) < H(Q) + H(P|Q);
(iv) if Q > P, then H(P|Q) = 0.

(U) if @ > P, then H('P v Q) = H(Q) > H(P),

Proof. (i) The inequality 0 < H(P|Q) follows from the definition of the entropy of a
partition. Now we will prove that if R = {C1, ..., (i} is a partition such that Q > R

we have that
H(P|Q) < H(P|R).
Denote
1(Bj N Cy) p(Ai 0 B;)
1(Cr) 1(B;)
As we are considering Q@ > R, u(B;j n Cy) is equal to u(B
B; € Cy or B nCy, = @. Thus for a fixed ¢ and k&

Akj =

and Tji =
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If we take R = {24(A)} the trivial partition, we obtain H(P|Q) <

) log (u(B N Q;)

(2.6)

;) or 0, because either

H(P).
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In (2.5) if we consider x; = u(P;) and \; = 1/n we obtain that

(1) = ()
n n n

= 9 %i#(ﬂ))

- L),

and therefore H(P) < log(n) = log|P|.

(17) Each element of the partition P v Q is of the form P n Q) where P € P and Q € Q.
Then

IP\/Q('I) = - 2 Z log PﬁQ 1Pr\Q("L‘)

PeP QeQ

- 3 S (M0 P“)Q) u(P)) +Lrngle)

PeP QeQ
- 23 1og( )@) Lol ;};glog ) Lpagle)
L (520 1t Fo

Ipo(x) + Ip(x).

By integrating with respect to a measure p we obtain that
H(Pv Q)= H(P)+ H(Q|P).

(77i) By the previous items we obtain that

H(P) = H(PvQ)-H(Q|P)
H(P v Q)
H(Q) + H(P|Q).

N

(iv) For any two partitions P and Q, we have

HPIQ) = Y Y - Pleog(%)

PeP QeQ

i ( 5<5>Q)>

PeP QeQ

If we consider that @ > P each ) € Q is completely contained in an element P € P.
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Hence each term of the sum above is equal to zero because either u(f(g)@) =0 or
% = 1, and in both cases we have that
(PAQ)
110 3 Ty o (H252) o
Foh &b 1(Q)
(v) It follows from the items (i7i) and (iv).
O

Lemma 3. Consider (X%(A), B, i) a shift-invariant probability space and P a finite par-
tition of ¥¢(A). The dynamical entropy relative to the partition P is given by

h(P, p) := inf
which is well defined, where A,, := [-n,n]¢ for n > 1.

Proof For each n > 1 we will consider A, := [-n,n]? = Z%. For a fixed m > 1 we denote
A, = [-m,m]? and I,,, = 2m + 1. Consider the set

Vii={pe (nZ)’: (p+An) " A, # 2}

Then

= U (A, + ).

ueVn

Note that [A,| = [Vi| - |Am| < [Apsm|- We obtain that

H(PY)

Z H(o “P*m)
uEVn

V| H (P

[Ansml 7 mon
H(P>m),
A

H(P™)

NN

N

and therefore

1
| A

A 1
lim sup H(P*) < limsup A m |—H(73A ™) =

n—-+00 |An| n—+00 | | |Am|

——H(P*m).

The last estimate holds for every fixed m, thus we conclude that

H(P*) < inf LH(PA ™) < lim inf —H(PA )-

lim sup m>0 |Am| M +00 | m|

n— -+ |An|
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Theorem 2 (Shannon-McMillan-Breiman). Let (34(A), B, i) a shift-invariant probabil-
ity space and P a finite partition of X¢(A). Then

log(1(P*)) = h(P, )

Jm - A

pointwise a.e. and in L.

The previous theorem has already been proved for a larger class of group actions only
with the assumptions that the group is amenable [29, 24, 35]. The proof for Theorem 2
as stated here can be found in Krengel [26].

Now we define the Kolmogorov-Sinai entropy also called dynamical entropy of a mea-

sure.
Definition 12. The entropy of the space (34(A),B, ), also known as the dynamical
entropy of p is given by
h(u) = sup {h(P,u) : P is a finite partition} .
P

Definition 13. The topological entropy of a subshift X = X(A) is given by

By (S (A)) = Tim —— log(|£(X, 20 + 1)]).

n—-+0o0 |An|

In Chazottes-Meyerovitch [20] they establish important results about the characteri-
zation of the entropy for multidimensional SF'T. Next we present the variational principle

for the entropy.

Theorem 3 (Variational Principle). Let X < %¢(A) be a subshift, then

hiop(X) = sup h(p)

I
where the supremum is taken over the set of shift-invariant probability measures M, (X%(A)).

The Variational Principle as stated above has already been proved for amenable group
actions in [24]|. One important result for the characterization of the dynamical entropy of

a measure is given by the following theorem.

Theorem 4 (Kolmogorov-Sinai). If P is u-generated partition for (3¢(A), B, u) and
H(P) < 400, then
h(p) = h(P, ).

Proof. For any finite subset we have that

h(P*, ) = W(P, ). (2.7)
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Indeed, consider a fixed N > 0 such that A © Ay, then we have that

1
A _ : A\Ayp
. 1 A

An+N| 1 A

< H P n+N
TN T P

= h(P,n)
< h(PA )

since PA > P.
Now consider P a finite pu-generated partition with finite entropy and Q a finite par-

tition. From 2.7 and Lemma 2 we obtain that

WQp) < h(PY,p)+ H(QIP™)
(P, u) + H(QIP*).

As lim,, o H(Q|P*) = H(Q|B) = 0, it follows that for an arbitrary partition Q, is true
that h(Q, u) < h(P, u), and therefore the result follows. O

2.3 Potential

A function f : X¢(A) — R is upper semi-continuous if the set {x € L4(A) : f(x) < c} is

an open set, for every c € R.

Definition 14. A potential ¢ : X¢(A) — R is regular if

+00

Z n? 16, (¢) < 40,

n=1
where 0, () := sup{|p(w) — ¢(v)] : w,v € ZU(A), wls, = vla,}-

We say that a potential ¢ has finite range if there exists ng € N such that ¢, () = 0,
for all n = ng. If a potential has finite range, then it is regular.

Next we define the pressure of an upper semi-continuous potential, the notion of an
equilibrium measure and recall several results that characterize the equilibrium measures

for a certain class of potentials.

Definition 15. The pressure of a upper semi-continuous potential ¢ : ¥4(A) — R at

inverse temperature /3 is the value

P(Byp) = sup {h(ﬂ)—jﬁsﬂiﬂ}-

peMo (34(A))
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Definition 16. An equilibrium measure for a potential ¢ at inverse temperature [ is a
measure fig, € M, (3%(A)) such that

P(3¢) = hipa) ~ | Bodius,

An important characterization for the set of equilibrium measures for a regular local
potential is that it is exactly the set of invariant Gibbs measures. In order to state this

result, we present one possible definition of Gibbs measures based on [22].

Remark 2. Here we will define all these notions and results for the full shift over a
finite alphabet, but these definitions and results are also valid for a more general class
of subshifts, for instance Muir [31] works with a countable alphabet in multidimensional
subshifts and Israel [21] extended to general compact spin spaces and quantum systems
for the full shift.

Consider ¢ a regular potential on ¥4(A) and denote

Pn = Z (poo'g

g€An

where A,, = [—n,n]?. We are interested in how 1, (w) will change if we alter finitely many

sites. For that, we will introduce, as in Keller [22], a class of local homeomorphisms on

S4(A).

Definition 17. Let ¢ be a regular potential defined over $¢(A). We denote by &, the
set of all maps 7 : 2¢(A) — %¢(A) such that

(r(w)); = { 7i(w;), 1€ A,

where 7; : A — A are permutations in the state space. We denote by ¢ := | J, _, &, the

n>0

set, of all homeomorphisms in ¥¢(A) that change only finitely many coordinates.
Lemma 4. (Keller [22]) Let ¢ be a regular potential and 7 € €. For n > 0 define
Ui A) >R, U=, 07—,

Then the limit
v, := lim ¥"

n—-+0oo

exists uniformly on YX(A).

Definition 18. Let ¢ be a regular local potential. We say that a probability measure



2.4. TURING MACHINES AND THE SIMULATION THEOREM 31
e Mi(X4A)) is a Gibbs measure for the potential p if
Tupt = pu-e'’

for each 7 € ¢.

The previous definition goes back to Capocaccia [9] and does not involve conditional
measures as in a more classical definition of Gibbs measure [17, 32].

As said before, there are several characterizations for a Gibbs measure (see Georgii [17]
and Ruelle [32]) and several results for the equivalence between these definitions (see
Kimura [25] and Keller [22]) even for potentials defined over more general subshifts.

The next theorem from Keller [22] gives a important characterization of the set of

invariant Gibbs measures for a regular local potential.

Theorem 5. Let 2%(A) = A%’ be the full shift and ¢ : ©¢(A4) — R be a regular local
potential. The set of equilibrium measures for ¢ is nonempty, compact, convex subset of

M, (24(A)) and every equilibrium measure is also a Gibbs invariant probability measure.

Given a potential Sy at inverse temperature S and ¢ a regular local potential, the set

of equilibrium measures is exactly the set of Gibbs invariant measures for G.

2.4 Turing Machines and the Simulation Theorem

We present here the basic concepts of a Turing machine and how we can characterize a
language based on its computability. The automaton that we call Turing machine was
first introduced by Alan Turing in 1936 and is similar to a finite automaton but with
unlimited and unrestricted memory. This model works on an infinite tape and therefore
has unlimited memory. There is a head of calculation which can read and write symbols
on the tape and move over the tape, both forward and backward. We will introduce a

formal definition of a Turing machine as in Sipser [34].

Definition 19. A Turing machine M is a 7—tuple (Q, A, T, 0, qo, 4a, g-), Where
e () is a finite set of states of the head of calculation;
e A is the input alphabet which does not contain the blank symbol £;

e 7T is the tape alphabet which contains the blank symbol § and A < T;

0:QxT —QxT x{-1,+1} is the transition function;

Qo is the initial state of the head of calculation;

qa € @ is the accept state; and
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e ¢ € () is the reject state.

The machine works on an infinite tape divided into discrete boxes on which the head
will act. If we think of Z as a bi-infinite tape filled with symbols of 7, we can express the
Turing machine M by describing the state of the head and in which box the head is.

We always start the calculation over a word defined on the alphabet A that will be
written on the tape of the machine. The other boxes of the infinite tape are filled with
the blank symbols 4. The head will start on the leftmost symbol of the word with the
initial state go. At each step of its calculation the head acts (read/write) only on the box
where the head is located. Based on the symbol that the head reads and the state of the
head, the transition function will give us which symbol the head must write in the box,
the new state of the head and in which direction the head should move, —1 if it should
move for the left box or +1 if it should move for the right box. It is possible to define
the transition function with the possibility of the head staying in the same box after a
calculation, but the definitions are equivalent.

One way of representing the transition function is by a directed graph where each node
represents a state of the head of calculation and the arrows are tagged with the rules of

the transition function. See the transition represented below.

y—y,+1

x—y,+1
_— >

Figure 2.1: Directed graph representing two rules of some transition function 9.

If the head of calculation is in the state ¢,, and it reads the symbol z, then the head
replaces this symbol by y, change of state to ¢, and move to the box to the right. If
instead the head is in the state ¢, and reads the symbol y, then the head keeps the
symbol y in that box, does not change the state and moves to the box on the right.

The calculation of a Turing machine stops when the head reaches the accept state g,
or the reject state g,. If the machine never reaches one of these states the calculation will
never stop. As said before, the calculation of a Turing machine starts over a finite word
w defined over the alphabet A that is written over the tape. If the machine reaches the
accept state after a number of valid transitions, we say that the initial word is accepted
by this Turing machine. A set of words L, also called language, is recognized by a Turing
machine if the machine reaches the accept state for each word in this set and never reaches
the accept state if the word is not in L (the machine can reach a reject state or go into a

infinite loop).
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Definition 20. A set L of words over an alphabet A is called recursive if there is a Turing
machine that recognizes it. A set L of words over an alphabet A is called recursively

enumerable if there is a Turing machine that stops its calculation only on words of L.

As said before the machine can also reach the reject state or enter in an infinite loop
that never stops. There is a special classification for the set of words for which it is
possible to define a Turing machine that never enters in a infinite loop, that is, for each
finite initial word the machine always reaches ¢, or ¢,. In this case we say that this Turing
machine decides or, most popularly found in the literature, recognizes the language L.

These two concepts of recognizability and recursive enumerability, although seemingly
equivalent, are two different notions. There are certain languages that only can be enumer-
ate by a Turing machine. Now we present an example presented in [4] of a Turing machine

that recognizes (and also enumerates) a language defined over the alphabet A = {a, b}.

Example 1. This machine stops for every word that we write on the tape and it tells us
whether such word belongs or not to the language £ = {a"b";n € N}. The input alphabet
is A = {a, b} and the tape alphabet is T = {a, b, 1}, where § is the blank symbol. We start
with the word to be evaluated written on a bi-infinite tape filled with black symbols § and
we set the head of calculation on the state gy on the leftmost symbol of the word. This
Turing machine has 9 states Q = {qo, ¢1, 92, 43, 94, G5, G6, Ga, ¢} and the transition function
0:QxT —>Q xT x{—1,+1} is represented by the directed graph in Figure 2.2.

We are representing the accept state by ¢, and the reject state by ¢,.. Note that the
transition function is not defined for every possible pair in () x T because this configuration
never occurs in the calculation process. Another important aspect is that when the
transition function goes to q, or ¢,., we are not defining the symbol substitution or the
move that the head should do, because it is irrelevant since the calculation will stop after
this iteration.

Now we give a summary of the role played by each of the eight states that the machine

can reach:

qo: This state marks the beginning of the calculation. The head of the machine begins
the calculation on the leftmost letter of the word written on the tape. If the head
reads the symbol a then the head replaces the symbol by a blank symbol, moves to
the right and also changes the state. If the head reads a symbol b then the head of
the machine goes to the reject state and the computation stops, which means that

the word written on the tape does not belongs to the language.

¢1: In this state the head of the machine goes to the rightmost symbol a of the word
without changing the symbols or the state of the machine. When the machine finds
the first symbol b the head of the machine does not change the letter, but changes

the state and moves to the right. In this state the machine goes to the reject state
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a—a,+1 b—>b1

0
+1 \ﬁ -

‘\»‘

T /

b=l a—a,—1 b—l
(D= =
U U

a—a,—1 b—b,—1

Figure 2.2: Directed graph representing the transition function for the Turing machine
that decides the language a"b".

if the head reads the blank symbol, which means that the word written on the tape
has only the symbol a.

g2t This state makes the head of the machine goes to the end of the word without changing
the symbols b’s that are written on the tape. The head goes to the last symbol b and
then when it finds the first blank symbol this state makes the head go to the left,
but not replace the blank symbol. If the head is in this state and finds a symbol
a, it means that in the word written on the tape exists the subword ba which is
forbidden in the language £, so the head goes to the reject state and the calculation
stops.

g3: This state always appears on the head when it is on the last symbol b of the finite
word written on the tape of calculation. The symbol b is replaced by a blank symbol
and the head of calculation moves to the box on the left. The symbol b is the only
possibility for the head to read.

g4t In this state if the head of the machine reads the symbol b it means that there exists
still symbols written on the tape of calculation that are different from the blank
symbol, then the head of the machine does not replace the symbol b, but moves to
the left and changes the state. If the head of the machine in this state reads the

blank symbol it means that now, on the tape of calculation, there are only blank
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symbols, which means that the machine has replaced all of the symbols a’s and b’s
in the initial finite word written and the number of a’s and b’s are the same. In
this case the machine changes to the accept state which means that the initial word
written on the tape belongs to the language £. The other possibility is that the
head of the machine in this state reads the symbol a which means that the number
of symbol a’s is bigger than the number of symbol 0’s and then the machine changes

to the reject state.

gs¢ This state makes the head of the machine reach the symbol a most to the right on

the word written on the tape. The head on this state when placed on the symbol b,
does not replace the symbol b and only moves to the left without changing the state.
When the head reaches one symbol a the machine still moves to the left without
replacing the letter, but it changes the state. If the head in this state reaches a
blank symbol this means that on the tape of calculation there are only letters b’s
which means that the number of symbol 0’s on the initial word is bigger than the
number of letters a’s. In this case the machine changes to the reject state which
means that the machine recognizes that the initial word written on the tape does

not belong to the language L.

geé: This state makes that the head of the calculation go to the leftmost symbol not blank

on the tape. If the head in this state reads the letter a, the head does not change
the state but moves to the left. When the head reaches a blank symbol this means
that the head reaches the beginning of the word that is now written on the tape. In
this case the head does not replace the blank symbol, changes the state and moves
to the right leaving the head on the leftmost symbol on the word that is written on
the tape. In this state it is not possible that the head reads the letter b because of

the construction and the way that the previous calculations occur.

¢.: This is the accept state, which means that if the head of the machine reaches this

state then the initial word written on the tape belongs to the language L.

g-:+ This is the reject state, which means that if the head of the machine reaches this state

then the initial word written on the tape does not belong to the language £

The name 'recursively enumerable’ comes from a variation of the Turing machine

presented that is called enumerator. We can think of it as a general Turing machine

attached to a printer that prints some output words that the machine has written on its

tape. An enumerator starts with a infinite tape filled with blank symbols. Each word

that this machine prints belongs to a language, that is why we say that this machine

enumerates.

Proposition 3. Given a set of words L defined over an alphabet A. The set L is recur-

sively enumerable if and only if there is a Turing machine that enumerates it.
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ﬁ_>||7_]-
b—b,—1

f—a,+1 g—b+1

o5

||_)ba+1 a—>a,+1

b—a,+1

D+

b—b,+1

Figure 2.3: Directed graph of the transition function ¢ of the enumerator for the language
ab".

The next example from [1| shows a Turing machine that enumerates the language

described in the previous example.

Example 2. We describe an example of a Turing machine that enumerates the language
L = {a",b",n € N}. The input alphabet is A = {a,b} and the tape alphabet is T =
{a,b,4,||}. This machine has five possible states @ = {qo, Ga+, v+, @o++,q} and it never
stops its calculation. The symbol || helps the machine to know when it must print the
word written on the tape. The transition function willbe 0 : Q@ x T — Q x T x {—1,+1}
given by Figure 2.3.

The following is a summary of the role played by each of the five states that the

machine can reach:

qot This state begins the work of the machine. In our case it always occurs in the bi-
infinite tape filled with the blank symbol. It marks the start of the calculation of
the machine by replacing the blank symbol by a and moving the head to the right.

gp++ In this state the machine replaces the blank symbol by a letter b. This occurs after
the head of the machine arrives at the end of the word that is written on the tape
of calculation. This symbol b will be the rightmost b required to achieve the same

number of letters b’s and letters a’s in the word written on the tape.
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q: When the machine has this state and reads the blank symbol, that is (g, ), the
machine prints the word written on the tape because it will be of the form a™b™.
Besides that, this states is also responsible to return the head of calculation to the
rightmost symbol a on the tape. The head changes the blank symbol by a marker ||
and moves to the left. The head goes to the left without making any changes until
it achieves the rightmost symbol a on the tape. The machine does not replace the
symbol a, but it changes the state and moves to the right, leaving the head over the

leftmost symbol b written on the tape.

Gas: This state is responsible for adding a new symbol a into the word written on the
tape. It is the beginning of several changes to achieve the next word in the language
a™b"™. The head in this state always reads the symbol b. It changes to an a, it

changes the state and it moves to the right.

Gv++¢ In this state the head of the machine goes to the end of the word written on the tape
without making any changes, that is, the head goes to the marker || after all the
symbols 0’s that compose the word on the tape. The head replaces it by a symbol
b, it moves to the right and it changes the state.

The action of this Turing machine can also be described by a space-time diagram.
The horizontal direction stands for the tape on which the machine works and the vertical

direction for the time evolution of the machine.

The calculation of a Turing machine, that is, the set of rules defined by the transition
function can be represented by a set of bidimensional patterns as proposed in [6]. For
example, consider the Turing machine presented in the last example and the transition
function when the head of the machine is in the state g and reads the symbol a. In this
case the head of the machine does not change the symbol a written on the tape, it changes
its state to g, and it moves to the right. This action can be represented by the following

set of 3 x 2 blocks or tiles described as below

si| a | (qar:S3) a | (qar,52) | 53
S1 (CJH,@) 53 (CJH,CL) 52 53
(C]a+,51) S2 | S3 S1 | S2 a
1 So | 83 s1 | sz | (q @)

where s1, $o, 83 € T are the symbols that have previously been written on the tape. These
four patterns describe all the possible 3 x 2 patterns that can be found in a bidimensional
representation of this Turing machine for the rule 6(q), a) = (¢a+,a, +1). We can do this
representation for each rule of the transition function. Since there is a finite number of

rules, the set that describes all the possible 3 x 2 patterns is also finite. Note that we
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i a a a a b (@1+,0) I 1 i
i a a a a (@++,b) b | f | 8
# a a a (¢a+,b) b b | f | 8
b a a (g1, ) b b b I '
f a a a (g1, 0) b b | '
f a a a b (q,b) b | I
f a a a b b (q,b) I I
g a a a b b b (gp.8) | & | ¢
§ a a a b b (gb+,8) i 8
f a a a b ) § i 3 i
i a a a (@1+,0) I § i 8 i
ﬁ a a (Qa+a b) b || ﬁ ﬁ ﬁ ﬁ
f a | (qa) b b I g i '
f a a (91, b) b I f f '
f a a b (g1, 0) I f i '
§ a a b b (q,8) # f 8
i a a b (gv+,8) # # i 8
i a a (Qb++» ||) i i i i 1 i
# a | (ga+;b) | # # # i 8
¢ | (qpa) b | # # # § 8
f a | (qb) | g f f f I
i a b (g1, 9) # # # i |8
i a | (g+:8) i Ii f Ii i f | 8
¢ | (9,8 § i i f i i f | 8
have to include the pattern
S1 | S2| S3
S1 | S2 | S3

where the head of the Turing machine does not appear in this window that we are con-
sidering.

The set of all possible patterns 3 x 2 in the alphabet
TU@xT)U(@xT x {~1,+1})

is finite. Since we are able to describe the language with patterns of the form 3 x 2, we
can take the complementary set from all the possible 3 x 2 patterns and denote it as the
set, of forbidden patterns. Therefore, it is always possible to describe the calculation of a
Turing machine by a SF'T.

Based on the computability of a set of forbidden words, we can define another impor-

tant class of subshifts.

Definition 21. We say that a subshift X < A% is an effectively closed subshift if there
exists a recursively enumerable set of words F such that X = Y(A, F), that is, the set

of forbidden words for the subshift X can be recognized by a Turing machine.
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Here we define this class of subshifts only for one-dimensional subshifts, but it is
possible to define the same class for multidimensional subshifts. In our main construction
we describe a one-dimensional effectively closed subshift by an iteration process that builds

the language of the subshift.

2.5 The Aubrun-Sablik simulation theorem

The simulation theorem in Aubrun-Sablik [2| allows us to represent a one-dimensional
effectively closed subshift as a subaction of a bidimensional SFT. We introduce some
operations in subshifts as defined in [1] so that we can give an idea of the construction
proposed by Aubrun-Sablik [2].

Let A and B be two finite alphabets and X; € $¢(A) and X, € %¢(B) be two subshifts
of the same dimension d. If we consider z; € X; and x, € X5 two configurations in each
subshift we define

T X 19 =y € LY A x B)

such that
Y = (Y;)jezs Where y; = ((21);, (z2);) € A x B.

Definition 22. Let be X; € ¥%(A) and X, < X%(B). We define the product of X| and
X, as the subshift (X; x X5) € %4(A x B)

X1><X2={l‘1 XZEQZl‘iEXi,’i=1,2}.

Note that the new alphabet is a product alphabet A x B of the two previous alphabets

but the dimension of the subshift remains the same.

Definition 23. A morphism 7 : ¥4(A) — £¢(B) is a continuous function which commutes
with the shift action, that is,

cltomr=moo", YueZe

Hedlund [18| proved that such morphisms are block factors, that is, there exists a

finite U < Z? that we call neighborhood and there exists a function 7 such that

7 AY > B

(W)iegt > T(w) =7 (0 (@)|y), VieZd.

Definition 24. Let 7 : X4(A) — 3X%(B) be a morphism and X < 3(A) be a subshift.
We define the topological factor of the subshift X by m as the subshift X, < %4(B) such
that

X, = {y e X%(B) : 3z € X such that 7(z) = y}.



40 CHAPTER 2. SUBSHIFTS

Example 3. Consider two alphabets A = {0,1,2} and B = {0,2} and define X =
Y1(A, F) where F = {00,11,02,21}. Let 7 : A — B be a one-to-one block defined as

7(0) =7(1) =0 and 7(2)=2.
We can define a morphism 7 as
m:3HA) — ZYB)
(Ti)iez = (Yi)iez = (T(5))iez-

Thus the topological factor of the subshift X by = is
X, ={xeX!(B): finite blocks of consecutive 0’s are of even length }

which is called the even shift. This subshift is not a subshift of finite type because we
cannot represent the set of forbidden patterns by a finite number of patterns, since one
needs to exclude all arbitrarily large blocks of consecutive 0’s of odd lengths to describe
it.

Remark 3. A sofic subshift is a factor of a subshift of finite type. The class of sofic
subshifts is bigger than the class of subshifts of finite type and there exists several repre-

sentations for a sofic subshift, see [28].

The following definitions of a projective subaction and extension can be generalized
for any subgroup as in [1, 19|, but for the purpose of our construction the projective

Z-subaction and extension by duplication are enough.

Definition 25. Let X < 3?(A) be a bidimensional subshift defined over the alphabet A.

We define the projective Z-subaction as the one-dimensional subshift Y given by
Y ={yeX(A): 3z e X,s.t.xlze =y},

that is, we are only considering the e; = (1, 0)-action on the subshift X.

Definition 26. Let X < X!(A) be a subshift. We define the extension by duplication of
the subshift X to be the bidimensional subshift X < %2(A) given as

X = {TeX*(A): 2|zxq0) € X and T j) = T(i 41y, V(i 1) € Z*} .

Theorem 6 (Aubrun and Sablik [2], Durand Romaschenko and Shen [14]). For every
effectively closed Z-subshift Z = X!(A) there exists an alphabet B, a Z?-subshift of finite
type X = ¥?(B) and a morphism 7 : ¥2(B) — ¥?(A) so that

1. The topological entropy of X is zero.
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2. The action of e; = (0,1) on X, < ¥2(A) is trivial, that is, the restriction of the
action of the subgroup {0} x Z is the identity on X.

3. The projective Z-subaction of X is equal to Z, that is, the one-dimensional effec-
tively closed subshift Z can be seen as a Z-subaction of the topological projection
of a bidimensional SFT X.

The proof of this theorem is constructive and it uses several different elements to
construct the final subshift. Among the techniques that they use are the representation
of Turing machines via a space-time diagram as in the Example 2 as proposed by Berger [6]
and the substitution theorem by Mozes [30]. The final subshift is built as four different
layers with four different alphabets that are combined in order to form a really large
alphabet in which it is possible to describe a finite set of forbidden patterns that defines
a subshift that simulates our first subshift.

As said before, the subshift of finite type X in the Aubrun-Sablik construction [2] is
composed of four layers, that is, it is a subshift of a product of four subshifts of finite
type given by a finite number of forbidden patterns which impose conditions on how the

layers superpose. See Figure 14 of [2|. The layers are:

1. Layer 1: The set of all configurations = € A% obtained by the extension by dupli-

cation as in Definition 26.

2. Layer 2: Tgriq A subshift of finite type extension of a sofic subshift which is gener-
ated by the substitution given in Figure 3 of [2]. The sofic subshift induces infinite
vertical “strips” of computation which are of width 2" for every n € N and occur

with bounded gaps (horizontally) in any configuration.

3. Layer 3: Mpomia A subshift of finite type given by Wang tiles which replicates the
space-time diagram of a Turing machine which enumerates all forbidden patterns of

X and communicates this information to the fourth layer.

4. Layer 4: Msearcn A subshift of finite type given by Wang tiles which simulates
a Turing machine which serves the purpose of checking whether the patterns enu-
merated by the third layer appear in the first layer. “responsibility zone” which is

determined by the hierarchical structure of Layer 2.

The rules between the four layers described in [2| force the Turing machine space-time
diagrams to occur in every strip, and to restart their computation after an exponential
number of steps. This ensures that every configuration restarts the computation every-
where, and that every forbidden pattern is written on the tape by the Turing machine
in every large enough strip. The fourth layer searches for occurrences of the forbidden
patterns in the first layer and thus discards any configuration in the first layer where one

of these patterns occurs.
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Based on their construction and the objects that we will define later, it will be possible

to have some important estimates.



Chapter 3
Main Construction

In this chapter we present the main construction that allows us to define our locally
constant potential. First we define a one-dimensional effectively closed subshift generated
by an iteration process that defines the language of this subshift. We prove that this
subshift is in fact effectively closed. We prove also some important properties. Next we
apply the simulation theorem of Aubrun-Sablik [2] in order to get a bidimensional SF'T
that simulates our initial subshift. We also prove some properties for this subshift and

define a new coloring of this subshift.

3.1 One-dimensional effectively closed subshift

Now we present a general lemma that we use in our construction. It gives us certain
properties based on how we define the iteration process that defines our one-dimensional

subshift. See Definition 8 for concatenated subshifts.

Lemma 5. Let A be a finite alphabet. Let ({)r=0 be a strictly increasing sequence of
integers, and (Ly)r=0 be a sequence of dictionaries of size (¢ )x=0 over the alphabet A, say
Ly < A% We assume that, for every k > 0, every word in Ly, is the concatenation
of words of L;. Then

1. VE=0, (Lp) S (L),

2. X := (poollny = (A, F) where F = | |,_, Fi and F is the set of words of length

/;, that are not subwords of the concatenation of two words of L.

If we assume in addition that every concatenation of two words in L; is a subword of the

concatenation of two words of L1, then

3. for every n = 0, the concatenation of two words of L, is a word of the language of
X.

43
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Proof. For this proof we use the following notation: for each k > 0 and i € Z we denote
Ey(i) € Z as the set
Ep(i) :==[i,i+ b, — 1] < Z.

Consider = € (Lj41). By definition there exists j € [1, £x,1] such that

$|Ek+1(j+1+zzk+1) € Ly, VieZ

that is, x can be seen as an infinite concatenation of words in L, ;. By our assumptions
every word in Ly, is a concatenation of words in Lj. Then z € (L) and that means
(Li1) S (L.

Now we prove that X = Y'(A, F) where F is the set of words of length ¢, k > 0,
that are not subwords of the concatenation of two words of L. For a fixed k > 0, denote
Fi. the set of words of length ¢, that are not subwords of the concatenation of two words
of Ly. In this case the set F}, is finite and if X'(A, Fy) is the SFT generated by the set of
forbidden words Fy, it is clear that (L) = X!(A, Fy). By our assumptions (L) S (L)
for every k > 0, thus

(VL) = SUA, F).

i>k
Therefore

k=0 k=0

For every k = 0, define the interval

o[- |5 1]

If we consider z € X!(A, F), then x|;, is a subword of length ¢; of the concatenation
of two words of L;. For every k£ € N we can assure that there exists a configuration
y* € (L) such that z|;, = y*|;,. We may take a subsequence of indices k such that
(y")x=0 converges to some y € AZ. Since y* € (L;) for every k > j, by taking the limit in
k we obtain y € (L;), for every j > 0, thus y € X. For every k > j, as I; < I, we have
z|;, = y¥|;,. Since (y*)r=o converges to y, x|, = yl, for every j = 0, thus z = y € X.
Therefore X = S1(A, F).

Consider two words uy, v € Li. There exists a configuration z* € (L;) such that

k
Z |[[*5k75k*1ﬂ = UpUk-

If the concatenation u,vg can be found in a word of ug,1 € Li,1, then it is enough to assure
there exists a configuration x € X that x|j_s, s, —1] = ugvy and therefore uzv, € L(X).
If upvy is not a subword of a word in Ly, 1, then by our assumptions the concatenation

uiv, can be seen as a subword of a concatenation of two words in L,,1, that is, there
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exists Ugy1, Vg1 € Liy1 such that upvp = upi1vpye;. We can assure again there exists
¥+l e (L}, 1) such that

k41 _
x |[[*5k+1,5k+1*1}] = Uk+1Vk+1,

and therefore the word u,v; appears in the configuration z**!. Hence we assure that for
every j = k we can find a configuration 27 € (L;) and two words u;,v; € L; such that
l’j|[[_gj7gj_1}] = u;v; and upv, = u;v;. We may take a subsequence of indexes j such that
27 converges to some z € X. As we have kl_lgloo {;, = +00 we obtain a configuration x € X

such that uzv, = x € X and therefore uivy, € L(X).
0

First we describe a one-dimensional construction that satisfies all of our previous
hypotheses and from there we describe our bidimensional elements. We use the notation
with a marker ~ for the one-dimensional elements. Consider an alphabet A = {0,1,2}, a
sequence of integers /i, sets of blocks Ay, By = Al (or /U[l’é’f]]) and two auxiliary sequences
of integers (Ng)g=o and (N})r=0. We impose assumptions on these sequences in order to
properly build our example. We assume that N; > 4 and N}, is a multiple of V], for each
k= 0.

Notation 1. For each k& > 0 the sets flk and Bk will be
Ak = {a’k7 1Zk} Bk = {bku 2£k}7

where ay, b, € A1 We define these blocks by an iteration process described below.
Start with 5 = 2, ag = 01 and by = 02, then we have

Ay ={01,11} and B, = {02,22}.
If kK > 1 is odd we define

ap = Qp_10p—1 "+ ap—, and
.

J

~

N-times (3.1)
by = by 20Dy
and if £ > 2 is even we define

ay = ak_ll(N’“_z)K’“—lak_l and

(3.2)
b= bbby
N,-times

In our iteration process, for every k > 0, the sets Ay, and By, are formed by two blocks
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of length ¢, and we always have 1% € A, and 2% € B,. The length of the blocks at each
stage is given by
fk = ngk—l-

Notation 2. Now we define the sub-dictionaries A} and Bj, which are made of subwords
of length ¢, = N - {;_; that are either initial or terminal words of a word in A, and By.
Formally,

1. if k is odd, A, = {al, 1%}, Bl = {b,b! 2%},

ay = ag 1ap_1- a1, Nj times,
by := by 20V ~Db—1 and (3.3)

bg ‘= 2(N1;_1)€k—1 bi_1:

2. if k is even, Al = {a},a? 1%}, Bl = {b, 2%},

7 _
aj, = g 1= Dl—1

al = 1Wk=Dh=10, 1 and (3.4)

bk = bkflbkfl e bk,h N]; times.

Notice that, as Ny is a multiple of N7, we have (A;) < (A1) and (B,) < (B.).

Remark 4. For each k € N, we denote the block of ¢, consecutive 1’s by 1; := 1% and,

in a similar fashion 2, := 2%%.

The frequency of the symbol 0 in any word @ e A4 of length ¢, is denoted by

Foi) = écard({i e [L 6] : %) = 0}). (3.5)

We denote in the same fashion the frequency of the symbol 0 in words @ € AN ag

() = icard({i e [L.E] : i) = 0}).

Let f, f2 (vesp. fi, f/P) be the largest frequency of the symbol 0 in the words of
Ay, By (resp. fl;ﬁ, é,’c)

Lemma 6. Let Aj, and B, be the two languages defined in Notation 1, A} and Bj, those
defined in Notation 2. Then
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1. if £ > 1 is odd, then
rA A A B 2 g 'B 1 .5
k= fk = fkqa fk = ﬁkfkfla k= F};fkqa

(k+1)/2 9 (k+1)/2 9
A _ A B _ B
= I1 ()i = 11 (=) #

i=1 =1

with N, = 2;
2. if k > is even, then
fA:ifA IA:ifA IB:fB:fB
k ka k—1> k ]vé k—1> k k k—1>

k/2 9 k/2 9
#-T1() i s =11(5)

1=1 i=1

Consider Ly := Ay | | By (resp. L}, := At | | B,). We will say that two words a, b e A’
overlap if there exists a non-trivial shift 0 < s < ¢ such that the terminal segment of
length s of the word a coincides with the initial segment of the word b of the same length,
or vice-versa by permuting a and b. Note that we exclude the overlapping where a and b
coincide.

The next three lemmas are technical lemmas that concern some important properties
about the possible types of overlapping in the objects that we described before. The first
one ensures that there is no possible overlapping between two words one of Ay, and the
other one from By, (resp. A} and Bj). The next two lemmas characterize the possible

overlaps between any two words at each stage k of the iteration process.

Lemma 7. In our construction described above, a word from A) and a word from Bj,

never overlap, neither can a word from A, and a word from B, overlap.

Proof. Every word in zzlfc ends with the symbol 1 which does not appear in any word in
B,’Q Conversely, every word in B,’g ends with the symbol 2 that does not appear in any

word in fl;c. The same argument is valid for the words in A, and By,. ]

The next lemma is formulated for the case k even, but a similar lemma holds for the
case k odd. First we need to fix some notations. Consider £ > 1 an even integer and the
even rules described in (3.2) and (3.4). We denote the initial segment of length ¢;_; of
a and a}, by al_,; the terminal segment of length ¢; ; of a; and a} by al _;; and the

remaining segment 1(V+=D%-1 that we call marker. We can represent

N —2))_
ap = aj_y 1M1 gy
——

I T
k1
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7 !
ap = ap_y 10 V%1and  gf = 1N Db
— —_—

I T
al_, marker marker al_,

We define similarly the initial and terminal segments of b}, and denoted as b!_, and

bl |, respectively, as shown below

’ (N, —2)
A N
~—— ~——
bl bT
k—1 k—1

Note that af , =al | =ag 1 and bl_, = bl | = b} ;.
Lemma 8. Let k£ > 1 be even, a; € Ay and by, € By, as described in (3.2). Then

1. two words of the same type a; can only overlap on their initial and terminal segment,

that is, al | of one of the two words overlaps al , of the other word ay;

2. on the other hand, two words of the same type b, can overlap exactly on a multiple

of by_1 or they have an overlap of length ¢;_5 between bl | and b} .

Proof. 1. We consider a non-trivial shift 0 < s < ¢, and a word w € Als+4] made of

two overlapping ay:

ap = w|[[17gk[[, ag ;= w|s+[[17gk}], Vie Hl,gk]], &k(s + Z) = CLk(Z)

We assume first that 0 < s < ¢;_;. Then on the one hand af_l of a;, starts with
the symbol 0 at the index i = (Ny — 1)¢;_1 + 1. On the other hand the symbol 1
appears in aj at the indices in the range [, 7] := [s + fs—1 + 1,5 + (N — 1)l5_1].

Since i € [i, j] we obtain a contradiction.

We assume next that ¢;_; < s < (Ny —1)¢x_;. Then on the one hand the symbol
1 appears in a; at the indices in the range [7,7] := [e—1 + 1, (Ny — 1)¢s_1]. On
the other hand a; starts with the symbol 0 at the index « = s + 1. We obtain a

contradiction.

We conclude that s should satisfy s = (Ny — 1)¢_1: two words of the form a can

only overlap on their initial and terminal segments.

2. We notice that £ — 1 is odd and b;_; has the same structure as a; in the first item.
Two words of the form b, ; only overlap on their initial and terminal segments.
Then b,_; cannot be a subword of the concatenation ¢ = b;_;b,_; of two words by_;
unless b;_; coincides with the first or the last b;,_; in ¢. If b, and l;k overlap, either
b, has been shifted by a multiple of ¢,_y, s € {€x_1,20k_1,..., (N, —1)f;_1}. Note

that £ — 1 is an odd number, then b;_; has the same behavior as a; described in
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the previous item. Therefore, it is only possible to have an overlap of a word by_»
of length (;_; between bL_, and bl_,.
O

Lemma 9. Let £ > 1 be an even integer and a) and a} as described in (3.4). Then the

following holds:

1.

two words of the same form a) never overlap; the same is true for two words of the

same form ay;

. two words aj and aj overlap if and only if they overlap either partially on their

marker or partially on their initial and terminal segments, respectively.

Proof. 1. We consider a non trivial shift 0 < s < ¢, and two overlapping words of the

form a, shifted by s. Let be w € A»*+%) such that

ay =wlpey, @ = wleapey,  Yie [LG], ag(s +1) = ay(i).

We assume first that ¢,_; < s < ¢,.. On the one hand, a; starts with the symbol
0, w(s + 1) = 0; on the other hand, w|[[gk71+17g;c]] contains only the symbol 1. Since

s+ 1€ [lx—1 + 1,¢,] we obtain a contradiction.

We assume next that 0 < s < ¢,_;. We observe that k¥ — 1 is odd and the two
initial segments al_, of a} and @), are of the same form as by, in the second item.
They overlap on a multiple of words of the form a;_s or at their initial and terminal
segments. Necessarily s > [;_5 = 2. On the one hand, the initial segment of @, ends
with the symbols 01, w(s + £ 1 — 1) = 0, on the other hand, w|y, 1] contains

only the symbol 1. Since s + ¢,_; — 1 € [x—1 + 1,¢,] we obtain a contradiction.

A similar proof works for @) instead of aj.

. We divided our discussion in two cases. We consider first the case,

ap =wlpey, @ = wlapey,  Yie [L4G], ag(s +14) = ai(i).

We assume that 0 < s < £;_;. The terminal segment of @} is a word like a;_; and
then it starts with the symbol 0 which appears in w at the index s + (N, — 1)f;_; €
[¢k—1,¢.]. On the other hand w|[[gk717g;c]] contains only the symbol 1. We obtain a
contradiction, then necessarily ¢, < s and the two words aj, and aj, overlap (partially

or completely) on their markers.

We consider next the case,

ay =wlpey, @ = wlapey,  Vie [LG] a(s +19) = ai(i).
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Assume that 0 < s < (N —1)¢;_;. The initial segment of @], starts with the symbol
0 which is located at the index s + 1 € [1, (N} — 1)f;_1] in w. On the other hand
w|[[17(lec_1)gk_1]] is the marker of ] and contains only the symbol 1. We obtain a
contradiction, then it is only possible to have s > (N; — 1){¢;_;, which means that
the terminal segment of a) overlaps with the initial segment of aj. Both segments
are copies of a,_; and as we consider £ > 2 even, k£ — 1 is odd and aj,_; has the
same behavior described in Lemma 8 item 2. Therefore the possible overlap can
occur (partially or completely) on their initial and terminal segments by the rules

described as in Lemma 8 item 2.
O

As defined in (3.24) we consider for each k > 0 the concatenated subshifts generated
by the sets Ly, Aj, and By, that are denoted as (L;), (A;) and (B;), respectively.
By the definition of these subshifts we have that for each k£ > 0

(Ary € (Aps1),  (Biy € (Bri1)

and
(Lis1y < (L.

Lemma 10. Consider the iteration process described in Notation 1 and Notation 2. If
we denote Ly, = Ay | ] By and L = flz | ] é,’g for each k € R, then

(Liy = (L.

Proof. 1f we consider the iteration process described in Notation 1 and Notation 2, then
Nj, divides Nj. More than that, every word of Ay, By is obtained as concatenation of
words of /122, B,’g respectively. Therefore, the concatenated subshift <Ek> is a subset of

<I~/§c>, since every pattern in E;c is a subpattern in Ly. a

We consider

X =L (3.6)

keN

The construction presented here satisfies all the hypotheses of Lemma 5, therefore X =
S1(A, F) is the subshift generated by the set of forbidden words F = | |,, F(£), where
j}(fk) is the set of words of length ¢ that are not subwords of the concatenation of two
words of Ly.

From now on we give a specialized algorithm which produces our auxiliary sequences
(Ng, Uk, N; and ¢.) and also the choice of 5y for each k. We introduce two integer numbers

pit and p2 that count the number of symbols 0 in the words a;, and by,

pe = Gfid pe = O
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Definition 27 (The recursive sequences). We define the partial recursive function S :
N — N
(fk, ﬁka p?a Pf) = S(Ek—la ﬁk—la pﬁ—la pl?—l)'

satisfying £y = 2, By = 0, pi' = p§¥ = 1 and defined such that the following holds:

In the case k is even:

k A
1. N .= [%] 0= Nt s,
Pr—1
62_ Qk%
2. ﬁk = [ k; 5 —|,
(Pr-1)
kB
3. Nk = NI [7], fk = Nkfk—la
g Nllcpkal

4 pit =2p0, pE = Niply,
In the case k is odd:
5. (Uy, Br, pi, pB) are computed as before with A and B permuted.

The following proposition assures there exists a Turing machine that enumerates all
the forbidden patterns of X, which means that X is an effectively closed subshift. More
than that, this Turing machine can be constructed such that it enumerates the forbid-
den words in increasing length, it gives an exponential upper bound for the number of
steps to enumerate every forbidden word up to a given length and it also gives a trivial
reconstruction function (R(n) = n) that will be defined later (Definition 30).

Proposition 4. Let X be the subshift defined as in (3.6). Let F := | | . F(n) where
F(n) is the set of words of length n that are not sub-words of the concatenation of two
words of Ly for some k > 0 such that ¢, > n.

Then the following holds:

1. X = XY(A, F).
2. For every n > 0, there exist unique integers k > 1 and p > 2 satisfying
Uy <n </l and (p—1)l_1 <n < ply_.

We denote F'(n) as the set of words of length n that are not sub-words of any word
of the form wi{; where w7 is a terminal segment of w; of length (p + 1)f,_1, 3 is
an initial segment of ws of length (p + 1)¢,_1, and w; or ws are either one of the

words ag, bg, 1, 25. Then
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3. There exists a Turing machine M that enumerates all patterns of F in increasing
order (words of F(n) are enumerated before those in F(n + 1)). If we denote
by 7: N — N the function 7(n) that counts the number of steps that M takes
to enumerate all patterns of F up to length n, then 7(n) < P(n)|A[", for some

polynomial P(n).

The proof for the previous proposition is in Appendix A.
The next lemma gives that the sets £((A.), £x) and £({(By), ) can be seen as the set
of all possible words of length ¢, that can be seen as a subword of a concatenation of two

words of Ay and By, respectively.

Lemma 11. Given our construction of flk and Bk we have that for each kK > 0
LA, ) = {w e AV 2 30, ay € A, such that w alag} (3.7)

and
LB, ) = {w e A4 . 3, by € By such that w © blbz} . (3.8)

3.2 Bidimensional SFT

We can apply the construction of Aubrun-Sablik to our one-dimensional effectively closed
subshift X = Y'(A, F) and obtain a bidimensional SFT X < Y2(A) defined over an
alphabet A = A x C. We are using the symbol A over the objects that are defined for the
SET generated by the Theorem 6. Let F < AILDI pe a finite set of forbidden patterns
such that

X = 2%(A, F) (3.9)

as the corresponding subshift generated by F.

Definition 28. Let V, be the set of forbidden patterns in X?(A) that are not vertically
aligned, that is,
V, = {pe AN p(1,1) 4 p(1,2)}.

Let 7 : A — A defined as

T A=AxC — A (3.10)
(a,¢) = 7(a,c) =a '
and let 7 : ©2(A, F) — 22(A) be the projection defined as
X =22AF) — YA (3.11)
xr 7T(,I‘) = (ﬁ(x(Z’J)))(z,j)EZQ . ‘
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We denote

A

Xy = {7‘(‘(1’) :xeX}.
Note that X, € %2(A,V,) since F contains all the patterns that are not vertically aligned.

Remark 5. Here we always use the expression "vertically aligned" to express the vertical

alignment over the the first coordinate of .fl, that is, over the one-dimensional alphabet

A.

By Theorem 6, the projective Z-subaction of X, is equal to X, which means that
XW = {SL’ S 22(./1, V*) . 'T|Z><{0} € X}

Definition 29. We define A, < AIM%I" as the bidimensional dictionary of linear size £},

of vertically aligned patterns that project onto fl;, formally defined as
K, o= {pe AVSE  35e A, st ¥, (,5) € [1L 6] pli. ) = 5(0)}.

B, < AIGP is defined similarly. We use the notation 7, : A, — Al (resp. m, : B}, —
B!) to represent the projection of a square pattern p € A, (resp. B.,) to its word p € A/

k J ks ks k
(resp. Bj,) that defines it.

We consider a large pattern p € A and translates w of small squares of size 20,
inside this pattern that are labeled by vertically aligned words of fl;c or B,’v Let k > 2,
n > 20,, and p e A", We denote

I(p,0.) = {u e [0.n =217 : 0" () e e € (X 2@;)} , (3.12)

A(p, ) = {u € [0,n— 612 : 0" (p) | € [1;*} (3.13)
and

T 6) = | w+nLal?). (3.14)

uelA (p.2},)

We define IZ(p, £,) and JB(p, £;) similarly with replacing A}, for B., in (3.13) and (3.14),
k k o o

respectively.

Lemma 12. Let k> 2, n > 20, , p€ AL and the sets defined above. We will denote
7 =: (0,,0,) € N2. Then J4(p,£}) n JB(p,(},) = & and for each u € I(p,(})

u+ e Jp.0)| |77 (. 6).

Proof. The fact that J4(p,¢,) and JB(p, ;) do not intersect is a consequence of Lemma
7. Let be u € I(p,£;) and w. = 0*(p)|p2¢j2- There exists w € L({Ly),20,) such that
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w,(i,§) = w(i) for all (i,7) € [1,26,]%. By definition of (L), w = wyw, is a subword
of the concatenation of two words of Ly. Note that, by Lemma 10 (L;) < (L}). Hence
LTy, 26) = £(LY, 26,)

On the other hand, a word in Ly, is either a word of Ay, or a word of By. As <[lk> c <[l§€>
and (By,) < (B}, w; and w, are obtained as a concatenation of words of A} or B). There

exists 0 < s < ) such that
Js(w)|[[17gu] € A; |_| éllg
Then
u+(s,s) e (p, 6) | [T (p. 01,

and therefore
utmeJp )| |75 (. 6.

20y, n

n

Figure 3.1: In the figure we are taking a square pattern p € Alon” ghown as the biggest
square. We are considering that u € IA(p, ;) and therefore the patterns located in the
dashed square of size 2¢; belong to L£(X,,2(,). We know that the pattern located in the

most inner box of size ¢} belongs to A} | | B).. The most inner dot represents u + 7.

Lemma 13. Let £ > 2 be an even integer, n > 2(,, and p € AP Let 14(p, 0,
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JA(p, 0,), I%(p, 01), JB(p,¢}) be the sets defined in Lemma 12. Define
E4(p,0,) = {ve Jp,6,) : p(v) =0}, K®(p,6;) = {ve J%(p,€,) : p(v) = 0}.  (3.15)

Then
1. card(K2(p, 6,)) < (1 = N7Y) " card(J2 (p, €)) f2 1,

2
2. card(K4(p,¢})) < ﬁcard(JA(p, )ity
k

Proof. Let k > 2 even, n > 2(; and a fixed p € AL - To simplify the notations, we
write I4 = I4(p, £},), JA = JA(p, ;) and so on. As the symbol 0 does not appear in the
markers 1Vile—1 e A! and 2Vi%-1 € Bi we only need to consider the subset of I (resp.
I7) that corresponds to the translates u € [0, —¢;]* and the subwords w, = o*(p)|1.¢,2
satisfying 7, (w.) € {a}, al} (resp. m.(w,) = b).

Item 1. We first enumerate I” = {uy,us, ..., ug}. Let be uy, = (uf,ul) € Z*. Let
H
JP = U Jp where Jy =, + [1,0]% 7 (0" () |pege = b,
h=1

that is, we are only considering the .J, elements of JZ(p, ) such that the one-dimensional
projection is the block b),. For each box Jj, we divide into N}, vertical strips of length ¢;_;.

Formally we have

Ny,
Jp = U Jni where  Jn;i=up + [14 (0 — 1)l 1,30 1] x [1, 6]

i=1

We construct a partition of J? inductively by,
H
JP=| | Jr=d Yh=2, Jre=J\(Jiue 0 dh).
h=1

Let
K; :={ve J;:pv) =0}

It will be enough to show that for every h € [1, H]
card(K;) < (1 - N,;_ll)_lcard(J;)f,f, (3.16)
By definition of up, Wy, = mu(p|u, +11,6,12)) is a translate of b, € Al
Vi, je [1,0]% wn(uy +1i) = b),(i).

Since by, is made of IV}, subwords of the form by,_;, we denote by wy, ; € A1 the successive
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subwords, V1 <i < Ny,

u¥ 4(i—1)lg—y (

Whi 2= Wh(uz 114G 1)ty _1,it,_1]) a0d O Wh ;) = br—1.

We are considering a fixed h and we show that J; is equal to a disjoint union of N},

vertical strips (J,;kl)ﬁl of the following forms:

e the initial strip J;‘:l,

up + ([1+ bz, €oa]) % [en, dnn]) € Jfy S (un + [1, eoa]) * [an, bual;

e the intermediate strips, J;;, 1 <i < NJ,

J;:,i = up + ([[(Z — 1)£k71 +1, iek,11] X [[Ch,i7 dhﬂ']]) ; and
e the terminal strip J’;ka;'c’

up, + ([1 4 (Ng — D)lg—1, b — k2] x [enn,, dun,]) <
S Jpvy S un t ([0 + (Ng = D)1, 6] x [an,ng, ban]) -

Here for each i € [1, N[], the values 1 < ¢p,dp,; < () are integers that represent the
vertical extent of each strip and it will be possible that c,; < dj,; to denote an empty
strip J ;.

Indeed, for a fixed 1 < i < N}, we first consider the previous J,, 1 < ¢g < h, that
intersects the strip Jj, ; so that the word @, overlaps w;, on a multiple of b;_; (see item 2

of Lemma 8). Then ¢ is the largest upper level of those J, N Jj ;, more precisely,
Ch,i = MAX {ud + 0, + 1wl <uj, (up + (i — D1+ [1,6.4]) = (v +[1.64])} (3.17)
and similarly d, ; is the smallest lower level of those J, n Jj, ;, formally we have
i = min {uy + 1wy > uf, (uf + (= Dl + [1,Ga]) < (g + [LAD - (3.18)

We have just constructed the intermediate strips J;; for 1 <i < Nj.

We now construct the initial strip (the terminal strip is constructed similarly). We
intersect the remaining J, with J, ;. The terminal segment b{_l of W, overlaps the initial
segment bl | of wy,. Thanks to item 1 of Lemma 8, as k — 1 is odd, by_; has the same
structure as ay, the overlapping can only happen at their end segments of the form b,_,.
We have just proved that J; | contains a small strip (uh + [[1+ 4y, Ek,l]]) X [ena, dna] of
base bf,_,\by—2 and is included in a larger strip (up, + [1, 4-1]) ¥ [cn1, dn.] of base by_y.
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Ug+€k -----------------
Ip
0 e e UZ—Fek
ug+1 _____________ -
JIn
uz—l-fk ----------
--------- uy +1
Jg
(A R

Figure 3.2: We are representing here the case where there is an intersection but the strip
Jh,i 1s not completely covered by the previous squares J;,. The squares J, and J, are
already in the partition, then Jy, is only the highlighted gray area.

For the initial and terminal strip the vertical extension ([cp,1, dn1] and [cy a7, dy w7 ]) of
the elements Jii, and Jy \, are defined as in (3.17) and (3.18).

In1

In

Figure 3.3: The strip of length ¢, 1 — ¢, 5 is always contained in J,’;l.
Let be K, := {ve Jy,: p, = 0}. We show that

V1 <i< Ny, card(Kf,) < (1—NY) eard(J7) fE. (3.19)
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For the intermediate strips Jy;, where 1 < < Ny, we use the fact that Jj, i 1s a square
strip of base by_;, and the fact that the frequency f , of the symbol 0 in the word by, ;
is identical to the frequency fPZ of the symbol 0 in b,. We have,

card(K: ;) = lp1(dpi — cn + 1) fF = card(J;,) £

For the initial strip J;;,, we use the fact that Jj, resembles largely a square strip of
base bp_1. We have,

card( K;:,z) < Ek—l(dh,l —Cp1 + 1)ka
0
< (lyy — Gp2)(dpy — ey + 1) fF
Uy — l—o

—1\—1 ®
< (L= NZY) card (i) £

We have proved (3.19) and by summing over i € [1, N;] we have proved (3.16).

Item 2. As before we will consider I4 (defined in (3.13), but only consider the trans-
lates u € [0,n — €] such that 7.(c"(p)Ipey2) € {a},af}. If J, n Jy # &, the two
projected words 10, = 7. (0" (p)|[e,12) and @y, = 7, (0 (p)|[1,¢,)2) may either coincide in
three ways: wy = wp, so uy = uy; overlap partially on their markers or overlap on their

initial and terminal segments as proved in Lemma 9.

We redefine again I by clustering into a unique rectangle adjacent squares where the
overlap occurs in the whole word, that is, we group the squares J, and J,, that pairwise
satisfy Jy N Jy + &, up = uf, Wy = Wy, |uf —up| < £ Then, after reindexing I4, one

obtains,

H
JA = U Jpy  JIp = up + ([1, €] x [1,dn]),
h=1

where d}, is the final height of each rectangle obtained after the clustering. Thus w; =
o' (P)|[e 1% [1.4,] is @ vertically aligned pattern whose projection @, = m.(wj;) is a word

of the form a), or a}, and so that w,, W, never entirely coincide if J, n J,, + .

We now show that an index v = (v®,v¥) € J4 may belong to at most two rectangles J,,
and Jy,. Indeed, by construction, uy = uy, if v belongs to two overlapping words of the
form a},a, then v® belongs to either the intersection of the two markers 1(Ve~Dé%—1 or
the intersection of the terminal segment a]_, of af and the initial segment al_, of a}. In
both cases described in Lemma 9 we exclude the overlapping of a third word of the form

ay,, ay, thus we exclude the fact that v may belong to a third rectangle J, with uf + uf
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Figure 3.4: The biggest square has size n. On the left side the three squares of size ¢},
intersect each other and the black dot belongs to each of these squares. The highlighted
gray area belongs to both of the vertically aligned squares. After the clustering, on the
right side, the two previous dashed squares emerge into one box of size ¢, x d;, and thus
the point represented in the figure only belong to two boxes.

and uf + uj. Then

C&I‘d(KA) = ]l(p(v)=0)

T

veJA
H
Z Z p(v Z ek ldh

E(uh+[[1 6. 1< [1,dn]) h=1

Jit e
< 1 Z Z Loequy+11,6,]x[1dn]) =

h=1ypej4 veJA h=1
fk

Ny,

— i Leard(J4).

\

3.3 The new coloring

Based on our previous construction we define a new coloring for the SFT generated by
the Aubrun-Sablik construction. This new subshift will be defined using the alphabet
A = B x C, where B = {0/,0”,1,2}. Consider A = B xC, v : A — A obtained by
collapsing the two symbols 0’,0” to 0, that is,

veee { 1(0.) = (0.0), A(0",) = (0,0),
’ 7(1’6) = (176)7 7(270) = (2,6)7



60 CHAPTER 3. MAIN CONSTRUCTION

and

[:3%(A) - S2(A) (3.20)

be the 1-block canonical projection.

Remember that we are denoting A = A x C and A = {0,1,2}. Let 7 : A — A be
the first projection over the alphabet A as defined in (3.10). We set II : ¥2(A) — S'(A)
defined as

{ﬁ:zQ(A) - XY (3.21)

)
v = y=(T(ru0))iez

We will always apply I for configurations that are vertically aligned for the symbols in A
and therefore there is no problem in selecting the zero row with indices (i,0) where i € Z.
Let F be the pullback of F by I and X be the subshift generated by F,

F={pe ALPY . T(p)e F}, X :=T7YX)="3%A,F).

Let be
r=7oy and I =TloT. (3.22)

Observation 1. We will also use the projection II as defined before for finite patterns
without any distinction. Note that the extended set of forbidden patterns F forces every
locally admissible configuration to be vertically aligned with respect to the initial alphabet

A provided we identify the two duplicated symbols 0/ and 0”.

We can define the bidimensional subshifts generated by each step of the iteration
process. Consider k large enough such that we have ¢, > D where D > 2 is defined by
the set of forbidden patterns F < AP We will denote

that is, the language of X of size ), as defined in (2.2). We say that a pattern w belongs to
Ly, if and only if it is globally admissible with respect to X. Let (L) be the corresponding

concatenated subshift as defined in Definition 8, that is,

Liy=|J () o L. (3.24)

u€e[1,0,]? vez2

Note that every pattern in Lj,; is obtained by concatenating N7 patterns of Ly and the
subshifts satisfy (Lg1) < (Lg).

We define two intermediate sub-languages of X of size ¢y, by,

(3.25)

Ve { Avi= e £(,6) s T(w) € LA, 6))
By :={we L(X, ) : [I(w) € LBy, lk)},
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and two sub-languages of X,

A = [Lel? . 1 A
e { pim fwe AP T(w) e Ay, -

By, = {w e A% T(w) € By}

Every pattern of Ay (respectively By, 1) is made of N? patterns of Ay (respectively By).
In particular (Ayi1) S (Ax), (Bri1) S {(Bx).

We recall two definitions. The reconstruction function is associated to a subshift
generated by a set of forbidden words which was also described in |13, 33| on a different
context. The relative complexity function is associated to a shift equivariant extension
of a dynamical system. The role of the reconstruction function is clearly put forward in
Chazottes-Hochman [11]. The fact that the subshift of finite type obtained in Aubrun-
Sablik [2] or [11] has zero entropy is relatively easy to prove. We actually need a more
precise estimate of the growth of the complexity. An exponential growth proportional
to the boundary of a square (not proportional to the volume of a square) is enough for

instance. This issue seems to be missing in [11].

Definition 30. Let A be a finite alphabet, D > 1, F < AMPP and X = 22(A, F)
be the subshift generated by the forbidden patterns F, as defined before. We define the
reconstruction function of the subshift X as the function RX . N* — N* which associates
to every ¢ the smallest R such that every locally F-admissible word in AL2E” admits a

globally F-admissible restriction in its central block of length ¢.

We will denote by M(]:", R) c AILE® the set of all square patterns of size R in A such
that no pattern of F appears inside, that is,

M(F,R):={we AL :vpe F Vue[0,R—D]? pd o"(w)} (3.27)

We will use the reconstruction function for the subshift X and the sequence (R.)k=0
defined as

1= RX(26,) = inf(R > 20, : Yw e M(F,R), 3z € X, wlgper) = zlopgn} (3.28)
where Q(20},, R) is the central block of length 2¢}, formally defined as
Q(20,, R) := T(20,, R) + [1,20,], (3.29)
where T(20,, R) = ([g - e;J, [g - e;J) e 72.

Remark 6. The reconstruction function exists for every subshift as stated in Proposi-

tion 2, but establishing its growth or computability is not always possible.
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Definition 31. Let X < %'(A) be the effectively closed subshift described before and
X < ©2(A) be the SFT given by the simulation Theorem 6 that simulates X. The relative

complexity function of the simulation is the function CX . N* - N* defined by

CX(E) ;= sup card({we L(X,0) :TI(w) = w}).
weL(X,0)
The two following propositions give us an idea of the growth of each of the func-
tions (reconstruction and relative complexity). The proofs of these two results are in
Appendix A. They are very technical proofs that are based on the construction described

by Aubrun-Sablik [2] and the iteration process described previously.

Proposition 5. Let X be the one-dimensional effectively closed subshift defined before
and X be the bidimensional SFT from the Aubrun-Sablik theorem. There is a constant
K > 0 and a polynomial P(n) such that

R¥(n) = P(n)K™.

Proposition 6. Let X be the Z2-SFT in the Aubrun-Sablik construction. There is a
constant K > 0 and a polynomial P(n) such that

cX(n) = P(n)K".

As a result of these two propositions, we have the next lemma that gives us important
bounds for the reconstruction function and the relative complexity function that will be

necessary in our final proof.

Lemma 14 (A priori estimates). Let RX and CX be the reconstruction and relative
complexity function of the SFT given by Aubrun-Sablik, then
1 N
1. limsup — In(C¥(n)) < +oo,

n—-+0o0 n

1 N
2. limsup — In(R¥(n)) < +oo.

n—+oo T
The demonstration of these properties is more technical and uses computability theory
and Turing machines. These proofs can be found in Appendix A but for now on we will
assume that they are true.

To simplify the notations, we write
L= RY(20), Ch = CX (),
Q) = Q20,2 R}) = 7?, T :=T(20,R}) e Z? (3.30)

Vi, = M(F, Ry  ADRE - gf =T (3} < AT
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We denote by [M]] the cylinder generated by the set M, which consists of the con-
figurations that are F-locally admissible in [1, R}]?. We compute the topological entropy
of patterns that are most of the time (in terms of translations of Z?) globally admissible
with respect to F. We naturally point out the relative complexity function. Notice that

the relative entropy is computed using the volume of the square.

Lemma 15. Let n > 2/ > 2 be some integers, ¢ € (0,1) be some real number, and
S < [0,n — 20]? be a subset satisfying card(S) = n2(1 — ). Let E be the set

B = {w e AL vy e S, U”(w)|[[1,2z]]2 € L(X,%)}.

Then

1
" In(card(F)) <

In(card(A)) + E%ln(CX (0)) + e 1In(card(A)).

~ |-

Proof. Here we consider n as a multiple of ¢ in order to simplify the notations since we
are interested in the limit when n — +oo there is no problem. We decompose the square

[1,n]? into a disjoint union of squares of size ¢,

[Lal?= | (w+[L4%.

vel0, 2 —1]2

We define the set of indices v that intersect S, more precisely, we have

V= {ve [[0,%—2}]2 (v + [[0,6—1]]2)ﬂ5;é®}.
Then for every we E, veV, and u € (fv + [0, —1]*) N S, therefore
(v + [1+6,200%) = (u+[1,2]%).
Since we are taking u € S we have that
o (w) |22 € L(X,20),

and then
O'&H_(z’z) (w)|[[17g]]2 € ,C(X, f)

The restriction of w on every square (fv + 1+ ¢, 26]]2) is globally admissible with
respect to F. Note that these squares are pairwise disjoint and the cardinality of their

union is at least n?(1 — ¢), since

card (U (v +[1+¢, 2€ﬂ2)> = card <U (tv + [0, ¢ — 1]]2)> > card(S).

veV veV
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Hence we have proved that F is a subset of the set of patterns w made of independent
and disjoint words (w,)eev, with w, € £(X,¢), and of arbitrary symbols on [0, n — 2(]%\S
of size at most en?. Using the trivial bound card(£(X,¢)) < card(A)’, we have

A

card(F) < (card(./i)g .cX (0)

(n/t)* .
) - card (A)

and therefore

A

1
3 In(card(F)) <

In(card(A)) + E%ln(CX (0)) + ¢ In(card(A)).

~|



Chapter 4
Analysis of the zero-temperature limit

Consider the full shift X*(A) and the finite set of forbidden patterns F for the subshift
X. We denote by F' the cylinder defined by

F:=[F]. (4.1)

We consider

{¢:22(A) S R (42)

z = o(r) =1p().
We consider (8x)k=0 as in Definition 27. We denote by G(Byp) = M;(3?(A)) the set of
the equilibrium measures for the potential ¢ at inverse temperature (.

Since our potential ¢ has finite range, it is regular and as in Theorem 5 the set of
equilibrium measures for Sp is equal to the set of shift invariant Gibbs measures. Our
main goal is to prove that for such a sequence (Bk)r=0 when [y — +o0 any sequence of
equilibrium measures g, does not converge when k — +o0.

An invariant measure that has support inside X gives zero mass to F'. We quantify in

the following lemma this estimate when the support of the measure is close to X, that is
inside (Ly).

Lemma 16. Let be k¥ > 0 and v be an ergodic probability measure on $?(.A) such that
supp(v) € (Ly). Then

2D
<=

U,
Proof. We assume that supp(v) € (L) where Ly = L(X,{;) the language of size ¢; of
the subshift X = 32(A, F). By Birkhoff’s ergodic theorem, for v-almost every point

v(F)

. card({fue A, : o%(x) € F})
v(F) = ngrfoo card(A,,)

We choose such a point z € (L) and s € [1,/;]? such that o°(x) and all its translates

y; = ot (x), t € 72, satisfy Yelp,e,p2 € L. We take a sub-sequence A,, of A,, with size a

65
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multiple of /5, defined as
An = [[—nﬁk, nﬁk — 1]]

Note that

—  lim card({u € A, — s : 0%(z) € F}) — o¥(s
V(F) - nl—>+oo ~Card(/~XH) ) Yy = ( )
—  lim card({u e A, ij'u(y) € F})

n— 0 card(A,,)

By definition of Lj as described in (3.23) we have that
zellyy=vYweZ o (z) = "% (y)|p.ege € L
and
Vv € [0, 6, — D]?, Vw € Z°, 0" " (y)|p.pp2 ¢ F.
Thus for a fixed w € Z? we have that the number of possible v € [0, ¢; — 1]? such that

o(v + wly)(y) € F is bounded by

card ([0, &, — 1]*\[0, ¢x — D]*) < 2D,
Therefore if we calculate this bound in the box /~\n we obtain that

card({u € A, : 0¥(y) € F}) < (2n)?2D¢,.

Since card(A,) = (2n)*(2, we take the quotient on each side and take the limit with
n — +00 we obtain v(F) < 2D /¢y O

We show in the following lemma that an equilibrium measure at low temperature have
most of its support close to the largest compact invariant set on which the potential is
zero. We quantify more precisely the speed of convergence of the measure on the set of

locally admissible patterns as the size of the box goes to infinity.

Lemma 17. For every k and every equilibrium measure fg,,
/12

s (S ANDE) < 5 In(card(A) = = (4.3)

where R} as defined in (3.28) and M, as defined in (3.30).

Proof. If x ¢ [M}], there exists u € [1, R}, — D]? such that o“(z) € F and therefore
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¢(c*(x)) = 1. Thus we obtain

Jﬁk@dﬂﬁk = jﬁkﬂF(y)duﬁk(y)
> BiRY - pg, (D\[M]),

and therefore
b [ e, < —BuRE s (DL

We have that P(S8rp) = 0 and also by the variational principle we obtain

0 < P(ﬁkQO) = h(uﬁk) — B J‘pduﬁk < htop(z) - 5kR;3 " By, (Z\[Mllc]) :

Since hyop(X) < In(card(A)) we have

2

m@wmsgmmmm»

The following lemma shows that the topological entropy of the extension depends on
the frequency of the symbol 0 and not on the topological entropy of the base dynamics. By
lifting patterns of the 1D subshift we can only expect an exponential growth proportional
to the size of the boundary of a box. As the Aubrun-Sablik extension has zero entropy, we
use, as in Chazottes-Hochman [11], the idea of duplicating the zero symbol in the vertical
direction of Z? in order to obtain an exponential growth proportional to the size of the

volume of a box.

Lemma 18. For every k > 0,

I(2) [ < oy ((Br))

A similar estimate holds for (Ay).

Proof. Since (By) is the concatenated subshift generated by the dictionary By, as defined

in (8), we have

hiop({Bk)) = éln(card(Bk)).

Let be w € L({(By),{) such that fy() = f£. @ can be seen as a subword of a
concatenation bb' of two words of By. By Lemma 5, bb' is a subword of some configuration
ieX.

By our construction there exists # € X such that & = II(#) and @ = II(&) where
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W = T[] € By.. Thus we obtain

card(By) = card({w € AIYI : T(w) = @}) = 26/,
and therefore

heop((Bry) = In(2) fi.

O

The following corollary is our first main estimate of the pressure. We bound from below
the pressure by taking the pressure of the maximal entropy measure of the concatenated
subshifts (Ay) or (By). We use here the large scale ¢, because [y has already been defined

using the small scale ¢} (see Definition 27).

Corollary 1. For every k > 1,

P(fip) > max(f2, £F) In(2) — 207",

Proof. Follows from Lemma 18 and Lemma 16. U

Next, we will need to define some notations for standard definitions. Consider ¥%(.A)
and 1 be a o-invariant probability measure. The canonical generating partition of ¥2(.A)
is the partition

G :={la]o:ac A} (4.4)

We will denote the base generating partition as the partition
G. = {G§,G7,G3} where Gi:={xeX*(A):n(z(0) =a}, ae A
For each k£ € N, we will denote by U, the partition
Uy = { M), AN - (45)
For each € € (0, 1) we will define
H(e):=—cln(e) = (1 —e)In(1 —¢). (4.6)

We introduce a notion of relative entropy which measures the dynamical entropy of a

measure conditioned to be close to X.

Definition 32. The relative dynamical entropy of size k of an invariant probability mea-

sure p is the quantity

P n—+o0 1N,

1 2 2 _ 2
Pre(p) = sup{ lim _QH(p[[Ln}] |g£1,n]] vugo,n Ry] M)}
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where the supremum is taken over every finite partition P.

The relative dynamical entropy is well defined for each k£ and we can use a version of the
Kolmogov-Sinai Theorem (Theorem 4) for h,.;. This theorem gives us that the supremum
of the definition is attained by a generating partition of the o-algebra of ¥?(A).

For each n € N consider the set V,, € X defined as

Vn = {.ZL’ € 22(./4) : W(x(i,jl)) = W(l’(i,jQ)),VZ',jl,jQ € [[1,77,]]},

that is, the set of configurations that are vertically aligned over the projection 7 on the
alphabet A in the box [1,n]?. If we consider g, some equilibrium measure at inverse
temperature § we have that

lim g5, (Z*(A)\V;) = 0.

n—-+0o0

Note that
. 1 n 2 n 2 O,n—R 2
hrei(ps,) = sup {ngrwaH(Pﬂl’ﬂ G\ ,uﬁk)}
. ]' n 2 n 2 O,TL*R 2
=l H (GO G/ U )

= i [ [ @ s o) +
Vn

n—-+00 2 (.A)\Vn

H(GU ) dps, (x)] ,

2 - 2
where (i, )zex is a family of conditional measures with respect to g,[,[l’”“ \/Z/I,EO’" Bul”,

Hence if we consider a configuration x € V,,, the number of possible configurations in
GIn* is bounded by card(A)™. Therefore

H(GWY 11,) < n-In(card(A)),

and then h,¢(pg,) < +00.

The next lemma gives us an upper bound of the entropy of the equilibrium measure

s, for each k e N.

Lemma 19. For every k£ and every equilibrium measure pg,

h(pg,) < hra(pg,) + (}% + €k) In(card(A)) + H (z).

Proof. We take the supremum over all finite partitions of X2(.A), so we can always consider
that we are taking P > G, and P > U, and therefore P > G \/ U, For consequence we



70 CHAPTER 4. ANALYSIS OF THE ZERO-TEMPERATURE LIMIT

obtain

n]? n]? [[O,n—R']P
Pl > gl [ "

By the definition of relative entropy

n—R' 2
H(PUT, g ) = H (PO N/ GIoT \ /5 )

- n—R'T2
n—R! 2
(GNP )

n—R'T2
= H(P[[l’nHQ IQEL"P \/UIEQ Fal Mgy, )+
n—R’ 2 n— /712
+H(g£1’"ﬂ2 |U;EO’ il ,Mﬁk) + H(U;EO il ,Mﬁk)-

The first term of the right hand side is computed using the relative dynamical entropy

(Definition 32). The third term is bounded from above using Lemma 17 (provided g5 <

e 1),

7P ) S s (P)In(ug, (P))

0,n—R’ ]2
PEU,E o

TLZH(Uk, :uﬁk)
n?H (gy,).

NN

We now compute the term in the middle. We choose ¢}, > ¢ and define
Uy = {x e X%(A) : card {u e [0,n — R]* : o%(z) € [M}]} = n*(1 — 5;)}
By Birkhoff ergodic theorem we have that

lim pg, (Uy) = 1.

n—-+0oo

Note that

n]? n—R]? nl2
H (ggl’ ]] |ul[c[0 ful ’Mﬁk) = fH(g£17 ! ’/j%)duﬁk(x)

_ f H(QEL"HQ, ux) dpig, () +

n

n 2
+ J H (QEL ! 7/~L:v) d:uﬁk (SL’)
22(ANUn

N

|| (o ) dus s

n

+n’ug, (5*(A)\U,) In(card(A)),
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and therefore

1 n—R'T2 1
lim sup _2H(g£1’n]]2 | UIEO, i nuﬁk) < lim Supj _QH(ggl’n]Pa Mm)d,ugk (2),
Un

n—+oo T n—+00 n

where (i;)zex is the family of conditional measures with respect to U,EO’WR’“]].

Now consider a fixed x € U,,. We compute the cardinality of elements in g,E[l’"“Q that

are compatible with the constraint
card{u € [0,n — R}]? : 0“(z) € [M;]} = n*(1 —&},).

Note that

ghn* = \/ o (G.)

ue[1,n]?

where G, = {G}§, G}, G3} and here we refer to the elements of this partition as patterns

defined in AIL"I* because there is a unique equivalence between these objects.

We denote by I(x) = I < [0,n — R;}]? such that
Ii={uel0,n—R]*: 0"(z) € [M;]}.

Since = € U, then
card(I)

n2

>1—¢).

Let J < I be a maximal subset satisfying for every u,v € J,
1,
Ju = vl = 5.
For every u € J, consider
1 /
I,ic={vel:||u—ve < ER’“}

Then I = |J,.;I.. We first observe that the sets (u + [1.[R}/21] 2) are pairwise

u
ueJ wed

disjoint. Then
4n?

card(J) < e

We also observe that for every vy, vy € I, |v; — v2]leo < R), and
(o0 + L B?) () (00 + L RA?) #
For each u € I let be

K, = U (v+ [1, R]?) < [1,n]

Vel
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For v € I,,, we have that

x|v+[[17R;c}]2 € [Mllc]

and therefore this pattern is locally F-admissible and also satisfies the constraint that all
the A-symbols are vertically aligned in v + [1, R,]? and also in K.

The width of K, is less than 2R}, so the cardinality of possible patterns p € AFu
satisfying the constraint of vertically aligning of A-symbols is bounded by card(./i)mi.
The cardinality of possible patterns over the support U K, is thus bounded by

ueJ

2 2

(card(A)2Rk)4"2/ " _ e ([23; - %2] 1n(card(/1))) _exp (iﬁf 1n(card(jt))> |

k

Since K, covers I, the cardinality of the set of possible patterns over the support
y

u€J
[1,n]*\ U K, is bounded by card(A)"’t. We have proved that, for every z € U,,

u€eJ

4n?
R

+ n25§§> In(card(A)).

nl2

We conclude by letting n — 400 and ¢}, — €. O]

The following lemma is the second main estimate on the pressure. We bound from
above the pressure assuming that the generic patterns of the equilibrium measure exhibit
a positive frequency (here 1/4) of the symbol 1. Since the potential is non-negative, it is
enough to bound from above the pressure by the entropy of pg, .

We denote as I : ©2(A) — $2(A) the projection on the first coordinate. Using (3.20)

we set
I, = T oIl : X2(A) - X2(A) (4.7)

the projection on the bidimensional configurations over the alphabet A.

Lemma 20. Let £ > 2 be an integer and g, be any equilibrium measure. Then
2 1
L g, ([0]) < ﬁkafl +(1- Nk—ll) 1f1£1 + €k,
k

2. if k is even and pg, ([1]) > 1,

2 3
hret(115,) < (Vk FA (1= N (Z + ek> ka_1> In(2)

+ 2z In(card(A))

1 .
7 In(C}) + ex In(2card(A)),
k

+ PR
02

3. if k is odd and pg, ([2]) > I, the previous estimate is valid with f2, and f£,

permuted,
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where for each @ € A, s, ([@]) is the measure s, of the cylinder IT; ! ([@](00)) =: H;'[a] =
Y2(A).

Proof. Let be I, : ¥2(A) — %2(A) the projection over the first letter on the A-alphabet.
By Birkhoff ergodic theorem and Lemma 17, for almost every x € ¥?(A),

lim —card ({u e [0.n — R, : 0"(x) € [ML1}) = ps ([01)

n—-+0oo ’[’L2

and
lim icard({u e [1,n)* : m(z(uw)) = a}) = pg(la]), Vae A

n—-+0o0 n2

Here we are denoting s, ([@]) for the measure pg, of the cylinder IT; ![a], but we suppress

the pre-image of the projection 7 to simplify our notation.

We choose n > Rj. An element of the partition g,ﬁ!lv"ﬂQ \/Z/{[[O’”*R?c[[2 is of the form
G, nUs where p € AlLnl* i a pattern and S < [0,n — R}]? is a subset, that satisfies

Us:={ze¥*(A):Yue S, o"(x) € [M]], Yue [0,n— R]AS, o“(z) ¢ [M[]},

Gr = {z e *(A) : (Iu(2)) [z = P} -

We set € > g5 and 17 < pg, ([0]). By the Lemma 17 we have that pg, (S*(A)\[M]) < &y,
and then

lim fug, (US {Us : card(S) = n’(1 — z—:)}) = 1.

n—-+0o0

For n large enough, we choose S < [0, n— R}]? such that Us £ ¢f and card(S) = n?(1—¢).
By definition of M and T}, if z € Us, then for every u € S, 0"(x)[p,r;)2 is a locally

admissible pattern with respect to F and
UiH_T’é (ZL‘)|[[172£;€]2 € E(X, 25;)
Define for every n > R} and every pattern p € AL the set

K, (p) :={ue[1,n]*: p(u) = 0}.

As we are considering pg, ([0]) > n

lim pg, (Up {G2 - card (K, (p)) > n® n}) =1.

n—-+40o0

We may choose p such that Us n G} + & and card(K,) > n*;. Using the objects as
defined in (3.12), (3.13), (3.14) and (3.15), one obtains

Ti+S<I(p ) and 7 +1(p,6) < J p, 0)| | TP, 6) = J*| |77,
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therefore by our choice of S we obtain

n’(1—¢) < card(S) = card(rf + T}, + ) < card (J* |_| J?) (4.8)

Besides that we have
n*n < card(K,(p)) < card(K* |_|KB) +n’e
and by the Lemma 13 we have

2 _
card(K,(p)) < ﬁcard(JA)f,f,l +(1-N2) 1caurd(JB)f/f,1 + n’e.

We divide each term by n? and take the limit with n — 400, £ — ¢, and  — pg, ([0]).

Thus we proved the first item of this lemma.

We now assume that k is even and pg, ([1]) > 1. We choose p € AL such that
Gy, nUs + & and

card ({u € [1,n]” : p(u) = 1}) > %2 (4.9)

Let be v € G N Usg and (f15)zes be the family of conditional measures with respect to the
partition g,El’”HQ \/Z/l[[o’"_R’“[[Q. We use the trivial upper bound of the entropy, so

H(GWT 1) < In(card(E,)) (4.10)
where
Eps = {we A i n(w) = pand Yue S, o™ (w)|p 202 € £(X,20,)}.

Also consider
Ep,g = F(Ep“g).

Note that every word in F, g is obtained from a word in EAp,S by duplicating twice a

symbol 0 and by Lemma 15 we can conclude that

In(card(E,s)) < In(card(E, s)) + card(kK,)In(2) and
1

L 10(C1) + 4 In(card(A)),

In(card(A)) + e

1 A
) In(card(E, s)) < 7

>~
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thus
1 2 L In(2)
= In(card(E,s)) < (F(:ard(JA)f,ffl + (1= N2 teard(JP)fP, + n2€k) T
1 1 .
6’ In(card(A)) + 7 In(C}) + ex In(card(A)).
(4.11)
The symbol 1 does not appear in JZ = JZ(p, ¢}), so we can affirm
{uel,n]*:plu) =1} < JA|_| ([[1,n]]2\(JA|_|JB)) :
Since we are assuming (4.9) and using (4.8) we obtain that
card(J*) = n? (1 — ek) and card(JP) < n? <§ + sk). (4.12)
4 4

By replacing the upper bound for card(J?) given in (4.12) and card(J#) < n? in (4.11)

we obtain that

% In(card(E,5)) < (Ni f+ (=N G + am) e+ sk) In(2)+

(4.13)

+— In(card(A)) +

i In(C%) + e In(card(A)).

i 02
By integrating with respect to pg, in both sides and taking the limit when n — 400 we

obtain item 2 of this lemma. Item 3 has an analogous proof. O

Theorem 7. Let X = X%(A, F) be the bidimensional SFT described before, which is
generated by the finite set of forbidden patterns F < AP defined over the alphabet
A. Let F be the cylinder generated by the set F as described in (4.1) and ¢ : X?(A) - R
be the locally constant potential defined as ¢ = 1p. Let X4, respectively Xpg, be the
compact sets of configurations in X that have only the symbol 1, respectively 2, in terms
of the A alphabet, therefore, X4 and Xp are two disjoint invariant compact sets. Then
there exists a sequence of inverse temperatures (0;)g=o such that for every equilibrium
measure pg, associated to the potential 8¢, the support of every accumulation point s

or p, of the subsequence (ug,,,, k=0 Or (K, k=0, is included in X4 or Xp.

Proof. We consider X = %?(A, F) the SFT as described before, F' as in (4.1) and ¢ = 1.
We denote by p5, an equilibrium measure at inverse temperature ;. We will prove that

as [ — +oo the sequence (ug, )p=0 does not converge.
1
Z.
entropy of the subshift (L;). On the one hand, from Corollary 1 we have that

Assume k is an even number and pg, ([1]) > 1. Let uf be the measure of maximal

P(Byp) = h(uf) — f Bepdp? > P In(2) — zpf_:
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By the item 3 of Definition 27 we have that

N BB
Nkpk 1 Ekfkfl Cy, 0 k

Since k is even, fP | = fP, one obtains,

ﬁm()20@/k&—zﬁ% 0=2D2E < fPm(2).
[P Ok U

On the other hand

P(Be) < (pfita + (L= N ( + ) ) @)

+ Ei,ln(card(A)) + E’% In(C(X, ) + e In(2card(A))

8 ~
+ (m + 5k) In(card(A)) + H ().

We have that
e < fE, and H(ep) « 2.

Indeed, from item 2 of Lemma 14 shows that there exist constants =, ¢ such that

Vk>1, R, <22%,

7 2

Recalling the definition of ¢, = }Z—’“k In(card(A)) given in (4.3) and using item 2 of Defini-

tion 27, one gets,

Ek < 5k6k . R;Q ln(card(A))

S o = , < Z2 In(card(A))23 H% « 1,
(ka—l)z okl okl

and therefore

€k €k

7B S GEL
H({Ek) 25k In <€k> < \/_ < fk 1

= g, « f2 | and

As fkf,f counts the number of 0’s in the word b, and at each step of the construction
the number is at least multiplied by 2, we have ¢}, f2 | = 271,
1 1 , 1

— =« fB, R >0, ——<«fB,.
g;ﬁ N]:A.Ekfl fk 1 k k R(ng;g) fk 1
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Item 1 of Lemma 14 implies

1 !
6,_2 ll’l(Ck) < fk;B—l'
k

Item 1 of Definition27 shows,

fl?—l < ka—l fl?—l

B
< , &L frq-
N/ k N/ Ji=1

We proved that P(By¢) is bounded from below by a quantity equivalent to fZIn(2) and

bounded from above by a quantity equivalent to 2 fZ1In(2). We obtain a contradiction.

We have proved that s, ([1]) < 1 for every even k and every equilibrium measure pg,.

Similarly 15, ([2]) < 1 for every odd k and every equilibrium measure fi5,. As

2 1 R} In(card(A))
,uﬁk([o]) < F][ﬂf}?—l + (1 - Nkjl) 1f1£3—1 + (ka—l)2 kexp(k%) ’
we have proved
lim inf inf {x([2]) : p is an equilibrium measure at o } = =,
k—+00 1 4

3
liminfinf {#([1]) : p is an equilibrium measure at Bopq } = -,
k—+00 p 4

and therefore (14, )r=0 does not converge. O
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Appendix A

Computability results

We thank Sebastian Barbieri for his help to compute the upper bounds for the relative
complexity and for the reconstruction function. Sebastian stimulated us to prove that
we can enumerate F in an increasing way and with a execution time that is at most
exponential.

First we prove the upper bound for the relative complexity function given by Propo-

sition 6.

A~

Proof of Proposition 6. Let us denote by C,,(Layer, (X)) the complexity of the projection
to the k-th layer. and by Cn(Layerk(X)|Layerj (X)) the complexity of the projection to
the k-th layer given that there is a fixed pattern on the j-th layer. Clearly we have that

C¥(n) < Cy(Layer, (X)) - Cy(Layery(X)) - Cu(Layery(X)[Layer,(X))-
. C,(Layer,(X)|Layer,(X)).

e Layer 1: As this layer is given by all z € A% 50 that z, = Tyu+(0,1) for every u € 72,

a trivial upper bound for the complexity is

~

Cu(Layer, (X)) = O(JA[").

In fact, as in the end the only configurations which are allowed are those whose
horizontal projection lies in the effective subshift Z, a better bound is given by

Cn(Layer, (X)) = O(exp(n hiqp(X))). For simplicity, we shall just keep the trivial
bound.

e Layer 2: The complexity of every substitutive subshift in Z? is O(n?). To see
this, suppose that the substitution sends symbols of some alphabet Ay to ny x no
arrays of symbols. By definition, every pattern of size n occurs in a power of the
substitution. If k is such that min{n;, ny}*=! < n < min{n;, ny}*, then necessarily

any pattern of size n occurs in the concatenation of at most 4 k-powers of the

79
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substitution. There are |Ay|* choices for the k-powers and at most (max{n;, ny}*¥)? <
(nmax{ny,ny})? choices for the position of the pattern. It follows that there are at

most (|As|* max{n;,ny}?)n? = O(n?) patterns of size n. We obtain,

A~

Cp(Layer, (X)) = O(n?)

e Layer 3: It can be checked directly from the Aubrun-Sablik construction that the
symbols on the third layer satisfy the following property: if the symbols on the
substitution layer are fixed, then for every u € 72 the symbol at position wu is
uniquely determined by the symbols at positions u—(0,1),u—(1,1) and u— (-1, 1).
In consequence, it follows that knowing the symbols at positions in the “U shaped

region”
U= ({0} x[1,n—=1]) u ([0,n — 1] x {0}) U ({n — 1} x [1,n —1])

completely determines the pattern. Therefore, if this layer has an alphabet As, we
have
Cn(Layer,(X)|Layer, (X)) < | A" % < O(KT),

for some positive integer K.

e Layer 4: Mgearen The same argument for Layer 3 holds for Layer 4. Therefore, if
the alphabet of layer 4 is A4 we have that for some positive integer K,

Cu(Layer, (X)[Layer, (X)) < [Au[*"? < O(K3).

Putting the previous bounds together, we conclude that there is some constant K > 0
such that
C¥(n) = O(n*K™).

O

Corollary 2. Let X be the Z2-SFT in the Aubrun-Sablik construction. There is a
constant Ko > 0 such that

lim sup 1 log(C (X)) < Ke.
n—owo M

Now we will work on the upper bound for the reconstruction function. We fix a
Turing machine M that enumerates F see below the set of forbidden words that define
X = (A, F). In general, the reconstruction function R as defined in (3.28) of the
Aubrun-Sablik construction is not computable, but in our construction we can obtain the

properties as stated in Proposition 4 that we prove below.
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Proof of Proposition 4. If the integer n > 1 is such that p = N, then ﬁ’(n) = .7:"(71)
We will consider now the case where the integer n > 1 is such that p < N;. We have

obviously F(n) € F'(n). If we assume that k is even, from Notation 1 we have that

QA = ak,l(lé’“*l)N‘f?ak,l and bk = (bkfl)Nk.

We set

Then we define by induction if 2 < p < Ny then
Ge(p) = Grlp — Dlpoy = a1 (L—1)” !

and

ar(p) = Lymai(p—1) = (1e—1)” ag—1,

else & (Ny) = an(Ng) = ax. We also define

and

If w has length less than pf;_; and is a sub-word of some wyws, say w; = a; and wy =
bi, by dragging w from the left end point of wyws to the right end point of wyws, the word
w appears successively as a sub-word of &z (p+ 1), (E)(p—l— 1), ax(p+1), ar(p+ 1)5(}94— 1),
(li(p + 1). A similar reasoning is also true for w; = b, and ws = ax. We have proved
F (n) = F "(n).

We have also proved that X = EI(A, ﬁ’), because we have proved that it is enough
to list all the forbidden words of length n and for that it is sufficient to search in the

concatenation of subwords of length (p 4+ 1) - £ as described before. Thus
SUAF) = SU(A,F).

To compute the time to enumerate successively the words of .7:"(n) when 0,1 <n </l

we produce an algorithm given in Table A.1. The time to read/write on the tapes, to
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update the words (&x(p), az(p), (Zg(p), b_k)(p), T (9), 21 (p)) by adding a word of length £;,_1,
to concatenate two words w;iv; from that list, and to check that a given word w of length
n is a sub-word of w7105 is polynomial in n. Therefore, the time to enumerate every word

up to length n in an alphabet A is bounded by P(n)|A|* where P(n) is a polynomial. [

Denote by R¥: N - N the reconstruction functions of X given F. From Lemma 5 we
know there exists a constant C; > 0 such that R (n) < Cyn.

Forn e N, let N = 2n+1 be the length of the sides of the square B,, := [—n,n]?* < Z2,
and let k € N such that 4*~! < N < 4%

As before, let X = %(A, F) be the Z2SFT in the Aubrun-Sablik construction associ-
ated to X and the Turing machine M. Now we will give estimates on the reconstruction
function RX: N — N of X given F. Of course, a formal proof of these estimates would
require a restatement of the construction of Aubrun-Sablik with all its details, which is
out of the scope of this thesis. Instead, we shall argue that the bounds we give suffice,
making reference to the properties of the Aubrun-Sablik construction.

A description of F is given in [2] in an (almost) explicit manner for all layers except
the substitution layer. For the substitution layer, a description of the forbidden patterns
can be extracted in an explicit way from the article of Mozes [30].

The behavior of layers 2,3 and 4 in the Aubrun-Sablik construction is mostly indepen-
dent of layer 1, except for the detection of forbidden patterns which leads to the forbidden
halting state of the machine in the third layer. Because of that reason the analysis of the

reconstruction function RX can be split into two parts:

1. Structural: Assuming that the contents of the first layer are globally admissible
(the configuration in the first layer is an extension of a configuration from X )
we give a bound that ensures that the contents of layers 2,3 and 4 are globally

admissible, that is:

e The contents of layer 2 correspond to a globally admissible pattern in the
substitutive subshift and the clock.

e The contents of layer 3 and 4 correspond to valid space-time diagrams of Turing

machines that correctly align with the clocks.

2. Recursive: A bound that ensures that the contents of the first layer are globally

admissible. This bound will of course depend upon RX and 7.

Finally, we are able to prove the upper bound for the reconstruction function given by

Proposition 5.

Proof of Proposition 5. Let us begin with the structural part, as it is simpler and does
not depend upon X. Let p be a pattern with support B, and assume that the first layer
of p is thus globally admissible.
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A program enumerating the set of forbidden words

# Initialize (¢o, Bo, pi, P&)
(6—7 B, pév ,0§) - (27 0,1, 1)
# Allocate and Initialize 4 tapes (ag, by, 1k, 2%)
(a_,b_,1_,2_) < (01,02, 11,22)
# Allocate and Initialize 6 tapes (&g (1), ax(1),
(2, a3, b, 02, 10, 90) — (am s, bo b 12,20)
# Compute recursively the next length ¢,
(£+7 64—7 pﬁ’ pf) — S(g—v ﬁ—v péu plj)
Ny — 0, /0 ; parity < even ;n «— 3 ; p <« 2
# Allocate and Initialize an intermediate tape recording a possibly forbidden word
W «—
while (n > 1)
if (n=1/¢, +1) then
# Remember the previous ((x_1, Bx_1, i 1, p2_,) and update the new one
(€_7 5—7 pé? pé) - (£+a ﬁ-ﬁ-v pﬁu pf) ; (6—0—7 5—0—7 pﬁ’ pf) <_ S(f_, 6—7 ,Oé, pé)
# Remember (ak_l, bk—h 1k—17 2k—1)
(a-, b, 1-,22) « (a7, by, 12, 27)
Ny «— 0 /l_ ; parity < Permute(parity) ; p < 2
end if
if (n=(p—1)(_ + 1) then
Update (&1, a7, 17, B:, E:, Z) according to parity and the two particular
cases p = 2 or p = N, by concatenating words from (a_,b_,1_,2_)
# Build the set of words obtained by concatenating two words of length £;_

be

(1), 00(1), T (1), 20 (1)

W(_ {a—-b-)(b:a H?a (T) + (T)?? Zﬁ? b—-O-)(T)a ?ﬁv ?(T)}
p—p+1
end if

for (m =0, 3" excluded)
w « write m in base 3 with n letters in {0, 1,2}
1s__ forbidden <« true
for (w1w2 € W)

if (w is a sub-word of wyw,) then is_ forbidden «— false

end for
if (is_ forbidden) then Print the word w

end for

n«—n-+1

end while

Table A.1: Algorithm that enumerates F.



84 APPENDIX A. COMPUTABILITY RESULTS

From Mozes’s construction of SFT extensions for substitutions [30] it can be checked
that any locally admissible pattern of support B, of Mozes’s SF'T extension of a primi-
tive substitution (The Aubrun-Sablik substitution is primitive) is automatically globally
admissible. Let us take a support large enough such that the second layer of p occurs
within four 4% x 2 macrotiles of the substitution in any locally admissible pattern of that
support.

Next, a clock runs on every strip of the Aubrun-Sablik construction. By the previous
argument, the largest zone which intersects p in more than one position is of level at most
k. Therefore its largest computation strip has horizontal length 2*. In order to ensure
that the clock starts on a correct configuration on every strip contained in p, we need to
witness this pattern inside a locally admissible pattern which stacks 22" + 2 macrotiles
of level k vertically. Therefore, the pattern p must occur inside four locally admissible
patterns of length 4% x 2¥(22° +-2). This ensures that the clocks in p are globally admissible.

Finally, if every clock occurring in p starts somewhere, then the contents of the third
layer are automatically correct, as they are determined by clock every time it restarts.
To check that the fourth layer is correct, we just need extend the horizontal length of our
pattern twice, so that the responsibility zone of the largest strip is contained in it.

By the previous arguments, it would suffice to witness p inside a locally admissible
pattern which contains in its center a 4 x 2 array of macrotiles of size 4% x 2¥(22" + 2).
As 451 < N < 4% there is a constant Cj > 0 such that an estimate for this part of the

reconstruction function can be written as
X Vn
RStruct (Tl) = O(\/ECO n)

Let us now deal with the recursive part. We need to find a bound such that the word
of length N occurring in the first layer of p is globally admissible. By definition of RX , 1t
suffices to have p inside a pattern with support B (V) and check that the first layer is
locally admissible with respect to F. In other words, we need to have the Turing machines
check all forbidden words of length RX (N) in this pattern. Luckily, the number of steps in
order to do this is already computed in Aubrun and Sablik’s article. After Fact 4.3 of [2]
they show that, if pg, p1,...,p. are the first » + 1 patterns enumerated by M, then the

number of steps S(po, - . ., pr) needed in a computation zone to completely check whether
a pattern from {py, ..., p,} occurs in its responsibility zone of level m satisfies the bound,
Sos- -+ 1e) <T(Dos- 1 p2) + (r + 1)y max(pol, . ., e 227+,

where T'(po,...,p,) is the number of steps needed by M to enumerate the patterns

Do, P1s- -5 Pr-
Specifically in our construction, we may rewrite their formula so that the number
S(RX(N)) of steps needed to check that all forbidden patterns of length at most RX(N)
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in a responsibility zone of level m satisfies the bound

S(RX(N)) < T(RX(N)) 4 |A|RX(N)+1RX(N)k223k+1
< P(n)|./~l|N + |A|C1N+101Nm223m+1

Simplifying the above bound, it follows that there exists constants Cy, C3 > 0 such that

S(RX (N)) < 02m223m+CSN.

As N is constant, it follows that there is a smallest m = m(N) € N such that 2" > C,N
(so that the tape on the computation zone of level m can hold words of size Rz(NN)) and
such that
02m223m+C3N < 92™ +2

so that the number 22" + 2 of computation steps in the zone of level /m is enough to check
all the words of size RX(N). It follows that a bound for the recursive part of R is given
by

RX . (n) = 0™,

recursive

In order to turn this into an explicit asymptotic expression we need to find a suitable
bound for m(N). Notice that if m > 6 we simultaneously have that m? < 2™ and

4m < 2™, We may then write for m > 6,
C2m223mngN < 0224m+CgN < CQ2C3N22’”*1_
Therefore, it suffices to find m = m(N) such that
0,205V < 92"
From here, it follows that there is a constant C5 > 0 such that any value of m satisfying
m = Cs + logy(N),
satisfies the above bound. We get that

RE . (n) = O(N2ON) = g0,

recursive

Finally, putting together the structural and recursive asymptotics, we obtain that

there is a constant K > 0 such that

R¥(n) = O(max{y/nCy", O(nd%m)}) = O(nK™).
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O

Corollary 3. Under the same hypotheses as in Proposition 5, there is a constant K > 0
such that .
limsup — log(Rx(n)) < K.
n

n—o0
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