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Resumo

DIAZ-AVALOS, J.D. Dois formulações abstratas para a Tomografia por Impedância
Elétrica. 2023, 123 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Univer-
sidade de São Paulo, São Paulo, 2023.

A Tomografia por Impedância Elétrica (EIT) é uma modalidade de tomografia que busca
recuperar a distribuição da condutividade dentro de um corpo a partir de medições elétri-
cas realizadas na superfície do corpo. Nesta tese, são apresentadas duas contribuições
para o EIT. A primeira é um marco teórico que unifica a formulação e análise dos mod-
elos para a EIT. Lá, as formulações fracas dos modelos e os mapas de corrente-voltagem
são generalizados, e propriedades duais que revelam a ligação entre as formulações em
termos de potenciais elétricos e campos de corrente são encontradas. A segunda é a
regularização de uma formulação all-at-once do problema inverso na EIT. Três prob-
lemas regularizados são formulados com base nas regularizações clássicas de Tikhonov,
Ivanov e Morozov, e a existência, estabilidade e convergência de soluções regularizadas
são provadas. Em ambos os desenvolvimentos, vários modelos para a EIT são admitidos
e exemplos numéricos para ilustrar nossos resultados teóricos são fornecidos.

Palavras-chave: tomografia por impedância elétrica, dualidade, abordagem all-at-once,
modelo contínuo, modelo de electrodo completo.



Abstract

DIAZ-AVALOS, J.D. Two abstract formulations to Electrical Impedance Tomography.
2023, 123 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de
São Paulo, São Paulo, 2023.

Electrical Impedance Tomography (EIT) is an imaging modality that seeks to recover
the conductivity distribution inside a physical body from electrical measurements taken
on the body surface. In this thesis, two contributions to EIT are presented. The first is
a theoretical framework that unifies the formulation and analysis of EIT models. There,
the weak formulations of the EIT models and the current-voltage maps are generalized,
and dual properties that reveal the link between the formulations in terms of electric
potentials and current fields are found. The second is the regularization of an all-at-
once formulation of the EIT inverse problem. Three regularized problems are formulated
based on the classic Tikhonov, Ivanov, and Morozov regularizations, and the existence,
stability, and convergence of regularized solutions are proved. In both developments,
several EIT models are admitted and numerical examples to illustrate our theoretical
results are provided.

Keywords: electrical impedance tomography, duality, all-at-once approach, continuum
model, complete electrode model.
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1 Introduction

Electrical Impedance Tomography (EIT) is a technique to recover images of the internal
conductivity of a body based on electrical measurements at electrodes attached on the
body surface. The Argentinian engineer and mathematician Alberto Pedro Calderon
wrote the first mathematical formulation of this problem in his paper On an inverse
boundary value problem (1980) [22], which was published by the Brazilian Mathematical
Society (SBM). To perform EIT, current is sent through electrodes placed on the surface
of the body and the resulting voltage on these same electrodes is measured. Then,
EIT aims to recover the conductivity distribution from this knowledge of current and
voltage. An alternative approach is to measure the current caused by voltage applied
to electrodes. Due to its potential advantages over other imaging techniques, e.g. low
cost, rapid response, high contrast, non-intrusiveness, portability, and absence of ionizing
radiation, EIT has applications in fields such as medical imaging [15], geophysics [60],
industrial process tomography [90], and non-destructive testing [68]. For a recent account
of the applications we refer the reader to [2].

A number of EIT models have been proposed for modeling the electric potential induced
inside a conducting body by boundary current injection (or voltage excitation). In all of
them, the electric potential u in the body Ω is governed by the elliptic partial differential
equation

∇ · (σ∇u) = 0 in Ω,

where σ is the internal conductivity of Ω. In the general case, σ is replaced by the complex
admittivity σ + iωε, where ε is the permittivity and ω is the frequency. This equation
can be obtained from Maxwell’s equations. Starting with this equation, each EIT model
proposes a different set of boundary conditions to model the electrodes attached to the
body surface ∂Ω and the current-voltage application through these electrodes. Next, an
account of existing EIT models is provided. The reconstruction problem in EIT was
originally formulated using the equations of the continuum model. This model idealizes
a unique continuous electrode over the entire body surface and assumes feasible the
injection of current densities. Thus, applications of current and voltage are modeled by
imposing Neumman and Dirichlet boundary conditions, respectively. However, in real
experiments, one can only apply currents and voltages through discrete electrodes. A
better model is the gap model. It approximates the current density by a constant over
each electrode and zeroes in the gaps between electrodes, while assumes the voltages
to be the mean of the electric potential over the electrodes. A disadvantage of the gap
model is that it ignores that the highly conductive electrode material (metal) shunts some
currents through the electrodes instead of through the body. The shunt model address
this effect by assuming perfectly conducting electrodes. It imposes that the electric
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1 Introduction

potential is always constant along each electrode. This accounts for the fact that the
metal precludes any voltage difference across its surface. Moreover, this model integrates
the electric flux over each electrode to model the current instead of the current density.
Unfortunately, these models do not reproduce experimental data. They do not take into
consideration the extra resistance produced by the electrochemical effect that takes place
at the contact interface between each electrode and the body. A thin, highly resistive
layer there form at this interface and is characterized by an effective contact impedance,
which is modeled as a positive constant. The complete electrode model improves the
shunt model by considering the voltage drops across the layer between the electrode and
the body as the product of the contact impedance times the current flux. According
to experiments, the complete electrode model is the most accurate model. It is capable
of predicting experimental measurements more accurately than 0.1 percent [92]. For a
complete description of these EIT models we refer the reader to [30, 92, 29, 46]. The
complete electrode model has been considered with non-constant contact impedances [56,
103]. In [57] was proposed the smoothened complete electrode model, which replaces the
contact impedances with contact admittance functions capable to vanish on some subsets
of the electrodes. Other proposed models are the point electrode models [33, 47, 5], where
the electrodes are replaced with point electrodes, eliminating the contact impedances.

The EIT models are weakly formulated in appropriate Sobolev spaces to analyze their
existence and uniqueness of a solution (alternatively, an equivalent distributional for-
mulation of them may be considered). Then, assuming the conductivity is known, the
problem of finding the electric potential from the application of current (or voltage) is
categorized as a direct problem. Moreover, if such a problem is formulated in a Hilbert
space, an equivalent extremal formulation of it can be obtained. For instance, the contin-
uum model has two well-known extremal formulations that have been interpreted as the
Dirichlet and Thomson variational principles for this model [17, 71, 19]. It is well-known
that the direct problem in EIT is well-posed in the sense of Hadamard [42]: it has a unique
solution and is linear and stable with respect to the applied current (or voltage). As a
consequence of the well-posedness, there exist continuous current-voltage maps (voltage-
to-current and current-to-voltage maps), which are linear and symmetric in a certain
sense. These maps are called Dirichlet-to-Neumann and Neumann-to-Dirichlet maps in
the case of the continuum model and may not be well-defined in point electrode models
[47]. Moreover, the power dissipated during current injection (or voltage excitation) can
be expressed using these maps. Many interesting results combine the extremal formula-
tions, current-voltage maps, and the power dissipated, namely duality relations [36, 19],
feasibility constraints and feasible sets [17, 16, 19, 20], the Kohn–Vogelius functional ap-
proach [72, 71, 64], and monotonicity estimates [67, 58, 49, 50, 38]. It is worth noting
that, perhaps because of its simple formulation, the continuum model was most often
considered in these results.

Due to the modeling of electrodes, the EIT models are elliptic problems with non-
standard boundary conditions (with the exception of the continuum model), where the
conductivity distribution and contact impendances (or admittances) are coefficients. In
general, the coefficients of a partial differential equation that models a physical phe-
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1 Introduction

nomenon represent the physical properties of the materials involved. In practice, they
are obtained through experiments with a certain degree of uncertainty. To assess the
influence of this coefficient uncertainty in physical phenomena that are modeled as el-
liptic problems, error estimates for solutions of idealized problems have been derivated
in [43, 44, 45] by using the duality theory of convex analysis [36][45, Ch. 2][11, Ch. 9],
which allowed to obtain error bounds for coefficient, boundary condition, and domain
idealizations. On the other hand, as mentioned above, in some cases the EIT models can
be formulated in terms of variational principles. A variational principle for a problem in
applied mathematics is a formulation of it as an optimization problem with an objective
functional that exhibits a stationary behaviour at its optimal solution, that is, the func-
tional derivative vanishes if the problem equations are fulfilled. For instance, problems
in electrostatics (whose equations are also derived from Maxwell’s equations), elasticity,
and diffusion are proved to have two interrelated variational principles: one principle is a
minimization problem, the other principle is a maximization problem, and the respective
minimum and maximum values are the same [32, 10, 82]. In this situation, it is said that
the principles are complementary [86]. It was proved that complementary principles can
be used to obtain upper and lower bounds on the maximum-minimum value (which usu-
ally represents a relevant physical quantity) and to measure the accuracy of approximate
solutions [86, 8, 9, 99]. For instance, in the continuum model, this maximum-minimum
value is the power dissipated into heat [17]. In conclusion, in order to obtain error esti-
mates, the EIT models might be analyzed from the point of view of the duality theory
of convex analysis and the theory of complementary variational principles.

Consider the following abstract formulation of the inverse problem in EIT. Let x be the
generated electric potential and let σ be the conductivity to be recover. The equations
of the EIT model under consideration can be written as the model equation

A (σ, x) = 0. (1.1)

Typically, (1.1) is expressed in a weak form and A is a map with values in a dual space.
Moreover, there exists a conductivity-to-potencial map S that satisfies A (σ, S (σ)) = 0
for all admissible conductivity σ. A proof of the continuity of S for the case of the
complete electrode model can be found in [76]. On the other hand, our hability to realize
indirect observations of the conductivity can be modeled by the observation operator
C = C (σ, x). In general, C is a non-linear map with values in a Banach space. For
instance, C (σ, x) is a L1-function in [53]. With these maps, and given an observed data
y (e.g. voltage measurements), the classical formulation of the EIT inverse problem is
written as the operator equation

F (σ) = y, (1.2)

where F is the nonlinear operator defined as F (σ) = C (σ, S (σ)). F is called the forward
operator, and its continuity and differentiability are usually proved at the time of applying
methods to solve (1.2) [1, 14]. Alternatively, we can avoid the conductivity-to-potential
operator S and consider the system (1.1) and the observation equation:

A (σ, x) = 0
C (σ, x) = y

,

3



1 Introduction

where both x and σ are the unknowns. This is the all-at-once approach [63, 64] applied to
the inverse problem in EIT. Below are some comments about the observation operator.
C depends on σ and x because there are cases where the observed data consists of
information from inside the body. Since EIT images suffer from low spatial resolution and
image accuracy, several hybrid imaging techniques have been introduced that combine
two or more physical modalities in order achieve high resolution while preserving high
contrast [102]. For example, one of such imaging modalities, known as acousto-electric
tomography (AET), combines EIT experiments with perturbations of the conductivity
using ultrasound waves. This method furnishes observations of the interior power density
[6, 24, 13, 1, 53]. Another modality is current density impedance imaging (CDII), which
is an EIT technique integrated with magnetic resonance imaging to obtain observations
of the internal current density [70, 80, 93, 97, 94]. In both cases, the observed data
are internal to the body. We conclude this paragraph citing some works related to the
uniqueness of solution of the EIT inverse problem: [79, 74, 25, 48, 4].

The direct problem in EIT has a unique solution, and is linear and stable with respect to
the current (or voltage) applied, that is, it is well-posed in the sense of Hadamard [42].
In contrast, the inverse problem in EIT is non-linear and severely ill-posed in the sense
of Hadamard. The non-linearity is a consequence of the fact that the current-voltage
operators, which are the only things we can observe from EIT experiments, depend on
the conductivity in a non-linear way. The ill-posedness means that the unknown con-
ductivity does not depend continuously on the boundary measurements. Then, slightly
different measurements can correspond to completely different conductivities. A more
detailed explanation of these attributes is provided in [78, Subsec. 12.4-5] using the
continuum model. Moreover, only noisy observations are available due to instrument
errors. As a consequence, numerical methods applied to the equations of the EIT inverse
problem produce unstable results. A cure is to solve the EIT inverse problem approxi-
mately and in a stable manner. Some type of regularization must be employed to achieve
this. The idea of regularization is to consider a stable auxiliary problem to overcome the
ill-posedness [91]. This new problem, called regularized problem, is stable in the sense
that depends continuously on the noisy observations, and its solution, called regularized
solution, approximates the solution of the inverse problem. To obtain stability, the regu-
larized problem incorporates additional information about the solution. A regularization
parameter controls the importance of this information on the regularized solution. Since
values of the regularization parameter near zero represent regularized problems close to
the inverse problem, it is desirable that the corresponding regularized solutions are also
close to a solution of the inverse problem. To summarize, the existence, estability, and
convergence of regularized solutions must be proved. In practice, the regularized problem
is approximately solved for a fixed regularization parameter, for which some technique to
find an optimal regularization parameter may be employed [52, 7, 35]. In [64, 55, 66, 28]
the all-at-once formulation of the inverse problem in EIT was considered with two poten-
tials at the same time, one corresponding to the problem with applied current and the
other one corresponding to the problem with applied voltage. There regularized problems
were proposed and the existence and convergence of regularized solutions was proved. In
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1 Introduction

[54] similar results were presented with the continuum model, but considering only the
electric potential and voltage measurements as observations. Stability results were not
presented in these papers.

1.1 Contributions

Two contributions to EIT are presented in this thesis. The first contribution is a step
towards a better understanding of the EIT models. It is presented in Chapter 2 and is
related to the direct problem in EIT. The second contribution is presented in Chapter 3
and is related to the inverse problem in EIT and its regularization.

The purpose of Chapter 2 is to provide an abstract framework that unifies the formulation
and analysis of EIT models. We begin by establishing three assumptions in the context
of Hilbert spaces, which attempt to generalize the mathematical objects involved in
the weak formulation of EIT models and the relations between them. Based on these
assumptions, abstract problems that represent the weak formulations of EIT models in
terms of electric potentials and current fields are proposed. The existence of solutions
to the abstract problems allows us to define current-voltage maps. Using these maps,
we define two non-negative functions that model the power dissipated during current
and voltage injection. Then, dual properties that connect all the abstract problems are
obtained. With all these results, a posteriori error estimates are derived and the idea
of feasibility constraints and feasible sets is applied to our framework. Five well-known
models fit into this abstraction: the continuum model, the gap model, the shunt model,
the complete electrode model, and the smoothened complete electrode model. Numerical
tests that apply the results to the complete electrode model are presented. Moreover,
functionals of Kohn-Vogelius type and a monotonicity principle are deduced, and the
connection of our framework with the duality theory of convex analysis and the theory
of complementary variational principles is shown.

In Chapter 3, an all-at-once formulation of the EIT inverse problem is proposed and
three regularizations of it are analyzed. We begin by establishing a set of assumptions
in the context of Banach spaces, which allows us to formulate an abstract problem that
aims to generalize the all-at-once formulation of the EIT inverse problem in terms of
electric potentials and with several types of observations, namely voltage measurements,
current measurements, magnitudes of current density field, and interior power densities.
For this abstract problem, three regularized problems are formulated, which are based
on the classic Tikhonov, Ivanov, and Morozov regularizations. The existence, stability,
and convergence of regularized solutions are proved. Additionally, it is proved that there
exists an optimal regularization parameter by means of considering a learning problem.
We emphasize that the stability of regularized solutions allowed us to prove this result.
The continuum model, the shunt model, the gap model, the complete electrode model,
and the smoothened complete electrode model fit into this abstraction. It turns out that
the all-at-once approach allows an alternative formulation of the EIT inverse problem,
where the model equation does not represent the EIT experiment. Numerical tests with
the complete electrode model and the previously mentioned observations are performed.

5
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1.2 Outline

Chapter 2 is organized as follows. In Section 2.1, the assumptions that we will use dur-
ing this chapter are presented and a brief explanation of their meaning in the context
of EIT is provided. In Section 2.2, the abstract problems are formulated and analyzed.
In Section 2.3, the current-voltage maps are defined and their properties are described.
In Section 2.4, the power functions that model the power dissipated in an EIT exper-
iment are defined. Here are obtained the dual properties. In Section 2.5, a posteriori
error estimates for approximate solutions of the abstract problems are derived from the
previous results. In Section 2.6, the idea of feasibility constraints and feasible sets is
applied to our framework. In Section 2.7, we show that the complete electrode model
fits into the assumptions and apply the results of the preceding sections to this model.
Here, numerical tests are performed to determine the error of approximate solutions and
to draw the feasible sets. In all sections, with the exception of the latter, examples
related to the continuum model are provided for a better understanding of the topic
developed in each section. An appendix is included, in which other EIT models that fit
into the assumptions are presented, and interpretations of the abstract problems from
the viewpoint of the duality theory of convex analysis and the theory of complementary
variational principles are provided.

Chapter 3 is organized as follows. In Section 3.1, the main assumptions are presented
and their meaning in the context of EIT is explained. The abstract inverse problem is
formulated here. In Section 3.2, the three regularizations are presented and preliminary
results are provided. In Section 3.3, the existence, stability, and convergence of regular-
ized solutions are proved. At the end, we formulate the learning problem and prove that
it has a solution. In Section 3.4, we consider the equations of the complete electrode
model to provide three instances of the assumptions; the abstract inverse problem and
their regularizations are formulated for each of them. Finally, in Section 3.5, numerical
tests are performed to aproximate regularized solutions. An appendix with examples of
other EIT models that fit into the assumptions is included.

6



2 A framework for EIT models

In this chapter, we provide an abstract framework that unifies the formulation and anal-
ysis of EIT models. We begin by formulating three assumptions in the context of real
Hilbert spaces, which aim to be abstract representations of the spaces, the bilinear forms,
and other mathematical objects involved in the weak formulation of the EIT models.
There, two bilinear forms (the first defined in the assumptions and the second derived
from the first), a gradient-like operator, and a domain-to-boundary potential operator are
considered. Based on these assumptions, four abstract problems are proposed and their
solvability is obtained by applying the Lax-Milgram theorem. The first two problems
represent the weak formulations of the EIT models in terms of electric potentials, with
applied current and applied voltage, respectively. The last two problems represent the
same EIT problems, but in terms of current fields. We shall point out that the abstract
problems are well-posed and that can be formulated as optimization problems. Using the
solutions of the abstract problems, two current-voltage maps are defined. We prove that
these maps are linear, continuous, symmetric, and, in a certain sense, inverses of each
other. One can see that all these properties are inherited from the mathematical objects
defined in the assumptions. It turns out that the current-to–voltage (resp. voltage-to-
current) map induces an inner (resp. semi-inner) product. The corresponding norms
lead to the introduction of two non-negative functions that model the power dissipated
during current and voltage injection, which take the same value when a current-voltage
pair corresponds to the same EIT experiment. These power functions are used to obtain
dual properties that link all the abstract problems. The extremal formulations play an
important role here. In fact, new extremal formulations are obtained in this part, whose
functionals may be interpred as ones of Kohn-Vogelius type. It is worth pointing out that
the dual properties hold for current-voltage pairs not necessarily corresponding to the
same EIT experiment. From the preceding results we derive a posteriori error estimates
for approximate solutions of the abstract problems. We begin by proving general error
estimates for pairs of abstract problems and then error estimates for each abstract prob-
lem are obtained as particular cases of the first ones. The error is measured with “energy
norms” and is expressed in terms of “energy functionals”. At the end, we extend the idea
of feasibility constraints and feasible sets to our framework. We begin by defining the
set F of pairs of bilinear forms for which the preceding results can be applied. Then, a
lemma inspired in the well-know monotocity estimates is proved. We use it to provide
a description of F by considering subsets of pair of bilinear forms defined by a power
constraint. These subsets are called feasibles sets and are proved to have monotonic
properties. In the situation that the feasible sets correspond to a current-voltage pair
from a EIT experiment, a interesting partition of F is obtained.

7



2 A framework for EIT models

2.1 Assumptions

Our framework is based on the following three assumptions:

A1. Let X and Z be real Hilbert spaces equipped with the inner products 〈·, ·〉X and
〈·, ·〉Z respectively. Let G : X → Z be a linear continuous operator. Assume
that there exists a non-zero vector 1X ∈ X such that 1X ∈ kerG. Denote by
X/R the quotient space of X with respect to span {1X}, which is also a real
Hilbert space equipped with the inner product that induces the norm [x] ∈ X/R →
‖[x]‖X/R := minλ∈R ‖x+ λ1X‖X . In addition, assume that there exists C > 0 such
that C ‖[x]‖X/R ≤ ‖Gx‖Z for all x ∈ X.

A2. Let b : Z × Z → R be a symmetric continuous coercive bilinear form.

A3. Let Y be a real vector space and let P : X → Y be a surjective linear map. Assume
that kerP is closed and that 1X /∈ kerP .

By Assumption A2 we know that there exists a self-adjoint isomorphism B : Z → Z
defined by b (z1, z2) = 〈z1, Bz2〉Z for all z1, z2 ∈ Z. Define the operator T : X → Z by
T := B−1 ◦G and a : X ×X → R by

a (x1, x2) := b (Tx1, Tx2) for all x1, x2 ∈ X. (2.1)

It is easy to check that a is a symmetric continuous bilinear form. Also, it can be deduced
from the assumptions on G that a (1X , x) = 0 and that there exists C > 0 such that
a (x, x) ≥ C ‖[x]‖2X/R for all x ∈ X. The bilinear forms a and b play an important
role in this work. In [99] a similar relation to (2.1) was assumed to obtain a general
complementary variational principle for elliptic problems.

In the context of Electrical Impedance Tomography, the mathematical objects that were
defined in Assumptions A1-A3 have the following interpretation. X and Z represent the
spaces of electric potentials and current fields, respectively. G is a gradient-like operator.
Y represents the space of electrode voltages. P can be viewed as a projection of the
electric potential on the domain to that on the electrode regions. a and b represent the
bilinear forms that arise from the weak formulation of an EIT model in terms of electric
potentials and current fields, respectively. Finally, T models the correspondence between
an electric potential in X and its current field in Z.

The following are direct consequences of Assumptions A1-A3:

1. Since a (x, 1X) = a (1X , x) = 0 for all x ∈ X, a can be defined on X/R × X/R,
namely

X/R× X/R → R

([x1] , [x2]) 7→ a (x1, x2) = a (x1 + λ11X , x2 + λ21X)

for all λ1, λ2 ∈ R. Also, since 1X ∈ kerG, we can define

X/R× X/R → R

([x1] , [x2]) 7→ 〈Gx1, Gx2〉Z = 〈G (x1 + λ11X) , G (x2 + λ21X)〉Z . (2.2)

8



2 A framework for EIT models

for all λ1, λ2 ∈ R. It easy to check these maps are symmetric continuous coercive
bilinear forms.

2. We claim that G (X) is closed in Z. Indeed, from the assumptions on G one can
deduce that there exist C,C ′ > 0 such that

C ‖[x]‖X/R ≤ ‖Gx‖Z ≤ C ′ ‖[x]‖X/R for all x ∈ X.

On the other hand, observe that since 1X ∈ kerG, G can be defined on X/R as
follows: given [x] ∈ X/R, G [x] := Gx = G (x+ λ1X) for all λ ∈ R. This map is
linear and continuous. It follows that X/R is isomorphic to G (X/R), and hence
G (X/R) is closed in Z. As G (X/R) = G (X), the conclusion follows.

3. Using Assumptions A1 and A3 one can show that X and P determine on Y the
norm

‖·‖Y : Y → R with ‖y‖Y := min
x∈X
Px=y

‖x‖X . (2.3)

Since the map P |(kerP )⊥ : (kerP )⊥ → Y defined by x⊥ 7→ Px⊥ = y is a linear

bijective isometry and (kerP )⊥ is a closed subspace, it follows that Y equipped
with ‖·‖Y is complete. Moreover, x⊥ ∈ (kerP )⊥ is the unique minimizer of the
minimization problem in (2.3) with y = Px⊥. It can be proved that ‖·‖Y satisfies
the paralelogram law. Thus, Y becomes a Hilbert space equipped with the inner
product 〈·, ·〉Y that induces ‖·‖Y (for a detailed proof of this result, see Lemma
2.34 in Appendix).

4. It follows from (2.3) that ‖Px‖Y ≤ ‖x‖X for all x ∈ X. Therefore P is continuous.

5. The topological dual of Y is denoted by Y ⋆. Given f ∈ Y ⋆ and y ∈ Y we write
〈f, y〉 instead of f (y). Let 1Y be the image of 1X under P and let Y /R be the
quotient space of Y with respect to span {1Y }.

6. Denote by 1Y the image of 1X under P . Let Z⊥ ⊂ Z and Y ⋆
⋄ ⊂ Y ⋆ be the closed

subspaces defined by

Z⊥ :=
{

z ∈ Z
∣
∣
∣G⋆z ∈ (kerP )⊥

}

= (G (kerP ))⊥ and

Y ⋆
⋄ := {f ∈ Y ⋆ | 〈f, 1Y 〉 = 0} ,

where G⋆ denotes the adjoint of G. Let R : Z⊥ → Y ⋆
⋄ be the linear map defined by

〈Rz, y〉 :=
〈
G⋆z, P−1y

〉

X
for all y ∈ Y,

where P−1y denotes some element in the inverse image of y under P . Since
〈G⋆z, x〉X = 0 for all x ∈ kerP provided z ∈ Z⊥, R does not depend on the choice
of P−1y. Also, since P (1X) = 1Y and 1X ∈ kerG, it follows that 〈Rz, 1Y 〉 =
〈z,G (1X)〉Z = 0 for all z ∈ Z⊥. Hence R (Z⊥) ⊆ Y ⋆

⋄ . Therefore R is well-defined.
Moreover, we have:

a) The continuity of G⋆ implies that of R.

9



2 A framework for EIT models

b) kerR = kerG⋆.

c) R is surjective. Indeed, consider the problem:

given f ∈ Y ⋆
⋄ find ẑ ∈ Z : 〈ẑ, Gx〉Z = 〈f, Px〉 for all x ∈ X (2.4)

It is clear that if ẑ solves (2.4) then ẑ ∈ Z⊥ and Rẑ = f by the surjectivity
of P . Since 1X ∈ kerG and 〈f, P (1X)〉 = 0, (2.4) can be rewritten in X/R
. Therefore, it suffices to apply the Lax-Milgram theorem to find a solution
ẑ = Gx̂ with x̂ ∈ X.

7. We denote by Y /R the quotient space of Y with respect to span {1Y }.
8. It is well-known that (kerG⋆)⊥ = ranG [27, Thm. 4.4]. As G (X) is closed in Z

and kerR = kerG⋆, we have Z = ranG⊕ kerR.

9. By the Hahn-Banach theorem, given any closed subspace X ′ ⊂ X such that 1X /∈
X ′, the bilinear form a is continuous and coercive on X ′ ×X ′ (for a proof of this
assertion, see Lemma 2.35 in Appendix). In particular, a is continuous and coercive
on kerP × kerP and on any subspace of the form {x ∈ X |Γ (x) = 0}, where Γ is
a linear continuous functional on X satisfying Γ (1X) 6= 0.

10. Since b
(
z,
(
B−1 ◦G

)
x
)
=
〈
z,BB−1Gx

〉

Z
= 〈Gx, z〉Z for all x ∈ X and all z ∈ Z,

it follows that

b (Tx, z) = 〈Rz, Px〉 for all x ∈ X and all z ∈ Z⊥. (2.5)

11. It follows directly from the assumptions on G that kerG = span {1X}.
Z⊥ and Y ⋆

⋄ represent the subspaces of appropriate current fields and applied currents,
respectively, while R is a normal component-like operator (this interpretation is best
illustrated in the example at the end of this section).

To provide the examples, we introduce the following notations.

Notation. Let Ω be an open, connected, bounded, and Lipschitz domain in R
d (d = 2, 3)

with boundary ∂Ω. n denotes the outward unit normal to ∂Ω. Let M be an integer and
let E1, . . . , EM be open connected subsets of ∂Ω such that Ei ∩ Ej = ∅ for i 6= j, and
if d = 3, the boundary of each Em is a smooth curve on ∂Ω. |Em| denotes the area
of Em. L2

(
Ω,Rd

)
denotes the space of square integrable vector-valued functions from

Ω into R
d. L2 (Em) denotes the space of square integrable functions from Em into R,

for m = 1, . . . ,M . H1 (Ω) denotes the usual Sobolev space on Ω. C∞
c (Ω) denotes the

space of infinitely differentiable functions with compact support in Ω and its closure with
respect to the H1 (Ω)-norm is denoted by H1

0 (Ω). Let R
M
⋄ be the subspace of vectors

with zero mean value
{

U ∈ R
M
∣
∣
∣
∑M

m=1 Um = 0
}

. H1/2 (∂Ω) denotes the space of traces

on ∂Ω and γ : H1 (Ω) → H1/2 (∂Ω) denotes the trace operator on ∂Ω. H1/2 (Em) denotes
the space of traces on Em and γm : H1 (Ω) → H1/2 (Em) denotes the trace operator on
Em, for m = 1, . . . ,M . The dual space of H1/2 (∂Ω) is denoted by H−1/2 (∂Ω). L∞ (Ω)
denotes the space of bounded measurable functions. For a measurable function σ, the
essential infimum of σ is denoted by ess infx∈Ωσ (x). 1 denotes the constant function

10



2 A framework for EIT models

1 (x) = 1 for all x ∈ Ω,
−→
1 denotes the all-ones vector

(
1(1), . . . , 1(M)

)
∈ R

M , and
−→
0

denotes the zero vector of RM . In all the examples the domain Ω represents a body with
a internal conductivity σ ∈ L∞ (Ω) satisfying σ− = ess infx∈Ωσ (x) > 0, and the subsets
E1, . . . , EM represent M electrodes attached on the surface ∂Ω.

Below, the first example of an EIT model that fits into our framework.

Example 2.1. The continuum model for the electric potential u consists of the equation

∇· (σ∇u) = 0 in Ω (2.6)

with the Neumann boundary condition

σ∇u · n = f on ∂Ω (2.7)

if a current density f is applied, or with the Dirichlet boundary condition

u = g on ∂Ω (2.8)

if a boundary voltage g is applied. For this model, Assumptions A1-A3 are verified with:

A1. X := H1 (Ω) and Z := L2
(
Ω,Rd

)
equipped with their usual inner products, G :

X → Z defined by Gu := −∇u (gradient operator), and 1X := 1 ∈ X.

A2. b : Z × Z → R defined by b (p1,p2) :=
∫

Ω
1
σp1 · p2 dx.

A3. Y := H1/2 (∂Ω) and P : X → Y defined by Pu := γu (trace operator).

It is easy to check that B : Z → Z is given by Bp = σ−1p. Thus, the linear operator
T : X → Z and the bilinear form a : X ×X → R are given by

Tu =
(
B−1 ◦G

)
u = −σ∇u and

a (u1, u2) = b (Tu1, Tu2) =

∫

Ω
σ∇u1·∇u2 dx.

The norm in X/R = H1 (Ω)
/
R is given by ‖[u]‖X/R = minλ∈R ‖u+ λ1‖H1(Ω). The

coercive property of G follows from the estimate

‖[u]‖H1(Ω)/R ≤ C ‖∇u‖L2(Ω,Rd) for all u ∈ H1 (Ω) ,

which is a direct consequence of Poincaré’s inequality [88, Cor. 7.3]. The remain-
ing assumptions are easily verified. From (2.3), the norm ‖·‖Y is defined by ‖g‖Y =

min
{

‖u‖H1(Ω)

∣
∣ u ∈ H1 (Ω) , γu = g

}

, which is the usual norm of H1/2 (∂Ω). The dual

of Y is Y ⋆ = H−1/2 (∂Ω). So, Y ⋆
⋄ is given by

H
−1/2
⋄ (∂Ω) =

{

f ∈ H−1/2 (∂Ω)
∣
∣ 〈f, γ1〉H−1/2×H1/2 = 0

}

.

The closed subspace Z⊥ is given by

Z⊥ =

{

p ∈ Z

∣
∣
∣
∣

∫

Ω
p · ∇udx = 0 for all u ∈ H1

0 (Ω) = kerP

}

.
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2 A framework for EIT models

Considering that the distributional divergence of a vector-valued function p ∈ L2
(
Ω,Rd

)

is defined as (∇ · p, ϕ) = −
∫

Ω p · ∇ϕdx for all test function ϕ ∈ C∞
c (Ω), Z⊥ can be

written as
Z⊥ =

{

p ∈ L2
(

Ω,Rd
)

|∇ · p = 0
}

by the density of C∞
c (Ω) in H1

0 (Ω), where the equality ∇ · p = 0 has to be understood
in the sense of distributions. By definition, given p ∈ Z⊥, the action of Rp on g ∈ Y is
expressed by

〈Rp, g〉 = 〈p, Gu〉Z = −
∫

Ω
p · ∇udx with u ∈ H1 (Ω) such that γu = g.

As the distributional divergence of any p ∈ Z⊥ is the zero function, the normal component
of p ∈ Z⊥ is well-defined [88, Sec. 6.2], namely p · n ∈ H−1/2 (∂Ω) is defined as

〈p · n, γu〉 =
∫

Ω
u(∇ · p)
︸ ︷︷ ︸

=0

dx+

∫

Ω
p·∇udx for all u ∈ H1 (Ω) . (2.9)

From this we deduce that Rp = −p · n for all p ∈ Z⊥ and that the kernel of R can be
written as

kerR =
{

p ∈ L2
(

Ω,Rd
)

| ∇ · p = 0, p · n = 0
}

.

Finally, observe that the orthogonal decomposition of Z reads as

Z = ranG⊕ kerR

=
{
∇u
∣
∣u ∈ H1 (Ω)

}
⊕
{

p ∈ L2
(

Ω,Rd
)

|∇ · p = 0, p · n = 0
}

.

This was proved in [23, Prop. 1] for smooth vector fields in order to prove the Hodge
Decomposition Theorem.

2.2 Abstract problems

Definition 2.2. Consider the following abstract problems.

C. Given f ∈ Y ⋆
⋄ , find a x̄ ∈ X satisfying

a (x̄, x) = 〈f, Px〉 for all x ∈ X. (2.10)

V. Given g ∈ Y , find a x̃ ∈ X satisfying

a (x̃, x) = 0 for all x ∈ kerP, (2.11)

Px̃ = g in Y. (2.12)

C′. Given f ∈ Y ⋆
⋄ , find a z̄ ∈ Z⊥ satisfying

b (z̄, z) = 0 for all z ∈ kerR, (2.13)

Rz̄ = f in Y ⋆. (2.14)

12



2 A framework for EIT models

V ′. Given g ∈ Y , find a z̃ ∈ Z⊥ satisfying

b (z̃, z) = 〈Rz, g〉 for all z ∈ Z⊥. (2.15)

The equations of C and V are abstractions of the weak formulations of the EIT models
in terms of electric potentials (x’s). C represents the problem with applied current (f),
while V represents the problem with applied voltage (g). The problems C′ and V ′ have
the same purpose that the problems C and V, respectively, but considering current fields
(z’s). C and V ′ share the same structure. The same happens with V and C′. Observe that
C and V are defined on the entire space X, whereas C′ and V ′ are defined on the closed
subspace Z⊥ because R is not well-defined on Z. On the other hand, Y and its dual
Y ⋆ are related to the boundary condition spaces of the EIT models. In V, the equation
Px = g in Y can be interpreted as a voltage boundary condition, while in C′ the equation
Rz̄ = f in Y ⋆ can be interpreted as a current boundary condition.

Let us make some quick comments about the abstract problems.

Compatibility condition. In C and C′, f must belong to Y ⋆
⋄ to ensure that a solution

exists. Indeed, from (2.10) it follows that 〈f, 1Y 〉 = 〈f, P (1X)〉 = a (x̄, 1X) = 0 and
from (2.14) it follows that 〈f, 1Y 〉 = 〈Rz̄, P (1X)〉 = 〈z̄, G (1X)〉X = 0. This is similar
to the compatibility condition that arises in elliptic problems with Neumann boundary
conditions (see for instance [88, Prop. 7.7]). For the EIT models, this represents the
inclusion of charge conservation [92].

Well-definiteness. Clearly, C and V ′ are well-defined. Since P : X → Y and R : Z⊥ → Y ⋆
⋄

are surjective maps, equation (2.12) and (2.14) make sense, and hence V and C′ are also
well-defined.

Extremal equivalences. Since a and b are symmetric and positive semidefinite, P (X) = Y ,
and R (Z⊥) = Y ⋆

⋄ , the abstract problems can be equivalently formulated as optimization
problems [88, Lem. 2.2, 4.3], namely

C. max
x∈X

J (x) with J (x) := 〈f, Px〉 − (1/2) a (x, x),

V. min
x∈X
Px=g

K (x) with K (x) := (1/2) a (x, x),

C′. min
z∈Z⊥
Rz=f

J ′ (z) with J ′ (z) := (1/2) b (z, z),

V ′. max
z∈Z⊥

K ′ (z) with K ′ (z) := 〈Rz, g〉 − (1/2) b (z, z).

Linearity. The abstract problems are linear problems due to the linearity of the objects
used to define them.

The following proposition establishes the existence and uniqueness of solutions to the
abstract problems.

Proposition 2.3.

(i) For every f ∈ Y ⋆
⋄ there exists x̄ ∈ X so that [x̄] is the set of solutions to C.

Furthermore, there exists C > 0 such that ‖[x̄]‖X/R ≤ C ‖f‖Y ⋆ and

[x̄] = span {1X} ⇔ f = 0Y ⋆ .
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2 A framework for EIT models

(ii) For every g ∈ Y there exists a unique solution x̃ ∈ X to V. Furthermore, there
exists C > 0 such that ‖x̃‖X ≤ C ‖g‖Y and

x̃ = λ1X ⇔ g = λ1Y for all λ ∈ R.

(iii) For every f ∈ Y ⋆
⋄ there exists a unique solution z̄ ∈ Z⊥ to C′. Furthermore, there

exists C > 0 such that ‖z̄‖Z ≤ C ‖f‖Y ⋆ and

z̄ = 0Z ⇔ f = 0Y ⋆ .

(iv) For every g ∈ Y there exists a unique solution z̃ ∈ Z⊥ to V ′. Furthermore, there
exists C > 0 such that ‖z̃‖Z ≤ C ‖g‖Y and

z̃ = 0Z ⇔ [g] = span {1Y } .

The proofs are based on the application of the Lax-Milgram theorem.

Proof of (i). Define f ◦ P on X/R as (f ◦ P ) [x] := 〈f, Px〉. It is well-defined since
(f ◦ P ) [1X ] = 〈f, 1Y 〉 = 0. From the continuity of f and P , it follows that |(f ◦ P ) [x]| ≤
‖f‖Y ⋆ ‖[x]‖X/R for all x ∈ X. Thus, by the Lax-Milgram lemma [88, Prop. 5.1], there
exists x̄ ∈ X such that [x̄] ∈ X/R is the unique solution to

a ([x̄] , [x]) = (f ◦ P ) [x] for all [x] ∈ X/R,

and ‖[x̄]‖X/R ≤ C ‖f‖Y ⋆ . From this it is easy to check that the solutions to C are the
elements of [x̄]. If x̄ = λ1X for some λ ∈ R, it follows that 〈f, Px〉 = 0 for all x ∈ X
by (2.10). Since P is surjective, f is the zero functional. The converse follows from the
estimate for [x̄].

Proof of (ii). Since a is continuous and coercive on kerP × kerP and P is continuous
and surjective, there exists a unique solution x̃ ∈ X to V and ‖x̃‖X ≤ C ‖g‖Y by
the Generalized Lax-Milgram lemma [88, Prop. 5.2]. Suppose that g = λ1Y . Then
a (x̃, x̃) = a (x̃, x̃− λ1X) = 0 by (2.11) and (2.12). Thus x̃ ∈ span {1Y }. Therefore
x̃ = λ1X since Px̃ = λ1Y . The converse is obvious.

Proof of (iii). Since R is surjective and b is continuous and coercive, by the Generalized
Lax-Milgram lemma [88, Prop. 5.2], C′ has a unique solution z̄ ∈ Z⊥ and ‖z̄‖X ≤
C ‖f‖Y ⋆ . From this f = 0Y ⋆ implies z̄ = 0Z . The converse follows from (2.14).

Proof of (iv). By the continuity of R the map z ∈ Z⊥ 7→ 〈Rz, g〉 ∈ R is continuous on
Z⊥. Moreover, b is continuous and coercive. Thus, by the Lax-Milgram lemma [88, Prop.
5.1], there exists a unique solution z̃ ∈ Z⊥ to V ′ and ‖z̃‖Z ≤ C ‖g‖Y . By (2.15), the
coercivity of b, and the surjectivity of R, z̃ = 0Z iff 〈f, g〉 = 0 for all f ∈ Y ⋆

⋄ . But, since
Y ⋆
⋄ is the annihilator of {1Y }, g belongs to the annihilator of Y ⋆

⋄ iff g ∈ span {1Y } (see
for instance [27, Thm. 4.24]). The conclusion follows.
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Remark 2.4. Using (2.5) we obtain that if x̄ is a solution to C then T x̄ is a solution to
C′ and that if x̃ is a solution to V then T x̃ is a solution to V ′. Thus, T maps solutions in
terms of electric potentials to solutions in terms of current fields.

Remark 2.5. Uniqueness of a solution was obtained for C′, V ′, and V, whereas it is possible
to find a unique solution for C in the kernels of linear functionals that do not contain
1X . Indeed, let Γ be a linear continuous functional on X such that Γ (1X) 6= 0 and let
X⋄ := ker Γ. It is easy to check that, given x ∈ X, the set [x] ∩ X⋄ consists of single
element, namely

[x] ∩X⋄ =

{

x− Γ (x)

Γ (1X)
1X

}

.

On the other hand, since X⋄ is a closed subspace and 1X /∈ X⋄, a is coercive on X⋄ ×X⋄

and there exists CΓ > 0 such that C−1
Γ ‖x‖2X ≤ a (x, x) for all x ∈ X⋄. Suppose that

x ∈ X⋄ is a solution to C. Then, from (2.10) and the continuity of f and P , it can be
deduced that ‖x‖X ≤ CΓ ‖f‖Y ⋆ . Therefore, if x̄ is a solution to C with f , there exists
a unique element x̄Γ := x̄ − (Γ (x̄) /Γ (1X)) 1X of [x̄] in X⋄ and ‖x̄Γ‖X ≤ CΓ ‖f‖Y ⋆ .
Conversely, since any element x ∈ X can be written as x = (x− (Γ (x) /Γ (1X)) 1X) +
(Γ (x) /Γ (1X)) 1X , with x−(Γ (x) /Γ (1X)) 1X ∈ X⋄ and (Γ (x) /Γ (1X)) 1X ∈ span {1X},
it follows that if x̄ ∈ X⋄ satisfies

a (x̄, x) = 〈f, Px〉 for all x ∈ X⋄,

then x̄ satisfies (2.10).

Remark 2.6. In the light of Proposition 2.3 and Remark 2.5, we can assert that C, V, C′,
and V ′ are well-posed in the sense of Hadamard [42]: they have a unique solution, which
depend continuously on the input (f in C and C′, g in V and V ′). This stable character of
the solutions is a consequence of the solution estimates and the linearity of the abstract
problems.

Example 2.7. The abstract problems for the continuum model are presented below.

C. Given f ∈ Y ⋆
⋄ = H

−1/2
⋄ (∂Ω), find a function ū ∈ X = H1 (Ω) satisfying

a (ū, u) =

∫

Ω
σ∇ū·∇udx = 〈f, γu〉 for all u ∈ X = H1 (Ω) .

This is the weak formulation of the continuum model written in terms of electric
potentials u’s and with applied current f . Choosing the linear functional Γ (u) =
∫

∂Ω γuds, we have there exists a unique solution inX⋄ =
{
u ∈ H1 (Ω)

∣
∣
∫

∂Ω γuds = 0
}

by Remark 2.5.

V. Given g ∈ Y = H1/2 (∂Ω), find a function ũ ∈ X = H1 (Ω) satisfying

a (ũ, u) =

∫

Ω
σ∇ũ·∇udx = 0 for all u ∈ kerP = H1

0 (Ω)

γũ = g in Y = H1/2 (∂Ω)

.

This is the weak formulation of the continuum model written in terms of electric
potentials u’s with applied voltage g. By Proposition 2.3(ii), constant voltages
yield constant electric potentials.
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C′. Given f ∈ Y ⋆
⋄ = H

−1/2
⋄ (∂Ω), find a vector-valued function p̄ ∈ Z⊥ (that is,

p̄ ∈ L2
(
Ω,Rd

)
and ∇ · p̄ = 0) satisfying

b (p̄,p) =

∫

Ω

1

σ
p̄ · pdx = 0 for all p ∈ kerR

−p̄ · n = f in H
−1/2
⋄ (∂Ω)

.

This is the weak formulation of the continuum model written in terms of current
fields p’s and with applied current f . Recall that p ∈ kerR means that p ∈
L2
(
Ω,Rd

)
, ∇ · p = 0, and p · n = 0. Observe that the first equation is equivalent

to say that 1
σ p̄ is orthogonal to kerR. Hence, there exists u ∈ H1 (Ω) such that

1
σ p̄ = ∇u by the decomposition of Z = L2

(
Ω,Rd

)
(see Example 2.1). It implies

that ∇× 1
σ p̄ = 0 if Ω ⊂ R

3 and ∇⊥ · 1
σ p̄ = 0 if Ω ⊂ R

2 in the sense of distributions
(the first is the curl operator and the second is the 2-d rotation operator). The
converse is true when the domain Ω is simply connected.

V ′. Given g ∈ Y = H1/2 (∂Ω), find a vector-valued function p̃ ∈ Z⊥ satisfying

b (p̃,p) =

∫

Ω

1

σ
p̃ · pdx = 〈−p · n, g〉 for all p ∈ Z⊥ (∇ · p = 0) .

This is the weak formulation of the continuum model written in terms of current
fields p’s and with applied voltage g.

To conclude this example, note that the solutions of the above problems are related as
p̄ = T ū = −σ∇ū and p̃ = T ũ = −σ∇ũ.

2.3 Current-Voltage maps

Two maps associated with the abstract problems are discussed in this section. These
maps attempt to represent the current-to-voltage and voltage-to-current maps in EIT,
which are respectively called Neumann-to–Dirichlet and Dirichlet-to–Neumann maps in
the case of the continuum model.

Let us begin by defining them.

Definition 2.8. The current-to-voltage map is defined as

Φ : Y ⋆
⋄ → Y /R with Φf := [Px̄] , (2.16)

where x̄ is a solution to C with f .

Definition 2.9. The voltage-to-current map is defined as

Ψ : Y → Y ⋆
⋄ with Ψg := Rz̃, (2.17)

where z̃ is the unique solution to V ′ with g.
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2 A framework for EIT models

Φ and Ψ represent the current-to-voltage and voltage-to-current maps in EIT, respec-
tively. In (2.16), the applied current f generates the electrode voltage Φf , while in (2.17),
the applied voltage g generates the electrode current Ψg.

Let us write some details to clarify the well-definiteness of the current-voltage maps. Since
P (1X) = 1Y , we can deduce that [P (x+ λ1X)] = [Px] for all x ∈ X and all λ ∈ R,
and hence Φ does not depend on the choice of x̄. It is also true that [Px̄] = P ([x̄]).
The continuity and linearity of Ψg follows from those of R, the linearity of V ′, and the
estimate for z̃ given in Proposition (2.3)(iv). Since R (Z⊥) = Y ⋆

⋄ , Ψg belongs to Y ⋆
⋄ for

all g ∈ Y .

Notation. Observe that given f ∈ Y ⋆
⋄ and g ∈ Y the set f ([g]) ⊂ R has exactly one

element, namely

f ([g]) = {〈f, g〉+ λ 〈f, 1Y 〉 |λ ∈ R} = {〈f, g〉} .

So, from now on 〈f, [g]〉 denotes the value 〈f, g〉.
Here are some elementary properties of the current-voltage maps.

Proposition 2.10.

(i) Φ and Ψ are linear and continuous.

(ii) Φ and Ψ are symmetric in the sense that

〈f1,Φf2〉 = 〈f2,Φf1〉 and 〈Ψg1, g2〉 = 〈Ψg2, g1〉

for all f1, f2 ∈ Y ⋆
⋄ and all g1, g2 ∈ Y .

(iii) The inverse properties

Ψ(Φf) = {f} for all f ∈ Y ⋆
⋄ and Φ (Ψg) = [g] for all g ∈ Y

hold. Moreover,

ker Φ = {0Y ⋆} , kerΨ = span {1Y } ,
ranΦ = Y /R, ranΨ = Y ⋆

⋄ .

(iv) Φ induces on Y ⋆
⋄ the inner product

〈·, ·〉Φ : Y ⋆
⋄ × Y ⋆

⋄ → R with 〈f1, f2〉Φ := 〈f1,Φf2〉 .

There exists C > 0 such that ‖f‖Φ ≤ C ‖f‖Y ⋆ for all f ∈ Y ⋆
⋄ , where ‖·‖Φ is the

norm induced by 〈·, ·〉Φ.

(v) Ψ induces on Y the semi-inner product

〈·, ·〉Ψ : Y × Y → R with 〈g1, g2〉Ψ := 〈Ψg1, g2〉 .

There exists C > 0 such that ‖g‖Ψ ≤ C ‖g‖Y for all g ∈ Y , where ‖·‖Ψ is the
semi-norm induced by 〈·, ·〉Ψ.
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2 A framework for EIT models

Proof of (i). The linearity of Φ (resp. Ψ) follows from the linearity of P (resp. R) and
the fact that C (resp. V ′) is a linear problem. The continuity of Φ (resp. Ψ) follows
from the continuity of P (resp. R) and the solution estimate of C (resp. V ′) given in
Proposition 2.3.

Proof of (ii). Let f1, f2 ∈ Y ⋆
⋄ and g1, g2 ∈ Y . Observe the following:

(1) Let x̄1, x̄2 be solutions to C with f1, f2 respectively. Then 〈f1, P x̄2〉 = a (x̄1, x̄2) by
(2.10).

(2) Let z̃1, z̃2 be solutions to V ′ with g1, g2 respectively. Then 〈Rz̃1, g2〉 = b (z̃2, z̃1) by
(2.15).

Combining the above with the symmetry of a and b we obtain the result.

Proof of (iii). Let f ∈ Y ⋆
⋄ and g ∈ Y . Let x̄ be a solution to C with f and let z̃ be the

unique solution to V ′ with g. Since T x̃ = z̃, we have

〈Ψg,Φf〉 = 〈Rz̃, P x̄〉 = b (T x̄, z̃) = a (x̄, x̃) = 〈f, P x̃〉 = 〈f, g〉

by (2.5) and (2.1). Hence 〈Ψg,Φf〉 = 〈f, g + λ1Y 〉 for all λ ∈ R. To conclude, it
suffices to use the symmetry of Φ and Ψ showed in (ii): by the symmetry of Ψ, 〈Ψy, g〉 =
〈Ψg,Φf〉 = 〈f, g〉 for all g ∈ Y and all y ∈ Φf , and hence Ψ(Φf) = {f}; by the symmetry
of Φ, 〈f,Φ (Ψg)〉 = 〈Ψg,Φf〉 = 〈f, [g]〉 for all f ∈ Y ⋆

⋄ , and since Y ⋆
⋄ is isometric to Y /R

[21, Prop. 11.9], we have Φ (Ψg) = [g]. The kernel and range statements are derived
directly from the inverse properties.

Proof of (iv). Let f ∈ Y ⋆
⋄ and x̄ be a solution to C with f . By (1) in the proof of (ii),

〈f, f〉Φ = 〈f, P x̄〉 = a (x̄, x̄) . (2.18)

Hence 〈f, f〉Φ ≥ 0. We prove that 〈f, f〉Φ = 0 iff f = 0Y ⋆ . If 〈f, f〉Φ = 0 then [x̄] =
span {1X} by (2.18). Hence f = 0Y ⋆ by Proposition 2.3(i). The converse is obvious.
Moreover, 〈·, ·〉Φ is symmetric by (ii) and is bilinear by the linearity of P and C. Therefore
〈·, ·〉Φ is an inner product. On the other hand, by (2.18) and the properties of a, we have
〈f, f〉Φ ≤ C ‖x̄+ λ1X‖2 for all λ ∈ R. Combining this inequality with the solution
estimate given in Proposition 2.3(i) we deduce that 〈f, f〉Φ ≤ C ‖f‖2Y ⋆ .

Proof of (v). Let g ∈ Y and let z̃ be the solution to V ′ with g. By (2) in the proof of
(ii),

〈g, g〉Ψ = 〈Rz̃, g〉 = b (z̃, z̃) . (2.19)

Hence 〈g, g〉Ψ ≥ 0. We prove that 〈g, g〉Ψ = 0 iff g ∈ span {1Y }. If 〈g, g〉Ψ = 0 then
and z̃ = 0Z by (2.19). Hence g ∈ span {1Y } by Proposition 2.3(iv). If g ∈ span {1Y }
then 〈g, g〉Ψ = 0 since Rz̃ ∈ Y ⋆

⋄ . On the other hand, 〈·, ·〉Ψ is symmetric by (ii) and
is bilinear by the linearity of R and V ′. Therefore 〈·, ·〉Ψ is a semi-inner product. On
the other hand, by (2.19) and the continuity of b, we have 〈g, g〉Ψ ≤ C ‖z̃‖2. Combining
this inequality with the solution estimate given in Proposition 2.3(iv) we deduce that
‖g‖Ψ ≤ C ‖g‖Y .
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Remark 2.11 (Are Φ and Ψ inverses of each other?). Since kerΨ = span {1Y }, Ψ can be
defined on Y /R. In this situation, Φ and Ψ are inverses of each other and the inverse
properties read as Ψ(Φf) = f ∈ Y ⋆

⋄ and Φ (Ψg) = [g] ∈ Y /R. An alternative is the
following. Let Υ ∈ Y ⋆ be such that Υ(1Y ) 6= 0. Let Y⋄ := kerΥ. It is easy to check that,
given g ∈ Y , the set [g] ∩ Y⋄ consists of a single element, namely

[g] ∩ Y⋄ =
{

g − Υ(g)

Υ (1Y )
1Y

}

.

Define the map ΦΥ : Y ⋆
⋄ → Y⋄ ⊂ Y by

ΦΥf := the unique element of Φf ∩ Y⋄.

One can prove that ΦΥ and Ψ|Y⋄
are inverses of each other using the inverse properties

given in Proposition 2.10(iii). If, in addition, 1Y is orthogonal to Y⋄, it turns out that
ΦΥ is the generalized inverse of Ψ by the Desoer-Whalen equivalence [101, Def. 11.1.5].
Moreover, observe that if Γ in (2.5) is chosen so that Γ = Υ ◦ P , then ΦΥf = Px̄Γ.

Example 2.12. The current-voltage maps for the continuum model are

• (current-to-voltage map) Φ : Y ⋆
⋄ = H

−1/2
⋄ (∂Ω) → Y /R = H1/2 (∂Ω)

/
R given by

Φf := [Pū] = {γū+ λγ1 |λ ∈ R},
• (voltage-to-current map) Ψ : Y = H1/2 (∂Ω) → Y ⋆

⋄ = H
−1/2
⋄ (∂Ω) given by Ψg =

R (T ũ) = σ∇ũ · n,

where ū ∈ H1 (Ω) is a solution to the weak formulation of continuum model with current f
(problem C) and ũ ∈ H1 (Ω) is the unique solution to the weak formulation of continuum
model with voltage g (problem V). We have used the fact T ũ is the unique solution
to V ′ with g. Thus, Φ maps the applied current f to the potential generated on ∂Ω
(up to additive constants), while Ψ maps the applied voltage g to the current density
generated on ∂Ω. Hence, Φ and Ψ are the well-known Neumann-to-Dirichlet (NtD) and
Dirichlet-to-Neumann (DtN) maps of the continuum model, respectively. If we consider
Γ (u) =

∫

∂Ω γuds and Υ(g) =
∫

∂Ω g ds linear continuous functionals on X = H1 (Ω) and

Y = H1/2 (∂Ω), respectively, by Remarks 2.5 and 2.11 (note that Γ = Υ ◦ γ) we have
ΦΥ : Y ⋆

⋄ → Y⋄ defined by

ΦΥf = the unique element of Φf ∩ Y⋄ = γūΓ

and Ψ|Y⋄
are inverses of each other, with ūΓ = ū−

(
1

|∂Ω|

∫

∂Ω γūds
)

1,

ūΓ ∈ X⋄ = ker Γ =

{

u ∈ H1 (Ω)

∣
∣
∣
∣

∫

∂Ω
γuds = 0

}

,

γūΓ ∈ Y⋄ = kerΥ =

{

g ∈ H1/2 (∂Ω)

∣
∣
∣
∣

∫

∂Ω
g ds = 0

}

.
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2 A framework for EIT models

current f voltage g

abstract problems C, C′ V, V ′

current-voltage maps Φ Ψ

power functions φ ψ

Table 2.1: Problems, maps, and functions classified according their input.

2.4 Dual properties

Here two non-negative functions that model the power dissipated during current and
voltage injections are analyzed. Their properties reveal the links between all the abstract
problems.

Definition 2.13. The power function associated to current-to-voltage map Φ is defined
as

φ : Y ⋆
⋄ → R with φ (f) :=

1

2
〈f, f〉Φ ,

where 〈·, ·〉Φ is the inner product induced by Φ on Y ⋆
⋄ .

Definition 2.14. The power function associated to voltage-to-current map Ψ is defined
as

ψ : Y → R with ψ (g) :=
1

2
〈g, g〉Ψ ,

where 〈·, ·〉Ψ is the semi-inner product induced by Ψ on Y .

Let us start with some observations.

1. Since 〈·, ·〉Φ and 〈·, ·〉Ψ are inner and semi-inner products respectively (see Propo-
sition 2.10(iv)(v)), it follows that

φ (f) = φ (−f) ≥ 0, ψ (g) = ψ (−g) ≥ 0,

φ (f) = 0 ⇔ f = 0Y ⋆ , φ (g) = 0 ⇔ g ∈ span {1Y } ,
φ (f1 − f2) = φ (f1)− 〈f1, f2〉Φ + φ (f2) , and

ψ (g1 − g2) = ψ (g1)− 〈g1, g2〉Ψ + ψ (g2)

for all f, f1, f2 ∈ Y ⋆
⋄ and all g, g1, g2 ∈ Y .

2. In the case that f and g are related to each other as f = Ψg or g ∈ Φf , Proposition
2.10(iii) yields

φ (f) = ψ (g) =
1

2
〈f, g〉 . (2.20)

In the context of EIT, φ (f) and ψ (g) represent the power dissipated into heat during
current and voltage injection, respectively. Thus, (2.20) says that when the current f
and voltage g are associated with the same EIT experiment, then the powers φ (f) and
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2 A framework for EIT models

ψ (g) are equal. In the past, this physical quantity was used in the study of the EIT
inverse problem [17, 20].

The following theorem is our main result. It shows that φ and ψ connect all the abstract
problems by means of several properties.

Theorem 2.15.

(i) φ is continuous, convex, and satisfies

φ (f) = max
x∈X

{

〈f, Px〉 − 1

2
a (x, x)

}

= min
z∈Z⊥
Rz=f

{
1

2
b (z, z)

}

(2.21)

for all f ∈ Y ⋆
⋄ .

(ii) ψ is continuous, convex, and satisfies

ψ (g) = min
x∈X
Px=g

{
1

2
a (x, x)

}

= max
z∈Z⊥

{

〈Rz, g〉 − 1

2
b (z, z)

}

(2.22)

for all g ∈ Y .

(iii) The functions φ and ψ are related to each other as

φ (f) = max
g∈Y

{〈f, g〉 − ψ (g)} for all f ∈ Y ⋆
⋄ (2.23)

and
ψ (g) = max

f∈Y ⋆
⋄

{〈f, g〉 − φ (f)} for all g ∈ Y, (2.24)

where the maximums are attained at all g ∈ Φf and f = Ψg, respectively. In other
words, the inequality

〈f, g〉 ≤ φ (f) + ψ (g) for all f ∈ Y ⋆
⋄ and all g ∈ Y

holds, and equality holds iff f = Ψg or g ∈ Φf .

(iv) Given f ∈ Y ⋆
⋄ and g ∈ Y , we have the identity

φ (f)− 〈f, g〉+ ψ (g) =
1

2
a (x̄− x̃, x̄− x̃) =

1

2
b (z̄ − z̃, z̄ − z̃) , (2.25)

where x̄, x̃, z̄, z̃ are the corresponding solutions of the abstract problems with f and
g. In the case that f = Ψg or g ∈ Φf ,

x̄− x̃ ∈ span {1X} and z̄ = z̃. (2.26)

(v) We have

φ (f)− 〈f, g〉+ ψ (g)

= min
(x,z)∈X×Z⊥
Px=g,Rz=f

1

2
b (z − Tx, z − Tx) (2.27)

= max
(x,z)∈X×Z⊥

〈f −Rz, Px− g〉 − 1

2
b (z − Tx, z − Tx) (2.28)

for all f ∈ Y ⋆
⋄ and all g ∈ Y .
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1. The minimum is attained at (xmin, zmin) = (x̃, z̄), where x̃ is the unique solu-
tion to V with g and z̄ is the unique solution to C′ with f . Moreover,

zmin = Txmin ⇔ the minimum value is 0 ⇔ f = Ψg ∨ g ∈ Φf.

2. The maximum is attained at all (xmax, zmax) ∈ [x̄]×{z̃}, where x̄ is a solution
to C with f and z̃ is the unique solution to V ′ with g. Moreover,

zmax = Txmax ⇔ the maximum value is 0 ⇔ f = Ψg ∨ g ∈ Φf.

Proof of (i). The continuity and convexity of φ follow from the fact that φ (·) = (1/2) ‖·‖2Φ
and the estimate ‖·‖Φ ≤ C ‖·‖Y ⋆ given in Proposition 2.10(iv). Let f ∈ Y ⋆

⋄ . Let x̄, z̄ be
solutions to C and C′ respectively, both with f . From (2.18) and (2.1) it follows that

φ (f) =

{
1
2a (x̄, x̄) = 〈f, P x̄〉 − 1

2a (x̄, x̄)
1
2b (z̄, z̄)

(2.29)

since T x̄ = z̄. Thus, (2.21) follows by combining (2.29) with fact that x̄ and z̄ are also
solutions to maxx∈X J (x) and minz∈Z⊥

Rz=f
J ′ (z) respectively.

Proof of (ii). The continuity and convexity of ψ follow from the fact that ψ (·) = (1/2) ‖·‖2Ψ
and the estimate ‖·‖Ψ ≤ C ‖·‖Y given in Proposition 2.10(v). Let g ∈ Y and x̃ be the
unique solution to V with g. Let g ∈ Y . Let x̃, z̃ be solutions to V and V ′ respectively,
both with g. From (2.19) and (2.1) it follows that

ψ (g) =
1

2
a (x̃, x̃) =

1

2
b (z̃, z̃) = 〈Rz̃, g〉 − 1

2
b (z̃, z̃)

ψ (g) =
1

2
a (x̃, x̃) =

1

2
b (z̃, z̃) = 〈Rz̃, g〉 − 1

2
b (z̃, z̃) (2.30)

since T x̃ = z̃. Thus, (2.22) follows by combining (2.30) with the fact that x̃ and z̃ are
also solutions to min x∈X

Px=g
K (x) and maxz∈Z⊥

K ′ (z) respectively.

Proof of (iii). Let f ∈ Y ⋆
⋄ and g ∈ Y . From (i) and (ii) it follows that

−φ (f) ≤ min
x∈X
Px=g

{
1

2
a (x, x)− 〈f, Px〉

}

= min
x∈X
Px=g

{
1

2
a (x, x)

}

− 〈f, g〉

= ψ (g)− 〈f, g〉 .

Therefore 〈f, g〉 ≤ φ (f)+ψ (g). Fix a f ∈ Y ⋆
⋄ . Then 〈f, g〉 −ψ (g) ≤ φ (f) for all g ∈ Y ,

and taking the supremum over g yields

sup
g∈Y

{〈f, g〉 − ψ (g)} ≤ φ (f) .

22



2 A framework for EIT models

Let g′ ∈ Φf . Since φ (f) = ψ (g′) = (1/2) 〈f, g′〉, it follows that g′ is a maximizer.
Suposse that g′′ ∈ Y is another maximizer. Then 〈f, g′′〉 − ψ (g′′) = ψ (g′). Moreover,
Ψg′ = f since Ψ(Φf) = {f} (see Proposition 2.10(iii)). Thus 〈f, g′′〉 = 〈g′, g′′〉Ψ, which
implies ψ (g′ − g′′) = 0.

Now fix a g ∈ Y . Then 〈f, g〉 − φ (f) ≤ ψ (g) for all f ∈ Y ⋆
⋄ , and taking the supremum

over f yields
sup
f∈Y ⋆

⋄

{〈f, g〉 − φ (f)} ≤ ψ (g) .

Let f ′ = Ψg. Since φ (f ′) = ψ (g) = (1/2) 〈f ′, g〉, it follows that f ′ is a maximizer.
Suposse that f ′′ ∈ Y ⋆

⋄ is another maximizer. Then 〈f ′′, g〉 − φ (f ′′) = φ (f ′). Moreover,
Φf ′ = [g] since Φ (Ψg) = [g] (see Proposition 2.10(iii)). Thus 〈f ′′, g〉 = 〈f ′′, f〉Φ, which
implies φ (f ′ − f ′′) = 0.

Proof of (iv). First, observe that since x̄ solves (2.10) with f and Px̃ = g, it follows that
a (x̄, x̃) = 〈f, P x̃〉 = 〈f, g〉; also, since z̃ solves (2.15) with g and Rz̄ = f , it follows that
b (z̃, z̄) = 〈Rz̄, g〉 = 〈f, g〉. Combining these equalities with (2.29) and (2.30) we obtain
the identity. On the other hand, if f = Ψg or g ∈ Φf then φ (f)− 〈f, g〉 + ψ (g) = 0 by
(iv). Thus, (2.26) is a consequence of (2.25) and of the coercivity of a and b.

Proof of (v). Let f ∈ Y ⋆
⋄ and g ∈ Y . From (i) and (ii), it can be deduced that

φ (f)− 〈f, g〉+ ψ (g) ≤ 1

2
b (z, z) − 〈f, g〉+ 1

2
a (x, x) (2.31)

for all (x, z) ∈ X × Z⊥ such that Px = g and Rz = f , and

φ (f)− 〈f, g〉+ ψ (g) ≥ 〈f, Px〉 − 1

2
a (x, x)− 〈f, g〉+ 〈Rz, g〉 − 1

2
b (z, z) (2.32)

for all (x, z) ∈ X×Z⊥. Using (2.1) and (2.5), the right-hand side of (2.31) can be written
as

1

2
b (z − Tx, z − Tx)

and the right-hand side of (2.32) can be written as

〈f −Rz, Px− g〉 − 1

2
b (z − Tx, z − Tx) .

If (x, z) = (x̃, z̄) in (2.31), it is clear that equality holds. Hence (x̃, z̄) is a minimizer of
(2.27). Let E (x, z) := 1

2b (z − Tx, z − Tx) and let (x′, z′) be another minimizer. Then
E (x′, z′) ≤ E (x, z′), i.e., (1/2) a (x′, x′) ≤ (1/2) a (x, x), for all x ∈ X such that Px = g.
Since V is equivalent to min x∈X

Px=g
K (x), x′ = x̃ by uniqueness of solution. Similarly,

from E (x′, z′) ≤ E (x′, z) for all z ∈ Z⊥ such that Rz = f we deduce that z′ = z̄.
Therefore the minimum in (2.27) is attained at (x̃, z̄). Similar arguments show that the
maximum in (2.28) is attainted at all (x, z) ∈ [x̄] × {z̃}. From (iii) and (iv) we obtain
the equivalences.
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Remark 2.16. From Theorem 2.15(iii), φ and ψ are the Legendre-Fenchel conjugate of
each other [11, Def. 9.3.1].

Remark 2.17. Let us point out that (i) and (ii) imply the following inequalities:

• Given f ∈ Y ⋆
⋄ ,

J (x) = 〈f, Px〉 − 1

2
a (x, x) ≤ φ (f) ≤ 1

2
b (z, z) = J ′ (z)

for all x ∈ X and all z ∈ Z⊥ such that Rz = f .

• Given g ∈ Y ,

K ′ (z) = 〈Rz, g〉 − 1

2
b (z, z) ≤ ψ (g) ≤ 1

2
a (x, x) = K (x)

for all x ∈ X such that Px = g and all z ∈ Z⊥.

These inequalities provide upper and lower bounds for the values of the power functions.

Example 2.18. By definition, the power functions for the continuum model are given
by φ (f) = 1

2 〈f, γū〉 and ψ (g) = 1
2 〈σ∇ũ · n, g〉, where ū is a solution to C with f and ũ

is the unique solution to V with g. From Theorem 2.15(i)(ii) it follows that the power
functions can be expressed as the minimization problems

φ (f) = min
p∈L2(Ω,Rd)

∇·p=0
−p·n=f

{
1

2

∫

Ω

1

σ
|p|2 dx

}

f ∈ Y ∗
⋄ = H

−1/2
⋄ (∂Ω)

and

ψ (g) = min
u∈H1(Ω)
γu=g

{
1

2

∫

Ω
σ |∇u|2 dx

}

g ∈ Y = H1/2 (∂Ω) .

(recall that given p ∈ L2
(
Ω,Rd

)
such that ∇ ·p ∈ L2 (Ω), p ·n ∈ H−1/2 (∂Ω) [88, Thm.

6.1]). These are the well-known Thomson and Dirichlet variational principles for the
continuum model [32, Ch. 4][72, 17][31, Subs. 2.1.3]. From Theorem 2.15(i)(ii) and
Remark 2.17 one can also see that upper and lower bounds for the power dissipated arise
in a complementary manner when f and g are related to each other as f = Ψg or g ∈ Φf ,
namely (recall that φ (f) = ψ (g) = 1

2 〈f, g〉 in this case)

〈f, γu1〉 −
1

2

∫

Ω
σ |∇u1|2 dx ≤ 1

2
〈f, g〉 ≤ 1

2

∫

Ω
σ |∇u2|2 dx

for all u1, u2 ∈ H1 (Ω) such that γu2 = g, and

〈−p1 · n, g〉 −
1

2

∫

Ω

1

σ
|p1|2 dx ≤ 1

2
〈f, g〉 ≤ 1

2

∫

Ω

1

σ
|p2|2 dx

for all p1,p2 ∈ L2
(
Ω,Rd

)
such that ∇ · p1 = ∇ · p2 = 0 and −p2 · n = f . In [10] was

obtained a similar inequality to the first one for the electrostatic energy generated by a
charge density. By Theorem 2.15(iii), the relations

1

2
〈f,Φf〉 = max

g∈H1/2(∂Ω)

{

〈f, g〉 − 1

2
〈Ψg, g〉

}

for all f ∈ Y ∗
⋄ = H

−1/2
⋄ (∂Ω)
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and

1

2
〈Ψg, g〉 = max

f∈H
−1/2
⋄ (∂Ω)

{

〈f, g〉 − 1

2
〈f,Φf〉

}

for all g ∈ Y = H1/2 (∂Ω)

hold, which are called convex duality relations [19, Lem. 4]. In fact, this shows that φ
and ψ are conjugate functions [36, Ch. 1 Def. 4.1]. On the other hand, the minimization
problem (2.27) read as

min
(u,p)∈H1(Ω)×L2(Ω,Rd)

∇·p=0
γu=g,−p·n=f

1

2

∫

Ω

∣
∣
∣σ−1/2p+ σ1/2∇u

∣
∣
∣

2
dx (2.33)

and the maximization problem (2.28) reads as

max
(u,p)∈H1(Ω)×L2(Ω,Rd)

∇·p=0

〈f + p · n, γu− g〉 − 1

2

∫

Ω

∣
∣
∣σ−1/2p+ σ1/2∇u

∣
∣
∣

2
dx.

The minimization problem (2.27) is closely related to the Kohn–Vogelius functional ap-
proach [72, 71], which aims to recover the internal conductivity from Dirichlet and Neum-
man data (g, f) (in our context, this means f = Ψg or g ∈ Φf) by minimizing the

functional (σ, u,p) 7→ 1
2

∫

Ω

∣
∣σ−1/2p+ σ1/2∇u

∣
∣
2
dx subject to σ− ≤ σ ≤ σ+, γu = g,

∇·p = 0, and −p ·n = f , with σ−, σ+ being two positive bounds. This problem is (2.27)
with σ as a variable. Recall that the above optimization problems admit unrelated f
and g.

2.5 Error estimates

In this section, a posteriori error estimates for approximate solutions of the abstract
problems are obtained. These results are inspired by [99], where a certain class of linear
boundary value problems for elliptic partial differential equations was considered and a
posteriori error estimates were obtained by using the associated complementary extremal
principles.

Notation. In this section, we denote E (x, z) = 1
2b (z − Tx, z − Tx) for all x ∈ X and all

z ∈ Z. This functional refers to the global error functional considered in the constitutive
error approach [85, 3].

The following proposition provides general error estimates for pairs of approximate so-
lutions (x, z) ∈ X ×Z⊥, where one corresponds to an abstract problem with f (i.e. C or
C′) and the other one corresponds to an abstract problem with g (i.e. V or V ′).

Proposition 2.19. Let f ∈ Y ⋆
⋄ and g ∈ Y .
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(i) Let x̃ and z̄ be the solutions of V with g and C′ with f , respectively. Then

1

2
a (x̃− x, x̃− x) +

1

2
b (z̄ − z, z̄ − z)

= E (x, z) − 〈f −Rz, Px− g〉+ 〈f −Rz,Φf − g〉+ 〈f −Ψg, Px− g〉
− (φ (f)− 〈f, g〉+ ψ (g)) for all (x, z) ∈ X × Z⊥. (2.34)

Consequently,

1

2
a (x̃− x, x̃− x) +

1

2
b (z̄ − z, z̄ − z) ≤ E (x, z)

for all (x, z) ∈ X × Z⊥ such that Px = g and Rz = f.

(ii) Let x̄ and z̃ be the solutions of C with f and V ′ with g, respectively. Then

1

2
a (x̄− x, x̄− x) +

1

2
b (z̃ − z, z̃ − z)

= E (x, z)− 〈f −Rz, Px− g〉
+ (φ (f)− 〈f, g〉+ ψ (g)) for all (x, z) ∈ X × Z⊥. (2.35)

Consequently,

1

2
a (x̄− x, x̄− x) +

1

2
b (z̃ − z, z̃ − z) ≥ E (x, z)− 〈f −Rz, Px− g〉

for all (x, z) ∈ X × Z⊥.

Therefore, when x and z are considered as approximate solutions, (i) and (ii) represent
a posteriori error estimates. The term E (x, z) represents the error on the domain and
the duality pairing terms represent the error on the boundary. The last estimates in (i)
and (ii) are consequences of the fact that φ (f) − 〈f, g〉 + ψ (g) is always non-negative
(see Theorem 2.15(iii)); in these estimates the error bound functions are the objective
functionals of the optimization problems (2.27) and (2.28), respectively.

Proof of (i). By (2.1), the left-hand side of (2.34) can be rewritten as

= 1
2b (z − Tx, z − Tx)− (φ (f)− 〈f, g〉+ ψ (g)) (2.36)

+ (b (z, Tx) + a (x̃, x̃− x) + b (z̄, z̄ − z)− 〈f, g〉)

since (1/2) a (x̃, x̃) = ψ (g) and (1/2) b (z̄, z̄) = φ (f). By (2.5), b (z, Tx) = 〈Rz, Px〉. By
(2.1), (2.5), and the fact that T x̃ = z̃ and T x̄ = z̄, we obtain

a (x̃, x̃− x) = b (T x̃, T (x̃− x)) = 〈Rz̃, P x̃− Px〉 = 〈Ψg, g − Px〉 x ∈ X,

b (z̄, z̄ − z) = a (x̄, x̄)− b (T x̄, z) = 〈f, P x̄〉 − 〈Rz, P x̄〉 = 〈f −Rz,Φf〉 z ∈ Z⊥.

Substituting into the last term of (2.36), the estimate (2.34) follows.
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Proof of (ii). By (2.1), the left-hand side of (2.35) can be rewritten as

= 1
2b (z − Tx, z − Tx) + (φ (f)− 〈f, g〉+ ψ (g)) (2.37)

+ (b (z, Tx)− a (x̄, x)− b (z̃, z) + 〈f, g〉)

since (1/2) a (x̄, x̄) = φ (f) and (1/2) b (z̃, z̃) = ψ (g). By (2.5) and since x̄ solves (2.10)
and z̃ solves (2.15), the last term of (2.37) becomes 〈Rz, Px〉− 〈f, Px〉− 〈Rz, g〉+ 〈f, g〉.
The estimate (2.35) follows.

Here are error estimates for pairs of approximate solutions (x, z) ∈ X × Z⊥ of abstract
problems with the same input, either f or g.

Corollary 2.20. Let f ∈ Y ⋆
⋄ and g ∈ Y .

(i) Let x̄ and z̄ be the solutions of C and C′, respectively, both with f . Then

1

2
a (x̄− x, x̄− x) +

1

2
b (z̄ − z, z̄ − z) = E (x, z)− 〈f −Rz, Px− Φf〉

for all (x, z) ∈ X × Z⊥. (2.38)

Consequently,

1

2
a (x̄− x, x̄− x) +

1

2
b (z̄ − z, z̄ − z) = E (x, z) = J ′ (z)− J (x)

for all (x, z) ∈ X × Z⊥ such that Rz = f. (2.39)

(ii) Let x̃ and z̃ be the solutions of V and V ′, respectively, both with g. Then

1

2
a (x̃− x, x̃− x) +

1

2
b (z̃ − z, z̃ − z) = E (x, z)− 〈Ψg −Rz, Px− g〉

for all (x, z) ∈ X × Z⊥. (2.40)

Consequently,

1

2
a (x̃− x, x̃− x) +

1

2
b (z̃ − z, z̃ − z) = E (x, z) = K (x)−K ′ (z)

for all (x, z) ∈ X × Z⊥ such that Px = g. (2.41)

The last estimates in (i) and (ii) are direct consequences of the constraints imposed on
each of them; the error term in both estimates is E (x, z), which is the objective functional
of the minimization problem (2.27).

Proof. The estimates (2.38) and (2.40) are obtained by taking g ∈ Φf and f = Ψg in
(2.34) (or (2.35)), respectively, and by noting that φ (f)− 〈f, g〉+ ψ (g) = 0 in this case
(see Theorem 2.15(iii)). The last equalities in (2.39) and (2.41) follow from the fact that

E (x, z) =
1

2
a (x, x)− 〈Rz, Px〉+ 1

2
b (z, z) for all x ∈ X and all z ∈ Z⊥. (2.42)
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Finally, error estimates for approximate solutions of each abstract problem are provided
below.

Corollary 2.21. YLet f ∈ Y ⋆
⋄ and g ∈ Y .

(i) Let x̄ and z̄ be the solutions of C and C′, respectively, both with f . Then

1

2
a (x̄− x, x̄− x) = φ (f)− J (x) ≤ J ′ (z)− J (x) = E (x, z)

for all x ∈ X and all z ∈ Z⊥ such that Rz = f. (2.43)

1

2
b (z̄ − z, z̄ − z) = J ′ (z)− φ (f) ≤ J ′ (z)− J (x) = E (x, z)

for all z ∈ Z⊥ such that Rz = f and all x ∈ X. (2.44)

(ii) Let x̃ and z̃ be the solutions of V and V ′, respectively, both with g. Then

1

2
a (x̃− x, x̃− x) = K (x)− ψ (g) ≤ K (x)−K ′ (z) = E (x, z)

for all x ∈ X such that Px = g and all z ∈ Z⊥. (2.45)

1

2
b (z̃ − z, z̃ − z) = ψ (g) −K ′ (z) ≤ K (x)−K ′ (z) = E (x, z)

for all z ∈ Z⊥ and all x ∈ X such that Px = g. (2.46)

Thus, in the case that the dissipated power is available, to compare the errors of two
approximate solutions it suffices to evaluate the corresponding objective functional at the
approximate solutions.

Proof. Since E (x, z) = J ′ (z) − J (x) for all x ∈ X and all z ∈ Z⊥ such that Rz = f
and E (x, z) = K (x) − K ′ (z) for all x ∈ X and all z ∈ Z⊥ such that Px = g (see
(2.42)), the estimates (2.43) and (2.44) follow by setting z = z̄ and x = x̄ in (2.39),
respectively, and the estimates (2.45) and (2.46) follow by setting z = z̃ and x = x̃ in
(2.41), respectively.

Remark 2.22. Combining (2.42) with ideas from [83, 84] we obtain an estimate in the
case that z does not belong to Z⊥:

1

2
a (x̄− x, x̄− x) ≤ (1 + γ)E (x, z) +

(

1 +
1

γ

)
1

2
b (Gx̂,Gx̂)

for all γ > 0, all x ∈ X, and all z ∈ Z such that x̂ ∈ X is a solution to

〈
Gx̂,Gx′

〉

Z
=
〈
G⋆z, x′

〉

X
−
〈
f, Px′

〉
for all x′ ∈ X.

As in problem C we can replace X by X⋄ to find a unique solution x̂.
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Example 2.23. Corollary 2.20 gives the following a posteriori error estimates for pairs

of approximate solutions of the continuum model. Let f ∈ H
−1/2
⋄ (∂Ω) be a current and

g ∈ H1/2 (∂Ω) be a voltage. Let

E (u,p) =
1

2

∫

Ω

∣
∣
∣σ−1/2p+ σ1/2∇u

∣
∣
∣

2
dx for all (u,p) ∈ H1 (Ω)× L2

(

Ω,Rd
)

.

• Let ū and p̄ be the solutions of C and C′, respectively, both with f . Then

1

2

∫

Ω
σ |∇ (ū− u)|2 dx+

1

2

∫

Ω

1

σ
|p̄− p|2 dx = E (u,p) (2.47)

for all (u,p) ∈ H1 (Ω)× L2
(
Ω,Rd

)
such that ∇ · p = 0 and −p · n = f .

• Let ũ and p̃ be the solutions of V and V ′, respectively, both with g. Then

1

2

∫

Ω
σ |∇ (ũ− u)|2 dx+

1

2

∫

Ω

1

σ
|p̃− p|2 dx = E (u,p) (2.48)

for all (u,p) ∈ H1 (Ω)× L2
(
Ω,Rd

)
such that ∇ · p = 0 and γu = g.

Now we use these estimates to assess the error of the exact solution to an approximate
problem (also called idealization [45]) of the original one. Suppose that σ− ≤ σ a.e. on
Ω, with σ− > 0, and that σ0 is a approximation of σ such that |σ − σ0| ≤ ε a.e. on Ω.
Let ū0 and ũ0 be the solutions corresponding to σ0, with f and g respectively. That is

∇ · (σ0∇ū0) = ∇ · (σ0∇ũ0) = 0 in the sense of distributions,

(σ0∇ū0) · n = f , and γũ0 = g.

Setting (u,p) = (ū0,−σ0∇ū0) in (2.47) and (u,p) = (ũ0,−σ0∇ũ0) in (2.48), it can be
deduced that

‖∇ (ū− ū0)‖L2(Ω,Rd) ≤
ε

σ−
‖∇ū0‖L2(Ω,Rd) ,

‖∇ (ũ− ũ0)‖L2(Ω,Rd) ≤
ε

σ−
‖∇ũ0‖L2(Ω,Rd) .

Similar estimates have been obtained for elliptic boundary value problems in [43, Thm.
2.2] using complementary variational principles and in [45, Thm. 3.1] via the duality
theory of convex analysis.

2.6 Feasible sets

In this section the set of all the pairs (a, b) of bilinear forms satisfying Assumption A2
and (2.1) is explored. The result is a description of this set in terms of feasible subsets.
The term “feasible” refers to the methodology that will be employed: a pair will be fixed
and any other pair will be classified according to its possibility of being the fixed pair.
This possibility will be obtained by using the values and the extremal expressions of
the power functions corresponding to the fixed pair. This idea is inspired by the works
[17, 16, 20].
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Definition 2.24. Let F be the set of all pairs of bilinear forms (a0, b0) such that
b0 satisfies Assumption A2 and a0 is defined by a0 (x1, x2) = b0 (T0x1, T0x2) for all
x1, x2 ∈ X, where T0 = B−1

0 ◦ G and B0 : Z → Z is the isomorphism associated to b0.
Observe that X, Z, Y , G, and P remain fixed.

The following lemma, which will be used to prove the proposition that describes F ,
takes inspiration from the monotonicity estimates used to solve the shape reconstruction
problem in EIT [95, 50, 39], which is a particular case of the EIT inverse problem.

Lemma 2.25. Let (a, b) and (a0, b0) be two pairs in F . Let Φ,Ψ, φ, ψ and Φ0,Ψ0, φ0, ψ0

their corresponding current-voltage maps and power functions.

(i) Let f ∈ Y ⋆
⋄ . Let x̄0 and z̄0 be solutions to C formulated with a0 and C′ formulated

with b0, respectively, both with f . Then

1

2
(b0 − b) (z̄0, z̄0) ≤ φ0 (f)− φ (f) ≤ 1

2
(a− a0) (x̄0, x̄0) . (2.49)

From this is deduced that

1. a (x, x) ≤ a0 (x, x) for all x ∈ X ⇒ φ0 ≤ φ on Y ⋆
⋄ ⇔ Φ0 ≤ Φ,

2. b (z, z) ≤ b0 (z, z) for all z ∈ Z⊥ ⇒ φ ≤ φ0 on Y ⋆
⋄ ⇔ Φ ≤ Φ0.

(ii) Let g ∈ Y . Let x̃0 and z̃0 be solutions to V formulated with a0 and V ′ formulated
with b0, respectively, both with g. Then

1

2
(a0 − a) (x̃0, x̃0) ≤ ψ0 (g)− ψ (g) ≤ 1

2
(b− b0) (z̃0, z̃0) . (2.50)

From this is deduced that

1. a (x, x) ≤ a0 (x, x) for all x ∈ X ⇒ ψ ≤ ψ0 on Y ⇔ Ψ ≤ Ψ0,

2. b (z, z) ≤ b0 (z, z) for all z ∈ Z⊥ ⇒ ψ0 ≤ ψ on Y ⇔ Ψ0 ≤ Ψ.

The inequalities of the current-voltage maps are in the sense of semidefiniteness.

Proof. Let g0 ∈ Φ0f . Applying Theorem 2.15(iii) to φ and ψ, and adding φ0 (f), we
have

φ0 (f)− φ (f) ≤ φ0 (f) + ψ (g0)− 〈f, g0〉 .
Since φ0 (f) = (1/2) 〈f, g0〉 it follows that

φ0 (f)− φ (f) ≤ ψ (g0)− φ0 (f) .

Replacing φ0 (f) by (1/2) a0 (x̄0, x̄0) and (1/2) b0 (z̄0, z̄0) yields

1

2
b0 (z̄0, z̄0)− φ (f) = φ0 (f)− φ (f) ≤ ψ (g0)−

1

2
a0 (x̄0, x̄0) .

Using the representations of φ and ψ as minimization problems given in Theorem 2.15(i)(ii),
it follows that

1

2
(b0 (z̄0, z̄0)− b (z, z)) ≤ φ0 (f)− φ (f) ≤ 1

2
(a (x, x)− a0 (x̄0, x̄0))
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for all (x, z) ∈ X×Z⊥ such that Px = g0 and Rz = f . Since g0 ∈ Φ0f , there exists λ ∈ R

such that Px̄0+λ1Y = g0. Therefore, (2.49) follows by choosing (x, z) = (x̄0 + λ1X , z̄0).
Similar arguments apply to (2.50).

Motivation for feasible sets. Consider the following observation. Given a pair (a, b) ∈
F and f ∈ Y ⋆

⋄ , Theorem 2.15(i) says that

{

〈f, Px〉 − 1

2
a (x, x) ≤ φ (f) ≤ 1

2
b (z, z)

for all x ∈ X and all z ∈ Z⊥ such that Rz = f
, (2.51)

where φ is the power function associated to (a, b). Suppose now that (a, b) is unknown
and that only φ is available. Let (a0, b0) ∈ F be another pair. If there is at least one
x ∈ X such that

φ (f) < 〈f, Px〉 − 1

2
a0 (x, x) ,

or if there is at least one z ∈ Z⊥, with Rz = f , such that

φ (f) >
1

2
b0 (z, z) ,

then (a0, b0) cannot be (a, b) by (2.51). Similar conclusions could be drawn from Theo-
rem 2.15(ii) when the power function ψ associated to (a, b) is available. Based on this
observation, the following definition is provided.

Definition 2.26. Let (a, b) be a fixed pair in F and let φ,ψ be its power functions.
Given f ∈ Y ⋆

⋄ and g ∈ Y , the sets

C (f) :=
{

(a0, b0) ∈ F

∣
∣
∣
∣
φ (f) ≥ 〈f, Px〉 − 1

2
a0 (x, x) for all x ∈ X

}

,

V (g) :=

{

(a0, b0) ∈ F

∣
∣
∣
∣
ψ (g) ≤ 1

2
a0 (x, x) for all x ∈ X, Px = g

}

,

C′ (f) :=

{

(a0, b0) ∈ F

∣
∣
∣
∣
φ (f) ≤ 1

2
b0 (z, z) for all z ∈ Z⊥, Rz = f

}

,

and

V ′ (g) :=

{

(a0, b0) ∈ F

∣
∣
∣
∣
ψ (g) ≥ 〈Rz, g〉 − 1

2
b0 (z, z) for all z ∈ Z⊥

}

are called feasible sets of F with respect to (a, b). A pair (a0, b0) ∈ F is said to be
C-feasible for f if (a0, b0) ∈ C (f). The same notation applies to the elements of the
other feasible sets. Note that the intersection of the feasible sets is not empty since (a, b)
belongs to the “boundary” of these.

Remark 2.27 (Complementarity). The feasible sets can equivalently be defined as

C (f) := {(a0, b0) ∈ F |φ (f) ≥ φ0 (f)} , V (g) := {(a0, b0) ∈ F |ψ (g) ≤ ψ0 (g)} ,
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C′ (f) := {(a0, b0) ∈ F |φ (f) ≤ φ0 (f)} , V ′ (g) := {(a0, b0) ∈ F |ψ (g) ≥ ψ0 (g)} ,
where φ0 and ψ0 are the power functions associated to (a0, b0). Hence, it is obvious that

(C (f))c = int C′ (f) ,
(
C′ (f)

)c
= int C (f) ,

(V (g))c = intV ′ (g) ,
(
V ′ (g)

)c
= intV (g) ,

where strict inequality defines the interior of a feasible set.

It may be said that the feasible sets contain candidates to be (a, b) when only the knowl-
edge of φ (f) or ψ (g) is available. This is connected with the fact that in the EIT inverse
problem the power dissipated during current or voltage injection can be used to restrict
the set of possible conductivities [17].

Here are some elementary properties of the feasible sets.

Proposition 2.28.

(i) Monotonic properties I: Let (a1, b1) , (a2, b2) ∈ F .

– If (a1, b1) ∈ C (f) and

a1 (x, x) ≤ a2 (x, x) for all x ∈ X,

then (a2, b2) ∈ C (f). The same holds with V (g).

– If (a1, b1) ∈ C′ (f) and

b1 (z, z) ≤ b2 (z, z) for all z ∈ Z⊥,

then (a2, b2) ∈ C′ (f). The same holds with V ′ (g).

(ii) Let f ∈ Y ⋆
⋄ and g ∈ Y . If f = Ψg or g ∈ Φf then

(1) C (f) ⊆ V (g),

(2) V ′ (g) ⊆ C′ (f),

3) int C (f) ∩ intV ′ (g) = ∅,
(4) (int C (f) ∪ intV ′ (g))c = V (g) ∩ C′ (f).

It follows that F can be partitioned as

F = C (f) ∪ V ′ (g) ∪
(
V (g) ∩ C′ (f)

)
. (2.52)

Note that only if (a0, b0) ∈ V (g) ∩ C′ (f) both bilinear forms are constrained.

(iii) The following relations hold:

(1)
⋂

f∈Y ⋆
⋄

C (f) =
⋂

g∈Y
V (g) =: D .

(2)
⋂

g∈Y

V ′ (g) =
⋂

f∈Y ⋆
⋄

C′ (f) =: T .

(3) intD ∩ intT = ∅, that is, D and T intersect just at the boundary.

(iv) Monotonic properties II: Let (a0, b0) ∈ F .
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C(f)

C′(f)

b

(a)

V(g)

V ′(g)

b

(b)

(c)

D

T

b

(d)

Figure 2.1: Each square above represents the set F . The bullet symbol • represents
the fixed pair (a, b), which belongs always to the “boundary” of the feasible
sets. (a) The feasible sets C (f) and C′ (f) are complementary. (b) The
same happens with V (g) and V ′ (g). (c) When f and g are related to each
other as f = Ψg or g ∈ Φf , the boundary of C (f) touches the boundary of
V ′ (g). The gray area is the intersection V (g) ∩ C′ (f). (d) If all f and all g
are considered, this gray area is reduced to the pairs having the same power
functions as (a, b). In the figure, D and T are the intersections of all possible
feasible sets constraining a0 and b0, respectively, and there is not other pair
with the same power functions. See Proposition 2.28(ii)(iii).
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– If a (x, x) ≤ a0 (x, x) for all x ∈ X, then (a0, b0) ∈ D .

– If b (z, z) ≤ b0 (z, z) for all z ∈ Z⊥, then (a0, b0) ∈ T .

Proof of (i). The properties are direct consequences of Theorem 2.15(i)(ii) and Lemma
2.25.

Proof of (ii). In this case, φ (f) = ψ (g) = (1/2) 〈f, g〉 =: P. (1) If (a0, b0) ∈ C (f) then
φ (f) ≥ φ0 (f). Applying the inequality given in Theorem 2.15(iii) to φ0 and ψ0, it follows
that ψ0 (g) ≥ P. Hence (a0, b0) ∈ V (g). The same reasoning applies to (2). (3) To obtain
a contradiction, suppose that (a0, b0) ∈ int C (f) ∩ intV ′ (g). Then φ0 (f) < φ (f) and
ψ0 (g) < ψ (g). It follows that 〈f, g〉−ψ (g) < 〈f, g〉−ψ0 (g) ≤ φ0 (f) < φ (f) by Theorem
2.15(iii), which is a contradiction. (4) The result follows from Remark 2.27.

Proof of (iii). Let (a0, b0) be a pair in F and let φ0, ψ0 be its corresponding power
functions. (1) Suppose (a0, b0) ∈ ⋂g∈Y V (g). Then ψ (g) ≤ ψ0 (g) for all g ∈ Y . It
follows that

〈f, g〉 − ψ0 (g) ≤ 〈f, g〉 − ψ (g) for all f ∈ Y ⋆
⋄ and all g ∈ Y.

By Theorem 2.15(iii), we have

φ0 (f) = max
g∈Y

{〈f, g〉 − ψ0 (g)} ≤ max
g∈Y

{〈f, g〉 − ψ (g)} = φ (f) for all f ∈ Y ⋆
⋄ .

That is, (a0, b0) ∈ C (f) for all f ∈ Y ⋆
⋄ . Therefore

⋂

g∈Y V (g) ⊆ ⋂f∈Y ⋆
⋄
C (f). The reverse

inclusion follows from (iii). Indeed, for any g ∈ Y we have C (Ψg) ⊆ V (g) by ??(1). So,
if (a0, b0) is a pair in

⋂

f∈Y ⋆
⋄
C (f), then (a0, b0) ∈ C (Ψg) for all g ∈ Y . Consequently

(a0, b0) ∈ V (g) for all g ∈ Y . Therefore
⋂

f∈Y ⋆
⋄
C (f) ⊆ ⋂g∈Y V (g). The same reasoning

applies to (2). Since intD ∩ intT ⊆ int C (f)∩ intV ′ (g) for all f ∈ Y ⋆
⋄ and all g ∈ Y , to

prove (3) it suffices to use ??(3).

Proof of (iv). Since (a, b) belongs to all the feasible sets, the result follows by applying
(ii) to (a, b) and (a0, b0).

Example 2.29. From the instance of Assumptions A1-A3 given in Example 2.1, we can
assert that the pairs (a0, b0) of the form

{
a0 (u1, u2) := b0 (T0u1, T0u2) for all u1, u2 ∈ X
b0 (p1,p2) :=

∫

Ω
1
σ0
p1 · p2 dx for all p1,p2 ∈ Z

(2.53)

belong to F , where σ0 ∈ L∞ (Ω) is such that ess infx∈Ωσ0 (x) > 0. Note that T0 : X → Z
is given by T0u = −σ0∇u. It is also easy to verify that the pairs (a0, b0) of the form

{
a0 (u1, u2) := b0 (T0u1, T0u2) for all u1, u2 ∈ X

b0 (p1,p2) :=
∫

Ω p1 · Σ−1
0 p2 dx for all p1,p2 ∈ Z (2.54)

belong to F , where Σ0 ∈ L∞
(
Ω,Rd×d

)
(space of d × d matrices of L∞ (Ω)-functions)

is symmetric and positive-semidefinite. Here T0 : X → Z is given by T0u = −Σ0∇u.
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2 A framework for EIT models

Therefore, a pair (a0, b0) is completely determined by a conductivity in the case of the

continuum model. Considering pairs of the form (2.53), given a current f ∈ H
−1/2
⋄ (∂Ω)

and a voltage g ∈ H1/2 (∂Ω), from Lemma 2.25 the monotonicity properties

∫

Ω

(
1

σ0
− 1

σ

)

|p̄0|2 dx ≤ 〈f, (Φ0 − Φ) f〉 ≤
∫

Ω
(σ − σ0) |∇ū0|2 dx (2.55)

and ∫

Ω
(σ0 − σ) |∇ũ0|2 dx ≤ 〈(Ψ0 −Ψ) g, g〉 ≤

∫

Ω

(
1

σ
− 1

σ0

)

|p̃0|2 dx (2.56)

hold, where ū0 and p̄0 (resp. ũ0 and p̃0) are the solutions corresponding to σ0 and f (resp.
g). Φ and Φ0 are the Neumman-to-Dirichlet maps associated to σ and σ0, respectively.
Ψ and Ψ0 are the Dirichlet-to-Neumman maps associated to σ and σ0, respectively. Since
p̄0 = T0ū0 = −σ0∇ū0, the estimate (2.55) can be expressed in terms of potentials

∫

Ω

σ0
σ

(σ − σ0) |∇ū0|2 dx ≤ 〈f, (Φ0 − Φ) f〉 ≤
∫

Ω
(σ − σ0) |∇ū0|2 dx (2.57)

or in terms of current fields
∫

Ω

(
1

σ0
− 1

σ

)

|p̄0|2 dx ≤ 〈f, (Φ0 − Φ) f〉 ≤
∫

Ω

σ

σ0

(
1

σ0
− 1

σ

)

|p̄0|2 dx.

Similar expressions can be obtained from (2.56), where the solutions are related by p̃0 =
T0ũ0 = −σ0∇ũ0. The estimate (2.57) is called the monotonicity principle and is the
basis of the so-called monotonicity method [50, 40]. On the other hand, if a current

f ∈ H
−1/2
⋄ (∂Ω) and a voltage g ∈ H1/2 (∂Ω) are associated to a same experiment, then

the feasible subset V (g)∩C′ (f) can be interpreted as the set that contains conductivities
σ0 satisfying the so-called variational constraints [17, 16, 20]:

P ≤ min
u∈H1(Ω)
γu=g

{
1

2

∫

Ω
σ0 |∇u|2 dx

}

(2.58)

and

P ≤ min
p∈L2(Ω,Rd)

∇·p=0
−p·n=f

{
1

2

∫

Ω

1

σ0
|p|2 dx

}

, (2.59)

where P = 1
2 〈f, g〉 is the power dissipated into heat. These constraints were introduced

by [17] for the study of the EIT inverse problem and derived from the Dirichlet and
Thomson variational principles associated to the continuum model. According to [20], a
conductivity σ0 is Dirichlet (resp. Thomson) feasible if it satisfies (2.58) (resp. (2.59))
and is feasible if it is Dirichlet and Thomson feasible. Thus, the feasible sets V (g) and
C′ (f) contain Dirichlet and Thomson feasible conductivities, respectively. Therefore, the
formulation of F and its description given in Proposition 2.28 provide a framework to
consider these ideas for other EIT models.
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2 A framework for EIT models

2.7 The complete electrode model

The equations of the complete electrode model [92] for the electric potential (u,U) are

∇· (σ∇u) = 0 in Ω (2.60)

σ∇u · n = 0 on ∂Ω\
M⋃

m=1

Em (2.61)

u+ zmσ∇u · n = Um on Em, m = 1, . . . ,M (2.62)

with ∫

Em

σ∇u · nds = Im m = 1, . . . ,M (2.63)

if a current pattern I = (I1, . . . , IM ) is applied, or with

Um = Vm m = 1, . . . ,M (2.64)

if a voltage pattern V = (V1, . . . , VM ) is applied. Each zm is a positive real number that
represents the effective contact impedance associated to the electrode Em and the current
and voltage patterns are vectors in R

M . The complete electrode model (2.60)-(2.64) fits
into Assumptions A1-A3 with

A1. X := H1 (Ω)×R
M and Z := L2

(
Ω,Rd

)
×
(
L2 (E1)× . . . × L2 (EM )

)
equipped with

the inner products induced by the direct sum operation (considering H1 (Ω), RM ,

L2
(
Ω,Rd

)
, and L2 (Em) with their usual inner products), 1X :=

(

1,
−→
1
)

∈ X, and

G : X → Z defined by

G (u,U) := −
(

∇u, (γmu− Um)Mm=1

)

.

Recall that γm : H1 (Ω) → H1/2 (Em) is the trace operator on EM .

A2. b : Z × Z → R defined by

b ((p1,P1) , (p2,P2)) :=

∫

Ω

1

σ
p1 · p2 dx+

M∑

m=1

∫

Em

zmP1,mP2,m ds.

A3. Y := R
M and P : X → Y defined by P (u,U) := U .

It is easy to check that B : Z → Z is given by B (p,P) :=
(

σ−1p, (zmPm)Mm=1

)

. Thus,

the linear operator T : X → Z and the bilinear form a : X ×X → R are given by

T (u,U) =
(
B−1 ◦G

)
(u,U) = −

(

σ∇u,
(
γmu− Um

zm

)M

m=1

)

and

a ((u1, U1) , (u2, U2))

= b (T (u1, U1) , T (u2, U2))

=

∫

Ω
σ∇u1·∇u2 dx+

M∑

m=1

∫

Em

(γmu1 − U1,m) (γmu2 − U2,m)

zm
ds.
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respectively. The norm in X/R :=
(
H1 (Ω)×R

M
)/

R is given by

‖[(u,U)]‖X/R = min
λ∈R

(

‖u+ λ1‖2H1(Ω) +
∥
∥
∥U + λ

−→
1
∥
∥
∥

2

RM

)1/2

.

To prove the coercive property of G we use the estimate

∥
∥
∥U + λ

−→
1
∥
∥
∥

2

RM
≤ 2

(

max
m=1,M

1

|Em|

) M∑

m=1

(

‖γm‖2 ‖u+ λ1‖2H1(Ω) + ‖γmu− Um‖2L(Em)

)

for all u ∈ H1 (Ω), all U ∈ R
M , and all λ ∈ R, which is derived using the continuity of

the trace operators. Indeed, from the above we can find a C > 0 such that

‖[(u,U)]‖2X/R ≤ C

(

‖u+ λ1‖2H1(Ω) +
M∑

m=1

‖γmu− Um‖2L(Em)

)

for all λ ∈ R.

Since ‖u+ λ1‖H1(Ω) ≤ C ′ ‖∇u‖L2(Ω,Rd) for all u ∈ H1 (Ω) by the Poincaré’s inequality

[88, Cor. 7.3] (with λ = − 1
|Ω|

∫

Ω u dx), the conclusion follows. The remaining assumptions

are easily verified. Observe that the norm on Y = R
M induced by X and P is just the

2-norm of RM . Indeed,

‖U0‖Y := min
(u,U)∈X

P (u,U)=U0

‖(u,U)‖X = min
u∈H1(Ω)

(

‖u‖2H1(Ω) + ‖U0‖2RM

)1/2
= ‖U0‖RM ,

where the minimum is attained at (0, U0). So, P−1
∣
∣
(kerP )⊥

U = (0, U) and the inner

product of Y is the usual inner product of R
M . Thus, the closed subspace Y ⋆

⋄ can be
identified with R

M
⋄ by the Riesz-Fréchet representation theorem. Since kerP = H1 (Ω)×

{−→
0
}

, we deduce that

Z⊥ =







(p,P) ∈ Z

∣
∣
∣
∣
∣
∣
∣
∣
∣

∇ · p = 0,

〈p · n, γu〉+
M∑

m=1

∫

Em

Pmγmuds = 0

for all u ∈ H1 (Ω)







by (2.9), where the equality ∇ ·p = 0 has to be understood in the sense of distributions.
By definition, given (p,P) ∈ Z⊥, the action of R (p,P) on U ∈ R

M is expressed by

〈R (p,P) , U〉 = 〈(p,P) , G (0, U)〉Z

= −
∫

Ω
p·∇ (0) dx−

M∑

m=1

∫

Em

Pm (γm (0)− Um) ds

=

M∑

m=1

(∫

Em

Pm ds

)

Um.
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Hence R (p,P) can be identified with the vector
(∫

Em
Pm ds

)M

m=1
. Thus, the kernel of

R is given by

kerR =

{

(p,P) ∈ Z⊥

∣
∣
∣
∣

∫

Em

Pm ds = 0 for m = 1, . . . ,M

}

.

Remark 2.30. In [37] the electrode voltages are determined by
(∫

Em
γmuds

)M

m=1
. This

choice corresponds to P (u,U) :=
(∫

Em
γmuds

)M

m=1
. It is easy to check that such a P

satisfies A2 and that the vector 1Y is given by (|E1| , . . . , |EM |) in this case. This P does
not yield the 2-norm of RM .

Remark 2.31. The closed subspace Z⊥ can be expressed as

Z⊥ =






(p,P) ∈ Z

∣
∣
∣
∣
∣
∣

∇ · p = 0 (in the sense of distributions),
p · n = 0 on ∂Ω\ ∪M

m=1 Em,
(p · n)|Em = −Pm for m = 1, . . . ,M






.

2.7.1 Abstract problems

The abstract problems for the complete electrode model are presented below.

C. Given f ∈ Y ⋆
⋄ (that is, I ∈ R

M
⋄ ), find

(
ū, Ū

)
∈ X = H1 (Ω)× R

M satisfying

∫

Ω
σ∇ū·∇udx+

M∑

m=1

∫

Em

(
γmū− Ūm

)
(γmu− Um)

zm
ds =

M∑

m=1

ImUm

for all (u,U) ∈ X. This is the weak formulation of the complete electrode model
written in terms of electric potentials (u,U)’s and with applied current I. Choosing
the linear continuous functional Γ (u,U) =

∑M
m=1 Um, we have that there exists a

unique solution in the closed subspace X⋄ = ker Γ = H1 (Ω)× R
M
⋄ .

V. Given V ∈ Y = R
M , find

(

ũ, Ũ
)

∈ X satisfying

a
((

ũ, Ũ
)

, (u,U)
)

= 0 for all (u,U) ∈ kerP = H1 (Ω)×
{−→
0
}

P
(

ũ, Ũ
)

= V in Y = R
M

.

Replacing Ũ = P
(

ũ, Ũ
)

by V in the first equation and noting that U is equal to
−→
0 in every test pair (u,U), we obtain

∫

Ω
σ∇ũ·∇udx+

M∑

m=1

∫

Em

γmũγmu

zm
ds =

M∑

m=1

∫

Em

Vmγmu

zm
ds

for all u ∈ H1 (Ω). This is the weak formulation of the complete electrode model
written in terms of electric potentials u’s and with applied voltage V . This formu-
lation was considered in [98].
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C′. Given f ∈ Y ⋆
⋄ (that is, I ∈ R

M
⋄ ), find

(
p̄, P̄

)
∈ Z⊥ satisfying

∫

Ω

1

σ
p̄ · p dx+

M∑

m=1

∫

Em

zmP̄mPm ds = 0 for all (p,P) ∈ kerR

∫

Em

P̄m ds = Im for m = 1, . . . ,M

.

This is the weak formulation of the complete electrode model written in terms
of current fields (p,P)’s and with applied current I. In [75] was obtained also
a formulation of this model in terms of current fields, which can be viewed as a
particular case of another model (see Appendix).

V ′. Given V ∈ Y = R
M , find

(

p̃, P̃
)

∈ Z⊥ satisfying

∫

Ω

1

σ
p̃ · pdx+

M∑

m=1

∫

Em

zmP̃mPm ds =

M∑

m=1

(∫

Em

Pm ds

)

Vm.

for all (p,P) ∈ Z⊥. This is the weak formulation of the complete electrode model
written in terms of current fields (p,P)’s and with applied voltage V .

Remark 2.32. To our knowledge, the problems C′ and V ′ are novel formulations of the
complete electrode model. In [75], a version of the complete electrode model in terms of
current fields was also proposed. It turns out that formulation can be deduced from the
assumptions that we made for the shunt model (see Appendix).

2.7.2 Current-Voltage maps

The current-voltage maps for the complete electrode model are

• (current-to-voltage map) Φ : Y ⋆
⋄ ≡ R

M
⋄ → Y /R = R

M
/
R given by ΦI :=

[
P
(
ū, Ū

)]
=
[
Ū
]

and

• (voltage-to-current map) Ψ : Y = R
M → Y ⋆

⋄ ≡ R
M
⋄ given by ΨV = R

(

p̃, P̃
)

≡
(∫

Em
P̃m ds

)M

m=1
.

Here
(
ū, Ū

)
is a solution to the weak formulation of complete electrode model with current

I (problem C) and
(

p̃, P̃
)

is the unique solution to the weak formulation of complete

electrode model with voltage V (problem V ′). Since
(

p̃, P̃
)

= T (ũ, V ), where ũ is the

unique solution to V with V , it follows that

ΨV ≡
(∫

Em

(V − γmũ)

zm
ds

)M

m=1

.

Choosing Γ (u,U) =
∑M

m=1 Um and Υ(U) =
∑M

m=1 Um linear continuous functionals on
X and Y , respectively, by Remarks (2.5) and (2.11) we have that ΦΥ : Y ⋆

⋄ ≡ R
M
⋄ → Y⋄

39



2 A framework for EIT models

defined as ΦΥI = P
(
ūΓ, ŪΓ

)
= ŪΓ and Ψ|Y⋄

are inverses of each other, with

(
ūΓ, ŪΓ

)
=
(
ū, Ū

)
−
(

1

M

M∑

m=1

Ūm

)
(

1,
−→
1
)

,

(
ūΓ, ŪΓ

)
∈ X⋄ = ker Γ = H1 (Ω)× R

M
⋄ , and Y⋄ = kerΥ = R

M
⋄ .

Φ and Ψ are the current-to-voltage and voltage-to-current operators of the complete
electrode model [48, 98]. In fact, it is usual to consider ΦΥ and Ψ|Y⋄

. It is well-known

that Φ satisfies the symmetry property 〈ΦI1, I2〉RM = 〈I1,ΦI2〉RM for all I1, I2 ∈ R
M
⋄

[92, Sec. 4]. This is equivalent to the symmetry property given in Proposition 2.10(ii),
which Ψ also holds.

2.7.3 Dual properties

With the identification of Y ⋆
⋄ with R

M
⋄ , and of ΨV with a vector in R

M
⋄ , the power

functions φ and ψ can be written as

φ (I) =
1

2
〈I,ΦI〉

RM I ∈ R
M
⋄ and ψ (V ) =

1

2
〈ΨV, V 〉

RM V ∈ R
M .

By Theorem 2.15(i)-(ii), we also have

φ (I) = min
(p,P)∈Z⊥

(
∫

Em
Pm ds)

M

m=1
=I

1

2

(
∫

Ω

1

σ
|p|2 dx+

M∑

m=1

∫

Em

zmP2 ds

)

I ∈ R
M
⋄

and

ψ (V ) = min
(u,U)∈X
U=V

1

2

(
∫

Ω
σ |∇u|2 dx+

M∑

m=1

∫

Em

(γmu− Um)2

zm
ds

)

V ∈ R
M ,

which can be interpreted as the Thomson and Dirichlet variational principles for the
complete electrode model, respectively. On the other hand, the optimization problems
given in Theorem 2.15(v) read as

min
(u,U)∈X,U=V

(p,P)∈Z⊥, (
∫

Em
Pm ds)

M

m=1
=I

E ((u,U) , (p,P))

and

max
(u,U)∈X
(p,P)∈Z⊥

〈

I −
(∫

Em
Pm ds

)M

m=1
, U − V

〉

RM

− E ((u,U) , (p,P)) ,
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where E : X × Z → [0,∞[ is defined as

E ((u,U) , (p,P)) :=
1

2

∫

Ω

∣
∣
∣σ−1/2p+ σ1/2∇u

∣
∣
∣

2
dx

+
1

2

M∑

m=1

∫

Em

(

z1/2m Pm + z−1/2
m (γmu− Um)

)2
ds.

Recall that these optimization problems attain their optimal values at the solutions of
the abstract problems. It is worth pointing out that the functional E can be viewed as
the complete electrode model counterpart of the Kohn-Vogelius functional.

2.7.4 Error estimates

Corollary 2.20 provides a posteriori error estimates for pairs of approximate solutions of
the complete electrode model. Let I ∈ R

M
⋄ be a current pattern. Let

(
ū, Ū

)
and

(
p̄, P̄

)

be the solutions of C and C′, respectively, both with I. From Corollary 2.20(i) we have
the estimate

∫

Ω
σ |∇ (ū− u)|2 dx+

M∑

m=1

∫

Em

(
γm (ū− u)−

(
Ūm − Um

))2

zm
ds

+

∫

Ω

1

σ
|p̄− p|2 dx+

M∑

m=1

∫

Em

zm
(
P̄−P

)2
ds = KV ((u,U) , (p,P)) (2.65)

for all (u,U) ∈ X and all (p,P) ∈ Z⊥ such that
(∫

Em
Pm ds

)M

m=1
= I. Consider the

following application. Suppose that σ0 and z1,0, . . . , zM,0 are approximations of σ and
z1, . . . , zM and let

(
ū0, Ū0

)
be a solution to C formulated with I, σ0, and z1,0, . . . , zM,0.

Then
(
p̄0, P̄0

)
∈ Z defined by

(
p̄0, P̄0

)
:= −

(

σ0∇ū0,
(
γmū0 − Ū0,m

z0,m

)M

m=1

)

belongs to Z⊥ and satisfies
(∫

Em
P̄0,m ds

)M

m=1
= I. Setting (u,U) =

(
ū0, Ū0

)
and

(p,P) =
(
p̄0, P̄0

)
in (2.65), and leaving the non-negative term

∫

Ω

1

σ
|p̄− p|2 dx+

M∑

m=1

∫

Em

zm
(
P̄−P

)2
ds

out, we have the estimate

∫

Ω
σ |∇ (ū− ū0)|2 dx+

M∑

m=1

∫

Em

(
γm (ū− ū0)−

(
Ūm − Ū0,m

))2

zm
ds

≤
∫

Ω

(σ − σ0)
2

σ
|∇ū0|2 dx+

M∑

m=1

∫

Em

zm

(
1

zm
− 1

z0,m

)2
(
γmū0 − Ū0,m

)2
ds.
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If, in addition, there are positive constants σ−, εσ, z+, and εz such that

σ− ≤ σ, |σ − σ0| ≤ εσ, zm ≤ z+,

∣
∣
∣
∣

1

zm
− 1

z0,m

∣
∣
∣
∣
≤ 1

εz
for m = 1, . . . ,M,

it follows that

∥
∥
(
ū, Ū

)
−
(
ū0, Ū0

)∥
∥
�
≤

max
{

εσ,
1
εz

}

min
{

σ−,
1
z+

}
∥
∥
(
ū0, Ū0

)∥
∥
�
,

where ‖·‖
�
: H1 (Ω)× R

M → R is defined as

‖(u,U)‖
�
:=

(
∫

Ω
|∇u|2 dx+

M∑

m=1

∫

Em

(γmu− Um)2 ds

)1/2

.

Proceeding in the same way, given a voltage pattern V and ũ the solution to V with V ,
from Corollary 2.20(ii) it can be deduced that the estimate

‖ũ− ũ0‖△ ≤ max
{
εσ , ε

−1
z

}

min
{
σ−, z

−1
+

} ‖(ũ0, V )‖
�

holds, where ũ0 is the unique solution to V formulated with V , σ0, and z1,0, . . . , zM,0,
and ‖·‖△ : H1 (Ω) → R is defined as

‖u‖△ :=

(
∫

Ω
|∇u|2 dx+

M∑

m=1

∫

Em

(γmu)
2 ds

)1/2
(

=
∥
∥
∥

(

u,
−→
0
)∥
∥
∥
�

)

.

Observe that ‖·‖
�

is a norm on X =
(
H1 (Ω)× R

M
)/

R equivalent to ‖·‖X/R (see, for

instance, [92, Lem. 3.2]). Moreover, it can be proved that ‖·‖
�

is a norm on H1 (Ω) ×
R
M
⋄ equivalent to the norm induced by the direct sum operation of H1 (Ω) and R

M
⋄

(considering both spaces with their usual norms) and that ‖·‖△ is a norm on H1 (Ω)
equivalent to its usual norm.

To conclude this part, we provide a numerical example where Corollary 2.21 is applied
to obtain the error of approximate solutions of the problems C and V. First, the a
posteriori error estimates are presented. Let I ∈ R

M
⋄ be a current and V ∈ R

M
⋄ be a

voltage. Applying the estimates (2.43) and (2.45) to the problems C and V we deduce
that

1

2

(
∫

Ω
σ |∇ (ūΓ − u)|2 dx+

M∑

m=1

∫

Em

(
γm (ūΓ − u)−

(
ŪΓ,m − Um

))2

zm
ds

)

= φ (I)−J (u,U)

for all (u,U) ∈ H1 (Ω)× R
M
⋄ and

1

2

(
∫

Ω
σ |∇ (ũ− u)|2 dx+

M∑

m=1

∫

Em

(γm (ũ− u))2

zm
ds

)

= K (u, V )− ψ (V )
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for all u ∈ H1 (Ω), where
(
ūΓ, ŪΓ

)
is the unique solution to C (with I) in the subspace

ker Γ = H1 (Ω)×R
M
⋄ (Γ (u,U) =

∑M
m=1 Um was chosen) and (ũ, V ) is the unique solution

to V (with V ). Recall that J and K are the objective functionals of the extremal
formulations of C and V, respectively. The above estimates are used to compute the error
of approximate solutions obtained by the finite element method. Consider the domain
Ω = ]0, 1[ × ]0, 1[ ⊂ R

2 with M = 12 electrodes, contact impedances z1, . . . , zM = 0.5,
and a conductivity σ : Ω → R defined as

σ (x) := 1 + 4× 1square (x) + 2× 1rectangle (x) ,

where 1square and 1rectangle are indicator functions (see Figure 2.2). Here, an approximate
solution consists of a piecewise linear function defined over an admissible triangulation
of Ω and, in the case of C, of a second component represented by its coordinates in
a basis of R

M
⋄ . Numerical tests with triangulations of Ti = 2 × (7× i)2 triangles and

Ni = (1 + 7× i)2 nodes, for i = 1, . . . , 13, were performed. In the i−th test the area of
each triangle is hi = 1/Ti. One random current I ∈ R

M
⋄ of norm 1 is applied to obtain

the approximate solutions (ui, Ui) ∈ C0
(
Ω̄
)
× R

M
⋄ of C and the errors φ (I) − J (ui, Ui)

are calculated. Similarly, one random voltage V ∈ R
M of norm 1 is applied to obtain the

approximate solutions ui ∈ C0
(
Ω̄
)

of V and the errors K (ui, V )− ψ (V ) are calculated.
The power values φ (I) = (1/2) 〈I,ΦI〉

RM and ψ (V ) = (1/2) 〈ΨV, V 〉
RM are calculated

from an “exact” solution generated by choosing i = 25. Since 1 ≤ σ, 1/z1, . . . , 1/zM , it
follows that the relative errors in norms ‖·‖

�
and ‖·‖△ are bounded as follows







‖(ūΓ,ŪΓ)−(ui,Ui)‖
�

‖(ūΓ,ŪΓ)‖
�

≤
√
2 ki
‖(ūΓ,ŪΓ)‖

�

with ki := (φ (I)− J (ui, Ui))
1/2 case C

‖ũ−ui‖△
‖ũ‖△

≤
√
2 li
‖ũ‖△

with li := (K (ui, V )− φ (V ))1/2 case V
.

The numerical results are presented in Tables 2.2 and 2.3. The 4th and 5th columns of the
tables displays the convergence rate and the above bounds. Observe that the sequences
J (ui, Ui) /J (ui−1, Ui−1) and K (ui, V ) /K (ui−1, V ) are decreasing and increasing, re-
spectively, and both converge to 1. It is worth pointing out that it is not neccesary to
discretize the error estimates since the conductivity is a piecewise constant function. Fi-
nally, note that to compare the errors of two approximate solutions (ui, Ui) and (uj, Uj)
of C, it suffices to compute the values J (ui, Ui) and J (uj , Uj); similarly, to compare the
errors of two approximate solutions ui and uj of V, it suffices to compute the values
K (ui, V ) and K (uj, V ).

2.7.5 Feasible sets

From the instance of Assumptions A1-A3 given at the beginning, we can assert that the
pairs (a0, b0) of the form

a0 ((u1, U1) , (u2, U2)) := b0 (T0 (u1, U1) , T0 (u2, U2)) ,

b0 ((p1,P1) , (p2,P2)) :=

∫

Ω

1

σ0
p1 · p2 dx+

M∑

m=1

∫

Em

z0,mP1,mP2,m ds
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Figure 2.2: Triangulations of Ω corresponding to i = 1 (left), i = 2 (center), and i = 3
(right). The test conductivity has value 4 in the square, 2 in the rectangle,
and 1 in the background. The thick lines on the boundary represent the
positions of the M = 12 electrodes.

i Ti φ (I)− J (ui, Ui)
log(ki/ki−1)
log(hi/hi−1)

√
2 ki
‖(ūΓ,ŪΓ)‖

�

× 100% J(ui,Ui)
J(ui−1,Ui−1)

1 98 0.1076 0.1676 29.33% -

2 392 0.0417 0.3416 18.26% 1.0324

3 882 0.0222 0.3901 13.31% 1.0093

4 1568 0.0137 0.4147 10.49% 1.0040

5 2450 0.0093 0.4326 08.64% 1.0021

6 3528 0.0067 0.4489 07.34% 1.0012

7 4802 0.0051 0.4655 06.36% 1.0008

8 6272 0.0039 0.4833 05.59% 1.0005

9 7938 0.0031 0.5032 04.96% 1.0004

10 9800 0.0025 0.5257 04.44% 1.0003

11 11858 0.0020 0.5514 04.00% 1.0002

12 14112 0.0016 0.5812 03.61% 1.0002

13 16562 0.0013 0.6162 03.28% 1.0001

Table 2.2: Errors of the approximate solutions (ui, Ui) of the problem C.
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i Ti K (ui, V )− φ (V ) log(li/li−1)
log(hi/hi−1)

√
2 li
‖ũ‖△

× 100% K(ui,V )
K(ui−1,V )

1 98 0.0055 0.4925 43.13% -

2 392 0.0020 0.3549 26.37% 0.9689

3 882 0.0011 0.3966 19.12% 0.9909

4 1568 0.0007 0.4187 15.02% 0.9961

5 2450 0.0004 0.4353 12.37% 0.9980

6 3528 0.0003 0.4509 10.50% 0.9988

7 4802 0.0002 0.4670 09.09% 0.9992

8 6272 0.0002 0.4845 07.99% 0.9995

9 7938 0.0001 0.5041 07.09% 0.9996

10 9800 0.0001 0.5264 06.35% 0.9997

11 11858 0.0001 0.5520 05.71% 0.9998

12 14112 0.0001 0.5817 05.16% 0.9998

13 16562 0.0001 0.6166 04.68% 0.9999

Table 2.3: Errors of the approximate solutions ui of the problem V.
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belong to F , where σ0 ∈ L∞ (Ω) with ess infx∈Ωσ0 (x) > 0 is a conductivity and
z0,1, . . . , z0,M are positive contact impedances. Here the linear operator T0 : X → Z
is given by

T0 (u,U) := −
(

σ0∇u,
(
γmu− Um

z0,m

)M

m=1

)

.

It is also easy to verify that the pairs (a, b) of the form

a0 ((u1, U1) , (u2, U2)) := b0 (T0 (u1, U1) , T0 (u2, U2)) ,

b0 ((p1,P1) , (p2,P2)) :=

∫

Ω
p1 · Σ−1

0 p2 dx+

M∑

m=1

∫

Em

ζ−1
0,mP1,mP2,m ds

belong to F , where Σ0 ∈ L∞
(
Ω,Rd×d

)
is a symmetric positive-semidefinite conductiv-

ity matrix with and ζ0,1, . . . , ζ0,M are bounded functions satisfying ζm ∈ L∞ (Em) and
ess infx∈Emζm (x) > 0. In this case,

T0 (u,U) = −
(

Σ0∇u, (ζ0,m (γmu− Um))Mm=1

)

.

Therefore, in the case of the complete electrode model, a pair is completely determined
by a conductivity and M contact impedances. Considering pairs composed of real-valued
conductivities and constant contact impedances, given a current pattern I ∈ R

M
⋄ , from

Lemma 2.25(i) the monotonicity property

∫

Ω

(
1

σ0
− 1

σ

)

|p̄0|2 dx+

M∑

m=1

∫

Em

(zm,0 − zm)
(
P̄0,m

)2
ds

≤ 〈I, (Φ0 − Φ) I〉
RM

≤
∫

Ω
(σ − σ0) |∇ū0|2 dx+

M∑

m=1

∫

Em

(
1

zm
− 1

zm,0

)
(
γmū0 − Ū0,m

)2
ds

(2.66)

holds, where
(
ū0, Ū0

)
and

(
p̄0, P̄0

)
are the solutions corresponding to the problems C

and C′ formulated with σ0, z1,0, . . . , zM,0, and I. In (2.66), Φ and Φ0 are the current-to-
voltage maps associated to σ, z1, . . . , zM and σ0, z1,0, . . . , zM,0, respectively. Since the
solutions are related as

(
p̄0, P̄0

)
:= −

(

σ0∇ū0,
(
γmū0 − Ū0,m

zm,0

)M

m=1

)

,

the estimate (2.66) can be expressed in terms of potentials

∫

Ω

σ0
σ

(σ − σ0) |∇ū0|2 dx+

M∑

m=1

∫

Em

zm
zm,0

(
1

zm
− 1

zm,0

)
(
γmū0 − Ū0,m

)2
ds

≤ 〈I, (Φ0 − Φ) I〉
RM

≤
∫

Ω
(σ − σ0) |∇ū0|2 dx+

M∑

m=1

∫

Em

(
1

zm
− 1

zm,0

)
(
γmū0 − Ū0,m

)2
ds .

(2.67)
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Similar expressions can be obtained from Lemma 2.25(ii) when a voltage pattern V ∈ R
M

is considered. The monotonicity estimate (2.67) was obtained in [51, Th. 2]. There,
(2.67) was used to characterize the achievable resolution in the shape reconstruction
problem. The monotonicity method based on the complete electrode model also uses
this estimate [39].

Observe that, from Proposition 2.28(ii), given a current I ∈ R
M
⋄ and a voltage V ∈ R

M

associated to a same experiment with conductivity σ and contact impedances z1, . . . , zM ,
the feasible subset V (V )∩C′ (I) can be interpreted as the set that contains conductivities
σ0 and impedances z1,0, . . . , zM,0 satisfying

P ≤ min
(u,U)∈X
U=V

1

2

(
∫

Ω
σ0 |∇u|2 dx+

M∑

m=1

∫

Em

(γmu− Um)2

z0,m
ds

)

and

P ≤ min
(p,P)∈Z⊥

(
∫

Em
Pm ds)

M

m=1
=I

1

2

(
∫

Ω

1

σ0
|p|2 dx+

M∑

m=1

∫

Em

z0,mP2 ds

)

,

where P = (1/2) 〈I, V 〉
RM is the power dissipated into heat. These inequalities are the

complete electrode model counterparts of the variational constraints introduced by [17]
for the continuum model.

Now, the feasible sets are numerically calculated for a simple example. Consider the
domain Ω = ]0, 1[× ]0, 1[ with conductivity and contact impedances

σ (x) = 1 + λ1 · 1rectangle (x) and z1 = . . . = zM = λ2,

which are parametrized by (λ1, λ2) ∈ Λ, where

Λ =
{
(λ1, λ2) ∈ R

2 | 1 ≤ λ1 ≤ 5, 0.01 ≤ λ2 ≤ 0.10
}
.

See Figure 2.3. On the boundary of Ω, M = 16 electrodes are attached. We consider a
discretization of Λ. For each (λ1, λ2) in this discretization the four current patterns

I1 = (1, 1, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 0) ,

I2 = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0) ,

I3 = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0) ,

I4 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,−1,−1) ∈ R
16
⋄

are applied. The resulting voltage patterns are V1 := ΦI1, . . . , V4 := ΦI4. A pair in F

is fixed by choosing a conductivity and contact impedances corresponding to
(

λ̂1, λ̂2

)

=

(2, 0.05). Then, by Proposition 2.28(ii), F can be partitionated with respect to
(

λ̂1, λ̂2

)

as
F = C (Ii) ∪ V ′ (Vi) ∪

(
V (Vi) ∩ C′ (Ii)

)
for i = 1, 2, 3, 4.
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 = 1

= 1

Figure 2.3: The test is performed in an square domain with M = 16 electrodes on its
boundary and containing an inhomogeneous conductivity of background value
1. It is assumed that all the electrodes have the same contact impedance.

In Figure 2.4, for each current Ii, the part of these partitions contained in Λ is drawn.
In Figure 2.5, the part of the feasible intersections ∩

i=1,2,3,4
C (Ii) (colored in ) and

∩
i=1,2,3,4

V ′ (Vi) (colored in ) contained in Λ are drawn. It was used the finite element

method with piecewise linear functions for the potential and an admissible triangulation
of 5408 triangles. The monotonic properties given in Proposition 2.28(i) were helpful for
the calculation of the feasible sets.

2.8 Conclusions

In this work, we have proposed a framework for the analysis of EIT models in terms of
electric potentials and current fields. Abstract problems that generalize the weak formu-
lation of known EIT models have been analyzed and properties of current-voltage maps
associated with them have been proved. We have exploited the extremal formulation of
the abstract problems to obtain dual properties that link them by means of functions
that model the power dissipated in an EIT experiment. These results have led to a
posteriori error estimates and a generalization of the ideas of feasibility constraints and
feasible sets. Furthermore, functionals of Kohn-Vogelius type and a generalization of the
well-known monotonicity principle have been deduced.

The examples showed that the error estimates obtained here may be used to assess the
error of exact solutions to idealized problems and approximate solutions obtained by
numerical methods. Also, it is remarkable the continued presence of the error term
E (x, z) in the estimates. In fact, this error is closely related to the Kohn-Vogelius
functional.

The extension of the idea of feasible constrains allowed to consider the contact impedances
of the complete electrode model as unknown parameters; also conductivity tensors are
proved to be admitted.
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Figure 2.4: For each current pattern Ii (i = 1, 2, 3, 4), the intersections of the feasible sets
C (Ii) (colored in ), V ′ (Vi) (colored in ), and V (Vi) ∩ C′ (Ii) (colored in

) with the region Λ are ploted. In each case, the points (λ1, λ2) that belongs
to the intersection of all the feasible boundaries represent the candidates to

be the true conductivity-impedance, which is parametrized by
(

λ̂1, λ̂2

)

=

(2, 0.05) (bullet symbol).
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1 2 3 4 5
1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

2

Figure 2.5: The feasible intersections
⋂

i=1,2,3,4
C (Ii) (colored in ) and

⋂

i=1,2,3,4
V ′ (Vi) (col-

ored in ) are identified in the region Λ. Note that the point
(

λ̂1, λ̂2

)

=

(2, 0.05) (bullet symbol), which represents the true conductivity-contact
impedances, lies in the intersection of the feasible boundaries.

Future work might be concerned with a framework for EIT models with a complex-value
conductivity as well as in terms of electric fields and current potentials (in this context the
gradient-like operator must be replaced by a curl-like operator). Also the optimization
problems with functionals of Kohn-Vogelius type would be of interest in the study of
the EIT inverse problem, particularly when it is formulated with the equations of the
complete electrode model.

According to our knowledge, all existing EIT models verify our assumptions, except the
so-called point model [47], about which we do not assert anything.

Since the Lax-Milgram Theorem is not necessarily true in Banach spaces, the extension
of our framework to EIT models in Banach spaces is not guaranteed.

Finally, it is worth noting that our abstract problems can also be interpreted as dual and
complementary problems from the point of view of the duality theory of convex analysis
and the theory of complementary variational principles, respectively.
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Appendix

Shunt model

The equations of the shunt model [92, 29, 46, 69] for the electric potential (u,U) are

∇· (σ∇u) = 0 in Ω (2.68)

σ∇u · n = 0 on ∂Ω\
M⋃

m=1

Em (2.69)

u = Um on Em, m = 1, . . . ,M (2.70)

with ∫

Em

∇u · nds = Im m = 1, . . . ,M (2.71)

if a current pattern I = (I1, . . . , IM ) is applied, or with

Um = Vm m = 1, . . . ,M (2.72)

if a voltage pattern V = (V1, . . . , VM ) is applied. The shunt model (2.68)-(2.72) fits into
Assumptions A1-A3 with

A1. X :=
{
(u,U) ∈ H1 (Ω)× R

M | γmu = Um

}
equipped with the inner product in-

duced by the direct sum of H1 (Ω) and R
M , Z := L2

(
Ω,Rd

)
equipped with its usual

inner product, 1X :=
(

1,
−→
1
)

∈ X, and G : X → Z defined by G (u,U) := −∇u.
A2. b : Z × Z → R defined by b (p1,p2) :=

∫

Ω
1
σp1 · p2 dx.

A3. Y := R
M and P : X → Y defined by P (u,U) := U .

It is easy to check that the isomorphism B : Z → Z associated to b is given by Bp :=
σ−1p. Thus, the linear operator T : X → Z and the bilinear form a : X ×X → R are
given by

T (u,U) =
(
B−1 ◦G

)
(u,U) = −σ∇u and

a ((u1, U1) , (u2, U2)) = b (T (u1, U1) , T (u2, U2)) =

∫

Ω
σ∇u1·∇u2 dx.

Here, the norm on Y = R
M induced by X and P is

‖U0‖Y := min
(u,U)∈X

P (u,U)=U0

‖(u,U)‖X = min
u∈H1(Ω)
γmu=U0,m

(

‖u‖2H1(Ω) + ‖U0‖2RM

)1/2
≥ ‖U0‖RM .

The subspace R
M
⋄ is contained in Y ⋆

⋄ . Indeed, given I ∈ R
M
⋄ , the linear functional

〈f, U〉 =∑M
m=1 ImUM satisfies 〈f, 1Y 〉 = 0 (1Y = P (1X) =

−→
1 ) and is continuous on R

M

equipped with the norm ‖·‖Y . Since

kerP =
{(

u,
−→
0
) ∣
∣u ∈ H1 (Ω) , γmu = 0 for m = 1, . . . ,M

}

,
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we deduce that

Z⊥ =

{

p ∈ Z

∣
∣
∣
∣
∇ · p = 0,

〈p · n, γu〉 = 0

for all u ∈ H1 (Ω) such that (γmu)
M
m=1 =

−→
0

}

by (2.9), where the equality ∇ ·p = 0 has to be understood in the sense of distributions.
Given p ∈ Z⊥, it can be deduced that the action of Rp on U ∈ Y = R

M is expressed by

〈Rp, U〉 = −〈p · n, γu〉 with (u,U) ∈ X,

that is, u is any function in H1 (Ω) satisfying γmu = Um for m = 1, . . . ,M . From this,
we deduce that the kernel of R is the set

kerR =

{

p ∈ Z⊥

∣
∣
∣
∣

〈p · n, γu〉 = 0

for all u ∈ H1 (Ω) such that (γmu)
M
m=1 ∈ R

M

}

.

Now we show that given p ∈ Z⊥, Rp can be identified with a vector of RM
⋄ . Let e1, . . . , eM

be functions in H1 (Ω) satisfying

γm′em =

{

1 m = m′

0 m 6= m′
for all m,m′.

So, given U ∈ R
M , the element

(
∑M

m=1 Umem, U
)

belongs to X and the action of Rp

on U can be written as

〈Rp, U〉 =
M∑

m=1

Um 〈−p · n, γem〉 .

Therefore, Rp can identified with the vector (〈−p · n, γe1〉 , . . . , 〈−p · n, γeM 〉), which
belongs to R

M
⋄ since 〈Rp, 1Y 〉 = 0. Observe that this identification does not come from

the Riesz-Fréchet representation theorem because ‖·‖Y and ‖·‖
RM are not equivalent.

Abstract problems. The abstract problems for the shunt model are presented below.

C. Given f ∈ Y ⋆
⋄ , find a

(
ū, Ū

)
∈ X satisfying

∫

Ω
σ∇ū·∇udx = 〈f, P (u,U)〉 = 〈f, U〉 for all (u,U) ∈ X.

Choosing f defined by 〈f, U〉 =
∑M

m=1 ImUM , with I ∈ R
M
⋄ , this problem is the

weak formulation of the shunt model written in terms of electric potentials (u,U)’s
and with applied current I. A unique solution of this problem can be obtained in

the subpace X⋄ =
{

(u,U) ∈ X
∣
∣
∣
∑M

m=1 Um = 0
}

, which corresponds to the linear

continuous functional Γ (u,U) =
∑M

m=1 Um.
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V. Given V ∈ Y = R
M , find a

(

ũ, Ũ
)

∈ X satisfying

∫

Ω
σ∇ũ·∇udx = 0 for all u ∈ H1 (Ω) with (γmu)

M
m=1 =

−→
0

Ũ = V in Y = R
M

.

This is the weak formulation of the shunt model written in terms of electric poten-
tials (u,U)’s with applied voltage V .

C′. Given f ∈ Y ⋆
⋄ , find a p̄ ∈ Z⊥ satisfying

b (p̄,p) =

∫

Ω

1

σ
p̄ · pdx = 0 for all p ∈ kerR

−〈p̄ · n, γu〉 = 〈f, U〉 for all (u,U) ∈ X

.

Choosing f defined by 〈f, U〉 = ∑M
m=1 ImUM , with I ∈ R

M
⋄ , the second equation

becomes
−〈p̄ · n, γem〉 = Im for m = 1, . . . ,M.

This problem can be viewed as the weak formulation of the shunt model written in
terms of current fields p’s and with applied current I.

V ′. Given V ∈ Y = R
M , find a p̃ ∈ Z⊥ satisfying

b (p̃,p) =

∫

Ω

1

σ
p̃ · pdx = 〈−p · n, γuV 〉 for all p ∈ Z⊥,

where uV is some function in H1 (Ω) satisfying (γmuV )
M
m=1 = V . This is the weak

formulation of the shunt model written in terms of current fields p’s and with
applied voltage V . Alternatively, we can write the above equation as

∫

Ω

1

σ
p̃ · pdx =

M∑

m=1

Vm 〈−p · n, γem〉 for all p ∈ Z⊥.

Example 2.33. Here we show that the EIT model proposed in [75] fits in the assumptions
made for the shunt model. Consider the domain Ω as Ω = Ω0 ∪

(
∪M
m=1Ωm

)
and the

conductivity σ as

σ (x) =

{

σ0 (x) x ∈ Ω0

σm (x) x ∈ Ωm, m = 1, . . . ,M
.

See Figure (2.6). Em and Dm are the outer and inner boundaries of Ωm, respectively.
Then, the problem C′ becomes

∫

Ω0

1

σ0
p̄ · pdx+

M∑

m=1

∫

Ωm

1

σm
p̄ · pdx = 0 for all p ∈ kerR

−〈p̄ · n, γem〉 = Im for m = 1, . . . ,M

,
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Ωm

Ω0

Em

Dm
∂Ω ∂Ω

Figure 2.6: Subdomains and boundaries.

or equivalently

min
p∈Z⊥

(−〈p·n,γem〉)Mm=1
=I

1

2

(
∫

Ω0

1

σ0
|p|2 dx+

M∑

m=1

∫

Ωm

1

σm
|p|2 dx

)

(2.73)

where the closed subspace Z⊥ can be written as the set

Z⊥ =
{

p ∈ L2
(

Ω,Rd
) ∣
∣∇ · p = 0 in Ω, p · n = 0 on ∂Ω\ ∪M

m=1 Em
}

.

Clearly, if p ∈ Z⊥ then 〈p · n, γ1〉 =
∫

Ω p·∇1dx = 0. It turns out that the minimization
problem (2.73) is the integral formulation of EIT proposed in [75]. There, a version of
the complete electrode model is derived from (2.73). Now, we provide a derivation of
that version. It is known that p̄ = −σ∇ū, where ū is a solution of C. Considering the
subdomains and their conductivities, the equation for ū can be written as

∫

Ω0

σ0∇ū·∇udx+

M∑

m=1

∫

Ωm

σm∇ū·∇udx =

M∑

m=1

ImUM for all (u,U) ∈ X. (2.74)

Since ∇ · (σ∇ū) = 0 in Ω,
∫

Ωm

σm∇ū·∇udx = 〈σm∇ū · n∂Ωm , γu〉H−1/2(∂Ωm)×H1/2(∂Ωm) for all u ∈ H1 (Ω) .

Assume that σm∇ū · n ∈ L2 (∂Ωm). Then, given (u,U) ∈ X,
∫

Ωm

σm∇ū·∇udx =

∫

∂Ωm

(σm∇ū · n∂Ωm) γuds

=

∫

Dm

(σm∇ū · n∂Ωm) γDmuds+

∫

Em

(σm∇ū · n∂Ωm) γmuds

Since γmu = Um on Em and
∫

Dm
σm∇ū ·n∂Ωm ds+

∫

Em
σm∇ū ·n∂Ωm ds = 0 (when u = 1)

it follows that
∫

Ωm

σm∇ū·∇udx =

∫

Dm

(σm∇ū · n∂Ωm) γDmuds− Um

∫

Dm

σm∇ū · n∂Ωm ds

=

∫

Dm

(σm∇ū · n∂Ωm) (γDmu− Um) ds

=

∫

Dm

− (σm∇ū · n∂Ω0
)

(
γDm ū− Ūm

)
(
γDmū− Ūm

)
(γDmu− Um) ds.
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Thus, we define the contact impedances z1, . . . , zM as the functions

zm (x) :=

(
γDm ū− Ūm

)

−σm (x)∇ū (x) · n∂Ω0
(x)

=

∫

Γ (p̄/σm) ds

p̄ (x) · n∂Ω0
(x)

x ∈ Dm.

where Γ is a path within Ωm that goes from the point x to an arbitrary point on Em.
Therefore, (2.74) becomes the weak formulation of the complete electrode model on the
domain Ω0, namely

∫

Ω0

σ0∇ū·∇udx+

∫

Dm

(
γDm ū− Ūm

)
(γDmu− Um)

zm
ds =

M∑

m=1

ImUM

for all (u,U) ∈ H1 (Ω0)× R
M .

Gap model

The equations of the gap model [92, 29, 46, 69] for the electric potential (u,U) are

∇· (σ∇u) = 0 in Ω (2.75)

σ∇u · n = 0 on ∂Ω\
M⋃

m=1

Em (2.76)

σ∇u · n = const. on Em, m = 1, . . . ,M (2.77)

1

|Em|

∫

Em

uds = Um on Em, m = 1, . . . ,M (2.78)

with

σ∇u · n|Em =
Im
|Em| m = 1, . . . ,M (2.79)

if a current pattern I = (I1, . . . , IM ) is applied, or with

Um = Vm m = 1, . . . ,M (2.80)

if a voltage pattern V = (V1, . . . , VM ) is applied. The gap model (2.75)-(2.80) fits into
Assumptions A1-A3 with

A1. X :=
{

(u,U) ∈ H1 (Ω)× R
M
∣
∣
∣

1
|Em|

∫

Em
γmuds = Um

}

equipped with the inner

product induced by the direct sum of H1 (Ω) and R
M , Z := L2

(
Ω,Rd

)
equipped

with its usual inner product, 1X :=
(

1,
−→
1
)

∈ X, and G : X → Z defined by

G (u,U) := −∇u.
A2. b : Z × Z → R defined by b (p1,p2) :=

∫

Ω
1
σp1 · p2 dx.

A3. Y := R
M and P : X → Y defined by P (u,U) := U .
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The norm on Y = R
M induced by X and P is

‖U0‖Y = min
u∈H1(Ω)

1

|Em|

∫

Em
γmu ds=U0,m

(

‖u‖2H1(Ω) + ‖U0‖2RM

)1/2
≥ ‖U0‖RM .

As in the shunt model, the subspace R
M
⋄ is contained in Y ⋆

⋄ . Since

kerP =

{

(u, 0)

∣
∣
∣
∣

1

|Em|

∫

Em

γmuds = 0, m = 1, . . . ,M

}

we deduce that

Z⊥ =







p ∈ Z

∣
∣
∣
∣
∣
∣
∣

∇ · p = 0,
〈p · n, γu〉 = 0

for all u ∈ H1 (Ω) such that
(

1
|Em|

∫

Em
γmuds

)M

m=1
=

−→
0







by (2.9), where the equality ∇ ·p = 0 has to be understood in the sense of distributions.
Given p ∈ Z⊥, it can be deduced that the action of Rp on U ∈ R

M is given by

〈Rp, U〉 = −〈p · n, γu〉 with (u,U) ∈ X,

that is, u is any function in H1 (Ω) satisfying 1
|Em|

∫

Em
γmuds = Um for m = 1, . . . ,M .

From this, the kernel of R is

kerR =

{

p ∈ Z⊥

∣
∣
∣
∣
∣

〈p · n, γu〉 = 0

for all u ∈ H1 (Ω) such that
(

1
|Em|

∫

Em
γmuds

)M

m=1
∈ R

M

}

.

Given p ∈ Z⊥, we can identified Rp with a vector of R
M
⋄ . Indeed, let e1, . . . , eM be

functions in H1 (Ω) satisfying

∫

Em′

γmem ds =

{

|Em| m = m′

0 m 6= m′
for all m,m′.

So, given U ∈ R
M , the element

(
∑M

m=1 Umem, U
)

belongs to X and the action of Rp

on U can be written as

〈Rp, U〉 =
M∑

m=1

Um 〈−p · n, γem〉 .

Therefore, Rp can identified with the vector (〈−p · n, γe1〉 , . . . , 〈−p · n, γeM 〉), which
belongs to R

M
⋄ since 〈Rp, 1Y 〉 = 0. As in the shunt model, this identification does not

come from the Riesz-Fréchet representation theorem because ‖·‖Y and ‖·‖
RM are not

equivalent.

The abstract problems of the gap model are as those of the shunt model (a, b, and T
are the same). To formulate them, in addition to the above closed subspaces, we must
consider a function uV satisfying 1

|Em|

∫

Em
γmuV ds = Vm for m = 1, . . . ,M .
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Smoothened complete electrode model

In [57] was proposed the smoothened complete electrode model :

∇· (σ∇u) = 0 in Ω (2.81)

σ∇u · n = 0 on ∂Ω\
M⋃

m=1

Em (2.82)

σ∇u · n+ ζm (u− Um) = 0 on Em, m = 1, . . . ,M (2.83)

with ∫

Em

σ∇u · nds = Im m = 1, . . . ,M (2.84)

if a current pattern I = (I1, . . . , IM ) is applied, or with

Um = Vm m = 1, . . . ,M (2.85)

if a voltage pattern V = (V1, . . . , VM ) is applied. It replaces the contact impedances of
the complete electrode model with contact admittance functions ζ1, . . . , ζM capable to
vanish on some subsets of the electrodes. The contact admittances satisfy

ζm ∈ L∞ (Em) , ζm ≥ 0 a.e. on Em, and ζm 6≡ 0 for m = 1, . . . ,M. (2.86)

Considering the complete electrode model assumptions with ζ1, . . . , ζM instead of z1, . . . , zM ,
this model satisfies partially Assumptions A1-A3 since the bilinear form b, given by

b ((p1,P1) , (p2,P2)) :=

∫

Ω

1

σ
p1 · p2 dx+

M∑

m=1

∫

Em

1

ζm
P1,mP2,m ds

in this case, is not defined for contact admittances that vanish on open subsets of the
electrodes. However, applying fact that, for each m, there exists a open subset em ⊆ Em
such that ess infx∈emζm (x) > 0 and ζm ≡ 0 in Em\em, it suffices to replace E1, . . . , EM
with e1, . . . , eM to fit this model entirely.

Connection with the duality theory of convex analysis

An interpretation of the abstract problems from the point of view of the duality theory
of convex analysis is provided here. Our references in this subject are [36, Ch. 3], [45,
Ch. 2], and [11, Ch. 9]. Let us start by noting that the extremal formulations of C and
V, that is,

max
x∈X

{

〈f, Px〉 − 1

2
a (x, x)

}

and min
x∈X
Px=g

{
1

2
a (x, x)

}

,

respectively, can be written in the form

inf
x∈X

{F (x) +G (Λx)} , (2.87)
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where the functionals F : X ∪ {+∞} → R and G : Z → R are defined as

F (x) := −〈f, Px〉 in the case of C,

F (x) :=

{

0 if Px = g

+∞ otherwise
in the case of V,

and G (z) :=
1

2
b
(
B−1z,B−1z

)
in both cases,

and the operator Λ : X → Z is Λx := −Gx. Using the properties of b and P , it is
easy to see the following: F is linear and continuous in the case of C, and convex, lower
semicontinuous, and proper in the case of V; G is convex and continuous. All the above
make evident that the optimization problem (2.87) fits into the duality theory of convex
analysis [36, Ch. 3 Rem. 4.2][11, Ch. 9]. There, (2.87) is called the primal problem, and
its corresponding dual problem is defined as

sup
z∈Z

{−F⋆ (Λ⋆z)−G⋆ (−z)} , (2.88)

where F⋆ : X → R ∪ {+∞} and G⋆ : Z → R are the polar or conjugate functions of F
and G, respectively. By definition (see [36, Ch. 1 Def. 4.1]),

F⋆ (x) := sup
x′∈X

{〈
x, x′

〉

X
−F

(
x′
)}

and G⋆ (z) := sup
z′∈Z

{〈
z, z′

〉

Z
−G

(
z′
)}
.

We have

F⋆ (x) = sup
x′∈X

{〈
x, x′

〉

X
+
〈
f, Px′

〉}

=

{

0 if 〈−x, x′〉X = 〈f, Px′〉 for all x′ ∈ X

+∞ otherwise

in the case of C,

F⋆ (x) = sup
x′∈X,Px′=g

〈
x, x′

〉

X

= sup
x′∈X,Px′=g

〈
x⊥, x

′
〉

X
+
〈
x0, x

′
〉

X
(x⊥ ∈ (kerP )⊥ , x0 ∈ kerP )

=
〈
x⊥, P

−1g
〉

X
+ sup

x′∈X,Px′=g

〈
x0, x

′
〉

X

⇒ F⋆ (x) =

{〈
x, P−1g

〉

X
x ∈ (kerP )⊥

+∞ otherwise

58



2 A framework for EIT models

in the case of V, andd

G⋆ (z) = sup
z′∈Z

{
〈
z, z′

〉

Z
− 1

2
b
(
B−1z′, B−1z′

)
}

= sup
z′∈Z

{
〈
z, z′

〉

Z
− 1

2

〈
B−1z′, z′

〉

Z

}

=
1

2
〈z, ẑ〉Z (

〈
B−1ẑ, z′

〉
=
〈
z, z′

〉

Z
for all z′ ∈ Z)

=
1

2
〈z,Bz〉Z =

1

2
b (z, z) .

Hence, the objective functional of the dual problem (2.88) is

−F⋆ (Λ⋆z)−G⋆ (−z) =
{

−1
2b (z, z) if 〈G⋆z, x′〉X = 〈f, Px′〉 for all x′ ∈ X

−∞ otherwise

in the case of C and

−F⋆ (Λ⋆z)−G⋆ (−z) =
{〈
G⋆z, P−1g

〉

X
− 1

2b (z, z) G⋆z ∈ (kerP )⊥

−∞ otherwise

in the case of V. Thus, the dual problem (2.88) in the case of C reads as

sup
z∈Z

〈G⋆z,·〉X=〈f,P (·)〉

−1

2
b (z, z) . (2.89)

Since the constraint 〈G⋆z, ·〉X = 〈f, P (·)〉 can be written as Rz = f , (2.89) is equivalent
to the extremal formulation of C′. On the other hand, the dual problem (2.88) in the
case of V reads as

sup
z∈Z

G⋆z∈(kerP )⊥

〈
G⋆z, P−1g

〉

X
− 1

2
b (z, z) . (2.90)

Since 〈Rz, g〉 =
〈
G⋆z, P−1g

〉

X
and G⋆z ∈ (kerP )⊥ iff z ∈ Z⊥, (2.90) is the extremal

formulation of V ′. In light of all of the above, we interpret that

; C′ is the dual of C and V ′ is the dual of V.

It is worth pointing out that the primal and dual problems are linked to each other by
the (strong) dual relation [36, Ch. 3 Th. 4.2]

inf
x∈X

{F (x) +G (Λx)} = sup
z∈Z

{−F⋆ (Λ⋆z)−G⋆ (−z)} , (2.91)

which is equivalent to the dual properties (i) and (ii) given in Theorem 2.15, where φ
links the problems C and C′, and ψ links the problems V and V ′. Furthermore, Theorem
2.15(iii) shows that the power functions φ and ψ are conjugate of each other (in the sense
of [36, Ch. 1 Def. 4.1]), that is, φ⋆ = ψ and ψ⋆ = φ. Thus, transferring the conjugate
relation of the power functions to the abstract problems, we interpret that
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; C/C′ and V/V ′ are conjugate problems.

To conclude, we mention that there is a Lagrangian function L : X × Z → R associated
to the primal and dual problems

L (x, z) := inf
z′∈Z

{
−
〈
z, z′

〉

Z
+ F (x) +G

(
Λx− z′

)}

= F (x)− sup
z′∈Z

{〈
z, z′

〉

Z
−G

(
Λx− z′

)}

= F (x)− 〈z,Λx〉Z − sup
z′∈Z

{〈
−z,Λx− z′

〉

Z
−G

(
Λx− z′

)}

= F (x)− 〈z,Λx〉Z −G⋆ (−z) ,

which satisfies the relations

inf
x∈X

{F (x) +G (Λx)} = inf
x∈X

{

sup
z∈Z

L (x, z)

}

and

sup
z∈Z

{−F⋆ (Λ⋆z)−G⋆ (−z)} = sup
z∈Z

{

inf
x∈X

L (x, z)

}

.

It turns out that L has a saddle point at the solutions of the primal and dual problems,
that is,

L (xmin, z) ≤ L (xmin, zmax) ≤ L (x, zmax) for all x ∈ X and all z ∈ Z,

where xmin is a solution to (2.87) and zmax is a solution to (2.88). This Lagrangian reads
as

L (x, z) = −〈f, Px〉+ 〈Gx, z〉Z − 1

2
b (z, z)

in the case of C and

L (x, z) =

{

0 Px = g

+∞ otherwise
+ 〈Gx, z〉Z − 1

2
b (z, z)

in the case of V.

Connection with the theory of complementary variational principles

Here it is shown that the abstract problems fit into the setting of the theory of comple-
mentary variational principles. Our references in this subject are [10, 86, 8]. Let us start
by proposing the following systems of equations: given f ∈ Y ⋆

⋄ and g ∈ Y , let
{

Gx̄ = Bz̄ in Z

G⋆z̄ = τ−1 (f ◦ P ) in X
(2.92)

and {

(Gx̃, P x̃) = (Bz̃, g) in Z × Y

G⋆z̃ + P ⋆ỹ = 0X in X
, (2.93)
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where (x̄, z̄) and (x̃, z̃, ỹ) are the unknowns, respectively. Here τ is the Riesz-Fréchet
isomorphism associated to X and P ⋆ is the adjoint of P . It is easy to verify that (x̄, z̄)
solves (2.92) if and only if x̄ solves C and z̄ solves C′, and that (x̃, z̃, ỹ) solves (2.93) if
and only if x̃ solves V and z̃ solves V ′.

The above systems can be written in a canonical form (also called Euler-Hamilton equa-
tions), namely







Tx̄ =
∂W

∂z
(x̄, z̄)

T⋆z̄ =
∂W

∂x
(x̄, z̄)

with

T : X → Z Tx := Gx
and
W : X × Z → R

W (x, z) := 1
2b (z, z) + 〈f, Px〉

(2.94)

and






Tx̃ =
∂W

∂ (z, y)
(x̃, (z̃, ỹ))

T⋆ (z̃, ỹ) =
∂W

∂x
(x̃, (z̃, ỹ))

with

T : X → Z × Y Tx := (Gx,Px)
and
W : X × (Z × Y ) → R

W (x, (z, y)) := 1
2b (z, z) + 〈g, y〉Y

. (2.95)

In system (2.95), Z × Y is equipped with the inner product induced by the direct sum
operation. T is a linear operator, T⋆ is the adjoint of T, and W is a real-valued function
called Hamiltonian functional. Here, the partial derivatives of W are Fréchet derivatives.
In the general case, the canonical system admits additional equations that represent
“boundary conditions”. Here, our formalism allows us to avoid additional equations.

The basic problem in the theory of complementary variational principles is to find an ac-
tion functional whose stationary behaviour will coincide with the solution of the canonical
system under consideration. The action functional I : X × Z → R associated to system
(2.94) is given by

I (x, z) = 〈Tx, z〉Z −W (x, z)

= 〈Gx, z〉Z − 〈f, Px〉 − 1

2
b (z, z)

and satisfies ∂I
∂x = T⋆ − ∂W

∂x and ∂I
∂z = T − ∂W

∂z . Thus, I is stationary at the solution
(x̄, z̄). The action functional I : X × (Z × Y ) → R associated to system (2.95) is given
by

I (x, (z, y)) = 〈Tx, (z, y)〉Z×Y −W (x, (z, y))

= 〈Gx, z〉Z + 〈Px− g, y〉Y − 1

2
b (z, z)

and satisfies ∂I
∂x = T⋆ − ∂W

∂x and ∂I
∂(z,y) = T− ∂W

∂(z,y) . Thus, I is stationary at the solution

(x̃, (z̃, ỹ)). See that in both cases W is concave (linear) in the first variable and convex
in the second variable, that is, W is a saddle function. This property of W leads to
upper and lower bounds for the functional I in the form of complementary variational
principles.
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2 A framework for EIT models

Complementary principles for system (2.94). Let J and G be functionals defined by

J (x) := I (x, z) such that ∂zI (x, z) = 0Z ,

G (z) := I (x, z) such that ∂xI (x, z) = 0X .

It is easy to check that ∂zI (x, z) = 0Z iff z = Tx and that ∂xI (x, z) = 0X iff Rz = f .
Substituting z = Tx in the definition of J it follows that

J (x) = 〈Gx, Tx〉Z − 〈f, Px〉 − 1

2
b (Tx, Tx) =

1

2
a (x, x)− 〈f, Px〉 .

Using the constraint Rz = f the functional G can be written as

G (z) = 〈G⋆z, x〉X − 〈Rz, Px〉 − 1

2
b (z, z) = −1

2
b (z, z) .

The saddle property of W implies that the minimum principle

J (x̄) ≤ J (x) for all x ∈ X (2.96)

and the maximum principle

G (z) ≤ G (z̄) for all z ∈ Z such that Rz = f (2.97)

hold [9, Th. 2.6.1]. Combining (2.96) and (2.97), it follows that these are complementary
extremum principles, namely

G (z) ≤ G (z̄) = I (x̄, z̄) = J (x̄) ≤ J (x) (2.98)

for all x ∈ X and all z ∈ Z such that Rz = f . From this, upper and lower bounds for
I (x̄, z̄) can be obtained. One can check that I (x̄, z̄) = −φ (f), where φ is the power
function defined in Section 2.4, and that (2.98) is equivalent to the dual property (2.21)
given in Theorem (2.15)(i). Therefore, we interpreted that

; C and C′ are complementary problems.

Complementary principles for system (2.95). Let J and G be functionals defined by

J (x) := I (x, (z, y)) such that ∂(z,y)I (x, (z, y)) = (0Z , 0Y ) ,

G (z, y) := I (x, (z, y)) such that ∂xI (x, (z, y)) = 0X .

It is easy to check that ∂(z,y)I (x, (z, y)) = (0Z , 0Y ) iff z = Tx and Px = g, and that
∂xI (x, (z, y)) = 0X iff G⋆z = −P ⋆y. Substituting z = Tx and imposing the constraint
Px = g in the definition of J it follows that

J (x) = 〈Gx, Tx〉Z − 〈Px− g, y〉Y − 1

2
b (Tx, Tx) =

1

2
a (x, x) .

Substituting G⋆z = −P ⋆y (which is equivalent to −Rz = τ (y)) in the definition of G
we have

G (z, y) = 〈G⋆z + P ⋆y, x〉X − 〈g, y〉Y − 1

2
b (z, z) = 〈Rz, g〉 − 1

2
b (z, z) .
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2 A framework for EIT models

Hence G does not depend on y. The saddle property of W implies that the minimum
principle

J (x̄) ≤ J (x) for all x ∈ X (2.99)

and the maximum principle

G (z) ≤ G (z̄) for all (z, y) ∈ Z × Y such that G⋆z = −P ⋆y (2.100)

hold [9, Th. 2.6.1]. Combining (2.99) and (2.100), it follows that these are complementary
extremum principles, namely

G (z) ≤ G (z̄) = I (x̄, (z̄, ȳ)) = J (x̄) ≤ J (x) (2.101)

for all x ∈ X and all (z, y) ∈ (Z × Y ) such that G⋆z = −P ⋆y, which is equivalent to
impose that z ∈ Z⊥. From this, upper and lower bounds for I (x̄, (z̄, ȳ)) can be obtained.
One can check that I (x̄, (z̄, ȳ)) = ψ (g), where ψ is the power function defined in Section
2.4, and that (2.101) is equivalent to the dual property (2.22) given in Theorem (2.15)(ii).
Therefore, we interpreted that

; V and V ′ are complementary problems.

Lemmas

Lemma 2.34. Given any y ∈ Y , there exists a unique solution x̂ ∈ X of the minimization
problem

min
x∈X
Px=y

‖x‖X . (2.102)

Furthermore, the map ‖·‖Y : Y → R defined by ‖y‖Y := ‖x̂‖X is a norm on Y , which is
induced by an inner product, and Y equipped with this inner product becomes a Hilbert
space.

Proof. Let y ∈ Y . We claim that P−1 {y} is closed, convex, and nonempty. Since P is
linear and surjective, P−1 {y} is convex and nonempty. Let (xi) be a convergent sequence
in P−1 {y} and x ∈ X be its limit. Let xy ∈ P−1 {y}. Then P (xi − xy) = 0 for all i
and (xi − xy) converges to x−xy. Since kerP is closed, x−xy ∈ kerP and x ∈ P−1 {y}
(Px = Pxy = y). Hence P−1 {y} is closed. Therefore, since X is a Hilbert space, there
exists a unique element x̂ ∈ P−1 {y} such that

dist
(
0X , P

−1 {y}
)
= min

x∈X
Px=y

‖x‖X = ‖x̂‖X .

‖·‖Y : Y → R defined by y 7→ ‖x̂‖X is a norm on Y . Indeed, we have that:

• ‖y‖Y = 0 ⇔ y = 0. If ‖y‖Y = ‖x̂‖X = 0 then x̂ = 0 and consequently y = Px̂ = 0.
If y = 0 then ‖x̂‖X ≤ ‖x‖X for all x such that Px = 0. Set x = 0, so that x̂ = 0.
Hence ‖y‖Y = ‖x̂‖X = 0.

63



2 A framework for EIT models

• ‖λy‖Y = |λ| ‖y‖Y . Let x̂′ be the minimizer corresponding to λy. Then Px̂ = y and
Px̂′ = λy. From the optimality of x̂ and x̂′, it follows that ‖x̂‖X ≤ ‖x̂′/λ‖X and
‖x̂′‖X ≤ ‖λx̂‖X . Hence ‖x̂′‖X = ‖λx̂‖X and the conclusion follows.

• ‖y + y0‖Y ≤ ‖y‖Y + ‖y0‖Y . Let x̂′ and x̂′′ be the minimizers corresponding to y0
and y + y0, respectively. Since P (x̂+ x̂′) = y + y0, the optimality of x̂′′ implies
that ‖x̂′′‖X ≤ ‖x̂+ x̂′‖X ≤ ‖x̂‖X + ‖x̂′‖X and the conclusion follows.

We claim that Y is a Hilbert space. First note that since kerP is closed we have X =
kerP � (kerP )⊥. Thus, the minimizer x̂ = x0 + x⊥, with x0 ∈ kerP and x⊥ ∈ (kerP )⊥,
and then Px̂ = Px⊥. Moreover, from the optimality of x̂ (‖x̂‖X ≤

∥
∥x⊥

∥
∥
X

) and the

Pithagorean relation ‖x̂‖2X =
∥
∥x0
∥
∥2

X
+
∥
∥x⊥

∥
∥2

X
we deduce that x0 = 0. Therefore x̂ = x⊥.

Hence, the operator P |(kerP )⊥ : (kerP )⊥ → Y defined by x̂ 7→ Px̂ = y is a linear bijective

isometry, that is, P |(kerP )⊥ is bijective and ‖x̂‖X = ‖Px̂‖Y (the bijectivity follows from

the uniqueness of x̂ and the surjectivity of P ). Thus (kerP )⊥ and Y are isometric. As
(kerP )⊥ is closed, Y is complete for the norm ‖·‖Y . Moreover, using the fact that ‖·‖X
satisfies the parallelogram law, we can prove that ‖·‖Y satisfies the parallelogram law.
Hence ‖·‖Y is induced by an inner product 〈·, ·〉Y . More precisely, given y1, y2 ∈ Y ,
〈y1, y2〉Y = 〈x̂1, x̂2〉X , where x̂1 = P−1

∣
∣
(kerP )⊥

y1 and x̂2 = P−1
∣
∣
(kerP )⊥

y1. Therefore Y

equipped with 〈·, ·〉Y is a Hilbert space.

Lemma 2.35. Let X ′ ⊂ X be a closed subspace such that 1X /∈ X ′. Then the bilinear
form a is continuous and coercive on X ′ ×X ′.

Proof. It suffices to prove the coercivity of a. Since 1X ∈ X\X ′, the Hahn-Banach
theorem says that there exists a linear continuous functional Γ : X → R such that
Γ (1X) > 0 and Γ (x) = 0 for all x ∈ X ′. We define the operator S : X → ker Γ
as Sx := x − (Γ (x) /Γ (1X)) 1X , where ker Γ, which is closed in X, is equipped with
the norm of X. This operator is linear. The continuity of S follows from that of Γ.
Moreover, since Sx = x for all x ∈ ker Γ, S is surjective. Then, by a classical result of
functional analysis, the new operator S̃ : X/ kerS → ker Γ defined by S̃ [x] = Sx, where
[x] = x+ kerS, is also linear and continuous. But

kerS =

{

x ∈ X

∣
∣
∣
∣
x =

Γ (x)

Γ (1X)
1X

}

= span {1X} .

Thus X/ kerS = X/R and the continuity of S̃ yields

∥
∥
∥
∥
x− Γ (x)

Γ (1X)
1X

∥
∥
∥
∥
X

=
∥
∥
∥S̃ [x]

∥
∥
∥
X

≤ C ‖[x]‖X/R for all x ∈ X.

In particular, if x ∈ X ′ ⊂ ker Γ, then ‖x‖X ≤ C ‖[x]‖X/R. The desired conclusion follows
by combining this with the coercivity a on X/R× X/R.
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3 Regularization of an all-at-once

formulation of the EIT inverse problem

The aim of Chapter 3 is to contribute to the study of the all-at-once formulation of the
EIT inverse problem and its regularization. To that end, we construct an abstract set-
ting in the context of Banach spaces, which admits most of the EIT models and several
types of observations. This setting is based on a set of assumptions that generalizes
the mathematical objects appearing in the model and observation equations of the EIT
inverse problem. There, the conductivity is considered as a L∞-function and the elec-
tric potential is modeled as an element of a Banach space. Using the assumptions we
formulate an abstract inverse problem where the conductivity and the electric potential
are the unknowns. This problem consists of a model equation defined in a dual space, an
observation equation that depends on both unknowns, and a constraint to have positive
conductivities. Next, three regularized problems are formulated, which take inspiration
from the Tikhonov, Ivanov, and Morozov regularizations [59, 96, 77]. The regularization
funtional that was used applies total variation regularization [12, 28]. In this regulariza-
tion stage, it is assumed the existence of a compact, reflexive subspace of the space of
electric potentials. In fact, the regularized problems and regularization functional are de-
fined on this subspace. In order to prove the well-posedness of the regularized problems,
they are rewritten in a unified way as an unconstrained minimization problem defined on
a topological space and a few properties regarding lower semicontinuity and compactness
are provided. Then, the existence, stability, and convergence of regularized solutions are
proved. In addition, a basic learning problem is formulated to select a regularization
parameter based on their performance on a set of data that consists of a number of exact
observations and of the corresponding solutions of the abstract inverse problem. The
existence of a solution to this problem is proved by using the results of existence and sta-
bility of regularized solutions. Thus, our abstract inverse problem and its regularizations
are analized in the context of Banach spaces [89, 91], while the sequences of conductivities
are analized under the weak⋆ convergence of L∞ [28, 54]. The continuum model, the gap
model, the shunt model, and the complete electrode model are admitted . The contin-
uum model with voltage point measurements [5] and the smoothened complete electrode
model fit also into our assumptions. With respect to the point models, we do not assert
anything. Moreover, the assumptions over the observation operator allow observations of
voltage measurements, current measurements, magnitudes of current density field, and
interior power densities.

Numerical solutions with the complete electrode model are performed. All the types of
observations mentioned earlier are taken into account in the tests. Three instances of the
assumptions are provided. The first and second ones yield as model equations the weak

65



3 Regularization of an all-at-once formulation of the EIT inverse problem

formulations of the complete electrode model with applied current and applied voltage,
respectively. The third one yields as model equation the weak form of the equations
of the complete electrode model without the equations involving current and voltage
application. Thus, in this case, the model equation does not model the EIT experiment.

3.1 All-at-once formulation

To formulate the abstract problem that represents the all-at-once formulation of the
EIT inverse problem, four assumptions are established, followed by some notations and
definitions.

We start with the assumptions.

Let Ω be an open, connected, bounded, and Lipschitz domain in R
d (d = 2, 3) with

boundary ∂Ω. Let L1 (Ω) and L∞ (Ω) be the classical Lebesgue spaces over Ω. It is well-
known that L∞ (Ω) can be identified with the dual of L1 (Ω) [21, Thm. 4.14] and that
the convergence in the weak⋆ topology defined on L∞ (Ω) ≡

(
L1 (Ω)

)⋆
can be expressed

as: a sequence (σi) in L∞ (Ω) converges to a some σ ∈ L∞ (Ω) in the weak⋆ topology

defined on L∞ (Ω), or σi
⋆
⇀ σ, if and only if

∫

Ω
σiφdx →

∫

Ω
σφdx for all φ ∈ L1 (Ω) .

Considering L∞ (Ω) and the weak⋆ convergence defined on it, fix an integer N and assume
the following:

A1. Let X and Z be two Banach spaces with norms denoted by ‖· ‖X and ‖· ‖Z respec-
tively. The dual of Z is denoted by Z⋆ and is equipped with the usual dual norm
z⋆ 7→ ‖z⋆‖Z⋆ = supz∈Z {z⋆ (z) | ‖z‖Z ≤ 1}. Let b1,. . .,bN ∈ Z⋆ be fixed.

A2. Let a : L∞ (Ω)×X → Z⋆ be a map satisfying

σi
⋆
⇀ σ in L∞ (Ω) , xi → x in X ⇒ a (σi, xi)

⋆
⇀ a (σ, x) in Z⋆. (3.1)

A3. Let Y be a Banach space with a norm denoted by ‖· ‖Y and let ȳ1, . . . , ȳN ∈ Y be
fixed. The dual of Y is denoted by Y ⋆ and is equipped with the usual dual norm
y⋆ 7→ ‖y⋆‖Y ⋆ = supy∈Y {y⋆ (y) | ‖y‖Y ≤ 1}.

A4. Let c1, . . . , cN : L∞ (Ω)×X → Y be maps satisfying

σi
⋆
⇀ σ in L∞ (Ω) , xi → x in X ⇒ cn (σi, xi)⇀ cn (σ, x) in Y (3.2)

for n = 1, . . . , N .

Remark 3.1. The weak⋆ convergence in (3.1) means that the sequence (a (σi, xi) (z))
converges to a (σ, x) (z) for all z ∈ Z. The weak convergence in (3.2) means that the
sequence (y⋆ (cn (σi, xi))) converges to y⋆ (cn (σ, x)) for all y⋆ ∈ Y ⋆.

In the context of Electrical Impedance Tomography, the mathematical objects considered
in Assumptions A1-A4 have the following interpretation:
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3 Regularization of an all-at-once formulation of the EIT inverse problem

• The domain Ω represents a body with an internal conductivity, which is usually
modeled as a function from Ω into ]0,∞[. Here, a conductivity is a function σ in
L∞ (Ω) not necessarily positive. This is because the weak formulation of the EIT
models is well-defined for this type of conductivities. The positivity of σ will be
imposed separately from the model equations.

• X represents the spaces of electric potentials. Z represents the space of test func-
tions used in the weak formulation of the EIT models.

• With N it is indicated how many experiments are performed.

• a and bn generalize the components that arise when an EIT model is written in its
weak form. More precisely, given a conductivty σ ∈ L∞ (Ω),

a (σ, x) (z) = bn (z) for all z ∈ Z

is an abstraction of the weak formulation of the EIT models, where x represents
the electric potential and bn contains the information from the applied current
(or voltage). Observe that the property (3.1) of a is a sort of continuity in both
variables, which mimics the fact that

σi
⋆
⇀ σ in L∞ (Ω) and ui → u in W 1,p (Ω)

imply ∫

Ω
σi∇ui · ∇w dx →

∫

Ω
σ∇u · ∇w dx for all w ∈W 1,q (Ω) ,

where W 1,p (Ω) and W 1,q (Ω) are the classical Sobolev spaces and p−1 + q−1 = 1.
This convergence is important for the all-at-once aproach because σ and u are
considered as variables in

∫

Ω σ∇u · ∇w dx, which is the main term in the weak
formulation of the EIT models.

• Y meaning the space of observable data from experiments and ȳn represents the
exact data corresponding to the n-th experiment. Here, this data can be either
voltage measurements, current measurements [98], interior power densities [6], or
magnitudes of current density field [70]. Actually, these are all the possible types
of data that can be observed.

• cn models the observation in the n-th experiment. It is a map from L∞ (Ω)×X into
the space of observations Y and is in general non-linear. The property (3.2) of cn

is also a sort of continuity in both variables. It is remarkable that the observation
maps associated with all possible types of observable data satisfy this requirement.

Based on the above assumptions, some notations and definitions are given below. We
will work on the product spaces XN , Y N , and (Z⋆)N . The elements in these spaces are
denoted by x =

(
x1, . . . , xN

)
, y =

(
y1, . . . , yN

)
, and z⋆ =

(
z⋆,1, . . . , z⋆,N

)
, respectively.

Given a sequence (xi) in XN and some x ∈ XN , (xi) converges to x if and only if
(xi) converges component-wise to x. The same for sequences in Y N and (Z⋆)N . Given
z⋆ ∈ (Z⋆)N and y ∈ Y N , the p-norm of z⋆ and the q-norm of y are defined by

‖z⋆‖p :=
{(∥
∥z⋆,1

∥
∥p

Z⋆ + . . . +
∥
∥z⋆,N

∥
∥p

Z⋆

)1/p
if 1 ≤ p <∞

max
{∥
∥z⋆,1

∥
∥
Z⋆ , . . . ,

∥
∥z⋆,N

∥
∥
Z⋆

}
if p = ∞
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Meaning

σ conductivity

x electric potential

ȳ exact observation

A (σ, x) = 0(Z⋆)N model equation

C (σ, x) = ȳ observation equation

Table 3.1: Elements in the abstract inverse problem.

and ‖y‖q :=
{(∥
∥y1
∥
∥q

Y
+ . . .+

∥
∥yN

∥
∥q

Y

)1/q
if 1 ≤ q <∞

max
{∥
∥y1
∥
∥
Y
, . . . ,

∥
∥yN

∥
∥
Y

}
if q = ∞

,

respectively (recall that all these norms are equivalents on their respective spaces). The
map A : L∞ (Ω)×XN → (Z⋆)N defined by

A (σ, x) :=
(
a
(
σ, x1

)
− b1, . . . , a

(
σ, xN

)
− bN

)

is called the model map, the map C : L∞ (Ω)×XN → Y N defined by

C (σ, x) :=
(
c1
(
σ, x1

)
, . . . , cN

(
σ, xN

))

is called the observation map, and ȳ :=
(
ȳ1, . . . , ȳN

)
∈ Y N is called the exact observation.

We are now ready to consider the following all-at-once formulation of the EIT inverse
problem.

Abstract inverse problem. Find (σ, x) ∈ L∞ (Ω)×XN satisfying1

ess inf
x∈Ω

σ (x) > 0 and
A (σ, x) = 0(Z⋆)N in (Z⋆)N

C (σ, x) = ȳ in Y N
. (I)

The abstract inverse problem I represents the all-at-once formulation of the EIT inverse
problem. A (σ, x) = 0 is called the model equation and represents the weak formulation
of the EIT model under consideration. C (σ, x) = ȳ is called the observation equation
and represents the correspondence between the predicted and observed data.

We conclude this section with a direct consequence of the assumptions.

Lemma 3.2. Let (σi) and (xi) be sequences in L∞ (Ω) and XN , respectively. Let σ ∈
L∞ (Ω) and x ∈ XN . Suppose that σi

⋆
⇀ σ in L∞ (Ω) and xi → x in XN .

(i) Then
‖A (σ, x)‖p ≤ lim inf

i→∞
‖A (σi, xi)‖p 1 ≤ p ≤ ∞.

Moreover, if ‖A (σi, xi)‖p ≤ εi for all i, where (εi) is a convergent sequence in R,
then

1Recall that ess infx∈Ωσ (x) = sup {c > 0 |µ ({x |σ (x) < c}) = 0} is the essential infimum of σ, where
µ is the Lebesgue measure on R

d.
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1. ‖A (σ, x)‖p ≤ limi→∞ εi,

2. and if, in addition, limi→∞ εi = 0, then (σ, x) solves the model equation and
A (σi, xi) → 0(Z⋆)N in (Z⋆)N .

(ii) Let (yi) be a sequence in Y and let y ∈ Y be such that yi ⇀ y in Y N . Then

‖C (σ, x)− y‖q ≤ lim inf
i→∞

‖C (σi, xi)− yi‖q 1 ≤ q ≤ ∞.

Moreover, if ‖C (σi, xi)− yi‖q ≤ εi for all i, where (εi) is a convergent sequence in
R, then

1. ‖C (σ, x)− y‖q ≤ limi→∞ εi,

2. and if, in addition, limi→∞ εi = 0 and y = ȳ, then (σ, x) solves the observation
equation and C (σi, xi)− yj → 0Y N in Y N .

Remark 3.3 (Lower and upper limits [87, Sec. 1.E]). Given a sequence of numbers (ui)
in R = [−∞,∞], the lower and upper limits of (ui) are defined by lim inf i→∞ ui =
limi→∞ {infj≥i ui} and lim supi→∞ ui = limi→∞

{
supj≥i ui

}
, respectively.

Proof. The proofs are based on well-known results in weak topologies. See for instance
[21, Prop. 3.5, 3.13]. By Assumption A2, for each n, a (σi, x

n
i ) − bn converges to

a (σ, xn)−bn in the weak⋆ topology defined on Z⋆; then the sequence
(
‖a (σi, xni )− bn‖Z⋆

)

is bounded and
‖a (σ, xn)− bn‖Z⋆ ≤ lim inf

i→∞
‖a (σi, xni )− bn‖Z⋆ .

Thus, applying lower limit properties, (ii)(1 .) follows. If there exists a sequence (εi) in
R such that ‖A (σi, xi)‖p ≤ εi for all i, then

‖A (σ, x)‖p ≤ lim inf
i→∞

‖A (σi, xi)‖p ≤ lim sup
i→∞

‖A (σi, xi)‖p ≤ lim sup
i→∞

εi.

From this, (ii)(2 .) follows immediately. Using similar arguments, (ii) follows from As-
sumption A4.

3.2 Regularized problems

Here, a ”compactness” assumption and a regularization functional allow us to build three
regularizations of I , which will be appropriately formulated in a topological vector space.

In addition to Assumptions A1-A4, from now on assume the following.

A5. Let X̃ be a linear subspace of X. Assume that X̃ has its own norm ‖· ‖X̃ and
that it is a reflexive Banach space with ‖· ‖X̃ . In addition, assume that the

inclusion operator
(

X̃, ‖· ‖X̃
)

→ (X, ‖· ‖X) is compact. The dual of X̃ is de-

noted by X̃⋆ and is equipped with the usual dual norm ‖·‖X̃⋆ : x⋆ 7→ ‖x⋆‖X̃⋆ =
supx∈X̃

{
|x⋆ (x)|

∣
∣ ‖x‖X̃ ≤ 1

}
.
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Remark 3.4.
(

X̃, ‖· ‖X̃
)

→ (X, ‖· ‖X) is compact means that every bounded sequence

in X̃ has a convergent subsequence in X. Recall that compact linear operators maps
weakly convergent sequences into strongly convergent sequences [73, Thm. 8.1-7].

We use the reflexive Banach space X̃ to define the following functional.

Definition 3.5. Let R : L∞ (Ω)× X̃N → [0,∞]4 be the functional defined by

R (σ, x) :=
















1

r

(∥
∥x1
∥
∥
r

X̃
+ . . .+

∥
∥xN

∥
∥
r

X̃

)

∫

Ω

∣
∣D
(
σ − σ′

)∣
∣

1

s1

T∑

t=1

∣
∣
∣
∣

∫

Ω

(
σ − σ′′

)
φt dx

∣
∣
∣
∣

s1

1

s2

T∑

t=1

∣
∣
∣
∣

∫

Ω
(σ − σ−)ψt dx

∣
∣
∣
∣

s2
∣
∣
∣
∣

∫

Ω
(σ+ − σ)ψt dx

∣
∣
∣
∣

s2
















, (3.3)

where r, s1, and s2 are fixed exponents such that 1 ≤ r, s1, s2 < ∞, φ1, . . . , φT and
ψ1, . . . , ψT are weight functions in L1 (Ω), σ′ ∈ BV (Ω) and σ′′ ∈ L∞ (Ω) are reference
functions, and σ−, σ+ are two positive constants such that σ− < σ+. R is called the
regularization functional.

Very often R will be multiplied by a vector of non-negative numbers α. This multipli-
cation is denoted by α · R (σ, x). The zero and all-ones vectors are denoted by 0 and 1

respectively.

Remark 3.6 (Space of functions of bounded variation). Given σ ∈ L1 (Ω), the total
variation of σ is defined by

∫

Ω
|Dσ| = sup

{
∫

Ω
σ (∇ · f) dx

∣
∣
∣
∣
∣

f = (f1, . . . , fd) ∈ C1
c

(
Ω,Rd

)
,

|f | = supx∈Ω

(
∑d

i=1 f
2
i (x)

)1/2
≤ 1

}

,

where ∇·f =
∑d

i=1 ∂xifi and C1
c

(
Ω,Rd

)
denotes the space of continuously differentiable

vector fields with values in R
d and compact support in Ω [12, Def. 2.2.2]. A function

σ ∈ L1 (Ω) is said to have bounded variation if
∫

Ω |Dσ| < ∞. The space of functions
of bounded variation is denoted by BV (Ω) =

{
σ ∈ L1 (Ω)

∣
∣
∫

Ω |Dσ| <∞
}
. This regu-

larization functional is popular in image processing due to its ability to preserve edges
and has been used for numerical reconstruction of piecewise constant conductivities.
[100, 26, 76, 62].

Now, consider the following regularized problems:

1. Fix 1 ≤ p, q <∞. Let Λ = Λ(ȳ) be the parameter space defined by

Λ (ȳ) :=
{

(α, δ, y) ∈ [0,∞[4 × [0,∞[ × Y N
∣
∣
∣ ‖ȳ − y‖q ≤ δ

}

.
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Meaning

α regularization parameter

β maximum model error level

δ noise level

y noisy observation

γ safety factor for the error level in the observation equation

Table 3.2: Components of a parameter λ.

Given a parameter λ = (α, δ, y) ∈ Λ, Tikhonov regularization [96] of the model and
observation equations combined with Ivanov regularization [59] of σ yield the box
constrained minimization problem

min
(σ,x)∈L∞(Ω)×X̃N

1

p
‖A (σ, x)‖pp +

1

q
‖C (σ, x)− y‖qq + α · R (σ, x)

s.t. σ− ≤ σ ≤ σ+ a.e. on Ω
. (I1

λ)

2. Fix 1 ≤ p < ∞ and set q = ∞. Fix γ ∈ [1,∞[. Let Λ = Λ(ȳ) be the parameter
space defined by

Λ (ȳ) :=
{

(α, δ, y) ∈ [0,∞[4 × [0,∞[× Y N | ‖ȳ − y‖∞ ≤ δ
}

.

Given a parameter λ = (α, δ, y) ∈ Λ, the minimization problem

min
(σ,x)∈L∞(Ω)×X̃N

1

p
‖A (σ, x)‖pp + α ·R (σ, x)

s.t. σ− ≤ σ ≤ σ+ a.e. on Ω and ‖C (σ, x)− y‖∞ ≤ γδ
, (I2

λ)

is a Tikhonov regularization of the model equation, where Morozov regularization
[77] of the observation equation and Ivanov regularization of σ have been imposed.

3. Set p = ∞ and fix 1 ≤ q <∞. Let Λ = Λ(ȳ) be the parameter space defined by

Λ (ȳ) :=
{

(α, β, δ, y) ∈ [0,∞[4 × [0,∞[× [0,∞[× Y N
∣
∣
∣ ‖ȳ − y‖q ≤ δ

}

.

Given a parameter λ = (α, β, δ, y) ∈ Λ, the minimization problem

min
(σ,x)∈L∞(Ω)×X̃N

1

q
‖C (σ, x)− y‖qq + α ·R (σ, x)

s.t. σ− ≤ σ ≤ σ+ a.e. on Ω and ‖A (σ, x)‖∞ ≤ β,
(I3

λ)

is a Tikhonov regularization of the observation equation, where Morozov regular-
ization of the model equation and Ivanov regularization of σ have been imposed.

Remark 3.7. Observe that the constraint σ− ≤ σ ≤ σ+ a.e. Ω can be written in the form∥
∥
∥σ − σ++σ−

2

∥
∥
∥
L∞(Ω)

≤ σ+−σ−

2 .
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Before formulating the regularized problems I
1
λ, I2

λ, and I
3
λ in an appropiate topological

space, consider the following lemma, which related the weak⋆ convergence in L∞ (Ω)
and the weak convergence of X̃ to the Ivanov regularization of σ and the regularization
functional R.

Lemma 3.8. Let (σi) and (xi) be sequences in L∞ (Ω) and X̃N , respectively. Let σ ∈
L∞ (Ω) and x ∈ X̃N . Suppose that σi

⋆
⇀ σ in L∞ (Ω) and xi ⇀ x in X̃N .

(i) If σ− ≤ σi ≤ σ+ a.e. on Ω for all i, then σ− ≤ σ ≤ σ+ a.e. on Ω.

(ii) Let (αi) be a sequence in ]0,∞[4 and α ∈ ]0,∞[4 be such that αi → α. Then

α ·R (σ, x) ≤ lim inf
i→∞

αi · R (σi, xi) .

The same holds if α = 0 and if all the components of R (σ, x) are finite numbers.

(iii) Items (i) and (ii) of Lemma 3.2 hold.

Remark 3.9. Recall that the weak convergence xi ⇀ x in X̃ is equivalent means that the
sequence (x⋆ (xi)) converges to x⋆ (x) for all x⋆ ∈ X̃⋆.

Proof of (i). By Remark 3.7, it suffices to use the weak⋆ lower sequential semicontinuity
of the norm ‖·‖L∞(Ω) (see for instance [21, Prop. 3.13]).

Proof of (ii). Each component of R is analized separately.

• Norm function. For each n, the weak convergence of (xni ) to xn implies that the
sequence

(
‖xni ‖X̃

)
is bounded and that ‖xn‖X̃ ≤ lim inf i→∞ ‖xni ‖X̃ (see for instance

[21, Prop. 3.5]). Using lower limit properties we obtain

1

r

(∥
∥x1
∥
∥
r

X̃
+ . . .+

∥
∥xN

∥
∥
r

X̃

)

≤ lim inf
i→∞

1

r

(∥
∥x1i
∥
∥
r

X̃
+ . . .+

∥
∥xNi

∥
∥
r

X̃

)

.

• Total variation function. Let f ∈ C1
c

(
Ω,Rd

)
such that |f | ≤ 1. Then ∇· f belongs

to L1 (Ω) and the weak⋆ convergence of (σi) to σ implies

∫

Ω

(
σi − σ′

)
(∇ · f) dx →

∫

Ω

(
σ − σ′

)
(∇ · f) dx

(recall that σ′ ∈ BV (Ω) was fixed in R). As
∫

Ω (σi − σ′) (∇ · f) dx is less than or
equal to

∫

Ω |D (σi − σ′)| (which belongs to R since σi ∈ L∞ (Ω)), by applying lower
limit it follows that

∫

Ω

(
σ − σ′

)
(∇ · f) dx ≤ lim inf

i→∞

∫

Ω

∣
∣D
(
σi − σ′

)∣
∣

and therefore ∫

Ω

∣
∣D
(
σ − σ′

)∣
∣ ≤ lim inf

i→∞

∫

Ω

∣
∣D
(
σi − σ′

)∣
∣ .
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• Difference and boundary fitting functions. It follows easily from the weak⋆ conver-
gence of (σi) that

lim
i→∞

1

s1

T∑

t=1

∣
∣
∣
∣

∫

Ω

(
σi − σ′′

)
φt dx

∣
∣
∣
∣

s1

=
1

s1

T∑

t=1

∣
∣
∣
∣

∫

Ω

(
σ − σ′′

)
φt dx

∣
∣
∣
∣

s1

and

lim
i→∞

1

s2

T∑

t=1

∣
∣
∣
∣

∫

Ω
(σi − σ−)ψt dx

∣
∣
∣
∣

s2
∣
∣
∣
∣

∫

Ω
(σ+ − σi)ψt dx

∣
∣
∣
∣

s2

=
1

s2

T∑

t=1

∣
∣
∣
∣

∫

Ω
(σ − σ−)ψt dx

∣
∣
∣
∣

s2
∣
∣
∣
∣

∫

Ω
(σ+ − σ)ψt dx

∣
∣
∣
∣

s2

.

Therefore, (ii) follows by applying lower limit properties to the above limits (observe
that the addends of αi · R (σi, xi) and α ·R (σ, x) are never 0 · ∞).

Proof of (iii). By Assumption A5,
(

X̃, ‖· ‖X̃
)

→ (X, ‖· ‖X) is compact, and therefore

xi → x in XN . With this, the assumptions of Lemma 3.2 are satisfied.

3.2.1 Unified formulation

A unified formulation of the regularized problems is provided below. Then, a preliminary
result that will be a consequence of Lemmas 3.2 and 3.8 is proved.

From now on, Iλ stands for any regularized problem, that is, Iλ ∈
{
I
1
λ, I

2
λ, I

3
λ

}
. Given

a parameter λ ∈ Λ, the regularized problems can be written as the unconstrained mini-
mization problem

min
(σ,x)∈L∞(Ω)×X̃N

Fλ (σ, x) := Tλ (σ, x) + Aλ (σ, x)

where Tλ is the cost functional of the regularized problem Iλ and Aλ is the indicator
function of the corresponding admissible set, that is,

Aλ (σ, x) :=

{

0 if (σ, x) is admissible for Iλ

∞ otherwise
.

The Cartesian product L∞ (Ω) × X̃N is equipped with the product topology that is
induced by the weak⋆ topology of L∞ (Ω) and the weak topology of X̃. This topology is
denoted by τ . Thus, a sequence (σi, xi) in the topological space L∞ (Ω)× X̃N converges
to a element (σ, x) ∈ L∞ (Ω)× X̃N , if and only if

σi
⋆
⇀ σ in L∞ (Ω) and xni ⇀ xn in X̃ for n = 1, . . . , N.
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3 Regularization of an all-at-once formulation of the EIT inverse problem

We say that (σi, xi) is τ -convergent to (σ, x) or write (σi, xi)
τ
⇀ (σ, x). Observe that,

given ε > 0, the closed ball

Bε :=
{

σ ∈ L∞ (Ω)
∣
∣
∣ ‖σ‖L∞(Ω) ≤ ε

}

×
{

x ∈ X̃
∣
∣ ‖x‖X̃ ≤ ε

}N

is sequentially τ -compact. Indeed, by Alaoglu’s Theorem (see for instance [21, Thm.
3.16]), the closed unit ball BL∞(Ω) of L∞ (Ω) is compact in the weak⋆ topology of

L∞ (Ω) ≡
(
L1 (Ω)

)⋆
. Moreover, since L1 (Ω) is separable, BL∞(Ω) is also metrizable

(see for instance [27, Thm. 5.5]), that is, there exists a metric on BL∞(Ω) that induces
the weak⋆ topology restricted to BL∞(Ω). Thus, as a metric space is compact if and only
if it is sequentially compact, BL∞(Ω) is also sequentially compact in the weak⋆ topol-
ogy of L∞ (Ω). On the other hand, by Kukatani’s Theorem (see for instance [21, Thm.
3.17]), the closed unit ball BX̃ of X̃ is compact in the weak topology of X̃ (recall that X̃
was assumed to be reflexive in Assumption A5). Using this, it can be proved that any
bounded sequence in X̃ has a weakly convergent subsequence (the closed unit ball in the
space generated by the elements of any bounded sequence is compact and metrizable in
the weak topology). Thus, BX̃ is also sequentially compact in the weak topology of X̃.
Therefore, given a sequence (σi, xi) in Bε, we can find a subsequence

(
σij , xij

)
and some

(σ, x) ∈ Bε such that σij
⋆
⇀ σ and xnij ⇀ xn for n = 1, . . . , N , that is, the subsequence

(
σij , xij

)
is τ -convergent to (σ, x).

The following result will help us to prove the well-posedness of the regularized problems.
But first, consider the following notation.

Λ+ ⊂ Λ denotes the subset of all parameters λ = (α, . . .) ∈ Λ such that all the compo-
nents of α are positive. λ̄ ∈ Λ denotes the parameter

λ̄ :=

{

(0, 0, ȳ) if Iλ = I
1
λ, I

2
λ

(0, 0, 0, ȳ) if Iλ = I
3
λ

.

Note that Λ+ ∪
{
λ̄
}

is strictly contained in Λ. A sequence (λi) in Λ converges weakly
(resp. strongly) to some λ ∈ Λ if it converges weakly (resp. strongly) componentwise,
and we write λi ⇀ λ (resp. λi → λ). Since only the component y (noisy observation) of
λ = (. . . , y) belongs to an abstract space, the type of convergence refers to that in Y N .

Corollary 3.10.

(i) Let R : L∞ (Ω)× X̃N → [0,∞]4 be the functional defined by

R (σ, x) := 1 · R (σ, x) +

{

0 if σ− ≤ σ ≤ σ+ a.e. on Ω

∞ otherwise
.

Given ε > 0, the level set

Lε :=
{

(σ, x) ∈ L∞ (Ω)× X̃N |R (σ, x) ≤ ε
}

is sequentially τ -compact.
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(ii) Let (λi) and (σi, xi) be sequences in Λ+ and L∞ (Ω) × X̃N , respectively. If λi ⇀
λ ∈ Λ+ and (σi, xi)

τ
⇀ (σ, x) then

Fλ (σ, x) ≤ lim inf
i→∞

Fλi
(σi, xi) .

The same holds if λ = λ̄ and (σ, x) ∈ Lε for some ε > 0.

(iii) Let (λi) and (σi, xi) be sequences in Λ+ and L∞ (Ω) × X̃N , respectively. Sup-
pose that λi ⇀ λ, (σi, xi)

τ
⇀ (σ, x), and limi→∞ Fλi

(σi, xi) = Fλ (σ, x), with
Fλi

(σi, xi) ,Fλ (σ, x) <∞ for all i.

– If λ ∈ Λ+ then

∗ Regularized problem 1 (λi = (αi, δi, yi)⇀ λ = (α, δ, y)):

lim
i→∞

‖A (σi, xi)‖p = ‖A (σ, x)‖p
lim
i→∞

‖C (σi, xi)− yi‖q = ‖C (σ, x)− y‖q

∗ Regularized problem 2 (λi = (αi, δi, yi)⇀ λ = (α, δ, y)):

lim
i→∞

‖A (σi, xi)‖p = ‖A (σ, x)‖p
lim inf
i→∞

‖C (σi, xi)− yi‖∞ ∈ [‖C (σ, x)− y‖∞ , γδ]

∗ Regularized problem 3 (λi = (αi, βi, δi, yi)⇀ λ = (α, β, δ, y)):

lim inf
i→∞

‖A (σi, xi)‖∞ ∈ [‖A (σ, x)‖∞ , β]

lim
i→∞

‖C (σi, xi)− yi‖q = ‖C (σ, x)− y‖q

∗ All the regularized problems:

R (σi, xi) → R (σ, x)

– If λ = λ̄ and Fλ (σ, x) = 0, then (σ, x) solves I, A (σi, xi) → 0(Z⋆)N in (Z⋆)N ,

and C (σi, xi) → ȳ in Y N (strong convergences).

Proof of (i). Since Lε ⊆ B
max{σ+,(rε)1/r} (which is sequentially τ -compact), it suffices to

prove that Lε is τ -closed. Let (σi, xi) be a sequence in Lε (that is, 1 · R (σi, xi) ≤ ε
and σ− ≤ σi ≤ σ+ a.e. on Ω for all i) τ -convergent to some (σ, x) ∈ L∞ (Ω)× X̃N . By
Lemma 3.8(i)(ii), σ− ≤ σ ≤ σ+ a.e. on Ω and 1 ·R (σ, x) ≤ lim inf i→∞ 1 ·R (σi, xi) ≤ ε.
Therefore (σ, x) ∈ Lε.

Proof of (ii). First note that by Lemma 3.8, the implication







λi ⇀ λ

(σi, xi)
τ
⇀ (σ, x)

(σi, xi) is admissible for Iλi







⇒ (σ, x) is admissible for Iλ (3.4)
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is true. Indeed, since

(σi, xi) is admissible for Iλi
⇔







σ− ≤ σi ≤ σ+ Iλi
= I

1,2,3
λi

‖C (σi, xi)− yi‖∞ ≤ γδi Iλi
= I

2
λi

‖A (σi, xi)‖∞ ≤ βi Iλi
= I

3
λi

,

it suffices to apply Lemma 3.8(i)(iii). Now, we can affirm that

{

λi ⇀ λ

(σi, xi)
τ
⇀ (σ, x)

}

⇒ Aλ (σ, x) ≤ lim inf
i→∞

Aλi
(σi, xi) . (3.5)

If not, there exists a subsequence
(
σij , xij

)
and a constant 0 < c <∞ such that

∞ = Aλ (σ, x) > c > Aλij

(
σij , xij

)
= 0 for all j

(use the definition of lower limit to obtain it). Therefore
(
σij , xij

)
is admissible for Iλij

and (σ, x) is not admissible for Iλ, which contradicts (3.4). On the other hand, by
applying Lemma 3.8(ii)(iii) and lower limit properties, we obtain (recall that Tλ and
Tλi

are the cost functionals of the regularized problems)

{

λi ⇀ λ

(σi, xi)
τ
⇀ (σ, x)

}

⇒ Tλ (σ, x) ≤ lim inf
i→∞

Tλi
(σi, xi) , (3.6)

where (λi) is a sequence in Λ+ and either λ ∈ Λ+ or {λ = λ̄ and (σ, x) ∈ Lε} (that is,
α = 0 and all the components of R (σ̄, x̄) are finite numbers). Therefore, from (3.5) and
(3.6),

Tλ (σ, x) + Aλ (σ, x) ≤ lim inf
i→∞

Aλi
(σi, xi) + lim inf

i→∞
Tλi

(σi, xi)

≤ lim inf
i→∞

Aλi
(σi, xi) + Tλi

(σi, xi)

and the desired conclusion follows.

Proof of (iii). First note that as limi→∞ Fλi
(σi, xi) < ∞ and Fλi

(σi, xi) < ∞ for all
i, the sequence (Fλi

(σi, xi)) is bounded, which implies that Aλi
(σi, xi) = 0 for all i.

Hence, for each i, (σi, xi) is admissible for Iλi
. Since λi ⇀ λ and (σi, xi)

τ
⇀ (σ, x), by

Lemma 3.8(i)(iii) we obtain the following:

• If λ ∈ Λ+ then

σ− ≤ σ ≤ σ+ if Iλi
= I

1,2,3
λi

‖C (σ, x) − y‖∞ ≤ lim inf
i→∞

‖C (σi, xi)− yi‖∞ ≤ γδ if Iλi
= I

2
λi

‖A (σ, x)‖∞ ≤ lim inf
i→∞

‖A (σi, xi)‖∞ ≤ β if Iλi
= I

3
λi

. (3.7)
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• If λ = λ̄ then

σ− ≤ σ ≤ σ+ if Iλi
= I

1,2,3
λi

C (σ, x) = ȳ and C (σi, xi)− yj → 0Y N if Iλi
= I

2
λi

A (σ, x) = 0 and A (σi, xi) → 0(Z⋆)N if Iλi
= I

3
λi

. (3.8)

On the other hand, since Fλ (σ, x) <∞, we also have that Aλ (σ, x) = 0. So,

lim
i→∞

Tλi
(σi, xi) = lim

i→∞
Fλi

(σi, xi) = Fλ (σ, x) = Tλ (σ, x) <∞.

From this, it can be deduced that

lim
i→∞

‖A (σi, xi)‖p = ‖A (σ, x)‖p ≤ (pTλ (σ, x))
1/p if Iλi

= I
1,2
λi

lim
i→∞

‖C (σi, xi)− yi‖q = ‖C (σ, x)− y‖q ≤ (qTλ (σ, x))
1/q if Iλi

= I
1,3
λi

R (σi, xi) → R (σ, x) if Iλi
= I

1,2,3
λi

, (3.9)

and if Tλ (σ, x) = 0 and λ = λ̄, it follows immediately that

A (σ, x) = 0 and A (σi, xi) → 0(Z⋆)N if Iλi
= I

1
λi
, I2

λi

C (σ, x) = ȳ and C (σi, xi)− yi → 0Y N if Iλi
= I

1
λi
, I3

λi

. (3.10)

From (3.7) and (3.9), the results for λ ∈ Λ+ follows. From (3.8) and (3.10) (λ = λ̄ and
Fλ (σ, x) = 0), the limit (σ, x) solves I, A (σi, xi) → 0(Z⋆)N , and C (σi, xi) − yi → 0Y N .

Actually C (σi, xi) → ȳ since yi → ȳ (because ‖ȳ − yi‖q ≤ δi and δi → 0 in this case).

Now, the proof of the case Iλi
= I

3
λi

in (3.9) is provided (the other cases are similar). In
this case limi→∞ Tλi

(σi, xi) = Tλ (σ, x) reads as

lim
i→∞

1

q
‖C (σi, xi)− yi‖qq + αi ·R (σi, xi) =

1

q
‖C (σ, x)− y‖qq + α ·R (σ, x) . (3.11)

Suppose that
ε := lim sup

i→∞
αi ·R (σi, xi) > α ·R (σ, x) .

Let
(
αij ·R

(
σij , xij

))
be a subsequence such that limi→∞ αij · R

(
σij , xij

)
= ε, which

always exists since ε is the highest cluster point of (αi · R (σi, xi)). By (3.11) it follows
that

lim
j→∞

1

q

∥
∥C
(
σij , xij

)
− yij

∥
∥q

q
=

1

q
‖C (σ, x) − y‖qq + α ·R (σ, x)− ε

<
1

q
‖C (σ, x) − y‖qq ,

which contradicts Lemma (3.2)(ii). Hence limi→∞ αi · R (σi, xi) = α · R (σ, x), which
implies that limi→∞

1
q ‖C (σi, xi)− yi‖qq = 1

q ‖C (σ, x)− y‖qq. To prove that R (σi, xi) →
R (σ, x) it suffices to apply the same arguments since each component of R also has the
lower semicontinuity property.
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Remark 3.11. It is worth noting the following:

• Lε is sequentially τ -closed.

• Tλ is sequentially τ -lower semicontinuous for all λ ∈ Λ+.

• If (σ, x) ∈ L∞ (Ω)× X̃N is a solution to I then

Fλ (σ, x) ≤
{

δq

q + α ·R (σ, x) if Iλ = I
1
λ, I

3
λ

α · R (σ, x) if Iλ = I
2
λ

for all λ ∈ Λ. (3.12)

3.3 Results

The existence, stability, and convergence of regularized solutions are proved here. With
the aid of Corollary 3.10, the proofs of these results are given simultaneously for the three
regularized problems. At the end, a learning problem is formulated and the existence of
solutions for it is proved.

First of all, a technical assumption is made.

A6. Assume that there exists a solution (σ̄, x̄) ∈ L∞ (Ω)× X̃N to problem I such that
σ− ≤ σ̄ ≤ σ+ a.e. on Ω and

∫

Ω |Dσ̄| <∞.

Assumption A6 ensures the existence of a solution to I in a ”compact” subspace of
L∞ (Ω)×XN . Basically, this assumption is used to show that Fλ is a proper function (i.e.
Fλ 6≡ ∞) and to provide easy to use estimates. In the context of EIT, Assumption A6
makes sense since the EIT inverse problem has solution if, by example, the conductivity
is piecewise constant [48] (piecewise constant functions belong to L∞ (Ω) ∩BV (Ω), but
not to any Sobolev spaces). Also, it is usual to know the conductivity bounds [72, 76, 61].
The finite bounded variation of σ̄ will allows to obtain regularized solutions also with
finite bounded variation. A similar assumption was considered in [54].

In what follows, minα and maxα denote the minimum and maximum of the components
of α, respectively.

3.3.1 Existence of regularized solutions

Proposition 3.12. Given a parameter λ ∈ Λ+, the regularized problem Iλ has a solution
(σλ, xλ) ∈ Lε, with ε given by (3.13).

(σλ, xλ) is called regularized solution.

Proof. Since (σ̄, x̄) solves I and
∫

Ω |Dσ̄| <∞ (and hence all the components of R (σ̄, x̄)

are finite numbers), there exist 0 ≤ m <∞ and a sequence (σi, xi) in L∞ (Ω)× X̃N such
that

m = inf
{

Fλ (σ, x)
∣
∣
∣ (σ, x) ∈ L∞ (Ω)× X̃N

}

≤ Fλ (σ̄, x̄) <∞,

m ≤ Fλ (σi, xi) = . . .+ α ·R (σi, xi) ≤ Fλ (σ̄, x̄) for all i,

and lim
i→∞

Fλ (σi, xi) = m.
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Considering (3.12) and the inequality (minα) 1 ·R (σi, xi) ≤ α ·R (σi, xi), it follows that
1 ·R (σi, xi) ≤ ε for all i, where

ε :=

{
δq

(minα)q +
1

(minα)α · R (σ̄, x̄) if Iλ = I
1
λ, I

3
λ

1
(minα)α ·R (σ̄, x̄) if Iλ = I

2
λ

. (3.13)

From this, we can affirm that the minimizing sequence (σi, xi) is contained in the level
set Lε. Since Lε sequentially τ -compact, there exist a subsequence

(
σij , xij

)
and some

(σλ, xλ) ∈ Lε such that
(
σij , xij

) τ
⇀ (σλ, xλ). Since Fλ is sequentially τ -lower semicon-

tinuous (λ ∈ Λ+),

Fλ (σλ, xλ) ≤ lim inf
j→∞

Fλ

(
σij , xij

)
= lim

j→∞
Fλ

(
σij , xij

)
= m

and the conclusion follows.

Remark 3.13 (The case of λ scalar). If the regularization parameter λ has the form
λ = α01, with α0 > 0, then the regularized solution (σλ, xλ) belongs to Lε, with ε =
δq/ (α0q) + 1 · R (σ̄, x̄) if Iλ = I

1
λ, I

3
λ and ε = 1 · R (σ̄, x̄) if Iλ = I

2
λ.

Remark 3.14 (σλ has bounded variation). Note that since (σλ, xλ) belongs to Lε, we
have

∫

Ω |D (σλ − σ′)| ≤ ε, and as σ 7→
∫

Ω |Dσ| is a seminorm on BV (Ω), by the triangle
inequality it can be deduced that σλ ∈ BV (Ω).

3.3.2 Stability of regularized solutions

Here we show that a regularized solution (σλ, xλ) depends continuously on λ. For each
regularized problem, we impose a different condition on the sequence of parameters.

Proposition 3.15. Let (λi) be a sequence of parameters in Λ+ and let λ̂ ∈ Λ+ be such
that (the items refer to the regularized problems)

(1) λi = (αi, δi, yi) → λ̂ = (α, δ, y),

(2) λi = (αi, δi, yi)⇀ λ̂ = (α, δ, y) and γδ + ‖y − yi‖∞ ≤ γδi for all i ≥ i0,

(3) λi = (αi, βi, δi, yi) → λ̂ = (α, β, δ, y) and β ≤ βi for all i ≥ i0,

where i0 is some fixed index. For each i, let (σi, xi) := (σλi
, xλi

) be a solution to Iλi
,

which exists by Proposition 3.12. Then, for the sequence of regularized solutions (σi, xi)
we have:

(i) The sequence (σi, xi) has a τ -convergent subsequence.

(ii) If
(
σij , xij

)
is a τ -convergent subsequence of (σi, xi), its limit (σ̂, x̂) is a solution

to the regularized problem I λ̂ and







limj→∞

∥
∥A
(
σij , xij

)∥
∥
p
= ‖A (σ̂, x̂)‖p (1 ≤ p ≤ ∞) if (1) or (2)

limj→∞

∥
∥C
(
σij , xij

)
− yij

∥
∥
q
= ‖C (σ̂, x̂)− y‖q (1 ≤ q ≤ ∞) if (1) or (3)

R
(
σij , xij

)
→ R (σ̂, x̂) all cases

.

(3.14)
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(iii) If I λ̂ has a unique solution
(
σλ̂, xλ̂

)
then (σi, xi)

τ
⇀
(
σλ̂, xλ̂

)
.

Proof of (i). By Proposition 3.12, for each i, (σi, xi) belongs to Lεi , with

εi =

{
δqi

(minαi)q
+ 1

(minαi)
αi · R (σ̄, x̄) if (1) or (3)

1
(minαi)

αi · R (σ̄, x̄) if (2)
.

Since (αi) and (δi) are convergent sequences (here (αi) and its limit are vectors of positive
numbers), there exists an ε > 0 such that εi ≤ ε for all i. Thus, the sequence (σi, xi) is
contained in Lε and the sequentially τ -compactness of Lε yields the assertion.

Proof of (ii). Let
(
σij , xij

)
be a subsequence of (σi, xi) and (σ̂, x̂) ∈ L∞ (Ω)× X̃N such

that
(
σij , xij

) τ→ (σ̂, x̂). Since λi ⇀ λ̂ in Λ+,

Fλ̂ (σ̂, x̂) ≤ lim inf
j→∞

Fλij

(
σij , xij

)
(3.15)

by Corollary 3.10(ii). Note also that by the minimality of each (σi, xi),

Fλi
(σi, xi) ≤ Fλi

(σ, x) for all (σ, x) ∈ L∞ (Ω)× X̃N . (3.16)

On the other hand, observe that from the conditions on (λi) it can be deduced that the
admissible set associated to λ̂ is contained in the admissible set associated to λi, for i ≥ i0
(case (1 ) has not conditions because the admissible set in this case is independent of λ).
So, given i ≥ i0, this implies that Aλi

(σ, x) ≤ Aλ̂ (σ, x) for all (σ, x) ∈ L∞ (Ω) × X̃N ,
and hence

Fλi
(σ, x) = Tλi

(σ, x) + Aλi
(σ, x)

≤ Tλi
(σ, x) + Aλ̂ (σ, x) for all (σ, x) ∈ L∞ (Ω)× X̃N . (3.17)

Note also that the limit

lim
i→∞

Tλi
(σ, x) = Tλ̂ (σ, x) for all (σ, x) ∈ L∞ (Ω)× X̃N (3.18)

holds (strong convergence of the sequence (yi) is required in cases (1) and (3) because
the cost functionals in these cases depend on y). Combining (3.15), (3.16), (3.17), and
(3.18) it follows that

Fλ̂ (σ̂, x̂) ≤ lim inf
j→∞

Fλij

(
σij , xij

)
≤ lim sup

j→∞
Fλij

(
σij , xij

)

≤ lim sup
j→∞

Fλij
(σ, x) ≤ lim sup

j→∞
Tλij

(σ, x) + Aλ̂ (σ, x)

= lim
j→∞

Tλij
(σ, x) + Aλ̂ (σ, x) = Tλ̂ (σ, x) + Aλ̂ (σ, x)

= Fλ̂ (σ, x) for all (σ, x) ∈ L∞ (Ω)× X̃N .

Therefore (σ̂, x̂) is a solution to I λ̂. Moreover, taking (σ, x) = (σ̂, x̂),

lim
j→∞

Fλij

(
σij , xij

)
= Fλ̂ (σ̂, x̂) <∞,

and Corollary 3.10(iii) gives (3.14).
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Proof of (iii). Assume that there exists a unique solution
(
σλ̂, xλ̂

)
to I λ̂. Let

(
σij , xij

)

be a arbitrary subsequence of (σi, xi). By (i) there exists a τ -convergent subsequence
(

σijk , xijk

)

. Let (σ̂, x̂) be its limit. By (ii) (σ̂, x̂) is solution to I λ̂. So, (σ̂, x̂) =
(
σλ̂, xλ̂

)
.

We have proved that every subsequence of (σi, xi) has a τ -convergent subsequence with
limit

(
σλ̂, xλ̂

)
. Therefore the whole sequence (σi, xi) is τ -convergent to

(
σλ̂, xλ̂

)
[89, Lem.

8.2].

3.3.3 Convergence of regularized solutions

We introduce the concept of R-minimizing solutions before dealing with the convergence
of regularized solutions. An element (σ̇, ẋ) ∈ L∞ (Ω) × X̃N is called R-minimizing
solution if it is a solution to

min
(σ,x)∈L∞(Ω)×X̃N

is a solution to I

R (σ, x) .

Lemma 3.16. There exists at least one R-minimizing solution.

Proof. Clearly (σ̄, x̄) is admissible and R (σ̄, x̄) < ∞. Hence, there exist a minimizing
sequence (σi, xi) and 0 ≤ m < ∞ such that limi→∞ R (σi, xi) = m and R (σi, xi) ≤
R (σ̄, x̄). Since LR(σ̄,x̄) is sequentially τ -compact and (σi, xi) is in LR(σ̄,x̄), it follows that
there exists a subsequence

(
σij , xij

)
that is τ -convergent to some (σ̇, ẋ), which also is in

LR(σ̄,x̄). Applying Lemma 3.8(ii) the conclusion follows.

Here it is proved that a sequence of regularized solutions (σλi
, xλi

) can converge to a
solution of I .

Theorem 3.17. Let (λi) be the sequence of parameters in Λ+ such that (the items refer
to the regularized problems)

(1) λi = (αi, δi, yi)⇀ λ̄ and
(

δqi
minαi

)

,
(
maxαi
minαi

)

are bounded,

(2) λi = (αi, δi, yi)⇀ λ̄ and
(
maxαi
minαi

)

is bounded,

(3) λi = (αi, βi, δi, yi)⇀ λ̄ and
(

δqi
minαi

)

,
(
maxαi
minαi

)

are bounded.

For each i, let (σi, xi) := (σλi
, xλi

) be a solution to Iλi
, which exists by Proposition 3.12.

Then, for the sequence of regularized solutions (σi, xi) we have:

(i) The sequence (σi, xi) has a τ -convergent subsequence.

(ii) If
(
σij , xij

)
is a τ -convergent subsequence of (σi, xi), its limit is a solution to I,

A
(
σij , xij

)
→ 0(Z⋆)N , and C

(
σij , xij

)
→ ȳ.

(iii) If (σ̄, x̄) is the unique solution to I then (σi, xi)
τ
⇀ (σ̄, x̄).
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Proof of (i). Let (σ̇, ẋ) be a R-minimizing solution. For each i, Fλi
(σi, xi) ≤ Fλi

(σ̇, ẋ)
by the minimality of (σi, xi). Considering (3.12), it can be deduced that (σi, xi) belongs
to Lεi, with

εi =

{
δqi

(minαi)q
+ (maxαi)

(minαi)
1 · R (σ̇, ẋ) if (1) or (3)

(maxαi)
(minαi)

1 · R (σ̇, ẋ) if (2)
.

Since the sequences (δqi /minαi) and (maxαi/minαi) are bounded, there exists an ε >
0 such that εi ≤ ε for all i. Thus, the sequence (σi, xi) is contained in Lε and the
sequentially τ -compactness Lε yields the assertion.

Proof of (ii). Let
(
σij , xij

)
be a subsequence of (σi, xi) and (σ̂, x̂) ∈ L∞ (Ω)× X̃N such

that
(
σij , xij

) τ→ (σ̂, x̂). Since Lε is also sequentially τ -closed, (σ̂, x̂) ∈ Lε. Since λi ⇀ λ̄,

Fλ̂ (σ̂, x̂) ≤ lim inf
j→∞

Fλij

(
σij , xij

)

by Corollary 3.10(ii). Thus, by the minimality of each
(
σij , xij

)
and Remark (3.12), it

follows that

Fλ̂ (σ̂, x̂) ≤ lim inf
j→∞

Fλij

(
σij , xij

)
≤ lim sup

j→∞
Fλij

(
σij , xij

)

≤ lim sup
j→∞

Fλij
(σ̇, ẋ) ≤







limj→∞

δqij
q + αij ·R (σ̇, ẋ) if (1 ), (3 )

limj→∞ αij ·R (σ̇, ẋ) if (2 )
.

Therefore, since λij → λ̄, we conclude that

Fλ̄ (σ̂, x̂) = lim
j→∞

Fλij

(
σij , xij

)
= 0.

The conclusion follows from Corollary 3.10(iii).

Proof of (iii). We use the subsequence-subsequence argument.

By imposing additional conditions on the sequence of parameters, it is possible to char-
acterize the solutions of I obtained by convergence of regularized solutions.

Corollary 3.18. Under the hypotheses of Theorem 3.17, assuming in addition that

(1) limi→∞

(
δqi

minαi

)

= 0 and limi→∞

(
maxαi
minαi

)

= 1

(2) limi→∞

(
maxαi
minαi

)

= 1

(3) limi→∞

(
δqi

minαi

)

= 0 and limi→∞

(
maxαi
minαi

)

= 1

we have:

(i) If
(
σij , xij

)
is a τ -convergent subsequence of (σi, xi), its limit (σ̂, x̂) is a R-minimizing

solution and R
(
σij , xij

)
→ R (σ̂, x̂).
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(ii) If there exists a unique R-minimizing solution (σ̇, ẋ) then (σi, xi)
τ
⇀ (σ̇, ẋ).

Proof of (i). Let
(
σij , xij

)
be a subsequence of (σi, xi) and (σ̂, x̂) ∈ L∞ (Ω) × X̃N such

that
(
σij , xij

) τ
⇀ (σ̂, x̂). By Theorem 3.17(ii), (σ̂, x̂) is a solution to I which belongs to a

level set Lε. So, (σ̂, x̂) is admissible to be a R-minimizing solution. On the other hand,
in the proof of Theorem 3.17(i), it was proved that

1 ·R
(
σij , xij

)
≤ εj =







δqij
(

minαij

)

q
+

(

maxαij

)

(

minαij

) 1 · R (σ̇, ẋ) if (1 ), (3 )
(

maxαij

)

(

minαij

) 1 · R (σ̇, ẋ) if (2 )

for all j. Applying Lemma 3.8(ii) to
(
σij , xij

) τ
⇀ (σ̂, x̂), from the above it follows that

1 ·R (σ̂, x̂) ≤ lim inf
i→∞

1 · R
(
σij , xij

)
≤ lim sup

i→∞
1 ·R

(
σij , xij

)
≤ lim

i→∞
εi = 1 ·R (σ̇, ẋ)

by the additional conditions imposed on (δqi /minαi) and (maxαi/minαi). Therefore
(σ̂, x̂) is a R-minimizing solution. Moreover, since 1 · R (σ̂, x̂) = 1 · R (σ̇, ẋ), limi→∞ 1 ·
R
(
σij , xij

)
= 1 ·R (σ̂, x̂), from which it can be deduced that R

(
σij , xij

)
→ R (σ̂, x̂).

Proof of (ii). We use the subsequence-subsequence argument.

3.3.4 Optimal parameter

Here we formulate a bilevel optimization problem to select an optimal regularization
parameter α and prove that this problem has a solution. The general idea is to find a
optimal parameter λ ∈ Λ (ȳ) by minimizing some distance bewteen the corresponding
regularized solution (xλ, σλ) and a known solution (σe, xe) to I with ȳ. This is known as
the learning approach and (σe, xe) with ȳ form the so-called training data [52]. A set of
exact observations and the corresponding solutions to I are considered as training data.
Due to technical reasons, our attention is focused on the component α of the parameter
λ.

We begin by defining the training data. Let
(
σ1e , x

1
e, y

1
e

)
, . . . ,

(
σMe , x

M
e , y

M
e

)
be M ele-

ments in L∞ (Ω)×XN ×Y N such that each (σme , x
m
e ) is a solution to I with yme as exact

observation; in other words,

ess inf
x∈Ω

σme (x) > 0 and
A (σme , x

m
e ) = 0(Z⋆)N in (Z⋆)N

C (σme , x
m
e ) = yme in Y N

m = 1, . . . ,M.

Now, σ1e , . . . , σ
M
e are used to construct a distance function. Let 1 ≤ s < ∞ and let

φ1, . . . , φT ∈ L1 (Ω) be weigth functions. Let L : (L∞ (Ω))M → [0,∞] be the distance
function defined by

L
(
σ1, . . . , σM

)
:=

M∑

m=1

{

1

s

T∑

t=1

∣
∣
∣
∣

∫

Ω
(σm − σme )φt dx

∣
∣
∣
∣

s

+

∫

Ω
|D (σm − σme )|

}

.
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L is inspired by the neighborhood definition in the weak⋆ topology of L∞ (Ω) [21, Prop.
3.12] and the seminorm property of the total variation function. Fix a compact set K in
]0,∞[4 and consider the bilevel optimization problem

minL
(
σ1α, . . . , σ

M
α

)

s.t. α ∈ K,
(σmα , x

m
α ) is a solution to Iλm

α
for m = 1, . . . ,M.

(J)

J is called the learning problem and is associated to the regularized problem Iλ, which
can be either I

1
λ, I

2
λ, or I

3
λ. The regularized problems Iλ1

α
, . . . , IλM

α
are instances of Iλ

with parameters λ1α ∈ Λ
(
y1e
)
, . . . , λMα ∈ Λ

(
yMe
)
, respectively. Specifically, each λmα is

given by

λmα :=

{

(α, δm, ym) if Iλ = I
1
λ, I

2
λ

(α, βm, δm, ym) if Iλ = I
3
λ

.

where β1, . . . , βM are fixed maximum model error levels and
(
δ1, y1

)
, . . . ,

(
δM , yM

)
are

fixed noise level-noisy obsevation pairs satisfying

0 ≤ β1, . . . , βM and
∥
∥y1e − y1

∥
∥
q
≤ δ1, . . . ,

∥
∥yMe − yM

∥
∥
q
≤ δM ,

where 1 ≤ q <∞ if Iλ = I
1
λ, I

3
λ and q = ∞ if Iλ = I

2
λ.

To use our previous results, assume the following.

A7. For each m assume that (σme , x
m
e ) ∈ L∞ (Ω)× X̃N , σ− ≤ σme ≤ σ+ a.e. on Ω, and

∫

Ω |Dσme | <∞.

Proposition 3.19. The learning problem J has a solution.

Proof. First, the existence result (Proposition 3.12) is used to prove that there exists a
minimizing sequence. Next, the stability result (Proposition 3.15) is used to prove that
there exists a convergent subsequence, whose limit will be a minimizer of J .

By Proposition 3.12 (existence), the admissible set of J , namely

A :=

{
(
α,
(
σ1α, x

1
α

)
, . . . ,

(
σMα , xMα

))
∣
∣
∣
∣

α ∈ K
(σmα , x

m
α ) solves Iλm

α
for m = 1, . . . ,M

}

,

is not empty. Let
(
α,
(
σ1α, x

1
α

)
, . . . ,

(
σMα , x

M
α

))
be an element of A. Since each σmα

is a L∞ (Ω)-function of bounded variation (see Remark 3.14) as well as each σme (by
Assumption A7), it follows that there exist a 0 ≤ d <∞ such that

d = inf
{
L
(
σ1α, . . . , σ

M
α

) ∣
∣
(
α,
(
σ1α, x

1
α

)
, . . . ,

(
σMα , x

M
α

))
∈ A

}

and a sequence
(
αi,
(
σ1αi

, x1αi

)
, . . . ,

(
σMαi

, xMαi

))
in A such that

lim
i→∞

L
(
σ1αi

, . . . , σMαi

)
= d. (3.19)
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Since the sequence of regularization parameters (αi) is in K, there exists a subsequence,
still denoted by (αi), and an α̃ ∈ K such that αi → α̃. So, we have

λmαi
=
(

αi, . . .
(m)
)

→ λmα̃ =
(

α̃, . . .(m)
)

for m = 1, . . . ,M.

Applying Proposition 3.15(ii) M times (observe that each sequence
(
λmαi

)
satisfies triv-

ially the necessary conditions of this proposition), obtaining at the m time a subsequence
of
(
λmαi

)
, to form, with its indices, a subsequence of

(
λm+1
αi

)
, we show that there exist

subsequences
(

σ1αij
, x1αij

)

, . . . ,
(

σMαij
, xMαij

)

and

(
σ1α̃, x

1
α̃

)
, . . . ,

(
σMα̃ , x

M
α̃

)
∈ L∞ (Ω)× X̃N ,

such that 





(

σmαij
, xmαij

)
τ
⇀ (σmα̃ , x

m
α̃ )

(σmα̃ , x
m
α̃ ) solves Iλm

α̃

for each m = 1, . . . ,M.

Hence
(
α̃,
(
σ1α̃, x

1
α̃

)
, . . . ,

(
σMα̃ , x

M
α̃

))
∈ A. Moreover, for each m, since σmij

⋆
⇀ σmα̃ in the

weak⋆ topology of L∞ (Ω), we obtain

∫

Ω

(

σmαij
− σme

)

φt dx →
∫

Ω
(σmα̃ − σme )φt dx for t = 1, . . . , T

and ∫

Ω
|D (σmα̃ − σme )| ≤ lim inf

j→∞

∫

Ω

∣
∣
∣D
(

σmαij
− σme

)∣
∣
∣

(proceed as in the proof of Lemma 3.8(ii)). Thus, using (3.19) and applying limit inferior
properties, we conclude that

L
(
σ1α̃, . . . , σ

M
α̃

)
≤ d.

Therefore,
(
α̃,
(
σ1α̃, x

1
α̃

)
, . . . ,

(
σMα̃ , x

M
α̃

))
is a minimizer of J .

Remark 3.20. It is worth pointing out that the above arguments do not be apply to find
optimals β and δ because the stability result requires conditions on sequences of these
parameters, which are not satisfied in general by subsequences coming from compact sets
such as K.

3.4 The complete electrode model

In this section, the complete electrode model [92] is presented and three instances of
Assumptions A1-A5 are proposed using the equations of this model. Then, for each
instance, the inverse problem and its regularizations are formulated.

To provide this example, we introduce the following notations. ν denotes the outward
unit normal to ∂Ω. Let M be an integer and E1, . . . , EM be open connected subsets of ∂Ω
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3 Regularization of an all-at-once formulation of the EIT inverse problem

such that Ei ∩ Ej = ∅ for i 6= j, and if d = 3, the boundary of each Em is a smooth curve
on ∂Ω (recall that Ω is a domain in R

d, d = 2, 3). |Em| denotes the area of Em. H1 (Ω)
and H2 (Ω) denote the usual Sobolev spaces over Ω. H1+s (Ω) denotes the fractional
Sobolev space [34, Ch. 4]

H1+s (Ω) =







u ∈ H1 (Ω)

∣
∣
∣
∣
∣
∣
∣

∫

Ω

∫

Ω

∣
∣
∣
∂u
∂xi

(x)− ∂u
∂xi

(y)
∣
∣
∣

2

|x− y|2s+d
dxdy <∞, i = 1, . . . , d







,

with 0 < s < 1. Let R
M
⋄ be the subspace of vectors with zero mean value

R
M
⋄ :=

{

U ∈ R
M

∣
∣
∣
∣
∣

M∑

m=1

Um = 0

}

.

H1/2 (Em) denotes the space of traces on Em and γm : H1 (Ω) → H1/2 (Em) denotes the
trace operator on Em, for m = 1, . . . ,M . Recall that Ω represents a conducting body.
The subsets E1, . . . , EM represent M electrodes attached on the surface ∂Ω.

Let z1, . . . , zM be positive constants which represent the contact impedances associated
to the electrodes. Denoting by σ the internal conductivity of Ω, the equations of the
complete electrode model for the electric potential (u,U) are

∇· (σ∇u) = 0 in Ω (3.20)

σ
∂u

∂ν
= 0 on ∂Ω\

M⋃

m=1

Em (3.21)

u+ zmσ
∂u

∂ν
= Um on Em, m = 1, . . . ,M (3.22)

with ∫

Em

σ
∂u

∂ν
ds = Im m = 1, . . . ,M (3.23)

if a current pattern I = (I1, . . . , IM ) ∈ R
M
⋄ is applied, or with

Um = Vm (3.24)

if a voltage pattern V = (V1, . . . , VM ) ∈ R
M is applied.

Three weak formulations of this model will be considered in the following subsections,
and for each of them, one instance of Assumptions A1-A5 will be proposed.

3.4.1 Formulation with applied current

We begin by considering equations (3.20)-(3.22), and (3.23), which determine the problem
of finding the electric potential (u,U) when a current pattern I ∈ R

M
⋄ is applied through
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3 Regularization of an all-at-once formulation of the EIT inverse problem

electrodes E1, . . . , EM . The weak formulation of this problem is written as:






find (u,U) ∈ H1 (Ω)× R
M
⋄ satisfying

∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) (γmw −Wm)

zm
ds =

M∑

m=1

ImWm

for all (w,W ) ∈ H1 (Ω)× R
M
⋄ .

(3.25)

The following set of assumptions allow us to consider (3.25) as model equation. Let
σ̄ ∈ L∞ (Ω) be a conductivity such that ess infx∈Ωσ̄ (x) > 0. Suppose that N current
patterns I1, . . . IN ∈ R

M
⋄ are applied through the electrodes E1, . . . , EM . Then, the

electric potentials
(
ū1, Ū1

)
, . . . ,

(
ūN , ŪN

)
∈ H1 (Ω)× R

M
⋄

are obtained, where Ū1, . . . , ŪN are the resulting voltages on the electrodes. In other
words, each

(
ūn, Ūn

)
is the unique solution to (3.25) with σ = σ̄ and I = In. Consider

the following instance of Assumptions A1-A5:

A1. X,Z := H1 (Ω)× R
M
⋄ and bn ∈ Z⋆ defined by bn (w,W ) :=

∑M
m=1 I

n
mWm.

A2. a : L∞ (Ω)×X → Z⋆ defined by

a (σ, (u,U)) (w,W ) :=
∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) (γmw −Wm)

zm
ds.

A3-4. We provide three possibilities:

(i) Voltage measurements. Y := R
M , ȳn := Ūn ∈ R

M
⋄ , and cn : L∞ (Ω)×X → Y

defined by cn (σ, (u,U)) := U .

(ii) Magnitudes of current density field. Y := L2 (Ω), ȳn := σ̄ |∇ūn| ∈ L2 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, (u,U)) := σ |∇u|.

(iii) Interior power density data. Y := L1 (Ω), ȳn := σ̄ |∇ūn|2 ∈ L1 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, (u,U)) := σ |∇u|2.

A5. X̃ := H1+s (Ω)× R
M
⋄ with some 0 < s ≤ 1.

Inverse problem (N = 1). With the above assumptions, the model equation

A (σ, (u,U)) = 0Z⋆ in Z⋆ =
(
H1 (Ω)× R

M
⋄

)⋆

reads as






∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) (γmw −Wm)

zm
ds =

M∑

m=1

ImWm

for all (w,W ) ∈ Z = H1 (Ω)×R
M
⋄

and the observation equation C (σ, (u,U)) = ȳ in Y reads as

U = Ū in Y = R
M (i)

σ |∇u| = σ̄ |∇ū| in Y = L2 (Ω) (ii)

σ |∇u|2 = σ̄ |∇ū|2 in Y = L1 (Ω) (iii)
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3 Regularization of an all-at-once formulation of the EIT inverse problem

for (i) voltage measurements, (ii) magnitudes of current density field, (iii) interior power
density data.

Remark 3.21. One can consider X = H1 (Ω) × R
M when voltage measurements are

choosen as observations, that is, when (i) is the observation equation. This is because
any solution (σ, (u,U)) of (i) satisfies U ∈ R

M
⋄ (it is known that Ū ∈ R

M
⋄ ). Therefore,

A and C need not be defined on X = H1 (Ω) × R
M
⋄ a priori. In this case, Z 6= X and,

although X̃ = H1+s (Ω) × R
M
⋄ → X remains compact, X̃ = H1+s (Ω) × R

M can be
choosen.

Regularizations. The regularizations I
1
λ, I

2
λ, I

3
λ are formulated below. Recall that the

regularizations are defined on L∞ (Ω)× X̃N , with X̃ = H1+s (Ω)× R
M
⋄ .

• I
1
λ-regularization (p = 2, 1 ≤ q <∞):

min
(σ,x)∈L∞(Ω)×X̃N

1

2
‖A (σ, x)‖22 +

1

q
‖C (σ, x)− y‖qq + α · R (σ, x)

s.t. σ− ≤ σ ≤ σ+ a.e. on Ω

• I
2
λ-regularization (p = 2, q = ∞):

min
(σ,x)∈L∞(Ω)×X̃N

1

2
‖A (σ, x)‖22 + α ·R (σ, x)

s.t.
σ− ≤ σ ≤ σ+ a.e. on Ω
ynm − γδ ≤ Un

m ≤ ynm + γδ ∀m,n

• I
3
λ-regularization (p = ∞, 1 ≤ q <∞, β = 0):

min
(σ,x)∈L∞(Ω)×X̃N

1

q
‖C (σ, x)− y‖qq + α ·R (σ, x)

s.t.
σ ≤ σ ≤ σ+ a.e. on Ω,
∫

Ω
σ∇un·∇w dx+

M∑

m=1

∫

Em

(γmu
n − Un

m) (γmw −Wm)

zm
ds =

M∑

m=1

InmWm

∀ (w,W ) ∈ H1 (Ω)× R
M
⋄ , ∀n

where x =
((
u1, U1

)
, . . . ,

(
uN , UN

))
∈ X̃N and y =

(
y1, . . . , yN

)
∈ Y N satisfies







yn ∈ R
M , Ūn

m − δ ≤ ynm ≤ Ūn
m + δ ∀m,n q = ∞, (i)

yn ∈ R
M ,
(
∑N

n=1

∑M
m=1

∣
∣Ūn

m − ynm
∣
∣2
)1/2

≤ δ q = 2, (i)

yn ∈ L2 (Ω) ,
(
∑N

n=1

∫

Ω |σ̄ |∇ūn| − yn|2 dx
)1/2

≤ δ q = 2, (ii)

yn ∈ L1 (Ω) ,
∑N

n=1

∫

Ω

∣
∣
∣σ̄ |∇ūn|2 − yn

∣
∣
∣ dx ≤ δ q = 1, (iii)

,
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3 Regularization of an all-at-once formulation of the EIT inverse problem

with

1

2
‖A (σ, x)‖22 =

1

2

N∑

n=1

‖a (σ, (un, Un))− bn‖2(H1(Ω)×R
M
⋄ )

⋆

as the model error,

1

q
‖C (σ, x)− y‖qq =







1
2

∑N
n=1

∑M
m=1 |Un

m − ynm|2 q = 2, (i)
1
2

∑N
n=1

∫

Ω |σ |∇un| − yn|2 dx q = 2, (ii)
∑N

n=1

∫

Ω

∣
∣
∣σ |∇un|2 − yn

∣
∣
∣ dx q = 1, (iii)

as the observation error, and

R (σ, x) =

(

1

2

N∑

n=1

‖(un, Un)‖2H1+s(Ω)×R
M
⋄
, . . .

)

as the regularization functional (r = 2). We recall that if voltage measurements are
chosen as observations, then X̃ = H1+s (Ω)×R

M
⋄ can be replaced with X̃ = H1+s (Ω)×

R
M , as was pointed in Remark 3.21. If this is the case, the component Un

λ of a regularized
solution

(
σλ,
(
u1λ, U

1
λ

)
, . . . ,

(
uNλ , U

N
λ

))
does not belong to R

M
⋄ in general.

3.4.2 Formulation with applied voltage

On the other hand, equations (3.20)-(3.22), and (3.24) determine the problem of finding
the electric potential (u,U) when a voltage pattern V ∈ R

M is applied through electrodes
E1, . . . , EM . The weak formulation of this problem is written as:







find u ∈ H1 (Ω) satisfying
∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

γmu γmw

zm
ds =

M∑

m=1

∫

Em

Vm γmw

zm
ds

for all w ∈ H1 (Ω) .

(3.26)

The above is a equation for u (from (3.24) U = V ). The following set of assumptions
allow us to consider (3.26) as model equation. Let σ̄ ∈ L∞ (Ω) be a conductivity such
that ess infx∈Ωσ̄ (x) > 0. Suppose that N voltage patterns V 1, . . . V N ∈ R

M are applied
through the electrodes E1, . . . , EM . Then, N electric potentials

ū1, . . . , ūN ∈ H1 (Ω)

are obtained and the resulting currents on the electrodes are given by

(∫

Em

V 1
m − γmū

1

zm
ds

)M

m=1

, . . . ,

(∫

Em

V N
m − γmū

N

zm
ds

)M

m=1

∈ R
M
⋄ .

In other words, each ūn is the unique solution to (3.26) with σ = σ̄ and V = V n. It is
easy to check the resulting currents belong to R

M
⋄ by setting w = 1 in (3.26). Consider

the following instance of Assumptions A1-A5:
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A1. X,Z := H1 (Ω) and bn ∈ Z⋆ defined by bn (w) :=
∑M

m=1

∫

Em

V n
m γmw
zm

ds.

A2. a : L∞ (Ω)×X → Z⋆ defined by

a (σ, u) (w) :=

∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

γmu γmw

zm
ds.

A3-4. We provide three possibilities:

(i) Current measurements. Y := R
M ,

ȳn :=

(∫

E1

V n
1 − γ1ū

n

z1
ds, . . . ,

∫

EM

V n
M − γM ū

n

zM
ds

)

∈ R
M
⋄ ,

and cn : L∞ (Ω)×X → Y defined by

cn (σ, u) :=

(∫

E1

V n
1 − γ1u

z1
ds, . . . ,

∫

EM

V n
M − γMu

zM
ds

)

.

(ii) Magnitudes of current density field (as in the formulation with applied current)

(iii) Interior power density data (as in the formulation with applied current)

A5. X̃ := H1+s (Ω) with some 0 < s ≤ 1.

Inverse problem (N = 1). With the above assumptions, the model equation

A (σ, u) = 0Z⋆ in Z⋆ =
(
H1 (Ω)

)⋆

is given by






∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

γmu γmw

zm
ds =

M∑

m=1

∫

Em

Vm γmw

zm
ds

for all w ∈ Z = H1 (Ω)

and the observation equation C (σ, u) = ȳ in Y is given by

(∫

Em

Vm − γmu

zm
ds

)M

m=1

=

(∫

Em

Vm − γmū

zm
ds

)M

m=1

in Y = R
M (i)

σ |∇u| = σ̄ |∇ū| in Y = L2 (Ω) (ii)

σ |∇u|2 = σ̄ |∇ū|2 in Y = L1 (Ω) (iii)

for (i) current measurements, (ii) magnitudes of current density field, (iii) interior power
density data.

Regularizations. The regularizations I
1
λ, I

2
λ, I

3
λ are formulated below. Recall that the

regularizations are defined on L∞ (Ω)× X̃N , with X̃ = H1+s (Ω).

• I
1
λ-regularization (p = 2, 1 ≤ q <∞):

min
(σ,x)∈L∞(Ω)×X̃N

1

2
‖A (σ, x)‖22 +

1

q
‖C (σ, x)− y‖qq + α · R (σ, x)

s.t. σ− ≤ σ ≤ σ+ a.e. on Ω
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• I
2
λ-regularization (p = 2, q = ∞):

min
(σ,x)∈L∞(Ω)×X̃N

1

2
‖A (σ, x)‖22 + α ·R (σ, x)

s.t.
σ− ≤ σ ≤ σ+ a.e. on Ω

ynm − γδ ≤
∫

Em

V n
m − γmu

n

zm
ds ≤ ynm + γδ ∀m,n

• I
3
λ-regularization (p = ∞, 1 ≤ q <∞, β = 0):

min
(σ,x)∈L∞(Ω)×X̃N

1

q
‖C (σ, x)− y‖qq + α · R (σ, x)

s.t.
σ ≤ σ ≤ σ+ a.e. on Ω
∫

Ω
σ∇un·∇w dx+

M∑

m=1

∫

Em

γmu
nγmw

zm
ds =

M∑

m=1

∫

Em

V n
mγmw

zm
ds

∀w ∈ H1 (Ω) , ∀n

where x =
(
u1, . . . , uN

)
∈ X̃N and y =

(
y1, . . . , yN

)
∈ Y N satisfies







yn ∈ R
M ,
∫

Em

V n
m−γmūn

zm
ds− δ ≤ ynm ≤

∫

Em

V n
m−γmūn

zm
ds+ δ ∀m,n q = ∞, (i)

yn ∈ R
M ,

(
∑N

n=1

∑M
m=1

∣
∣
∣

∫

Em

V n
m−γmūn

zm
ds− ynm

∣
∣
∣

2
)1/2

≤ δ q = 2, (i)

yn ∈ L2 (Ω) ,
(
∑N

n=1

∫

Ω |σ̄ |∇ūn| − yn|2 dx
)1/2

≤ δ q = 2, (ii)

yn ∈ L1 (Ω) ,
∑N

n=1

∫

Ω

∣
∣
∣σ̄ |∇ūn|2 − yn

∣
∣
∣ dx ≤ δ q = 1, (iii)

,

with

1

2
‖A (σ, x)‖22 =

1

2

N∑

n=1

‖a (σ, un)− bn‖2(H1(Ω))⋆

as the model error,

1

q
‖C (σ, x)− y‖qq =







1
2

∑N
n=1

∑M
m=1

∣
∣
∣

∫

Em

V n
m−γmun

zm
ds− ynm

∣
∣
∣

2
q = 2, (i)

1
2

∑N
n=1

∫

Ω |σ |∇un| − yn|2 dx q = 2, (ii)
∑N

n=1

∫

Ω

∣
∣
∣σ |∇un|2 − yn

∣
∣
∣ dx q = 1, (iii)

as the observation error, and

R (σ, x) =

(

1

2

N∑

n=1

‖un‖2H1+s(Ω) , . . .

)

as the regularization functional (r = 2). Given a regularized solution
(
σλ,
(
u1λ, . . . , u

N
λ

))
,

note that we not have
(
V n
m−γmun

λ
zm

ds
)M

m=1
∈ R

M
⋄ in general, even if V n ∈ R

M
⋄ .
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3.4.3 Alternative formulation

An alternative weak formulation is proposed below. Equations (3.20)-(3.22) can be
weakly formulated as the the following problem:







find (u,U) ∈ H1 (Ω)× R
M satisfying

∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) γmw

zm
ds = 0

for all w ∈ H1 (Ω) .

(3.27)

In (3.27), the equations involving current and voltage application are left out. Note that
(3.27) has infinite solutions and does not represent any physical phenomenon. Thus, to
formulate adequately the EIT inverse problem using (3.27) as model equation, current
and voltage data will be added as observations. Let σ̄ ∈ L∞ (Ω) be a conductivity
such that ess infx∈Ωσ̄ (x) > 0. From the previous cases, we see that there are two
possibilities: apply N current patterns I1, . . . IN ∈ R

M
⋄ and obtain the voltage generated

on the electrodes, or apply N voltage patterns V 1, . . . V N ∈ R
M and obtain the current

generated on the electrodes. In the first case, the voltage-current pairs

(
Ū1, I1

)
, . . . ,

(
ŪN , IN

)

are available, where each
(
ūn, Ūn

)
is the unique solution to (3.25) with σ = σ̄ and I = In.

In the second case, the voltage-current pairs

(

V 1,

(∫

Em

V 1
m − γmū

1

zm
ds

)M

m=1

)

, . . . ,

(

V N ,

(∫

Em

V N
m − γmū

N

zm
ds

)M

m=1

)

are available, where each ūn is the unique solution to (3.26) formulated with σ = σ̄ and
V = V n. With this, consider the following instance of Assumptions A1-A5:

A1. X := H1 (Ω)× R
M , Z := H1 (Ω), and b1, . . . , bN = 0Z⋆ .

A2. a : L∞ (Ω)×X → Z⋆ defined by

a (σ, (u,U)) (w) :=

∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) γmw

zm
ds.

A3. Y := R
M × R

M and any of the two sets of voltage-current pairs below:

(i) Measured voltage-applied current pairs :

ȳn :=
(
Ūn, In

)
∈ R

M
⋄ ×R

M
⋄ .

(ii) Applied voltage-measured current pairs :

ȳn :=

(

V n,

(∫

Em

V n
m − γmū

n

zm
ds

)M

m=1

)

∈ R
M × R

M
⋄ .
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A4. cn : L∞ (Ω)×X → Y defined by

cn (σ, (u,U)) :=

(

U,

(∫

Em

Um − γmu

zm
ds

)m

m=1

)

.

A5. X̃ := H1+s (Ω)× R
M with some 0 < s ≤ 1.

Inverse problem (N = 1). With the above assumptions, the model equation

A (σ, (u,U)) = 0Z⋆ in Z⋆ =
(
H1 (Ω)

)⋆

is given by






∫

Ω
σ∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) γmw

zm
ds = 0

for all w ∈ Z = H1 (Ω)

and the observation equation C (σ, (u,U)) = ȳ in Y = R
M ×R

M is given by

(

U,

(∫

Em

Um − γmu

zm
ds

)M

m=1

)

=







(
Ū , I

)
(i)

(

V,
(∫

Em
Vm−γmū

zm
ds
)M

m=1

)

(ii)

for (i) measured voltages-applied currents, (ii) applied voltages-measured currents.

Remark 3.22. If either (i) or (ii) with V beloging to R
M
⋄ is chosen, then the exact

observation ȳ will be in R
M
⋄ × R

M
⋄ . In this case, one can consider X = H1 (Ω) × R

M
⋄

instead of X = H1 (Ω)×R
M . Thus, the component U of a solution (σ, (u,U)) would be

in R
M
⋄ a priori. In this case X̃ = H1+s (Ω)× R

M
⋄ must be choosen.

Remark 3.23. We point out that the above system is a novel formulation of the EIT
inverse problem. However, the idea of an observation operator for voltage and current is
not original (see for instance [64, Subsec. 2.4])

Regularizations. The regularizations I
1
λ, I

2
λ, I

3
λ are formulated below. Recall that the

regularizations are defined on L∞ (Ω)× X̃N , with X̃ = H1+s (Ω)× R
M .

• I
1
λ-regularization (p = 2, q = 2):

min
(σ,x)∈L∞(Ω)×(H1+s(Ω)×RM )N

1

2
‖A (σ, x)‖22 +

1

2
‖C (σ, x)− y‖22 + α ·R (σ, x)

s.t. σ− ≤ σ ≤ σ+ a.e. on Ω

• I
2
λ-regularization (p = 2, q = ∞):

min
(σ,x)∈L∞(Ω)×(H1+s(Ω)×RM )N

1

2
‖A (σ, x)‖22 + α · R (σ, x)

s.t.
σ− ≤ σ ≤ σ+ a.e. on Ω
ynvol,m − γδ ≤ Un

m ≤ ynvol,m + γδ ∀m,n
yncur,m − γδ ≤

∫

Em

Un
m − γmu

n

zm
ds ≤ yncur,m + γδ ∀m,n
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• I
3
λ-regularization (p = ∞, q = 2, β = 0):

min
(σ,x)∈L∞(Ω)×(H1+s(Ω)×RM )N

1

2
‖C (σ, x)− y‖22 + α · R (σ, x)

s.t.
σ− ≤ σ ≤ σ+ a.e. on Ω
∫

Ω
σ∇un·∇w dx+

M∑

m=1

∫

Em

(γmu
n − Um) γmw

zm
ds = 0

∀w ∈ H1 (Ω) , ∀n

where x =
((
u1, U1

)
, . . . ,

(
uN , UN

))
∈ X̃N and the noisy observation

y =
((
y1vol, y

1
cur

)
, . . . ,

(
yNvol, y

N
cur

))
∈ Y N

(Y = R
M × R

M ) satisfies






(
N∑

n=1

(
M∑

m=1

∣
∣Ūn

m − ynvol,m
∣
∣2 +

M∑

m=1

∣
∣Inm − yncur,m

∣
∣2

))1/2

≤ δ q = 2

Ūn
m − δ ≤ ynvol,m ≤ Ūn

m + δ

Inm − δ ≤ yncur,m ≤ Inm + δ
∀m,n q = ∞

,

if the voltage-current pairs of type (i) are available, or






(
N∑

n=1

(
M∑

m=1

∣
∣V N

m − ynvol,m
∣
∣
2
+

M∑

m=1

∣
∣
∣
∣

∫

Em

V n
m − γmū

n

zm
ds− yncur,m

∣
∣
∣
∣

2
))1/2

≤ δ q = 2

V n
m − δ ≤ ynvol,m ≤ V n

m + δ
∫

Em

V n
m − γmū

n

zm
ds− δ ≤ yncur,m ≤

∫

Em

V n
m − γmū

n

zm
ds+ δ

∀m,n q = ∞

if the voltage-current pairs of type (ii) are available. Here, the model error, the observa-
tion error, and the regularization functional are given by

1

2
‖A (σ, x)‖22 =

1

2

N∑

n=1

‖a (σ, (un, Un))‖2(H1(Ω))⋆ ,

1

2
‖C (σ, x)− y‖22 =

1

2

N∑

n=1

(
M∑

m=1

∣
∣Un

m − ynvol,m
∣
∣2 +

M∑

m=1

∣
∣
∣
∣

∫

Em

Un
m − γmu

n

zm
ds− yncur,m

∣
∣
∣
∣

2
)

,

and R (σ, x) =

(

1

2

N∑

n=1

‖(un, Un)‖2H1+s(Ω)×RM , . . .

)

.

It was chosen r = 2 in the definition of R. From Remark 3.22, for either noisy observations
of type (i) or (ii) with all voltages V n belonging to R

M
⋄ , the regularizations can be as

the above minimization problems but restrited to L∞ (Ω)×
(
H1+s (Ω)× R

M
⋄

)N
. In this

case, the component Un
λ of a regularized solution

(
σλ,
(
u1λ, U

1
λ

)
, . . . ,

(
uNλ , U

N
λ

))
belongs

to R
M
⋄ .
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Remark 3.24. Although the “natural” space for voltage and current measurements is RM
⋄ ,

it was set Y = R
M as the space of observations of voltage and current in Subsections

3.4.1 and 3.4.2, respectively. Also, the space of voltage-current pairs defined in Subsection
3.4.3 was set to be Y = R

M × R
M . One can see that these choices do not prevent the

adequate representation of the EIT inverse problem by the all-at-once system I . For
intance, in Subsection 3.4.2, the observation equation corresponding to observations of
current is

C (σ, u) =

(∫

Em

Vm − γmu

zm
ds

)M

m=1

= ȳ ∈ R
M
⋄ in Y = R

M .

Since R
M
⋄ is a closed subspace of RM , a solution (σ̃, ũ) to it must satisfy

(∫

Em

Vm − γmũ

zm
ds

)M

m=1

∈ R
M
⋄ ,

which is what we expected. Note that the fact that R
M
⋄ is closed in R

M is crucial.
Generalizing, if we have a closed subspace Ỹ of Y such that ȳ ∈ Ỹ , then C (σ, x) = ȳ
in Y implies C (σ, x) ∈ Ỹ . On the other hand, these choices of Y are consistent with
the observation maps. Indeed, again in the above case, since (σ, u) ∈ L∞ (Ω) ×H1 (Ω),
C (σ, u) will not be in R

M
⋄ in general. As a consequence, noisy observations of current

and voltage with non-zero mean value are allowed.

Remark 3.25. It is easy to verify the instances of Assumptions A1-A5 given in this

section. To check the compactness of the inclusion operator
(

X̃, ‖· ‖X̃
)

→ (X, ‖· ‖X)

consider the compact embedding of H1+s (Ω) into H1 (Ω) for 0 < s ≤ 1. To check the
continuity property of the maps a and c consider the continuity of the trace operators
on E1, . . . , EM and the following fact: if σi

⋆
⇀ σ in L∞ (Ω) and ui → u in H1 (Ω) then

∫

Ω
σi∇ui · ∇w dx →

∫

Ω
σ∇u · ∇w dx for all w ∈ H1 (Ω) ,

σi |∇ui| ⇀ σ |∇u| in L2 (Ω), and σi |∇ui|2 ⇀ σ |∇u|2 in L1 (Ω). For a proof of these
statements see Propositions 3.31 and 3.32 in Appendix. On the other hand, regarding
Assumption A6, we do not prove the existence of solutions in L∞ (Ω)×X̃N . It represents
the problem of the existence of a solution to the EIT inverse problem, which is not the
purpose of this work.

Remark 3.26. Note that it was not required to specify the norms of X, X̃ , and Z.
However, in the numerical treatment of the regularizations, we will define a particular
inner product and therefore a norm in these spaces. On the other hand, here and in what
follows, Y is equipped with its usual norm.

3.5 Numerical tests

Here we solve numerically the I
1
λ-regularizations of EIT inverse problem formulated with

the equations of the complete electrode model (3.20)-(3.24). Noisy observations of voltage
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measurements, current measurements, magnitudes of current density field, and interior
power density data will be considered in the tests.

3.5.1 The method

The least-square type cost functional of I1
λ suggests to use the Gauss-Newton method

[18, 81, 65, 91, 54, 61, 66]: given a parameter λ = (α, δ, y) ∈ Λ (α > 0, δ ≥ 0, and
‖ȳ − y‖q ≤ δ) and an admissible initial guess (σ0, x0), we successively intend to solve the
approximate regularized problem

min
(σ,x)∈L∞(Ω)×X̃N

Tλ,k (σ, x)

s.t. σ− ≤ σ ≤ σ+ a.e. on Ω
(3.28)

with

Tλ,k (σ, x) :=
1

p

∥
∥A (σk, xk) +A′ (σk, xk) (σ − σk, x− xk)

∥
∥p

p
+

1

q

∥
∥C (σk, xk) + C ′ (σk, xk) (σ − σk, x− xk)− y

∥
∥q

q
+ α ·R (σ, x) ,

where A′ and C ′ are the Fréchet derivatives of non-linear operators A and C, and (σk, xk)
is the minimizer obtained in the previous step. Since the arguments in the norms are
the first order approximations of A and C at (σk, xk), Tλ,k is an approximation of the
cost functional of I

1
λ. We hope that the sequence of minimizers obtained from (3.28)

converges to a solution of I1
λ.

The minimization problem (3.28) is in an infinite-dimensional setting. To obtain com-
putable solutions, we discretize σ and x with piecewise constant and piecewise linear
finite elements, respectively. This leads to the following finite-dimensional minimization
problem

min
(σh,xh)∈Lh×X̃N

h

Tλ,k,h (σh, xh)

s.t. σ− ≤ σh ≤ σ+
(3.29)

with

Tλ,k,h (σh, xh) :=
1

2
〈Pλ,k,h (σh, xh) , (σh, xh)〉 − 〈qλ,k,h, (σh, xh)〉+ rλ,k,h,

where (σh, xh), Tλ,k,h, Lh× X̃N
h are the discretizations of (σ, x), Tλ,k, and L∞ (Ω)× X̃N ,

respectively. Pλ,k,h is a square matrix, qλ,k,h is a vector, rλ,k,h is a scalar, and 〈·, ·〉
denotes the usual inner product. Hence Tλ,k,h is a quadratic function and each step of
the Gauss-Newton method consists of solving the box constrained quadratic program
(3.29).

The Gauss-Newton algorithm is given in Algorithm 3.1. There the line search tries to
find a stepsize θ such that

‖A ((σk, xk) + θ∆k)‖ < ‖A (σk, xk)‖ and
‖C ((σk, xk) + θ∆k)− y‖ < ‖C (σk, xk)− y‖
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hold, where ∆k is the direction of search. In this way we guarantee that the model and
observation errors decrease in each iteration. There are two stopping criteria: one for
the effort realized to find a suitable stepsize in the line-search part and the other for
the decrease of the cost functional. In our numerical tests, the first stopping criterion is
rarely reached.

3.5.2 Discretization

We begin by definning convenient norms. Recall that X = Z = H1 (Ω) × R
M
⋄ in the

formulation with applied current and X = Z = H1 (Ω) in the formulation with applied
voltage. In the alternative formulation, Z = H1 (Ω) and we choose X = H1 (Ω) × R

M
⋄

(see Remark 3.22). So, equipping the spaces H1 (Ω) × R
M
⋄ and H1 (Ω) with the inner

products

〈(u,U) , (w,W )〉H1(Ω)×R
M
⋄

:=

∫

Ω
∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) (γmw −Wm) ds

and

〈u,w〉H1(Ω) :=

∫

Ω
∇u·∇w dx+

M∑

m=1

∫

Em

γmu γmw ds

respectively, a norm on X and a dual norm on Z⋆ are obtained. Note these inner products
are related to the weak formulations of complete electrode model [92, 98].

Assuming that Ω is a polygon, we define an admissible triangulation {Ωt}Tt=1 in it, with

maximum size h = max1≤t≤T |Ωt| and nodes {xn}Nn=1. The conductivity is discretized

as the piecewise constant function σh (x) =
∑T

t=1 σt1Ωt (x) for x ∈ Ω, where 1Ωt is
the indicador function of Ωt and (σ1, . . . , σT ) are the coordinates of σh. The electric
potential is discretized as the piecewise linear function uh (x) =

∑N
n=1 c

u
nφn (x) for for

x ∈ Ω, where φn is the continuous piecewise linear basis function defined by φi (xj) = 1
if i = j and φi (xj) = 0 if i 6= j, and (cu1 , . . . , c

u
N ) are the coordinates of uh. We choose

{ηm}M−1
m=1 , with

ηm =
(
0, . . . , 0, 1(m),−1(m+1), 0, . . . , 0

)
∈ R

M ,

as a basis of R
M
⋄ . Thus, the component U is expressed as U =

∑M
m=1 c

U
mηm, where

(
cU1 , . . . , c

U
M

)
are the coordinates of U . For example, in the case of the alternative

formulation, we work with the following finite-dimensional subspaces Lh ⊂ L∞ (Ω),
X̃h ⊂ X̃ ⊂ X, and Zh ⊂ Z defined by

Lh =

{

µ =

T∑

t=1

µt1Ωt

∣
∣ (µ1, . . . , µT ) ∈ R

T

}

,

X̃h =






(w,W ) =

N∑

n=1

cwn (φn, 0) +

M−1∑

m=1

cWm (0, ηm)

∣
∣
∣
∣
∣
∣

(cw, Cw) ∈ R
N+M−1

cw = (cw1 , . . . , c
w
N )

Cw =
(
cW1 , . . . , c

W
M−1

)






,
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Algorithm 3.1 Algorithm to obtain a numerical solution of regularized problem I
1
λ by

Gauss-Newton method.
Require: (σ0, x0), initial guess; niter, maximum number of iterations of the Gauss-

Newton method; eps, minimum cost difference; effort, maximum number of itera-
tions to find a suitable stepsize.

1: Compute the matrices P0 and q0 using the initial guess (σ0, x0)
2: Solve the box constrained quadratic program to obtain the first iterate

(σ1, x1) ∈ argmin

{
1

2
〈P0 (σ, x) , (σ, x)〉 − 〈q0, (σ, x)〉 | σ− ≤ σ ≤ σ+

}

3: for k = 1, . . . , niter− 1 do

4: Compute the matrices Pk and qk using the iterate (σk, xk)
5: Solve the box constrained quadratic program

(σmin, xmin) ∈ argmin

{
1

2
〈Pk (σ, x) , (σ, x)〉 − 〈qk, (σ, x)〉 |σ− ≤ σ ≤ σ+

}

6: Set ∆k = (σmin, xmin)− (σk, xk) direction of search
7: Initialize θ = 1, θL = 0, and θR = 1
8: Initialize flag = False
9: for l = 0, . . . , effort do

10: if

{
‖A ((σk, xk) + θ∆k)‖

< ‖A (σk, xk)‖
and

‖C ((σk, xk) + θ∆k)− y‖
< ‖C (σk, xk)− y‖

}

then

11: Set (σk+1, xk+1) = (σk, xk) + θ∆k

12: flag = True
13: Stop
14: else

15: Set θR = θ
16: Compute a new θ = (θL + θR) /2
17: end if

18: end for

19: if flag = False then

20: Maximum effort achieved! Stop
21: end if

22: if T 1
λ (σk, xk)− T 1

λ (σk+1, xk+1) < eps then

23: Minimum decrease achieved! Stop
24: end if

25: end for
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and Zh =

{

w =

N∑

n=1

cwnφn
∣
∣ (cw1 , . . . , c

w
N ) ∈ R

N

}

,

respectively. We choose X̃ = H2 (Ω)×R
M
⋄ for the formulation with applied current and

for the alternative formulation, and X̃ = H2 (Ω) for the formulation with applied voltage.
Since uh is a piecewise linear function, we have ‖(uh, U)‖H2(Ω)×RM

⋄
= ‖(uh, U)‖H1(Ω)×RM

⋄

and ‖uh‖H2(Ω) = ‖uh‖H1(Ω). Setting r = 2, s1, s2 = 1, φt = 1Ωt , ψt = |Ωt|−1/2
1Ωt , and

σ′ = σ′′ = 0 in the regularization functional R, we have

R (σh, (uh, U)) =


















1

2
‖(uh, U)‖2H1(Ω)×R

M
⋄

1

2

T∑

t,t′=1

|σt − σt′ | |∂Ωt ∩ ∂Ωt′ |

T∑

t=1

|σt| |Ωt|
T∑

t=1

|(σt − σ−) (σ+ − σt)| |Ωt|


















See [41, 26] for the expresion of

∫

Ω
|Dσh|.

Remark 3.27 (Approximation of absolute value). Since the discrete forms of R and the
L1-norm are expressed in terms of absolute values, we must formulate these terms in a
way that is more friendly to our quadratic optimization. Below is an explanation of how
it was done. Consider the function φ (s) = s with s ∈ [0,∞]. It can be written as the
minimization problem

φ (s) = min
0≤r≤∞

{
rs2 + ψ (r)

}
,

where ψ is given by ψ (0) = ∞, ψ (r) = 1/4r for r ∈ ]0,∞[, and ψ (∞) = 0. It is easy
to check that the minimizer rmin = rmin (s) is given by rmin (0) = ∞, rmin (s) = 1/2s for
s ∈ ]0,∞[, and rmin (∞) = 0. Observe that rmin can be approximated with rmin,ε (s) =
(
s2 + ε

)−1/2
/2, where ε is a positive small number. Moreover, by the minimization based

formulation of φ, we have

s ≤ rmin,ε (s0) · s2 + ψ (rmin,ε (s0)) for all s, s0 ∈ [0,∞] .

In our discrete minimization problem, we deal with terms of the form |f (v)|, where f
is a linear real-valued function and v is a vector whose components are the coordinates
of the discretized variables. In each iteration of the Gauss-Newton method we choose to
minimize the quadratic function rmin,ε (|f (vk)|) · (f (v))2 + ψ (|f (vk)|), which is a upper
approximation of |f (v)| by the above inequality, where vk contains the coordinates of
the solution obtained in the previous iteration. This approach was based on ideas from
[100, 12, 1].
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(b)

Figure 3.1: (a) Mesh used for reconstruction from voltage and current measurements. (b)
Mesh used for reconstruction from magnitudes of current density field and
interior power density data. In both meshes, the thick lines represent the
location of the electrodes.

3.5.3 Tests

All tests consider the domain Ω = ]0, 1[ × ]0, 1[ ⊂ R
2 with 20 electrodes and all contact

impedances equal to 0.1. For the cases with voltage and currents measurements, six
noisy observations were used. For the cases with magnitudes of current density field
and interior power density data, only two noisy observations were considered. The finite
element grid was determined by subdividing the interval [0, 1] into 16 subintervals, leading
to (16 + 1)2 = 289 (resp. (16 + 1)2 + (16)2 = 545) gridpoints and 2× (16)2 = 512 (resp.
4 × (16)2 = 1024) triangles in tests with voltage and current measurements (resp. tests
with magnitudes of current density field and interior power density data). The meshes
are shown in Fig. 3.1.

Algorithm 3.1 was used with the following parameter values: maximum number of
iterations niter = 20, minimum cost difference eps = 1.10−4, and maximum effort
effort = 5. In each test, three consecutive runs of Algorithm 3.1 were performed, which
correspond to regularization parameters α = 10−3 × 1, α = 10−4 × 1, and α = 10−5 × 1,
respectively. The initial guess was chosen to be σ0 = σ− and (u0, U0) =

−→
0 ∈ R

N+M (or

u0 =
−→
0 ∈ R

N ) for α = 10−3 × 1. The next runs were initialized with the approximate
solution obtained in the previous one.

The following test conductivities are considered: σ̄i : Ω → [σ−, σ+] defined by σ̄i (x, y) =
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1 + 9 · 1Bi (x, y) for i = 0, 1, 2, 3, 4, with bounds σ− = 1, σ+ = 10 and sets

Bi =







B2h (6, 4) ∪B2h (6, 8) ∪B2h (6, 10) i = 0

B3h (5, 5) ∪B2h (12, 12) i = 1

B2h (3, 3) ∪B2h (13, 13) i = 2

B2h (4, 6) ∪B2h (4, 10) ∪B2h (12, 6) ∪B2h (12, 10) i = 3

B2h (4, 4) ∪B2h (12, 6) ∪B2h (12, 10) ∪Bh (3, 14) ∪Bh (5, 14) i = 4

,

where h = 1/16 and Br (x0, y0) is the closed ball (in ∞-norm) of radius r and center
h · (x0, y0).
The test computations are performed in a Python implementation. In order to avoid an
inverse crime, exact observations are generated on a finer grid. For this, the complete
electrode model equations were discretized and the resulting sparse linear system was
solved using the function spsolve from the library scipy. On the other hand, we use
the function qp from the library cvxopt to solve the box constrained quadratic program
(3.29). Observe that we do not need to solve the complete electrode model equations to
obtain approximate regularized solutions.

Four tests considering the alternative formulation were performed:

• First a basic test with σ̄0 is presented. The reconstruction of σ̄0 from observations
with a noise level of 5% is presented in Figure 3.2. The corresponding sequences
of cost values and relative errors are plotted in Figures 3.3 and 3.4, respectively.

• Reconstructions of σ̄1 from noisy observations with three different noise levels are
provided in Figure 3.5.

• Using σ̄2, a test similar the previous one is shown in Figure 3.6.

• The reconstructions of σ̄3 using different line search methods are presented in Figure
3.7. The corresponding sequences of relative errors are in Figure 3.8. The noise
level was 5% in all cases.

Finally, the test conductivity σ̄4 is reconstructed using observations with noise levels of
1%, 5%, and 10% (Figures 3.10, 3.11, and 3.12, respectively). In each case, the three
formulations are considered and distinguished with the following notation:

1. Formulation with applied current and observations of

(i) voltage measurements = Mod C - Obs Vol,

(ii) magnitudes of current density field = Mod C - Obs Mag,

(iii) interior power density data = Mod C - Obs Pow.

2. Formulation with applied voltage and observations of

(i) current measurements = Mod V - Obs Cur,

(ii) magnitudes of current density field = Mod V - Obs Mag,

(iii) interior power density data = Mod V - Obs Pow.

3. Alternative formulation and observations of

(i) measured voltage-applied current pairs = Mod A - Obs V&C.
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3 Regularization of an all-at-once formulation of the EIT inverse problem

Figure 3.2: Reconstruction of the test conductivity σ̄0 from observations of voltage-
current pairs with a noise level of 5%.
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Figure 3.3: Sequence of the cost functional values at the iterated solutions corresponding
to the reconstruction of σ̄0. The dashed line denotes to the cost functional
value at the exact solution interpolated on the reconstruction mesh. The
number of iterations corresponding to α = 10−3 × 1, α = 10−4 × 1, and
α = 10−5 × 1 were 11, 4, and 6 respectively. The maximum effort was
reached in the fourth iteration corresponding to α = 10−4 × 1.
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Figure 3.4: Sequence of relative errors
(

‖σ̄0 − σk‖L1(Ω) / ‖σ̄0‖L1(Ω)

)

corresponding to re-

construction of the test conductivity σ̄0. The conductivity σk was obtained in
the iteration k. The black bars represent the effort realized to find a suitable
stepsize.
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Figure 3.5: Reconstructions of the test conductivity σ̄1 from noisy observations of voltage-
current pairs with different noise levels. The relative error is in the bottom
right corner of the figures.
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Figure 3.6: Reconstructions of the test conductivity σ̄2 from noisy observations of voltage-
current pairs with different noise levels. The relative error is in the bottom
right corner of the figures.

In sequence plots, the point • in the top right corner says that the algorithm stopped
because the maximum effort was reached and the bars represent the effort (in number of
iterations) realized to find a suitable stepsize. The number in the bottom right corner
of reconstruction plots is the final relative error ‖σ̄ − σ‖L1(Ω) / ‖σ̄‖L1(Ω), where σ̄ is the
true conductivity and σ is the reconstructed conductivity.

Remark 3.28. Although the observations of current density field and power density con-
sidered here are taken on the entire domain, observations on a subset of Ω also fit in our
assumptions.

Remark 3.29 (Exact observations). The method presented in [29] was used to generate
“optimal” exact observations of current and voltage measurements. The exact observa-
tions of magnitudes of current density field and interior power density data were generated
using horizontal and vertical current patters similar to those used in [6, 13, 1] with the
continuum model.

Remark 3.30 (Noisy observations). Given a exact observation ȳ ∈ Y , a noisy observation
y ∈ Y was generated according to y = ȳ + δθ ∈ Y , where θ ∈ Y is a random normalized
function (‖θ‖Y = 1) and δ is a positive number satisfying δ ≤ ‖ȳ‖Y . Thus, the relative
error of y with respect to ȳ satisfies

‖ȳ − y‖Y
‖ȳ‖Y

=
δ ‖θ‖Y
‖ȳ‖Y

=
δ

‖ȳ‖Y
≤ 1.

See Figure 3.9. The number l := δ/ ‖ȳ‖Y is defined as the noise level of y. So, to obtain
a noisy observation y with a noise level of l×100%, δ = l×‖ȳ‖Y must be calculated and
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Figure 3.7: Reconstructions of the test conductivity σ̄3 from observations of voltage-
current pairs with a noise level of 5% and using different line search methods.
The Wolfe method yields the lowest relative error.
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Figure 3.8: Sequences of relative errors
(

‖σ̄3 − σk‖L1(Ω) / ‖σ̄3‖L1(Ω)

)

for each of the line

search methods used to reconstruct σ̄3. Our line search realizes the most
effort. For α = 10−4 × 1, the Armijo, Holstein, and Wolfe methods perform
equally well.

106



3 Regularization of an all-at-once formulation of the EIT inverse problem

0

ȳ
δ

yδ
‖ȳ‖

Y
b

Figure 3.9: Exact observation ȳ and noisy observation yδ = ȳ + δθ.

θ must be generated. In our tests we added noise levels of 1% (l = 0.01), 5% (l = 0.05),
and 10% (l = 0.1). Observe that taking into account the N noisy observations we have

‖ȳ − y‖Y N =

(
N∑

n=1

‖ȳn − yn‖qY

)1/q

=

(
N∑

n=1

(δn)q

)1/q

1 ≤ q <∞.

Thus, y and δ :=
(
∑N

n=1 (δ
n)q
)1/q

are admissible parameters in the definition of the regu-

larized problem I
1
λ. For current and voltage measurements, θ is given by θ = r−r̂

|r−r̂|
2

∈ R
20
⋄

with r = (r1, . . . , r20), r̂ =
r1+...+r20

20 . Each coordinate rm follows a standard normal dis-
tribution with mean 0 and variance 1. For magnitudes of current density field and interior
power density data, θ is given by θ = r/ ‖r‖L2(Ω) and θ = r/ ‖r‖L1(Ω), respectively, with

r (x) =
∑T

t=1 rt1Ωt (x). Similarly, each coordinate rt follows a standard normal distribu-
tion with mean 0 and variance 1.
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Figure 3.10: Reconstructions of σ̄4 using all the proposed formulations. All observations
have a noise level of 1%. The formulation with applied current Mod C -

Obs Vo and the alternative formulation Mod A - Obs V&C provide similar
results.
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True conductivity

0.4639

Mod C - Obs Vol

0.733

Mod V - Obs Cur

0.3294

Mod A - Obs V&C

0.0743

Mod C - Obs Mag

0.1653

Mod V - Obs Mag

0.1396

Mod C - Obs Pow

0.1314

Mod V - Obs Pow

1
2
3
4
5
6
7
8
9
10

Figure 3.11: Reconstructions of σ̄4 using all the proposed formulations. All observations
have a noise level of 5%. The reconstruction obtained with the alternative
formulation Mod A - Obs V&C remains stable.
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Figure 3.12: Reconstructions of σ̄4 using all proposed formulations. All observations have
a noise level of 10%. The reconstruction obtained with interior power density
data and magnitudes of current density field provide the best results.
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3.6 Conclusions

In this work, we have studied the all-at-once formulation of the EIT inverse problem
and its regularization. An abstract all-at-once formulation of the EIT inverse problem
has been proposed, which admits several EIT models as well as boundary and domain
observations. Three regularizations have been proposed and analyzed. We have proved
the existence, stability, and convergence of regularized solutions. The existence of an
optimal regularization parameter assuming a training data set has been also proved. All
this was obtained in a Banach space setting. Furthermore, we applied total variation
regularization to the conductivity.

As a consequence, we have obtained a novel all-at-once formulation of the EIT inverse
problem based on the complete electrode model, in which current-voltage pairs are con-
sidered as observations. The regularizations of this formulation yield stable numerical
reconstructions of the conductivity.

It is evident from the numerical tests that the reconstructions are better when domain
measurements are used (power density data and magnitudes of current field).

The extension to the case with tensor conductivities is straightforward.

Future work might be concerned with the numerical approximation of the optimal regu-
larization parameter, investigate the convergence rates of the regularized solutions, and
apply iterative regularization methods to the abstract inverse problem formulated here.

Appendix

Here, some examples of EIT models that verify Assumptions A1-A6 are provided. These
models were studied in [30, 92, 29, 57, 5]. According to our knowledge, all existing EIT
models verify our assumptions, except the so-called point model [47], about which we do
not assert anything.

Continuum model

The equations of the continuum model for the electric potential u are

∇ · (σ∇u) = 0 in Ω (3.30)

with Neumann boundary condition

σ
∂u

∂ν
= f on ∂Ω (3.31)

if a current f is applied, or with Dirichlet boundary condition

u = g on ∂Ω (3.32)

if a voltage g is applied.
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3 Regularization of an all-at-once formulation of the EIT inverse problem

Notation. H1/2 (∂Ω) denotes the space of traces on ∂Ω. γ : H1 (Ω) → H1/2 (∂Ω)
denotes the trace operator on ∂Ω. H−1/2 (∂Ω) denotes the dual of H1/2 (∂Ω). Let

H
1/2
⋄ (∂Ω) and H

−1/2
⋄ (∂Ω) be the subspaces

H
1/2
⋄ (∂Ω) :=

{

g ∈ H1/2 (∂Ω)

∣
∣
∣
∣

∫

∂Ω
g ds = 0

}

,

H
−1/2
⋄ (∂Ω) :=

{

f ∈ H−1/2 (∂Ω)
∣
∣ 〈f,1〉H−1/2×H1/2 = 0

}

.

In addition, for 0 ≤ s ≤ 1, consider the fractional subspaces

H1+s
⋄ (Ω) :=

{

u ∈ H1+s (Ω)

∣
∣
∣
∣

∫

∂Ω
γuds = 0

}

,

H1+s
0 (Ω) :=

{

u ∈ H1+s (Ω)
∣
∣
∣ γu = 0 in H1/2 (∂Ω)

}

.

Formulation with applied current. Equations (3.30) and (3.31) determine the prob-

lem of finding the electric potential u when a current f ∈ H
−1/2
⋄ (∂Ω) is applied on ∂Ω.

The weak formulation of this problem is written as:







find u ∈ H1
⋄ (Ω) satisfying

∫

Ω
σ∇u·∇w dx = 〈f, γw〉H−1/2×H1/2 for all w ∈ H1

⋄ (Ω) .
(3.33)

Let σ̄ ∈ L∞ (Ω) be a conductivity such that ess infx∈Ωσ̄ (x) > 0. Suppose that N

currents f1, . . . fN ∈ H
−1/2
⋄ (∂Ω) are applied at the boundary ∂Ω. Then, the electric

potentials ū1, . . . , ūN ∈ H1
⋄ (Ω) are obtained and the resulting voltages on ∂Ω are given

by γū1, . . . , γūN ∈ H
1/2
⋄ (∂Ω). In other words, each ūn is the unique solution to (3.33)

with σ = σ̄ and f = fn. The following instance of Assumptions A1-A5 allow us to
consider (3.33) as model equation in the EIT inverse problem:

A1. X,Z := H1
⋄ (Ω) and bn ∈ Z⋆ defined by bn (w) := 〈fn, γw〉H−1/2×H1/2 .

A2. a : L∞ (Ω)×X → Z⋆ defined by a (σ, u) (w) :=
∫

Ω σ∇u·∇w dx.

A3-4. We provide three possibilities:

(i) Voltage measurements. Y := H1/2 (∂Ω), ȳn := γūn ∈ H
1/2
⋄ (∂Ω), and cn :

L∞ (Ω)×X → Y defined by cn (σ, u) := γu.

(ii) Magnitudes of current density field. Y := L2 (Ω), ȳn := σ̄ |∇ūn| ∈ L2 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, u) := σ |∇u|.

(iii) Interior power density data. Y := L1 (Ω), ȳn := σ̄ |∇ūn|2 ∈ L1 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, u) := σ |∇u|2.

A5. X̃ := H1+s
⋄ (Ω) with some 0 < s ≤ 1.

Formulation with applied voltage. Equations (3.30) and (3.32) determine the prob-
lem of finding the electric potential u when a voltage g ∈ H1/2 (∂Ω) is applied on ∂Ω.

112



3 Regularization of an all-at-once formulation of the EIT inverse problem

The weak formulation of this problem is written as:






find u ∈ H1 (Ω) satisfying
∫

Ω
σ∇u·∇w dx = 0 for all w ∈ H1

0 (Ω) and γu = g in H1/2 (∂Ω) .
(3.34)

Let σ̄ ∈ L∞ (Ω) be a conductivity such that ess infx∈Ωσ̄ (x) > 0. Suppose that N
voltages g1, . . . gN ∈ H1/2 (∂Ω) are applied at the boundary ∂Ω. Thus, the electric
potentials ū1, . . . , ūN ∈ H1 (Ω) are obtained and the resulting currents on ∂Ω are given

by σ̄ ∂ū1

∂ν , . . . , σ̄
∂ūN

∂ν ∈ H
−1/2
⋄ (∂Ω). In other words, each ūn is the unique solution to

(3.34) with σ = σ̄ and g = gn. Let d1, . . . , dN be functions in H1 (Ω) with the property
γdn = gn in H1/2 (∂Ω). The following instance of Assumptions A1-A5 allows to consider
an equivalence of (3.34) as model equation in the EIT inverse problem:

A1. X,Z := H1
0 (Ω) and bn ∈ Z⋆ defined by bn (w) := −

∫

Ω σ∇dn·∇w dx.

A2. a : L∞ (Ω)×X → Z⋆ defined by a (σ, u) (w) :=
∫

Ω σ∇u·∇w dx.

A3-4. We provide three possibilities:

(i) Current measurements. Y :=
(
H1 (Ω)

)∗
, ȳn := σ̄ ∂ūn

∂ν ◦γ ∈ {φ ∈ Y |φ (1) = 0},
and cn : L∞ (Ω)×X → Y defined by cn (σ, u) (w) :=

∫

Ω σ∇ (u+ dn) ·∇w dx.

(ii) Magnitudes of current density field. Y := L2 (Ω), ȳn := σ̄ |∇ūn| ∈ L2 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, u) := σ |∇ (u+ dn)|.

(iii) Interior power density data. Y := L1 (Ω), ȳn := σ̄ |∇ūn|2 ∈ L1 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, u) := |∇ (u+ dn)|2.

A5. X̃ := H1+s
0 (Ω) with some 0 < s ≤ 1.

Alternative formulation. The weak form of equation (3.30) leads to the the following
problem: 





find u ∈ H1 (Ω) satisfying
∫

Ω
σ∇u·∇w dx = 0 for all w ∈ H1

0 (Ω) .
(3.35)

Let σ̄ ∈ L∞ (Ω) be a conductivity such that ess infx∈Ωσ̄ (x) > 0. From the previous
formulations we know that there are two possibilities: apply the currents

f1, . . . fN ∈ H
−1/2
⋄ (∂Ω)

to obtain the voltages generated on the surface or apply the voltages

g1, . . . gN ∈ H1/2 (∂Ω)

to obtain the current generated on the surface. In the first case, the voltage-current
pairs

(
γū1, f1

)
, . . . ,

(
γūN , fN

)
are available, where each ūn is the unique solution to

(3.33) formulated with σ = σ̄ and f = fn. In the second case, the voltage-current pairs
(

g1, σ̄ ∂ū1

∂ν

)

, . . . ,
(

gN , σ̄ ∂ūN

∂ν

)

are available, where each ūn is the unique solution to (3.34)

with σ = σ̄ and g = gn. The following instance of Assumptions A1-A5 allows to consider
(3.35) as model equation in the EIT inverse problem:
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A1. X := H1 (Ω), Z := H1
0 (Ω) and b1, . . . , bN = 0Z⋆ .

A2. a : L∞ (Ω)×X → Z⋆ defined by a (σ, u) (w) :=
∫

Ω σ∇u·∇w dx.

A3. Y := H1/2 (∂Ω)×
(
H1 (Ω)

)⋆
and any of the two sets of voltage-current pairs:

(i) Measured voltage-applied current pairs.

ȳn := (γūn, fn ◦ γ) ∈ H1/2
⋄ (∂Ω)×

{

φ ∈
(
H1 (Ω)

)∗ |φ (1) = 0
}

.

(ii) Applied voltage-measured current pairs.

ȳn :=

(

gn, σ̄
∂ūn

∂ν
◦ γ
)

∈ H1/2 (∂Ω)×
{

φ ∈
(
H1 (Ω)

)∗ |φ (1) = 0
}

.

A4. cn : L∞ (Ω)×X → Y defined by cn (σ, u) :=
(
γu,

{
w 7→

∫

Ω σ∇u·∇w dx
})

.

A5. X̃ := H1+s (Ω) with some 0 < s ≤ 1.

Continuum model with voltage point measurements

Here, the continuum model with voltage point measurements [5] is presented and a in-
stance of Assumptions A1-A5 is proposed using the equations of this model.

Suppose that Ω ⊆ R
2. Let Γ an open subset of ∂Ω and Γ0 := ∂Ω\Γ. On the surface ∂Ω

we attach K electrodes, which we identify with the points x1, . . . ,xK ∈ ∂Ω. In this case,
the equations of the continuum model for the electric potential u are

∇· (σ∇u) = 0 in Ω

σ
∂u

∂ν
= f on Γ (3.36)

u = 0 on Γ0

where f is a current applied to Γ.

Notation. Let W 1,p (Ω) be the classical Sobolev space of functions in Lp (Ω) with
weak derivatives in Lp (Ω), with p ≥ 1. For 0 ≤ s ≤ 1, we define the Sobolev space
W 1+s,p

Γ0
(Ω) := C∞

Γ0
(Ω), where

C∞
Γ0

(Ω) :=
{
w|Ω

∣
∣w ∈ C∞

(
R
2
)
, suppw ∩ Γ0 = ∅

}
.

The closure of C∞
Γ0

(Ω) is in the topology of W 1+s,p (Ω).

Consider a conductivity σ̄ ∈ L∞ (Ω) such that ess infx∈Ωσ̄ (x) > 0 and fix a p > 2.
Suppose thatN currents f1, . . . fN ∈ L∞ (Γ) are applied to Γ. Then, N electric potentials
ū1, . . . , ūN ∈ W 1,p

Γ0
(Ω) are obtained, which are the corresponding solutions to the weak

formulation of the continuum model (3.36) with conductivity σ̄. That is, each ūn solves
the following problem:







find u ∈W 1,p
Γ0

(Ω) satisfying
∫

Ω
σ̄∇u·∇w dx =

∫

Γ
fnw ds for all w ∈W 1,q

Γ0
(Ω).

(3.37)
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with q such that 1/p + 1/q = 1. Existence and uniqueness of a solution to (3.37) was
proved in [5], provided Ω ∪ Γ is regular in the sense of Groger and p is sufficiently close
to 2. Note that, thanks to the continuous embedding W 1,p (Ω) ⊂ C

(
Ω
)

for p > 2 in
two dimensions, given u ∈ W 1,p (Ω), the point evaluation u (x), with x ∈ Γ, is well-
defined. In particular, given ū a solution to (3.37), the voltage point measurements
ūn (x1) , . . . , ū

n (xK) are available, for n = 1, . . . , N . The following instance of Assump-
tions A1-A5 allows to consider (3.37) as model equation in the EIT inverse problem:

A1. X :=W 1,p
Γ0

(Ω), Z :=W 1,q
Γ0

(Ω), and bn ∈ Z⋆ defined by bn (w) :=
∫

Γ f
nw ds.

A2. a : L∞ (Ω)×X → Z⋆ defined by a (σ, u)w :=
∫

Ω σ∇u·∇w dx.

A3. Y := R
K and ȳn := (ūn (x1) , . . . , ū

n (xK)) ∈ Y .

A4. c : L∞ (Ω)×X → Y defined by cn (σ, u) := (u (x1) , . . . , u (xK)).

A5. X̃ :=W 1+s,p
Γ0

(Ω) with some 0 < s ≤ 1.

Shunt model

The equations of the shunt model for the electric potential (u,U) are

∇· (σ∇u) = 0 in Ω (3.38)

σ
∂u

∂ν
= 0 on ∂Ω\

M⋃

m=1

Em (3.39)

u = Um on Em, m = 1, . . . ,M (3.40)

with ∫

Em

σ
∂u

∂ν
ds = Im m = 1, . . . ,M (3.41)

if a current pattern I = (I1, . . . , IM ) ∈ R
M
⋄ is applied, or with

Um = Vm m = 1, . . . ,M (3.42)

if a voltage pattern V = (V1, . . . , VM ) ∈ R
M is applied.

Notation. For 0 ≤ s ≤ 1, consider the subspaces

H1+s =
{

(u,U) ∈ H1+s (Ω)× R
M
∣
∣
∣ (γmu)

M
m=1 = U

}

,

H1+s
⋄ =

{

(u,U) ∈ H1+s (Ω)× R
M
⋄

∣
∣
∣ (γmu)

M
m=1 = U

}

,

H1+s
0 =

{

u ∈ H1+s (Ω)
∣
∣
∣ (γmu)

M
m=1 =

−→
0
}

.

Formulation with applied current. We begin by considering equations (3.38)-(3.40),
and (3.41), which determine the problem of finding the electrical potential (u,U) when a
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3 Regularization of an all-at-once formulation of the EIT inverse problem

current pattern I ∈ R
M
⋄ is applied through electrodes E1, . . . , EM . The weak formulation

of this problem is expressed as:







find (u,U) ∈ H1
⋄ satisfying

∫

Ω
σ∇u·∇w dx =

M∑

m=1

ImWm for all (w,W ) ∈ H1
⋄.

(3.43)

Let σ̄ ∈ L∞ (Ω) be a conductivity such that ess infx∈Ωσ̄ (x) > 0. Suppose that N current
patterns I1, . . . IN ∈ R

M
⋄ are applied through electrodes E1, . . . , EM . Then, the electric

potentials
(
ū1, Ū1

)
, . . . ,

(
ūN , ŪN

)
∈ H1

⋄ are obtained, where Ū1, . . . , ŪN are the resulting
voltages on the electrodes. In other words, each

(
ūn, Ūn

)
is the unique solution to (3.43)

with σ = σ̄ and I = In. The following instance of Assumptions A1-A5 allows to consider
(3.43) as model equation in the EIT inverse problem:

A1. X,Z := H1
⋄ and bn ∈ Z⋆ defined by bn (w,W ) :=

∑M
m=1 I

n
mWm.

A2. a : L∞ (Ω)×X → Z⋆ defined by a (σ, (u,U)) (w,W ) :=
∫

Ω σ∇u·∇w dx.

A3-4. We provide three possibilities:

(i) Voltage measurements. Y := R
M , ȳn := Ūn ∈ R

M
⋄ , and cn : L∞ (Ω)×X → Y

defined by cn (σ, (u,U)) := U .

(ii) Magnitudes of current density field. Y := L2 (Ω), ȳn := σ̄ |∇ūn| ∈ L2 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, (u,U)) := σ |∇u|.

(iii) Interior power density data. Y := L1 (Ω), ȳn := σ̄ |∇ūn|2 ∈ L1 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, (u,U)) := σ |∇u|2.

A5. X̃ := H1+s
⋄ with some 0 < s ≤ 1.

Formulation with applied voltage. Equations (3.38)-(3.40), and (3.42) determine
the problem of finding the electric potential (u,U) when a voltage pattern V ∈ R

M is
applied through electrodes E1, . . . , EM . The weak formulation of this problem is written
as: 





find u ∈ H1 (Ω) satisfying
∫

Ω
σ∇u·∇w dx = 0 for all w ∈ H1

0 and (γmu)
M
m=1 = V.

(3.44)

Let σ̄ ∈ L∞ (Ω) be a conductivity such that ess infx∈Ωσ̄ (x) > 0. Suppose that N voltage
patterns V 1, . . . V N ∈ R

M are applied through the electrodes E1, . . . , EM . Thus, the
electric potentials ū1, . . . , ūN ∈ H1 (Ω) are obtained and the resulting currents on the
electrodes are given by

(〈

σ̄
∂ū1

∂ν
, γem

〉

H−1/2×H1/2

)M

m=1

, . . . ,

(〈

σ̄
∂ūN

∂ν
, γem

〉

H−1/2×H1/2

)M

m=1

∈ R
M
⋄ ,

where e1, . . . , eM are any functions in H1 (Ω) satisfying γmem = 1 and γm′em = 0 for
m′ 6= m. In other words, each ūn is the unique solution to (3.44) with σ = σ̄ and
V = V n. It is easy to check that each resulting current belongs to R

M
⋄ by setting

w =
∑M

m=1 em − 1 in (3.44). Let d1, . . . , dN be functions in H1 (Ω) with the property
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(γmd
n)Mm=1 = V n. Clearly

(
d1, V 1

)
, . . . ,

(
dN , V N

)
∈ H1. The following instance of

Assumptions A1-A5 allows to consider an equivalence of (3.44) as model equation in the
EIT inverse problem:

A1. X,Z := H1
0 and bn ∈ Z⋆ defined by bn (w) := −

∫

Ω σ∇dn·∇w dx.

A2. a : L∞ (Ω)×X → Z⋆ defined by a (σ, u) (w) :=
∫

Ω σ∇u·∇w dx.

A3-4. We provide three possibilities:

(i) Current measurements. Y := R
M , ȳn :=

(〈
σ̄ ∂ūm

∂ν , γem
〉

H−1/2×H1/2

)M

m=1
∈

R
M
⋄ , and cn : L∞ (Ω)×X → Y defined by

cn (σ, u) (w) :=

(∫

Ω
σ∇ (u+ dn) ·∇em dx

)M

m=1

.

(ii) Magnitudes of current density field. Y := L2 (Ω), ȳn := σ̄ |∇ūn| ∈ L2 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, u) := σ |∇ (u+ dn)|.

(iii) Interior power density data. Y := L1 (Ω), ȳn := σ̄ |∇ūn|2 ∈ L1 (Ω), and
cn : L∞ (Ω)×X → Y defined by cn (σ, u) := |∇ (u+ dn)|2.

A5. X̃ := H1+s
0 with some 0 < s ≤ 1.

Alternative formulation. The weak form of equations 3.38-3.40 leads to the the
following problem: 





find (u,U) ∈ H1 satisfying
∫

Ω
σ∇u·∇w dx = 0 for all w ∈ H1

0.
(3.45)

Let σ̄ ∈ L∞ (Ω) be a conductivity such that ess infx∈Ωσ̄ (x) > 0. From the previ-
ous formulations we see that there are two possibilities: apply the current patterns
I1, . . . IN ∈ R

M
⋄ to obtain the voltages generated at the electrodes, or apply the volt-

age patterns V 1, . . . V N ∈ R
M to obtain the currents generated at the electrodes. In

the first case, the voltage-current pairs
(
Ū1, I1

)
, . . . ,

(
ŪN , IN

)
are available, where each

(
ūn, Ūn

)
is the unique solution to (3.43) with σ = σ̄ and I = In. In the second case, the

voltage-current pairs
(

V n,

(〈

σ̄
∂ūn

∂ν
, γem

〉

H−1/2×H1/2

)M

m=1

)

n = 1, . . . , N

are available, where each ūn is the unique solution to (3.44) with σ = σ̄ and V = V n.
The following instance of Assumptions A1-A5 allows to consider (3.45) as model equation
in the EIT inverse problem:

A1. X := H1, Z := H1
0 and b1, . . . , bN = 0Z⋆ .

A2. a : L∞ (Ω)×X → Z⋆ defined by a (σ, (u,U)) (w) :=
∫

Ω σ∇u·∇w dx.

A3. Y := R
M × R

M and any of the two sets of voltage-current pairs:

(i) Measured voltage-applied current pairs.

ȳn :=
(
Ū1, I1

)
∈ R

M
⋄ × R

M
⋄ .
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(ii) Applied voltage-measured current pairs.

ȳn :=

(

V n,

(〈

σ̄
∂ūn

∂ν
, γem

〉

H−1/2×H1/2

)M

m=1

)

∈ R
M × R

M
⋄ .

A4. cn : L∞ (Ω)×X → Y defined by cn (σ, (u,U)) :=
(

U,
(∫

Ω σ∇u·∇em dx
)M

m=1

)

.

A5. X̃ := H1+s with some 0 < s ≤ 1.

Gap model

The equations of the gap model for the electric potential (u,U) are

∇· (σ∇u) = 0 in Ω (3.46)

σ
∂u

∂ν
= 0 on ∂Ω\

M⋃

m=1

Em (3.47)

σ
∂u

∂ν
= const. on Em, m = 1, . . . ,M (3.48)

1

|Em|

∫

Em

u ds = Um on Em, m = 1, . . . ,M (3.49)

with

σ
∂u

∂ν

∣
∣
∣
∣
Em

=
Im
|Em| m = 1, . . . ,M (3.50)

if a current pattern I = (I1, . . . , IM ) ∈ R
M
⋄ is applied, or with

Um = Vm m = 1, . . . ,M (3.51)

if a voltage pattern V = (V1, . . . , VM ) ∈ R
M is applied. The same instances as in the

shunt model work here, but with the subspaces (0 ≤ s ≤ 1)

H1+s =

{

(u,U) ∈ H1+s (Ω)× R
M

∣
∣
∣
∣
∣

(
1

|Em|

∫

Em

γmuds

)M

m=1

= U

}

,

H1+s
⋄ =

{

(u,U) ∈ H1+s (Ω)× R
M
⋄

∣
∣
∣
∣
∣

(
1

|Em|

∫

Em

γmuds

)M

m=1

= U

}

,

H1+s
0 =

{

u ∈ H1+s (Ω)

∣
∣
∣
∣
∣

(
1

|Em|

∫

Em

γmuds

)M

m=1

=
−→
0

}

,

the functions e1, . . . , eM satisfying
∫

Em
γmem ds = |Em| and γm′em = 0 for m′ 6= m, and

the functions d1, . . . , dN with the property
(

1
|Em|

∫

Em
γmd

n ds
)M

m=1
= V n.
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Smoothened complete electrode model

In [57] was proposed the smoothened complete electrode model, which replaces the contact
impedances of the complete electrode model with contact admittance functions capable
to vanish on some subsets of the electrodes. It can be said that the contact admittances
are represented by functions ζ1, . . . , ζM satisfying ζm ∈ L∞ (Em), ζm ≥ 0 a.e. on Em, and
ζm 6≡ 0. The equations of this model for the electric potential (u,U) are

∇· (σ∇u) = 0 in Ω (3.52)

σ
∂u

∂ν
= 0 on ∂Ω\

M⋃

m=1

Em (3.53)

σ
∂u

∂ν
= ζm (Um − u) on Em, m = 1, . . . ,M (3.54)

with ∫

Em

σ
∂u

∂ν
ds = Im m = 1, . . . ,M (3.55)

if a current pattern I = (I1, . . . , IM ) ∈ R
M
⋄ is applied, or with

Um = Vm m = 1, . . . ,M (3.56)

if a voltage pattern V = (V1, . . . , VM ) ∈ R
M is applied. Therefore, it suffices to replace

the contact impedances z1, . . . , zM by ζ1, . . . , ζM in the instances that were proposed for
the complete electrode model.

Convergence results

Proposition 3.31. Let 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1. Let (σi) be a sequence
in L∞ (Ω) and σ ∈ L∞ (Ω). Let (ui) be a sequence in W 1,p (Ω) and u ∈ W 1,p (Ω). If

σi
⋆
⇀ σ in L∞ (Ω) and ui → u in W 1,p (Ω) then

∫

Ω
σi∇ui·∇w dx →

∫

Ω
σ∇u·∇w dx for all w ∈W 1,q (Ω) .

Proof. Let a : L∞ (Ω)×W 1,p (Ω) →
(
W 1,q (Ω)

)⋆
be the bilinear map defined by a (σ, u) (w) :=

∫

Ω σ∇u·∇w dx for all w ∈W 1,q (Ω). Since

(σ1∇u1 − σ2∇u2) · ∇w = (σ1 − σ2)∇u1 · ∇w + σ2 (∇u1 −∇u2) · ∇w (3.57)

for all σ1, σ2 ∈ L∞ (Ω), all u1, u2 ∈W 1,p (Ω), and all w ∈W 1,q (Ω), it follows that

|(a (σ, u)− a (σi, ui)) (w)|

≤
∣
∣
∣
∣

∫

Ω
(σ − σi)∇u · ∇w dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Ω
σi (∇u−∇ui) · ∇w dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Ω
(σ − σi) (∇u · ∇w) dx

∣
∣
∣
∣
+ ‖σi‖L∞(Ω) ‖∇u−∇ui‖Lp(Ω,Rd) ‖∇w‖Lq(Ω,Rd)
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for all w ∈ W 1,q (Ω) and all i. Observe the following. The weak⋆ convergence of (σi)

implies that
(

‖σi‖L∞(Ω)

)

is bounded and that
∫

Ω σi (∇u · ∇w) dx →
∫

Ω σ (∇u · ∇w) dx
since ∇u · ∇w ∈ L1 (Ω) for all w ∈ W 1,q (Ω). The strong convergence of (ui) implies
∇ui → ∇u in Lp

(
Ω,Rd

)
. Therefore a (σi, ui) (w) → a (σ, u) (w) for all w ∈W 1,q (Ω).

Proposition 3.32. Let (σi) be a sequence in L∞ (Ω) and σ ∈ L∞ (Ω). Let (ui) be a

sequence in H1 (Ω) and u ∈ H1 (Ω). If σi
⋆
⇀ σ in L∞ (Ω) and ui → u in H1 (Ω) then

σi |∇ui|2 ⇀ σ |∇u|2 in L1 (Ω) and σi |∇ui|⇀ σ |∇u| in L2 (Ω) .

Proof. Since

µ
(

σ1 |∇u1|2 − σ2 |∇u2|2
)

= µ (σ1 − σ2) |∇u1|2 + µσ2 (∇u1 +∇u2) · (∇u1 −∇u2)

for all σ1, σ2 ∈ L∞ (Ω), all u1, u2 ∈ H1 (Ω), and all µ ∈ L∞ (Ω), it follows that
∣
∣
∣
∣

∫

Ω
µ
(

σ |∇u|2 − σi |∇ui|2
)

dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Ω
µ (σ − σi) |∇u|2 dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Ω
µσi (∇u+∇ui) · (∇u−∇ui) dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Ω
(σ − σi)

(

µ |∇u|2
)

dx

∣
∣
∣
∣
+ ‖µ‖L∞(Ω) ‖σi‖L∞(Ω) ‖∇u+∇ui‖L2(Ω,Rd) ‖∇u−∇ui‖L2(Ω,Rd)

for all µ ∈ L∞ (Ω) and all i. The weak⋆ convergence of (σi) implies that
(

‖σi‖L∞(Ω)

)

is bounded and that
∫

Ω σi

(

µ |∇ui|2
)

dx →
∫

Ω σ
(

µ |∇u|2
)

dx since µ |∇u|2 ∈ L1 (Ω).

The strong convergence of (ui) implies that
(

‖∇u+∇ui‖L2(Ω,Rd)

)

is bounded and that

∇ui → ∇u in Lp
(
Ω,Rd

)
. Therefore

∫

Ω µ
(

σi |∇ui|2
)

dx →
∫

Ω µ
(

σ |∇u|2
)

dx for all

µ ∈ L∞ (Ω). On the other hand, since

µ (σ1 |∇u1| − σ2 |∇u2|) = µ (σ1 − σ2) |∇u1|+ µσ2 (|∇u1| − |∇u2|)
for all σ1, σ2 ∈ L∞ (Ω), all u1, u2 ∈ H1 (Ω), and all µ ∈ L2 (Ω), it follows that

∣
∣
∣
∣

∫

Ω
µ (σ |∇u| − σi |∇ui|) dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Ω
µ (σ − σi) |∇u| dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Ω
µσi (|∇u| − |∇ui|) dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Ω
(σ − σi) (µ |∇u|) dx

∣
∣
∣
∣
+ ‖µ‖L2(Ω) ‖σi‖L∞(Ω) ‖|∇u| − |∇ui|‖L2(Ω)

for all µ ∈ L2 (Ω) and all i. The weak⋆ convergence of (σi) implies that
(

‖σi‖L∞(Ω)

)

is bounded and that
∫

Ω σi (µ |∇ui|) dx →
∫

Ω σ (µ |∇u|) dx since µ |∇u| ∈ L1 (Ω). The
strong convergence of (ui) implies |∇ui| → |∇u| in L2 (Ω) since ‖|∇u| − |∇ui|‖L2(Ω) ≤
‖∇u−∇ui‖L2(Ω,Rd) for all i. The conlusion follows by the identification of

(
L1 (Ω)

)⋆

with L∞ (Ω) and of
(
L2 (Ω)

)⋆
with L2 (Ω).
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First order approximations

In Section 3.4, three types of regularizations were formulated with the equations of com-
plete electrode model. For each of them, its corresponding approximate cost functional
Tλ,k is provided below. For simplicity, we consider N = 1.

Formulation with applied current. In this case x = (u,U) and X = Z = H1 (Ω)×
R
M
⋄ . The first order approximation Ak : L∞ (Ω)×X → Z⋆ of A at (σk, (uk, Uk)) is given

by

Ak (σ, (u,U)) (w,W ) =
∫

Ω
σk∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) (γmw −Wm)

zm
ds+

∫

Ω
σ∇uk·∇w dx−

∫

Ω
σk∇uk·∇w dx−

M∑

m=1

ImWm.

The first order approximations of C at (σk, (uk, Uk)) are:

i. Voltage measurements. Here is not necessary to approximate because C is linear,
namely C (σ, (u,U)) = U .

ii. Magnitudes of current density field :

(σ, (u,U)) 7→ σ |∇uk|+
σk

|∇uk|
〈∇uk,∇u〉 − σk |∇uk| .

iii. Interior power density data:

(σ, (u,U)) 7→ σ |∇uk|2 + 2σk 〈∇uk,∇u〉 − 2σk |∇uk|2 .

Hence, given a noisy observation y ∈ Y , the approximate cost functional is expressed as

Tλ,k (σ, (u,U)) =
1

2
‖Ak (σ, (u,U))‖2(H1(Ω)×RM

⋄ )
⋆

+







1
2 ‖U − y‖2

RM (i)

1
2

∥
∥
∥σ |∇uk|+ σk

|∇uk|
〈∇uk,∇u〉 − σk |∇uk| − y

∥
∥
∥

2

L2(Ω)
(ii)

∥
∥
∥σ |∇uk|2 + 2σk 〈∇uk,∇u〉 − 2σk |∇uk|2 − y

∥
∥
∥
L1(Ω)

(iii)

+ α · R (σ, (u,U)) .

Formulation with applied voltage. In this case x = u and X = Z = H1 (Ω). The
first order approximation Ak : L∞ (Ω)×X → Z⋆ of A at (σk, uk) is given by

Ak (σ, u)w =

∫

Ω
σk∇u·∇w dx+

M∑

m=1

∫

Em

γmu γmw

zm
ds

+

∫

Ω
σ∇uk·∇w dx−

∫

Ω
σk∇uk·∇w dx−

M∑

m=1

∫

Em

Vmγmw

zm
ds.

The first order approximations of C at (σk, uk) are:
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3 Regularization of an all-at-once formulation of the EIT inverse problem

i. Current measurements. Here is not necessary to approximate because C is affine,

namely C (σ, u) :=
(∫

Em
Vm−γmu

zm
ds
)M

m=1
.

ii. Magnitudes of current density field :

(σ, u) 7→ σ |∇uk|+
σk

|∇uk|
〈∇uk,∇u〉 − σk |∇uk| .

iii. Interior power density data:

(σ, u) 7→ σ |∇uk|2 + 2σk 〈∇uk,∇u〉 − 2σk |∇uk|2 .

Hence, given a noisy observation y ∈ Y , the approximate cost functional is expressed as

Tλ,k (σ, u) =
1

2
‖Ak (σ, u)‖2(H1(Ω))⋆

+







1
2

∥
∥
∥
∥

(∫

Em
Vm−γmu

zm
ds
)M

m=1
− y

∥
∥
∥
∥

2

RM

(i)

1
2

∥
∥
∥σ |∇uk|+ σk

|∇uk|
〈∇uk,∇u〉 − σk |∇uk| − y

∥
∥
∥

2

L2(Ω)
(ii)

∥
∥
∥σ |∇uk|2 + 2σk 〈∇uk,∇u〉 − 2σk |∇uk|2 − y

∥
∥
∥
L1(Ω)

(iii)

+ α ·R (σ, u) .

Alternative model. In this case x = (u,U), X = H1 (Ω)×R
M
⋄ , and Z = H1 (Ω). This

choice of X is allowed if the exact observation is in R
M
⋄ ×R

M
⋄ (see Rem. 3.22). The first

order approximation Ak : L∞ (Ω)×X → Z⋆of A at (σk, (uk, Uk)) is given by

Ak (σ, (u,U)) (w) =

∫

Ω
σk∇u·∇w dx+

M∑

m=1

∫

Em

(γmu− Um) γmw

zm
ds

+

∫

Ω
σ∇uk·∇w dx−

∫

Ω
σk∇uk·∇w dx.

The observation map C is linear, namely C (σ, (u,U)) =

(

U,
(∫

Em
Um−γmu

zm
ds
)M

m=1

)

.

Hence, the approximate cost functional is

Tλ,k (σ, (u,U)) =
1

2
‖Ak (σ, (u,U))‖2(H1(Ω))⋆

+
1

2
‖U − yvol‖2RM +

1

2

∥
∥
∥
∥
∥

(∫

Em

Um − γmu

zm
ds

)M

m=1

− ycur

∥
∥
∥
∥
∥

2

RM

+ α ·R (σ, (u,U)) ,

where y = (yvol, ycur) ∈ R
M × R

M is the noisy observation.
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