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Resumo

Ana Luiza da Conceição Tenório. Feixes em categorias monoidais semicartesianas
e aplicações no caso quantálico: Uma mudança significativa nas pré-topologias
de Grothendieck. Tese (Doutorado). Instituto de Matemática e Estatística, Universidade

de São Paulo, São Paulo, 2023.

Nessa tese de doutorado nós apresentamos a noção de pré-lopologias de Grothendieck, que é uma noção

de cobertura para categorias monoidais semicartesianas que generaliza as pré-topologias de Grothendieck.

Mais do que isso, tal generalização engloba uma certa noção feixes em quantales semicartesianos, 𝑄,

introduzida nessa tese, a qual é mais geral que a definição usual de feixes em locales 𝐿. Verificamos que

as respectivas categorias de feixes, 𝑆ℎ(𝑄) e 𝑆ℎ(𝐿), possuem propriedades em comum, contudo, 𝑆ℎ(𝑄) nem

sempre forma um topos de Grothendieck. A análise do reticulado dos subobjetos do feixe terminal em 𝑆ℎ(𝑄)
sugere que a noção de feixes para as prelopologias de Grothendieck possui uma lógica interna linear em vez

de intuicionista. Ainda, desenvolvemos uma cohomologia de Čech na qual os coeficientes são feixes em um

quantale e encontramos um morfismo entre o locale dos abertos de um espaço topológico 𝑋 e o quantale

dos ideais do anel 𝐶(𝑋 ) das funções contínuas em 𝑋 que permite relacionar a cohomologia de Čech de 𝑋 e a

cohomologia (expandida) de Čech de 𝐶(𝑋 ).

Palavras-chave: Feixes. Pré-topologia de Grothendieck. Quantales. Categorias monoidais. Cohomologia

de Čech.





Abstract

Ana Luiza da Conceição Tenório. Sheaves on semicartesian monoidal categories
and applications in the quantalic case: A significant change in the Grothendieck
pretopologies. Thesis (Doctorate). Institute of Mathematics and Statistics, University of

São Paulo, São Paulo, 2023.

In this doctoral thesis, we introduce the notion of Grothendieck prelopologies, which is a notion of

covering for semicartesian monoidal categories that generalizes Grothendieck pretopologies. Moreover,

this generalization encompasses a certain notion of sheaves in semicartesian quantales 𝑄, introduced in

this thesis, which is more general than the usual definition of sheaves on locales 𝐿. We observe that the

respective sheaf categories, 𝑆ℎ(𝑄) and 𝑆ℎ(𝐿), share certain properties; however, 𝑆ℎ(𝑄) does not always form

a Grothendieck topos. The analysis of the lattice of subobjects of the terminal sheaf in 𝑆ℎ(𝑄) suggests that

the notion of sheaves for Grothendieck prelopologies has a linear internal logic rather than an intuitionistic

one. Furthermore, we develop a Čech cohomology in which the coefficients are sheaves on a quantale, and

we find a morphism between the locale of open sets of a topological space 𝑋 and the quantale of ideals of

the ring 𝐶(𝑋 ) of continuous functions on 𝑋 that allows us to relate the Čech cohomology of 𝑋 and the

(expanded) Čech cohomology of 𝐶(𝑋 ).

Keywords: Sheaves. Grothendieck pretopology. Quantales. Monoidal categories. Čech cohomology.





vii

Contents

1 Introduction 1
1.1 Topos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 11
2.1 Monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The monoidal structure in 𝑃𝑆ℎ() . . . . . . . . . . . . . . . . . . 15

2.2 Sheaves on Locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Grothendieck Pretopologies and Sheaves on a Site . . . . . . . . . . . . . 19

2.4 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Sheaves on Semicartesian Quantales 27
3.1 Quantales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Sheaves on Quantales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Sheaves on a basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Change of Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Sheaves with algebraic structure . . . . . . . . . . . . . . . . . . . . . . . 58

4 Sheaves on Monoidal Categories 63
4.1 Grothendieck prelopologies . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Sheafification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Sheaves on quantales revisited . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 𝑆ℎ(𝑄) is not a topos . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 The subobject classifier . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Considerations about semigroupal categories . . . . . . . . . . . . . . . . 92

4.5 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



viii

5 Conclusions and Future Work 101
5.1 Noncommutative versions . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Sheaves with Algebraic Structure and Cohomology . . . . . . . . . . . . 103

5.3 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Sheafifications and Grothendieck loposes . . . . . . . . . . . . . . . . . . 107



1

Chapter 1

Introduction

Section 1.3 in this introduction is dedicated to pointing out the major technical contri-
butions of this thesis, which I do believe were substantial by itself but, perhaps, the main
contribution of our work consists of the endless questions that arise after the birth of a
new theory. In my experience, there are two groups of people that work with toposes: on
one side we have a group that is more interested in the study of Grothendieck toposes
(generalized sheaves) and on the other side there is a group more focused on the study
of elementary toposes (a category with an intuitionistic internal logic that behaves like
the category of all sets and functions), and there is a small intersection between those
groups. This thesis may interest the first group a bit more, but the second should be
interested that we generalized the notion of a Grothendieck topos with the future goal
to also generalize elementary toposes, obtaining a category with a linear internal logic.
Moreover, we achieved cohomological methods that may interest geometers and algebraists
too. Therefore, it is important to give a panoramic view of topos theory to motivate the
reading for those distinct groups.

In this introduction, we also explain the original goal of the project and then sum-
marize the main contributions contained in this text. Finally, I explain how this thesis is
organized.

1.1 Topos Theory
The origin of sheaf theory is attributed to J. Leray, more specifically, to his paper

[Ler45]. Leray was interested in solving partial differential equations using a tool that
could track local properties that under gluing conditions also hold globally. The theory
spread quickly: in Cartan’s seminars, between the late 1940s and early 1950s two versions
of sheaves were studied. One is given by local homeomorphisms (= étale maps) into a
topological space 𝑋 and the other is given by a “coherent family” of structures indexed on
the lattice of open subsets of 𝑋 . Denote such lattice by (𝑋 ). Both versions are intimately
related by an equivalence of categories, as described in [MM92], for instance.

Later we will talk about a third concept that is related to the notion of a sheaf (a
𝐿-set) by an equivalence of categories. Then, what is a sheaf? For us, a sheaf of sets (on a
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topological space 𝑋 ) is given by a coherent family, which we describe using categorical
terms: it is a functor 𝐹 ∶ (𝑋 )𝑜𝑝 → 𝑆𝑒𝑡 such that for all 𝑈 ∈ (𝑋 ) and all 𝑈 = ⋃

𝑖∈𝐼
𝑈𝑖 open

cover of 𝑈 the diagram below is an equalizer in 𝑆𝑒𝑡

𝐹(𝑈 ) ∏
𝑖∈𝐼
𝐹(𝑈𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑈𝑖 ∩ 𝑈𝑗)

𝑒
𝑝

𝑞

where:

1. 𝑒(𝑡) = {𝑡|𝑈𝑖 | 𝑖 ∈ 𝐼 }, 𝑡 ∈ 𝐹(𝑈 )

2. 𝑝((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑖|𝑈𝑖∩𝑈𝑗 )(𝑖,𝑗)∈𝐼×𝐼
𝑞((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑗|𝑈𝑖∩𝑈𝑗 )(𝑖,𝑗)∈𝐼×𝐼 , (𝑡𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑈𝑘)

Here we want to focus on the shape of the diagram that defines a sheaf on a topological
space. In particular, we highlight that the cover of 𝑈 and the intersection operation are
the main characters in the notion of a sheaf. The generalization of sheaves on topological
spaces to sheaves on categories is motivated by problems in algebraic geometry but the
topological case already gives a fundamental class of sheaves: consider 𝑅 a commutative
ring with unity and the spectrum 𝑆𝑝𝑒𝑐(𝑅) of 𝑅 formed by all prime ideals of 𝑅. Then
𝑆𝑝𝑒𝑐(𝑅) is a topological space under the Zariski topology, where the closed sets are of the
form 𝑉 (𝐼 ) = {𝑃 prime ideal ∶ 𝐼 ⊆ 𝑃}. Taking complements of 𝑉 (𝐼 ) we have open sets and
then we may consider sheaves of rings1 of the form (𝑆𝑝𝑒𝑐(𝑅))𝑜𝑝 → 𝐶𝑅𝑖𝑛𝑔 . In particular,
there is a canonical sheaf associated to 𝑅 that is determined on a basis of the Zariski
topology of 𝑆𝑝𝑒𝑐(𝑅) by taking adequate localizations of the ring 𝑅; the stalk of this sheaf
at a proper prime ideal 𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅) is isomorphic to the local ring 𝑅𝑃 = 𝑅[𝑅 ⧵ 𝑃]−1.

This construction appears in the concept of schemes, which are central in modern alge-
braic geometry because the pairs of the form (𝑆𝑝𝑒𝑐(𝑅),𝑆𝑝𝑒𝑐(𝑅)) are called affine schemes –
more precisely, affine schemes are locally ringed spaces isomorphic to 𝑆𝑝𝑒𝑐(𝑅) – and the
gluing of ringed spaces of the form (𝑆𝑝𝑒𝑐(𝑅),𝑅) results in the notion of a scheme – more
precisely, a scheme is a locally ringed space (𝑋,𝑋 ) such that 𝑋 = ⋃𝑖∈𝐼 𝑈𝑖 and each 𝑈𝑖 is a
locally ringed space. In turn, schemes are used to prove the Grothendieck-Riemann–Roch
theorem, a generalization of the Riemann–Roch theorem [Gro71]. Moreover, there is a
notion of morphism between schemes called étale maps. Grothendieck envisioned, based
on Jean-Pierre Serre’s ideas, that if he replaced the usual notion of open covering with one
that uses étale coverings, then he would be able to construct a Weil cohomology theory,
and so prove the Weil conjectures. This motivates Grothendieck and his school’s efforts to
pursue a more general notion of covering, the Grothendieck pretopologies.

We properly define it in 2.3.1 but roughly speaking, given  a category with pullbacks
and 𝑈 an object in , a Grothendieck pretopology is a map 𝐾 that assigns to 𝑈 a family of
morphisms 𝐾(𝑈 ) = {𝑈𝑖 → 𝑈 }𝑖∈𝐼 satisfying three properties, including a property of stability
under pullbacks. The families 𝐾(𝑈 ) are called covering families. Once one known that in
the poset category (𝑋 ) pullbacks are given by intersections, it is expected that a sheaf on
a category equipped with a Grothendieck pretopology should be a functor 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡

1 A functor (𝑋 )𝑜𝑝 → 𝐶𝑅𝑖𝑛𝑔 such that the composition with the forgetful functor (𝑋 )𝑜𝑝 → 𝐶𝑅𝑖𝑛𝑔 → 𝑆𝑒𝑡
is a sheaf.
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such that the following diagram is an equalizer (see details in Definition 2.3.4)

𝐹(𝑈 ) ∏
𝑖
𝐹(𝑈𝑖) ∏

𝑖,𝑗
𝐹(𝑈𝑖 ×𝑈 𝑈𝑗)

A sheaf cohomology in this general framework was developed and étale cohomology is a
particular case of sheaf cohomology that Grothendieck, together with Artin and Verdier,
used to prove three of the four Weil conjectures, by the end of 1964. Later, Deligne proves
the remaining conjecture. In this context, Grothendieck pretopologies are enough but they
have the issue that different pretopologies may provide the same class of sheaves. To solve
this, there are Grothendieck topologies and a respective notion of sheaves. It is possible
to obtain a Grothendieck pretopology from a Grothendieck topology and vice-versa, see
[MM92, Chapter III.2]. Actually, some authors refer to Grothendieck pretopologoies as
a basis for a Grothendieck topology. Now, we can say that a Grothendieck topos is any
category that is equivalent to a category of sheaves on a certain category equipped with a
Grothendieck topology.

In the early 1970s, Grothendieck’s work reached W. Lawvere and M. Tierney and they
realized that a Grothendieck topos have categorical properties that make it close to the
category 𝑆𝑒𝑡 of all sets and functions. For example, sheaves admit exponential objects that
are analogs of the set 𝐴𝐵 of all functions from 𝐵 to 𝐴, and there is an object of truth-values
(subobject classifier) that, in the category 𝑆𝑒𝑡, is the set {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}. Eventually, they
defined an elementary topos as a category that is cartesian closed, has a subobject classifier,
and has all finite limits. Since every Grothendieck topos is an elementary topos but the
converse does not hold, sheaves are an important object of study in topos theory, where
we use “topos” to refer to an elementary topos.

One of the striking features of topos theory is that every topos has an (intuitionistic)
internal language, known as Mitchell-Bénabou language, and a canonical interpretation
- a procedure to give a meaning to the symbols introduced in the canonical language.
We recommend [Bor94c] and [McL92] as an introduction to those logical aspects, for
now we just highlight that the lattice structure of the subobjects of a topos, in particular
of the subobject classifier, is crucial for the behavior of its logic. The point is that such
considerations are useful for the working mathematician: due to the Soundness Theorem
[McL92, Chap 15], sometimes, we can pretend that a given topos is just 𝑆𝑒𝑡. For instance,
to develop a sheaf cohomology theory for a Grothendieck topos  an important step is to
prove that the category 𝐴𝑏() of abelian group objects in  is an abelian category. This
can be done by brute force or by pretending that  is 𝑆𝑒𝑡. Since there is an equivalence
𝐴𝑏(𝑆𝑒𝑡) ≃ 𝐴𝑏, the proof follows from the fact that 𝐴𝑏 is an abelian category, see [Joh77] or
[TM21]). Thus, the Soundness Theorem exempts us from 10 pages of calculations, which
are done in [Şte81]. The dictionary between the external and the internal point of view is
extensive: objects in a topos are, internally, sets; monomorphisms are injections; sheaves
of rings are rings; etc., and we recommend [Ble17] to see the use of the internal language
of toposes in algebraic geometry. Unfortunately, there is a cost to pretend that a topos
is 𝑆𝑒𝑡. If you want to do this then our reasoning needs to be constructive/intuitionistic,
because the law of excluded middle ( i.e., 𝜑 ∨ ¬𝜑) does not hold for all toposes.

The above was a panoramic view of well-established concepts in sheaf and topos theory
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that will be relevant to this thesis. However, in this thesis, we also address the problem of
achieving a notion of a sheaf on a quantale. First, note that the definition of a sheaf on a
topological space does not use the points of the space. Indeed, the lattice (𝑋 ) forms a
structure called locale, a complete lattice where the meet distributes over arbitrary joins
and we define a sheaf on a locale 𝐿 by replicating the definition of a sheaf on a topological
space 𝑋 where instead of taking open subsets of 𝑋 we take elements in 𝐿 and we replace
unions and intersections with joins and meets, respectively. Locales admit a generalization
in which we have an additional binary operation ⊙ and then is the new operation ⊙ that
has to distribute over arbitrary joins. Therefore, it is natural to wonder how to define
sheaves on quantales and, in fact, different authors under different approaches answer this
question [BB86], [BC94], [MS98], [FS79], [ASV08], [HS12], [Res12]. We have the following
remarks about the currently available notions:

• Most of them are concerned with the class of idempotent quantales. In this work,
we focus on semicartesian quantales, which has a natural notion of projection, in
the sense they always have arrows of the form 𝑢 ⊙ 𝑣 → 𝑢 and 𝑢 ⊙ 𝑣 → 𝑣. Since
a quantale that is simultaneously idempotent and semicartesian is, necessarily, a
locale, the notions only compare in the already well-known case of sheaves on
locales. Therefore, we can say that the theory we developed is orthogonal to the one
usually developed in the literature;

• Most of them are not exactly about sheaves in the traditional functorial sense. By
this, we mean they are not defined as contravariant functor that forms an equal-
izer diagram, as we introduced above. In this work, the objects under analysis are
functorial in the traditional sense. In some cases (as in [BC94]), the literature uses
the equivalence between the category of sheaves on a locale 𝐿 and the category of
𝐿-sets (for a suitable notion of morphism) and they define sheaves on a quantale 𝑄
as a structure that is generalizing an 𝐿-set. In the preliminaries, we will introduce
the concept of 𝐿-sets for the comfort of the reader.

• To the best of our knowledge, previous work either deal with a notion of a sheaf on
𝑄 that forms a Grothendieck topos or do not discuss this matter at all. In the opposite
direction, we pursue a notion of a sheaf on a quantale that since the beginning we
expected to not be a Grothendieck topos.

The results we will state below explain the relevance of studying sheaves on commuta-
tive semicartesian quantales but since the literature is significantly focused on sheaves on
idempotent quantales, it is important to highlight the interest in quantales in general and
also in this different class of quantales. In [Mul86], C. Mulvey introduced quantales as a
non-commutative version of locales. Since locales are used to study point-free topology,
quantales are a natural candidates to study non-commutative topology. Besides it, C.
Mulvey was interested in foundations of quantum mechanics. The point is that the algebra
of observables in quantum mechanics is an algebra of operators defined on a Hilbert space
and 𝐶∗-algebras provide an abstract framework to describe operators on a Hilbert space.
Since closed right (left) ideals of a 𝐶∗-algebra form an idempotent and right-sided (left-
sided) quantale, the study of idempotent right-sided quantales also improves investigations
regarding foundations of quantum mechanics. A successful example of application in this
direction was obtained by Francisco Miraglia and Marcelo Coniglio: they proved that, in
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their category of sheaves 𝑆ℎ(𝑄), every finitely generated projective module over a local ring
is free with a finite basis [CM01, Theorem 7.2.] (this is an analogous version of Kaplansky’s
theorem on projective modules, but in 𝑆ℎ(𝑄) instead of 𝑆𝑒𝑡). Note that a consequence of
such result could be a characterization of finitely generated projective 𝐴-modules, where
𝐴 is a 𝐶∗-algebra, if we obtain a representation of 𝐴 in terms of (global sections) of a
sheaf on the quantale of closed right ideals of 𝐴. Observe that a representation theorem as
that is not unexpected since sheaf theory has examples of representation theorems in the
same vein. For instance, in the classical notion of sheaves on locales, every commutative
ring with unit is isomorphic to the ring of global sections of a corresponding structural
space [Bor94c, Theorem 2.11.15]. Similarly, in [BC94] there is an analogous statement for
non-commutative rings (and non-commutative quantales).

1.2 About this thesis

The first question we wanted to answer was: how to define a sheaf on a quantale so
that it is as close as possible to the sheaf on a locale definition? Bearing this in mind, we
concluded that the definition should be the following:

(Definition 3.2.1) A presheaf 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf on 𝑄 when for all 𝑢 ∈ 𝑄 and
all 𝑢 = ⋁𝑖∈𝐼 𝑢𝑖 cover of 𝑢 the following diagram is an equalizer in 𝑆𝑒𝑡

𝐹(𝑢) ∏
𝑖∈𝐼
𝐹(𝑢𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑢𝑖 ⊙ 𝑢𝑗)

𝑒
𝑝

𝑞

where:

1. 𝑒(𝑡) = {𝑡|𝑢𝑖 | 𝑖 ∈ 𝐼 }, 𝑡 ∈ 𝐹(𝑢)

2. 𝑝((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑖|𝑢𝑖⊙𝑢𝑗 )(𝑖,𝑗)∈𝐼×𝐼
𝑞((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑗|𝑢𝑖⊙𝑢𝑗 )(𝑖,𝑗)∈𝐼×𝐼 , (𝑡𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑢𝑘)

We use 𝑄 semicartesian so that 𝑢𝑖⊙𝑢𝑗 always is less or equal to 𝑢𝑖 and 𝑢𝑗 , for all 𝑖, 𝑗 ∈ 𝐼
and then we the maps 𝐹(𝑢𝑖) → 𝐹(𝑢𝑖 ⊙ 𝑢𝑗) exist.

Then we started to investigate the categorical properties of 𝑆ℎ(𝑄), where the objects are
sheaves on 𝑄 and the morphisms are natural transformations. Some categorical properties
of the localic case can be checked almost verbatim for the quantalic case, as we show in
Section 3.2, but some that are the core of topos theory (being cartesian closed and having
subobject classifier) seemed to no longer hold, which leads to the challenge of

How to expand the definition of sheaf on a site in a way that encompasses both the classic
notion of a sheaf and our sheaves on quantales?

Note that the first step is to interpret the quantale multiplication ⊙ in categorical terms.
In the same way the infimum is the pullback in the poset category given by a locale, we
will have that the multiplication is the pseudo-pullback in the poset category given by a
locale. Moreover, we construct such limit in a way that the pseudo-pullback of a cartesian
category (i.e., where the monoidal tensor is the categorical product) is the pullback. In other
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words, pseudo-pullbacks are generalizations of pullbacks that encompass the quantale
multiplication.

Now, recall that for a locale 𝐿, a cover of 𝑢 ∈ 𝐿 is a family of {𝑢𝑖 ≤ 𝑢}𝑖∈𝐼 such that
𝑢 = ⋁𝑖∈𝐼 𝑢𝑖 and such a family actually satisfies the axioms of a Grothendieck pretopology.
For a quantale 𝑄, we also have that a cover of 𝑢 ∈ 𝑄 is a family of {𝑢𝑖 ≤ 𝑢}𝑖∈𝐼 such that
𝑢 = ⋁𝑖∈𝐼 𝑢𝑖 but such a family does not satisfy the axioms of a Grothendieck pretopology,
even if we replace the pullbacks with pseudo-pullbacks. So we had to non-trivially adapt
the notion of a Grothendieck pretopology, in what we call a Grothendieck prelopology
(Definition 4.1). This will give rise to a notion of a sheaf on a site – for a semicartesian
monoidal category with pseudo-pullbacks equipped with a Grothendieck prelopology –
that encompass both the notion of sheaves on quantales and sheaves on a category with
pullbacks equipped with a Grothendieck pretopology.

The general framework above helped us to show that the inclusion functor from
sheaves to presheaves has a left right adjoint, that is, the sheafification functor exists.
Besides it, in the quantalic case we were able to prove that such sheafification preserves
the monoidal structure in the category of presheaves 𝑃𝑆ℎ(𝑄), which is inherited by the
monoidal structure on 𝑄, by Day convolution. In particular, we obtain that 𝑆ℎ(𝑄) is
monoidal closed. Using the monoidal structure in 𝑆ℎ(𝑄) we were able to finally prove
that our sheaves, indeed, do not form an elementary topos and, therefore, they do not
form a Grothendieck topos. Actually, in the process we proved more: we showed that the
lattice of subterminal objects in 𝑆ℎ(𝑄) is quantalic isomorphic to 𝑄. This suggests that
the internal logic of 𝑆ℎ(𝑄) may be affine2, to match with the structure of semicartesian
quantales.

The existence of the sheafification functor also allowed to obtain sheaves on a quantale
𝑄 from a given sheaf on a quantale 𝑄′, if there is a strong morphism 𝑄′ → 𝑄. This is
particularly crucial as it is challenging to find concrete examples of sheaves within our
theory, but if we have a strong morphism 𝐿 → 𝑄 from a locale to a quantales, then we can
obtain sheaves on quantales from sheaves on locales. Surprisingly or not, this is useful to
construct bridges between geometry and algebra. On the geometric side, we can consider,
for example, the locale of open subsets of a topological space 𝑋 , and on the algebraic
side we have the quantale of ideals of the ring 𝐶(𝑋 ) of continuous real valued functions
on 𝑋 . During my time at the University of Düsseldorf, under the supervision of Peter
Arndt, we constructed a strong morphism between those quantales, if 𝑋 admits partition
of unity subordinate to a cover. Furthermore, we realized that the Čech cohomology of
𝑋 with coefficients in a sheaf 𝐹 on the respective locale is isomorphic to an expanded
Čech cohomology of 𝐶(𝑋 ) – developed in this thesis – with coefficients in a sheaf in
the respective quantale that arises from 𝐹 . Indicating a cohomological method to relate
geometrical/topological properties of𝑋 and algebraic properties of𝐶(𝑋 ). The most exciting
part about this result is that the isomorphism between the cohomological groups does not
depend on properties of the topological spaces 𝑋 or the ring 𝐶(𝑋 ), the important steps
rely on the properties of the morphisms between the quantales. So the same phenomenon

2 In this thesis, we are not explicit about the logical aspects of the theory. A reader used to categorical
logic may infer the consequences of the results regarding subobjects but we only make more explicit
considerations about it in the final chapter, where we explore future topics of research.
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should appear in other contexts.

If we consider that “classic” topos theory follows a course akin to the below:

sheaves on locales ⇝ Grothendieck toposes ⇝ toposes.

Then this thesis is a step to the construction of a lopos theory that follows a course

sheaves on (semicartesian) quantales ⇝ Grothendieck loposes ⇝ loposes.

In a way that generalizes the classic and well-established topos theory.

1.3 Main Contributions
By what was said before, in a panoramic view, this thesis contributes to a research that

goes towards non-intuitionistic versions of topos theory, as in Höhle’s work [Höh91]. More
concretely, we achieved two major contributions. The first is more related to categorical
aspects of the theory and states that 𝑆ℎ(𝑄) is not a topos, showing that our sheaves for
a Grothendieck pretolopogy are actually describing a structure that the current theory
does not describe. The more skeptical reader may wonder: why we should care about
𝑆ℎ(𝑄) in the first place? We have two answers for it: from the perspective of categorical
logic, it is interesting because it suggests we have a notion of sheaves that may lead to
non-intuitionistic versions of topos theory. From the perspective of mathematical practice,
we argue that expanded notions of sheaves lead, for instance, to more applications of
sheaf cohomology. In particular, we provided an expanded Čech cohomology and an
isomorphism between the 𝑞th Čech cohomology group of a topological space 𝑋 and the
𝑞th Čech cohomology group of the ring 𝐶(𝑋 ) of continuous real valued functions on
𝑋 .

Going straight to the point, we list below the main results of the thesis:

On the main theoretical constructions and results of the theory

• A definition of sheaves on quantales that generalizes the definition of sheaves on
locales. The category of sheaves on a fixed quantale that is not a locale has some of
the categorical properties of the category of sheaves on a fixed locale.

• We proved a base change Theorem (3.4.8) that allows to creat sheaves on quantales
from sheaves on other quantales and, in particular, from sheaves on locales. We use
this to show that the structure sheaf 𝑆𝑝𝑒𝑐(𝑅) defined by 𝑆𝑝𝑒𝑐𝑅(𝐷(𝑎)) ≅ 𝑅𝑎 – where
𝑅 is commutative ring with unity, 𝐷(𝑎) is the principal open3 for 𝑎 ∈ 𝑅 and 𝑅𝑎 is the
localization 𝑅[𝑎−1] – coincides with a sheaf on a basis of the quantale of ideals of 𝑅,
which is defined without the spectrum of 𝑅. See Example 3.3.5 and the discussion
that follows it.

• We defined a notion of a Grothendieck prelopology such that the notion of a cover
we used to define sheaves on quantales is a cover in the prelopology sense 4.1.10

3 The principal open 𝐷(𝑎) forms a basis under the Zariski topology.
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and such that every Grothendieck pretopology is a Grothendieck prelopology 4.1.11.
Conversely, the Grothendieck prelopology of a cartesian category with equalizers
(i.e., a category with finite limits) is a Grothendieck pretopology 4.1.12.

• There is sheafification functor 𝑎 (considering sheaves for Grothendieck prelopolo-
gies), which is adjoint to the inclusion functor 𝑖 and, in the quantalic case, the
monoidal structure is preserved in a way such that 𝑆ℎ(𝑄) is monoidal closed and we
have 𝐹 ⊗ 𝐺 = 𝑎(𝑖(𝐹) ⊗𝐷𝑎𝑦 𝑖(𝐺)), for 𝐹 , 𝐺 sheaves on 𝑄

On categorical logic

• Let 𝑄 be a semicartesian quantale, then the lattice of subobjetcs of the terminal sheaf
in 𝑆ℎ(𝑄) is quantalic isomorphic to 𝑄 4.3.6. This result implies that:

• In general, 𝑆ℎ(𝑄) is not a topos 4.3.8, and 𝑆ℎ(𝑄) does not have subobject classifier if
the meet in 𝑄 does not distribute over the arbitrary joins 4.3.10.

On cohomological methods

• We developed an extended Čech cohomology to be able to talk about the Čech
cohomology of a ring, where the covers are sums of ideals.

• We construct a pair of adjoint functors between the quantale (𝐶(𝑋 )) of ideals of
the ring 𝐶(𝑋 ) of continuous real valued functions on 𝑋 and the locale (𝑋 ) of open
subsets of 𝑋 3.4.14 such that the constant sheaf on (𝐶(𝑋 )) is the composition of
the constant sheaf on (𝑋 ) with the left adjoint functor of the pair 3.4.16. Moreover,
we use this result to obtain an isomorphism between Čech cohomology groups of 𝑋
with coefficients in the constant sheaf on (𝑋 ) and the Čech cohomology groups of
𝐶(𝑋 ) with coefficients in the constant sheaf on (𝐶(𝑋 )) 4.5.7. An analogous result
holds for other coefficients 4.5.8.

We observe that part of this thesis (sections 3.1, 3.2, and 4.3) was submitted to a Journal
and a preliminary version of the paper is available on ArXiv (everytime we mention this
fact we are referring to the same paper). We – Ana Luiza Tenório, Hugo Luiz Mariano
and Peter Arndt – are also preparing another paper with the sections about base change
and cohomological methods. We hope to write a paper about sheaves on semicartesian
monoidal categories in the near future.

1.4 Organisation of the thesis
Chapter 2 introduces technical details regarding monoidal categories and sheaf theory,

providing preliminaries to the development of our sheaf theory on semicartesian monoidal
categories. In Chapter 3 we introduce our novel notion of sheaves on semicartesian
quantales and study the very first properties of the category 𝑆ℎ(𝑄) formed by sheaves on
a quantale 𝑄 and natural transformations. Section 3.4 contains a base change theorem and
examples of it that will be used to develop applications of our cohomological methods
later. However, to prove the base change theorem and explore the examples we need
a functor that is left adjoint to the inclusion functor 𝑆ℎ(𝑄) → 𝑃𝑆ℎ(𝑄). We choose to
give those more applied results before providing the proof of the existence of such a left
adjoint functor aiming to have some motivation first and then developing more technical

https://arxiv.org/abs/2204.08351
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constructions. We end the chapter addressing the problem of sheaves on quantales with
algebraic structure, which will be necessary to a rigorous development of an expanded
sheaf cohomology.

In Chapter 4, we develop the notion of a Grothendieck prelopology in a way that
the respective notion of sheaves for a Grothendieck prelopology describes sheaves for a
Grothendieck pretopology and also our sheaves on quantales. In Section 4.2, we prove that
the sheafification exists, both as a localization functor (where we invert a certain class of
arrows in the base category (𝐶,⊗1)) and as the left adjoint of the inclusion functor from
sheaves for Grothendieck prelopologies to presheaves, and prove that the sheafification
preserves terminal object and, in the quantalic case, it also preserves the monoidal tensor,
which, in 𝑃𝑆ℎ(𝑄) is inherited by the monoidal structure on the base category , by Day
convolution. Once we presented the sheafification we use it, in Section 4.3, to show
that 𝑆ℎ(𝑄) is not a topos in general and that, unless the meet in 𝑄 also distributes with
arbitrary joins, 𝑆ℎ(𝑄) does not have subobject classifier. Nevertheless, we dedicate a part
of this work to discuss a subobject classifier candidate in 𝑆ℎ(𝑄) that actually essentially
classifies a certain class of monomorphisms. In Section 4.4 Since Theorem 4.3.6, states
that the lattice of subobjetcs of the terminal sheaf in 𝑆ℎ(𝑄) is quantalic isomorphic to 𝑄,
holds for (commutative and semicartesian) non-unital quantales – more specifically, for
interval quantales of the form [0, 𝑎], where 𝑎 ∈ 𝑄 – In Section 4.4 we construct sheaves on
semicartesian categories that do not have a monoidal unity, those are known as semigroupal
categories. This is motivated by Theorem 4.3.6, which states that the lattice of subobjetcs
of the terminal sheaf in 𝑆ℎ(𝑄) is quantalic isomorphic to 𝑄, holds for (commutative and
semicartesian) non-unital quantales – more specifically, for interval quantales of the form
[0, 𝑎], where 𝑎 ∈ 𝑄. We conclude the chapter with the part of the thesis that points out to
the potential of our theory in other areas of Mathematics by using cohomological methods
on Section 4.2. We develop Čech cohomology for quantales and evoke results presented
in Section 3.4 about the change of base to show that the Čech cohomology groups of a
topological spaces 𝑋 is isomorphic to the Čech cohomology groups of the ring 𝐶(𝑋 ) of
continuous real valued functions on 𝑋 , with the appropriated coefficients.

Finally, we present the conclusion of our work and propose a list of further develop-
ments with brief ideas of how to pursue each one of them. They are about non-commutative
version of our theory, that is, for non-commutative quantales and non-symmetric monoidal
semicartesian categories; thoughts into a sheaf cohomology theory, using right derived
functors; paths towards a non-intuitionistic version of elementary toposes; possible appli-
cations in Quantum Mechanics; and the properties of the sheafification functor that we
were not able to prove and how our approach to a broader version of sheaves provides a
bird’s-eye into sheaf categories as special cases of localization functors.

In the thesis, we assume that the reader is familiar with category theory. Also, we are not
careful about size issues in our theory, but to avoid problems assume the categories in the
domain of a functor are small categories.
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Chapter 2

Preliminaries

This thesis is mainly about a generalization of sheaves of sets on (semicartesian)
monoidal categories. Therefore, we present key concepts and results about monoidal
categories and sheaf theory that will help us to expand sheaf theory. There is no novelty
in this Chapter.

2.1 Monoidal categories
We start this section by recalling the definition of a monoidal category and providing

basic examples. A reference for details is [Eti+16], for example.

Definition 2.1.1. A monoidal category consists of:

• A category ;

• A bifunctor ⊗ ∶  ×  →  called the tensor product;

• A natural isomorphism 𝑎 ∶ (− ⊗ −) ⊗ − ≃⟶ − ⊗ (− ⊗ −) with components

𝑎𝑋,𝑌 ,𝑍 ∶ (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 ≃⟶ 𝑋 ⊗ (𝑌 ⊗ 𝑍)

called the associator (or associativity isomorphism);

• An object 1 of , called tensor unit.

• A natural isomorphism 𝜆 ∶ (1 ⊗ (−)) ≃⟶ (−) with components

𝜆𝑋 ∶ 1 ⊗ 𝑋 → 𝑋

called the left unitor;

• A natural isomorphism 𝜌 ∶ (−) ⊗ 1 ≃⟶ (−) with components

𝜌𝑋 ∶ 𝑋 ⊗ 1 → 𝑋

called the right unitor.
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Such that the following two axioms hold:

– The pentagon axiom: For all 𝑊 ,𝑋, 𝑌 , 𝑍 objects in , the diagram below com-
mutes

(𝑊 ⊗ 𝑋 ) ⊗ (𝑌 ⊗ 𝑍)

((𝑊 ⊗ 𝑋 ) ⊗ 𝑌 ) ⊗ 𝑍 (𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍)))

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍 𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

𝑎𝑊 ,𝑋,𝑌⊗𝑍

𝑖𝑑𝑊⊗𝑎𝑋,𝑌 ,𝑍

𝑎𝑊 ,𝑋⊗𝑌 ,𝑍

𝑎𝑊⊗𝑋,𝑌 ,𝑍

𝑎𝑊 ,𝑋,𝑌⊗𝑖𝑑𝑧

– The triangle axiom: For all 𝑋, 𝑌 objects in , the diagram below commutes

𝑋 ⊗ (1 ⊗ 𝑌 ) (𝑋 ⊗ 1) ⊗ 𝑌

𝑋 ⊗ 𝑌

𝑎𝑋,1,𝑌

𝜌𝑋⊗𝑖𝑑𝑌𝑖𝑑𝑋⊗𝜆𝑌

The definition is quite abstract, but there are simple examples of monoidal cate-
gories.

Example 2.1.2. • The category 𝐾 -𝑉 𝑒𝑐𝑡 of vector spaces over a field 𝐾 has the well-
known tensor of vector spaces as its (associative) tensor product and the field 𝐾 is the
unit;

• The category of abelian groups and, more generally, 𝑅-𝑀𝑜𝑑, the category of modules
over a commutative ring 𝑅, with 𝑅 as the unit object, are monoidal categories;

• If 𝑅 is a commutative ring with unity, the category of 𝑅-algebras has the tensor product
of algebras as the tensor product and 𝑅 as the unity;

• The category of pointed spaces 𝑇 𝑜𝑝∗, restricted to compactly generated spaces, has as
tensor functor the smash product and the unity is the pointed 0-sphere;

• The category 𝑆𝑒𝑡 of sets has the cartesian product as the tensor product and the unity is
the singleton set (any one-element set).

• A lattice is a monoidal (posetal) category with tensor product given by the infimum.

• A monoid is a monoidal category with a single object and with tensor product given by
the multiplication of the monoid.

If a monoidal category is equipped with a natural isomorphism 𝐵𝑋,𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋
called braiding such that for all objects 𝑋, 𝑌 , 𝑍 the following diagrams commute
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(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑌 ⊗ 𝑍) ⊗ 𝑋

(𝑌 ⊗ 𝑋 ) ⊗ 𝑍 𝑌 ⊗ (𝑋 ⊗ 𝑍) 𝑌 ⊗ (𝑍 ⊗ 𝑋 )

𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 𝑍 ⊗ (𝑋 ⊗ 𝑌 )

𝑋 ⊗ (𝑍 ⊗ 𝑌 ) (𝑋 ⊗ 𝑍) ⊗ 𝑌 (𝑍 ⊗ 𝑋 ) ⊗ 𝑌

𝑎𝑋,𝑌 ,𝑍 𝐵𝑋,𝑌⊗𝑍

𝑎𝑦,𝑧,𝑥𝐵𝑋,𝑌⊗𝑖𝑑𝑍

𝑎𝑌 ,𝑋 ,𝑍 𝑖𝑑𝑌⊗𝐵𝑋,𝑍

𝑎−1𝑋,𝑌 ,𝑍 𝐵𝑋⊗𝑌 ,𝑍

𝑖𝑑𝑍⊗𝐵𝑌 ,𝑍
𝑎−1𝑋,𝑍,𝑌

𝐵𝑋,𝑍⊗𝑖𝑑𝑌

𝑎−1𝑍,𝑋,𝑌

Then the monoidal category is called braided. Moreover, if the braiding satisfies that
𝐵𝑌 ,𝑋 ◦ 𝐵𝑋,𝑌 = 𝑖𝑑𝑋⊗𝑌 , then we have what is called a symmetric monoidal category. So the
symmetry in monoidal categories is almost given a notion of commutativity for the tensor
product.

Definition 2.1.3. • A monoidal category is cartesian monoidal if the tensor functor
is the categorical product.

• A monoidal category is cocartesian monoidal if the tensor functor is the categorical
coproduct.

Definition 2.1.4. We say that a category is cartesian closed if it has cartesian products
and if every object 𝑋 and 𝑌 admits an exponential object 𝑋 𝑌 .

An exponential object 𝑋 𝑌 in a cartesian category  is precisely the object that provides
a natural isomorphism 𝐻𝑜𝑚(𝑋 ×𝑌 , 𝑍) ≅ 𝐻𝑜𝑚(𝑋, 𝑍 𝑌 ) for all 𝑋, 𝑌 , 𝑍 objects in . In other
words, the functor − × 𝑌 has a right adjoint functor (−)𝑌 . The main example of a cartesian
closed category is the 𝑆𝑒𝑡, where the exponential 𝑋 𝑌 is the set of functions {𝑌 → 𝑋 }. A
locale 𝐿, which is a special kind of lattice such that the infimum distributes over arbitrary
supremum (Definition 2.2.4), is a cartesian closed category where 𝑧𝑦 = ⋁{𝑥 ∈ 𝐿 ∶ 𝑥∧𝑦 ≤ 𝑧}
and we have (𝑥 ∧ 𝑦) ≤ 𝑧 ⟺ 𝑥 ≤ 𝑧𝑦 . Every topos is a cartesian closed category, by
definition.

Analogously,

Definition 2.1.5. We say that a category is monoidal closed if it has tensor products and
if every two objecta 𝑋 and 𝑌 admits an internal hom [𝑌 , 𝑋 ].

In the case of monoidal closed categories, we have a natural isomorphism 𝐻𝑜𝑚(𝑋 ⊗
𝑌 , 𝑍) ≅ 𝐻𝑜𝑚(𝑋, [𝑌 , 𝑍]) for all 𝑋, 𝑌 , 𝑍 objects in . In other words, the functor − ⊗ 𝑌 has
a right adjoint functor [𝑌 ,−]. The category of 𝑅-modules is a monoidal closed category.
A unital commutative quantale 𝑄, which is a special kind of lattice such that a monoidal
operation ⊙ distributes over arbitrary supremum (Definition 3.1.1), is a (posetal and
symmetric) monoidal closed category where [𝑦, 𝑧] = ⋁{𝑥 ∈ 𝑄 ∶ 𝑥 ⊙ 𝑦 ≤ 𝑧} and we have
(𝑥 ⊙ 𝑦) ≤ 𝑧 ⟺ 𝑥 ≤ [𝑦, 𝑧]. Every cartesian closed category is a monoidal closed category
where the tensor is given by the cartesian product.

Cartesian monoidal categories have special properties, we highlight two: they have
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a well-behaved diagonal map △𝑋 ∶ 𝑋 → 𝑋 × 𝑋 , and the unit object with respect to the
tensor, which is the product, is a terminal object. As we will see, if a monoidal category
simultaneously satisfies such conditions then it necessarily is cartesian monoidal. There-
fore, not having one of those two properties weakens the notion of a cartesian monoidal
category. In this Ph.D. thesis we work with the following weakening:

Definition 2.1.6. A monoidal category is semicartesian if the unit for the tensor functor is
a terminal object.

In general, monoidal categories do not have projections since their tensor may be
different from the categorical product, but every semicartesian monoidal category admits
projections in the sense that for all 𝑋, 𝑌 objects in a monoidal category there are “good"
morphisms 𝜋1 ∶ 𝑋 ⊗ 𝑌 → 𝑋 and 𝜋2 ∶ 𝑋 ⊗ 𝑌 → 𝑌 . Under an appropriate notion of
projection, we may go even further and say that semicartesian monoidal categories are
precisely categories with projections.

Definition 2.1.7. A monoidal category with projections is a monoidal category (𝐶,⊗, 1)
equipped with two natural transformations

• A natural transformation 𝜋1 ∶ (− ⊗ −) ⟶ (−) with components

𝜋1
𝑋⊗𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑋

called the projection onto the first coordinate;

• A natural transformation 𝜋2 ∶ (− ⊗ −) ⟶ (−) with components

𝜋2
𝑋⊗𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑌

called the projection onto the second coordinate.

Such that

1. The following diagrams commute

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 𝑋 ⊗ (𝑌 ⊗ 𝑍)

𝑋 ⊗ 𝑌 𝑋 𝑍 𝑌 ⊗ 𝑍

𝑎𝑋,𝑌 ,𝑍

𝜋1
(𝑋⊗𝑌 ),𝑍 𝜋1

𝑋,𝑌⊗𝑍

𝜋1
𝑋,𝑌

𝑎𝑋,𝑌 ,𝑍

𝜋2
𝑋,𝑌⊗𝑍𝜋2

(𝑋⊗𝑌 ),𝑍

𝜋2
𝑌 ,𝑍

2. 𝜋1
𝑋⊗1∶ 𝑋 ⊗ 1 → 𝑋 and 𝜋2

1⊗𝑌 ∶ 1⊗𝑌 → 𝑌 are, respectively, the right and the left unitor.

Now we can formally state the following result.

Proposition 2.1.8. A monoidal category is semicartesian if and only if it has projections.

Proof. It is dually proved in [GLS+22, Theorem 3.5]. Here we just note that the projections
are the compositions



2.1 | MONOIDAL CATEGORIES

15

𝑋 ⊗ 𝑌 𝑋 ⊗ 1 𝑋

𝑋 ⊗ 𝑌 1 ⊗ 𝑌 𝑢′

𝜌𝑋𝑖𝑑𝑋⊗!𝑌

𝜋1

!𝑋⊗𝑖𝑑𝑌 𝜆𝑌

𝜋2

Through this thesis we will work with a specific semicartesian category, the poset
category given by an integral quantale (3.1.1). We define a category of sheaves on quantales
and then developed a notion of sheaves on semicartesian monoidal categories to establish a
general framework that encompasses the well-known notion of sheaves on categories with
pullbacks and our notion of sheaves on quantales. We envision that such a framework may
be interesting to study sheaves on other semicartesian categories, such as the category of
Poisson manifolds; the opposite of the category of associative algebras over a given base
field; the category of convex spaces (see [nLa22c] ); and Markov categories — categories
that relates to probability theory, for example, the category of finite sets with stochastic
matrices as morphisms and the category of measurable spaces with Markov kernels as
morphisms. See [nLa23a].

When developing our category of sheaves on semicartesian categories, sometimes it is
more convenient to use that the terminal object is the monoidal unity but sometimes is
better to use the existence of projections, so in Chapter 4 we constantly use Proposition
2.1.8, even though we do not say it explicitly.

Finally, if the reader is interested in this relationship between the property of being
semicartesian and the structure of having “good" projections, we recommend the following
Blog post1, especially the comments.

2.1.1 The monoidal structure in 𝑃𝑆ℎ()

Given a monoidal category  = (, ⊗, 1), the category 𝑃𝑆ℎ() (also denoted by 𝑆𝑒𝑡𝑜𝑝

and formed by functors 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 and natural transformations) inherits the monoidal
structure of  through a quite complicated construction call Day convolution. We present
the formulas here and recommend [Day70] and [Lor21] for a proper introduction to the
topic.

Definition 2.1.9. Let (, ⊗, 1) be a monoidal category. The Day convolution in 𝑆𝑒𝑡 is a
tensor product ⊗𝐷𝑎𝑦 ∶ 𝑆𝑒𝑡 × 𝑆𝑒𝑡 → 𝑆𝑒𝑡 defined by the coend

𝑋 ⊗𝐷𝑎𝑦 𝑌 ∶ 𝑐 ↦ ∫
(𝑐1,𝑐2)∶𝐶×𝐶

𝐶(𝑐1 ⊗ 𝑐2, 𝑐) × 𝑋 (𝑐1) × 𝑌 (𝑐2)

1 If you are reading a printed version of the thesis, the link is https://golem.ph.utexas.edu/category/2016/08/
monoidal_categories_with_proje.html

https://golem.ph.utexas.edu/category/2016/08/monoidal_categories_with_proje.html
https://golem.ph.utexas.edu/category/2016/08/monoidal_categories_with_proje.html
https://golem.ph.utexas.edu/category/2016/08/monoidal_categories_with_proje.html
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Remark 2.1.10. Equivalently, the Day convolution is a left Kan extension (the left Kan
extension of their external tensor product (𝑋⊗̄𝑌 )(𝑐1, 𝑐2) ∶= 𝑋 (𝑐1) × 𝑌 (𝑐2) along the tensor
product ⊗ in ). In other words, there is a natural isomorphism 𝑋 ⊗𝐷𝑎𝑦 𝑌 ≅ 𝐿𝑎𝑛⊗ (𝑋⊗̄𝑌 ).

In the case of presheaves, we have:

Consider  = (, ⊗, 1) monoidal and 𝐹 , 𝐺 ∶ 𝐶𝑜𝑝 → 𝑆𝑒𝑡 presheaves. Then the (Day)
tensor product of presheaves is given by the coend

𝐹 ⊗𝐷𝑎𝑦 𝐺 ∶ 𝑐 ↦ ∫
(𝑐1,𝑐2)∶𝐶×𝐶

𝐻𝑜𝑚𝐶(𝑐, 𝑐1 ⊗ 𝑐2) × 𝐹(𝑐1) × 𝐺(𝑐2)

The Day convolution is a tensor product for presheaves in which 𝑃𝑆ℎ() is a monoidal
closed category. Moreover, if the monoidal structure in  is given by the cartesian product,
then 𝑃𝑆ℎ() is cartesian closed.

2.2 Sheaves on Locales
We begin this section by introducing the notion of sheaves on topological spaces. Let

𝑋 be a topological space and consider the poset (𝑋 ) of all open sets of 𝑋 with order
given by inclusion. As we will see, sheaves are a special kind of functors so, actually, we
are interested in the posetal category (𝑋 ) where the objects are open sets of 𝑋 and the
unique arrow 𝑈 → 𝑉 is given by the inclusion 𝑈 ⊆ 𝑉 . Here we use the same notation for
the poset and the posetal category, as usual.

Definition 2.2.1. A presheaf of sets on a topological space 𝑋 is a (covariant) functor
𝐹 ∶ (𝑋 )𝑜𝑝 → 𝑆𝑒𝑡.

Given inclusions 𝑈 ⊆ 𝑉 , we use 𝑠|𝑉𝑈 (or just 𝑠|𝑈 ) to denote the restriction map from
𝐹(𝑉 ) to 𝐹(𝑈 ). Arrows between presheaves are natural transformations and we denote the
category of presheaves by 𝑃𝑆ℎ(𝑋 ).

A sheaf is a presheaf that satisfies a certain gluing property:

Definition 2.2.2. A presheaf (𝑋 )𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf if for all 𝑈 ∈ (𝑋 ) and all 𝑈 = ⋃
𝑖∈𝐼
𝑈𝑖

open cover of 𝑈 the following is satisfied:

1. (Gluing) Given 𝑠𝑖 ∈ 𝐹(𝑈𝑖) a compatible family, i.e., 𝑠𝑖|𝑈𝑖∩𝑈𝑗 = 𝑠𝑗|𝑈𝑖∩𝑈𝑗 for all 𝑖, 𝑗 ∈ 𝐼 , there is
some 𝑠 ∈ 𝐹(𝑈 ) such that 𝑠|𝑈𝑖 = 𝑠𝑖, 𝑖 ∈ 𝐼 . We say 𝑠 is the gluing of the compatible family.

2. (Separability) Given 𝑠, 𝑠′ ∈ 𝐹(𝑈 ) such that 𝑠|𝑈𝑖 = 𝑠′|𝑈𝑖 , for all 𝑖 ∈ 𝐼 , 𝑠 = 𝑠′. This states
that the gluing is unique.

We call the second condition “separability” because a presheaf is called separated
when it admits at most one gluing.

For more abstract contexts — other categories than (𝑋 ) — we will be interested in
a more categorical way of defining sheaves. The following definition is equivalent to
Definition 2.2.2.
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Definition 2.2.3. A presheaf (𝑋 )𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf if for all 𝑈 ∈ (𝑋 ) and all 𝑈 = ⋃
𝑖∈𝐼
𝑈𝑖

open cover of 𝑈 the diagram below is an equalizer in 𝑆𝑒𝑡

𝐹(𝑈 ) ∏
𝑖∈𝐼
𝐹(𝑈𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑈𝑖 ∩ 𝑈𝑗)

𝑒
𝑝

𝑞

where:

1. 𝑒(𝑡) = {𝑡|𝑈𝑖 | 𝑖 ∈ 𝐼 }, 𝑡 ∈ 𝐹(𝑈 )

2. 𝑝((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑖|𝑈𝑖∩𝑈𝑗 )(𝑖,𝑗)∈𝐼×𝐼
𝑞((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑗|𝑈𝑖∩𝑈𝑗 )(𝑖,𝑗)∈𝐼×𝐼 , (𝑡𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑈𝑘)

The essence of this thesis is to analyze this definition in-depth, specifically, what is
the role of the intersection and what we have to change if we replace it by more general
operations.

Note that in the above definition, we did not use the points of the topological space,
that is, only their localic structure was necessary:

Definition 2.2.4. A locale (𝐿,≤) is a complete lattice such that

𝑎 ∧ (⋁
𝑖∈𝐼
𝑏𝑖) = ⋁

𝑖∈𝐼
(𝑎 ∧ 𝑏𝑖), ∀𝑎, 𝑏𝑖 ∈ 𝐿.

Locales coincide with complete Heyting algebras2. The poset of all open sets of a
topological space 𝑋 is a locale where the supremum is the union and the infimum in the
intersection.

So for any locale 𝐿, viewed as poset category, we have

Definition 2.2.5. A presheaf 𝐹 ∶ 𝐿𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf on  if for all 𝑈 ∈ 𝐿 and all
𝑈 = ⋁𝑖∈𝐼 𝑈𝑖 a cover of 𝑈 the diagram below is an equalizer in 𝑆𝑒𝑡

𝐹(𝑈 ) ∏
𝑖∈𝐼
𝐹(𝑈𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑈𝑖 ∧ 𝑈𝑗)

𝑒
𝑝

𝑞

where:

1. 𝑒(𝑡) = {𝑡|𝑈𝑖 | 𝑖 ∈ 𝐼 }, 𝑡 ∈ 𝐹(𝑈 )

2. 𝑝((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑖|𝑈𝑖∧𝑈𝑗 )(𝑖,𝑗)∈𝐼×𝐼
𝑞((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑗|𝑈𝑖∧𝑈𝑗 )(𝑖,𝑗)∈𝐼×𝐼 , (𝑡𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑈𝑘)

A morphism between sheaves is a natural transformation and then we obtain the
category of sheaves on 𝐿, denoted by 𝑆ℎ(𝐿). The category of sheaves on a topological
space is denoted by 𝑆ℎ(𝑋 ) as an abbreviation of 𝑆ℎ((𝑋 )).

In the above, we replaced the union with the join ⋁ and the intersection with the meet
operation ∧, which probably does not generate any discomfort. However, it is not clear

2 The class of all Heyting algebras provides the natural algebraic semantics for the intuitionistic propositional
logic, that is the “constructive fragment” of the classical propositional logic.
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what is the meaning of a cover in this localic context. The cover of an element 𝑈 in 𝐿 is a
collection {𝑈𝑖 ∈ 𝐿 ∶ ⋁𝑖∈𝐼 𝑈𝑖 = 𝑈 }. In the next section, we will see that this is a cover in
the sense of a Grothendieck (pre)topology.

When we finish the preliminaries our first step will be to introduce sheaves on quantales
— a complete lattice that generalizes locales by considering an associative binary operation
(that is not necessarily the meet operation) that distributes over the join. In the equalizer
diagram we will replace the meet by such more general associative operation and use the
same notion of a cover, however, for quantales, this will no longer be a cover in the sense
of a Grothendieck pretopology.

Now, we present a simple but instructive example of a sheaf. The power of sheaf theory
is due to its ability in providing machinery to solve global problems by resolving them
locally. This is more easily understood for the locale of open subsets of a topological space
𝑋 and the classical example of the sheaf of continuous functions: consider the functor
R that takes open subsets 𝑈 of 𝑋 and sends it to the set R(𝑈 ) = {𝑓 ∶ 𝑈 → R | 𝑓 is a
continuous function}. The restriction maps are given by restrictions, that is, if 𝑉 ⊆ 𝑈 is
an open subset, the restriction map takes a continuous function 𝑓 ∶ 𝑈 → R and sends it
to the restriction 𝑓|𝑉 ∶ 𝑉 → R, which still is a continuous function. It is straightforward
to check that R is a presheaf. Besides, since 𝑓𝑖(𝑥) = 𝑓𝑗(𝑥), ∀𝑥 ∈ 𝑈𝑖 ∩ 𝑈𝑗 , there is a unique
function 𝑓 such that 𝑓|𝑈𝑖 = 𝑓𝑖, given by 𝑓 (𝑥) = 𝑓𝑖(𝑥), for all 𝑥 ∈ 𝑈𝑖. The continuity of the
𝑓𝑖’s implies the continuity of the gluing 𝑓 , so 𝑓 ∈ R(𝑈 ). Analogously, the presheaves of
differential, smooth, or analytic functions are sheaves [Ten75]. By this, we observe that
sheaves are tools to track when local properties (as continuity) still holds globally.

Next, we will introduce the objects of a category that is equivalent to the category of
sheaves.

Definition 2.2.6. A 𝐿-set is a pair (𝐴, 𝛿) where 𝐴 is a set and 𝛿 ∶ 𝐴 × 𝐴 → 𝐿 is a function
satisfying

𝛿(𝑎, 𝑏) = 𝛿(𝑏, 𝑎)
𝛿(𝑎, 𝑏) ∧ 𝛿(𝑏, 𝑐) ≤ 𝛿(𝑎, 𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐴

The idea is that an 𝐿-set is a fuzzy set with values in a locale [Bar86], where 𝛿(𝑎, 𝑎)
measures the degree of existence of 𝑎 and 𝛿(𝑎, 𝑏) measure to which extent 𝑎 and 𝑏 are
equal.

Example 2.2.7. Let 𝑋 be a topological space. Consider 𝐴 = {𝑓 ∶ 𝑈 → ℝ |𝑈 ∈ (𝑋 )}. Define
𝛿(𝑓 , 𝑓 ) = 𝑑𝑜𝑚(𝑓 ) and 𝛿(𝑓 , 𝑔) = 𝑖𝑛𝑡{𝑊 ∈ 𝛿(𝑓 , 𝑓 ) ∩ 𝛿(𝑔, 𝑔) | 𝑓|𝑊 = 𝑔|𝑊 }, where 𝑖𝑛𝑡(𝑆) is the
interior operator of 𝑆, that is, 𝑖𝑛𝑡(𝑆) = ⋃{𝑈 ∈ (𝑋 ) | ∀𝑉 ∈ (𝑋 ), 𝑈 ⊆ 𝑉 implies 𝑉 ∈ 𝑆}.

There are two notions of morphisms between 𝐿-set: relational and functional, forming
the categories 𝐿− 𝑠𝑒𝑡 𝑟𝑒𝑙 and 𝐿− 𝑠𝑒𝑡𝑓 𝑢𝑛𝑐, respectively. On one hand, relational morphisms are
more difficult to describe but they have the interesting feature of providing an equivalence
𝑆ℎ(𝐿) ≃ 𝐿 − 𝑠𝑒𝑡 𝑟𝑒𝑙. On the other hand, functional morphisms are easier to describe but if
we want an equivalence with the category of sheaves, then we need to consider complete
𝐿-sets. Denoting the category of complete 𝐿−𝑠𝑒𝑡𝑠 with functional morphisms by 𝐿−𝑠𝑒𝑡𝑓 𝑢𝑛𝑐𝑐𝑜𝑚𝑝𝑙,
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we have equivalences

𝑆ℎ(𝐿) ≃ 𝐿 − 𝑠𝑒𝑡 𝑟𝑒𝑙 ≃ 𝐿 − 𝑠𝑒𝑡 𝑟𝑒𝑙𝑐𝑜𝑚𝑝𝑙 ≃ 𝐿 − 𝑠𝑒𝑡𝑓 𝑢𝑛𝑐𝑐𝑜𝑚𝑝𝑙

In light of such equivalences, some authors may refer to 𝐿-sets as sheaves. This occurs
especially in the literature about sheaves on quantales: the first step usually goes towards
a generalization of 𝐿-sets rather than sheaves on 𝐿. We introduced the notion of 𝐿-sets to
clarify that in this thesis we are more concerned with a generalization of sheaves on 𝐿, and
the reader may find much more about the 𝐿-sets in [Bor94c], [FS79], and [Hig84].

2.3 Grothendieck Pretopologies and Sheaves on a
Site

In 1955, Jean-Pierre Serre introduced sheaf theory in algebraic geometry with coherent
sheaves [Ser55], but the outstanding applications of sheaf theory into algebraic geometry
emerged with a generalization of sheaves proposed by Grothendieck. Roughly speaking,
the idea was that schemes should admit a cover in a way similar to the cover of topological
spaces. In this section, we briefly introduce Grothendieck pretopologies and the respective
generalized notion of a sheaf.

Suppose  is a small category with finite limits (or just with pullbacks).

Definition 2.3.1. A Grothendieck pretopology on  associates to each object 𝑈 of  a set
𝐾(𝑈 ) of families of morphisms {𝑈𝑖 → 𝑈 }𝑖∈𝐼 satisfying some rules:

1. The singleton family {𝑈 ′ 𝑓
−→ 𝑈 }, formed by an isomorphism 𝑓 ∶ 𝑈 ′ ≅→ 𝑈 , is in 𝐾(𝑈 );

2. If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐾(𝑈 ) and {𝑉𝑖𝑗

𝑔𝑖𝑗−−→ 𝑈𝑖}𝑗∈𝐽𝑖 is in 𝐾(𝑈𝑖) for all 𝑖 ∈ 𝐼 , then {𝑉𝑖𝑗
𝑓𝑖◦𝑔𝑖𝑗−−−→

𝑈 }𝑖∈𝐼 ,𝑗∈𝐽𝑖 is in 𝐾(𝑈 );

3. If {𝑈𝑖 → 𝑈 }𝑖∈𝐼 is in 𝐾(𝑈 ), and 𝑉 → 𝑈 is any morphism in , then the family of pullbacks
{𝑉 ×𝑈 𝑈𝑖 → 𝑉 } is in 𝐾(𝑉 ).

Remark 2.3.2. Some authors also call the above of a basis for a Grothendieck topology.
We believe such nomenclature is better in a context where the Grothendieck topology has a
fundamental role. In this thesis we focus on the basis, i.e., on the Grothendieck pretopologies,
and the word “basis” will be used in a different context.

The families 𝐾(𝑈 ) are called covering families and the pair (, 𝐾) is called site.
Grothendieck pretopologies provide a notion of covering in non-topological contexts,
and covers of topological spaces are an example of a Grothendieck pretopology:

Example 2.3.3. An object in (𝑋 ) is an open set 𝑈 in 𝑋 and the morphisms in (𝑋 ) are
inclusions of open subsets of 𝑋 , the pullback in this category is given by the intersection of
open subsets. Thus we define a Grothendieck pretopology 𝐾 in (𝑋 ) by

{𝑈𝑖
𝑓𝑖
↪ 𝑈 }𝑖∈𝐼 ∈ 𝐾(𝑈 ) ⟺ 𝑈 = ⋃

𝑖∈𝐼
𝑈𝑖.
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An isomorphism 𝑉 → 𝑈 in (𝑋 ) means that 𝑉 = 𝑈 , so the first axiom is satisfied. For the
second, notice that 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 = ⋃𝑖∈𝐼 ⋃𝑗∈𝐽𝑖 𝑉𝑖𝑗 = ⋃𝑖∈𝐼 ,𝑗∈𝐽𝑖 𝑉𝑖𝑗 . Finally, the third axiom holds
because for any 𝑉 ⊆ 𝑈 , 𝑉 = 𝑉 ∩ 𝑈 = 𝑉 ∩ (⋃𝑖∈𝐼 𝑈𝑖) = ⋃𝑖∈𝐼 (𝑉 ∩ 𝑈𝑖). The verification is the
same for any locale 𝐿.

Now we have all the ingredients that we need to define sheaves on a category with
pullbacks:

Definition 2.3.4. A presheaf 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf for the Grothendieck pretopology
𝐾(𝑈 ) = {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 if the following diagram is an equalizer in 𝑆𝑒𝑡:

𝐹(𝑈 ) ∏
𝑖∈𝐼
𝐹(𝑈𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑈𝑖 ×𝑈 𝑈𝑗)

𝑒
𝑝

𝑞

where

1. 𝑒(𝑓 ) = {𝐹(𝑓𝑖)(𝑡) | 𝑖 ∈ 𝐼 }, 𝑓 ∈ 𝐹(𝑈 )

2. 𝑝((𝑓𝑘)𝑘∈𝐼 ) = (𝐹(𝜋1
𝑖𝑗)(𝑓𝑖))(𝑖,𝑗)∈𝐼×𝐼

𝑞((𝑓𝑘)𝑘∈𝐼 ) = (𝐹(𝜋2
𝑖𝑗)(𝑓𝑗))(𝑖,𝑗)∈𝐼×𝐼 , (𝑓𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑈𝑘)

with 𝜋1
𝑖,𝑗 ∶ 𝑈𝑖 ×𝑈 𝑈𝑗 → 𝑈𝑖 is the projection in the first coordinate and 𝜋2

𝑖,𝑗 ∶ 𝑈𝑖 ×𝑈 𝑈𝑗 → 𝑈𝑗 is
the projection in the second coordinate.

The problem with this definition is that distinct pretopologies can provide the same
class of sheaves. For instance, if ⋃𝑖∈𝐼 𝑈𝑖 = 𝑈 is an open cover of the open subset 𝑈 ⊆ 𝑋 ,
for any 𝑉 ⊆ 𝑈𝑗 , for some 𝑗 ∈ 𝐼 , we have 𝑉 ∪⋃𝑖∈𝐼 𝑈𝑖 = 𝑈 . To solve this problem, covering
sieves are used to replace the role of the pullback and then Grothendieck topologies are
defined.

Definition 2.3.5. Let 𝑈 be an object in a small category , a sieve on 𝑈 is a collection 𝑆 of
morphisms 𝑓 with codomain 𝑈 such that 𝑓 ◦ 𝑔 ∈ 𝑆, for all morphism 𝑔 with 𝑑𝑜𝑚(𝑓 ) = 𝑐𝑜𝑑(𝑔).

Now, we define the collection that plays the same role as the pullback in the third
axiom of a Grothendieck pretopology so that  does not need to actually have pullbacks.
Given ℎ ∶ 𝑉 → 𝑈 , define

ℎ∗(𝑆) = {𝑔 ∣ 𝑐𝑜𝑑(𝑔) = 𝑉 , ℎ ◦ 𝑔 ∈ 𝑆}.

Definition 2.3.6. A Grothendieck topology in  associates each object 𝑈 of  to a collection
𝐽 (𝑈 ) of sieves on 𝑈 such that:

1. The maximal sieve on 𝑈 , {𝑓 ∣ 𝑐𝑜𝑑(𝑓 ) = 𝑈 }, is in 𝐽 (𝑈 );

2. If 𝑅 and 𝑆 are sieves on 𝑈 , 𝑆 is in 𝐽 (𝑈 ) and ℎ∗(𝑅) is in 𝐽 (𝑉 ) for all ℎ ∶ 𝑉 → 𝑈 in 𝑆,
then 𝑅 is in 𝐽 (𝑈 );

3. If 𝑆 is in 𝐽 (𝐶), then ℎ∗(𝑆) is in 𝐽 (𝑉 ) for all ℎ ∶ 𝑉 → 𝑈 .

The pair (, 𝐽 ) formed by a category  and a Grothendieck topology 𝐽 is also called site.
We can define sheaves for Grothendieck topologies and obtain a sheaf category 𝑆ℎ(, 𝐽 ),
where the morphisms are given by natural transformations. Moreover, pretopologies and
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topologies are intimately related: If 𝐾 is a Grothendieck pretopology, then 𝐾 generates a
topology 𝐽 by

𝑆 ∈ 𝐽 (𝑈 ) ⟺ ∃𝑅 ∈ 𝐾(𝑈 ) s.t. 𝑅 ⊆ 𝑆

Then a presheaf 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf for the Grothendieck pretopology 𝐾 iff it is a sheaf
for the generated Grothendieck topology 𝐽 [MM92, Chapter III.4, Proposition 1].

Definition 2.3.7. A Grothendieck topos is a category that is equivalent to 𝑆ℎ(, 𝐽 ), for some
site.

Then 𝑆ℎ(𝐿) = 𝑆ℎ(, 𝐽 ) is a Grothendieck topos where  = 𝐿 is a locale and 𝐽 is the
Grothendieck topology generated by the pretopology

{𝑈𝑖
𝑓𝑖
↪ 𝑈 }𝑖∈𝐼 ∈ 𝐾(𝑈 ) ⟺ 𝑈 = ⋁

𝑖∈𝐼
𝑈𝑖.

Nevertheless, pretopologies are good enough to develop sheaf cohomology, and, in
this thesis, we only generalize the Grothendieck pretopologies. Later, in Chapter 5, we
indicate the steps for future work towards a generalization of Grothendieck toposes.

Remark 2.3.8. Why “toposes” and not “topoi”? To answer this we quote Colin McLarty in
[McL90]:

“Notice as a point of orthography that ’topos’ is a French word, formed from
’topologie’ and not a Greek word. In writing, Grothendieck always forms the
plural according to the French rule for words ending in ’s’, so it is invariant – ’les
topos’. So the English plural ought to follow the English rule – ’toposes’ ”.

We add that the Portuguese rule for words ending in ’s’ is also invariant and so I advocate
that in Portuguese we should also use ’topos’ even in the plural form.

We end this section with considerations about the sheafification functor, which is the
process of taking a presheaf and making it become a sheaf.

Definition 2.3.9. Let 𝑃 be a presheaf and 𝑅 a sieve of 𝐶 in . A compatible family for 𝑆
of elements in 𝑃 is a map that sends each element 𝑓 ∶ 𝐷 → 𝐶 of 𝑅 into 𝑥𝑓 in 𝑃(𝐷) such that:

𝑃(𝑔)(𝑥𝑓 ) = 𝑥𝑓 ◦𝑔 , for all 𝑔 ∶ 𝐸 → 𝐷 in .

Consider 𝐶𝑜𝑚𝑝(𝑅, 𝑃) the set of compatible families of a sieve 𝑅.

Definition 2.3.10. Let 𝑃 be a presheaf on a category . Define

𝑃+ = lim−−→
𝑅∈𝐽 (𝐶)

𝐶𝑜𝑚𝑝(𝑅, 𝑃)

Note that a morphism of presheaves 𝜙 ∶ 𝑃 → 𝑄 induces a map 𝜙+ ∶ 𝑃+ → 𝑄+,
where 𝑄+ = lim−−→

𝑅∈𝐽 (𝐶)

𝐶𝑜𝑚𝑝(𝑅, 𝑄), since it induces a morphism on the compatible families

𝜙′ ∶ 𝐶𝑜𝑚𝑝(𝑅, 𝑃) → 𝐶𝑜𝑚𝑝(𝑅, 𝑄), {𝑥𝑓 }𝑓 ↦ {𝜙(𝑥𝑓 )}𝑓 . It is possible to prove that (−)+ is a
functor, called plus construction or semi-sheafification functor. The sheafification is defined
by applying (−)+ twice.
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Definition 2.3.11. The sheafification functor 𝑎 ∶ 𝑃𝑆ℎ() → 𝑆ℎ(, 𝐽 ) is defined by

𝑎(𝑃) = (𝑃+)+

It is known that 𝑎 ∶ 𝑃𝑆ℎ() → 𝑆ℎ(, 𝐽 ) is a left adjoint functor of the inclusion 𝑖 ∶
𝑆ℎ(, 𝐽 ) → 𝑃𝑆ℎ() that preserves all finite limits. In other words, 𝑎 if the left exact reflector
of 𝑖. Moreover, Grothendieck toposes are precisely the left exact reflective subcategories
of a presheaf category [Bor94c, Corollary 3.5.5].

We will see that the plus construction will not work in our case and that it does not
preserve all finite limits since our sheaves may not provide a Grothendieck topos.

2.4 Sheaf Cohomology

To talk about sheaf cohomology we do not work with sheaves as presented above but
in sheaves of abelian groups or sheaves of rings, that is, sheaves with values in 𝐴𝑏 or
𝐶𝑅𝑖𝑛𝑔 , instead of 𝑆𝑒𝑡. It is known that such sheaves form abelian categories with enough
injective objects. The reader may consult the definitions in [Wei94] and [Bor94b], here we
only observe that having an abelian category with enough injective objects gives enough
structure to define (co)homology as right/left derived functors of a left/right exact functor.
This is true even for the “abelian form” of Grothendieck toposes, as one may check in
[Gro63], [Joh77], on in our survey [TM21] about sheaf cohomology.

In this section, we only briefly introduce sheaf cohomology for sheaves on a topological
space.

For every sheaf 𝐹 in 𝑆ℎ𝐴𝑏(𝑋 ) and 𝑈 open set of 𝑋 , we have the abelian group of
sections of 𝐹 over 𝑈 defined by

Γ(𝑈 , 𝐹) = 𝐹(𝑈 ).

Sections over 𝑋 are called global sections.

Definition 2.4.1. The global section functor is a functor Γ(𝑋,−) ∶ 𝑆ℎ𝐴𝑏(𝑋 ) → 𝐴𝑏 that
sends an abelian sheaf to its global section abelian group

Since the global section functor is a left exact functor, we define the 𝑞-th cohomology
group of 𝑋 with coefficients in 𝐹 by the 𝑞-th right derived functor of Γ(𝑋, 𝐹). In other
words, given an injective resolution 𝐹 → 𝐼 ∙, we have

𝐻 𝑞(𝑋, 𝐹) = 𝑅𝑞Γ(𝑋, 𝐼 ∙).

The above definition is not the best option if we want to calculate the cohomology
groups but there is a technique to do so, which is called Čech cohomology: fix an abelian
sheaf 𝐹 on 𝑋 and consider  = (𝑈𝑖)𝑖∈𝐼 an open cover of 𝑋 . For each 𝑞 ∈ N, we consider
the Čech nerve, which is 𝑈𝑖0,...,𝑖𝑞 = 𝑈𝑖0 ∩ ... ∩ 𝑈𝑖𝑞 for 𝑖0, ..., 𝑖𝑞 ∈ 𝐼 . Then
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Definition 2.4.2. The Čech cochain complex is

𝐶𝑞( , 𝐹) = ∏
𝑖0,...,𝑖𝑞

𝐹(𝑈𝑖0,...,𝑖𝑞 ), ∀𝑞 ≥ 0,

and its coboundary morphisms 𝑑𝑞 ∶ 𝐶𝑞( , 𝐹) → 𝐶𝑞+1( , 𝐹) are

(𝑑𝑞𝛼) =
𝑞+1

∑
𝑘=0

(−1)𝑘𝛼(𝛿𝑘)||𝑈𝑖0 ,...,𝑖𝑞+1

where 𝛿𝑘 is used to indicate that we are removing 𝑖𝑘, i.e., 𝛼(𝛿𝑘) = 𝛼𝑖0,...,𝑖𝑘 ,...,𝑖𝑞+1 .

A straightforward verification shows that 𝑑𝑞+1 ◦ 𝑑𝑞 = 0 so, indeed, this is a cochain
complex and we can define the 𝑞-th Čech cohomology group of 𝐹 with respect to the
covering  by

Ȟ𝑞( , 𝐹) = 𝐾𝑒𝑟(𝑑𝑞)/𝐼𝑚(𝑑𝑞−1).

Proposition 2.4.3. Let 𝐹 be an abelian sheaf on 𝑋 , and  = (𝑈𝑖)𝑖∈𝐼 a covering of 𝑋 . There
is a canonical morphism 𝑘𝑞 ∶ Ȟ𝑞( , 𝐹) → H𝑞(𝑋, 𝐹) natural and functorial in 𝐹 for each
𝑞 ∈ N.

Proof. [Har77, Lemma III 4.4].

So the sheaf cohomology we defined using derived functors is connected with Čech
cohomology of a covering with coefficients in a sheaf. Now, we want to improve the Čech
cohomology groups so that they are defined for 𝑋 and not only for a given covering
in 𝑋 . To this end we introduce the idea of refinement of coverings: Let  = (𝑉𝑗)𝑗∈𝐽
be another covering of 𝑋 . We say that  = (𝑈𝑖)𝐼∈𝐼 is a refinement of  if there is a
function 𝑟 ∶ 𝐼 → 𝐽 and a morphisms 𝑈𝑖 → 𝑉𝑟(𝑖), for all 𝑖 ∈ 𝐼 . Choose any function
𝑟 ∶ 𝐼 → 𝐽 such that 𝑈𝑖 ⊆ 𝑉𝑟(𝑖), 𝑖 ∈ 𝐼 ; then there is a induced morphism of cochain complexes
𝑚𝑟 ∶ 𝐶∙( , 𝐹) → 𝐶∙( , 𝐹) and a corresponding morphism of Čech cohomology groups
w.r.t. the coverings  and  , �̌�𝑟 ∶ Ȟ∙( , 𝐹) → Ȟ∙( , 𝐹). Moreover, if 𝑠 ∶ 𝐼 → 𝐽 is another
chosen function w.r.t. the refinement of  by  , then the induced morphisms of complexes
𝑚𝑟 , 𝑚𝑠 are homotopic, thus there is a unique induced morphism of cohomology groups3

�̌� , ∶ Ȟ∙( , 𝐹) → Ȟ∙( , 𝐹).

The class 𝑅𝑒𝑓 (𝑋 ) of all coverings of 𝑋 is partially ordered with order relation given
by the refinement, and the construction above is functorial:

• �̌� , = 𝑖𝑑 ∶ Ȟ∙( , 𝐹) → Ȟ∙( , 𝐹);

• If  = (𝑊𝑘)𝑘∈𝐾 is a covering of 𝑋 such that  is a refinement of  , then �̌� , =
�̌� , ◦ �̌� , ∶ Ȟ∙( , 𝐹) → Ȟ∙( , 𝐹).

Definition 2.4.4. The Čech cohomology group of an element of 𝑋 with coefficient in a

3 It is a classic result in homological algebra that (co)chain maps which are homotopic induce equal maps on
(co)homology.
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sheaf 𝐹 is the directed (co)limit

Ȟ∙(𝑋, 𝐹) ∶= lim−−→
 ∈𝑅𝑒𝑓 (𝑋 )

Ȟ∙( , 𝐹).

The main general result concerning Čech cohomology provides the following relation
between the Čech cohomology of 𝑋 and the sheaf cohomology of 𝑋 :

Theorem 2.4.5. The canonical morphisms 𝑘𝑞 ∶ Ȟ𝑞( , 𝐹) → H𝑞(𝑋, 𝐹), 𝑞 ∈ N, accord-
ing notation in Proposition 2.4.3, are compatible under refinement. Moreover, the induced
morphism on colimit

𝑘𝑞 ∶ Ȟ𝑞(𝑋, 𝐹) → H𝑞(𝑋, 𝐹), 𝑞 ∈ N,

is an isomorphism if 𝑞 ≤ 1 and a monomorphism if 𝑞 = 2.

Proof. Proved in [Joh77, Theorem 8.27] in the more general case of Grothendieck toposes.

Furthermore, under mild geometrical hypothesis on the topological space 𝑋 (for in-
stance, if 𝑋 is a Hausdorff paracompact space4), then the canonical morphisms 𝑘𝑞 are
isomorphisms for all 𝑞 ≥ 0. Thus, there is a large class of topological spaces 𝑋 in which the
Čech cohomology and sheaf cohomology coincide. Now, we present two examples of how
sheaf theory connects with other areas of Mathematics through the use of cohomological
methods.

Given a topological space 𝑋 , and a set 𝐾 , the constant presheaf with values in 𝐾 can be
transformed into a constant sheaf with values in 𝐾 by the sheafification process. If 𝐾 is the
underlying set of an abelian group such as R, the additive group of real numbers, and the
topological space is a compact manifold 𝑀 of dimension 𝑚 and class at least 𝑚+1, there
is an isomorphism 𝐻 𝑞

𝑑𝑅(𝑀) ≅ �̌� 𝑞(𝑀,R), for all 𝑞 ≤ 𝑚, where 𝐻 𝑞
𝑑𝑅 denotes the de Rham

cohomology groups [Pet06, Appendix]. In the same vein, Čech cohomology and singular
cohomology are isomorphic for any topological space 𝑋 that is homotopically equivalent
to a CW-complex, and with the constant sheaf of an abelian group 𝐾 as coefficient. For
the reader that is not used with such cohomology theories, we note that both measures
some kind of obstruction. The de Rham cohomology measures the extent to which the
fundamental theorem of calculus fails in higher dimensions and on general manifolds
[Tao07], and singular homology measures the number of holes of 𝑋 and it is related to
singular cohomology by the universal coefficient theorem for cohomology.

As we mentioned at the beginning of this section, the above ideas can be replicated
in the contexts of Grothendieck toposes. Again, we will obtain interesting applications
in other areas of Mathematics: Let  be the slice category of schemes over a scheme

𝑋 , where the objects are étale morphisms 𝑆𝑝𝑒𝑐(𝑅)
𝑓
−→ 𝑋 , and, by abuse of notation, the

morphism 𝑓
𝜑
−→ 𝑔 are morphisms of schemes 𝑆𝑝𝑒𝑐(𝑅)

𝜑
−→ 𝑆𝑝𝑒𝑐(𝑅’) such that 𝑔 ◦ 𝜑 = 𝑓 .

The étale covers provide a Grothendieck pretopology and then we have sheaves on the
étale site. Étale cohomology is the sheaf cohomology for the étale site. Originally, it was

4 This holds for any CW-complex or any topological manifold.
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constructed to study algebraic geometry but in fields different of C and R. Currently, étale
cohomology has applications in representation theory of finite groups, number theory,
and 𝐾 -theory.

Other sites provide other cohomologies such as crystalline, Deligne, and flat cohomolo-
gies, and all are examples of Grothendieck topos cohomology. Therefore, sheaf cohomology
is a general framework in which we can talk about distinct cohomology theories.
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Chapter 3

Sheaves on Semicartesian
Quantales

Quantales are complete lattices that generalize locales, thus it is natural to wonder
how to define sheaves on them and we are not the first to approach such subject. For
idempotent quantales we have the following: in [BB86], sheaves on quantales are defined
with the goal of forming Grothendieck toposes. In [MS98], the sheaf definition preserves
an intimate relation with 𝑄-sets, an object introduced in the paper as a generalization of
Ω-sets, defined in [FS79], for Ω a complete Heyting algebra1. More recently, in [ASV08],
sheaves on idempotent quantales are functors that make a certain diagram an equalizer.
Besides it, an extensive work about sheaves on involutive quantales was recently studied
by Hans Heymans, Isar Stubbe [HS12], and Pedro Resende [Res12], for instance.

We will study sheaves on semicartesian quantales. Our approach is similar to the one
in [ASV08], in the sense that our sheaves are also described in terms of equalizers but our
sheaves and theirs are orthogonal in the sense we are dealing with orthogonal kinds of
quantales: every quantale that is simultaneously idempotent and semicartesian is a locale
(Proposition 3.1.6). Thus, the notions of sheaves coincide only in the localic case, which
is already well known (see Definition 2.2.5). As far as we know, there is only one paper
regarding sheaves on semicartesian/integral quantales, however, the definition resembles
more what should be a 𝑄-set [BC94].

3.1 Quantales
We begin this Chapter by introducing the definition of quantales and constructions

that will be useful to us in the following sections. In Section 4.3.2 we will investigate a
subobject classifier for the category 𝑆ℎ(𝑄) that we are constructing. As we will see, there is
class of commutative semicartesian quantales 𝑄 (called geometric quantales) that contains
the subclass of locales and such that 𝑆ℎ(𝑄) admits subobject classifier not for all but for a

1 Given a proper notion of morphisms of Ω-sets, the category of Ω-sets is equivalent to the category of
sheaves on Ω. We briefly explain this in 2.2.
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class of monomorphisms. In the current section, we also present examples of geometric
quantales.

Definition 3.1.1. A quantale 𝑄 is a complete lattice structure (𝑄,≤) with a semigroup
structure2 (𝑄,⊙) such that for all 𝑎 ∈ 𝑄 and {𝑏𝑖}𝑖∈𝐼 ⊆ 𝑄 the following distributive laws hold:

1. 𝑎 ⊙ (⋁
𝑖∈𝐼
𝑏𝑖) = ⋁

𝑖∈𝐼
(𝑎 ⊙ 𝑏𝑖)

2. (⋁
𝑖∈𝐼
𝑏𝑖) ⊙ 𝑎 = ⋁

𝑖∈𝐼
(𝑏𝑖 ⊙ 𝑎)

Remark 3.1.2. Note that:

1. In any quantale 𝑄 the multiplication is increasing in both entries, where increasing in
the second entry means that given 𝑎, 𝑏, 𝑏′ ∈ 𝑄 such that 𝑏 ≤ 𝑏′, we have 𝑎 ⊙ 𝑏 ≤ 𝑎 ⊙ 𝑏′.
Indeed 𝑎 ⊙ 𝑏′ = 𝑎 ⊙ (𝑏 ∨ 𝑏′) = (𝑎 ⊙ 𝑏) ∨ (𝑎 ⊙ 𝑏′), thus 𝑎 ⊙ 𝑏 ≤ 𝑎 ⊙ 𝑏′.

2. Since the least element of the quantale 𝑄, here denoted by 0 (or ⊥), is also the supremum
of the emptyset, note that 𝑎 ⊙ 0 = 0 = 0 ⊙ 𝑎, ∀𝑎 ∈ 𝑄.

Similarly, a unital quantale is a structure (𝑄,≤, ⊙, 1), where (𝑄,⊙, 1) is a monoid. Note
that the associativity of ⊙ and the identity element provide a (strict) monoidal structure to
(𝑄,≤, ⊙, 1).

Example 3.1.3. (Quantales)

1. The extended half-line [0,∞] with order ≥, and the usual sum of real numbers as the
multiplication. Since the order relation is ≥, the top element is 0 and the bottom element
is ∞. This is the famous Lawvere quantale;

2. The extended natural numbers N ∪ {∞}, with the same quantalic structure of [0,∞];

3. The set (𝑅) of ideals of a commutative and unital ring 𝑅 with order ⊆, the inclusion
of ideals, and the multiplication as the multiplication of ideals. The supremum is the
sum of ideals, the top element is 𝑅 and the trivial ideal is the bottom;

4. The set (𝑅) of right (or left) ideals of an unital ring 𝑅 with the same order and
multiplication of the above example. Then the supremum and the top and the bottom
elements are also the same as (𝑅).

5. The set of closed right (or left) ideals of a unital 𝐶∗-algebra, the order is the inclusion
of closed right (or left) ideals, and the multiplication is the topological closure of the
multiplication of the ideals.

For more details and examples we recommend [Ros90b].

Definition 3.1.4. A quantale 𝑄 = (𝑄,≤, ⊙) is

1. commutative when (𝑄,⊙) is a commutative semigroup;

2. idempotent when 𝑎 ⊙ 𝑎 = 𝑎, for 𝑎 ∈ 𝑄;

3. right-sided when 𝑎 ⊙ ⊤ = 𝑎, for all 𝑎 ∈ 𝑄, where ⊤ is the top member of the poset;

2 That is, the binary operation ⊙ ∶ 𝑄 × 𝑄 → 𝑄 (called multiplication) is associative
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4. semicartesian when 𝑎 ⊙ 𝑏 ≤ 𝑎, 𝑏, for all 𝑎, 𝑏 ∈ 𝑄;

5. integral when 𝑄 is unital and 1 = ⊤.

The quantales [0,∞], ℕ ∪ {∞}, and (𝑅) are commutative and integral unital quantales.
The last example is neither commutative nor semicartesian but it is a right-sided quantale.
[Ros90b].

Remark 3.1.5. Note that:

1. A quantale (𝑄,≤, ⊙) is semicartesian iff 𝑎 ⊙ 𝑏 ≤ 𝑎 ∧ 𝑏, for all 𝑎, 𝑏 ∈ 𝑄.

2. Let 𝑄 be a unital quantale, then it is integral iff it is semicartesian. Indeed: suppose that
𝑄 is integral, since 𝑏 ≤ ⊤ we have 𝑎 ⊙ 𝑏 ≤ 𝑎 ⊙ ⊤ = 𝑎 ⊙ 1 = 𝑎, then 𝑄 is semicartesian;
conversely, suppose that 𝑄 is semicartesian, since ⊤ = ⊤ ⊙ 1 ≤ 1, then ⊤ = 1.

The following result explains why we claim that our sheaves are orthogonal to notions
of sheaves on idempotent quantales:

Proposition 3.1.6. Let 𝑄 be a semicartesian quantale, if 𝑄 is idempotent then the multipli-
cation is the infimum operation, in other words, 𝑄 is a locale.

Proof. Since 𝑄 is semicartesian, for any 𝑏, 𝑐 in 𝑄, 𝑏 ⊙ 𝑐 ≤ 𝑏, 𝑐. If 𝑄 is idempotent, for any
𝑎 ∈ 𝑄 such that 𝑎 ≤ 𝑏 and 𝑎 ≤ 𝑐 we have 𝑎 = 𝑎 ⊙ 𝑎 ≤ 𝑏 ⊙ 𝑐, because the multiplication is
increasing in both entries. So if 𝑄 is semicartesian and idempotent, by the transitivity of
the order relation:

𝑎 ≤ 𝑏 ⊙ 𝑐 ⟺ 𝑎 ≤ 𝑏 and 𝑎 ≤ 𝑐

Thus the multiplication satisfies the definition of the meet operation.

The above proposition is just a particular case of [nLa22b, Proposition 2.1]. Observing
that any notion of a sheaf on an idempotent and semicartesian quantale is equivalent
to a sheaf on a locale, which is a well-established object of study, it becomes clear that
the study of sheaves on semicartesian quantales is orthogonal to the study of sheaves on
idempotent quantales.

Construction of quantales:

1. Notice that given a family of quantales {𝑄𝑖 ∶ 𝑖 ∈ 𝐼 } the cartesian product ∏𝑖∈𝐼 𝑄𝑖
with component-wise order (i.e., (𝑎𝑖)𝑖 ≤ (𝑏𝑖)𝑖 ⟺ 𝑎𝑖 ≤ 𝑏𝑖, ∀𝑖 ∈ 𝐼 ) is a quantale.
Define ⋁𝑗∈𝐼 (𝑎𝑖𝑗)𝑖 = (⋁𝑗∈𝐼 𝑎𝑖𝑗)𝑖, ⋀𝑗∈𝐼 (𝑎𝑖𝑗)𝑖 = (⋀𝑗∈𝐼 𝑎𝑖𝑗)𝑖 and (𝑎𝑖)𝑖 ⊙ (𝑏𝑖)𝑖 = (𝑎𝑖 ⊙ 𝑏𝑖)𝑖. The
verifications are straightforward but we will check one of the distributive laws:

⋁
𝑗∈𝐼

(𝑎𝑖 ⊙ 𝑏𝑖𝑗)𝑖 = (⋁
𝑗∈𝐼

𝑎𝑖 ⊙ 𝑏𝑖𝑗)𝑖 = (𝑎𝑖 ⊙⋁
𝑗∈𝐼

𝑏𝑖𝑗)𝑖 = (𝑎𝑖)𝑖 ⊙⋁
𝑗∈𝐼

(𝑏𝑖𝑗)𝑖

It is easy to see that ∏𝑖∈𝐼 𝑄𝑖 is a semicartesian/commutative quantale whenever each
𝑄𝑖 is a semicartesian/commutative quantale.

2. If𝑄 is a commutative semicartesian quantale, it is straightforward to check that given
𝑒 ∈ 𝐼 𝑑𝑒𝑚(𝑄) and 𝑢 ∈ 𝑄 such that 𝑒 ≤ 𝑢, then the subset [𝑒, 𝑢] = {𝑥 ∈ 𝑄 ∶ 𝑒 ≤ 𝑥 ≤ 𝑢}
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is closed under ⋁ and ⊙, thus it determines an interval subquantale that is also
semicartesian and commutative.

An example of a semicartesian quantale that is not integral is constructed as follow:
let 𝑄 be a integral and not idempotent quantale. Given 𝑎 ∈ 𝑄 ⧵ 𝐼 𝑑𝑒𝑚(𝑄), then the interval
[⊥, 𝑎] is a non-unital semicartesian quantale.

Remark 3.1.7. Every commutative unital quantale 𝑄 can be associated to a closed monoidal
symmetric poset category 𝑄, where exists a unique arrow in 𝐻𝑜𝑚(𝑎, 𝑏) iff 𝑎 ≤ 𝑏. Note that
the product ∏, coproduct ∐, and tensor ⊗ are defined, respectively, by the infimum, ⋀, the
supreme ⋁, and the dot ⊙. The “exponential” is given by 𝑏𝑎 = ⋁{𝑐 ∈ 𝑄 ∶ 𝑎⊙ 𝑐 ≤ 𝑏}, where 𝑏𝑎
is an alternative notation for 𝑎 → 𝑏 or 𝑎\𝑏. This was mentioned in Section 2.1 with a slightly
different notation.

Now, we introduce an operation that sends elements of a commutative and semicarte-
sian quantale 𝑄 into an idempotent element in the locale 𝐼 𝑑𝑒𝑚(𝑄).

Definition 3.1.8. Let 𝑄 be a commutative and semicartesian quantale. We define

𝑞− ∶= ⋁{𝑝 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ 𝑝 ≤ 𝑞 ⊙ 𝑝}

Since𝑄 is semicartesian and commutative, note that 𝑝 ≤ 𝑞⊙𝑝 iff 𝑝 = 𝑞⊙𝑝 = 𝑝⊙𝑞.

Now, we list properties of (−)− ∶ 𝑄 → 𝐼 𝑑𝑒𝑚(𝑄).

Proposition 3.1.9. If 𝑄 is a commutative and semicartesian quantale, and {𝑞𝑖 ∶ 𝑖 ∈ 𝐼 } ⊆ 𝑄,
then

1. 0− = 0 and 1− = 1 (if 𝑄 is unital)

2. 𝑞− ≤ 𝑞

3. 𝑞− ⊙ 𝑞 = 𝑞−

4. 𝑞 = 𝑞− ⇔ 𝑞 ⊙ 𝑞 = 𝑞

5. 𝑞− ⊙ 𝑞− = 𝑞−

6. 𝑞− = 𝑚𝑎𝑥{𝑒 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ 𝑒 ≤ 𝑞}

7. 𝑞−− = 𝑞−

8. 𝑝 ≤ 𝑞 and 𝑥 ⊙ 𝑝 = 𝑥 , then 𝑥 ⊙ 𝑞 = 𝑥

9. 𝑝 ≤ 𝑞 ⇒ 𝑝− ≤ 𝑞− ⇔ 𝑝− ⊙ 𝑞− = 𝑝−

10. (𝑎 ⊙ 𝑏)− = 𝑎− ⊙ 𝑏−

11. 𝑞𝑗− ⊙⋁𝑖∈𝐼 𝑞𝑖 = 𝑞𝑗−

12. ⋁𝑖 𝑞−𝑖 ≤ (⋁𝑖 𝑞𝑖)−

Proof. 1. Straightforward.

2. If 𝑒 ∈ 𝐼 𝑑𝑒𝑚(𝑄) is such that 𝑒 ≤ 𝑞 ⊙ 𝑒, then 𝑒 ≤ 𝑞 ⊙ 𝑒 ≤ 𝑞, since 𝑄 is semicartesian.
Thus, by the definition of 𝑞− as a least upper bound, 𝑞− ≤ 𝑞.

3. Since multiplication distributes over arbitrary joins,

𝑞− ⊙ 𝑞 = ⋁{𝑝 ⊙ 𝑞 ∶ 𝑝 = 𝑞 ⊙ 𝑝, 𝑝 ∈ 𝐼 𝑑𝑒𝑚(𝑄)} = ⋁{𝑝 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ 𝑝 = 𝑞 ⊙ 𝑝} = 𝑞−

4. (⇒) From the previous item.

(⇐) By maximality, 𝑞 ≤ 𝑞−. Thus the result follows from item (2).
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5. Since multiplication distributes over arbitrary joins,

𝑞− ≥ 𝑞− ⊙ 𝑞− = ⋁{𝑝 ⊙ 𝑞−𝐼 𝑑𝑒𝑚(𝑄) ∶ 𝑝 ∈ 𝐼 𝑑𝑒𝑚(𝑄), 𝑝 = 𝑞 ⊙ 𝑝}

= ⋁{𝑝 ⊙ 𝑝′ ∶ 𝑝, 𝑝′ ∈ 𝐼 𝑑𝑒𝑚(𝑄), 𝑝 = 𝑞 ⊙ 𝑝, 𝑝′ = 𝑞 ⊙ 𝑝′}

≥ ⋁{𝑝 ⊙ 𝑝 ∶ 𝑝 ∈ 𝐼 𝑑𝑒𝑚(𝑄), 𝑝 = 𝑞 ⊙ 𝑝}

= ⋁{𝑝 ∶ 𝑝 ∈ 𝐼 𝑑𝑒𝑚(𝑄), 𝑝 = 𝑞 ⊙ 𝑝}

= 𝑞−

6. By items (2) and (5), 𝑞− ∈ {𝑒 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ 𝑒 ≤ 𝑞}. If 𝑒 ∈ 𝐼 𝑑𝑒𝑚(𝑄) is such that 𝑒 ≤ 𝑞,
then 𝑒 = 𝑒 ⊙ 𝑒 ≤ 𝑞 ⊙ 𝑒 ≤ 𝑒, thus 𝑒 = 𝑒 ⊙ 𝑞; then 𝑒 ≤ 𝑞−, by the definition of 𝑞− as a
l.u.b.

7. By item (2), 𝑞−− ≤ 𝑞−. On the other hand, by items (4) and (5) and the maximality
of 𝑞−−, we have 𝑞− ≤ 𝑞−−

.

8. Since 𝑥 = 𝑥 ⊙ 𝑝 ≤ 𝑥 ⊙ 𝑞 ≤ 𝑥 .

9. Suppose 𝑝 ≤ 𝑞. Then by items (3) and (8), 𝑝− ⊙ 𝑞 = 𝑝−.

By item (5), 𝑝− ∈ 𝐼 𝑑𝑒𝑚(𝑄) and, by maximality of 𝑞−, 𝑝− ≤ 𝑞−.

Since 𝑝−, 𝑞− ∈ 𝐼 𝑑𝑒𝑚(𝑄) (item (5)) then, by the argument in the proof of item (6), we
have 𝑝− ≤ 𝑞− iff 𝑝− ⊙ 𝑞− = 𝑝−.

10. Note that 𝑎−⊙𝑏− is an idempotent such that 𝑎−⊙𝑏−⊙𝑎⊙𝑏 = 𝑎−⊙𝑏−. So (𝑎⊙𝑏)− ≥
𝑎− ⊙ 𝑏−.

On the other hand, by item (9), (𝑎 ⊙ 𝑏)− ⊙ 𝑎− = (𝑎 ⊙ 𝑏)− = (𝑎 ⊙ 𝑏)− ⊙ 𝑏−. Then,
(𝑎 ⊙ 𝑏)− ⊙ (𝑎− ⊙ 𝑏−) = ((𝑎 ⊙ 𝑏)− ⊙ 𝑎−) ⊙ 𝑏− = (𝑎 ⊙ 𝑏)− ⊙ 𝑏− = (𝑎 ⊙ 𝑏)−. Thus
(𝑎 ⊙ 𝑏)− ≤ 𝑎− ⊙ 𝑏−.

11. Since 𝑞−𝑗 = 𝑞−𝑗 ⊙ 𝑞𝑗 ≤ 𝑞−𝑗 ⊙⋁𝑖∈𝐼 𝑞𝑖 ≤ 𝑞−𝑗 .

12. Since 𝑞𝑗 ≤ ⋁𝑖 𝑞𝑖, from item (9) we obtain 𝑞−𝑗 ≤ (⋁𝑖 𝑞𝑖)−, and then ⋁𝑗 𝑞−𝑗 ≤ (⋁𝑖 𝑞𝑖)−,
by sup definition.

Proposition 3.1.10. Let 𝑄 be a commutative and integral (unital) quantale. Consider the
inclusion map 𝑖 ∶ 𝐼 𝑑𝑒𝑚(𝑄) ↪ 𝑄 and the map (−)− ∶ 𝑄 → 𝐼 𝑑𝑒𝑚(𝑄) defined in 3.1.8, then:

1. (𝐼 𝑑𝑒𝑚(𝑄),⋁, ⊙, 1) is a locale and the inclusion map 𝑖 ∶ 𝐼 𝑑𝑒𝑚(𝑄) ↪ 𝑄 preserves ⊙,
sups and ⊤.

2. The map (−)− ∶ 𝑄 → 𝐼 𝑑𝑒𝑚(𝑄) preserves ⊙ and ⊤.

3. The adjunction relation (for posets) holds for each 𝑒 ∈ 𝑖𝑑𝑒𝑚(𝑄) and 𝑞 ∈ 𝑄

𝐻𝑜𝑚𝑄(𝑖(𝑒), 𝑞) ≅ 𝐻𝑜𝑚𝑖𝑑𝑒𝑚(𝑄)(𝑒, 𝑞−)
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Proof. 1. The sup of a set of idempotents is idempotent (in the same vein of the proof
of item (5) in the previous proposition). If 𝑓 , 𝑒, 𝑒′ ∈ 𝐼 𝑑𝑒𝑚(𝑄), then 𝑒 ⊙ 𝑒′ ≤ 𝑒, 𝑒′, since
𝑄 is semicartesian. Moreover, if 𝑓 ≤ 𝑒, 𝑒′, then 𝑓 = 𝑓 ⊙ 𝑓 ≤ 𝑒 ⊙ 𝑒′. Thus 𝑒 ⊙ 𝑒′ is the
greatest lower bound of 𝑒, 𝑒′ in 𝐼 𝑑𝑒𝑚(𝑄). The other claims are straightforward.

2. This is contained in items (1) and (10) of the previous proposition.

3. Since we are dealing with posets, it is enough to show that, for each 𝑞 ∈ 𝑄, 𝑒 ∈
𝐼 𝑑𝑒𝑚(𝑄),

𝑖(𝑒) ≤ 𝑞 ⟺ 𝑒 ≤ 𝑞−

If 𝑖(𝑒) ≤ 𝑞, then by item (6) in the previous proposition 𝑒 ≤ 𝑞−.

On the other hand, if 𝑒 ≤ 𝑞−, then by item (4) and the equivalence in the (9) in the
previous proposition 𝑒 = 𝑒 ⊙ 𝑞−. Then, by item (2), 𝑒 ≤ 𝑒 ⊙ 𝑞 ≤ 𝑞.

Definition 3.1.11. Let 𝐿𝑜𝑐 be the category of locales with morphisms that preserves finitary
infs and arbitrary sups, and 𝐶𝑆𝑄 the category of commutative semicartesian quantales with
morphisms that preserves sups and ⊤ satisfying that 𝑓 (𝑎 ⊙ 𝑏) ≥ 𝑓 (𝑎) ⊙ 𝑓 (𝑏).

The next proposition is analogous to the previous one, but for the category 𝐶𝑆𝑄 instead
of the poset category of commutative and semicartesian quantales.

Proposition 3.1.12. Consider inclusion functor 𝜄 ∶ 𝐿𝑜𝑐 ↪ 𝐶𝑆𝑄. Then:

1. The inclusion functor 𝜄 ∶ 𝐿𝑜𝑐 ↪ 𝐶𝑆𝑄 is full and faithful.

2. 𝑄 ↦ 𝐼 𝑑𝑒𝑚(𝑄) determines the right adjoint of the inclusion functor 𝜄 ∶ 𝐿𝑜𝑐 ↪ 𝐶𝑆𝑄,
where the inclusion 𝑖𝑄 ∶ 𝜄(𝐼 𝑑𝑒𝑚(𝑄)) ↪ 𝑄, is a component of the co-unity of the
adjunction.

Proof. 1. Recall that a locale is a commutative semicartesian quantale where ⊙ = ∧.
It is clear that 𝜄 is a well-defined and faithful functor. Let 𝐿, 𝐿′ be locales and 𝑓 ∶
𝜄(𝐿) → 𝜄(𝐿′) be a 𝐶𝑆𝑄-morphism: we must show that it preserves finitary infs. By
hypothesis, 𝑓 (𝑎 ∧ 𝑏) ≥′ 𝑓 (𝑎) ∧′ 𝑓 (𝑏). On the other hand, since 𝑓 preserves sups it is
increasing, and then 𝑓 (𝑎 ∧ 𝑏) ≤′ 𝑓 (𝑎) ∧′ 𝑓 (𝑏). Thus 𝑓 preserves binary infs and ⊤
(by hypothesis). Thus it preserves finitary infs.

2. By item (1) in the previous proposition, 𝑖𝑄 ∶ 𝜄(𝐼 𝑑𝑒𝑚(𝑄)) ↪ 𝑄 is a morphism that
preserves sups, ⊤ and ⊙. Let 𝐻 be a locale and 𝑓 ∶ 𝜄(𝐻 ) → 𝑄 be a 𝐶𝑆𝑄-morphism.
Let 𝑎 ∈ 𝐻 , then 𝑓 (𝑎) = 𝑓 (𝑎 ∧ 𝑎) = 𝑓 (𝑎) ⊙ 𝑓 (𝑎), thus 𝑓 (𝑎) ∈ 𝐼 𝑑𝑒𝑚(𝑄).

Moreover, 𝑓↾ ∶ 𝐻 → 𝐼 𝑑𝑒𝑚(𝑄) is a locale morphism, by item (1). Since 𝑖𝑄 is injective
𝑓↾ is the unique locale morphism 𝐻 → 𝐼 𝑑𝑒𝑚(𝑄) such that 𝑖𝑄 ◦ 𝜄(𝑓↾) = 𝑓 .

Observe that the last item follows the same idea of Lemma 2.2 in [nLa22b].
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Next, we explore other properties of the construction 𝑞 ↦ 𝑞− in a more specific class
of quantales.

Definition 3.1.13. We say that a (commutative, semicartesian) quantale 𝑄 is:

1. An Artinian quantale if each infinite descending chain 𝑞0 ≥ 𝑞1 ≥ 𝑞2 ≥ 𝑞3 ≥ … ,
stabilizes for some natural number 𝑛 ∈ ℕ, which may vary according to the chain.

2. A p-Artinian quantale if for each 𝑞 ∈ 𝑄, the infinite descending chain of powers of 𝑞,
𝑞1 ≥ 𝑞2 ≥ 𝑞3 ≥ … , stabilizes for some natural number 𝑛 ∈ ℕ ⧵ {0}, which may vary
according to the chain.

3. If there is a natural number 𝑛 ≥ 1 such that for all 𝑞 ∈ 𝑄 we have 𝑞𝑛 = 𝑞𝑛+1, then
we say that 𝑄 is uniformly p-Artinian. The least 𝑛 ∈ ℕ such that, for each 𝑞 ∈ 𝑄,
𝑞𝑛+1 = 𝑞𝑛 is called the degree of Q.

The following results are straightforward.

Remark 3.1.14. Let 𝑄 be a commutative and semicartesian quantale.

1. If 𝑄 is Artinian or uniformly p-Artinian, then 𝑄 is p-Artinian.

2. If 𝑄 is a p-Artinian quantale, 𝑞 ∈ 𝑄 and 𝑞𝑛+1 = 𝑞𝑛, then 𝑞− = 𝑞𝑛.

The example that motivates such terminology is the set of ideals of an Artinian com-
mutative unitary ring. Concerning this example, we add the following

Proposition 3.1.15. Let 𝐴 be a commutative unitary ring and consider 𝑄 = (𝐴) be its
quantale of all ideals. Consider:

1. (𝐴) is p-Artinian;

2. For each 𝑎 ∈ 𝐴, there is 𝑛 ∈ ℕ such that (𝑎)𝑛 = (𝑎)𝑛+1;

3. For each 𝑎 ∈ 𝐴, there is 𝑛 ∈ ℕ and 𝑏 ∈ 𝐴 that 𝑎𝑛 = 𝑏.𝑎𝑛+1. This means that 𝐴 is strongly
𝜋-regular.

4. Each prime proper ideal of 𝐴 is maximal;

5. 𝐴/𝑛𝑖𝑙(𝐴) is a von Neumann regular ring;

Then we have the following implications

1 ⟹ 2 ⟺ 3 ⟹ 4 ⟺ 5.

Moreover, if 𝐴 is a reduced ring (i.e. 𝑛𝑖𝑙(𝐴) = {0}), then all items above are equivalent
between them and also are equivalent to

6. (𝐴) is a uniformly p-Artinian quantale of degree 2.

Proof. 1 ⟹ 2 ∶ By the definition of p-Artinian.

2 ⟺ 3 ∶ Straightforward.

3 ⟹ 4 ∶ Let 𝑃 be a prime proper ideal and take 𝑎 ∉ 𝑃 . By 3, there is 𝑛 ∈ 𝐍 and 𝑏 ∈ 𝐴
such that 𝑎𝑛 − 𝑏𝑎𝑛+1 = 0. So 𝑎𝑛(1 − 𝑏𝑎) = 0. Since 𝑎𝑛 ∉ 𝑃 , and 𝑃 is prime, we have that
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𝑎𝑛(1 − 𝑏𝑎) ∈ 𝑃 . Then 1 ∈ 𝑃 +𝑅𝑎 and we obtain 𝐴 = 𝑃 +𝐴𝑎. In other words, every non-zero
element in 𝐴/𝑃 is invertible, which means that 𝐴/𝑃 is field and therefore 𝑃 is maximal.

4 ⟺ 5 This is stated in [Lam06, Exercise 4.15], where Krull dimension 0 means
precisely that all prime ideals are maximal ideals.

Now, suppose that (𝐴) is uniformly 𝑝-Artinian. This gives that (𝐴) is 𝑝-Artinian
and so we do not have to verify 1. We conclude the sequence of implications by showing
that 5 implies 2: we use that a ring is von Neumann regular iff every principal left ideal is
generated by an idempotent element. Since 𝐴 is commutative and 𝐴/𝑛𝑖𝑙(𝐴) = 𝐴 is von
Neumann regular, for each 𝑎 ∈ 𝐴 = 𝐴, (𝑎) = (𝑒) for some idempotent 𝑒 ∈ 𝐴. Therefore,
(𝑎)𝑛 = (𝑒)𝑛 = (𝑒)𝑛+1 = (𝑎)𝑛+1

Example 3.1.16. Since 𝐴 is a strongly (von Neumann) regular ring if and only if 𝐴 is a
reduced regular ring [Reg86, Remark 2.13], any reduced regular ring satisfies condition 3
(every regular ring is 𝜋-regular) so (𝐴) is an example of a uniformly p-Artinian quantale of
degree 2.

Remark 3.1.17. For commutative rings, strongly von Neumann regular is equivalent to von
Neumann regular.

Proposition 3.1.18. If 𝑄 is a uniformly p-Artinian quantale, and (𝐼 ,≤) is an upward directed
poset, then (⋁𝑖∈𝐼 𝑞−𝑖 ) = (⋁𝑖∈𝐼 𝑞𝑖)−.

Proof. The relation (⋁𝑖∈𝐼 𝑞−𝑖 ) ≤ (⋁𝑖∈𝐼 𝑞𝑖)− holds in general.

Now suppose that the degree of 𝑄 is 𝑛 ∈ ℕ. Then

(⋁
𝑖∈𝐼
𝑞𝑖)− = (⋁

𝑖∈𝐼
𝑞𝑖)𝑛 = ⋁

𝑖1,⋯𝑖𝑛∈𝐼
𝑞𝑖1 ⊙⋯ ⊙ 𝑞𝑖𝑛 .

But, since (⋁𝑖∈𝐼 𝑞𝑖) is an upward directed sup, for each 𝑖1,⋯ , 𝑖𝑛 ∈ 𝐼 , there is 𝑗 ∈ 𝐼 such that
𝑞𝑖1 ,⋯ , 𝑞𝑖𝑛 ≤ 𝑞𝑗 then

⋁
𝑖1,⋯,𝑖𝑛∈𝐼

𝑞𝑖1 ⊙⋯ ⊙ 𝑞𝑖𝑛 ≤ ⋁
𝑗∈𝐼

𝑞𝑛𝑗 = (⋁
𝑗∈𝐼

𝑞−𝑗 ).

Now, observe that the equality ⋁𝑖∈𝐼 𝑞−𝑖 = (⋁𝑖∈𝐼 𝑞𝑖)− holds, in general (i.e. for each sup)
for any locale, but not for any quantale.

Example 3.1.19. If 𝑄 = ℝ+ ∪ {∞} is the extended half-line presented in Example 3.1.3(1),
then all elements of 𝑄 are in the interval [0,∞]. There are only two idempotent elements in
this quantales, 0 and ∞. Since, in this case, the supremum is the infimum, and 0 ≥ 0 + 𝑞 if
and only if 𝑞 = 0, we have

𝑞− =

{
0, if 𝑞 = 0,
∞, if 𝑞 ∈ (0,∞]
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So, for a subset {𝑞𝑖 ∶ 𝑞𝑖 ≠ 0, ∀𝑖 ∈ 𝐼 } ⊆ 𝑄 then ⋁𝑖∈𝐼 (𝑞−𝑖 ) = ∞ but (⋁𝑖∈𝐼 𝑞𝑖)− may be zero or ∞
depending if the supremum (which is the infimum in the usual ordering) of 𝑞𝑖’s is zero or not.

Since some but not all quantales satisfies such equality, we provide a name for it.

Definition 3.1.20. Let 𝑄 be a commutative semicartesian quantale, we say 𝑄 is a geometric
quantale whenever ⋁𝑖∈𝐼 𝑞−𝑖 = (⋁𝑖∈𝐼 𝑞𝑖)−, for each {𝑞𝑖 ∶ 𝑖 ∈ 𝐼 } ⊆ 𝑄.

Locales satisfy, trivially, this geometric condition. Moreover

Example 3.1.21. The extended natural numbers presented in 3.1.3(2) is a geometric quantale.
We argue in 3.1.19 that the extended positive real numbers is not a geometric quantale because
(⋁𝑖∈𝐼 𝑞𝑖)− could be zero or ∞, for a subset {𝑞𝑖 ∶ 𝑞𝑖 ≠ 0, ∀𝑖 ∈ 𝐼 } ⊆ ℝ+ ∪ {∞}. However, we only
have (⋁𝑖∈𝐼 𝑞𝑖)− = ∞ when considering the subset {𝑞𝑖 ∶ 𝑞𝑖 ≠ 0, ∀𝑖 ∈ 𝐼 } ⊆ ℕ ∪ {∞}. Therefore,
ℕ ∪ {∞} is a geometric quantale.

Note that the poset of all ideals of a principal ideal domain is not a geometric quantale.
In particular, (ℕ, ⋅, ⊑), where 𝑎 ⊑ 𝑏 iff 𝑏 ∣ 𝑎, is not a geometric quantale.

We choose such terminology to indicate that under those conditions the operation (−)−
is a strong geometric morphism, whose definition we provide in Section 3.4 and it coincides
with the notion of a quantale (homo)morphism as defined for example in [Ros90a].

Moreover, we may construct geometric quantales from other geometric quan-
tales:

Proposition 3.1.22. The subclass of geometric quantales is closed under arbitrary products
and interval construction.

Proof. Given a family of quantales 𝑄 = {𝑄𝑖 ∶ 𝑖 ∈ 𝐼 } the cartesian product ∏𝑖∈𝐼 𝑄𝑖 with
component-wise order is a geometric quantale.

It follows from the fact that (−)− is component-wise. Indeed,

(𝑞𝑖)−𝑖 = ⋁{(𝑝𝑖)𝑖 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ (𝑝𝑖)𝑖 ≤ (𝑝𝑖)𝑖 ⊙ (𝑞𝑖)𝑖}

= ⋁{(𝑝𝑖)𝑖 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ 𝑝𝑖 ≤ 𝑝𝑖 ⊙ 𝑞𝑖, ∀𝑖 ∈ 𝐼 }

= (⋁{(𝑝𝑖 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ 𝑝𝑖 ≤ 𝑝𝑖 ⊙ 𝑞𝑖, ∀𝑖 ∈ 𝐼 })𝑖
= (𝑞−𝑖 )𝑖

Then

⋁
𝑗∈𝐼

(𝑞𝑖𝑗)−𝑖 = ⋁
𝑗∈𝐼

(𝑞−𝑖𝑗 )𝑖 = (⋁
𝑗∈𝐼

(𝑞−𝑖𝑗 )𝑖 = ((⋁
𝑗∈𝐼

𝑞𝑖𝑗)−)𝑖

We defined (−)− as a supremum and verified it is the best lower idempotent approxi-
mation, in the sense that 𝑞− is the maximum of idempotents 𝑒 such that 𝑒 ≤ 𝑞 (Proposition
3.1.9.6), or equivalently 𝑒 ⪯ 𝑞 (Remark 3.1.5.3) . Analogously, we are tempted to define an
operation (−)+ as an infimum and obtain that 𝑞+ is the minimum of idempotents 𝑒 such
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that 𝑞 ≤ 𝑒 (or, possibly, 𝑞 ⪯ 𝑒). To achieve this, we need double-distributive quantales,
which are quantales that satisfy the following additional distributive law, for 𝐼 ≠ ∅:

𝑎 ⊙ (⋀
𝑖∈𝐼
𝑏𝑖) = ⋀

𝑖∈𝐼
(𝑎 ⊙ 𝑏𝑖)

Examples of double-distributive quantales are: locales; the extended half-line [0,∞] and the
extended natural numbers ℕ ∪ {∞}; a subclass of the quantales of ideals of a commutative
and unital ring that is closed under quotients and finite products and contains the principal
ideal domains. Besides, double-distributive quantales are closed under arbitrary products
and interval construction.

For members 𝑢 ∈ 𝑄 of those quantales 𝑄, there is a more explicit construction of 𝑢− as
a transfinite power 𝑢𝛼 , where 𝛼 is an ordinal with cardinality ≤ cardinality of 𝑄.

Proposition 3.1.23. Let 𝑄 be a unital double distributive commutative and semicartesian
quantale. Given 𝑞 ∈ 𝑄, consider the transfinite chain of powers (𝑞𝛼)𝛼≥1 𝑜𝑟𝑑𝑖𝑛𝑎𝑙: 𝑞1 ∶= 𝑞;
𝑞𝛼+1 ∶= 𝑞𝛼 ⊙ 𝑞; if 𝛾 ≠ 0 is a limit ordinal, then 𝑞𝛾 ∶= ⋀𝛽<𝛾 𝑞𝛽

1. It is a descending chain;

2. It stabilizes for some ordinal 𝛼, 𝑞𝛽 = 𝑞𝛼 for each 𝛽 ≥ 𝛼, and 𝛼 < successor(𝑐𝑎𝑟𝑑(𝑄));

3. Moreover, if 𝑞𝛼 = 𝑞𝛼+1, then 𝑞− = 𝑞𝛼 .

Proof. 1. This follows directly by induction.

2. Suppose that the restriction of the descending chain to all ordinal 𝛾 with 1 ≤ 𝛿 ≤ 𝛼
is a strictly descending chain in 𝑄. Thus we have an injective function [1, 𝛼] →
𝑄, 𝛿 ↦ 𝑞𝛿 . Since 𝑐𝑎𝑟𝑑(𝛼) = 𝑐𝑎𝑟𝑑([1, 𝛼]), we must have 𝑐𝑎𝑟𝑑(𝛼) ≤ 𝑐𝑎𝑟𝑑(𝑄), then
𝛼 < successor(𝑐𝑎𝑟𝑑(𝑄)). Thus, in particular, there is a largest ordinal 𝛼 such that
(𝑞𝛿)1≤𝛿≤𝛼 is a strictly descending chain. Thus 𝑞𝛼+1 = 𝑞𝛼 and, by induction, 𝑞𝛽 = 𝑞𝛼
for each 𝛽 ≥ 𝛼.

3. Suppose that the transfinite descending chain stabilizes at 𝛼 (i.e. 𝑞𝛼+1 = 𝑞𝛼). So
𝑞𝛼 = 𝑞𝛼 ⊙ 𝑞𝛼 and 𝑞𝛼 = 𝑞𝛼+1 = 𝑞𝛼 ⊙ 𝑞 and 𝑞𝛼 = 𝑞𝛼 ⊙ 𝑞𝛼 . Thus 𝑞𝛼 is an idempotent
element such that 𝑞𝛼 ⪯ 𝑞 (in particular, 𝑞𝛼 ≤ 𝑞−). On the other hand, for any
idempotent 𝑝 ∈ 𝑄 such that 𝑝 ⪯ 𝑞 (i.e., 𝑝 = 𝑝 ⊙ 𝑞) we have, by induction 𝑝 ⪯ 𝑞𝛽 ,
for all ordinal 𝛽 ≥ 1: in the induction step for ordinal limits we have to use the
hypothesis that 𝑄 is double-distributive. So 𝑝 = 𝑝 ⊙ 𝑞𝛼 ≤ 𝑞𝛼 . Thus 𝑞𝛼 is the largest
idempotent (in the orders ≤ and ⪯) such that 𝑞𝛼 ⪯ 𝑞. Then, by Proposition 3.1.9(6),
𝑞− = 𝑞𝛼 .

Moreover, we can define a “best upper approximation”:

Definition 3.1.24. Let 𝑄 be a commutative and semicartesian quantale that is also unital
and "double-distributive". For each for 𝑞 ∈ 𝑄, define:

𝑞+ ∶= ⋀{𝑝 ∈ 𝑄 ∶ 𝑞 ≤ 𝑞 ⊙ 𝑝} = ⋀{𝑝 ∈ 𝑄 ∶ 𝑞 ⪯ 𝑝}.
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In this thesis we show the importance of a best lower idempotent approximation in
Section 4.3.2, to analyze a candidate of subobject classifier that actually only (essentially)
classifies a certain subclass of monomorphisms. In a recently submitted paper3 with Caio
de Andrade Mendes and Hugo Luiz Mariano as co-authors, we use a best upper idempotent
approximation to discuss another candidate of a subobject classifier and this one actually
classifies all monomorphisms. The drawback was the need to impose extra conditions on
the quantale to make the construction possible.

3.2 Sheaves on Quantales
The current most general and well-accepted form of a sheaf is a Grothendieck topos,

which arise from Grothendieck topologies but in this section we want to forget about
Grothendieck toposes for a moment and think only about sheaves on locales. Then, how
should we define sheaves on quantales? We propose the following answer for commutative
semicartesian quantales:

Definition 3.2.1. A presheaf 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf on 𝑄 when for all 𝑢 ∈ 𝑄 and all
𝑢 = ⋁𝑖∈𝐼 𝑢𝑖 cover of 𝑢 the following diagram is an equalizer in 𝑆𝑒𝑡

𝐹(𝑢) ∏
𝑖∈𝐼
𝐹(𝑢𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑢𝑖 ⊙ 𝑢𝑗)

𝑒
𝑝

𝑞

where:

1. 𝑒(𝑡) = {𝑡|𝑢𝑖 | 𝑖 ∈ 𝐼 }, 𝑡 ∈ 𝐹(𝑢)

2. 𝑝((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑖|𝑢𝑖⊙𝑢𝑗 )(𝑖,𝑗)∈𝐼×𝐼
𝑞((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑗|𝑢𝑖⊙𝑢𝑗 )(𝑖,𝑗)∈𝐼×𝐼 , (𝑡𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑢𝑘)

Morphisms between sheaves on quantales are natural transformations and we denote
the category of sheaves on quantales by 𝑆ℎ(𝑄). Notice that the maps 𝐹(𝑢𝑖) → 𝐹(𝑢𝑖 ⊙ 𝑢𝑗)
exist because 𝑢𝑖 ⊙ 𝑢𝑗 always is less or equal to 𝑢𝑖 and 𝑢𝑗 , for all 𝑖, 𝑗 ∈ 𝐼 . This is where we
use the semicartesianity.

Remark 3.2.2. The category of sheaves 𝑆ℎ(𝑄) is a full subcategory of the category of
presheaves 𝑃𝑆ℎ(𝑄), that is, the inclusion functor 𝑖 ∶ 𝑆ℎ(𝑄) → 𝑃𝑆ℎ(𝑄) is full.

We highlight how natural this definition is: in the same way the intersection is a
particular kind of an infimum, the infimum is a particular case of an associative binary
operation. Besides, we still have the distributive law being satisfied. Therefore, why this
is not the standard way of defining sheaves on quantales? We never saw this discussion
in the literature, but one possible reason is that the cover {𝑢𝑖 ∈ 𝑄 ∶ ⋁𝑖∈𝐼 𝑢𝑖 = 𝑢} is not a
cover in the sense of a Grothendieck pretopology. It could exist a Grothendieck topology
𝐽 such that the correspondent category 𝑆ℎ(𝑄, 𝐽 ) would be equivalent to the correspondent
category 𝑆ℎ(𝑄) of sheaves on quantales that we are proposing. We prove in Theorem 4.3.8
that 𝑆ℎ(𝑄) may not be a Grothendieck topos and so such equivalence can not exist. On
one hand, this is unfortunate since we are not able to use the vast and powerful theory

3 There is a preliminary version of such paper available on https://arxiv.org/abs/2204.08351.

https://arxiv.org/abs/2204.08351
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of sheaves. On the other hand, we may explore to which extent we can generalize sheaf
theory starting from this new concept. Moreover, we want to apply this expanded sheaf
theory to problems in Mathematics that were not yet reached in its current form. Now,
we focus on sheaves on quantales, present examples, and prove basic properties about
them, constantly comparing them with sheaves on locales. Deeper properties about 𝑆ℎ(𝑄)
will appear only after a more general treatment of sheaves on monoidal categories, with a
more suitable notion of cover, which we present in the next Chapter.

We begin to construct a sheaf theory on quantales mimicking the presentation of
sheaves on locales in [Bor94c]. Let 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 be a presheaf.

Definition 3.2.3. Let (𝑢𝑖)𝑖∈𝐼 be a family of elements of 𝑄. We say a family (𝑠𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼 of
elements of 𝐹 is compatible if for all 𝑖, 𝑗 ∈ 𝐼 we have

𝑠𝑖 |𝑢𝑖⊙𝑢𝑗 = 𝑠𝑗 |𝑢𝑖⊙𝑢𝑗

Definition 3.2.4. We say a presheaf 𝐹 is separated if, given 𝑢 = ⋁
𝑖∈𝐼
𝑢𝑖 in 𝑄 and 𝑠, 𝑠′ ∈ 𝐹(𝑢),

we have
(∀𝑖 ∈ 𝐼 𝑠|𝑢𝑖 = 𝑠′|𝑢𝑖) ⟹ (𝑠 = 𝑠′)

Using compatible families we equivalently define:

Definition 3.2.5. Let 𝑢 = ⋁
𝑖∈𝐼
𝑢𝑖 in 𝑄 and (𝑠𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼 a compatible family in 𝐹 , we say the

presheaf 𝐹 is a sheaf if exists a unique element 𝑠 ∈ 𝐹(𝑢) (called the gluing of the family) such
that 𝑠|𝑢𝑖 = 𝑠𝑖, for all 𝑖 ∈ 𝐼 .

It is a straightforward exercise in category theory to show that definitions 3.2.1 and
3.2.5 are equivalent.

Lemma 3.2.6. If 𝐹 is presheaf on 𝑄, the following conditions are equivalent:

1. F is a sheaf.

2. F is a separated presheaf and given 𝑢 = ⋁
𝑖∈𝐼
𝑢𝑖 in𝑄, every compatible family (𝑠𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼

can be glued into an element 𝑠 ∈ 𝐹(𝑢) such that 𝑠|𝑢𝑖 = 𝑠𝑖, for all 𝑖 ∈ 𝐼 .

Proof. Note that the separated condition (∀𝑖 ∈ 𝐼 𝑠|𝑢𝑖 = 𝑠′|𝑢𝑖) ⟹ (𝑠 = 𝑠′) is the same as the
uniqueness condition of the gluing in the sheaf definition.

Lemma 3.2.7. Let 𝐹 be a presheaf on a quantale 𝑄. Then:

1. If 𝐹 is separated, 𝐹(0) has at most one element.

2. If 𝐹 is a sheaf, 𝐹(0) has exactly one element.

Proof. Consider the empty cover 0 = ⋁
𝑖∈∅
𝑢𝑖 in 𝑄. So every family of elements of 𝐹 is of the

form (𝑠𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈∅, so it is immediately compatible. Suppose 𝐹 is separated, then for every
𝑠 and 𝑠′ in 𝐹(0), the condition 𝑠|𝑢𝑖 = 𝑠′|𝑢𝑖 holds. Since 𝐹 is separable, 𝑠 = 𝑠′. So, if there is any
element in 𝐹(0), it is unique.
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Suppose 𝐹 is a sheaf, then there is a unique 𝑠 ∈ 𝐹(0) such that 𝑠|𝑢𝑖 = 𝑠𝑖, ∀𝑖 ∈ ∅. Since, in
this context, every family is compatible, there is a unique element in 𝐹(0), because 𝑠|𝑢𝑖 = 𝑠𝑖
always holds.

Lemma 3.2.8. Let 𝐹 be presheaf on 𝑄. If 𝑢 = ⋁
𝑖∈𝐼
𝑢𝑖 in 𝑄 and 𝑠 ∈ 𝐹(𝑢), then the family (𝑠|𝑢𝑖)𝑖∈𝐼

is compatible.

Proof. Let 𝑖, 𝑗 ∈ 𝐼 , then
(𝑠|𝑢𝑖)|𝑢𝑖⊙𝑢𝑗

= 𝑠|𝑢𝑖⊙𝑢𝑗 = (𝑠|𝑢𝑗 )|𝑢𝑖⊙𝑢𝑗

Definition 3.2.9. A set of elements {𝑞𝑖 | 𝑖 ∈ 𝐼 } of 𝑄 is a partition of 𝑞 ∈ 𝑄 if ⋁𝑖∈𝐼 𝑞𝑖 = 𝑞 and
𝑞𝑖 ⊙ 𝑞𝑗 = 0, for each 𝑖 ≠ 𝑗 .

It is clear that if {𝑞𝑖 | 𝑖 ∈ 𝐼 } is a partition of 𝑞, then {𝑞𝑖 ⊙ 𝑎 | 𝑖 ∈ 𝐼 } is a partition of 𝑎 ⊙ 𝑞,
for any 𝑎 ∈ 𝑄. Thus, every partition of unity determines a partition for any 𝑞 ∈ 𝑄.

Example 3.2.10. For a commutative ring 𝐴, any ideal 𝐼 has a partition: Take an idempotent
𝑒 ∈ 𝐴 and observe that 1 = 𝑒 + 1 − 𝑒. We have (1) = 𝐴 (the unity), (𝑒 + 1 − 𝑒) = (𝑒) + (1 − 𝑒)
and (𝑒)⊙ (1− 𝑒) = (𝑒) ∩ (1− 𝑒) = 0. So {(𝑒), (1− 𝑒)} is a partition of (1) and from it we obtain
a partition {(𝑒) ⊙ 𝐼 , (1 − 𝑒) ⊙ 𝐼 } for any ideal 𝐼 . If 𝐴 only have trivial idempotents then the
ideals admit trivial partition.

Lemma 3.2.11. Let 𝐹 be a sheaf on 𝑄 and {𝑢𝑖 ∈ 𝑄 ∶ 𝑖 ∈ 𝐼 } a partition of 𝑢. Then
𝐹(𝑢) ≅ ∏

𝑖∈𝐼
𝐹(𝑢𝑖).

Proof. Since 0 ≤ 𝑢𝑖, for all 𝑖 ∈ 𝐼 , there is 𝑠 ∈ 𝐹(𝑢) such that

(𝑠|𝑢𝑖 )|𝑢𝑖⊙𝑢𝑗 = (𝑠|𝑢𝑖 )|0 = 𝑠|0
and

(𝑠|𝑢𝑗 )|𝑢𝑖⊙𝑢𝑗 = (𝑠|𝑢𝑗 )|0 = 𝑠|0

Besides that, if 𝑖 = 𝑗 , (𝑠|𝑢𝑖 )|𝑢𝑖⊙𝑢𝑗 = (𝑠|𝑢𝑗 )|𝑢𝑖⊙𝑢𝑗 immediately. So, for each 𝑠 ∈ 𝐹(𝑢) we have a
correspondent compatible family (𝑠𝑢𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼 . Since 𝐹 is a sheaf, this correspondence is
bijective.

It is clear that every compatible family (𝑠𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼 is an element of ∏
𝑖∈𝐼
𝐹(𝑢𝑖). On the

other hand, every element (𝑠𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼 of ∏
𝑖∈𝐼
𝐹(𝑢𝑖) has a correspondent compatible family,

by what we reasoned above.

The following constructions provide sheaves on a quantale from another sheaf on the
same or a different quantale.
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Proposition 3.2.12. Let 𝐹 be a sheaf on a quantale  and 𝑢 ∈ . For each 𝑤 ≤ 𝑣, consider:

𝐹|𝑢(𝑣) =

{
𝐹(𝑣), if 𝑣 ≤ 𝑢
∅, otherwise.

𝐹|𝑢(𝑤 → 𝑣) =

{
𝐹(𝑤 → 𝑣) ∶ 𝐹(𝑣) → 𝐹(𝑤), if 𝑤 ≤ 𝑣 ≤ 𝑢
! ∶ ∅ → 𝐹|𝑢(𝑤), if 𝑤 ≤ 𝑣 ≰ 𝑢.

is a sheaf. 4

Proof. It is clear that 𝐹|𝑢 is a presheaf. Consider 𝑣 = ⋁
𝑖∈𝐼
𝑣𝑖 in , and 𝑠, 𝑠′ ∈ 𝐹|𝑢(𝑣) such that

𝑠|𝑣𝑖 = 𝑠′|𝑣𝑖 , ∀𝑖 ∈ 𝐼

If 𝑣 ≤ 𝑢, then 𝑠,′ 𝑠 ∈ 𝐹(𝑣) = 𝐹|𝑢(𝑣). Since 𝐹 is a sheaf, it is separated so 𝑠 = 𝑠′. If 𝑣 ⩽̸ 𝑢,
then 𝑠,′ 𝑠 ∈ ∅ and there is nothing to do. Thus 𝐹|𝑢 is a separated presheaf.

Now consider (𝑠𝑖 ∈ 𝐹|𝑢(𝑣𝑖))𝑖∈𝐼 a compatible family. Suppose 𝐹|𝑢(𝑣𝑖) = ∅ for some 𝑖 ∈ 𝐼 .
For such 𝑖 ∈ 𝐼 , there is no 𝑠𝑖 in 𝐹|𝑢(𝑣𝑖), then, there is 𝑗 ∈ 𝐼 such that 𝑠𝑖|𝑢𝑖⊙𝑢𝑗 ≠ 𝑠𝑗|𝑢𝑖⊙𝑢𝑗 . In other
words, the family is not compatible. This implies 𝐹|𝑢(𝑣𝑖) = 𝐹(𝑣𝑖), for all 𝑖 ∈ 𝐼 . So 𝑣𝑖 ≤ 𝑢,
which means ⋁

𝑖∈𝐼
𝑣𝑖 = 𝑣 ≤ 𝑢. Therefore 𝐹|𝑢(𝑣) = 𝐹(𝑣).

Since 𝐹 is a sheaf, we that conclude the compatible family (𝑠𝑖 ∈ 𝐹|𝑢(𝑣𝑖))𝑖∈𝐼 can be glued
into 𝑠 ∈ 𝐹|𝑢(𝑣𝑖) such that 𝑠|𝑣𝑖 , ∀𝑖 ∈ 𝐼 . By 3.2.6, 𝐹|𝑢 is a sheaf.

Proposition 3.2.13. 1. Let (𝑄𝑗)𝑗∈𝐽 be a family of commutative and semicartesian quan-
tales and (𝐹𝑗)𝑗∈𝐽 be a family of sheaves, 𝐹𝑗 ∶ 𝑄𝑜𝑝

𝑗 → 𝑆𝑒𝑡, for each 𝑗 ∈ 𝐽 . Then:
∏𝑗∈𝐽 𝑄𝑗 is a commutative semicartesian quantale; a family {(𝑢𝑖𝑗)𝑗∈𝐽 ∶ 𝑖 ∈ 𝐼 } is a
cover of (𝑢𝑗)𝑗∈𝐽 ∈ ∏𝑗∈𝐽 𝑄𝑗 iff for each 𝑗 ∈ 𝐽 , {𝑢𝑖𝑗 ∶ 𝑖 ∈ 𝐼 } is a cover of 𝑢𝑗 ∈ 𝑄𝑗 ; and
∏𝑗∈𝐽 𝐹𝑗 ∶ (∏𝑗∈𝐽 𝑄𝑗)𝑜𝑝 → 𝑆𝑒𝑡 given by (∏𝑗∈𝐽 𝐹𝑗)(𝑢𝑗)𝑗∈𝐽 ∶= ∏𝑗∈𝐽 𝐹𝑗(𝑢𝑗) is a sheaf with
the restriction maps defined component-wise from each 𝐹𝑗 .

2. Let 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 be a sheaf on the commutative and semicartesian quantale 𝑄. Let
𝑒, 𝑎 ∈ 𝑄, 𝑒 ≤ 𝑎, 𝑒2 = 𝑒 and consider 𝑄′ = [𝑒, 𝑎], the (commutative and semicartesian)
"subquantale" of 𝑄. Then 𝐹 ′ ∶ 𝑄′𝑜𝑝 → 𝑆𝑒𝑡 defined by 𝐹 ′(𝑢) = 𝐹(𝑢), if 𝑢 ≠ 𝑒 and
𝐹 ′(𝑒) = {∗}, with non-trivial restriction maps 𝐹 ′(𝑣) → 𝐹 ′(𝑢) = 𝐹(𝑣) → 𝐹(𝑢), if
𝑒 < 𝑣 ≤ 𝑢, is a sheaf.

Proof. 1. Let (𝑢𝑗)𝑗∈𝐽 = ⋁𝑖∈𝐼 (𝑢𝑖𝑗)𝑗∈𝐽 = (⋁𝑖∈𝐼 𝑢𝑖𝑗)𝑗∈𝐽 be a cover, and (𝑠𝑖)𝑖∈𝐼 ∈ (∏𝑗∈𝐽 𝐹𝑗)(𝑢𝑗)𝑗∈𝐽
a compatible family. So 𝑠𝑖 = (𝑠𝑖𝑗)𝑗∈𝐽 , where 𝑥𝑖 ∈ 𝐹(𝑢𝑖) and 𝑦 ∈ 𝐺(𝑣𝑖) are compatible
families. Since 𝐹 and 𝐺 are sheaves, there are gluing 𝑥 ∈ 𝐹(𝑢) and 𝑦 ∈ 𝐺(𝑣) for the
compatible families 𝑥𝑖 and 𝑦𝑖, respectively. Take 𝑠 = (𝑥, 𝑦) ∈ (𝐹 × 𝐺)(𝑢, 𝑣). Thus

𝑠↾(𝑢𝑖,𝑣𝑖) = (𝑥↾𝑢𝑖 , 𝑦↾𝑣𝑖 ) = (𝑥𝑖, 𝑦𝑖) = 𝑠𝑖, ∀𝑖 ∈ 𝐼

4 Note that 𝐹|1 = 𝐹 and if 𝑢′ ≤ 𝑢 ∈ 𝑄, then 𝐹|𝑢 |𝑢′ = 𝐹|𝑢′ .
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So 𝑠 is a gluing of 𝑠𝑖 and it is unique by the uniqueness of 𝑥 and 𝑦.

2. Let 𝑢 = ⋁𝑖∈𝐼 𝑢𝑖 be a cover in 𝑄′, and (𝑠𝑖 ∈ 𝐹 ′(𝑢𝑖))𝑖∈𝐼 a compatible family. Since
𝐹 ′(𝑢𝑖) = 𝐹(𝑢𝑖) and the restriction maps for 𝐹 ′ are restriction maps for 𝐹 , we have
that (𝑠𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼 is a compatible family. Since 𝐹 is a sheaf, there is a unique gluing.

Next we introduce a concrete example of a sheaf, showing a way in which balls centered
in a fixed point of a given extended metric space may be interpreted as sheaves:

Example 3.2.14. Take 𝑄 = ([0,∞],+,≥) the extended half-line quantale. Let (𝑋, 𝑑) be an
(extended) metric space. For each 𝐴 ⊆ 𝑋 and each 𝑟 ∈ [0,∞] consider balls 𝐹𝐴(𝑟) = 𝐵𝑟(𝐴) =
{𝑥 ∈ 𝑋 ∶ 𝑑(𝑥, 𝐴) ≤ 𝑟}. Note that 𝑠 ≥ 𝑟 entails 𝐵𝑟(𝐴) ⊆ 𝐵𝑠(𝐴) and, in the obvious way
𝐹𝐴 ∶ [0,∞] → 𝑆𝑒𝑡 became a presheaf over the quantale 𝑄 where 𝐹𝐴((𝑠 ≥ 𝑟)) ∶ 𝐹𝐴(𝑟) ↪ 𝐹𝐴(𝑠)
is the inclusion. Moreover, this is a sheaf, since if 𝑟 = ⋀𝑖∈𝐼 𝑠𝑖 in [0,∞], then the diagram below
is an equalizer

𝐵𝑟(𝐴) → ∏
𝑖
𝐵𝑠𝑖(𝐴)⇒∏

𝑖,𝑗
𝐵𝑠𝑖+𝑠𝑗 (𝐴)

for non-empty coverings. However, if 𝐼 = ∅, then 𝑟 = ⋀𝑖∈𝐼 𝑠𝑖 = ∞. Therefore, 𝐵∞(𝐴) is not a
single element (i.e., is not the terminal object in 𝑆𝑒𝑡). This means that the sheaf condition fails
when 𝐼 = ∅. To surpass this, we maintain our definition 𝐵𝑟(𝐴) for all 𝑟 ∈ [0,∞) but for 𝑟 = ∞
we define 𝐵∞(𝐴) = {∗}. For any 𝑠 ≥ 𝑟 , the restrictions map is the identity map on {∗}.

The next result is simple but it is fundamental for our argument to show that 𝑆ℎ(𝑄) is
a monoidal closed category.

Proposition 3.2.15. Let 𝐹 be a sheaf on a quantale 𝑄 and 𝑢 ∈ 𝑄. For each 𝑤 ≤ 𝑣, consider:

𝐹 (𝑢)(𝑣) ∶= 𝐹(𝑣 ⊙ 𝑢)

𝐹 (𝑢)(𝑤 → 𝑣) ∶= 𝐹(𝑤 ⊙ 𝑢 → 𝑣 ⊙ 𝑢).

Then 𝐹 (𝑢) is a sheaf. 5

Proof. It is clear that 𝐹 (𝑢) is a presheaf since 𝐹 is a sheaf and 𝑤 ≤ 𝑣 in 𝑄 implies that
(𝑤 ⊙ 𝑢) ≤ (𝑣 ⊙ 𝑢).

We want to show that for a given cover 𝑣 = ⋁𝑖 𝑣𝑖, the following diagram is an equalizer:

𝐹 (𝑢)(𝑣) ∏
𝑖∈𝐼
𝐹 (𝑢)(𝑣𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹 (𝑢)(𝑣𝑖 ⊙ 𝑣𝑗)

𝑒
𝑝

𝑞

Note that 𝑣 ⊙ 𝑢 = ⋁𝑖(𝑣𝑖 ⊙ 𝑢) is a cover, since 𝑣 = ⋁𝑖 𝑣𝑖 is a cover.

5 Note that 𝐹 (1) = 𝐹 and if 𝑢′, 𝑢 ∈ 𝑄, then (𝐹 (𝑢))(𝑢′) = 𝐹 (𝑢⊙𝑢′).
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Take a family (𝑠𝑖) ∈ 𝐹 (𝑢)(𝑣𝑖) = 𝐹(𝑣𝑖 ⊙ 𝑢), such that

𝐹(𝑣𝑖 ⊙ 𝑣𝑗 ⊙ 𝑢 → 𝑣𝑖 ⊙ 𝑢)(𝑠𝑖) = 𝐹(𝑣𝑖 ⊙ 𝑣𝑗 ⊙ 𝑢 → 𝑣𝑗 ⊙ 𝑢)(𝑠𝑗) ∈ 𝐹(𝑣𝑖 ⊙ 𝑣𝑗 ⊙ 𝑢) ∀𝑖 ∈ 𝐼

Since 𝑣𝑖⊙𝑢⊙𝑣𝑗 ⊙𝑢 ≤ 𝑣𝑖⊙𝑣𝑗 ⊙𝑢, we have that 𝑠𝑖 ∈ 𝐹(𝑣𝑖⊙𝑢) is a compatible family for 𝐹 .
Since 𝐹 is a sheaf, there is a unique gluing 𝑠 ∈ 𝐹(𝑣 ⊙ 𝑢) = 𝐹 (𝑢)(𝑣) for the family (𝑠𝑖)𝑖∈𝐼 .

Proposition 3.2.16. The functor 𝑄(−, 𝑣) is a sheaf, for every fixed 𝑣 ∈ 𝑄.

Proof. Recall that 𝑄(−, 𝑣) is the functor 𝐻𝑜𝑚𝑄(−, 𝑣) so it is a presheaf, where if 𝑤 ≤ 𝑢,
then we send the unique element {(𝑢 → 𝑣)} in 𝑄(𝑢, 𝑣) to the unique element {(𝑤 → 𝑣)} in
𝑄(𝑤, 𝑣).

Observe that we have two cases:

1. Suppose 𝑢 ≤ 𝑣: since 𝑢𝑖 ≤ 𝑢, for all 𝑖 ∈ 𝐼 , we have that 𝑢𝑖 ≤ 𝑣, for all 𝑖 ∈ 𝐼 . Take
𝑠𝑖 = (𝑢𝑖 → 𝑣) ∈ 𝑄(𝑢𝑖, 𝑣), since 𝑢𝑖 ⊙ 𝑢𝑗 ≤ 𝑢𝑖, 𝑢𝑗 , for all 𝑖, 𝑗 ∈ 𝐼 ,

𝑠𝑖 |𝑢𝑖⊙𝑢𝑗 = (𝑢𝑖 ⊙ 𝑢𝑗 → 𝑣) = 𝑠𝑗 |𝑢𝑖⊙𝑢𝑗

So (𝑠𝑖)𝑖∈𝐼 is a compatible family. To conclude 𝑄(𝑢, 𝑣) is a sheaf, take the only element
𝑠 = (𝑢 → 𝑣) ∈ 𝑄(𝑢, 𝑣) and observe that 𝑠|𝑢𝑖 = (𝑢𝑖 → 𝑣) = 𝑠𝑖, for all 𝑖 ∈ 𝐼 .

2. Suppose 𝑢 ≰ 𝑣: if 𝑢𝑖 ≤ 𝑣, for all 𝑖 ∈ 𝐼 , by definition of supremum, ⋁𝑖∈𝐼 𝑢𝑖 ≤ 𝑣, which
is not possible. So there is at least one 𝑖 ∈ 𝐼 (if 𝐼 ≠ ∅) such that 𝑢𝑖 ≰ 𝑣. Thus, 𝑄(𝑢, 𝑣)
and 𝑄(𝑢𝑖, 𝑣) are empty sets, for such an 𝑖 ∈ 𝐼 . Then the sheaf condition is vacuously
true.

If 𝐼 = ∅, then ⋁
𝑖∈∅
𝑢𝑖 = 0 and 𝑄(0, 𝑣) fits in the first case since 0 ≤ 𝑣.

Proposition 3.2.17. The subcategory 𝑆ℎ(𝑄) ↪ 𝑆𝑒𝑡𝑄𝑜𝑝 is closed under limits.

Proof. Consider a small (index) category  and a functor 𝐹 ∶  → 𝑃𝑆ℎ(𝑄) with limits6

(𝐿, 𝑝𝐽 ∶ 𝐿 → 𝐹(𝐽 ))𝐽∈0 . To show that 𝑆ℎ(𝑄) ↪ 𝑆𝑒𝑡𝑄𝑜𝑝
is closed under limits we have to

prove that if 𝐹(𝐽 ) is a sheaf for all objects 𝐽 in  , then the limit 𝐿 is a sheaf. Now, the
argument is the verbatim copy of the argument used in the proof of [Bor94c, Proposition
2.2.1], but replacing 𝐽 and  by 𝐼 and , respectively.

Corollary 3.2.18. 𝑆ℎ(𝑄) has a terminal object, the (essentially unique) presheaf such that
𝑐𝑎𝑟𝑑(1(𝑢)) = 1, for each 𝑢 ∈ 𝑄. Moreover, 𝐻𝑜𝑚𝑄(−, 1) ≅ 1

6 All presheaf categories are complete and the limits are computed pointwise.
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Proof. Since 𝑆ℎ(𝑄) ↪ 𝑆𝑒𝑡𝑄𝑜𝑝
is closed under limit, a terminal object in 𝑆ℎ(𝑄) must be the

terminal presheaf 𝐻𝑜𝑚𝑄(−, 1) ≅ 1 (𝐻𝑜𝑚𝑄(𝑢, 1) = 1, ∀𝑢 ∈ 𝑄 ) in 𝑃𝑆ℎ(𝑄). Since 1 is the top
element of 𝑄, there is an arrow from 𝑢 → 1, for all 𝑢 ∈ 𝑄. So 𝑐𝑎𝑟𝑑(1(𝑢)) = 1.

Proposition 3.2.19. A monomorphism between sheaves 𝜂 ∶ 𝐹 ↣ 𝐺 is just a monomorphism
between their underlying presheaves (and they are monomorphisms if and only if 𝜂𝑢 ∶ 𝐹(𝑢) →
𝐺(𝑢) is injective, for each 𝑢 ∈ 𝑄).

Proof. Again, the argument is the same as in the case of sheaves on locales: 𝜂 ∶ 𝐹 ↣ 𝐺 is
a mono if and only if the pullback of 𝛼 with itself is

𝐺 𝐺

𝐺 𝐹

𝛼

𝛼

𝑖𝑑𝐺

𝑖𝑑𝐺
⌟

In other words, 𝜂 ∶ 𝐹 ↣ 𝐺 is a mono if and only (𝐺, 𝑖𝑑𝐺, 𝑖𝑑𝐺) is the kernel pair of 𝛼. This
holds in any category. So 𝜂 is a mono of sheaves iff the kernel pair of 𝛼 is (𝐺, 𝑖𝑑𝐺, 𝑖𝑑𝐺) iff 𝜂 is
a mono of the underlying presheaves. Next, we use another general fact about categories.
For a small category  and a category with pullbacks , a morphism 𝛽 ∶ 𝐹 → 𝐺 in the
functor category 𝐹𝑢𝑛𝑐(,) is mono iff all the components 𝛽𝑎 ∶ 𝐹(𝑎) → 𝐺(𝑎) are injective
for all object 𝑎 of  [Bor94a, Corollary 2.15.3]. Take  = 𝑄𝑜𝑝 and  = 𝑆𝑒𝑡, then we obtain
that 𝜂 is mono iff 𝜂𝑢 is injective for all 𝑢 ∈ 𝑄.

Corollary 3.2.20. Every morphism 𝜂 ∶ 𝑄(−, 𝑣) → 𝐹 , where 𝐹 is a (pre)sheaf is, automatically,
a monomorphism.

Proof. By Proposition 3.2.19, is enough to show that 𝜂𝑢 ∶ 𝑄(𝑢, 𝑣) → 𝐹(𝑢) is injective for
all 𝑢 ∈ 𝑄. This always holds because 𝑄(𝑢, 𝑣) has at most one element.

Proposition 3.2.21. The family of representable sheaves 𝑄(−, 𝑢), indexed by elements of 𝑄,
is a set of generators for 𝑆ℎ(𝑄).

Proof. Take 𝜂, 𝜂′ ∶ 𝐻 → 𝐹 two distinct morphisms of sheaves. Consider the index 𝑢 as the
infimum element of 𝑄. Observe the following composition

𝑄(−, 𝑢) 𝐻 𝐹𝜁

𝜂′

𝜂

Since there is no element smaller than 𝑢, the only component in which makes sense to
calculate 𝜁 is the element 𝑢 himself. So we only have

𝑄(𝑢, 𝑢) 𝐻 𝐹𝜁𝑢

𝜂′𝑢

𝜂𝑢

where 𝑄(−, 𝑢) is (naturally isomorphic to) the identity map 𝑢 → 𝑢. Since 𝜂 ≠ 𝜂′, we
conclude 𝜂 ◦ 𝜁 ≠ 𝜂′ ◦ 𝜁 , as desired.
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Proposition 3.2.22. Note that:

1. For each 𝑣, 𝑣′ ∈ 𝑄, there is at most one (mono)morphism 𝑄(−, 𝑣) → 𝑄(−, 𝑣′) and this
exists precisely when 𝑣 ≤ 𝑣′.

2. If 𝐻 is a sheaf and 𝜖 ∶ 𝐻 ↣ 𝑄(−, 𝑣) is a monomorphism, then 𝐻 ≅ 𝑄(−, ℎ) where
ℎ = ⋁{𝑢 ≤ 𝑣 ∶ 𝐻 (𝑢) ≠ ∅}.

Proof. 1. For each 𝑢, 𝑣 ∈ 𝑄, note that 𝑐𝑎𝑟𝑑(𝑄(𝑢, 𝑣)) ∈ {0, 1}.
Suppose there is a morphism 𝜂 ∶ 𝑄(−, 𝑣) → 𝑄(−, 𝑣′). So, for all 𝑢 ∈ 𝑄 we have
𝜂𝑢 ∶ 𝑄(𝑢, 𝑣) → 𝑄(𝑢, 𝑣′). If 𝑄(𝑢, 𝑣′) = ∅, then 𝑄(𝑢, 𝑣) = ∅. Thus if 𝑢 ≤ 𝑣, then 𝑢 ≤ 𝑣′.
In particular, for 𝑢 = 𝑣, we obtain 𝑣 ≤ 𝑣′.

Conversely, if 𝑣 ≤ 𝑣′, consider 𝑖𝑣,𝑣′ ∶ 𝑄(−, 𝑣) → 𝑄(−, 𝑣′). For all 𝑢 ∈ 𝑄 we have
𝑖𝑣,𝑣′(𝑢) ∶ 𝑄(𝑢, 𝑣) → 𝑄(𝑢, 𝑣′).

If 𝑢 ≰ 𝑣, then 𝑄(𝑢, 𝑣) = ∅ and 𝑖𝑣,𝑣′(𝑢) ∶ ∅ → 𝑄(𝑢, 𝑣′) the unique function from the ∅,
since the ∅ is an initial object in 𝑆𝑒𝑡.

If 𝑢 ≤ 𝑣, since 𝑣 ≤ 𝑣′, 𝑢 ≤ 𝑣′ and then 𝑖𝑣,𝑣′(𝑢)(𝑢 → 𝑣) = (𝑢 → 𝑣′). For any other
morphism 𝑗𝑣,𝑣′ ∶ 𝑄(−, 𝑣) → 𝑄(−, 𝑣′) we obtain that 𝑗𝑣,𝑣′(𝑢) ∶ ∅ → 𝑄(𝑢, 𝑣′) the unique
function from the ∅, whenever 𝑢 ≰ 𝑣 and 𝑗𝑣,𝑣′(𝑢)(𝑢 → 𝑣) = (𝑢 → 𝑣′), whenever 𝑢 ≤ 𝑣.
So 𝑖𝑣,𝑣′ = 𝑗𝑣,𝑣′ .

2. Since 𝜖 is a monomorphism, 𝜖𝑢 is injective and then 𝑐𝑎𝑟𝑑(𝐻 (𝑢)) ∈ {0, 1} for each
𝑢 ∈ 𝑄 with 𝐻 (𝑢) = ∅ whenever 𝑢 ≰ 𝑣. So let

ℎ = ⋁{𝑢 ≤ 𝑣 ∶ 𝐻 (𝑢) ≠ ∅} = ⋁{𝑢 ∈ 𝑄 ∶ 𝐻 (𝑢) ≠ ∅}.

We will show that 𝐻 (𝑢) is non-empty only when 𝑢 ≤ 𝑣. Note that:

- If 𝑞 ≤ 𝑝 and 𝐻 (𝑝) ≠ ∅, then 𝐻 (𝑞) ≠ ∅ (since 𝐻 is a presheaf);

- Since 𝑐𝑎𝑟𝑑(𝐻 (ℎ)) = 1, we have𝐻 (ℎ) ≠ ∅. Once𝐻 (𝑝), 𝐻 (𝑞) ≠ ∅ entails𝐻 (𝑝⊙𝑞) ≠ ∅,
by the sheaf condition we have an equalizer diagram between two parallel arrows
where the source and target are both singletons.

Therefore, 𝐻 (𝑢) ≠ ∅ iff 𝑢 ≤ ℎ. Now, we will show that 𝐻 (𝑢) → 𝑄(𝑢, ℎ) is a (unique)
bijection, for each 𝑢 ∈ 𝑄.

If 𝑢 ≰ ℎ, then ∅ = 𝐻 (𝑢) → 𝑄(𝑢, ℎ) = ∅. If 𝑢 ≤ ℎ, then 𝐻 (𝑢) and 𝑄(𝑢, ℎ) are both
singletons. So 𝜖𝑢 is an injection and a surjection in 𝑆𝑒𝑡, therefore, a bijection for all
𝑢 ∈ 𝑄 and then 𝜖 is an isomorphism.

3.3 Sheaves on a basis
Now, recall that given a topological space 𝑋 , a basis is a family 𝐵 of open sets such

that every open set of 𝑋 can be represented as the union of some subfamily of 𝐵. This
definition can be written using quantalic terminology.
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Definition 3.3.1. If 𝑄 is a commutative semicartesian quantale, a subset 𝐵 ⊆ 𝑄 is a basis of
𝑄 if it is a submonoid of 𝑄 such that for each 𝑢 ∈ 𝑄 there exists a covering {𝑢𝑖 ∶ 𝑢𝑖 ∈ 𝐵, 𝑖 ∈ 𝐼 }
of 𝑢.

Observe that a basis of the locale (𝑋 ) of all open sets of 𝑋 gives the usual notion of
basis in topology.

Example 3.3.2. If 𝑄 = (𝑅) is the quantale of ideals of a commutative ring with unity 𝑅,
then the set of principal ideals of 𝑅 is a basis of (𝑅). We denote this base by (𝑅).

In the case of sheaves on a topological space 𝑋 it is known that it is enough to define
sheaves on the basis of 𝑋 , [MM92, Theorem 3, Chapter II.2]. Next, we prove the same for
sheaves on quantales.

Definition 3.3.3. A presheaf 𝐹 ∶ 𝐵𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf on a basis 𝐵 if, given any 𝑢 ∈ 𝐵 and
any covering 𝑢 = ⋁𝑖∈𝐼 𝑢𝑖 with 𝑢𝑖 ∈ 𝐵 for all 𝑖 ∈ 𝐼 , it holds that the following is an equalizer
diagram

𝐹(𝑢) ∏
𝑖∈𝐼
𝐹(𝑢𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑢𝑖 ⊙ 𝑢𝑗)

𝑒
𝑝

𝑞

where

1. 𝑒(𝑡) = {𝑡|𝑢𝑖 | 𝑖 ∈ 𝐼 }, 𝑡 ∈ 𝐹(𝑢)

2. 𝑝((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑖|𝑢𝑖⊙𝑢𝑗 )(𝑖,𝑗)∈𝐼×𝐼
𝑞((𝑡𝑘)𝑘∈𝐼 ) = (𝑡𝑗|𝑢𝑖⊙𝑢𝑗 )(𝑖,𝑗)∈𝐼×𝐼 , (𝑡𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑢𝑘)

Morphisms of sheaves on a basis are natural transformations.

Clearly, any sheaf 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 restricts to a sheaf on its basis 𝐵. This process yields
a restriction functor 𝑟 ∶ 𝑆ℎ(𝑄) → 𝑆ℎ(𝐵). Moreover,

Theorem 3.3.4. There is an equivalence 𝑆ℎ(𝑄) → 𝑆ℎ(𝐵).

Proof. The idea is the same as proposed in [MM92, Chapter II, Exercise 4]. We define a
functor 𝑠 ∶ 𝑆ℎ(𝐵) → 𝑆ℎ(𝑄) in the following way: for any 𝑢 ∈ 𝑄 with a cover 𝑢 = ⋁𝑖∈𝐼 𝑏𝑖
such that 𝑏𝑖 ∈ 𝐵, ∀𝑖 ∈ 𝐼 , we define 𝑠(𝐹) as the equalizer

𝑠(𝐹)(𝑢) ∏
𝑖∈𝐼
𝐹(𝑏𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑏𝑖 ⊙ 𝑏𝑗)

𝑒
𝑝

𝑞

where 𝐹 is a sheaf on the basis 𝐵.

Given a morphism 𝐹 → 𝐺 of sheaves on 𝐵, the universal property of the equalizer
induces a morphism 𝑠(𝐹) → 𝑠(𝐺) of sheaves on 𝑄.

Given 𝐹 sheaf on 𝑄 and a covering on the base 𝑢 = ⋁𝑖∈𝐼 𝑏𝑖, by definition of 𝑠 we have
that the following diagram is an equalizer:
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𝑠(𝑟(𝐹))(𝑢) ∏
𝑖∈𝐼
𝑟(𝐹)(𝑏𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝑟(𝐹)(𝑏𝑖 ⊙ 𝑏𝑗)

𝑒
𝑝

𝑞

Since 𝑟 is the restriction, 𝑟(𝐹)(𝑏𝑖) = 𝐹(𝑏𝑖) and 𝑟(𝐹)(𝑏𝑖 ⊙ 𝑏𝑗) = 𝐹(𝑏𝑖 ⊙ 𝑏𝑗), for all 𝑖, 𝑗 ∈ 𝐼 .
So 𝑠(𝑟(𝐹))(𝑢) is an equalizer of ∏

𝑖∈𝐼
𝐹(𝑏𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑏𝑖 ⊙ 𝑏𝑗) . Since 𝐹 is sheaf, 𝐹(𝑢) is

the equalizer of the same pair of arrows. By the uniquiness (up to isomorphism) of the
equalizer, 𝑠(𝑟(𝐹))(𝑢) is isomorphic to 𝐹(𝑢), for all 𝑢 ∈ 𝑄 and 𝐹 sheaf on 𝑄. Therefore, we
have a natural isomorphism 𝑠 ◦ 𝑟 ⇒ 𝑖𝑑𝑆ℎ(𝑄). By a similar reasoning we conclude that exists
a natural isomorphism 𝑟 ◦ 𝑠 ⇒ 𝑖𝑑𝑆ℎ(𝐵).

The above theorem says that to describe a sheaf on a quantale it is enough to describe
it on its basis. Then we may, for example, define a sheaf on the quantale of ideals of
an integral domain 𝑅 by defining it on its base. In the following example, we used the
hypothesis that 𝑅 is an integral domain, but after the verification, we provide a different
argument, showing that the defined sheaf still is a sheaf for any commutative ring with
unity.

Example 3.3.5. Take 𝐵 = (𝑅) the set of principal ideals of 𝑅. The functor

𝐿𝑅 ∶ 𝐵𝑜𝑝 → 𝐶𝑅𝑖𝑛𝑔
𝑛𝑅 ↦ 𝑅[𝑛−1]

is a sheaf.

First, we recall the notation and some basic facts from algebra: the functor takes
principal ideals from 𝑅 and sends it to the localization of 𝑅 at 𝑛, that is, to the ring where
all elements are of the form 𝑧

𝑛𝑘 , for some 𝑧 ∈ 𝑅 and some 𝑘 ∈ ℕ.

We also have to describe the restriction maps of the sheaf. Note that 𝑛𝑅 ⊆ 𝑚𝑅 if and
only if 𝑚 divides 𝑛. In other words, if and only if there is an 𝑙 ∈ 𝑅 such that 𝑛𝑅 = 𝑚𝑙𝑅. So
we define 𝐿𝑅 to send morphisms 𝑛𝑅 ⊆ 𝑚𝑅 in 𝐵 to ring homomorphisms

𝜑∶ 𝑅[𝑚−1] → 𝑅[𝑛−1]
𝑧
𝑚𝑘 ↦

𝑧𝑙𝑘

𝑛𝑘

We denote 𝜑( 𝑧
𝑚𝑘 ) by 𝑧

𝑚𝑘 ↾𝑛𝑅. Now we show that 𝐿𝑅 is a sheaf.

Take an ideal 𝑛𝑅 of 𝑅 and a covering 𝑛𝑅 = Σ𝑖∈𝐼𝑛𝑖𝑅.

Locality: Take 𝑠 = 𝑧
𝑛𝑘 and 𝑡 = 𝑧′

𝑛𝑘′ in 𝑅[𝑛−1] such that 𝑠↾𝑛𝑖𝑅 = 𝑡↾𝑛𝑖𝑅, for all 𝑖 ∈ 𝐼 .

𝑠↾𝑛𝑖𝑅 = 𝑡↾𝑛𝑖𝑅 ⟹
𝑧𝑙𝑘𝑖
𝑛𝑘𝑖

=
𝑧′𝑙𝑘′𝑖
𝑛𝑘′𝑖

∈ 𝑅[𝑛−1𝑖 ] ⟹ ∃𝑝 ∈ ℕ such that 𝑧𝑙𝑘𝑖 𝑛
𝑘′
𝑖 𝑛

𝑝
𝑖 = 𝑧′𝑙𝑘

′

𝑖 𝑛
𝑘
𝑖 𝑛

𝑝
𝑖
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So

𝑧𝑙𝑘𝑖 𝑛
𝑘′+𝑝
𝑖 = 𝑧′𝑙𝑘

′

𝑖 𝑛
𝑘+𝑝
𝑖

We substitute 𝑛𝑖 = 𝑛𝑙𝑖 in the above equation and obtain

𝑧𝑙𝑘+𝑘
′+𝑝

𝑖 𝑛𝑘
′+𝑝 = 𝑧′𝑙𝑘+𝑘

′+𝑝
𝑖 𝑛𝑘+𝑝

Thus, since we are in an integral domain,

𝑧𝑛𝑘
′+𝑝 = 𝑧𝑛𝑘+𝑝

(This passage holds because 𝑧𝑙𝑘+𝑘
′+𝑝

𝑖 𝑛𝑘′+𝑝

𝑙𝑘+𝑘
′+𝑝

𝑖
= 𝑧𝑛𝑘′+𝑝

1 , since 𝑧𝑙𝑘+𝑘
′+𝑝

𝑖 𝑛𝑘′+𝑝1𝑙0𝑖 =

𝑧𝑛𝑘′+𝑝𝑙𝑘+𝑘
′+𝑝

𝑖 𝑙0𝑖 ).

Then 𝑧𝑛𝑘𝑛𝑝 = 𝑧𝑛𝑘′𝑛𝑝, i.e.,

𝑠 =
𝑧
𝑛𝑘

=
𝑧′

𝑛𝑘′
= 𝑡

Gluing:

Let 𝑠𝑖 ∈ 𝑅[𝑛−1𝑖 ] of the form 𝑠𝑖 =
𝑧′𝑖
𝑛𝑘𝑖𝑖

for some 𝑧′𝑖 ∈ 𝑅 and some 𝑘𝑖 ∈ ℕ. Take 𝑘 = max
𝑖
𝑘𝑖,

call 𝑧𝑖 = 𝑧′𝑖𝑛
𝑘−𝑘𝑖
𝑖 , and then

𝑠𝑖 =
𝑧′𝑖
𝑛𝑘𝑖𝑖 (

𝑛𝑖
𝑛𝑖)

𝑘−𝑘𝑖

Using this trick, 𝑠𝑖↾𝑛𝑖𝑛𝑗𝑅 = 𝑠𝑗↾𝑛𝑖𝑛𝑗𝑅 means that

𝑧𝑖
𝑛𝑘𝑖
↾𝑛𝑖𝑛𝑗𝑅 =

𝑧𝑗
𝑛𝑘𝑗
↾𝑛𝑖𝑛𝑗𝑅 ⟹

𝑧𝑖𝑛𝑘𝑗
𝑛𝑘𝑖 𝑛𝑘𝑗

=
𝑧𝑗𝑛𝑘𝑖
𝑛𝑘𝑗 𝑛𝑘𝑖

in 𝑅[(𝑛𝑖𝑛𝑗)−1]

So, for each 𝑖, 𝑗 ∈ 𝐼 , there is a 𝑞𝑖𝑗 ∈ ℕ such that

(𝑛𝑖𝑛𝑗)𝑞𝑖𝑗 (𝑛𝑖𝑛𝑗)𝑘𝑧𝑖𝑛𝑘𝑗 = (𝑛𝑖𝑛𝑗)𝑞𝑖𝑗 (𝑛𝑖𝑛𝑗)𝑘𝑧𝑗𝑛𝑘𝑖

If all elements were in ℤ we could use 𝑛𝑘𝑗 𝑧𝑖 = 𝑛𝑘𝑖 𝑧𝑗 , but we will proceed with the calcu-
lations using the above equation so the proof remains valid for any integral domain.

If we take 𝑞 = max
𝑖,𝑗

𝑞𝑖𝑗 then

𝑛𝑞+𝑘𝑖 𝑛𝑞+2𝑘𝑗 𝑧𝑖 = 𝑛𝑞+2𝑘𝑖 𝑛𝑞+𝑘𝑗 𝑧𝑗 (3.1)

Given 𝑠 = 𝑧
𝑛𝑝 ∈ 𝑅[𝑛−1], we have 𝑠↾𝑛𝑖𝑅 = 𝑧𝑙𝑝𝑖

𝑛𝑝𝑖
(using that trick). We want to show
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that
𝑧𝑙𝑝𝑖
𝑛𝑝𝑖

=
𝑧𝑖
𝑛𝑘𝑖

in 𝑅[𝑛−1𝑖 ]

Since 𝑛𝑅 = 𝑛1𝑅 + ... + 𝑛𝑠𝑅 and 𝑛 is the greatest common divisor of 𝑛𝑖’s, we have that 𝑛𝑟
is the greatest common divisor of 𝑛𝑟𝑖 ’s, for any 𝑟 ∈ ℕ. By the Bézout’s identity, there are
𝑏1, ..., 𝑏𝑡 ∈ 𝑅 such that

𝑛𝑟 = 𝑏1𝑛𝑟1 + ... + 𝑏𝑡𝑛𝑟𝑡 (3.2)

In the following, we assume 𝑡 = 2 to help in the visualization of the calculations.
Multiplying 3.2 by 𝑛𝑚+𝑝−𝑟 𝑙𝑚+𝑝1 𝑧1 in both sides we have:

𝑛𝑚+𝑝𝑙𝑚+𝑝1 𝑧1 = (𝑏1𝑛𝑟1 + 𝑏2𝑛𝑟2)𝑛
𝑚𝑙𝑚1 𝑛

𝑝−𝑟 𝑙𝑝1 𝑧1
= (𝑏1𝑛𝑟+𝑚1 𝑧1 + 𝑏2𝑛𝑟2𝑛

𝑚
1 𝑧1)𝑛

𝑝−𝑟 𝑙𝑝1 Since 𝑛𝑖 = 𝑛𝑙𝑖

We have to guarantee that 𝑝 − 𝑟 ≥ 0 and use equation 3.1. Take 𝑟 = 𝑞 + 2𝑘 = 𝑚 and
𝑝 ≥ 𝑟 to obtain

𝑛𝑚+𝑝𝑙𝑚+𝑝1 𝑧1 = (𝑏1𝑛
2(𝑞+2𝑘)
1 𝑧1 + 𝑏2𝑛

𝑞+2𝑘
2 𝑛𝑞+2𝑘1 𝑧1)𝑛𝑝−𝑟 𝑙

𝑝
1

= (𝑏1𝑛
2(𝑞+2𝑘)
1 𝑧1 + 𝑏2𝑛

𝑞+2𝑘
2 𝑛𝑞+𝑘1 𝑛𝑘1𝑧1)𝑛

𝑝−𝑟 𝑙𝑝1
= (𝑏1𝑛

2(𝑞+2𝑘)
1 𝑧1 + 𝑏2𝑛

𝑞+𝑘
2 𝑛𝑞+2𝑘1 𝑛𝑘1𝑧2)𝑛

𝑝−𝑟 𝑙𝑝1 By 3.1

= 𝑛𝑚+𝑘1 (𝑏1𝑛
𝑞
1𝑧1 + 𝑏2𝑛

𝑞+𝑘
2 𝑧2)𝑛𝑝−𝑟 𝑙

𝑝
1

Call 𝑧 = (𝑏1𝑛
𝑞
1𝑧1 + 𝑏2𝑛

𝑞+𝑘
2 𝑧2)𝑛𝑝−𝑟 . Then, for such a 𝑧 ∈ 𝑅 we have that 𝑛𝑚+𝑝𝑙𝑚+𝑝1 𝑧1 =

𝑛𝑚+𝑘1 𝑧𝑙𝑝1 . Using 𝑛𝑖 = 𝑛𝑙𝑖 and a simple manipulation this is

𝑛𝑚1 𝑛
𝑘
1𝑧𝑙

𝑝
𝑖 = 𝑛𝑚𝑖 𝑛

𝑝
𝑖 𝑧𝑖.

So, 𝑚 = 𝑞 + 2𝑘 is the natural number that makes

𝑧𝑙𝑝1
𝑛𝑝1

=
𝑧1
𝑛𝑘1

in 𝑅[𝑛−11 ]

This illustrates what we must do to conclude the desired result for any 𝑖 ∈ 𝐼 and 𝑡 ∈ ℕ.
Fix an 𝑖, take 𝑟 = 𝑞 + 2𝑘 = 𝑚 and 𝑝 ≥ 𝑟 , and multiply 3.2 by 𝑛𝑚+𝑝−𝑟 𝑙𝑚+𝑝𝑖 𝑧1 on both sides.
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Now we have:

𝑛𝑚+𝑝𝑙𝑚+𝑝𝑖 𝑧𝑖 = (
𝑡

∑
𝑗=1

𝑏𝑗𝑛
𝑞+2𝑘
𝑗 )𝑛𝑞+2𝑘𝑙𝑞+2𝑘𝑖 𝑛𝑝−𝑟 𝑙𝑝𝑖 𝑧𝑖

= (𝑏𝑖𝑛
2(𝑞+2𝑘)
𝑖 𝑧𝑖 +

𝑡

∑
𝑗=1
𝑗≠𝑖

𝑏𝑗𝑛
𝑞+2𝑘
𝑗 𝑛𝑞+𝑘𝑖 𝑛𝑘𝑖 𝑧𝑖)𝑛

𝑝−𝑟 𝑙𝑝𝑖

= (𝑏𝑖𝑛
2(𝑞+2𝑘)
𝑖 𝑧𝑖 +

𝑡

∑
𝑗=1
𝑗≠𝑖

𝑏𝑗𝑛
𝑞+𝑘
𝑗 𝑛𝑞+2𝑘𝑖 𝑧𝑗)𝑛𝑝−𝑟 𝑙

𝑝
𝑖 By 3.1

= 𝑛𝑚+𝑘𝑖 (𝑏𝑖𝑛
𝑞
𝑖 𝑧𝑖 +

𝑡

∑
𝑗=1
𝑗≠𝑖

𝑏𝑗𝑛
𝑞+𝑘
𝑗 𝑧𝑗)𝑛𝑝−𝑟 𝑙

𝑝
𝑖

So, for 𝑧 = 𝑛𝑝−𝑞−2𝑘𝑙𝑝𝑖 , 𝑝 ≥ 𝑞 + 2𝑘, and 𝑚 = 𝑞 + 2𝑘, we have

𝑧𝑙𝑝𝑖
𝑛𝑝𝑖

=
𝑧𝑖
𝑛𝑘𝑖

in 𝑅[𝑛−1𝑖 ]

This holds for all 𝑖 ∈ 𝐼 , thus we proved the gluing property and concluded that 𝐿𝑅 is a
sheaf.

By Theorem 3.3.4, the above example provides a more sophisticated example of a sheaf
on a quantale.

The reader that already studied Algebraic Geometry may recognize that the above
sheaf is similar to the structure sheaf attached to 𝑆𝑝𝑒𝑐𝐴, i.e., the sheaf 𝑆𝑝𝑒𝑐𝐴(𝐷(𝑓 )) ≅ 𝐴𝑓 ,
where 𝐴 is a commutative ring with unity, 𝐷(𝑓 ) is the principal open for 𝑓 ∈ 𝐴 and 𝐴𝑓 is
the localization 𝐴[𝑓 −1]. The principal open 𝐷(𝑓 ) forms a basis under the Zariski topology.
So our approach is completely analogous to the one largely used in Algebraic Geometry.
Moreover, both sheaves are deeply connected by a general process of “change of base” that
we address in the next Section. For now, we observe the following:

Since the structure sheaf is a sheaf we have that the following diagram is an equal-
izer:

𝑆𝑝𝑒𝑐𝐴(𝐷(𝑓 )) ∏𝑖∈𝐼 𝑆𝑝𝑒𝑐𝐴(𝐷(𝑓𝑖)) ∏(𝑖,𝑗)∈𝐼×𝐼 𝑆𝑝𝑒𝑐𝐴(𝐷(𝑓𝑖) ∩ 𝐷(𝑓𝑗))

By the definition of the structure sheaf and since 𝐷(𝑓𝑖) ∩ 𝐷(𝑓𝑗) = 𝐷(𝑓𝑖.𝑓𝑗), the next
diagram is also an equalizer

𝐴[𝑓 −1] ∏𝑖∈𝐼 𝐴[𝑓 −1] ∏(𝑖,𝑗)∈𝐼×𝐼 𝐴[(𝑓𝑖.𝑓𝑗)−1]

If 𝐴 is an integral domain then we may use the functor 𝐿𝐴 defined in Example 3.3.5 to
obtain the following equalizer diagram.
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𝐿𝐴(𝑓 𝐴) ∏𝑖∈𝐼 𝐿𝐴(𝑓𝑖𝐴) ∏(𝑖,𝑗)∈𝐼×𝐼 𝐿𝐴(𝑓𝑖𝐴.𝑓𝑗𝐴)

where we used 𝑓𝑖𝐴.𝑓𝑗𝐴 = (𝑓𝑖.𝑓𝑗)𝐴 in the final expression. So 𝐿𝐴 is a sheaf. Note that using
this argument, we do not have to suppose that the ring is an integral domain. Therefore,
actually, 𝐿𝐴(𝑛) ≅ 𝑅[𝑛−1] defines a sheaf for any commutative ring with unity.

The above observation is interesting because:

Remark 3.3.6. If we have a sheaf on a topological space and such topological space arises
from a ring, it is natural to wonder how to think about the sheaf on the correspondent
ring. Those calculations show that our definition of a sheaf on a quantale appears almost
spontaneously. In the next section, we will see a way of constructing sheaves on quantales by
taking sheaves on locales (Theorem 3.4.8). The example we presented is a sheaf on the quantale
of ideals of a ring that comes from a sheaf on the locale of open subsets of the topological
space 𝑆𝑝𝑒𝑐(𝐴).

3.4 Change of Base
We recognize that the nomenclature is not fortunate but for us “base” and “basis” are

distinct notions. The basis of a quantale somehow is a subset of the quantale that describes
it as a whole, as we defined in 3.3.1. A “base quantale” is the quantale that is the category in
the domain of a sheaf functor. In this Section we study a kind of functor 𝑄 → 𝑄′ between
quantales that will give interesting (adjoint) functors between the correspondent sheaf
categories.

Definition 3.4.1. A geometric morphism is a pair of adjoint functors 𝑄 𝑄′
𝑓∗

𝑓 ∗

such

that

1. 𝑓 ∗ preserves arbitrary sups and 1;

2. 𝑓 ∗ weakly preserves the multiplication, i.e., 𝑓 ∗(𝑝) ⊙ 𝑓 ∗(𝑞) ≤ 𝑓 ∗(𝑝 ⊙′ 𝑞), ∀𝑝, 𝑞 ∈ 𝑄.

Remark 3.4.2. In [Ros90b] morphisms of quantales are defined as maps that preserve
arbitrary sup and the multiplication.

Remark 3.4.3. The right adjoint of 𝑓 ∗ comes from the Adjoint Functor Theorem: since 𝑓 ∗

preserves sups, it has a right adjoint 𝑓∗ ∶ 𝑄 → 𝑄′. We call 𝑓∗ direct image, and 𝑓 ∗ is called
inverse image.

Since 𝑓∗ has a left adjoint, the Adjoint Functor Theorem guarantees that 𝑓∗ preserves
all limits. In particular, 𝑓∗ preserves meets and 1.

Even though we are considering semicartesian quantales instead of idempotent quan-
tales, the above definition is exactly the same as a morphism of quantales given in [BB86].
As stated there, if the quantale is a locale this definition coincides with the classical defini-
tion of a morphism of locales: since 𝑓 ∗ preserves arbitrary sups it is a functor, consequently,
we have 𝑓 ∗(𝑝 ∧ 𝑞) ≤ 𝑓 ∗(𝑝) and 𝑓 ∗(𝑝 ∧ 𝑞) ≤ 𝑓 ∗(𝑞). Therefore, 𝑓 ∗(𝑝 ∧ 𝑞) ≤ 𝑓 ∗(𝑝) ∧ 𝑓 ∗(𝑞).
The definition provides the other side of the inequality.
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Example 3.4.4. The inclusion 𝐼 𝑑𝑒𝑚(𝑄) → 𝑄 is a geometric morphism with (−)− ∶ 𝑄 →
𝐼 𝑑𝑒𝑚(𝑄) as right adjoint (see Proposition 3.1.10).

Next, we define what is called a strict morphism of quantales in [BB86].

Definition 3.4.5. A strong geometric morphism of quantales is a geometric morphism
of quantales where 𝑓 ∗ preserves the multiplication. In other words, the other inequality holds.

Example 3.4.6. (Strong geometric morphisms)

1. The inclusion 𝐼 𝑑𝑒𝑚(𝑄) → 𝑄.

2. The idempotent approximation (−)− ∶ 𝑄 → 𝐼 𝑑𝑒𝑚(𝑄) is a strong geometric morphism
if 𝑄 is a geometric quantale. By 3.1.10 and the definition of geometric quantale.

3. A projection map 𝑝𝑖 ∶ ∏𝑖∈𝐼 𝑄𝑖 → 𝑄𝑖 preserves sups, unit, and multiplication.

4. The inclusions [𝑎−, ⊤] → 𝑄 preserves sups, unit and multiplication, for all 𝑎 ∈ 𝑄.

5. Every surjective homomorphism 𝑓 ∶ 𝑅 → 𝑆 of commutative and unital rings induces a
strong geometric morphism 𝑓 ∗ ∶ (𝑅) → (𝑆) given by 𝑓 ∗(𝐽 ) = 𝑓 (𝐽 ). Indeed, notice
that 1 = 𝑅 in (𝑅) and the surjectivity gives that 𝑓 ∗(𝑅) = 𝑆, so 𝑓 ∗ preserves 1. To
show it preserves arbitrary sups and the multiplication, we do not need the surjective
condition. In fact, this is stated in [Ros90b, 2.3(3)], with right adjoint 𝑓∗ given by the
pre-image.

Remark 3.4.7. Since idempotent approximation is pointwise, the projections also preserve
idempotent approximation. Then the following diagram commutes:

∏𝑖∈𝐼 𝑄𝑖 ∏𝑖∈𝐼 𝐼 𝑑𝑒𝑚(𝑄𝑖)

𝑄𝑖 𝐼 𝑑𝑒𝑚(𝑄𝑖)

(−)−

𝑝𝑖𝑝𝑖

(−)−

Theorem 3.4.8. A strong geometric morphism 𝑓 ∶ 𝑄 → 𝑄′ induces an adjunction in the

respective category of sheaves. More precisely, the pair of adjoint functors 𝑄 𝑄′
𝑓∗

𝑓 ∗

induces a pair 𝑆ℎ(𝑄) 𝑆ℎ(𝑄′)
𝜙∗

𝜙∗

where 𝜙∗ is left adjoint to 𝜙∗.

Proof. First step: find a 𝜙∗.

Define 𝜙∗ ∶ 𝑆ℎ(𝑄) → 𝑆ℎ(𝑄′) by 𝜙∗(𝐹) = 𝐹 ◦ 𝑓 ∗ and 𝜙∗(𝜂𝑢) = 𝜂𝑓 ∗𝑢 for all 𝑢 ∈ 𝑄′. We have
to show that 𝐹 ◦ 𝑓 ∗ is a sheaf in 𝑄′. Take 𝑢 = ⋁

𝑖∈𝐼
𝑢𝑖 a cover in 𝑄′ and a compatible family

(𝑠𝑖 ∈ 𝐹 ◦ 𝑓 ∗(𝑢𝑖))𝑖∈𝐼 in 𝐹 ◦ 𝑓 ∗. This compatible family can be written as (𝑠𝑖 ∈ 𝐹(𝑓 ∗(𝑢𝑖)))𝑖∈𝐼 and
it remains a compatible family in 𝐹 because

1. 𝑓 ∗(𝑢) = 𝑓 ∗(⋁
𝑖∈𝐼
𝑢𝑖) = ⋁

𝑖∈𝐼
𝑓 ∗(𝑢𝑖) is a cover;
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2. 𝑓 ∗ preserves the multiplication so 𝑠𝑖 |𝑢𝑖⊙𝑢𝑗 = 𝑠𝑗 |𝑢𝑖⊙𝑢𝑗 implies that

𝑠𝑖 |𝑓 ∗(𝑢𝑖)⊙𝑓 ∗(𝑢𝑗 ) = 𝑠𝑖 |𝑓 ∗(𝑢𝑖⊙𝑢𝑗 ) = 𝑠𝑗 |𝑓 ∗(𝑢𝑖⊙𝑢𝑗 ) = 𝑠𝑗 |𝑓 ∗(𝑢𝑖)⊙𝑓 ∗(𝑢𝑗 ) .

By the sheaf condition on 𝐹 , there is a unique 𝑠 ∈ 𝐹(𝑓 ∗(𝑢)) such that 𝑠|𝑓 ∗(𝑢𝑖) = 𝑠𝑖, for all
𝑖 ∈ 𝐼 in 𝐹 . So, in 𝐹 ◦ 𝑓 ∗, 𝑠|𝑢𝑖 = 𝑠𝑖, for all 𝑖 ∈ 𝐼 , as desired.

Second step: find 𝜙∗ left adjoint to 𝜙∗.

Have the following diagram in mind:

𝑃𝑆ℎ(𝑄′) 𝑃𝑆ℎ(𝑄)

𝑆ℎ(𝑄′) 𝑆ℎ(𝑄)
𝜙∗

𝑖 𝑎𝑏𝑗

𝜙−

𝜙+

𝜙∗

where 𝑖 and 𝑗 are inclusions with left adjoints (the sheafifications, which we construct
in Section 4.2) 𝑎 and 𝑏, respectively. The functor 𝜙+ is the precomposition with 𝑓 ∗, as we
did to define 𝜙∗, and we take 𝜙− = 𝐿𝑎𝑛𝑓 ∗𝑃 , i.e., 𝜙− is the left Kan extension of a presheaf
𝑃 ∶ 𝑄′ → 𝑆𝑒𝑡 along 𝑓 ∗. Since 𝜙+ is precomposition with 𝑓 ∗, 𝜙− is left adjoint to 𝜙+.

Define 𝜙∗ = 𝑎 ◦ 𝜙− ◦ 𝑗 . For any 𝐹 sheaf in 𝑆ℎ(𝑄) and any 𝐺 sheaf in 𝑆ℎ(𝑄′) we have:

𝐻𝑜𝑚𝑆ℎ(𝑄)(𝑎 ◦ 𝜙− ◦ 𝑗(𝐺), 𝐹) ≅ 𝐻𝑜𝑚𝑃𝑆ℎ(𝑄)(𝜙− ◦ 𝑗(𝐺), 𝑖(𝐹))
≅ 𝐻𝑜𝑚𝑃𝑆ℎ(𝑄′)(𝑗(𝐺), 𝜙+ ◦ 𝑖(𝐹))
≅ 𝐻𝑜𝑚𝑃𝑆ℎ(𝑄′)(𝑗(𝐺), 𝑗 ◦ 𝜙∗(𝐹))
≅ 𝐻𝑜𝑚𝑆ℎ(𝑄′)(𝐺, 𝜙∗(𝐹))

So 𝜙∗ is left adjoint to 𝜙∗.

We have sufficient conditions for an equivalence:

Theorem 3.4.9. Consider a pair of adjoint functors 𝑄 𝑄′
𝑓∗

𝑓 ∗

that induces the adjunc-

tion 𝑆ℎ(𝑄) 𝑆ℎ(𝑄′)
𝜙∗

𝜙∗

where 𝜙∗ is left adjoint to 𝜙∗. Suppose that any 𝑢 ∈ 𝑄 is of the

form 𝑢 = 𝑓 ∗(𝑢′) for some 𝑢′ ∈ 𝑄′, then 𝜙∗ is a full and faithful functor. Moreover, if 𝑓∗
preserves sup and multiplication, and 𝑓∗ ◦ 𝑓 ∗ = 𝑖𝑑𝑄′ , then 𝜙∗ is dense and therefore it gives an
equivalence between 𝑆ℎ(𝑄) and 𝑆ℎ(𝑄′).

Proof. We begin by showing that 𝜙∗𝐹 ,𝐺 ∶ 𝐻𝑜𝑚𝑆ℎ(𝑄)(𝐹 , 𝐺) → 𝐻𝑜𝑚𝑆ℎ(𝑄′)(𝐹 ◦ 𝑓 ∗, 𝐺 ◦ 𝑓 ∗) is
surjective: Let 𝜓 ∶ 𝐹 ◦ 𝑓 ∗ → 𝐺 ◦ 𝑓 ∗ be a natural transformation. For each 𝑢′ ∈ 𝑄′, 𝜓𝑢′ ∶
𝐹(𝑓 ∗(𝑢′)) → 𝐺(𝑓 ∗(𝑢′)), which is a natural transformation 𝜑𝑓 ∗(𝑢) ∶ 𝐹(𝑓 ∗(𝑢′)) → 𝐺(𝑓 ∗(𝑢′)).
So 𝜓 = 𝜙∗(𝜑).
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Now, whe check that 𝜙∗ is faithful: Take 𝜑, 𝜓 ∈ 𝐻𝑜𝑚𝑆ℎ(𝑄)(𝐹 , 𝐺) such that 𝜙∗𝐹 ,𝐺(𝜑)𝑢′ =
𝜙∗𝐹 ,𝐺(𝜓)𝑢′ , for all 𝑢′ ∈ 𝑄′. Then 𝜑𝑓 ∗(𝑢′) = 𝜓𝑓 ∗(𝑢′). Therefore, 𝜑𝑢 = 𝜓𝑢, for all 𝑢 ∈ 𝑄, as desired.

To prove that 𝜙∗ is dense we need to use 𝑓∗ and suppose that it preserves sup and
multiplication.

Let 𝐹 be a sheaf on 𝑄′. Note that 𝐹 ◦ 𝑓∗ is a sheaf on 𝑄: take 𝑢 = ⋁𝑖∈𝐼 𝑢𝑖 a covering in 𝑄.
Then ⋁ 𝑓∗(𝑢𝑖) = 𝑓∗(𝑢) is a covering. Let (𝑠𝑖 ∈ 𝐹 ◦ 𝑓∗(𝑢𝑖))𝑖∈𝐼 be a compatible family in 𝐹 ◦ 𝑓∗.
So 𝑠𝑖|𝑢𝑖⊙𝑢𝑗 = 𝑠𝑗|𝑢𝑖⊙𝑢𝑗 , ∀𝑖, 𝑗 ∈ 𝐼 . This implies that

𝑠𝑖|𝑓∗(𝑢𝑖)⊙𝑓∗(𝑢𝑗 ) = 𝑠𝑖|𝑓∗(𝑢𝑖⊙𝑢𝑗 ) = 𝑠𝑗|𝑓∗(𝑢𝑖⊙𝑢𝑗 ) = 𝑠𝑗|𝑓∗(𝑢𝑖)⊙𝑓∗(𝑢𝑗 )

Therefore, this is a compatible family in 𝐹 . Since 𝐹 is a sheaf, there is a unique 𝑠 ∈ 𝐹((𝑓∗)(𝑢))
such that 𝑠|𝑓∗(𝑢𝑖) = 𝑠𝑖, for all 𝑖 ∈ 𝐼 . So, in 𝐹 ◦ 𝑓∗, 𝑠|𝑢𝑖 = 𝑠𝑖, for all 𝑖 ∈ 𝐼 .

Finally, observe that 𝜙∗(𝐹 ◦ 𝑓∗)(𝑢) = (𝐹 ◦ 𝑓∗ ◦ 𝑓 ∗)(𝑢′) ≅ 𝐹(𝑢′), for all 𝑢′ ∈ 𝑄′. So 𝜙∗ is
dense.

Remark 3.4.10. The extra conditions provide that 𝑓 ∗ is a homomorphism of quantales
(preserve sups and multiplication) and then 𝑓∗ ◦𝑓 ∗ = 𝑖𝑑𝑄′ implies that 𝑄 and 𝑄′ are isomorphic
quantales. In other words, in the conditions of the above theorem, it is expected to obtain an
equivalence between 𝑆ℎ(𝑄) and 𝑆ℎ(𝑄′).

The importance of the above theorem is shown by the following applications – the
first and the last are already known:

• If 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphism of topological spaces, then 𝑓 ∗(𝑈 ) = 𝑓 (𝑈 ) and
𝑓∗(𝑉 ) = 𝑓 −1(𝑉 ) satisfy all the the required conditions. So 𝑆ℎ(𝑋 ) is equivalent to
𝑆ℎ(𝑌 ).

• If 𝑓 ∶ 𝑅 → 𝑆 is an isomorphism of commutative rings, then 𝑓 ∗(𝐼 ) = 𝑓 (𝐼 ) and
𝑓∗(𝐽 ) = 𝑓 −1(𝐽 ) satisfy all the the required conditions. So 𝑆ℎ(𝑅) is equivalent to 𝑆ℎ(𝑆).

• Any isomorphism 𝑓 ∗ ∶ 𝑄′ → 𝑄 between quantales satisfies the hypothesis. In
particular, since there is an isomorphism 𝕃 = ([0,∞],+,≥) → ([0, 1, .,≤]) = 𝕀 via
the map 𝑥 ↦ 𝑒−𝑥 , the categories 𝑆ℎ(𝕃) and 𝑆(𝕀) are equivalent.

• Another interesting case of quantalic isomorphism is the localic isomorphism
𝐷 ∶ 𝑅𝑎𝑑(𝑅) → (𝑆𝑝𝑒𝑐(𝑅)), 𝐼 ↦ 𝐷(𝐼 ) = {𝐽 ∶ 𝐽 prime ideal of 𝑅, 𝐼 ⊈ 𝐽 } = ⋃𝑎∈𝐼 𝐷(𝑎),
where 𝐷(𝑎) = {𝐽 ∶ 𝐽 prime ideal of 𝑅, 𝑎 ∉ 𝐽 } [Bor94c, Propostion 2.11.2]. So
𝑆ℎ((𝑆𝑝𝑒𝑐(𝑅))) and 𝑆ℎ(𝑅𝑎𝑑(𝑅)) are equivalent categories.

We remind the reader of Example 3.3.5 and the discussion about how it looked like
a structure sheaf that appears in Algebraic Geometry. Now we can use Theorem 3.4.8
to show that such sheaf actually comes from the usual structure sheaf. Observe that if
𝑓 ∗ ∶ 𝑄 → 𝐿 is a strong geometric morphism, where 𝑄 is a semicartesian commutative
quantale and 𝐿 is a locale, then 𝜙∗ ∶ 𝑆ℎ(𝐿) → 𝑆ℎ(𝑄) gives a way to construct sheaves
on quantales from sheaves on locales. By [BC94, Section 6], we have that the inclusion
functor 𝑖 ∶ 𝑅𝑎𝑑(𝑅) → (𝑅) is right adjoint to

√− ∶ (𝑅) → 𝑅𝑎𝑑(𝑅). By [BC94, Lemma
1.4 (8)],

√− preserves the multiplication and thus is a strong geometric morphism. Since
the map 𝑅𝑎𝑑(𝑅) → (𝑆𝑝𝑒𝑐(𝑅)) is an isomorphism it is, in particular, a left adjoint. So
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the composition (𝑅) 𝑅𝑎𝑑(𝑅) (𝑆𝑝𝑒𝑐(𝑅))
√− 𝐷 is a left adjoint that preserves

multiplication, that is, 𝐷(
√
𝐼 𝐽 ) = 𝐷(

√
𝐼 ∩

√
𝐽 ) = 𝐷(

√
𝐼 ) ∩ 𝐷(

√
𝐼 ). By Theorem 3.4.8, the

structure sheaf 𝑆𝑝𝑒𝑐𝑅 ∶ (𝑆𝑝𝑒𝑐(𝑅))𝑜𝑝 → 𝐶𝑅𝑖𝑛𝑔 gives rise to a sheaf 𝑆𝑝𝑒𝑐𝑅 ◦ 𝐷(
√−) ∶

(𝑅)𝑜𝑝 → 𝐶𝑅𝑖𝑛𝑔 . Note that if we restrict for principal ideals of 𝑅, then 𝑆𝑝𝑒𝑐𝑅 ◦ 𝐷(
√−) is

precisely the functor 𝐿𝑅 defined in Example 3.3.5, since 𝐷(𝑎) = 𝐷(
√
𝑎𝑅) (see the proof

of [Bor94c, Proposition 2.11.2] for details) we have 𝑆𝑝𝑒𝑐𝑅 ◦ 𝐷(
√
𝑎𝑅) = 𝑆𝑝𝑒𝑐𝑅(𝐷(𝑎)) ≅

𝑅[𝑎−1] ≅ 𝐿𝑅(𝑎𝑅).

Remark 3.4.11. In [BC94], √− is actually defined for any quantale 𝑄 but it coincides with
the usual notion of radical of an ideal if 𝑄 = (𝑅).

Remark 3.4.12. The previous Theorems provide enough information for the applications
considered in this thesis, but it could be interesting to carry out a more systematic analysis of
the mapping between (strong) geometric morphisms of quantales and (certain) adjoint pairs
of functors between the categories of sheaves over the corresponding quantales.

In Section 3.1, we introduced a way of obtaining locales from a given semicartesian
quantale by applying the functor (−)− ∶ 𝑄 → 𝐼 𝑑𝑒𝑚(𝑄). In Example 3.4.6 we mentioned
that this functor is a strong geometric morphism if 𝑄 is geometric. We argue that our
notion of sheaves on quantales is “the best approximation” of the notion of sheaves on
locales because given a sheaf 𝐹 on 𝑄, we obtain that the left Kan extension of 𝐹 a sheaf
along (−)− ∶ 𝑄 → 𝐼 𝑑𝑒𝑚(𝑄) is a sheaf on 𝐼 𝑑𝑒𝑚(𝑄).

Proposition 3.4.13. If 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf on a geometric quantale, then 𝐿𝑎𝑛−𝐹 ∶
𝐼 𝑑𝑒𝑚(𝑄)𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf on a locale.

Proof. First note that for any semicartesian quantale, 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 presheaf, and 𝑝 ∈
𝐼 𝑑𝑒𝑚(𝑄),

(𝐿𝑎𝑛−𝐹)(𝑝) = lim−−→((−)−/𝑐𝑡𝑝 → 𝑄𝑜𝑝 𝐹−→ 𝑆𝑒𝑡)

= lim−−→((𝑎− → 𝑏− such that 𝑝 → 𝑎−) 𝐹−→ 𝑆𝑒𝑡)

= lim−−→
𝑎−≥𝑝

𝐹(𝑎)

Since 𝑝 ∈ 𝐼 𝑑𝑒𝑚(𝑄), we have 𝑝− = 𝑝, so 𝑝 itself is the smallest element such that 𝑝− ≥ 𝑝:
if 𝑞 ∈ 𝑄 is such that 𝑞 ≤ 𝑝 then 𝑞− ≤ 𝑝− = 𝑝. So (𝐿𝑎𝑛−𝐹)(𝑝) ≅ 𝐹(𝑝).

Now, suppose that 𝑄 is a geometric quantale and 𝐹 is a sheaf on the base 𝐵 = {𝑢𝑖}𝑖 of
𝑄. Since 𝑄 is geometric, 𝐵− = {𝑢−𝑖 }𝑖 is a base for the locale 𝑄− = {𝑞− ∶ 𝑞 ∈ 𝑄} = 𝐼 𝑑𝑒𝑚(𝑄)
(𝐼 𝑑𝑒𝑚(𝑄) ⊆ 𝑄− since every idempotent is 𝑒 = 𝑒−). We want to show that 𝐿𝑎𝑛−𝐹 is a sheaf
on 𝐵−: take a cover 𝑢− = ⋁

𝑗∈𝐽
𝑢−𝑗 in 𝐵−. This is also a cover in 𝐵. Since 𝐹 is a sheaf on 𝐵, the

following diagram is an equalizer:

𝐹(𝑢−) ∏
𝑗
𝐹(𝑢−𝑗 ) ∏

𝑗 ,𝑘
𝐹(𝑢−𝑗 ⊙ 𝑢−𝑘 )
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Recall that (𝑢𝑗 ⊙ 𝑢𝑘)− = 𝑢−𝑗 ⊙ 𝑢−𝑘 = 𝑢−𝑗 ∧′ 𝑢−𝑘 , since 𝑢−𝑖 and 𝑢−𝑘 are elements in the locale
𝐼 𝑑𝑒𝑚(𝑄). Then

𝐹(𝑢−) ∏
𝑗
𝐹(𝑢−𝑗 ) ∏

𝑗 ,𝑘
𝐹((𝑢𝑗 ⊙ 𝑢𝑘)−)

is an equalizer and so it is

𝐿𝑎𝑛−𝐹(𝑢−) ∏
𝑗
𝐿𝑎𝑛−𝐹(𝑢−𝑗 ) ∏

𝑗 ,𝑘
𝐿𝑎𝑛−𝐹(𝑢−𝑗 ∧′ 𝑢−𝑘 )

Note that it is expected that if 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf on a quantale then a restriction
of it to an appropriated locale returns a sheaf on a locale, but is not expected that the Kan
extension of a sheaf is a also a sheaf.

Next, we introduce a more specific example of base change that will be used to apply
on expanded Čech cohomology in 2.4.

Proposition 3.4.14. Let 𝑋 be a topological space that admits partition of unity subordinate
to a cover (for example, paracompact Hausdorff spaces), and 𝐶(𝑋 ) the ring of all real-valued
continuous functions on 𝑋 . Then

1. The functor

𝜏∶ (𝐶(𝑋 )) → (𝑋 )

𝐼 ↦ ⋃
𝑓 ∈𝐼

𝑓 −1(ℝ − {0})

preserves arbitrary supremum, multiplication, and unity.

2. The functor

𝜃∶ (𝑋 ) → (𝐶(𝑋 ))
𝑈 ↦ ⟨{𝑓 ∶ 𝑓 ↾𝑋−𝑈 ≡ 0}⟩

preserves arbitrary supremum, and unity.

3. The functor 𝜏 is left adjoint to 𝜃.

Proof. 1. To check that 𝜏 preserves supremum, observe that if 𝑥 ∈ (𝑓1+ ...+𝑓𝑛)−1(ℝ−{0})
then 𝑓𝑗(𝑥) ≠ 0 for some 𝑗 ∈ {1, ..., 𝑛} and so 𝑥 ∈ ⋃𝑗∈{1,...,𝑛} 𝑓 −1

𝑗 (ℝ − {0}). Therefore:

𝜏(Σ𝑗∈𝐽 𝐼𝑗) = ⋃
𝑓 ∈Σ𝑗∈𝐽 𝐼𝑗

𝑓 −1(ℝ − {0}) ⊆ ⋃
𝑗∈𝐽

⋃
𝑓𝑗∈𝐼𝑗

𝑓 −1
𝑗 (ℝ − {0}) = ⋃

𝑗∈𝐽
𝜏(𝐼𝑗)

Since 𝜏 is increasing (if 𝐼 ⊆ 𝐾 and 𝑥 ∈ ⋃𝑓 ∈𝐼 𝑓 −1(ℝ − {0}) = 𝜏(𝐼 ) then 𝑓 ∈ 𝐾 and
𝑥 ∈ 𝜏(𝐽 )), we have that 𝜏(𝐼𝑗) ⊆ 𝜏(Σ𝑗∈𝐽 𝐼𝑗) for all 𝑗 ∈ 𝐽 . By definition of supremum,
⋃𝑗∈𝐽 𝜏(𝐼𝑗) ⊆ 𝜏(Σ𝑗∈𝐽 𝐼𝑗).
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The fact that 𝜏 is increasing also gives that given ideals 𝐼 and 𝐽 , 𝜏(𝐼 𝐽 ) ⊆ 𝜏(𝐼 ) ∩ 𝜏(𝐽 ).
On the other side, if 𝑥 ∈ 𝜏(𝐼 ) ∩ 𝜏(𝐽 ) then 𝑓 (𝑥) ≠ 0 and 𝑔(𝑥) ≠ 0, for 𝑓 ∈ 𝐼 and 𝑔 ∈ 𝐽 .
Then 𝑓 𝑔(𝑥) ≠ 0. Since 𝑓 𝑔 ∈ 𝐼 𝐽 , we obtain that 𝑥 ∈ 𝜏(𝐼 𝐽 ). Therefore, 𝜏 preserves
multiplication.

We also have 𝜏(𝐶(𝑋 )) = ⋃𝑓 ∈𝐶(𝑋 ) 𝑓 −1(ℝ − {0}) = 𝑋 , since for all 𝑥 ∈ 𝑋 there is some
continuous function 𝑓 such that 𝑓 (𝑥) ≠ 0, so 𝜏 preserves unity.

2. Observe that

𝜃(⋃
𝑖∈𝐼
𝑈𝑖) = ⟨{𝑓 ∶ 𝑓 ↾𝑋−⋃𝑖∈𝐼 𝑈𝑖 ≡ 0}⟩

Let 𝑔 ∈ Σ𝑖∈𝐼 ⟨{𝑓 ∶ 𝑓 ↾𝑋−𝑈𝑖 ≡ 0}⟩. So 𝑔 = Σ𝑖∈𝐼𝑓𝑖 where 𝑓𝑖(𝑥) = 0 for all 𝑥 ∉ 𝑈𝑖. So
𝑔(𝑥) = Σ𝑖∈𝐼𝑓𝑖(𝑥) = 0 for all 𝑥 ∉ 𝑈 . Actually, since we are dealing with an ideal
generated by a set, each 𝑓𝑖 is a sum Σ𝑗∈ℕ(𝜙𝑖𝑗 .ℎ𝑖𝑗)(𝑥), where 𝜙𝑖𝑗 ∈ 𝐶(𝑋 ) and ℎ𝑖𝑗(𝑥) = 0
for all 𝑥 ∉ 𝑈𝑖, but we write as above since it does not change the verification and it
is easier to follow the argument.

For the other inclusion, if 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 is a covering and 𝑔 ∈ ⟨{𝑓 ∶ 𝑓 ↾𝑋−𝑈 ≡ 0}⟩, define
𝑔𝑖 = 𝑔.𝜎𝑖 where {𝜎𝑖}𝑖∈𝐼 is partition of unity subordinate to {𝑈𝑖}𝑖∈𝐼 . Then 𝜎𝑖(𝑥) = 0 for
all 𝑥 ∉ 𝑈𝑖, and thus 𝑔𝑖(𝑥) = 0 for all 𝑥 ∉ 𝑈𝑖 and

𝑔(𝑥) = 𝑔(𝑥).1 = 𝑔(𝑥).Σ𝑖∈𝐼𝜎𝑖(𝑥) = Σ𝑖∈𝐼𝑔𝑖(𝑥) ∈ Σ𝑖∈𝐼 ⟨{𝑓 ∶ 𝑓 ↾𝑋−𝑈𝑖 ≡ 0}⟩.

Note that 𝜃 preserves unity because every function in 𝐶(𝑋 ) when restricted to the
empty-set is the empty function, and 𝑓 ↾∅ = 0 vacuously holds. Thus, 𝜃(𝑋 ) = 𝐶(𝑋 )

3. Suppose 𝜏(𝐼 ) ⊆ 𝑈 . Let 𝑔 ∈ 𝐼 , then 𝑔−1(ℝ − {0}) ⊆ ⋃𝑔∈𝐼 𝑔−1(ℝ − {0}) ⊆ 𝑈 .

If 𝑥 ∉ 𝑈 , then 𝑥 ∉ 𝑔−1(ℝ − {0}), thus 𝑔(𝑥) = 0, for all 𝑥 ∉ 𝑈 . So 𝑔 ∈ 𝜃(𝑈 ).

Suppose 𝐼 ⊆ 𝜃(𝑈 ). Let 𝑥 ∈ 𝜏(𝐼 ), then 𝑓 (𝑥) ≠ 0 for some 𝑓 ∈ 𝐼 ⊆ 𝜃(𝑈 ), which implies
that 𝑓 (𝑥) = 0, for all 𝑥 ∉ 𝑈 , since 𝑓 (𝑥) = Σ𝑗∈𝐽𝜙𝑗ℎ𝑗(𝑥) where 𝜙𝑗 ∈ 𝐶(𝑋 ) and ℎ𝑗(𝑥) = 0
for all 𝑥 ∉ 𝑈 . To avoid the contradiction 0 = 𝑓 (𝑥) ≠ 0, we have that 𝑥 ∈ 𝑈 .

Proposition 3.4.15. In the same conditions and notation of Proposition 3.4.14, we have that
− ◦ 𝜏 and − ◦ 𝜃 preserve sheaves.

Proof. In the above proposition we proved that 𝜏 is the left adjoint in a geometric morphism
given by the pair 𝜏 and 𝜃. By Theorem 3.4.8, we have that if 𝐹 is a sheaf on (𝑋 ), then
𝐹 ◦ 𝜏 is a sheaf on (𝐶(𝑋 )).

Now, note that 𝜃(𝑈𝑖) ⊙ 𝜃(𝑈𝑗) ⊆ 𝜃(𝑈𝑖 ∩ 𝑈𝑗), since 𝑔 ∈ 𝜃(𝑈𝑖) ⊙ 𝜃(𝑈𝑗) is of the form
(∑
𝑘
𝜙𝑘𝑝𝑘)(∑

𝑙
𝜓𝑙𝑞𝑙) where 𝑝𝑘(𝑥) = 0, ∀𝑥 ∉ 𝑈𝑖 and 𝑞𝑙(𝑥) = 0, ∀𝑥 ∉ 𝑈𝑗 . So 𝑝𝑘𝑞𝑙(𝑥) = 0, ∀𝑥 ∈

(𝑋 ⧵ 𝑈𝑖) ∪ (𝑋 ⧵ 𝑈𝑗) = 𝑋 ⧵ (𝑈𝑖 ∩ 𝑈𝑗).
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Thus, if 𝐹 is a sheaf on (𝐶(𝑋 )) and 𝑠𝑖 ∈ 𝐹 ◦ 𝜃(𝑈𝑖) is such that 𝑠𝑖|𝑈𝑖∩𝑈𝑗 = 𝑠𝑗 |𝑈𝑖∩𝑈𝑗 , for all
𝑖, 𝑗 ∈ 𝐼 , then 𝑠𝑖|𝜃(𝑈𝑖)⊙𝜃(𝑈𝑗 ) = 𝑠𝑗 |𝜃(𝑈𝑖)⊙𝜃(𝑈𝑗 ). So 𝑠𝑖 is a compatible family in 𝐹 . Since 𝐹 is a sheaf, it
admits unique gluing. Thus 𝐹 ◦ 𝜃 is a sheaf on (𝑋 ).

Take 𝑃 a presheaf on (𝑋 ), the left Kan extension of 𝑃 along 𝜃 is the following colimit
(we are using the pointwise Kan extension formula but applied to (𝑋 )𝑜𝑝 and (𝐶(𝑋 ))𝑜𝑝,
since presheaves are contravariant functors)

(𝐿𝑎𝑛𝜃𝑃)(𝐼 ) = lim−−→
𝜃(𝑈 )⊇𝐼

𝑃(𝑈 ) = 𝑃(𝜏(𝐼 )) = (𝑃 ◦ 𝜏)(𝐼 ) (3.3)

because 𝜏 is left adjoint to 𝜃. Since 𝜏 is a geometric morphism (Proposition 3.4.14), by
Theorem 3.4.8 we have that 𝑃 ◦ 𝜏 is a sheaf. So 𝐿𝑎𝑛𝜃 also preserves sheaves.

Since the left Kan extension along 𝜃 is left adjoint to the precomposition with 𝜃, we have
that (− ◦𝜏) is left adjoint to (− ◦𝜃). Let 𝑃 presheaf in 𝑃𝑆ℎ(𝑋 ) and 𝐹 sheaf in 𝑆ℎ(𝐶(𝑋 ))

𝐻𝑜𝑚𝑆ℎ(𝐶(𝑋 ))(𝑎𝐶(𝑋 ) ◦ (− ◦ 𝜏)(𝑃), 𝐹) ≅ 𝐻𝑜𝑚𝑃𝑆ℎ(𝐶(𝑋 ))((− ◦ 𝜏)(𝑃), 𝑗(𝐹))
≅ 𝐻𝑜𝑚𝑃𝑆ℎ(𝑋 )(𝑃, (− ◦ 𝜃) ◦ 𝑗(𝐹))

By Proposition 3.4.15, (− ◦ 𝜃) preserves sheaves. Then we have

𝐻𝑜𝑚𝑆ℎ(𝐶(𝑋 ))((− ◦ 𝜏) ◦ 𝑎𝑋 (𝑃), 𝐹) ≅ 𝐻𝑜𝑚𝑆ℎ(𝐶(𝑋 ))(𝐿𝑎𝑛𝜃 ◦ 𝑎𝑋 (𝑃), 𝐹)
≅ 𝐻𝑜𝑚𝑆ℎ(𝑋 )(𝑎𝑋 (𝑃), (− ◦ 𝜃)(𝐹))
≅ 𝐻𝑜𝑚𝑃𝑆ℎ(𝑋 )(𝑃, 𝑖 ◦ (− ◦ 𝜃)(𝐹))

Notice that 𝑖 ◦ (− ◦ 𝜃)(𝐹) = (− ◦ 𝜃) ◦ 𝑗(𝐹). So (− ◦ 𝜏) ◦ 𝑎𝑋 and 𝑎𝐶(𝑋 ) ◦ (− ◦ 𝜏) are both left
adjoint functors of the same functor. Therefore, (− ◦ 𝜏) ◦ 𝑎𝑋 ≅ 𝑎𝐶(𝑋 ) ◦ (− ◦ 𝜏) and we obtain
that the following diagram commutes (up to natural isomorphism)

𝑆ℎ(𝑋 ) 𝑆ℎ(𝐶(𝑋 ))

𝑃𝑆ℎ(𝑋 ) 𝑃𝑆ℎ(𝐶(𝑋 ))

𝑆𝑒𝑡

𝑖 𝑗

𝐿𝑎𝑛𝜃=−◦𝜏

𝐿𝑎𝑛𝜃=−◦𝜏

−◦𝜃

−◦𝜃

𝑎𝑋 𝑎𝐶(𝑋 )

𝑐𝑜𝑛𝑠𝑡𝑋
𝑐𝑜𝑛𝑠𝑡𝐶(𝑋 )

Therefore, we proved:

Corollary 3.4.16. The constant sheaf in 𝑆ℎ(𝐶(𝑋 )), denoted 𝐾 𝑎
𝐶(𝑋 ), is naturally isomorphic

to the composition 𝐾 𝑎
𝑋 ◦ 𝜏 where 𝐾 𝑎

𝑋 is a constant sheaf in 𝑆ℎ(𝑋 ).

Proof. We are using 𝐾 𝑎
𝑋 to denote the sheafification of a constant presheaf 𝐾𝑋 . Explicitly,
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the commutativity of the diagram reads as follows:

𝐾 𝑎
𝐶(𝑋 ) = 𝑎𝐶(𝑋 ) ◦ 𝑐𝑜𝑛𝑠𝑡𝐶(𝑋 )(𝐾)

= 𝑎𝐶(𝑋 ) ◦ (− ◦ 𝜏) ◦ 𝑐𝑜𝑛𝑠𝑡𝑋 (𝐾)
≅ (− ◦ 𝜏) ◦ 𝑎𝑋 ◦ 𝑐𝑜𝑛𝑠𝑡𝑋 (𝐾)
= (− ◦ 𝜏)(𝑎𝑋 (𝐾))
= 𝑎𝑋 (𝐾) ◦ 𝜏
= 𝐾 𝑎

𝑋 ◦ 𝜏

We will use this Corollary in Section 4.5.

We believe that it is possible to use the above construction in other contexts. For
instance, we could replace the ring of real-valued continuous functions with the ring of real-
valued smooth functions or replace real-valued with complex-valued (continuous/smooth)
functions. We plan to check such changes in a future work.

3.5 Sheaves with algebraic structure
The pair of adjoint functors between the open subsets of 𝑋 and the ideal of 𝐶(𝑋 )

introduced in the previous section was constructed with the goal of relating cohomological
groups of 𝑋 with coefficient in 𝐾𝑋 and cohomological groups of 𝐶(𝑋 ) with coefficient
in 𝐾𝐶(𝑋 ). We accomplish such a goal in Section 4.5 by extending the well-known Čech
cohomology in a framework that encompasses both topological spaces and commutative
rings with unit.

However, Čech cohomology is more like a technique to compute other cohomology the-
ories, such as Singular and De Rham, and less like a cohomology theory. For a Grothendieck
topos  ≅ 𝑆ℎ(𝐶, 𝐽 ), it is known that the category 𝐴𝑏() of abelian group objects in  is an
abelian category with enough injective objects. This basically means that we can apply
homological algebra techniques7 in 𝐴𝑏(), in particular, it gives that the functor of global
sections has right derived functors (because it is a left exact functor). The right derived
functors define the cohomological groups of a sheaf in 𝐴𝑏(), and this is the beginning of
sheaf cohomology.

In our case, we have already mentioned and will prove in Theorem 4.3.8, that 𝑆ℎ(𝑄) is
not a Grothendieck topos. Nevertheless, is 𝐴𝑏(𝑆ℎ(𝑄)) an abelian category? Does it have
enough injectives? We believe the answer is no, 𝐴𝑏(𝑆ℎ(𝑄)) is not an abelian category. In
this thesis, we do not explore if 𝐴𝑏(𝑆ℎ(𝑄)) has enough injectives. Luckily, to define Čech
cohomology we will only need the Čech cochains to be abelian (groups), and they will if the
coefficients are sheaves of abelian groups. This Section is devoted to talking about sheaves
with algebraic structures and so have a well-behaved theory to define Čech cochains for

7 Homological algebra can be done for categories that are not abelian, like triangulated or semi-abelian
categories.



3.5 | SHEAVES WITH ALGEBRAIC STRUCTURE

59

quantales. The idea is once again to replicate the case of sheaves on topological spaces
[MM92, Chapter II.7].

First, we define abelian group objects in a category.

Definition 3.5.1. Let  be a category with binary products and terminal object 1, we can
define the notion of group object in  as an object 𝐺 in  equipped with morphisms

𝑒 ∶ 1 𝐺 𝑖 ∶ 𝐺 𝐺 𝑚 ∶ 𝐺 × 𝐺 𝐺

in , such the following diagrams commute

𝐺 × 𝐺 × 𝐺 𝐺 × 𝐺 1 × 𝐺 𝐺 × 𝐺 𝐺 × 1

𝐺 × 𝐺 𝐺 𝐺

𝑖𝑑𝐺×𝑚

𝑚×𝑖𝑑𝐺 𝑚

𝑒×𝑖𝑑𝐺

≅
𝑚

𝑖𝑑𝐺×𝑒

≅

𝑚

𝐺 𝐺 × 𝐺 𝐺 × 𝐺

1 𝐺

!

△ 𝑖×𝑖𝑑𝐺

𝑚

𝑒

𝐺 𝐺 × 𝐺 𝐺 × 𝐺

1 𝐺

!

△ 𝑖𝑑𝐺×𝑖

𝑚

𝑒

where △ = (𝑖𝑑𝐺, 𝑖𝑑𝐺) ∶ 𝐺 → 𝐺 × 𝐺 is the diagonal morphism.

The above diagrams express the group axioms. So, if we want an abelian group object
we must add the following commutative diagram

𝐺 × 𝐺 𝐺 × 𝐺

𝐺

𝜏

𝑚
𝑚

where 𝜏 = (𝜋2, 𝜋1) ∶ 𝐺 × 𝐺 → 𝐺 × 𝐺 is the twist morphism.

In short, an abelian group object is a quadruple (𝐺, 𝑒, 𝑖, 𝑚), where the diagrams above
commute. They are the objects in the category 𝐴𝑏() of abelian groups object in , and
the morphisms are arrows in  that commute with the corresponding morphisms 𝑒, 𝑖, and
𝑚.

Explicitly, a morphism ℎ ∶  = (𝐺, 𝑒, 𝑖, 𝑚) → (𝐺′, 𝑒′, 𝑖′, 𝑚′) = ′ in 𝐴𝑏() corresponds
to a morphism ℎ ∶ 𝐺 → 𝐺′ in  such that the following diagrams commute:

𝐺 × 𝐺 𝐺′ × 𝐺′ 𝐺 𝐺′ 𝐺 𝐺′

𝐺 𝐺′ 1 𝐺 𝐺′

ℎ×ℎ

ℎ

𝑚′𝑚 𝑒
𝑒′

ℎ ℎ

ℎ

𝑖′𝑖
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Observe that the forgetful functor 𝑈 ∶ 𝐴𝑏() →  creates limits since abelian group
objects use only products and commutative diagrams in the category .

An abelian sheaf on 𝑄 is an abelian group object in 𝑆ℎ(𝑄). Equivalently,

Definition 3.5.2. An abelian sheaf (or a sheaf of abelian groups) is a functor 𝐹 ∶ 𝑄𝑜𝑝 → 𝐴𝑏
such that the composite 𝑈 ◦ 𝐹 with the forgetful functor 𝑈 ∶ 𝐴𝑏 → 𝑆𝑒𝑡 is a sheaf of sets.

In this case, we denote the correspondent category by 𝑆ℎ𝐴𝑏(𝑄).

We can replace 𝐴𝑏 with any category 𝐷 that admits a forgetful functor 𝐷 → 𝑆𝑒𝑡. Note
that Example 3.3.5 is actually an example of a sheaf of rings, that is, 𝐷 = 𝐶𝑅𝑖𝑛𝑔 . Similarly,
one can talk about ring objects (and other algebraic structure objects) in a category 
depending on categorical properties of 8. From now and until the end of this section, we
only work with sheaves of abelian groups.

It is known that 𝑆ℎ𝐴𝑏(𝐿) is equivalent 𝐴𝑏(𝑆ℎ(𝐿)). The argument to show that 𝑆ℎ𝐴𝑏(𝑄)
is equivalent to 𝑆ℎ(𝑄) is the same, but we sketch it here. Consider an abelian presheaf
𝑄𝑜𝑝 → 𝐴𝑏. Then, 𝐹(𝑢) is an abelian group for every 𝑢 ∈ 𝑄. As so, we have operations
𝑚𝑢 ∶ (𝐹 × 𝐹)(𝑢) ≅ 𝐹(𝑢) × 𝐹(𝑢) → 𝐹(𝑢), 𝑖𝑢 ∶ 𝐹(𝑢) → 𝐹(𝑢), and 𝑒𝑢 ∶ 1 → 𝐹(𝑢) that are
components of natural transformations 𝑚, 𝑖, 𝑢 that satisfy the diagrammatic rules of an
abelian group object. Thus, 𝐹 is an abelian group object of 𝑃𝑆ℎ(𝑄). On the other side, if
𝐺 ∈ 𝐴𝑏(𝑃𝑆ℎ(𝑄)𝑜𝑝), then 𝐺 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡 and we have natural transformations 𝑚, 𝑖, and 𝑒 as
in the definition of an abelian group object. For every 𝑢 ∈ 𝑄 we consider 𝑚𝑈 , 𝑖𝑈 , and 𝑒𝑈
such that the diagrammatic rules still hold, then, 𝐺(𝑈 ) is an abelian group. Therefore, 𝐺 is
a functor from 𝑄𝑜𝑝 to 𝐴𝑏. Those correspondences describe an equivalence of categories
𝐴𝑏(𝑆𝑒𝑡(𝑋 )𝑜𝑝) ≃ 𝐴𝑏(𝑋 )𝑜𝑝 .

Since we have inclusions 𝑆ℎ(𝑄) → 𝑃𝑆ℎ(𝑄) and 𝑆ℎ𝐴𝑏(𝑄) → 𝑃𝑆ℎ𝐴𝑏(𝑄), the equiva-
lence 𝐴𝑏(𝑆𝑒𝑡(𝑋 )𝑜𝑝) ≃ 𝐴𝑏(𝑋 )𝑜𝑝 induces an equivalence 𝐴𝑏(𝑆ℎ(𝑋 )) ≃ 𝑆ℎ𝐴𝑏(𝑋 ), because the
subcategories of sheaves, over 𝑆𝑒𝑡 and over 𝐴𝑏, are closed under all small limits.

Since 𝐴𝑏(𝑆ℎ(𝐿)) is an abelian category, this equivalence says that 𝑆ℎ𝐴𝑏(𝐿) also is.
The following is a sequence of categorical results that make 𝑆ℎ𝐴𝑏(𝑄) close to an abelian
category.

Proposition 3.5.3. 𝑆ℎ𝐴𝑏(𝑄) has a zero object.

Proof. Since 𝑆ℎ𝐴𝑏(𝑄) → 𝑃𝑆ℎ𝐴𝑏(𝑄) is closed under limit, a terminal object in 𝑆ℎ𝐴𝑏(𝑄) must
be the terminal abelian presheaf, that is, the constant functor with values in the zero object
in 𝐴𝑏, which makes 𝐻𝑜𝑚𝑄(−, 1) ≅ 0 a zero object in 𝑆ℎ𝐴𝑏(𝑄).

Proposition 3.5.4. 𝑆ℎ𝐴𝑏(𝑄) has biproducts.

Proof. Define (𝐹 ⊕ 𝐺)(𝑢) = 𝐹(𝑢) ⊕ 𝐺(𝑢), for 𝐹 , 𝐺 ∈ 𝑆ℎ𝐴𝑏(𝑄) Let 𝑢 = ⋁
𝑖∈𝐼
𝑢𝑖 and consider

(𝑠𝑖 ∈ (𝐹 ⊕𝐺)(𝑢𝑖))𝑖∈𝐼 a compatible family. We have 𝑠𝑖 = 𝑓𝑖+𝑔𝑖, where 𝑓𝑖 ∈ 𝐹(𝑢𝑖) and 𝑔𝑖 ∈ 𝐺(𝑢𝑖)

8 There are at least two approaches to this, via models of a Lawvere theory [Law63] or via the microcosm
principle [BD98].
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are unique for each 𝑖 ∈ 𝐼 . By the unicity of the decomposition of the biproduct 𝐹(𝑢𝑖)⊕𝐺(𝑢𝑖)
in 𝐴𝑏, we obtain that (𝑓𝑖 ∈ 𝐹(𝑢𝑖))𝑖∈𝐼 and (𝑔𝑖 ∈ 𝐺(𝑢𝑖))𝑖∈𝐼 are compatible families.

Since 𝐹 and 𝐺 are sheaves, there are unique 𝑓 ∈ 𝐹(𝑢) and 𝑔 ∈ 𝐺(𝑢) such that 𝑓↾𝑢𝑖 = 𝑓𝑖
and 𝑔↾𝑢𝑖 = 𝑔𝑖. Define 𝑠 = 𝑓 + 𝑔 . So,

𝑠↾𝑢𝑖 = (𝑓 + 𝑔)↾𝑢𝑖 = 𝑓↾𝑢𝑖 + 𝑔↾𝑢𝑖 = 𝑓𝑖 + 𝑔𝑖 = 𝑠𝑖, ∀𝑖 ∈ 𝐼

Therefore, the gluing exists. If 𝑠′ = 𝑓 ′ + 𝑔 ′ is another gluing with 𝑓 ′ ∈ 𝐹(𝑢) and 𝑔 ′ ∈ 𝐺(𝑢).
We have that 𝑠↾𝑢𝑖 = 𝑠′↾𝑢𝑖 implies 𝑓↾𝑢𝑖 + 𝑔↾𝑢𝑖 = 𝑓 ′

↾𝑢𝑖
+ 𝑔 ′↾𝑢𝑖 . So 𝑓↾𝑢𝑖 = 𝑓 ′

↾𝑢𝑖
and 𝑔↾𝑢𝑖 = 𝑔 ′↾𝑢𝑖 . Since 𝐹

and 𝐺 are sheaves, 𝑓 = 𝑓 ′ and 𝑔 = 𝑔 ′. Therefore, 𝑠 = 𝑠′.

Proposition 3.5.5. 𝑆ℎ𝐴𝑏(𝑄) has kernels.

Proof. Let 𝜑 ∶ 𝐹 → 𝐺 be a morphism of abelian sheaves and 𝑢 = ⋁
𝑖∈𝐼
𝑢𝑖. For all 𝑣 ∈ 𝑄, we

define (𝐾𝑒𝑟𝜑)(𝑣) = 𝐾𝑒𝑟(𝜑𝑣). Let 𝑠, 𝑠′ ∈ (𝐾𝑒𝑟𝜑)(𝑢) such that 𝑠↾𝑢𝑖 = 𝑠′↾𝑢𝑖 . As 𝐾𝑒𝑟𝜑 is a presheaf,
the following diagram commutes:

𝐾𝑒𝑟(𝜑𝑢𝑖) 𝐹(𝑢𝑖)

𝐾𝑒𝑟(𝜑𝑢) 𝐹(𝑢)

𝑘𝑒𝑟(𝜑𝑢𝑖 )

𝑘𝑒𝑟(𝜑𝑢)

So ((𝐾𝑒𝑟𝜑𝑢)(𝑠))↾𝑢𝑖 = ((𝐾𝑒𝑟𝜑𝑢)(𝑠′))↾𝑢𝑖 Since 𝐹 is a sheaf, we obtain that (𝐾𝑒𝑟𝜑𝑢)(𝑠) =
(𝐾𝑒𝑟𝜑𝑢(𝑠′). Since every kernel is mono, we have 𝑠 = 𝑠′.

Now let 𝑠𝑖 ∈ (𝐾𝑒𝑟𝜑)(𝑢𝑖) such that 𝑠𝑖↾𝑢𝑖⊙𝑢𝑗 = 𝑠𝑗↾𝑢𝑖⊙𝑢𝑗 . Then 𝐾𝑒𝑟(𝜑𝑢𝑖)(𝑠𝑖) ∈ 𝐹(𝑢𝑖). Since 𝐹 is a
sheaf, there exists 𝑠 ∈ 𝐹(𝑢) such that 𝑠↾𝑢𝑖 = 𝐾𝑒𝑟(𝜑𝑢𝑖)(𝑠𝑖).

We will see that 𝑠 ∈ (𝐾𝑒𝑟𝜑)(𝑢) = 𝐾𝑒𝑟(𝜑𝑢), that is, 𝜑𝑢(𝑠) = 0. By the commutativity of

𝐹(𝑢𝑖) 𝐺(𝑢𝑖)

𝐹(𝑢) 𝐺(𝑢)𝜑𝑢

𝜑𝑢𝑖

we have that (𝜑𝑢(𝑠))↾𝑢𝑖 = 𝜑𝑢𝑖(𝑠↾𝑢𝑖 ). But

𝜑𝑢𝑖(𝑠↾𝑢𝑖 ) = 𝜑𝑢𝑖(𝐾𝑒𝑟𝜑↾𝑢𝑖 (𝑠𝑖)) = (𝜑↾𝑢𝑖 ◦ 𝐾𝑒𝑟𝜑↾𝑢𝑖 )(𝑠𝑖) = 0, ∀𝑖 ∈ 𝐼

Therefore, (𝜑𝑢(𝑠))↾𝑢𝑖 = 0, ∀𝑖 ∈ 𝐼 . Since 𝐺 is a sheaf, 𝜑𝑢(𝑠) = 0, as desired.

After this, we would like to prove that 𝑆ℎ𝐴𝑏(𝑄) has cokernels. We can make the cokernel
presheaf into a sheaf by applying the sheafification functor that we will introduce in the
next chapter. However, this process may produce a sheaf that is not a cokernel anymore.
In the standard case, the sheafification has a universal property that guarantees that the
sheafification of the cokernel still is a cokernel.In our case, we were not able to prove
such a universal property yet. It also remains to check if 𝑆ℎ𝐴𝑏(𝑄) has an incarnation of
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the isomorphism theorem, which is necessary to make the category abelian. To prove the
incarnation of the isomorphism theorem in 𝑆ℎ𝐴𝑏(𝐿) it is used that the sheafification is left
exact. It is also known that Grothendieck toposes are the left exact reflective subcategories
of a presheaf category. However, 𝑆ℎ(𝑄) is a reflective subcategory of 𝑃𝑆ℎ(𝑄) that is not
a Grothendieck topos in general (Theorem 4.3.8), and thus our sheafification cannot be
left exact. Of course, maybe there is another argument to show that 𝑆ℎ𝐴𝑏(𝐿) is abelian,
but all the proofs that we know use such property of the sheafification at some point so
we do not expect 𝑆ℎ(𝑄) to be an abelian category. Nevertheless, the existence of enough
injectives in 𝑆ℎ𝐴𝑏(𝑄) may be true: by [Gro57, Theorem 1.10.1], when a category is AB5
(abelian categories possessing arbitrary coproducts and in which filtered colimits of exact
sequences are exact) and has a generator – 𝑆ℎ(𝑄) has generator by Proposition 3.2.21 –
then if has enough injectives.

There is another class of categories that is famous in standard sheaf cohomology:
triangulated categories. Therefore in the perspective of founding a cohomology theory for
our sheaves we plan to check if 𝑆ℎ𝐴𝑏(𝑄) is triangulated. Fortunately, it is possible to apply
cohomological methods in our 𝑆ℎ𝐴𝑏(𝑄) if we use Čech cohomology. While sheaf cohomol-
ogy is about the right derived functor of the global section functor, Čech cohomology of a
sheaf constructs a cochain complex and the cohomology is the quotient of the appropriate
kernel by the appropriate image. Under mild conditions, cohomology of a sheaf defined by
right derived functors and Čech cohomology coincide. For the comfort of the reader, we
stated it here 2.4.5. This means that even we do not have a sheaf cohomology in its most
general framework, in Section 4.5 we expanded Čech cohomology of sheaves on locales to
encompass sheaves on quantales.
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Chapter 4

Sheaves on Monoidal Categories

Alexander Grothendieck created what we currently call Grothendieck pretopologies by
investigating the behavior of coverings for a fixed topological space. The stability axiom
in the definition of Grothendieck pretopologies says that if we have a family {𝑈𝑖 → 𝑈 }𝑖∈𝐼
of objects in a fixed category and {𝑈𝑖 → 𝑈 }𝑖∈𝐼 is covering of an object 𝑈 – whatever this
means – and a morphism 𝑉 → 𝑈 , then the family of pullbacks {𝑉 ×𝑈 𝑈𝑖 → 𝑉 }𝑖∈𝐼 covers
𝑉 . Note that in the category (𝑋 ) of open subsets of a topological space 𝑋 , once we
know that intersections are the pullbacks in (𝑋 ), such property arises naturally from the
distributivity ⋃

𝑖∈𝐼
(𝑉 ∩ 𝑈𝑖) = 𝑉 ∩ (⋃

𝑖∈𝐼
𝑈𝑖) = 𝑉 ∩ 𝑈 = 𝑉 . In this thesis, when we defined sheaves

on quantales we persisted in maintaining that a cover should be given by the joins/union
but, for quantales, joins distribute over the quantalic product, not the infimum/intersection.
This already suggests that we need a general notion of covering that considers the extra
monoidal structure in its axioms to be able to encompass 𝑆ℎ(𝑄) into some more general
notion of Grothendieck topos. Indeed, we will see that in 𝑄, 𝑈 = ⋁𝑖∈𝐼 𝑈𝑖 is not a covering
in the sense of a Grothendieck pretolopogy. However, this is not enough to say that
𝑆ℎ(𝑄) is not, in general, a Grothendieck topos (or even an elementary topos) because a
Grothendieck topos is any category that is equivalent to a category of sheaves defined for
a category equipped with a Grothendieck topology. So, there could exist some category 
and some Grothendieck topology 𝐽 such that 𝑆ℎ(𝑄) is equivalent to 𝑆ℎ(𝐶, 𝐽 ).

We start this Chapter “ignoring” if 𝑆ℎ(𝑄) is a Grothendieck topos or not: since a com-
mutative unital and semicartesian quantale 𝑄 is a thin symmetric monoidal semicartesian
category, we construct a notion of covering, Grothendieck prelopologies, that encompass
both the covering in 𝑄 and the covering in the Grothendieck pretopologies if the monoidal
tensor is the cartesian product. Then we can consider a quite natural notion of sheaves
for (symmetric) monoidal semicartesian categories. We do not developed a correspondent
notion of Grothendieck lopologies since prelopologies are enough for our applications in
Cohomology. We do however develop a mechanism to obtain a sheaf, in our sense, given a
presheaf – the sheafification. The general framework provided techniques to finally prove
that 𝑆ℎ(𝑄) is not, in general, a topos (Theorem 4.3.8). Moreover, we proved that the lattice
of subterminal objects in 𝑆ℎ(𝑄) is isomorphic to 𝑄 (Theorem 4.3.6). Since 𝑆ℎ(𝑄) is not a
Grothendiek topos, the development of the theory of sheaves we construct in this Chapter
is justified: we are going toward the development of an elementary topos theory that
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has a different internal logic, probably, an affine linear logic1. A good understanding of
subobjects classifiers in 𝑆ℎ(𝑄) could guide us to a better understanding of the internal
logic of 𝑆ℎ(𝑄), so we approach this issue in Section 4.3.2.

We also discuss how to further generalize our theory for semigroupal categories
instead of monoidal categories and in the end we focus on the application of our theory
in cohomology. In this final part, we show that the Čech cohomology of a topological
space 𝑋 with coefficients in a constant sheaf in 𝑆ℎ(𝑋 ) is isomorphic to the (adapted) Čech
cohomology of the ring of real-valued continuous functions 𝐶(𝑋 ) with coefficients in a
constant sheaf in 𝑆ℎ(𝐶(𝑋 )) 4.5.7. We prove an analogous result where the coefficient in
the “topological side” may be any sheaf in 𝑆ℎ(𝑋 ) and the coefficient in the “algebraic side”
will be induced by the sheaf in 𝑆ℎ(𝑋 ) 4.5.8.

4.1 Grothendieck prelopologies
In this section we generalize the notion of a pullback, and carefully modify the definition

of a Grothendieck pretopology. This will lead to a presentation of sheaves on semicartesian
categories as a generalization of sheaves on categories with pullbacks.

We want to define Grothendieck prelopologies2 for (semicartesian symmetric monoidal)
categories with a limit analogous to a pullback. Recall that if the category  has products
then the pullback 𝐴 ×𝐶 𝐵 of arrows 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐶 is the equalizer of

𝐴 × 𝐵 𝐶,
𝑔◦𝜋2

𝑓 ◦𝜋1
where 𝜋1 and 𝜋2 are the projections of the product.

Instead of a product, we have the tensor of a monoidal category. Since we are consid-
ering semicartesian monoidal categories, by Proposition 2.1.8, we have projections

𝐴 ⊗ 𝐵 𝐴 ⊗ 1 𝐴

𝐴 ⊗ 𝐵 1 ⊗ 𝐵 𝐵

𝜌𝐴𝑖𝑑𝐴⊗!𝐵

𝜋1

!𝐴⊗𝑖𝑑𝐵 𝜆𝐵

𝜋2

Where the diagram
𝐴 ⊗ 𝐵 𝐵

𝐴 𝐶

𝜋2

𝜋1

𝑓

𝑔

1 This may have interesting consequences for Quantum Mechanics and Non-commutative Topology. We will
address this discussion in the last Chapter

2 We expect that sheaves under this cover will have some kind of linear logic as its internal language, which
motivated us to choose this terminology.
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is not always commutative, but we do have parallel arrows 𝐴 ⊗ 𝐵 𝐶
𝑔◦𝜋2

𝑓 ◦𝜋1
so the

monoidal (non-cartesian) analogous version of a pullback is to take the equalizer of this
parallel arrows.

Definition 4.1.1. Let (, ⊗, 1) be a semicartesian (symmetric) monoidal category with
equalizers. The pseudo-pullback of morphisms 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐶 is the equalizer

of the parallel arrows 𝐴 ⊗ 𝐵 𝐶
𝑔◦𝜋2

𝑓 ◦𝜋1
where 𝜋1 = 𝜌𝐴 ◦ (𝑖𝑑𝐴⊗!𝐵) and 𝜋2 = 𝜆𝐵 ◦ (𝑖𝑑𝐴 ⊗ 𝑖𝑑𝐵)

Diagrammatically, the pseudo-pullback is the object 𝐴 ⊗𝑓 𝑔 𝐵 with the equalizer arrow
in the following equalizer diagram

𝐴 ⊗𝑓 𝑔 𝐵

𝐴 ⊗ 𝐵 𝐵

𝐴 𝐶

𝑔

𝑓

𝜋2

𝜋1

𝑒′

𝑝1

𝑝2

The arrows 𝑝1 and 𝑝2 are just the compositions 𝜋1 ◦ 𝑒′ and 𝜋2 ◦ 𝑒′, respectively.

Example 4.1.2. If (, ⊗, 1) = (𝑄,⊙, 1), then the pseudo-pullback is the multiplication ⊙.

Remark 4.1.3. The multiplication ⊙ of a quantale 𝑄 is not necessarily a pullback in the
poset category 𝑄. This justifies the need for a generalization of pullbacks in our research.

Example 4.1.4. If (, ⊗, 1) = (𝐶, ×, 1), i.e., the monoidal tensor in (, ⊗, 1) is the cartesian
product with unity the terminal object 1, then the pseudo-pullback is the pullback. This shows
that we are indeed generalizing pullbacks.

Example 4.1.5. Let (, ⊗, 𝐼 ) be a monoidal category. The slice category /𝐼 is a semicartesian
monoidal category with tensor defined by

(𝐴
𝜙
−→ 𝐼 ) ⊗/𝐼 (𝐵

𝜓
−→ 𝐼 ) = (𝐴 ⊗ 𝐵

𝜙⊗𝜓
−−−→ 𝐼 ⊗ 𝐼 ≅ 𝐼 ).

If 𝐸 𝐴 𝐵
𝑞

𝑝𝑒 is an equalizer diagram in (, ⊗, 𝐼 ) then

𝐸 𝐴 𝐵

𝐼

𝑞

𝑝𝑒

𝜙
𝜓𝜙◦𝑒

is an equalizer diagram in (/𝐼 , ⊗/𝐼 , 𝐼 ). In particular, suppose that (, ⊗, 𝐼 ) is the category
of 𝑅-modules, where 𝑅 is a commutative ring with unity, the monoidal structure is given by
the tensor product of 𝑅-modules and the monoidal unity is the ring 𝑅. Then the objects in
(/𝐼 , ⊗/𝐼 , 𝐼 ) are module homomorphisms 𝑀 → 𝑅, where 𝑀 is an 𝑅-module. Now, 𝑅 is not
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only the monoidal unity but also the terminal object in (/𝐼 , ⊗/𝐼 , 𝐼 ). So we have “projections”
𝜋1 ∶ 𝑀 ⊗𝑅 𝑁 → 𝑀 ⊗𝑅 𝑅 → 𝑀 and 𝜋2 ∶ 𝑀 ⊗𝑅 𝑁 → 𝑅⊗𝑅 𝑁 → 𝑁 . Then the pseudo-pullback

of 𝑓 ∶ 𝑀 → 𝑂 and 𝑔 ∶ 𝑁 → 𝑂 is obtained from the equalizer of 𝑀 ⊗𝑅 𝑁 𝑂
𝑔◦𝜋2

𝑓 ◦𝜋1
in the

category of 𝑅-modules and module homomorphisms.

Example 4.1.6. Consider two categories (, ⊗, 1) and (, ⋆, 1) both with pseudo-pullbacks.
Then the product category  × has pseudo-pullbacks: given 𝐶, 𝐶′ objects in  and 𝐷,𝐷′

objects in . Define
(𝐶, 𝐷) ⊗× (𝐶′, 𝐷′) = (𝐶 ⊗ 𝐶′, 𝐷 ⋆ 𝐷′)

If 𝐶 ⊗𝑓 𝑔 𝐶′ is the pseudo-pullback of 𝑓 ∶ 𝐶 → 𝐸 and 𝑔 ∶ 𝐶′ → 𝐸, and 𝐷 ⋆𝜙 𝜓 𝐷′ is the
pseudo-pullback of 𝜙 ∶ 𝐷 → 𝐹 and 𝜓 ∶ 𝐷′ → 𝐹 , then the pseudo-pullback of (𝑓 , 𝜙) ∶
(𝐶, 𝐷) → (𝐸, 𝐹) and (𝑔, 𝜓) ∶ (𝐶′, 𝐷′) → (𝐸, 𝐹) is (𝐶 ⊗𝑓 𝑔 𝐶′, 𝐷 ⋆𝜙 𝜓 𝐷′). In particular, we can
take (, ⊗, 1) = (, ×, 1) and (, ⋆, 1) = (𝑄,⊙, 1).

Next, following the naive way of thinking, we introduce the first candidate to a
Grothendieck prelopology (as we will see, it will not work).

Let (, ⊗, 1) be a semicartesian monoidal category with pseudo-pullbacks. A
Grothendieck prelopology on  associates to each object 𝑈 of  a set 𝐿(𝑈 ) of families of
morphisms {𝑈𝑖 → 𝑈 | 𝑖 ∈ 𝐼 } such that:

1. The singleton family {𝑈 ′ 𝑓
−→ 𝑈 }, formed by an isomorphism 𝑓 ∶ 𝑈 ′ ≅→ 𝑈 , is in 𝐿(𝑈 );

2. If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ) and {𝑉𝑖𝑗

𝑔𝑖𝑗−−→ 𝑈𝑖}𝑗∈𝐽𝑖 is in 𝐿(𝑈𝑖) for all 𝑖 ∈ 𝐼 , then {𝑉𝑖𝑗
𝑓𝑖◦𝑔𝑖𝑗−−−→ 𝑈 }𝑖∈𝐼 ,𝑗∈𝐽𝑖

is in 𝐿(𝑈 );

3. If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ), and 𝑉 → 𝑈 is any morphism in , then the family of

pseudo-pullbacks {𝑔𝑖 ∶ 𝑈𝑖 ⊗𝑈 𝑉 → 𝑉 }𝑖∈𝐼 is in 𝐿(𝑉 ).

In the above, we just replaced the pullback with the pseudo-pullback. This definition
is not good for us because in the category (𝑄,⊙, 1) we want 𝑈 = ⋁𝑖∈𝐼 𝑈𝑖 to be a cover of 𝑈 ,
in the sense of a Grothendieck prelopology. However, if 𝑉 ≤ 𝑈 , we have

𝑉 ≠ 𝑈 ⊙ 𝑉 = ⋁
𝑖∈𝐼
𝑈𝑖 ⊙ 𝑉

So if we define
{𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 } ∈ 𝐿(𝑈 ) ⟺ 𝑈 = ⋁

𝑖∈𝐼
𝑈𝑖

we obtain that {𝑈𝑖 ⊗ 𝑉 → 𝑉 } ∉ 𝐿(𝑉 ). Therefore, 𝑈 = ⋁𝑖∈𝐼 𝑈𝑖 is not a cover in the sense of
the proposed prelopology because of the third axiom (it is easy to check that the other
axioms are satisfied). But notice that for all 𝑊 ∈ 𝑄

𝑈 ⊙ 𝑊 = ⋁
𝑖∈𝐼
𝑈𝑖 ⊙𝑊

This suggests that we should replace the third axiom by something of the form

3’ If {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 ), then {𝑓𝑖 ⊗ 𝑖𝑑𝑉 ∶ 𝑈𝑖 ⊗ 𝑉 → 𝑈 ⊗ 𝑉 }𝑖∈𝐼 is in 𝐿(𝑈 ⊗ 𝑉 )
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This is well-suited for the quantalic case but is not enough to obtain the stability axiom
in the definition of a Grothendieck pretopology 2.3.1 when the monoidal product is the
categorical product. So we add a fourth axiom to solve this problem.

Definition 4.1.7. Let (, ⊗, 1) be a semicartesian symmetric monoidal category with pseudo-
pullbacks. A Grothendieck prelopology on  associates to each object 𝑈 of  a set 𝐿(𝑈 ) of
families of morphisms {𝑈𝑖 → 𝑈 }𝑖∈𝐼 such that:

1. The singleton family {𝑈 ′ 𝑓
−→ 𝑈 }, formed by an isomorphism 𝑓 ∶ 𝑈 ′ ≅→ 𝑈 , is in 𝐿(𝑈 );

2. If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ) and {𝑉𝑖𝑗

𝑔𝑖𝑗−−→ 𝑈𝑖}𝑗∈𝐽𝑖 is in 𝐿(𝑈𝑖) for all 𝑖 ∈ 𝐼 , then {𝑉𝑖𝑗
𝑓𝑖◦𝑔𝑖𝑗−−−→ 𝑈 }𝑖∈𝐼 ,𝑗∈𝐽𝑖

is in 𝐿(𝑈 );

3. If {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 ), then {𝑓𝑖 ⊗ 𝑖𝑑𝑉 ∶ 𝑈𝑖 ⊗ 𝑉 → 𝑈 ⊗ 𝑉 }𝑖∈𝐼 is in 𝐿(𝑈 ⊗ 𝑉 ) and
{𝑖𝑑𝑉 ⊗ 𝑓𝑖 ∶ 𝑉 ⊗ 𝑈𝑖 → 𝑉 ⊗ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑉 ⊗ 𝑈 ), for any 𝑉 object in ;

4. If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ) and 𝑔 ∶ 𝑉 → 𝑈 is any morphism in , then {𝜙𝑖 ∶ 𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 →

𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)}𝑖∈𝐼 is in 𝐿(𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)) and {𝜙𝑖 ∶ 𝑉 ⊗𝑔 𝑓𝑖 𝑈 → 𝐸𝑞(𝜋2, 𝑔 ◦ 𝜋1)}𝑖∈𝐼 is in
𝐿(𝐸𝑞(𝜋2, 𝑔 ◦ 𝜋1)).

Remark 4.1.8. For each 𝑖 ∈ 𝐼 , the arrow 𝜙𝑖 ∶ 𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 → 𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2) is unique because of
the universal property of the equalizer:

𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 𝑈𝑖 ⊗ 𝑉 𝑈𝑖

𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2) 𝑈 ⊗ 𝑉 𝑈

𝑉

𝑓𝑖

𝜋 𝑖1

𝜋1

𝑓𝑖⊗𝑖𝑑𝑉

𝑒𝑖

𝜋2 𝑔

𝑒

𝜙𝑖

Remark 4.1.9. If you are interested in noncommutative geometry/topology, it may be
interesting to study semicartesian non-symmetric categories where just one side of the third
and the fourth axioms hold but not the other.

Example 4.1.10. If (, ⊗, 1) is a semicartesian quantale (𝑄,⊙, 1), then

{𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 } ∈ 𝐿(𝑈 ) ⟺ 𝑈 = ⋁
𝑖∈𝐼
𝑈𝑖

determines a Grothendieck prelopology: Axioms 1 and 2 are immediate, axiom 3 was proved
in the previous discussion. The last axiom follows from observing that 𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 = 𝑈𝑖 ⊗ 𝑉 (see
4.1.2 ) and then realizing that 𝜙𝑖 = 𝑓𝑖 ⊗ 𝑖𝑑𝑉 for all 𝑖 ∈ 𝐼 . In other words, in the quantalic case
the third axiom, implies the fourth one.

Of course, if (𝑄,⊙, 1) is a locale, then the above prelopology coincides with the usual
Grothendieck pretopology in 𝑄 – because 𝑣 ≤ 𝑢 iff 𝑣 ∧ 𝑢 = 𝑣 = 𝑢 ∧ 𝑣.

Now, note that if the tensor product is given by the cartesian product then we have a
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diagram of the following form

𝑈𝑖 ×𝑈 𝑉 𝑈𝑖 × 𝑉 𝑈𝑖

𝑈 ×𝑈 𝑉 𝑈 × 𝑉 𝑈

𝑉

𝑓𝑖

𝜋 𝑖1

𝜋1

𝑓𝑖×𝑖𝑑𝑉

𝑒𝑖

𝜋2 𝑔

𝑒

𝜙𝑖

In Proposition 4.1.12, we prove that in such case the fourth axiom is the stability (under
pullbacks) axiom of the definition of a Grothendieck pretopology. Since, the stability under

pullback implies that {𝑈𝑖 × 𝑉
𝑓 ×𝑖𝑑𝑉−−−−→ 𝑈 × 𝑉 } cover 𝑈 × 𝑉 (proved in Proposition 4.1.11 bellow)

we can say that, in the cartesian case, the fourth axiom implies the third one.

We may say that the following proposition shows that we are generalizing Grothendieck
pretopologies. In fact, we say that Grothendieck pretopologies are an example of
Grothendieck prelopologies, but this fact is overly relevant to be stated as a simple exam-
ple.

Proposition 4.1.11. If  is a cartesian category with equalizers and 𝐾 is a Grothendieck
pretopology in , then 𝐾 is a Grothendieck prelopology.

Proof. In this case, the pseudo-pullback is the pullback. The first two axioms are automati-
cally satisfied. It remains to prove the last two. Let {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 } ∈ 𝐾(𝑈 )

3. It holds because
𝑈𝑖 × 𝑉 𝑈 × 𝑉

𝑈𝑖 𝑈

𝜋1

𝑓𝑖

𝑓𝑖×𝑖𝑑𝑉

𝜋 𝑖1

is a pullback diagram.

4. Observe the following diagram, where we use the same notation of 4.1.8.

𝑈𝑖 ×𝑈 𝑉 𝑈𝑖

𝑈 ×𝑈 𝑉 𝑈

𝑉 𝑈

𝜙𝑖

𝜋1
𝑖 ◦𝑒𝑖

𝑓𝑖

𝜋1◦𝑒

𝑖𝑑𝑈𝜋2◦𝑒

𝑔

The outer rectangle is a pullback, and the square on the bottom is a pullback. So, by the
pullback lemma, the square on the top is a pullback. Since 𝐾 is a Grothendieck topology,
𝜙𝑖 ∈ 𝐿(𝑈 ×𝑈 𝑉 )
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Conversely,

Proposition 4.1.12. If 𝐿 is a Grothendieck prelopology on a cartesian category with equalizers
, then 𝐿 is a Grothendieck pretopology

Proof. The only axiom that we have to prove is the stability (under pullback) axiom.
Consider {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 } ∈ 𝐿(𝑈 ) and 𝑔 ∶ 𝑉 → 𝑈 a morphism in . Using the same notion
as in Definition 4.1, we know that {𝜙𝑖 ∶ 𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 → 𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)}𝑖∈𝐼 ∈ 𝐿(𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)).
By Example 4.1.4, 𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 is the pullback 𝑈𝑖 ×𝑈 𝑉 and since ⊗ = × it is clear that
𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2) = 𝑈 ×𝑈 𝑉 . Now, note that the following is a pullback diagram

𝑈 ×𝑈 𝑉 𝑉

𝑈 𝑈

𝑔

𝜋2◦𝑒

𝜋1◦𝑒

𝑖𝑑𝑈

Then 𝑈 ×𝑈 𝑉 → 𝑉 is an isomorphism, which implies that {𝜋2 ◦ 𝑒 ∶ 𝑈 ×𝑈 𝑉 → 𝑉 } ∈ 𝐿(𝑉 ), by

the first axiom of a Grothendieck prelopology. Thus, the composition {𝑈𝑖 ×𝑈 𝑉
𝜙𝑖−→ 𝑈 ×𝑈 𝑉

𝑒−→
𝑈 × 𝑉

𝜋2−→ 𝑉 }𝑖∈𝐼 ∈ 𝐿(𝑉 ), proving that 𝐿 satisfies the stability axiom.

Example 4.1.13. Prelopology for product category: Consider two categories (, ⊗, 1)
and (, ⋆, 1) both with pseudo-pullbacks and equipped, respectively, with Grothendieck
prelopologies 𝐿 and 𝐿. Define a Grothendieck prelopology in  × by {(𝛾𝑖, 𝛿𝑖) ∶ (𝐶𝑖, 𝐷𝑖) →
(𝐶, 𝐷)} ∈ 𝐿×(𝐶, 𝐷) iff {𝛾𝑖 ∶ 𝐶𝑖 → 𝐶} ∈ 𝐿(𝐶) and {𝛿𝑖 ∶ 𝐷𝑖 → 𝐷} ∈ 𝐿(𝐷).

The verification is straightforward and we are going to show the calculations only for the
fourth axiom. Since {𝛾𝑖 ∶ 𝐶𝑖 → 𝐶} ∈ 𝐿(𝐶), for any 𝜖 ∶ 𝐸 → 𝐶 in  we have

𝐶𝑖 ⊗𝛾𝑖 𝜖 𝐸 𝐶𝑖 ⊗ 𝐸 𝐶𝑖

𝐸𝑞(𝜋1, 𝜖 ◦ 𝜋2) 𝐶 ⊗ 𝐸 𝐶

𝐸

𝛾𝑖

𝜋 𝑖1

𝜋1

𝛾𝑖⊗𝑖𝑑𝐸

𝑒𝑖

𝜋2 𝜖

𝑒

𝜙𝑖

with {𝐶𝑖 ⊗𝛾𝑖 𝜖 𝐸 → 𝐸𝑞(𝜋1, 𝜖 ◦ 𝜋2)}𝑖∈𝐼 ∈ 𝐿(𝐸𝑞(𝜋1, 𝜖 ◦ 𝜋2)). Analogously, for any 𝜁 ∶ 𝐹 → 𝐷 in
 we have

𝐷𝑖 ⊗𝛾𝑖 𝜖 𝐹 𝐷𝑖 ⊗ 𝐹 𝐷𝑖

𝐸𝑞(𝜋1, 𝜁 ◦ 𝜋2) 𝐷 ⊗ 𝐹 𝐷

𝐹

𝜋 𝑖1

𝜋1

𝛿𝑖⊗𝑖𝑑𝐹

𝑒′𝑖

𝜋2 𝜁

𝑒′

𝜙′𝑖 𝛿𝑖
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with {𝐷𝑖 ⊗𝛾𝑖 𝜖 𝐹 → 𝐸𝑞(𝜋1, 𝜁 ◦ 𝜋2)}𝑖∈𝐼 ∈ 𝐿(𝐸𝑞(𝜋1, 𝜁 ◦ 𝜋2)) By Example 4.1.6, for each 𝑖 ∈ 𝐼 ,
the pseudo-pullback of (𝛾𝑖, 𝛿𝑖) ∶ (𝐶𝑖, 𝐷𝑖) → (𝐶, 𝐷) and (𝜖, 𝜁 ) ∶ (𝐸, 𝐹) → (𝐶, 𝐷) is (𝐶𝑖 ⊗𝛾𝑖 𝜖
𝐸, 𝐷𝑖 ⋆𝛿𝑖 𝜁 𝐹). Thus, {(𝐶𝑖 ⊗𝛾𝑖 𝜖 𝐸, 𝐷𝑖 ⋆𝛿𝑖 𝜁 𝐹) → (𝐸𝑞(𝜋1, 𝜖 ◦ 𝜋2), 𝐸𝑞(𝜋1, 𝜁 ◦ 𝜋2))} ∈ 𝐿×((𝐸𝑞(𝜋1, 𝜖 ◦
𝜋2), 𝐸𝑞(𝜋1, 𝜁 ◦ 𝜋2))).

Remark 4.1.14. Observe that if 𝐿 is a Grothendieck pretopology and 𝐿 is a quantalic
covering, this construction provides an example of prelopology that is not quantalic neither is
a Grothendieck pretopology.

Next, mimicking the definition 2.3 of a sheaf for a Grothendieck pretopology we
define

Definition 4.1.15. Let  = (, ⊗, 1) be a monoidal semicartesian category with equalizers.
A presheaf 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf for the Grothendieck prelopology 𝐿(𝑈 ) = {𝑓𝑖 ∶ 𝑈𝑖 →
𝑈 }𝑖∈𝐼 if the following diagram is an equalizer in 𝑆𝑒𝑡:

𝐹(𝑈 ) ∏
𝑖∈𝐼
𝐹(𝑈𝑖) ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑈𝑖𝑓𝑖⊗𝑓𝑗 𝑈𝑗)

𝑒
𝑝

𝑞

where

1. 𝑒(𝑓 ) = {𝐹(𝑓𝑖)(𝑡) | 𝑖 ∈ 𝐼 }, 𝑓 ∈ 𝐹(𝑈 )

2. 𝑝((𝑓𝑘)𝑘∈𝐼 ) = (𝐹(𝑝1
𝑖𝑗)(𝑓𝑖))(𝑖,𝑗)∈𝐼×𝐼

𝑞((𝑓𝑘)𝑘∈𝐼 ) = (𝐹(𝑝2
𝑖𝑗)(𝑓𝑗))(𝑖,𝑗)∈𝐼×𝐼 , (𝑓𝑘)𝑘∈𝐼 ∈ ∏

𝑘∈𝐼
𝐹(𝑈𝑘)

with 𝑝1
𝑖,𝑗 = 𝑒′ ◦ 𝜋1

𝑖,𝑗 and 𝑝2
𝑖,𝑗 = 𝑒′ ◦ 𝜋2

𝑖,𝑗

Since there is a considerable amount of information in the above definition, it may be
useful to provide diagrams to guide the reader. In , we have the following pseudo-pullback
diagram

𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗

𝑈𝑖 ⊗ 𝑈𝑗 𝑈𝑗

𝑈𝑖 𝑈

𝑓𝑗

𝑓𝑖

𝜋2
𝑖𝑗

𝜋1
𝑖𝑗

𝑒′

𝑝1𝑖𝑗

𝑝2𝑖𝑗

Applying the presheaf 𝐹 and omitting the not necessarily commutative square we
obtain

𝐹(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗) 𝐹(𝑈𝑗)

𝐹(𝑈𝑖) 𝐹(𝑈 )

𝐹(𝑓𝑗 )

𝐹(𝑓𝑖)

𝐹(𝑝1𝑖𝑗 )

𝐹(𝑝2𝑖𝑗 )
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By the universal property of the product ∏ 𝐹(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗), for each 𝑖 ∈ 𝐼 there is a unique
dashed arrow such that the triangles commute in the following diagram

𝐹(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗) 𝐹(𝑈𝑗)

∏ 𝐹(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗)

𝐹(𝑈𝑖) 𝐹(𝑈 )

𝐹(𝑓𝑗 )

𝐹(𝑓𝑖)

𝐹(𝑝1𝑖𝑗 )

𝐹(𝑝2𝑖𝑗 )

𝑝𝑟𝑜𝑗

Now, using the universal property of the product ∏ 𝐹(𝑈𝑖),

𝐹(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗) 𝐹(𝑈𝑗)

∏ 𝐹(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗)

∏ 𝐹(𝑈𝑖)

𝐹(𝑈𝑖) 𝐹(𝑈 )

𝐹(𝑝1𝑖𝑗 )

𝐹(𝑝2𝑖𝑗 )

𝑝𝑟𝑜𝑗

𝑝𝑟𝑜𝑗𝑖

𝑝𝑟𝑜𝑗𝑗

𝑒′

𝐹(𝑈𝑖)

𝐹(𝑈𝑗 )

So 𝐹 is sheaf if the unique arrow 𝑒′ is the equalizer of the pair of compositon of the red
arrows and the composition of blue arrows.

Example 4.1.16. Sheaves on quantales: In this case, (, ⊗, 1) = (𝑄,⊙, 1) and the
Grothendieck prelopology is given by {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 } ∈ 𝐿(𝑈 ) ⟺ 𝑈 = ⋁𝑖∈𝐼 𝑈𝑖 (see Example
4.1.10). Since in 𝑄 the pseudo-pullback is given by the quantalic product, the definition of
sheaves on quantales (3.2.1) fits perfectly in the above definition.

Example 4.1.17. Sheaves on the product category: Consider two categories (, ⊗, 1)
and (, ⋆, 1) both with pseudo-pullbacks and equipped, with Grothendieck prelopologies 𝐿
and 𝐿, respectively. Let 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 be a sheaf for 𝐿 and 𝐺 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 be a sheaf for
𝐿. In Example 4.1.13 we described a Grothendieck prelopology 𝐿× for the product category
 ⊗. Then 𝐹 × 𝐺 ∶ ( ×)𝑜𝑝 → 𝑆𝑒𝑡 defined by (𝐹 × 𝐺)((𝐶, 𝐷)) = 𝐹(𝐶) × 𝐺(𝐷) is a sheaf.

Given the previously discussion about pseudo-pullbacks and Grothendieck pretopolo-
gies the next result may be seen as a corollary, but its importance for this thesis justifies
that we are calling it a theorem:

Theorem 4.1.18. Let  = (, ×, 1) be a cartesian category with equalizers. If 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡
is a sheaf for a Grothendieck pretopology, then 𝐹 is a sheaf for a Grothendieck prelopology.
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Conversely, a sheaf 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 for a given Grothendieck prelopology is a sheaf for a
Grothendieck pretopology.

Proof. Assume  = (, ×, 1) and consider a sheaf 𝐹 for a Grothendieck pretopology. By
Proposition 4.1.11, every Grothendieck pretopology is a Grothendieck prelopology. Besides,
in such conditions, the pullback in  is the pseudo-pullback in . Therefore, 𝐹 is a sheaf for
a Grothendieck prelopology. Conversely, we use that the pseudo-pullback in a cartesian
category with equalizers is precisely the pullback, and that Grothendieck prelopologies in
cartesian categories with equalizers are Grothendieck pretopologies, by Proposition 4.1.12.
Thus, if 𝐹 ∶ 𝑜𝑝 → 𝑆𝑒𝑡 is a sheaf for a Grothendieck prelopology then it is a sheaf for a
Grothendieck pretopology.

This is not a generalization by the sake of generalization, because this notion of a
sheaf includes both our sheaves on quantales and the standard notion of sheaves for
Grothendieck pretopologies. Besides, Example 4.1.17 says that we if we have a sheaf 𝐹 for
a Grothendieck pretopology and a sheaf 𝐺 on quantale, then we can obtain a sheaf 𝐹 × 𝐺
for the Grothendieck prelopology of the product category.

One of the major difficulties of this thesis is to find (natural) examples of sheaves with
Grothendieck prelopologies that are not Grothendieck pretopologies, that is, beyond the
standard case. The reasons for that are: (𝑖) we were not able to find many semicartesian
categories with equalizers that are not cartesian, and (𝑖𝑖) explicitly calculate the pseudo-
pullback is not an easy task. Thus, the problem begins in finding examples of Grothendieck
prelopologies. Therefore, we also have a weaker version of covering where we omit the
fourth axiom in Definition 4.1.

Definition 4.1.19. Let (, ⊗, 1) be a monoidal category. A weak Grothendieck prelopology
on  associates to each object 𝑈 of  a set 𝐿(𝑈 ) of families of morphisms {𝑈𝑖 → 𝑈 }𝑖∈𝐼 such
that:

1. The singleton family {𝑈 ′ 𝑓
−→ 𝑈 }, formed by an isomorphism 𝑓 ∶ 𝑈 ′ ≅→ 𝑈 , is in 𝐿(𝑈 );

2. If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ) and {𝑉𝑖𝑗

𝑔𝑖𝑗−−→ 𝑈𝑖}𝑗∈𝐽𝑖 is in 𝐿(𝑈𝑖) for all 𝑖 ∈ 𝐼 , then {𝑉𝑖𝑗
𝑓𝑖◦𝑔𝑖𝑗−−−→ 𝑈 }𝑖∈𝐼 ,𝑗∈𝐽𝑖

is in 𝐿(𝑈 );

3. If {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 ), then {𝑓𝑖 ⊗ 𝑖𝑑𝑉 ∶ 𝑈𝑖 ⊗ 𝑉 → 𝑈 ⊗ 𝑉 }𝑖∈𝐼 is in 𝐿(𝑈 ⊗ 𝑉 ) and
{𝑖𝑑𝑉 ⊗ 𝑓𝑖 ∶ 𝑉 ⊗ 𝑈𝑖 → 𝑉 ⊗ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑉 ⊗ 𝑈 ), for any 𝑉 object in 

Example 4.1.20. 1. Let 𝑅 be a commutative ring with unity. The category of 𝑅-algebras
is monoidal with the tensor product of algebras as the product and 𝑅 as the unit.
Consider 𝑀 an 𝑅-module and 𝐼 an index set. Define

{𝑀𝑖 → 𝑀}𝑖∈𝐼 ∈ 𝐿(𝑀) ⟺ 𝑀 ≅ ⊕𝑖∈𝐼𝑀𝑖

The first axiom clearly holds. The second is also simple: if𝑀 = ⊕𝑖∈𝐼𝑀𝑖 and𝑀𝑖 = ⊕𝑗∈𝐽𝑖𝑀𝑖𝑗
for all 𝑖 ∈ 𝐼 , then 𝑀 ≅ ⊕𝑖∈𝐼 ⊕𝑗∈𝐽 𝑀𝑖𝑗 ≅ ⊕𝑖∈𝐼 ,𝑗∈𝐽𝑖𝑀𝑖𝑗 .

The third axiom holds because the tensor product distributes over direct sum, i.e., if 𝑁
in a 𝑅-module, that is an isomorphism 𝑁 ⊗ (⊕𝑖∈𝐼𝑀𝑖) ≅ ⊕𝑖∈𝐼 (𝑁 ⊗𝑀𝑖).
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2. In 𝑇 𝑜𝑝, the category of topological spaces with continuous functions, define:

{𝑋𝑖 → 𝑋 } ∈ 𝐿(𝑋 ) ⟺ 𝑋 ≈ ∐𝑋𝑖,

where ∐𝑋𝑖 is the disjoint union of topological spaces 𝑋𝑖. Similarly to the above case
we have 𝑋 ≈ ∐𝑖∈𝐼 ,𝑗∈𝐽𝑖 𝑋𝑖𝑗 and 𝑌 × (∐𝑖∈𝐼 𝑋𝑖) ≈ ∐𝑖∈𝐼 (𝑌 × 𝑋𝑖)

3. In 𝑇 𝑜𝑝{∗}, the category of pointed topological spaces, also has a similar behavior. Replace
the product of topological spaces with the smash product and the disjoint union with
the wedge sum.

There is an alternative way to define sheaves (Definition 4.2.5) that does not require
(, ⊗, 1) to be semicartesian and have pseudo-pullbacks and if it has, then such alternative
definition is equivalent to Definition 4.1.15. In this work, we refrain from looking for
examples of sheaves for weak Grothendieck prelopologies or even investigate the properties
of the correspondent category that could arise. We only observe that weak Grothendieck
prelopologies also are more general than Grothendieck pretopologies but it is not a strict
generalization since we do not have a converse result like Proposition 4.1.12, that is, even
that (, ×, 1) is a cartesian categories with equalizers, we do not obtain that the weak
Grothendieck prelopology is a Grothendieck pretopology.

In the next section we use the alternative definition of sheaves to help us in the task of
constructing the sheafification functor.

4.2 Sheafification

In classic sheaf theory, the full subcategory inclusion from sheaves (Grothendieck
topos) to presheaves has a left adjoint functor that preserves finite limits. The sheafification
is that left adjoint functor. In the case of Grothendieck topos, there are at least two ways to
construct/find the sheafification. One of them consists of considering a semi-sheafification,
also know as the plus construction, that sends presheaves into separated presheaves by
taking the colimit over all coverings (in the sense of a Grothendieck topology) for a fixed
object in the category. If the presheaf already was separated, then the semi-sheafification
gives a sheaf. So sheafification is the process of applying the semi-sheafification twice.
Finally, it may be shown that this is left adjoint to the inclusion functor from sheaves to
presheaves, and preserves finite limits. See [MM92] for details or consult the formulas in
Section 2.3. The idea of applying the semi-sheafification twice, may be used in the case of
Grothendieck pretopologies, as in [MR77, Chapter 1]. Unfortunately, the obvious way to
replicate it for Grothendieck prelopologies does not work. Actually, the first application of
the semi-sheafification, even in the quantalic case, does not work: Let 𝑃 be a presheaf and
{𝑉𝑖}𝑖∈𝐼 a covering of 𝑉 . In the localic case, for each 𝑉 ≤ 𝑈 we define the map 𝑃+(𝑈 ) → 𝑃+(𝑉 )
by {𝑥𝑖 ∈ 𝑃(𝑈𝑖)} ↦ 𝜂({𝑥𝑖|𝑉∧𝑈𝑖 ∈ 𝑃(𝑉 )}), where 𝜂 is the map from the set of compatibles
families 𝐶𝑜𝑚𝑝( , 𝑃) to the colimit 𝑃+(𝑉 ) = lim−−→

∈𝐾(𝑉 )
𝐶𝑜𝑚𝑝( , 𝑃). Since 𝑉 ∧𝑈𝑖 is a covering of

𝑉 whenever 𝑈 = ⋁𝑖∈𝐼 𝑈𝑖, we have that 𝑥𝑖|𝑉∧𝑈𝑖 ∈ 𝑃(𝑉 ) and the semi-sheafification is a functor.
However, in the quantalic case, ⊙ is not idempotent and this implies that 𝑉 ⊙ 𝑈𝑖 is not a
covering of 𝑉 and then we are not able to define a map 𝑃+(𝑈 ) → 𝑃+(𝑉 ) as expected.



74

4 | SHEAVES ON MONOIDAL CATEGORIES

The other way consists of looking at sheafification in terms of local isomorphisms.
The standard reference for this is [KS06, Section 16], but we believe the steps are clearer
in [nLa22d], since the latter also includes the relation with the sheafification in terms of
the localization of a certain class of morphisms in 𝑃𝑆ℎ(). We will follow this approach,
but we need to reintroduce sheaves. Recall that an 𝐿-cover is a cover in the sense of a
Grothendieck prelopology.

Definition 4.2.1. Let {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 be an 𝐿-cover of 𝑈 . The sieve 𝑆({𝑈𝑖}) of {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼
is defined as the following coequalizer in 𝑃𝑆ℎ():

∐
𝑖,𝑗
𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 )𝑦(𝑈𝑗) ∐

𝑖
𝑦(𝑈𝑖) 𝑆({𝑈𝑖})

where ⋆ is the Day convolution 𝑃𝑆ℎ(), 𝑦 is the Yoneda embedding, and the coproduct on the
left is over the pseudo-pullbacks 𝑦(𝑈𝑗) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 )𝑦(𝑈𝑗).

Remark 4.2.2. This is the correspondent generalization of the sieve of a covering family in
the sense of a Grothendieck pretopology.

Remark 4.2.3. The sieve 𝑆({𝑈𝑖}) of {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 ) is a presheaf since it is as colimit
of presheaves.

We are not concerned, at this moment, with finding examples for this definition. All
we want is to show that the inclusion 𝑖 ∶ 𝑆ℎ(, 𝐿) → 𝑃𝑆ℎ() has a left adjoint, and work
with this abstract setting will allow us to do it.

Remark 4.2.4. On one hand, we have a coequalizer diagram. By the commutativity of the
pseudo-pullback, on the other hand, we have that

𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗) 𝑦(𝑈𝑖) 𝑦(𝑈 )

coequalizes. So, by the universal property of the coequalizer, we obtain a canonical morphism

𝑖{𝑈𝑖} ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 )

for all 𝐿-cover {𝑈𝑖}𝑖∈𝐼 of 𝑈 .

With the above notion of sieves we can say that a presheaf 𝑃 is a sheaf if it is a local
object with respect to all 𝑖{𝑈𝑖}. In other words:

Definition 4.2.5. A sheaf in (, 𝐿) is a presheaf 𝑃 ∈ 𝑃𝑆ℎ() such that for all 𝐿-cover
{𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 the hom-functor 𝐻𝑜𝑚𝑃𝑆ℎ()(−, 𝑃) sends the canonical morphisms 𝑖{𝑈𝑖} ∶
𝑆({𝑈𝑖}) → 𝑦(𝑈 ) to isomorphisms.

𝐻𝑜𝑚𝑃𝑆ℎ()(𝑖{𝑈𝑖}, 𝑃) ∶ 𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈 ), 𝑃) 𝐻𝑜𝑚𝑃𝑆ℎ()(𝑆({𝑈𝑖}), 𝑃)
≅

The above definition is saying that sheaves are local objects with respect to the class of
morphisms 𝑆({𝑈𝑖}) → 𝑦(𝑈 ).

Next, we want to show that when the base category  is semicartesian and admits
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pseudo-pullbacks then the above definition coincides with the one we introduced before
(Definition 4.1.15). First we prove a useful lemma.

Lemma 4.2.6. If (, ⊗, 1) is a symmetric semicartesian category that admits pseudo-
pullbacks then

𝑦(𝑈𝑖 ⊗𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑈𝑗) ≅ 𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗)

Proof. Notice that applying the Yoneda embedding in the pseudo-pullback we have the
following, since 𝑦 preserves limits:

𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗 𝑦(𝑈𝑖 ⊗𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑈𝑗)

𝑈𝑖 ⊗ 𝑈𝑗 𝑈𝑗 𝑦(𝑈𝑖 ⊗ 𝑈𝑗) 𝑦(𝑈𝑗)

𝑈𝑖 𝑈 𝑦(𝑈𝑖) 𝑦(𝑈 )

𝑦

In other words, if 𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗 is the equalizer of the commutative square on the right,
then 𝑦(𝑈𝑖 ⊗𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑈𝑗) is the equalizer of the commutative square on the left.

Since the Yoneda embedding is a strong monoidal functor (𝐶,⊗, 1) → (𝑃𝑆ℎ(), ⋆, 𝑦(1)),
we have 𝑦(𝑈𝑖 ⊗ 𝑈𝑗) ≅ 𝑦(𝑈𝑖) ⋆ 𝑦(𝑈𝑗). Then we have the following pseudo-pullback diagram

𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗)

𝑦(𝑈𝑖) ⋆ 𝑦(𝑈𝑗) 𝑦(𝑈𝑗)

𝑦(𝑈𝑖) 𝑦(𝑈 )

Since the equalizer is unique, up to isomorphism, this implies that

𝑦(𝑈𝑖 ⊗𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑈𝑗) ≅ 𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗)

If pseudo-pullback in the definition of a sieve is a pullback, then the 𝐿-cover is a
Grothendieck pretopology and so we obtain a sheaf equipped with a Grothendieck pre-
topology. Moreover, under pullbacks, if {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 is a Grothendieck pretopology
covering of 𝑈 and 𝑊 is an object in , 𝑆({𝑈𝑖})(𝑊 ) is described as the set of morphisms
ℎ ∶ 𝑊 → 𝑈 such that each ℎ factors through one of the 𝑈𝑖. Why? Since 𝑆({𝑈𝑖})(𝑊 ) is a
coequalizer in 𝑆𝑒𝑡 we have to describe the proper equivalence relation in ∐

𝑖
𝑦(𝑈𝑖): given

𝜙𝑖 ∶ 𝑊 → 𝑈𝑖, we say that 𝜙𝑖 ∼ 𝜙𝑗 if there is 𝜙𝑖𝑗 ∶ 𝑊 → 𝑈𝑖 ⊗𝑈 𝑈𝑗 such that 𝑝1
𝑖𝑗 ◦ 𝜙𝑖𝑗 = 𝜙𝑖 and
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𝑝2
𝑖𝑗 ◦ 𝜙𝑖𝑗 = 𝜙𝑗 . When the pseudo-pullback ⊗𝑈 is a weak3 pullback 𝑈𝑖 ×𝑈 𝑈𝑗 such equivalence

relation is equivalent to saying that each ℎ ∶ 𝑊 → 𝑈 factors through 𝑈𝑖’s (and𝑊 → 𝑈𝑖 → 𝑈
coincides with 𝑊 → 𝑈𝑗 → 𝑈 for all 𝑖, 𝑗 ∈ 𝐼 ) because of the definition of the weak pullback,
as we see below:

𝑊 𝑈𝑗

𝑈𝑖 ×𝑈 𝑈𝑗

𝑈𝑖 𝑈

𝜙𝑖

𝑓𝑖

𝑓𝑗

𝑝1𝑖𝑗

𝑝2𝑖𝑗

ℎ

𝜙𝑗

𝜙𝑖𝑗

However, the universal property of the pseudo-pullback (which is an equalizer) is not
enough to give us that the existence of 𝜙𝑖𝑗 ∶ 𝑊 → 𝑈𝑖 ⊗𝑈 𝑈𝑗 implies that 𝑊 → 𝑈𝑖 → 𝑈 and
𝑊 → 𝑈𝑗 → 𝑈 coincide. In other words, we do not have the outer square in the following
diagram commutes

𝑊 𝑈𝑗

𝑈𝑖 ⊗𝑈 𝑈𝑗

𝑈𝑖 𝑈

𝜙𝑖

𝑓𝑖

𝑓𝑗

𝑝1𝑖𝑗

𝑝2𝑖𝑗

𝜙𝑗

𝜙𝑖𝑗

The consequence is that in general the canonical arrow 𝑖{𝑈𝑖} ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) is a monomor-
phism only when the pseudo-pullback is a weak pullback. This distinction between our
notion of sheaves and the usual one may be the central reason why we faced difficulties to
construct the sheafification or establish a Grothendieck lopology.

Proposition 4.2.7. If (, ⊗, 1) is a semicartesian category that admits pseudo-pullbacks,
then the definition of sheaf as a local object (4.2.5) coincides with the first definition of a sheaf
as a functor that makes a certain diagram an equalizer (4.1).

Proof. If we apply 𝐻𝑜𝑚𝑃𝑆ℎ()(−, 𝑃) in the coequalizer that defines the notion of sieves, we
have

𝐻𝑜𝑚𝑃𝑆ℎ()(∐
𝑖,𝑗
𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 )𝑦(𝑈𝑗), 𝑃) 𝐻𝑜𝑚𝑃𝑆ℎ()(∐

𝑖
𝑦(𝑈𝑖), 𝑃) 𝐻𝑜𝑚𝑃𝑆ℎ()(𝑆({𝑈𝑖}), 𝑃)

Since such 𝐻𝑜𝑚𝑃𝑆ℎ()(−, 𝑃) sends colimits to limits, we have the following equalizer dia-
gram

𝐻𝑜𝑚𝑃𝑆ℎ()(𝑆({𝑈𝑖}), 𝑃) ∏
𝑖
𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈𝑖), 𝑃) ∏

𝑖,𝑗
𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗), 𝑃)

3 The universal arrow exists but is not unique.
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Applying the Yoneda Lemma:

𝐻𝑜𝑚𝑃𝑆ℎ()(𝑆({𝑈𝑖}), 𝑃) ∏
𝑖
𝑃(𝑈𝑖) ∏

𝑖,𝑗
𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗), 𝑃)

So, 𝑃 is a sheaf if and only if the following diagram is an equalizer (for each 𝐿-cover
{𝑈𝑖 → 𝑈 }𝑖∈𝐼 )

𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈 ), 𝑃) ∏
𝑖
𝑃(𝑈𝑖) ∏

𝑖,𝑗
𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗), 𝑃)

Applying the Yoneda Lemma, 𝑃 is sheaf iff the following diagram is an equalizer

𝑃(𝑈 ) ∏
𝑖
𝑃(𝑈𝑖) ∏

𝑖,𝑗
𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈𝑖) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗), 𝑃)

Since (𝐶, 𝐿) is a 𝐿-site, 𝐶 is a category with pseudo-pullbacks and so the pseudo-pullbacks
𝑦(𝑈𝑗) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 )𝑦(𝑈𝑗) are representable functors. Then we apply Lemma 4.2.6 and the Yoneda
Lemma again to obtain

𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈𝑗) ⋆𝑦(𝑓𝑖) 𝑦(𝑓𝑗 ) 𝑦(𝑈𝑗), 𝑃) ≅ 𝑃(𝑈𝑗 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗)

So the sheaf condition is equivalent to requiring that

𝑃(𝑈 ) ∏
𝑖
𝑃(𝑈𝑖) ∏

𝑖,𝑗
𝑃(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗)

is an equalizer diagram for all coverings.

Definition 4.2.8. A morphism of sheaves is just a morphism of the underlying presheaves.

Remark 4.2.9. The category of sheaves 𝑆ℎ(𝐶, 𝐿) is a full subcategory of the category of
presheaves 𝑃𝑆ℎ().

Now we recall some definitions as given in 1.32 and 1.35 of [AR94]:

Definition 4.2.10. 1. An object 𝐾 is said to be orthogonal to a morphism 𝑚 ∶ 𝐴 → 𝐴′

provided that for each morphism 𝑓 ∶ 𝐴 → 𝐾 there exists a unique morphism 𝑓 ′ ∶
𝐴′ → 𝐾 such that the following triangle commutes

𝐴 𝐴′

𝐾

𝑚

𝑓 𝑓 ′

2. For each class  of morphisms in a category  we denote by ⟂ the full subcategory
of  of all objects orthogonal to each 𝑚 ∶ 𝐴 → 𝐴′ in .

Definition 4.2.11. Let 𝜆 be a regular cardinal. A 𝜆-orthogonality class is a class of the
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form ⟂ such that every morphism in  has a 𝜆-presentable4 domain and a 𝜆-presentable
codomain.

Theorem 4.2.12. (Theorem 1.39, [AR94]) Let  be a locally 𝜆-presentable category. The
following conditions on a full subcategory  of  are equivalent:

(i)  is a 𝜆-orthogonality class in ;

(ii)  is a reflective subcategory of  closed under 𝜆-directed colimits.

Furthermore, they imply that  is locally 𝜆-presentable.

We know that 𝑆ℎ(𝐶, 𝐿) is a full subcategory of 𝑃𝑆ℎ(), and 𝑃𝑆ℎ() is a 𝜆-presentable
category, for every regular cardinal 𝜆 that is sufficiently big. So, if we prove that 𝑆ℎ(𝐶, 𝐿)
is a 𝜆-orthogonality class in 𝑃𝑆ℎ(), we apply the above theorem to obtain that 𝑆ℎ(𝐶, 𝐿) is
a reflective subcategory of 𝑃𝑆ℎ().

Proposition 4.2.13. 𝑆ℎ(, 𝐿) is a 𝜆-orthogonality class in 𝑃𝑆ℎ().

Proof. By definition, 𝐹 is a sheaf if and only if

𝐻𝑜𝑚𝑃𝑆ℎ()(𝑖𝑈𝑖 , 𝐹) ∶ 𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈 ), 𝐹) → 𝐻𝑜𝑚𝑃𝑆ℎ()(𝑆({𝑈𝑖}), 𝐹)

is an isomorphism in 𝑆𝑒𝑡, so 𝐻𝑜𝑚𝑃𝑆ℎ()(𝑖𝑈𝑖 , 𝐹) is a bijection. This means that for all 𝜑 ∈
𝐻𝑜𝑚𝑃𝑆ℎ()(𝑆({𝑈𝑖}), 𝐹) there is a unique 𝜓 ∈ 𝐻𝑜𝑚𝑃𝑆ℎ()(𝑦(𝑈 ), 𝐹) such that 𝜓 ◦ 𝑖𝑈𝑖 = 𝜑. In other
words, the desired triangle commutes:

𝑆({𝑈𝑖}) 𝑦(𝑈 )

𝐹

𝑖𝑈𝑖

∀𝜑 ∃!𝜓

Thus, all sheaves are orthogonal to 𝑖𝑈𝑖 . Then 𝑆ℎ𝐿() = ⟂, where  = {𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) →
𝑦(𝑈 ) ∶ {𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 )} is a class of morphism in 𝑃𝑆ℎ(). Observe that 𝑆({𝑈𝑖}) and
𝑦(𝑈 ) are presheaves and that they are 𝜆-presentable. Indeed,

Since  is a small category, the covering families of each 𝑈 are sets and a cardinal for
each one of those sets. The supremum of all those cardinals is a cardinal again and then
there is an even bigger regular cardinal 𝜆 so that 𝑃𝑆ℎ() is locally 𝜆-presentable. Since
𝑆({𝑈𝑖}) and 𝑦(𝑈 ) are objects in 𝑃𝑆ℎ(), we conclude that  is a 𝜆-orthogonality class
𝜆-orthogonality class in 𝑃𝑆ℎ().

By definition of reflective subcategory:

Corollary 4.2.14. The inclusion functor 𝑖 ∶ 𝑆ℎ(𝐶, 𝐿) → 𝑃𝑆ℎ() has a left adjoint functor
𝑎 ∶ 𝑃𝑆ℎ() → 𝑆ℎ(𝐶, 𝐿). Thus, 𝑎 preserves colimits.

4 An object 𝐶 in a category  is 𝜆-presentable, for 𝜆 a regular cardinal, when the representable functor
𝐻𝑜𝑚(𝐶,−) preserves 𝜆-filtered limits.
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At this point we should say why this sheafification is not exactly the same as the one
already available in the literature since they look the same. More precisely, the construction
is the same but the fact that we are considering a weaker notion of covering (Grothendieck
prelopologies instead of Grothendieck pretopologies) leads to a weaker sheafification: it is
a left adjoint functor of the inclusion that does not preserve all finite limits. It is known
that Grothendieck toposes are the left exact reflective subcategories of a presheaf category.
However, while 𝑆ℎ(𝐶, 𝐿) is a reflective subcategory of 𝑃𝑆ℎ(𝐶), in Theorem 4.3.8 we prove
that 𝑆ℎ(𝑄) is not a Grothendieck topos in general, and thus our sheafification cannot be
left exact/preserve all finite limits. Another reasonable question that the reader may have
is if we can present the sheafification through a formula. To prove Theorem 4.2.12, the
authors use an “Orthogonal-reflection Construction” that relies on a transfinite induction.
Thus, theoretically, we can find a formula to describe the sheafification using transfinite
induction, but in practice it does not seem to have an elucidating structure.

Next, note that Theorem 4.2.12 also provides that 𝑆ℎ(𝐶, 𝐿) is a locally 𝜆-presentable
category. We remember that:

Definition 4.2.15. [Bor94b, Definition 5.2.1] A category  is locally 𝜆-presentable, for a
regular cardinal 𝜆, when

1.  is cocomplete;

2.  has a set (𝐺𝑖)𝑖∈𝐼 of strong generators;

3. Each generator 𝐺𝑖 is 𝜆-presentable.

So, by Theorem 4.2.12:

Corollary 4.2.16. 𝑆ℎ(𝐶, 𝐿) is cocomplete, has a set of strong generators with each one of
then being 𝜆-presentable.

Now, we discuss what our sheafification preserves. We start showing that 𝑎 ∶ 𝑃𝑆ℎ() →
𝑆ℎ(𝐶, 𝐿) preserves the monoidal closed structure of 𝑃𝑆ℎ() in the quantalic case.

In [Day73], B. Day proves that if a class Σ of morphisms in a symmetric monoidal
category (𝐶,⊗, 1) with the property that 𝑓 ∈ Σ implies 𝑖𝑑𝐴 ⊗ 𝑓 ∈ Σ then the category of
fractions 𝐶[Σ−1] is a monoidal category. The result is even better than this but we will use
a minor result from that paper. First, a definition:

Definition 4.2.17. Let 𝜓 ⊣ 𝜙 ∶ 𝐷 → 𝐵 be an adjoint pair.

1. 𝜓 ⊣ 𝜙 is a reflective embedding if 𝜙 is full and faithful on morphisms.

2. When 𝐵 has a fixed monoidal closed structure the reflective embedding is called normal
if there exists a monoidal closed structure on 𝐷 and monoidal functor structures on 𝜓
and 𝜙 for which 𝜙 is a normal closed functor and the unit and counit of the adjunction
are monoidal natural transformations.

The definition of “closed functor” is in [EK66] and the definition of “normal closed
functor” is available from [Bar+69]. We will not copy those definitions here since what is
interesting for us is Day’s observation that normal enrichment is unique (up to monoidal
isomorphism) and it exists if and only if one condition of the following equivalent condi-
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tions is satisfied:

𝜂[𝑏, 𝜙𝑑]∶ [𝑏, 𝜙𝑑] ≅ 𝜙𝜓[𝑏, 𝜙𝑑]; (4.1)
[𝜂, 1]∶ [𝜙𝜓𝑏, 𝜙𝑑] ≅ [𝑏, 𝜙𝑑]; (4.2)

𝜓(𝜂 ⊗ 1)∶ 𝜓(𝑏 ⊗ 𝑏′) ≅ 𝜓(𝜙𝜓𝑏 ⊗ 𝑏′); (4.3)
𝜓(𝜂 ⊗ 𝜂)∶ 𝜓(𝑏 ⊗ 𝑏′) ≅ 𝜓(𝜙𝜓𝑏 ⊗ 𝜙𝜓𝑏′) (4.4)

where 𝜂 is the unit of the adjunction 𝜓 ⊣ 𝜙 ∶ 𝐷 → 𝐵, 𝑑 is any object of𝐷, 𝑏 is any object of 𝐵
and [−,−] is the internal hom. In particular, the components �̃� ∶ 𝜙(𝑏)⊗𝐷𝜙(𝑏′) → 𝜙(𝑏⊗𝐵 𝑏′)
and 𝜙0 ∶ 𝐼𝐷 → 𝜙(𝐼𝐵) are isomorphisms.

A small remark: The list in [Day73] is larger but we are using a shorter version that is
more than enough for us and it is available in nLab.

The next result is Proposition 1.1 in [Day73], with a small notation change.

Proposition 4.2.18. Let 𝐶 = (𝐶,⊗, 1) be a small monoidal category and 𝑆 the cartesian
closed category of small5 sets and set maps. Denote by 𝑆𝐶 the functor category from 𝐶 to 𝑆. A
reflective embedding 𝜓 ⊣ 𝜙 ∶ 𝐷 → 𝑆𝐶 admits normal enrichment if and only if the functor
𝐹(𝑈 ⊗ −) is isomorphic to some object in 𝐷 whenever 𝐹 is a object of 𝐷 and 𝑈 is an object of
𝐶.

Proposition 4.2.19. If 𝐶 = 𝑄 is the posetal category of (unital semicartesian) quantales,
then 𝑆ℎ(𝑄) is monoidal closed.

Proof. By Propositon 3.2.15, the functor 𝐹(𝑢 ⊙ −) is a sheaf for every 𝑢 ∈ 𝑄, whenever 𝐹 is
a sheaf. By 4.2.18, the reflective embedding 𝑎 ⊣ 𝑖 admits a normal enrichment.

Stated in other words:

Proposition 4.2.20. The functor 𝑎 ∶ 𝑃𝑆ℎ(𝑄) → 𝑆ℎ(𝑄) preserves the monoidal closed
structure.

Therefore, we have a monoidal structure in 𝑆ℎ(𝑄). The above result gives that 𝑆ℎ(𝑄)
has a monoidal closed structure where, by Equation 4.4, 𝐹 ⊗ 𝐺 ∶= 𝑎(𝑖(𝐹) ⊗𝐷𝑎𝑦 𝑖(𝐺)), for
𝐹 , 𝐺 sheaves on 𝑄.

We were not able to prove that if 𝐹 is a sheaf in 𝑆ℎ(𝐶, 𝐿) then 𝐹(𝑈 ⊗ −) is a sheaf in
𝑆ℎ(𝐶, 𝐿) and let it to future works. Nevertheless, finding the monoidal structure of 𝑆ℎ(𝑄)
was essential to prove that in the quantalic case we may already have a non Grothendieck
topos.

Remark 4.2.21. Note that 𝑃𝑆ℎ(𝑄) have cartesian products. In a certain way, our sheafifica-
tion is ignoring the cartesian products and preserving the monoidal products that arise from
the Day convolution.

The next result holds for 𝑆ℎ(𝐶, 𝐿) in general.

Proposition 4.2.22. The functor 𝑎 ∶ 𝑃𝑆ℎ() → 𝑆ℎ(𝐶, 𝐿) preserves terminal objects.

5 The smallness condition for sets and for the monoidal category is to avoid size issues.

https://ncatlab.org/nlab/show/Day%27s+reflection+theorem
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Proof. The inclusion of sheaves into presheaves is a right adjoint, so preserves limits;
hence the terminal sheaf must be the terminal object in the category of presheaves. Thus,
it is the terminal presheaf, which is the constant presheaf with value the terminal object
in 𝑆𝑒𝑡.

The following discussion does not provide any new results but we believe it is worth
including it in this section since it explains another approach to talk about the sheafification
process.

Note that the class  = {𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) ∶ {𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑢)} is used both
to provide the arrows orthogonal to sheaves and to provide the arrows in 𝑃𝑆ℎ() that
we want to invert such that 𝑃𝑆ℎ()[−1] ≅ 𝑆ℎ(). Indeed, the orthogonal subcategory
problem is closely related to the problem of localization, see [Bor94a, Chapter 5].

The following proposition is proved in Proposition 5.3.1 of [Bor94a] with a slightly
different notation.

Proposition 4.2.23. Let  be a category and ′ be a reflective subcategory 𝑟 ⊣ 𝑖 ∶ ′ ⇄ .
Consider the class Σ of all morphisms 𝑓 in  such that 𝑟(𝑓 ) is an isomorphism in ′. In this
case:

1. the category of fractions 𝜑 ∶  → [Σ−1] exists;

2. the category of fractions 𝜑 ∶  → [Σ−1] is equivalent to 𝑟 ∶  → ′;

3. the class Σ admits a left calculus of fractions.

We proved that 𝑆ℎ𝐿(𝐶) = ⟂ is a reflective subcategory of 𝑃𝑆ℎ(). Now we want to
find the class Σ of morphisms inverted by 𝑟 . Observe that such Σ contains :

Lemma 4.2.24. Let  be any category and Γ a class of morphisms Γ in  such that 𝑖 ∶ Γ⟂ → 
is the inclusion functor and 𝑟 ∶  → Γ⟂ the reflector. Then 𝑓 ∈ Γ implies 𝑟(𝑓 ) is an
isomorphism in Γ⟂.

Proof. In the following, we just replicate the proof in [nLa22a]. By definition of orthogo-
nality, for every object 𝐾 in Γ⟂, 𝑓 ∶ 𝐴 → 𝐵 induces an isomorphism of hom-sets

𝐻𝑜𝑚(𝑓 , 𝑖(𝐾)) ∶ 𝐻𝑜𝑚(𝐵, 𝑖(𝐾)) → 𝐻𝑜𝑚(𝐴, 𝑖(𝑋 ))

Since 𝑟 is the left adjoint of 𝑖, for all 𝐾 in Γ⟂ the following map is an isomorphism:

𝐻𝑜𝑚Γ⟂(𝑟(𝑓 ), 𝐾) ∶ 𝐻𝑜𝑚Γ⟂(𝑟(𝐵), 𝐾) → 𝐻𝑜𝑚Γ⟂(𝑟(𝐴), 𝐾)

So 𝐻𝑜𝑚Γ⟂(𝑟(𝑓 ),−) is a natural isomorphism between representables. By the Yoneda lemma,
this means 𝑟(𝑓 ) is an isomorphism.

The point here is that we want all morphisms that are inverted by 𝑟 , but the class 
provides just a few. To solve this, we state the Proposition 5.4.10 in [Bor94a].

Proposition 4.2.25. Let  be a cocomplete category in which every object is presentable.
Consider a set  ⊆ 𝑚𝑜𝑟() and the corresponding reflective subcategory 𝑟 ⊣ 𝑖 ∶  ⇄ 



82

4 | SHEAVES ON MONOIDAL CATEGORIES

associated with the orthogonality problem. Then the class Σ = {𝑓 ∈ 𝑚𝑜𝑟() ∶ 𝑟(𝑓 ) is an
isomorphism} is the smallest subclass Σ ⊆ 𝑚𝑜𝑟() such that:

1.  ⊆ Σ;

2. every isomorphism of  is in Σ;

3. "two of three" holds for Σ, i.e., if two sides of a commutative diagram are in Σ, so is the
third;

4. Σ is closed under colimits.

By Propositions 4.2.23 and 4.2.25 we conclude and define:

Corollary 4.2.26. Let  = {𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) ∶ {𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑢)} and Σ as in the
Proposition 4.2.25. Then

1. The category of fractions 𝑙 ∶ 𝑃𝑆ℎ() → 𝑃𝑆ℎ()[Σ−1] exists;

2. The category of fractions 𝑙 ∶ 𝑃𝑆ℎ() → 𝑃𝑆ℎ()[Σ−1] is equivalent to 𝑟 ∶ 𝑆ℎ𝐿(𝐶) →
𝑃𝑆ℎ();

3. the class Σ admits a left calculus of fractions.

Both the localization and the reflection are candidates to be called sheafification functor,
so it is a relief that they are equivalent. Again we highlight a difference between sheaves
with a Grothendieck prelopology and sheaves with a Grothendieck topology: we obtained
that the class Σ admits a left calculus of fractions by consequence of a sequence of general
results. In the case of sheafification of presheaves with Grothendieck (pre)topologies, the
resulting class Σ also admits a right calculus of fractions. In particular, the stability axiom
in definition of a Grothendieck pretopology (Definition 2.3.1) provides that Σ satisfies the
right Ore condition.

In the standard case, we also use that Σ admits right calculus of fractions to prove that
the sheafification/localization preserves finite limits. This is not our case: a sheafification
that preserves finite limits has as it target a Grothendieck topos and our categories of
sheaves enjoy different categorical properties, as we will prove in Theorem 4.3.8.

Remark 4.2.27. If we understand our sheafification better, we may define Grothendieck
loposes as those accessible reflective subcategories of presheaf categories for which the reflector
preserves the (Day) monoidal structure of 𝑃𝑆ℎ(𝐶) and possibly something else. Bearing in
mind that geometric morphisms of toposes consists of a pair of adjoint functors where the left
adjoint preserves finite limits and this allow us to think in the 2-category of toposes, we may
also want to explore the 2-category of loposes, where the morphism would be a pair of adjoint
functors here the left adjoint preserves the same structure as the sheafification. Alternatively,
we can analyze 3.4.8 to obtain a good morphism between categories of sheaves.

4.3 Sheaves on quantales revisited
This Section, together with pieces of Sections 3.1 and 3.2, are part of a paper re-

cently submitted to a Journal (there is a preliminary version of such paper available on
ArXiv).

https://arxiv.org/abs/2204.08351
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4.3.1 𝑆ℎ(𝑄) is not a topos
Given the sheafification process that we constructed, we are now able to properly

present an argument to prove that 𝑆ℎ(𝑄) is not a topos. The main result of this section
says that the lattice of subobjects of the terminal object in 𝑆ℎ(𝑄) is isomorphic to the
quantale 𝑄. Therefore, if 𝑄 is a non-idempotent semicartisian quantale, we have that such
lattice is not a locale. Since it is known that the lattice of subobjects of any objects of a
topos is a locale, we conclude that 𝑆ℎ(𝑄) is not a topos. This is one of the most important
conclusions of this thesis.

First, we check that we will at least have a complete lattice structure:

Proposition 4.3.1. 𝑆ℎ(𝑄) is a complete and well-powered category, and for all 𝐹 sheaf on 𝑄,
𝑆𝑢𝑏(𝐹) has all infima/intersections and suprema/unions.

Proof. It is a direct consequence of the following two general results:

If  has finite limits and possesses a strong set of generators, so  is well-powered (i,e.,
for all 𝐶 object of , the subobjects 𝑆𝑢𝑏(𝐶) of  forms a set)[Bor94a, Proposition 4.5.15].

In a complete and well-powered category, 𝑆𝑢𝑏(𝐶) has all infima/intersections and
suprema/unions [Bor94a, Corollary 4.2.5].

As a corollary we obtain the following result about the factorization of morphisms in
𝑆ℎ(𝑄).

Corollary 4.3.2. For each morphism 𝜙 ∶ 𝐹 → 𝐺 in 𝑆ℎ(𝑄), there exists the least subobject of
𝐺, represented by 𝜄 ∶ 𝐺′ ↣ 𝐺, such that 𝜙 = 𝜄 ◦ 𝜙′ for some (and thus, unique) morphism
𝜙′ ∶ 𝐹 → 𝐺′. Moreover, 𝜙′ is an epimorphism.

Proof. By the previous results, there exists the extremal factorization above 𝜙 = 𝜄 ◦𝜙′, such
that 𝜄 ∶ 𝐺′ ↣ 𝐺 is a mono. To show that 𝜙′ ∶ 𝐹 → 𝐺′ is an epi, consider 𝜂, 𝜖 ∶ 𝐺′ → 𝐻
such that 𝜂 ◦ 𝜙′ = 𝜖 ◦ 𝜙′ and let 𝛾 ∶ 𝐻 ′↣ 𝐺′ be the equalizer of 𝜂, 𝜖. Then, by the universal
property of 𝛾 , there exists a unique 𝜙′′ ∶ 𝐹 → 𝐻 ′ such that 𝛾 ◦ 𝜙′′ = 𝜙′. On the other hand,
by the extremality of 𝜄, there exists a unique 𝛾 ′ ∶ 𝐺′ → 𝐻 ′ such that 𝜄 = 𝜄 ◦ 𝛾 ◦ 𝛾 ′. Since 𝜄 is
a mono, we obtain that 𝛾 ◦ 𝛾 ′ = 𝑖𝑑𝐺′ , Thus 𝛾 is a mono that is a retraction: this means that
𝛾 = 𝑒𝑞(𝜂, 𝜖) is an iso, i.e., 𝜖 = 𝜂. Thus 𝜙′ is an epi.

Remark 4.3.3. Keeping the notation above, if 𝜙 ∶ 𝐹 → 𝐺 is already a mono then, by the
extremality of 𝜄 ∶ 𝐺′ ↣ 𝐺, 𝜙 ≅ 𝜄 and thus 𝜙′ ∶ 𝐹 → 𝐺′ is an isomorphism. It is natural to
ask ourselves if the converse holds in general. Conversely, does it hold that any morphism
that is mono and epi is an iso? This would mean that the category 𝑆ℎ(𝑄) is balanced.

Any category with factorization (extremal mono, epi) and where all the monos are regular
(i.e., monos are equalizers) is balanced. A “topos-theoretic" way to show that all monos are
regular is to show that there exists a “universal mono" 𝑡𝑟𝑢𝑒 ∶ 1 ↣ Ω that is a subobjects
classifier, which is the topic of the next section.

We want to show that the lattice of subobjects of the terminal object in 𝑆ℎ(𝑄) is isomor-
phic to the quantale 𝑄. The next theorem gives an isomorphism of complete lattices:
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Theorem 4.3.4. Assume that 𝑄 is a unital commutative and semicartesian quantale. We
have the following isomorphisms of complete lattices:

ℎ𝑄 ∶ 𝑄 → 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑(𝑆ℎ(𝑄))
𝑞 ↦ 𝑄(−, 𝑞)

𝑖𝑄 ∶ 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑(𝑆ℎ(𝑄)) → 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑏𝑙𝑒(𝑆ℎ(𝑄))/𝑖𝑠𝑜𝑠
𝑄(−, 𝑞) ↦ [𝑄(−, 𝑞)]𝑖𝑠𝑜

𝑗𝑄 ∶ 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑏𝑙𝑒(𝑆ℎ(𝑄))/𝑖𝑠𝑜𝑠 → 𝑆𝑢𝑏(1)
[𝑅]𝑖𝑠𝑜 ↦ [𝑅 ≅ 𝑄(−, 𝑞)↣ 𝑄(−, 1) ≅ 1]𝑖𝑠𝑜

Thus 𝑘𝑄 = 𝑗𝑄 ◦ 𝑖𝑄 ◦ ℎ𝑄 ∶ 𝑄 → 𝑆𝑢𝑏(1) is an isomorphism of complete lattices.

More generally, take any 𝑎 ∈ 𝑄, we may amend the map 𝑘𝑄 in a way that it sends
𝑏 ∈ [0, 𝑎] to [𝑄(−, 𝑏)↣ 𝑄(−, 𝑎)]𝑖𝑠𝑜, then we obtain a quantalic isomorphism 𝑘𝑎 ∶ [0, 𝑎] →
𝑆𝑢𝑏(𝑄(−, 𝑎)).

Proof. We will just show that ℎ𝑄 , 𝑖𝑄 , 𝑗𝑄 are isomorphisms of posets, and, since 𝑄 is a
complete lattice, then ℎ𝑄 , 𝑖𝑄 , 𝑗𝑄 are complete lattices isomorphisms.

ℎ𝑄 is isomorphism: By the very definition of represented functor, the map ℎ𝑄 is surjective.
For injectivity see that 𝑄(−, 𝑞) = 𝑄(−, 𝑝) implies that 𝑄(𝑢, 𝑞) = 𝑄(𝑢, 𝑝), for all 𝑢 ∈ 𝑄, and
so 𝑝 = 𝑞. Yoneda’s lemma and Proposition 3.2.22.1 establishes that it preserves and reflects
order since 𝑝 ≤ 𝑞 iff there is some (unique) (mono)morphism 𝜂 ∶ 𝑄(−, 𝑝) → 𝑄(−, 𝑞).

𝑖𝑄 is isomorphism: Since it is a quotient map, it is surjective. 𝑖𝑄 is injective: by Proposition
3.2.22.2, 𝑄(−, 𝑝) ≅ 𝑄(−, 𝑞) implies 𝑝 = 𝑞 and thus 𝑄(−, 𝑝) = 𝑄(−, 𝑞). The map preserves
and reflects order: this is a direct consequence of Proposition 3.2.22.1.

𝑗𝑄 is isomorphism: Since ! ∶ 𝑄(−, 1) → 1 is an isomorphism, we will just prove that
𝑗 ′𝑄 ∶ 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑏𝑙𝑒(𝑆ℎ(𝑄))/𝑖𝑠𝑜𝑠 → 𝑆𝑢𝑏(𝑄(−, 1)) [𝑅]𝑖𝑠𝑜 ↦ [𝑅 ≅ 𝑄(−, 𝑞)↣ 𝑄(−, 1)]𝑖𝑠𝑜 is an
isomorphism. By the very definition of 𝑆𝑢𝑏(𝐹) = 𝑀𝑜𝑛𝑜(𝐹)/𝑖𝑠𝑜𝑠, it is clearly injective. Take
𝜂 ∶ 𝑅↣ 𝑄(−, 1), by Proposition 3.2.22.1, 𝑅 ≅ 𝑄(−, 𝑞), thus 𝑗 ′𝑄 is surjective. Now let 𝑅 and
𝑅′ be representable functors, there is a morphism 𝜂 ∶ 𝑅 → 𝑅′ iff this morphism is unique
and it is a monomorphism, thus 𝑗 ′𝑄 preserves and reflects order.

The next step is to equip 𝑆𝑢𝑏(1) with a product that gives it a quantalic structure.

Definition 4.3.5. For each 𝐹 sheaf on 𝑄, we define the following binary operation on 𝑆𝑢𝑏(𝐹):
Given 𝜙𝑖 ∶ 𝐹𝑖 ↣ 𝐹 , 𝑖 = 0, 1 define 𝜙0 ∗ 𝜙1 ∶ 𝐹0 ∗ 𝐹1 ↣ 𝐹 as the mono in the extremal
factorization of 𝐹0 ⊗𝐹 𝐹1↣ 𝐹0 ⊗ 𝐹1 ⇒ 𝐹 .

As we will see in the next result, such definition gives that the poset 𝑆𝑢𝑏(𝑄(−, 𝑎)) is a
quantale. In a future work we would like to check if 𝑆𝑢𝑏(𝐹) is a quantale for any sheaf 𝐹
on a quantale.
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Theorem 4.3.6. For each 𝑎 ∈ 𝑄, the poset 𝑆𝑢𝑏(𝑄(−, 𝑎)), endowed with the binary operation ∗
defined above is a commutative and semicartesian quantale. Moreover, the poset isomorphism
𝑘𝑎 ∶ [0, 𝑎] → 𝑆𝑢𝑏(𝑄(−, 𝑎)), 𝑞 ↦ [𝑄(−, 𝑞)]𝑖𝑠𝑜, established in Theorem 4.3.4, is a quantale
isomorphism.

Proof. As a consequence of the proof of Theorem 4.3.4, this map is well-defined, bijective,
and preserves and reflects orders. It remains to show that 𝑄(−, 𝑢 ⊙ 𝑣) ≅ 𝑄(−, 𝑢) ∗ 𝑄(−, 𝑣),
for all 𝑢, 𝑣 ≤ 𝑎. We have that 𝑄(−, 𝑢) ∗ 𝑄(−, 𝑣) ↣ 𝑄(−, 𝑎) is the mono in the extremal
factorization of the arrow

𝑄(−, 𝑢) ⊗𝑄(−,𝑎) 𝑄(−, 𝑣)
𝑒𝑞𝑢
−−→ 𝑄(−, 𝑢) ⊗ 𝑄(−, 𝑣)⇒ 𝑄(−, 𝑎)

By Day convolution,

𝑄(−, 𝑢) ⊗ 𝑄(−, 𝑣) ≅ 𝑄(−, 𝑢 ⊙ 𝑣)

Since 𝑢 ⊙ 𝑣 ≤ 𝑎, by Proposition 3.2.22, there is unique (mono)morphism 𝑄(−, 𝑢 ⊙ 𝑣) →
𝑄(−, 𝑎). So 𝑄(−, 𝑢) ⊗ 𝑄(−, 𝑣)⇒ 𝑄(−, 𝑎) corresponds to 𝑄(−, 𝑢 ⊙ 𝑣)⇒ 𝑄(−, 𝑎). Thus, the
parallel arrows coincide and then

𝑄(−, 𝑢) ⊗𝑄(−,𝑎) 𝑄(−, 𝑣) ≅ 𝑄(−, 𝑢) ⊗ 𝑄(−, 𝑣) ≅ 𝑄(−, 𝑢 ⊙ 𝑣)

Hence, the arrow
𝑄(−, 𝑢) ⊗𝑄(−,𝑎) 𝑄(−, 𝑣) → 𝑄(−, 𝑎)

is isomorphic with the unique mono

𝑄(−, 𝑢 ⊙ 𝑣)↣ 𝑄(−, 𝑎).

This shows that 𝑄(−, 𝑢 ⊙ 𝑣) ≅ 𝑄(−, 𝑢) ∗ 𝑄(−, 𝑣), as we wish.

This has an interesting direct application:

Corollary 4.3.7. Let 𝑄 be the quantale of ideals of a ring 𝑅, then 𝑄 is isomorphic to
𝑆𝑢𝑏(𝑄(−, 𝑅)).

So we can recover any ideal of 𝑅 by analyzing the subobjects of the sheaf 𝑄(−, 𝑅). Of
course, we also obtain that we can recover the open subsets of a topological spaces 𝑋
by analyzing the subobjects of the sheaf (𝑋 )(−, 𝑋 ), which is already known from the
theory of sheaves on locales.

A far more decisive consequence from the categorical logic point of view is the title of
this subsection:

Theorem 4.3.8. In general, the category 𝑆ℎ(𝑄) is not an elementary topos.

Proof. On one hand, take any commutative, semicartesian and unital quantale 𝑄 whose
underlying lattice is not a locale, i.e., it does not have a complete Heyting algebra structure.
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Consider the sheaf 1 ≅ 𝑄(−, 1). By Theorems 4.3.4 and 4.3.6, 𝑆𝑢𝑏(𝑄(−, 1)) ≅ 𝑆𝑢𝑏(1) is
isomorphic to 𝑄 as a quantale. Since 𝑄 is complete lattice that is not a locale, then 𝑆𝑢𝑏(1) is
not a Heyting algebra. On the other hand, let  be any elementary topos and 𝐶 any object
in  , then the lattice 𝑆𝑢𝑏(𝐶) is a Heyting algebra [MM92, Page 201]. Therefore, 𝑆ℎ(𝑄) is
not an elementary topos.

Remark 4.3.9. Consider the ring of integer polynomials Z[𝑥]. This is an example of a ring
that is not a Prüfer domain, thus we do not have 𝐼 ∩ (𝐽 +𝐾) = 𝐼 ∩ 𝐽 + 𝐼 ∩𝐾 , for nonzero ideals
[Nar95][Wik23]. In other words, (Z[𝑥]) is an example of a quantale with no underlying
localic structure.

Another interesting consequence of Theorem 4.3.6 is that 𝑆ℎ(𝑄)may not have subobject
classifier if 𝑄 does not have a localic structure.

Corollary 4.3.10. If 𝑄 is a semicartesian quantale where meets do not distribute over joins,
then 𝑆ℎ(𝑄) does not have a subobject classifier.

Proof. Corollary 4.5 in [nLa23b] says that if  is a category with all finite limits with
subobject classifier, then the poset 𝑆𝑢𝑏(𝐶) of subobjects of 𝐶, for every object 𝐶 in , meets
distribute over any existing join.

So, suppose 𝑆ℎ(𝑄) has subobject classifier. By Theorem 4.3.6, 𝑆𝑢𝑏(𝑄(−, 1)) ≅ 𝑄. So,
if meets do not distribute over joins 𝑄, we obtain a contradiction. Therefore, in such
circumstances, 𝑆ℎ(𝑄) has no subobject classifier.

Observe that in a quantale the multiplication distributes over joins and quantales, as
complete lattices, have meets that may or may not distribute over joins. Therefore, the
issue about the subobjects in 𝑆ℎ(𝑄) may be more intriguing than just a matter of having
it or not. If 𝑄 is a quantale regarding the multiplication and a locale regarding the meet,
then the subobjects may exist and also have the distributive law for both the meet and
multiplication. We have not concluded the referred investigation but in the next subsection
we will discuss a candidate for a subobject classifier in 𝑆ℎ(𝑄).

4.3.2 The subobject classifier
By definition, every elementary topos has a subobject classifier and we use it to

construct the internal logic of a given topos. We are also interested in the logical aspects
of our Grothendieck lopos and investigating the subobject classifier of 𝑆ℎ(𝑄) is a starting
point.

We recall the definition:

Definition 4.3.11. Let  be a locally small category with all finite limits. A subobjects
classifier consists of an object Ω and a morphism 𝑡 ∶ 1 → Ω that satisfies the following
universal property:

Given any object subobject 𝑚 ∶ 𝑈 ↣ 𝐸 in , there is a unique morphism
𝜒𝑚 ∶ 𝐸 Ω such that the following is a pullback diagram
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𝑈 1

𝐸 Ω

𝑚 ⊤

𝜒𝑚

The object Ω is called the object of truth values, 𝜒𝑚 is called the classifying map of
the subobject 𝑚 and ⊤ is called truth morphism.

In the category on sheaves on a locale 𝐿, the subobject classifier is given by the sheaf
Ω(𝑢) = {𝑞 ∈ 𝐿 ∶ 𝑞 ≤ 𝑢} such that for all 𝑣 ≤ 𝑢, we map 𝑞 to 𝑞 ∧ 𝑣, and ⊤ ∶ 1 → Ω is defined
by ⊤𝑢(∗) ∶= 𝑢. If you try to use the same application but replace 𝐿 by a semicartesian
quantale 𝑄, then Ω(𝑢) will not be a sheaf. The major problem when we try to run the
verification comes from the non-idempotence of the quantale. To overcome the issue we
use the idempotent approximation that we introduced in Section 3.1 to construct the Ω
below.

Proposition 4.3.12. Let 𝑄 be a commutative, semicartesian and geometric quantale. For
each 𝑢 ∈ 𝑄 define Ω−(𝑢) = {𝑞 ∈ 𝑄 ∶ 𝑞 ⊙ 𝑢− = 𝑞} then, with the restriction map

Ω−(𝑢) → Ω−(𝑣)
𝑞 ↦ 𝑞 ⊙ 𝑣−

for all 𝑣 ≤ 𝑢 in 𝑄, Ω is a sheaf.

Proof. Note that 𝑞⊙𝑣− ∈ Ω−(𝑣) since 𝑞⊙𝑣−⊙𝑣− = 𝑞⊙𝑣−. It is a presheaf because 𝑞⊙𝑢− = 𝑞
and, given 𝑤 ≤ 𝑣 ≤ 𝑢, 𝑞⊙𝑣−⊙𝑤− = 𝑞⊙𝑤−. The separability also holds: suppose 𝑢 = ⋁𝑖∈𝐼 𝑢𝑖
and take 𝑝, 𝑞 ∈ Ω−(𝑢) such that 𝑝↾𝑢𝑖 = 𝑞↾𝑢𝑖 for all 𝑖 ∈ 𝐼 . Then

𝑝 = 𝑝 ⊙ 𝑢− = 𝑝 ⊙ (⋁
𝑖∈𝐼
𝑢𝑖)− = 𝑝 ⊙⋁

𝑖∈𝐼
𝑢−𝑖 = ⋁

𝑖∈𝐼
𝑝 ⊙ 𝑢−𝑖

= ⋁
𝑖∈𝐼
𝑞 ⊙ 𝑢−𝑖 = 𝑞 ⊙⋁

𝑖∈𝐼
𝑢−𝑖 = 𝑞 ⊙ (⋁

𝑖∈𝐼
𝑢𝑖)− = 𝑞 ⊙ 𝑢−

= 𝑞

The gluing is 𝑞 = ⋁𝑖∈𝐼 𝑞𝑖, where 𝑞𝑖 ∈ Ω−(𝑢𝑖) for each 𝑖 ∈ 𝐼 . Observe that 𝑞 ∈ Ω−(𝑢):

𝑞 ⊙ 𝑢− = ⋁
𝑖∈𝐼
𝑞𝑖 ⊙ (⋁

𝑗∈𝐼
𝑢𝑗)− = ⋁

𝑖∈𝐼
𝑞𝑖 ⊙⋁

𝑗∈𝐼
𝑢−𝑗 = ⋁

𝑖∈𝐼
𝑞𝑖 ⊙ 𝑢−𝑖 ⊙⋁

𝑗∈𝐼
𝑢−𝑗 = ⋁

𝑖∈𝐼
𝑞𝑖 = 𝑞.

Where we used that the quantale is geometric in the second equality, the fact 𝑞𝑖 ∈ Ω−(𝑢𝑖)
in the third, and the idempotence of 𝑢−𝑖 in the fourth.

Now we check that 𝑞 is the gluing. On one hand

𝑞𝑗 = 𝑞𝑗 ⊙ 𝑢−𝑗 ≤ 𝑞 ⊙ 𝑢−𝑗 = 𝑞↾𝑢𝑗
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On the other hand, recording that (𝑢 ⊙ 𝑣)− = (𝑢− ⊙ 𝑣−) by Proposition 3.1.9.10,

𝑞↾𝑢𝑗 = 𝑞 ⊙ 𝑢−𝑗 = (⋁
𝑖∈𝐼
𝑞𝑖) ⊙ 𝑢−𝑗 = ⋁

𝑖∈𝐼
(𝑞𝑖 ⊙ 𝑢−𝑗 ) = ⋁

𝑖∈𝐼
(𝑞𝑖 ⊙ 𝑢−𝑖 ⊙ 𝑢−𝑗 )

= ⋁
𝑖∈𝐼
(𝑞𝑖 ⊙ (𝑢𝑖 ⊙ 𝑢𝑗)−) = ⋁

𝑖∈𝐼
𝑞𝑖↾𝑢𝑖⊙𝑢𝑗 = ⋁

𝑖∈𝐼
𝑞𝑗↾𝑢𝑖⊙𝑢𝑗

= ⋁
𝑖∈𝐼
(𝑞𝑗 ⊙ (𝑢𝑖 ⊙ 𝑢𝑗)−) = ⋁

𝑖∈𝐼
(𝑞𝑗 ⊙ 𝑢−𝑖 ⊙ 𝑢−𝑗 ) = (⋁

𝑖∈𝐼
𝑢−𝑖 ) ⊙ 𝑞𝑗 ⊙ 𝑢−𝑗

= (⋁
𝑖∈𝐼
𝑢𝑖)− ⊙ 𝑞𝑗 = 𝑢− ⊙ 𝑞𝑗 ≤ 𝑞𝑗 .

Remark 4.3.13. 1. The mapping 𝑄 ↦ Ω− preserves products and interval constructions
(see Proposition 3.2.13).

2. Note that for each 𝑣, 𝑢 ∈ 𝑄, such that 𝑣− = 𝑢−, then Ω−(𝑣) = Ω−(𝑢). In particular, if
𝑢− ≤ 𝑣 ≤ 𝑢, then Ω−(𝑣) = Ω−(𝑢) and, moreover, Ω−(𝑢−, 𝑣) = Ω−(𝑣, 𝑢) = 𝑖𝑑Ω−(𝑣).

3. For each 𝑢 ∈ 𝑄, let ⊥𝑢, ⊤𝑢 ∶ 1(𝑢) → Ω−(𝑢), where ⊥𝑢(∗) ∶= 0 ∈ Ω−(𝑢) and ⊤𝑢(∗) ∶=
𝑢− ∈ Ω−(𝑢). Then ⊥, ⊤ ∶ 1 → Ω− are natural transformations.

4. For each 𝑢 ∈ 𝑄 and 𝑣 ∈ Ω−(𝑢) we have 𝑣− ∈ Ω−(𝑢): this defines a map −𝑢 ∶ Ω−(𝑢) →
Ω−(𝑢), Then ( )− ∶= (−𝑢)𝑢∈𝑄 ∶ Ω− → Ω− is a natural transformation and ⊤− ∶=
( )− ◦ ⊤ = ⊤, ⊥− ∶= ( )− ◦ ⊥ = ⊥.

5. If 𝑄 is a locale, then Ω−(𝑢) = {𝑞 ∈ 𝑄 ∶ 𝑞 ⊙ 𝑢− = 𝑞} = {𝑞 ∈ 𝑄 ∶ 𝑞 ≤ 𝑢} = Ω0(𝑢),
and ⊤𝑢(∗) = 𝑢− = 𝑢. Thus ⊤ ∶ 1 → Ω− coincides with the subobject classifier in the
category of sheaves on locales [Bor94c, Theorem 2.3.2]. We will readdress this subject
below.

Our investigations did not lead to Ω− being a subobjects classifier, but it does classify
the dense subobjects:

Definition 4.3.14. A morphism of sheaves 𝜂 ∶ 𝐺 → 𝐹 is dense whenever ∀𝑢 ∈ 𝑄, ∀𝑦 ∈
𝐹(𝑢)∃𝑚 ∈ 𝑄, 𝑢− ≤ 𝑚 ≤ 𝑢 such that 𝐹(𝑚 ≤ 𝑢)(𝑦) ∈ 𝑟𝑎𝑛𝑔𝑒(𝜂𝑚) iff 𝑦 ∈ 𝑟𝑎𝑛𝑔𝑒(𝜂𝑢)

Remark 4.3.15. Note that in [MS98, Definition 2.6] the authors define a notion of dense.
Nevertheless, we were not able to detect a discernible correlation between their definition and
ours.

Note that, since 𝑚 ≤ 𝑢, 𝑦 ∈ 𝑟𝑎𝑛𝑔𝑒(𝜂𝑢) ⟹ 𝐹(𝑚 ≤ 𝑢)(𝑦) ∈ 𝑟𝑎𝑛𝑔𝑒(𝜂𝑚).

It can be easily verified that a sufficient condition to a morphism of sheaves 𝜂 ∶ 𝐺 ≅→ 𝐹
be a dense is: ∀𝑢 ∈ 𝑄∃𝑚 ∈ 𝑄, 𝑢− ≤ 𝑚 ≤ 𝑢 such that the diagram below is a pullback:

𝐺(𝑢) 𝐹(𝑢)

𝐺(𝑚) 𝐹(𝑚)

𝜂𝑢

𝜂𝑚

𝐺(𝑚≤𝑢) 𝐹(𝑚≤𝑢)
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Example 4.3.16. (Dense morphisms of sheaves)

1. Every isomorphism 𝜂 ∶ 𝐺 ≅→ 𝐹 is a dense (mono)morphism.

2. If a point 𝜋 ∶ 1 → 𝐹 is such that ∀𝑢 ∈ 𝑄∃𝑚 ∈ 𝑄, 𝑢− ≤ 𝑚 ≤ 𝑢, 𝐹(𝑚 ≤ 𝑢) ∶ 𝐹(𝑢) → 𝐹(𝑚)
is bijective, then 𝜋 ∶ 1 → 𝐹 is a dense monomorphism. In particular, every point
𝜋 ∶ 1 → Ω− is a dense monomorphism.

3. Let 𝑎, 𝑏 ∈ 𝑄. If 𝑏 ≤ 𝑎, let 𝜂 ∶ 𝑄(−, 𝑏) → 𝑄(−, 𝑎) be the unique monomorphism
(an inclusion, in fact). Then 𝜂 is a dense monomorphism iff ∀𝑢 ∈ 𝑄∀𝑦 ∈ [𝑢, 𝑎]∃𝑚 ∈
𝑄, 𝑢− ≤ 𝑚 ≤ 𝑢, (𝑦 ∈ [𝑚, 𝑏] ⇔ 𝑦 ∈ [𝑢, 𝑏]); therefore, taking 𝑚 = 𝑢, we have that
𝑄(−, 𝑏) ↪ 𝑄(−, 𝑎) is a dense inclusion.

We register the following (straightforward) result:

Proposition 4.3.17. A pullback of a dense (mono)morphism in 𝑆ℎ(𝑄) is a dense
(mono)morphism.

Theorem 4.3.18. Suppose that 𝑄 is a (commutative, semicartesian and) geometric quantale.
Then the sheaf Ω− introduced in Proposition 4.3.12 essentially classifies the dense subobject in
the category 𝑆ℎ(𝑄). More precisely:

1. ⊤ ∶ 1 → Ω−, given by ⊤𝑢 ∶ {∗} → Ω−(𝑢), ⊤𝑢(∗) = 𝑢− determines a dense monomor-
phism in 𝑆ℎ(𝑄).

2. For each dense monomorphism of sheaves 𝑚 ∶ 𝑆 ↣ 𝐹 , there is a unique morphism
𝜒𝑚 ∶ 𝐹 → Ω−, such that 𝜒−

𝑚 = 𝜒𝑚, and such the diagram below is a pullback. Moreover,
for each morphisms 𝜙, 𝜙′ ∶ 𝐹 → Ω− that determine pullback diagrams, it holds:
𝜙− = 𝜙′−.

Proof. 1. Since 𝑢− is an idempotent, then 𝑢− ∈ Ω−(𝑢) (in fact, 𝑢− = 𝑚𝑎𝑥Ω−(𝑢)). If 𝑣 ≤ 𝑢
then, by Proposition 3.1.9.9 𝑣−⊙𝑢− = 𝑣−, thus ⊤ = (⊤𝑢)𝑢∈𝑄 is a natural transformation.
By Proposition 3.2.19.4, it is clear that ⊤ is a monomorphism of sheaves. In Example
4.3.16.2, we argued that ⊤ is dense.

2. First note that: Since ⊤ is a dense monomorphism, it follows from Proposition
4.3.17 that the pullback of a morphism 𝜙 ∶ 𝐹 → Ω− through ⊤ must be a dense
monomorphism 𝑚 ∶ 𝑆↣ 𝐹 .

Now, note that it is enough to establish the result for dense subsheaves 𝑖𝑆 ∶ 𝑆 ↪ 𝐹 . We
will split the proof into two parts, but first we will provide some relevant definitions
and calculations.

For each 𝑢 ∈ 𝑄 and 𝑦 ∈ 𝐹(𝑢), define:

⟨𝑦, 𝑢⟩ ∶= {𝑣 ∈ Ω−(𝑢) ∶ 𝐹(𝑣 ≤ 𝑢)(𝑦) ∈ 𝑆(𝑣)};
𝑢𝑦 ∶= ⋁⟨𝑦, 𝑢⟩.

(a) If 𝑣, 𝑤 ∈ Ω−(𝑢) and 𝑤 ≤ 𝑣, then 𝑣 ∈ ⟨𝑦, 𝑢⟩ ⇒ 𝑤 ∈ ⟨𝑦, 𝑢⟩: 𝑆 is a subpresheaf of 𝐹 . In
particular: if 𝑣 ∈ ⟨𝑦, 𝑢⟩, then 𝑣− ∈ ⟨𝑦, 𝑢⟩, since ( )− ∶ Ω− → Ω− natural transformation,
and 𝑣− ≤ 𝑣.
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(b) If {𝑣𝑖 ∶ 𝑖 ∈ 𝐼 } ⊆ ⟨𝑦, 𝑢⟩, then ⋁𝑖 𝑣𝑖 ∈ ⟨𝑦, 𝑢⟩: since Ω−(𝑢) is closed under suprema
and 𝑆 is a subsheaf of 𝐹 .

(c) 𝑢𝑦 ∈ ⟨𝑦, 𝑢⟩ (by (b)) and 𝑢−𝑦 ∈ ⟨𝑦, 𝑢⟩ (by (a)). Thus:

𝑢𝑦 = 𝑚𝑎𝑥⟨𝑦, 𝑢⟩ and 𝑢−𝑦 = 𝑚𝑎𝑥(⟨𝑦, 𝑢⟩ ∩ 𝐼 𝑑𝑒𝑚(𝑄)).

(d) 𝑢−𝑦 = ⋁{𝑒 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∶ ∃𝑣, 𝑣 ⪯ 𝑢−, 𝑒 = 𝑣−, 𝐹(𝑣 ≤ 𝑢)(𝑦) ∈ 𝑆(𝑣)} : since 𝑄 is a
geometric quantale, we have

𝑢−𝑦 = (⋁{𝑣 ∈ Ω−(𝑢) ∶ 𝐹(𝑣 ≤ 𝑢)(𝑦) ∈ 𝑆(𝑣)})− = ⋁{𝑣− ∶ 𝑣 ∈ Ω−(𝑢), 𝐹(𝑣 ≤ 𝑢)(𝑦) ∈ 𝑆(𝑣)}.

Candidate and uniqueness: Suppose that 𝜙 ∶ 𝐹 → Ω− is a natural transformation
such that the diagram below is a pullback (where 𝑆 is dense subsheaf of 𝐹 ).

𝑆 1

𝐹 Ω−

𝑖𝑆

!𝑆

⊤

𝜙

Note that if 𝑢− ≤ 𝑚 ≤ 𝑢, then, by naturality,

𝜙𝑚(𝐹(𝑚 ≤ 𝑢)(𝑦)) = 𝜙𝑢(𝑦) ⊙ 𝑚− = 𝜙𝑢(𝑦) ⊙ 𝑢− = 𝜙𝑢(𝑦).

Claim (i): It holds: 𝑢−𝑦 ≤ 𝜙𝑢(𝑦) ≤ 𝑢𝑦 . Moreover, if 𝜙𝑢(𝑦) ∈ 𝐼 𝑑𝑒𝑚(𝑄), then 𝜙𝑢(𝑦) = 𝑢−𝑦 .

Since the diagram is a pullback and limits in 𝑆ℎ(𝑄) are pointwise (see Proposition
3.2.17.1), then for each 𝑤 ∈ 𝑄:

𝑥 ∈ 𝑆(𝑤) ⇔ 𝑥 ∈ 𝐹(𝑤) 𝑎𝑛𝑑 𝜙𝑤(𝑥) = 𝑤−

Thus, if 𝑣 ≤ 𝑢 is such that 𝐹(𝑣 ≤ 𝑢)(𝑦) ∈ 𝑆(𝑣), then by naturality:

𝑣− = 𝜙𝑣(𝐹(𝑣 ≤ 𝑢)(𝑦)) = 𝜙𝑢(𝑦) ⊙ 𝑣−.

Note that 𝑢𝑦 ≤ 𝑢− ≤ 𝑢 and 𝑢𝑦 ∈ ⟨𝑦, 𝑢⟩, thus 𝑢−𝑦 = 𝜙𝑢(𝑦) ⊙ 𝑢−𝑦 and 𝑢−𝑦 ≤ 𝜙𝑢(𝑦).

By naturality: 𝜙𝜙𝑢(𝑦)(𝐹(𝜙𝑢(𝑦), 𝑢)(𝑦))) = 𝜙𝑢(𝑦) ⊙ 𝜙𝑢(𝑦)− = 𝜙𝑢(𝑦)−

𝜙𝑢(𝑦) ∈ ⟨𝑦, 𝑢⟩: since 𝜙𝑢(𝑦) ∈ Ω−(𝑢) and 𝜙𝜙𝑢(𝑦)(𝐹(𝜙𝑢(𝑦), 𝑢)(𝑦))) = 𝜙𝑢(𝑦)− then, by the
pullback condition, we have that 𝐹(𝜙𝑢(𝑦), 𝑢)(𝑦)) ∈ 𝑆(𝜙𝑢(𝑦)), thus 𝜙𝑢(𝑦) ∈ ⟨𝑦, 𝑢⟩.

𝜙𝑢(𝑦) ≤ 𝑢𝑦 : since 𝜙𝑢(𝑢) ∈ ⟨𝑦, 𝑢⟩ and 𝑢𝑦 = 𝑚𝑎𝑥⟨𝑦, 𝑢⟩.

If 𝜙𝑢(𝑦) ∈ 𝐼 𝑑𝑒𝑚(𝑄), then 𝜙𝑢(𝑦) = 𝑢−𝑦 : since we have established above that 𝜙𝑢(𝑦) ∈
⟨𝑦, 𝑢⟩, 𝑢−𝑦 ≤ 𝜙𝑢(𝑦) ≤ 𝑢𝑦 and because 𝑢−𝑦 = 𝑚𝑎𝑥(⟨𝑦, 𝑢⟩ ∩ 𝐼 𝑑𝑒𝑚(𝑄)).

Thus, if 𝜙𝑢(𝑦) ∈ 𝐼 𝑑𝑒𝑚(𝑄), then 𝜙𝜙𝑢(𝑦)(𝐹(𝜙𝑢(𝑦), 𝑢)(𝑦))) = 𝜙𝑢(𝑦) = 𝑢−𝑦 .
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Claim (ii): If 𝜙 ∶ 𝐹 → Ω− determines a pullback diagram, then 𝜙− = ( )− ◦ 𝜙 still
determines a pullback.

Since 𝑥 ∈ 𝑆(𝑤) iff (𝑥 ∈ 𝐹(𝑤) and 𝜙𝑤(𝑥) = 𝑤− = (𝑤−)− = 𝜙−𝑤(𝑥)).

Combining Claim (ii) and Claim (i), 𝜙−𝑢 (𝑦) = 𝑢−𝑦 for each 𝑢 ∈ 𝑄 and 𝑦 ∈ 𝐹(𝑢),
establishing the required uniqueness assertions.

Existence: For each 𝑢 ∈ 𝑄 and 𝑦 ∈ 𝐹(𝑢), define 𝜒 𝑆𝑢 (𝑦) ∶= 𝑢−𝑦 . Then (𝜒 𝑆𝑢 )𝑢∈𝑄 is a natural
transformation and it determines a pullback diagram.

Firstly, we will verify that (𝜒 𝑆𝑢 )𝑢∈𝑄 is a natural transformation. Let 𝑢, 𝑣 ∈ 𝑄 be such
that 𝑣 ≤ 𝑢 and let 𝑦 ∈ 𝐹(𝑢). We have to show that:

𝜒 𝑆𝑣 (𝐹(𝑣 ≤ 𝑢)(𝑦)) = 𝜒 𝑆𝑢 (𝑦) ⊙ 𝑣−

This means:

𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝐹(𝑣 ≤ 𝑢)(𝑦), 𝑣⟩) = 𝑣− ⊙ 𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝑦, 𝑢⟩)

On the one hand, note that

𝑣− ⊙ 𝑢−𝑦 = 𝑣− ⊙ 𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝑦, 𝑢⟩)

= 𝑣− ⊙⋁(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝑦, 𝑢⟩)

= ⋁{𝑣− ⊙ 𝑒 ∶ 𝑒2 = 𝑒 = 𝑒 ⊙ 𝑢−, 𝐹(𝑒𝑢)(𝑦) ∈ 𝑆(𝑒)}.

Denoting 𝑒′ ∶= 𝑣− ⊙ 𝑢−𝑦 , we have 𝑒′2 = 𝑒′ = 𝑒′ ⊙ 𝑣− and 𝐹(𝑒′𝑣)(𝐹(𝑣 ≤ 𝑢)(𝑦)) ∈ 𝑆(𝑒′),
thus 𝑒′ = 𝑣− ⊙ 𝑢−𝑦 ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝐹(𝑣 ≤ 𝑢)(𝑦), 𝑣⟩ and then

𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝐹(𝑣 ≤ 𝑢)(𝑦), 𝑣⟩) ≥ 𝑣− ⊙ 𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝑦, 𝑢⟩).

On the another hand, denote 𝑒′′ = 𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝐹(𝑣 ≤ 𝑢)(𝑦), 𝑣⟩). Then 𝑒′′2 =
𝑒′′ = 𝑒′′⊙𝑣− and 𝐹(𝑒′′𝑣)(𝐹(𝑣 ≤ 𝑢)(𝑦)) ∈ 𝑆(𝑒′′). Then 𝑒′′ ∈ 𝐼 𝑑𝑒𝑚(𝑄), 𝑒′′ ≤ 𝑣− ≤ 𝑢− and
𝑒′′ ∈ ⟨𝑦, 𝑢⟩. Thus 𝑒′′ ∈ 𝐼 𝑑𝑒𝑚(𝑄) and 𝑒′′ ≤ 𝑣−, 𝑢−𝑦 . Then 𝑒′′ = 𝑒′′ ⊙ 𝑒′′ ≤ 𝑣− ⊙ 𝑢−𝑦 , i.e.,
𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝐹(𝑣 ≤ 𝑢)(𝑦), 𝑣⟩) ≤ 𝑣− ⊙ 𝑚𝑎𝑥(𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝑦, 𝑢⟩).
Now we show that holds the pullback condition for each 𝑢 ∈ 𝑄:

𝑦 ∈ 𝑆(𝑢) ⇔ (𝑦 ∈ 𝐹(𝑢) 𝑎𝑛𝑑 𝑢− = 𝜒 𝑆𝑢 (𝑦) = 𝑢−𝑦 ).

On one hand, let 𝑦 ∈ 𝑆(𝑢), then 𝑦 ∈ 𝐹(𝑢) and 𝑢− ∈ Ω−(𝑢) is s.t. 𝐹(𝑢− ≤ 𝑢)(𝑦) ∈ 𝑆(𝑢−),
since 𝑆 is a subpresheaf of 𝐹 . Then 𝑢− ∈ 𝐼 𝑑𝑒𝑚(𝑄) ∩ ⟨𝑦, 𝑢⟩. Thus, by (b), 𝑢− ≤ 𝑢−𝑦 . On
the other hand 𝑢−𝑦 ∈ Ω−(𝑢), thus 𝑢−𝑦 ≤ 𝑢−. Summing up: 𝜒 𝑆𝑢 (𝑦) = 𝑢−𝑦 = 𝑢−.

Let 𝑦 ∈ 𝐹(𝑢) be such that 𝑢− = 𝜒 𝑆𝑢 (𝑦) = 𝑢−𝑦 . Then 𝑢− = 𝑚𝑎𝑥(⟨𝑦, 𝑢⟩ ∩ 𝐼 𝑑𝑒𝑚(𝑄)).
Therefore 𝐹(𝑢− ≤ 𝑢)(𝑦) ∈ 𝑆(𝑢−) and, since 𝑖𝑆 ∶ 𝑆 ↪ 𝐹 is a dense inclusion, we have
𝑦 ∈ 𝑆(𝑢).
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Subobject classifiers classify monomorphism, we proved that Ω− essentially classifies
dense monomorphisms, which is coherent with Corollary 4.3.10 since 𝑄 do not necessarily
has that meet distributes over joins, we do not expect to obtain a subobjects classifier. On
the other hand, if we find a subobjects classifier for 𝑆ℎ(𝑄) for a certain 𝑄, thus we may have
an example of a 𝑄 where the meet distributes over arbitrary joins but the meet and the
multiplication operation do not coincide. In a paper6 recently submitted, we constructed a
sheaf Ω+(𝑢) ∶= {𝑞 ∈ 𝑄 ∶ 𝑞+ ⊙ 𝑢 = 𝑞} = {𝑞 ∈ 𝑄 ∶ 𝑞+ ⊙ 𝑢 ≤ 𝑞 and 𝑞 ≤ 𝑢} with restriction
maps, for 𝑣 ≤ 𝑢 in 𝑄, defined by

Ω+(𝑢) → Ω+(𝑣)
𝑞 ↦ 𝑞+ ⊙ 𝑣

and proved that for quantales with “good” properties, Ω+ is, indeed a subobject classifier in
𝑆ℎ(𝑄). By Corollary 4.3.10, this means that the complete lattice 𝑄 has also localic structure
but, apparently, it does not imply that ⊙ = ∧.

4.4 Considerations about semigroupal categories
As already mentioned, unital semicartesian quantales may be seen as semicartesian

categories. While developing the theory of sheaves on quantales we realized that the unity
is not always necessary. This suggests that our notion of a sheaf for monoidal categories
with projections (therefore, semicartesian by Proposition 2.1.8) could be further generalized
for semigroupal categories with projections. Semigroupal categories, as the name suggests,
look like monoidal categories except they do not have a unity for the tensor product, thus,
they do not have the triangle axiom. Explicitly,

Definition 4.4.1. A semigroupal category consists of:

• A category ;

• A bifunctor ⊗ ∶  ×  →  called the tensor product;

• A natural isomorphism 𝑎 ∶ (− ⊗ −) ⊗ − ≃⟶ − ⊗ (− ⊗ −) with components

𝑎𝑋,𝑌 ,𝑍 ∶ (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 ≃⟶ 𝑋 ⊗ (𝑌 ⊗ 𝑍)

called the associator (or associativity isomorphism).

Such that the following axiom holds:

• The pentagon axiom: For all 𝑊 ,𝑋, 𝑌 , 𝑍 objects in , the diagram below commutes

6 As mentioned before, there is a preliminary version of such paper available on ArXiv.

https://arxiv.org/abs/2204.08351
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(𝑊 ⊗ 𝑋 ) ⊗ (𝑌 ⊗ 𝑍)

((𝑊 ⊗ 𝑋 ) ⊗ 𝑌 ) ⊗ 𝑍 (𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍)))

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍 𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

𝑎𝑊 ,𝑋,𝑌⊗𝑍

𝑖𝑑𝑊⊗𝑎𝑋,𝑌 ,𝑍

𝑎𝑊 ,𝑋⊗𝑌 ,𝑍

𝑎𝑊⊗𝑋,𝑌 ,𝑍

𝑎𝑊 ,𝑋,𝑌⊗𝑖𝑑𝑧

Our quantales may have a unit or not but they must be semicartesian, that is, we need
a notion of projection. So:

Definition 4.4.2. A semigroupal category with projections is a semigroupal category
equipped with two natural transformations

• A natural transformation 𝜋1 ∶ (− ⊗ −) ⟶ (−) with components

𝜋1
𝑋⊗𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑋

called the projection onto the first coordinate;

• A natural transformation 𝜋2 ∶ (− ⊗ −) ⟶ (−) with components

𝜋2
𝑋⊗𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑌

called the projection onto the second coordinate.

Such that

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 𝑋 ⊗ (𝑌 ⊗ 𝑍) (𝑋 ⊗ 𝑌 ) ⊗ 𝑍 𝑋 ⊗ (𝑌 ⊗ 𝑍)

𝑋 ⊗ 𝑌 𝑋 𝑍 𝑌 ⊗ 𝑍

𝑎𝑋,𝑌 ,𝑍

𝜋1
(𝑋⊗𝑌 ),𝑍 𝜋1

𝑋,𝑌⊗𝑍

𝜋1
𝑋,𝑌

𝑎𝑋,𝑌 ,𝑍

𝜋2
𝑋,𝑌⊗𝑍𝜋2

(𝑋⊗𝑌 ),𝑍

𝜋2
𝑌 ,𝑍

commute.

Remark 4.4.3. Furthermore, if there is a unit 𝐼 , there is no obligation to 𝜋1
𝑋,𝐼 ∶ 𝑋 ⊗ 𝐼 → 𝑋

or 𝜋2
𝑋,𝐼 ∶ 𝐼 ⊗ 𝑋 → 𝑋 be the unitors isomorphisms that appear in the definition of monoidal

categories.

Note that every semicartesian monoidal category (when the unit coincides with the
terminal object) is a semigroupal category with projections, where the projections are

compositions of the form 𝑋 ⊗ 𝑌 𝑋 ⊗ 𝐼 𝑋
𝜌𝑋𝑖𝑑𝑋⊗!
≅ . According to the discussion

following the Definition of semicartesian categories 2.1.6, if 𝜋1
𝑋,𝐼 ∶ 𝑋 ⊗ 𝐼 → 𝑋 coincides

with the unitor isomorphism then monoidal categories with projections are precisely the
semicartesian monoidal categories. This is precisely the case in the poset category of
quantales: the projection must coincide with the unitor isomorphism because there is a
unique arrow 𝑋 ⊗ 𝐼 → 𝑋 , if the quantale is unital.
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We highlight that the notion of a monoidal category without unit is not unmotivated
since, for example, given a unital semicartesian quantale 𝑄 we may obtain a non-unital
semicartesian quantale [0, 𝑎] that is isomorphic to 𝑆𝑢𝑏(𝑄(0, 𝑎)), by Theorem 4.3.6.

Unfortunately, the study of semigroupal categories is not as well-developed as the
study of monoidal categories. Furthermore, for monoidal categories with projections we
know what the projections look like, which helps with calculations while for semigroupal
categories with projections we can only use the commutativity of certain diagrams given
in Definition 4.4.2. In the future, we would like to check if the results we found out for
sheaves on semicartesian categories still hold for sheaves on other semigroupal categories
with projections.

4.5 Sheaf Cohomology
The title of this Section corresponds to a desire: develop a cohomology theory for

Grothendieck lopos that generalizes the well-known cohomology theory for Grothendieck
topos and find more applications of sheaf cohomology. What we have for now is not a
generalization of a sheaf cohomology theory. Instead, we generalized a standard technique
in cohomology known as Čech Cohomology, which was briefly described in 2.4. In this
section we:

• introduce a notion of monoidal Čech Cohomology. The idea is simple: we take the
Čech Cohomology of a topological space 𝑋 with coefficients on a sheaf on 𝑋 and
replace intersection by the quantalic product. In particular, we are interested in the
monoidal Čech Cohomology of a commutative ring 𝑅 with coefficients on a sheaf
on 𝑅.

• use base change techniques introduced in Section 3.4, to relate the Čech cohomology
of a topological space 𝑋 , with coefficients in a constant sheaf on 𝑆ℎ(𝑋 ), and the
Čech Cohomology of the ring of continuous functions 𝐶(𝑋 ), with coefficients in a
constant sheaf on 𝑆ℎ(𝐶(𝑋 )) that arises from the chosen constant sheaf on 𝑆ℎ(𝑋 ).

Remark 4.5.1. In this section, our sheaves are all sheaves of abelian groups, that is, they are
of the form 𝐹 ∶ 𝑄𝑜𝑝 → 𝑆𝑒𝑡, where 𝑄 is a semicartesian commutative quantale.

Let 𝐹 ∶ 𝑄𝑜𝑝 → 𝐴𝑏 be a sheaf and  = (𝑢𝑖)𝑖∈𝐼 a cover in 𝑄, where 𝐼 is a set of
indices.

Definition 4.5.2. The monoidal Čech cochain complex of  with coefficients in 𝐹 is
given by

𝐶𝑞( , 𝐹) = ∏
𝑖0<...<𝑖𝑞

𝐹(𝑢𝑖0 ⊙⋯ ⊙ 𝑢𝑖𝑞 )

and the coboundary morphism 𝑑𝑞 ∶ 𝐶𝑞( , 𝐹) → 𝐶𝑞+1( , 𝐹) by

(𝑑𝑞𝛼) =
𝑞+1

∑
𝑘=0

(−1)𝑘𝛼(𝛿𝑘)|𝑢𝑖0⊙⋯⊙𝑢𝑖𝑞+1 ,

where 𝛿𝑘 means that we removed the 𝑖𝑘-entry.
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Observe that if 𝑄 = ((𝑋 ), ⊆, ∩), then the definition above is precisely the usual Čech
cochain complex.

A straightforward verification shows that 𝑑𝑞+1 ◦ 𝑑𝑞 = 0 so, indeed, this is a cochain
complex and we define the 𝑞-th Čech cohomology group of 𝐹 with respect to the covering
 in the following way:

Definition 4.5.3. Given a cover and a sheaf 𝐹 , we define the monoidal Čech cohomology
group of  with coefficients in 𝐹 by

Ȟ
𝑞( , 𝐹) =

𝐾𝑒𝑟𝑑𝑞

𝐼𝑚𝑑𝑞−1

This construction is about the covering and not about the actual space. When 𝑄 =
((𝑋 ), ⊆, ∩), the topological space 𝑋 may admit many covers so this construction is not
enough to talk about the cohomology of 𝑋 , but only about the cohomology of a fixed
cover of 𝑋 . There is a way to define a Čech cohomology of 𝑋 and, analogously, we can
define a monoidal Čech cohomology of a commutative ring with unity 𝑅. Before we get
deeper into the theory, we explore the application we are interested in.

For convenience, we recall the pair of adjoint functors

𝜏∶ (𝐶(𝑋 )) → (𝑋 )

𝐼 ↦ ⋃
𝑓 ∈𝐼

𝑓 −1(ℝ − {0})

and

𝜃∶ (𝑋 ) → (𝐶(𝑋 ))
𝑈 ↦ ⟨{𝑓 ∶ 𝑓 ↾𝑋−𝑈 ≡ 0}⟩

that we introduced in 3.4.14.

Proposition 4.5.4. Fix a cover  of 𝐶(𝑋 ). Then the Čech cohomology group of 𝜏( ) with
coefficients in the constant sheaf 𝐾𝑋 is isomorphic to the monoidal Čech cohomology group of
 with coefficients in the constant sheaf 𝐾𝐶(𝑋 ).

Proof. By Corollary 3.4.16,

𝐶𝑞( , 𝐾𝐶(𝑋 )) = ∏
𝑖0<...<𝑖𝑞

𝐾𝐶(𝑋 )(𝑢𝑖0 ⊙ ... ⊙ 𝑢𝑖𝑞 )

= ∏
𝑖0<...<𝑖𝑞

(𝐾𝑋 ◦ 𝜏)(𝑢𝑖0 ⊙ ... ⊙ 𝑢𝑖𝑞 )

= ∏
𝑖0<...<𝑖𝑞

𝐾𝑋 (𝜏(𝑢𝑖0) ∩ ... ∩ 𝜏(𝑢𝑖𝑞 ))

= 𝐶𝑞(𝜏( ), 𝐾𝑋 )
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Then we have commutative squares

… 𝐶𝑞−1( ,ℤ𝐶(𝑋 )) 𝐶𝑞( ,ℤ𝐶(𝑋 )) 𝐶𝑞+1( ,ℤ𝐶(𝑋 )) …

… 𝐶𝑞−1(𝜏( ),ℤ𝑋 ) 𝐶𝑞(𝜏( ),ℤ𝑋 ) 𝐶𝑞+1(𝜏( ),ℤ𝑋 ) …

𝑑𝑞𝑑𝑞−1

𝑑𝑞−1 𝑑𝑞

Thus, we have an isomorphism of cochain complexes and so the cohomology groups are
isomorphic: Ȟ

𝑞( , 𝐾𝐶(𝑋 )) ≅ Ȟ
𝑞(𝜏( ), 𝐾𝑋 ).

Since the above holds for any cover  of 𝐶(𝑋 ), we expect that something at least
similar will happen between the cohomology groups of 𝐶(𝑋 ) and 𝑋 . First:

Definition 4.5.5. Fix a quantale 𝑄 and an element 𝑢 ∈ 𝑄. Let  = (𝑢𝑖)𝑖∈𝐼 and  = (𝑣𝑗)𝑗∈𝐽
be coverings of 𝑢. We say that  is a refinement of  if there is a function 𝑟 ∶ 𝐼 → 𝐽 and a
morphism 𝑢𝑖 → 𝑣𝑟(𝑖), for all 𝑖 ∈ 𝐼 .

Given 𝑟 ∶ 𝐼 → 𝐽 that testifies  as refinement of  , we have an induced morphism
of cochain complexes 𝑚𝑟 ∶ 𝐶∙( , 𝐹) → 𝐶∙( , 𝐹) and a corresponding morphism of Čech
cohomology groups with respect to the coverings  and  , �̌�𝑟 ∶ Ȟ∙( , 𝐹) → Ȟ∙( , 𝐹).
Moreover, if 𝑠 ∶ 𝐼 → 𝐽 is another chosen function with respect to the refinement that
testifies that  is a refinement of  , then the induced morphisms of complexes 𝑚𝑟 , 𝑚𝑠
are homotopic. Therefore, there is a unique induced morphism of cohomology groups
�̌� , ∶ Ȟ∙( , 𝐹) → Ȟ∙( , 𝐹)

Besides it, the class Ref(𝑢) of all coverings of 𝑢 is partially ordered under the refinement
relation; this is a directed ordering relation. Thus, we can define

Definition 4.5.6. The Čech cohomology group of an element 𝑢 ∈ 𝑄 with coefficient in a
sheaf 𝐹 is the directed (co)limit7

Ȟ𝑞(𝑢, 𝐹) ∶= lim−−→
 ∈Ref(𝑢)

Ȟ𝑞( , 𝐹).

Then we can prove the applied theorem of this thesis:

Theorem 4.5.7. The Čech cohomology group of 𝐶(𝑋 ) with coefficients in 𝐾𝐶(𝑋 ) is isomorphic
to the Čech cohomology group of 𝑋 with coefficients in 𝐾𝑋 .

Proof. First, observe that by Proposition 4.5.4:

Ȟ𝑞(𝐶(𝑋 ), 𝐾𝐶(𝑋 )) ∶= lim−−→
 ∈Ref(𝐶(𝑋 ))

Ȟ𝑞( , 𝐾𝐶(𝑋 ))

≅ lim−−→
 ∈Ref(𝐶(𝑋 ))

Ȟ𝑞(𝜏( ), 𝐾𝑋 )

7 This (co)limit has to be taken with some set-theoretical care that we do not detail.
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Now, let  = (𝑉𝑖)𝑖∈𝐼 be a covering of 𝑋 . It is clear that 𝜃(𝑉𝑖) ⊆ 𝜃(𝑉𝑖). Since 𝜏 is left
adjoint to 𝜃 we obtain 𝜏(𝜃(𝑉𝑖)) ⊆ 𝑉𝑖. Recall that 𝜃 and 𝜏 preserve supremum (Proposition
3.4.14), thus 𝜏(𝜃(𝑉𝑖)) is a covering of 𝑋 and then 𝜏(𝜃()) it is a refinement of  . In other
words, for every  covering of 𝑋 there is a covering  of 𝐶(𝑋 ) such that 𝜏( ) ⊆  .
Therefore

Ȟ𝑞(𝑋, 𝐾𝑋 ) ∶= lim−−→
∈Ref(𝑋 )

Ȟ𝑞( , 𝐾𝑋 )

≅ lim−−→
 ∈Ref(𝐶(𝑋 ))

Ȟ𝑞(𝜏( ), 𝐾𝑋 )

Perhaps, it is not clear why the above is interesting and why it shows the potential
of the theory we developed. Once we defined sheaves on quantales and desire to make
the notion of sheaves on rings similar to that of sheaves on topological spaces, it was
straightforward how to define the correspondent Čech cohomology groups. However, it is
not simple to actually calculate the cohomology of an arbitrary ring, mainly because of
two reasons: (i) we have to choose some sheaf but finding concrete examples of sheaves
on a ring (or in any quantale) was not easy. We thought about some presheaves examples
and then we could sheafify them, but our sheafification process is too much abstract. Thus,
even the behavior of the constant sheaf was not easy to capture; (ii) given an arbitrary
ring, it may be difficult to understand what to expect from the covering of its ideals and
we were not able to find studies about it in the literature.

When we had almost given up on the applied part of this thesis, we realized that
Theorem 3.4.8 is also a machine for producing sheaves on quantales. In particular, if

we have a sheaf on a locale 𝐿 and a pair of adjoint functors 𝑄 𝐿
𝑓∗

𝑓 ∗

then 𝐹 ◦ 𝑓 ∗ is

sheaf on the quantale 𝑄. So we can use well-known sheaves on locales to create sheaves
on quantales. Moreover, we hoped that if we had a ring that come from a topological
space, then we could indirectly calculate the cohomology of the ring by calculating the
cohomology of the space, which probably is already known since Čech cohomology of a
topological space is a topic that has been studied for a longer time. The above Theorem
is an example of such a phenomenon and, surprisingly or not, the proof relied basically
on finding an adjoint pair of functors between the ideals of 𝐶(𝑋 ) and the open subsets of
𝑋 .

Besides it, Theorem 4.5.7 is not only about finding ways to calculate the Čech co-
homology groups of 𝐶(𝑋 ), it is also about relating algebraic properties of 𝐶(𝑋 ) and
topological properties of 𝑋 : if 𝑋 is a compact manifold 𝑛 and class at least 𝑛+1 then there
is an isomorphism 𝐻 𝑞

𝑑𝑅(𝑀) ≅ �̌� 𝑞(𝑀,ℝ), for all 𝑞 ≤ 𝑚, where 𝐻 𝑞
𝑑𝑅 denotes the de Rham

cohomology groups and ℝ is the constant sheaf with values in ℝ [Pet06, Appendix]. On
one hand, the dimension of 𝐻 0

𝑑𝑅(𝑀) corresponds to the number of connected components
of 𝑋 . On the other hand, 𝑋 is connected if and only if 𝐶(𝑋 ) only had trivial idempotent
elements (0 and 1). So, we believe that the Čech cohomology group in degree zero of a
ring with coefficients in a constant sheaf is related to the number of idempotent elements
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of 𝐶(𝑋 ).

The idea of investigating algebraic properties of 𝐶(𝑋 ) by analyzing topological prop-
erties of 𝑋 (and vice-versa) is not new ([GH54], [Hew48], [GJ17]), but the cohomological
approach is not usual: in fact, we only find one paper with such an approach. In [Wat65],
Watts creates a cohomology theory for a commutative algebra over a fixed algebra such
that the case of the algebra of continuous real-valued functions on a compact Hausdorff
space coincides with the Čech cohomology of the space with real coefficients (the constant
sheaf with values in ℝ). Our approach may have a couple of advantages:

• we do not have to construct a new cohomology theory, we actually are expanding
Čech cohomology in a quite natural manner;

• our space 𝑋 does not have to be compact, we only need that 𝑋 admits partition of
unity subordinate to a cover and paracompactness is enough for it;

• we provide a general framework to investigate another algebro-geometric phe-
nomenon that relies on finding “good” functors between the locale of open subsets
of a space and the quantale of the ideals of a ring that arises from such space.
Conversely, it is also possible to use the exact idea but starting with a ring and
establishing a space that arises from such ring, as the process of taking the spectrum
of a ring.

• Watts says that “it is not easy to see how to remove the restriction to real coefficients,
and we have made no attempt to do so”. In our case, it is clear how to proceed to
change the coefficient, as we see below.

Theorem 4.5.8. The Čech cohomology group of 𝑋 with coefficients in 𝐹 is isomorphic to the
Čech cohomology group of 𝐶(𝑋 ) with coefficients in 𝐹 ◦ 𝜏.

Proof. Observe that

𝐶𝑞(𝜏( ), 𝐹) = ∏
𝑖0<...<𝑖𝑞

𝐹(𝜏(𝑢𝑖0) ∩ ... ∩ 𝜏(𝑢𝑖𝑞 ))

= ∏
𝑖0<...<𝑖𝑞

(𝐹 ◦ 𝜏)(𝑢𝑖0 ⊙ ... ⊙ 𝑢𝑖𝑞 )

= 𝐶𝑞( , 𝐹 ◦ 𝜏)

Then Ȟ
𝑞( , 𝐹 ◦ 𝜏) ≅ Ȟ

𝑞(𝜏( ), 𝐹).

By the same reasoning of the proof of Theorem 4.5.7, Ȟ𝑞(𝐶(𝑋 ), 𝐹 ◦ 𝜏) ≅ Ȟ𝑞(𝑋, 𝐹).

Remark 4.5.9. Note that we are using the unity/top elements 1 and 1′ because usually one
talks about the Čech cohomology of a topological space 𝑋 and 𝑋 is the unity/top element of
((𝑋 ), ⊆).

This theorem gives generality but obscures how to interpret the result, since coefficients
in different sheaves lead to different cohomology theories. De Rham Cohomology measures
to which extent the Stokes Theorem fails; Singular homology measures the number of
holes of 𝑋 and it is related to singular cohomology by the universal coefficient theorem
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for cohomology; now, without a specific sheaf in mind, is more difficult to have a first
guess of what the Čech cohomology groups of a ring are measuring.

Nevertheless, we have a result that generalizes the above phenomenon.

Theorem 4.5.10. Consider a strong geometric morphism (𝑄,⊙, 1) (𝑄′, ⊙′, 1′)
𝑓∗

𝑓 ∗

such

that 𝑓∗ preserves unity and arbitrary joins. Then Ȟ𝑞(1′, 𝐹 ◦ 𝑓 ∗) ≅ Ȟ𝑞(1, 𝐹).

Proof. Consider a covering {𝑢′𝑖 }𝑖∈𝐼 =  ′ in 𝑄′. Then

𝐶𝑞( ′, 𝐹 ◦ 𝑓 ∗) = ∏
𝑖0<...<𝑖𝑞

𝐹 ◦ 𝑓 ∗(𝑢′𝑖0 ⊙
′ ... ⊙′ 𝑢′𝑖𝑞 )

= ∏
𝑖0<...<𝑖𝑞

𝐹(𝑓 ∗(𝑢′𝑖0) ⊙ ... ⊙ 𝑓 ∗(𝑢′𝑖𝑞 ))

= 𝐶𝑞(𝑓 ∗( ′), 𝐹).

Then Ȟ𝑞( ′, 𝐹 ◦ 𝑓 ∗) ≅ Ȟ𝑞(𝑓 ∗( ′), 𝐹).

Observe that 𝑓 ∗(𝑓∗( )) is a refinement of  , by the same argument used in Theorem
4.5.7. Thus, for every covering  of 1 there is a covering  ′ of 1′ such that 𝑓 ∗( ′) ⊆  .
Then, lim−−→

 ∈Ref(1)
Ȟ𝑞( , 𝐹) ≅ lim−−→

 ′∈Ref(1′)
Ȟ𝑞( ′, 𝐹 ◦ 𝑓 ∗), as desired to obtain the result.

Again, the conclusion is that the isomorphism between Čech cohomology group relies

exclusively on the properties between the quantales involved. The pair 𝑄 𝐼𝑑𝑒𝑚(𝑄)
𝑖

(−)−

where 𝑖 is the inclusion and (−)− is the idempotent approximation is another pair of adjoint
functors that satisfies the hypothesis of the above theorem, if 𝑄 is a geometric quantale
(see Propositions 3.1.10 and 3.1.9). Recall that a surjective ring homomorphism 𝑓 ∶ 𝑅 → 𝑆
induces a strong geometric morphism of quantales where 𝑓 ∗(𝐽 ) = 𝑓 (𝐽 ) and 𝑓∗(𝐾) = 𝑓 −1(𝐾)
(see Example3.4.6). Consider the quotient map 𝑞 ∶ 𝑅 → 𝑅/𝐼 defined by 𝑞(𝑟) = 𝑟 + 𝐼 . So, it
remains to prove that 𝑞∗ induced by the pre-image preserves unity and supremum to have
another class of examples to apply the above theorem. Observe that for any ideal 𝐾 of 𝑅/𝐼
we have, for some 𝐽 ideal of 𝑅,

𝑞∗(𝐾) = 𝑞∗(𝑞(𝐽 )) = 𝑞∗({𝑗 + 𝐼 ∶ 𝑗 ∈ 𝐽 }) = ⋃
𝑗∈𝐽

(𝑗 + 𝐼 ) = 𝐽 + 𝐼 .

Then, 𝑞∗(𝑅/𝐼 ) = 𝑞∗(𝑞∗(𝑅)) = 𝐼 + 𝑅 = 𝑅 and

𝑞∗(
𝑛

∑
𝑖=1

𝐾𝑖) = 𝑞∗(
𝑛

∑
𝑖=1

𝑞(𝐽𝑖)) = 𝑞∗(𝑞
𝑛

∑
𝑖=1

(𝐽𝑖)) = 𝐼+
𝑛

∑
𝑖=1

𝐽𝑖 =
𝑛

∑
𝑖=1

(𝐼+𝐽𝑖) =
𝑛

∑
𝑖=1

𝑞∗(𝑞∗(𝐽𝑖)) =
𝑛

∑
𝑖=1

𝑞∗(𝐾𝑖),

as desired.
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Note that if 𝑅 and 𝑆 are Morita equivalent commutative rings, then 𝑅 and 𝑆 are
isomorphic, providing another case of adjoint pair between the ideals of 𝑅 and the ideals
of 𝑆, and thus an isomorphism between the cohomology of 𝑅 and the cohomology of
𝑆. Thus, our cohomology admits a Morita in the trivial case of commutative rings. We
believe a next interesting application is to investigate the relation between the quantales
of (bilateral) ideals of Morita equivalent non-commutative rings. However, we need to
check if our constructions and theorems hold for non-commutative quantales.
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Chapter 5

Conclusions and Future Work

We recognize that the theory of sheaves on Grothendieck prelopologies is in its very
first steps. We were able to make some effective progress for sheaves on (semicartesian)
quantales. We have unsuccessfully tried to construct the sheafification in a perhaps more
concrete approach – as, for instance, establishing stalks for the sheaf on the ideals of a
commutative ring. Nevertheless, the general framework helped us to prove the existence
of the sheafification functor, permitting some of the manipulations regarding base change
and Čech cohomology, showing that it preserves the (closed) monoidal structure at least
for 𝑎 ∶ 𝑃𝑆ℎ(𝑄) → 𝑆ℎ(𝑄), and then leading to interesting conclusions about 𝑆ℎ(𝑄) not
being a topos nor having subobject classifier, in general. Therefore, even though we are
still understanding the behavior of our sheafification, it already provided some interesting
results. Actually, they are the main results of this thesis.

The quantalic case and the notion of Grothendieck pretopologies were our only working
examples. On one side, that was the initial goal of this thesis: create a notion of sheaf
general enough to encompass the well-known sheaves for a Grothendieck pretopology
and our notion of sheaves on quantales. On the other side, there is room for changes in
the definition of Grothendieck prelopologies and we believe that such changes, if any,
should be motivated by examples since we want the theory to be as useful as possible. A
clear next step in looking for monoidal categories that admit a certain natural candidate of
covering but that had to be modified to fit into the axioms of Grothendieck pretolopogies.
This is the case of the category of bornological coarse spaces since the first guess is to
use covering families given by coarsely excisive pairs but a pullback may not preserve
coarsely excisive pairs [BE16, Remark 3.1].

Even regarding sheaves on quantales, there is a long journey to understand the theory
and its applications, including the task of finding more interesting examples of semicarte-
sian sheaves – in this matter, we plan to investigate fuzzy topological spaces and possibly
use our sheaves on quantales to have a theory of sheaves on certain fuzzy topological
spaces in the same vein as the theory of sheaves on topological spaces.

We hope that what we accomplished can open doors for other exciting topics of
research. As so, we conclude this thesis with a sequence of short sections about different
aspects of our work that we want to develop in the future.
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5.1 Noncommutative versions
When we introduced Grothendieck prelopologies 4.1 we mentioned that the reader

could consider just one side of axioms 3 and 4 to reason about noncommutative versions
of coverings, if the category (𝐶,⊗, 1) was not symmetric. We had in mind, for example,
noncommutative 𝑅-algebras and how they relate with Connes’ ideas in noncommutative
topology and possible applications in Hochschild and cyclic (co)homology.

Here, we just want to reinforce that if the tensor product is not symmetric then we may
talk about left and right prelopologies, that is, we may break the following axioms

• If {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 ), then {𝑓𝑖 ⊗ 𝑖𝑑𝑉 ∶ 𝑈𝑖 ⊗ 𝑉 → 𝑈 ⊗ 𝑉 }𝑖∈𝐼 is in 𝐿(𝑈 ⊗ 𝑉 ) and
{𝑖𝑑𝑉 ⊗ 𝑓𝑖 ∶ 𝑉 ⊗ 𝑈𝑖 → 𝑉 ⊗ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑉 ⊗ 𝑈 ), for any 𝑉 object in .

• If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ) and 𝑔 ∶ 𝑉 → 𝑈 is any morphism in , then {𝜙𝑖 ∶ 𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 →

𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)}𝑖∈𝐼 is in 𝐿(𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)) and {𝜙𝑖 ∶ 𝑉 ⊗𝑔 𝑓𝑖 𝑈𝑖 → 𝐸𝑞(𝜋2, 𝑔 ◦ 𝜋1)}𝑖∈𝐼 is in
𝐿(𝐸𝑞(𝜋2, 𝑔 ◦ 𝜋1))..

that appear in the definition of a Grothendieck prelopology (2.3.1) into two. One to
define a right Grothendieck prelopology

• If {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 ), then {𝑓𝑖 ⊗ 𝑖𝑑𝑉 ∶ 𝑈𝑖 ⊗ 𝑉 → 𝑈 ⊗ 𝑉 }𝑖∈𝐼 is in 𝐿(𝑈 ⊗ 𝑉 ), for any
𝑉 object in .

• If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ) and 𝑔 ∶ 𝑉 → 𝑈 is any morphism in , then {𝜙𝑖 ∶ 𝑈𝑖 ⊗𝑓𝑖 𝑔 𝑉 →

𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)}𝑖∈𝐼 is in 𝐿(𝐸𝑞(𝜋1, 𝑔 ◦ 𝜋2)).

and another to define a left Grothendieck prelopology:

• If {𝑓𝑖 ∶ 𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 ), then {𝑖𝑑𝑉 ⊗ 𝑓𝑖 ∶ 𝑉 ⊗ 𝑈𝑖 → 𝑉 ⊗ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑉 ⊗ 𝑈 ), for any
𝑉 object in .

• If {𝑈𝑖
𝑓𝑖−→ 𝑈 }𝑖∈𝐼 is in 𝐿(𝑈 ) and 𝑔 ∶ 𝑉 → 𝑈 is any morphism in , then {𝜙𝑖 ∶ 𝑉 ⊗𝑔 𝑓𝑖 𝑈𝑖 →

𝐸𝑞(𝜋2, 𝑔 ◦ 𝜋1)}𝑖∈𝐼 is in 𝐿(𝐸𝑞(𝜋2, 𝑔 ◦ 𝜋1)).

The idea is that if (𝐶,⊗, 1) is not symmetric then a set of families {𝑈𝑖 → 𝑈 }𝑖∈𝐼 defines a
right Grothendieck prelopology if and only if it defines a left Grothendieck prelopology.
Moreover, note that the definition 4.1 of a sheaf for a Grothendieck prelopology can be
used even if the category is not symmetric, but in practice, we have to be more careful
since the terms 𝐹(𝑈𝑖 ⊗𝑓𝑖 𝑓𝑗 𝑈𝑗) and 𝐹(𝑈𝑗 ⊗𝑓𝑗 𝑓𝑖 𝑈𝑖) may be distinct.

We hope that this kind of strategy may be useful to relate a noncommutative version
of the Čech cohomology we constructed and Cyclic (co)homology, and maybe help to
address some questions in noncommutative algebraic geometry. The first is explained in
the next section. The second we explain here: we constructed a sheaf on the quantale
of ideals of a commutative ring with unity 𝑅 that resemble the structure sheaf usually
defined on the quantale of open subsets of 𝑆𝑝𝑒𝑐(𝑅). Actually, we proved that such sheaf
on the quantale arises from the sheaf on the locale by a change base process. Thus, we
have a way to talk about a structure sheaf (on the quantale) that does not require the use
of 𝑆𝑝𝑒𝑐(𝑅). In noncommutative algebraic geometry, the first problem is to define 𝑆𝑝𝑒𝑐(𝑅)
for a noncommutative ring 𝑅. Following our approach, we do not have to use 𝑆𝑝𝑒𝑐(𝑅).
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However, now we would be working on the noncommutative quantale of bilateral ideals
of 𝑅. Besides the need to check if our theory still works for noncommutative quantales, we
also have to choose a class of rings that can be localized and how this impact the bilateral
ideals of the ring. Of course, this is just the first step, since algebraic geometry is much
more than the structure sheaf. Nevertheless, we want to highlight that it looks interesting
that we can “forget” the spectrum of 𝑅 with no apparent loss of information, and such a
phenomenon deserves to be better explored.

5.2 Sheaves with Algebraic Structure and
Cohomology

We already mentioned that we desire a cohomology theory for the sheaves we are
developing. At the beginning of the Ph.D, I hoped that 𝐴𝑏(𝑆ℎ(𝑄)), would be an abelian
category with enough injectives and that the development of the cohomology theory
would be quite straightforward. This hope was fading and now I believe it is unlikely that
𝐴𝑏(𝑆ℎ(𝑄)) will be an abelian category, as explained at the end of Section 3.5. Even though
it is not clear how to fully formalize a cohomological theory, that is, identify if what we
have is an abelian cohomology or not, we can play with constructions that may have a
central role. For instance, the functor of global sections.

Definition 5.2.1. Let 𝐹 be a sheaf in 𝑆ℎ(𝑄), we define the global sections functor of the
terminal object 1 of 𝑄 by Γ1(𝐹) = 𝐹(1) ≅ 𝐻𝑜𝑚𝑆ℎ(𝑄)(𝟏, 𝐹) where 𝟏 denotes the terminal sheaf.

The above induces a functor Γ𝐴𝑏𝑄 ∶ 𝐴𝑏(𝑆ℎ(𝑄)) → 𝐴𝑏(𝑆𝑒𝑡), analogously defined by
Γ𝐴𝑏1 (𝐹) = 𝐹(1) ≅ 𝐻𝑜𝑚𝑆ℎ𝐴𝑏(𝑄)(0, 𝐹)

Proposition 5.2.2. The global sections functor Γ𝐴𝑏1 is left exact.

Proof. Consider a short exact sequence 0 −→ 𝐹
𝑓
−→ 𝐺

𝑔
−→ 𝐻 −→ 0 in 𝑆ℎ𝐴𝑏(𝑄). We want to

prove that

0 −→ 𝐹(1)
𝑓1−→ 𝐺(1)

𝑔𝑄
−−→ 𝐻 (𝑄)

is exact.

Since 𝐾𝑒𝑟𝑓 = 0 and 𝐾𝑒𝑟(𝑓1) = (𝐾𝑒𝑟𝑓 )(1), we have that 𝐾𝑒𝑟(𝑓1) = 0.

If 𝑠 ∈ 𝐾𝑒𝑟(𝑔1), then 𝑠 is a section of 𝐺(1) = 𝐻𝑜𝑚𝑆ℎ𝐴𝑏(𝑄)(1, 𝐺) such that 𝑔1(𝑠) = 0. That
is, 𝑠 is a sheaf morphism that maps to 𝐺 and satisfies 𝑔 ◦ 𝑠 = 0. Therefore, for every 𝑢 ∈ 𝑄,
we have 𝑔(𝑠|𝑢) = 0. In other words, 𝑠|𝑢 ∈ 𝐾𝑒𝑟𝑔 = 𝐼𝑚𝑓 . Since 𝑓 is a sheaf morphism from 𝐹
to 𝐺, we conclude that 𝑠 ∈ 𝐹(1).

On the other hand, given 𝑠 ∈ 𝐼𝑚(𝑓1), we have 𝑠 = 𝑓 ◦ 𝑟 for some 𝑟 ∈ 𝐹(1). Thus,
𝑠|𝑢 = 𝑓 ◦ 𝑟 |𝑢. Then 𝑔(𝑠|𝑢) = 0 by the exactness of the sequence. Since 𝐺 is a sheaf, it follows
that 𝑠 ∈ 𝐾𝑒𝑟𝑔1.

Of course, Γ𝐴𝑏1 is not exact since it is not exact in the localic case. Then we want to
calculate how far they are from being exact by calculating the cohomology
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Definition 5.2.3. The cohomology groups of the terminal object 1 of 𝑄 with coefficient in 𝐹
are defined by right derived functors of the global sections functor

𝐻 𝑞(1, 𝐹) ≅ 𝑅𝑞Γ1(𝐼 ∙)

where 𝐼 ∙ is an injective resolution of 𝐹 .

Note that

Proposition 5.2.4. Let 𝐹 be an abelian sheaf, then Ȟ
0(1, 𝐹) = Γ1(𝐹)

Proof. By definition, Ȟ
0(1, 𝐹) = 𝐾𝑒𝑟(𝑑0 ∶ 𝐶0(1, 𝐹) → 𝐶1(1, 𝐹)). Consider an element

𝛼 ∈ 𝐶0(𝑈 , 𝐹) such that 𝛼 = {𝛼𝑖 ∈ 𝐹(𝑢𝑖)}𝑖∈𝐼 . Thus, for each pair of indices 𝑖 < 𝑗, we have
(𝑑𝛼)𝑖𝑗 = 𝛼𝑗 − 𝛼𝑖. Then

𝛼 ∈ 𝐾𝑒𝑟(𝑑0) ⟺ 𝛼𝑗 − 𝛼𝑖 = 0 ⟺ 𝛼𝑖↾𝑢𝑖⊙𝑢𝑗 = 𝛼𝑗↾𝑢𝑖⊙𝑢𝑗 ⟺ 𝛼 ∈ 𝐹(𝑢)

where the last implication follows from 𝛼𝑖 ∈ 𝐹(𝑢𝑖) if 𝐹 is a sheaf.

The next step is to check if given an injective resolution 𝐹 → 𝐼 ∙, then Ȟ
𝑞(1, 𝐹) = 𝑅𝑞Γ1(𝐼 ∙),

under mild conditions. We did not adventure that far but we do have further considerations
regarding applications of such ideas in other cohomology theories.

We recall that Čech cohomology of 𝑋 is isomorphic to Singular and de Rham coho-
mology of 𝑋 , under mild conditions over 𝑋 . More generally, sheaf cohomology (over
an appropriate site) provides a framework for other cohomology theories as étale and
crystalline. We expect that the generalization we are proposing will allow us to connect
other (co)homology theories with sheaf cohomology. The first place to look at is cyclic
homology. Cyclic homology was introduced, independently, by B. Tsygan and A. Connes
in the 80’s. In Connes’ approach, cyclic homology is a noncommutative variation of de
Rham (co)homology [Con85]. More precisely, the Hochschild-Kostant-Rosenberg theorem
states that if 𝑘 is a field and 𝐴 is a finitely presented, smooth and commutative 𝑘-algebra,
then there is an isomorphism Ω𝑛

𝐴/𝑘 ≅ 𝐻𝐻𝑛(𝐴) between the differential forms and the
Hochschild homology groups of 𝐴. If 𝑘 contains Q then the cyclic homology of 𝐴 relates
to de Rham cohomology by the following isomorphism:

𝐻𝐶𝑛(𝐴) ≅ Ω𝑛
𝐴/𝑘/𝑑Ω

𝑛−1
𝐴/𝑘 ⊕ 𝐻 𝑛−2

𝐷𝑅 (𝐴) ⊕ 𝐻 𝑛−4
𝐷𝑅 (𝐴) ⊕…

Since it is already known that, in some cases, sheaf cohomology and de Rham coho-
mology are isomorphic, we hope there will be interesting cases where extended sheaf
cohomology and cyclic (co)homology coincide. Summing up, we are looking for a non-
commutative version of the De Rham Theorem, which calls for a noncommutative version
of the theory we are developing.

5.3 Logic
We constructed a category of sheaves on quantales that look like sheaves on locales

but with a fundamental difference, 𝑆ℎ(𝑄) may not be a topos. This suggests that in the
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same way that elementary topos generalize Grothendieck topos, we envision a notion
of elementary loposes that generalize our sheaves under Grothendieck prelopologies. I
hope that this thesis can provide some contribution to the ambitious project of developing
a linear topos, that is, a category that looks like a topos but with a linear internal logic.
Actually, we are not the first to propose a topos-like category with a different internal logic
attached to it: we again cite the work of Francisco Miraglia and Marcelo Coniglio [CM01]
to mention that they not only constructed a category of sheaves on (idempotent and right-
sided) quantales but also developed a calculus of sequents analogous to a noncommutative
linear intuitionistic calculus with equality. Futhermore. U. Höhle has extensive work in a
fuzzy version of topos theory, dedicated to the foundations of fuzzy sets. For instance, in
[Höh91], Höhle introduces the notion of a weak topos, which is monoidal closed instead of
cartesian closed and such that only the extremal (and not all) subobjects can be classified
by characteristic morphisms. We also want our lopos to be monoidal closed and to have
an adapted version of subobject classifier, so lopos and weak topos shall be similar but it is
not clear yet if our categories of sheaves would be a weak topos or not.

Furthermore, Höhle investigates metric spaces bounded by 1 and equipped with non-
expansive maps as the main example of weak topos. Such metric space can be seen
as a quantale-valued set. Recall that the category of sheaves on locales is equivalent
to complete locale-valued sets. Because of such equivalence, a considerable part of the
literature about sheaves on quantales is actually about 𝑄-sets and it is not immediate
to find the correspondent functorial notion of sheaf. The other way around is also true:
we introduced a notion of a sheaf on a quantale but it is not clear for which notion of
𝑄-set we would obtain an equivalence between the respective categories. We believe that
a future formal definition of a lopos should encompass at least sheaves on quantales (more
generally, Grothendieck loposes) and complete 𝑄-sets. Luckily, my academic brothers Caio
Mendes and José Alvim are studying another presentation of 𝑄-sets [AAM23] so that in
the future we can elaborate on the definition of a lopos.

After the above motivation, we have to explain why we believe that linear is the
correspondent internal logic of our sheaves. First, a digression about propositional logic:
in propositional logic, we have propositions, connectives that provide the relationships
between propositions, and the values assigned to each proposition. In classical proposi-
tional logic, besides the negation ¬, the binary connectives are given by the conjuntion
∧, the disjunction ∨, and the implication →. Also, there are only two possible values to
associate to each proposition (true ⊤ or false ⊥) and certain inference rules that says how
to obtain a conclusion with already given premises. On the other hand, a Boolean algebra
is a set together with a unary operation and two binary operations satisfying certain
axioms. We say that classical propositional logic corresponds to Boolean algebras because
we can translate theorems of classical propositional calculus as equations of Boolean
algebras and vice-versa. If we change the inference rules, for example, if we remove the
law of the excluded middle, then we obtain an intuitionistic propositional logic. In this
scenario, we may analogously say that intuitionistic propositional logic corresponds to
Heyting algebras (recall that complete Heyting algebras coincide with locales), which are
generalizations of Boolean algebras since Boolean algebras are Heyting algebras such that
𝑎 ∨ ¬𝑎 = 1 = ⊤ holds, that is, the excluded middle rule holds. When we replace locales
with quantales we add a binary associative operation ⊙ that plays the role of the meet but
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⊙ is neither commutative nor idempotent, and neither has projections. Linear logic is a
weakening of intuitionistic logic where we only have restricted versions of the contraction
and weakening rules available. More precisely, the intuitionist conjunction splits into
two binary operators: ∧, the binary infimum of the lattice, which does not necessarily
distributes over the supreme; and ⊙ that does distribute with arbitrary supreme, but it
does not have to be idempotent, commutative, or admit projection (be semicartesian). The
absence of idempotence implies that 𝑢 does not prove 𝑢 ⊙ 𝑢, which would be the rule of
contraction. The absence of projections implies we are not allowed to use 𝑢 ⊙ 𝑣 proves
𝑢 or 𝑣, which would be the weakening rule. In our case, quantales are semicartesian, so
actually we are working with a linear logic that admits weakening, called affine logic.
In a topos, the poset of subobjects1 of any object is a Heyting algebra and, for a locale 𝐿,
𝑆𝑢𝑏(𝐿(−, 1)) ≅ 𝐿. So when we proved that 𝑆𝑢𝑏(𝑄(−, 1)) ≅ 𝑄, we supported the argument
that the internal logic of our sheaves is related to the logic “interpreted” by quantales.
Summing up, we have a result about the relation between sheaves on 𝑄 and 𝑄 that is
completely analogous to one that holds in the localic case. We recognize this is only a first
guess, and further investigations may point out that a different logic is better situated for
our loposes.

We also can translate the weakening and the contractions in categorical terms: given a
monoidal category, the weakening corresponds to the existence of projections/the category
being semicartesian, while the contraction corresponds to the existence of a diagonal map
(natural transformation) in a way that if the category has both, then the monoidal product
is the cartesian product and the correspondent type theory for such category has both
structural rules. The absence of the diagonal map also has an interpretation in Physics: it
corresponds to the non-cloning theorem, which leads us to the next section.

5.4 Quantum Mechanics
In this section, I will only address aspects of quantum foundations using paradigms

from category theory.

Lawvere created elementary topos interested in the foundations of Physics, but, ap-
parently, topos-theoretic perspectives in quantum mechanics began in the late 90’s with
[AC95] and [IB98]. As far as I know, nowadays, the usual idea is to interpret Quantun
Mechanics phenomena as Classical Mechanics phenomena internally to a certain topos:
consider a noncommutative 𝐶∗-algebra 𝐴 (remind that 𝐶∗-algebras are used to model
algebras of physical observables). Denote by 𝐶(𝐴) the poset of unital commutative 𝐶∗-
subalgebras of 𝐴. In [HLS09], the authors consider a presheaf 𝐴 on 𝐶(𝐴) such that 𝐴 is
a commutative 𝐶∗-algebra in the presheaf (Bohr) topos 𝑆𝑒𝑡𝐶(𝐴). So a noncommutative 𝐶∗-
algebra 𝐴 may become an (internal) commutative 𝐶∗-algebra 𝐴. Interestingly, this makes it
possible to deal with quantum states on 𝐴 in a similar way one deals with classical states,
but internally2 to the Bohr topos. The authors also provide a toposophic interpretation
of the Kochen-Specker theorem [HLS09, Theorem 6] (this approach was also adopted in

1 The subobject classifier and the power sets also form Heyting algebras.
2 This is a relatively usual practice in topos theory. In algebraic geometry, it is also possible to describe

complicated concepts in simpler ways but internally to some topos.
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[IB98], where the Kochen-Specker theorem, developed in 1967 by Simon Kochen and Ernst
Specker, is explained as a theorem that “asserts the impossibility of assigning values to
quantum quantities in a way that preserves functional relations between them”).

On the other hand, in quantum mechanics, we have, for example, the no-cloning
theorem, that, in terms of Physics, talks about the impossibility of creating an independent
and identical copy of an arbitrary unknown quantum state. In [Abr12], Abramsky states
the no-cloning theorem in categorical terms: it corresponds to the absence of a natural
transformation △𝐴 ∶ 𝐴 → 𝐴 ⊗ 𝐴 which is coassociative and cocommutative (the reader
may find the commutative diagrams for coassociative and cocommutative in Section 4.1
in [Abr12]). Since the monoidal structure in a topos is given by the cartesian product
and the cartesian product always allows a natural transformation △𝐴 ∶ 𝐴 → 𝐴 × 𝐴, in
toposes, we do have cloning. I do not claim this leads to a contradiction but yet it seems
that should be a categorical structure that conciliates both points of view, maybe, using a
notion topos in which the non-cartesian monoidal product is more prominent than the
cartesian product.

The above situation makes me intrigued to study categorical interpretations in a lopos,
since we are precisely in a context suitable to the validity of the no-cloning theorem. I
suppose that we do not even need to define the notion of a lopos, but providing examples
focused on quantum phenomenona would be enough. There are two ideas to begin with:
first, find semicartesian quantales that arise from Hilbert spaces or 𝐶∗-algebras and analyze
the category of presheaves on such quantales. Alternatively, or maybe complementary,
study (pre)sheaves on the monoidal category of Hilbert space — but first, we will need to
identify a suitable (weak?) Grothendieck prelopology.

We highlight that in Marni Dee Sheppeard’s thesis [She07], she introduces a version of
linear topos by a more direct comparison with topos, making the category o vector spaces
play the role of the category of sets. Apparently, the physics motivation came first to her.
For us, our motivation came from the theory of sheaves and just recently we realized our
sheaf category may be useful in quantum mechanics.

5.5 Sheafifications and Grothendieck loposes
In this thesis, we constructed a notion of a sheaf for Grothendieck prelopologies and

tried to figure out the properties of the sheafification functor 𝑎 ∶ 𝑃𝑆ℎ() → 𝑆ℎ(, 𝐿), which
is a reflector. We have proved the existence of sheafification by considering sieves (Defini-
tion 4.2.1). This can also be done in the classical case of Grothendieck topologies, where
we have pullbacks instead of pseudo-pullbacks. In such case, the map 𝑆({𝑈𝑖}𝑖∈𝐼 ) → 𝑦(𝑈 ) is
a monomorphism but in the case of prelopologies and pseudo-pullbacks, 𝑆({𝑈𝑖}𝑖∈𝐼 ) → 𝑦(𝑈 )
is not a monomorphism. This may be the reason why our attempts to have a sheafification
process using some analogous version of the plus construction failed.

In an alternative perspective, as we mentioned a few times, we may note that
Grothendieck toposes are precisely those (accessible) reflective subcategories of presheaf
categories for which the reflector is left exact. So, we may be interested in defining
Grothendieck loposes as those accessible reflective subcategories of presheaf categories
for which the reflector preserves the (Day) monoidal structure of 𝑃𝑆ℎ(𝐶). Actually, maybe
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we want the sheafification to preserve something else. We did not fully explore the proofs
in Day’s paper about monoidal localizations [Day73] but one of Day’s results says that
if a class Σ of morphisms in a symmetric monoidal category (, ⊗, 1) has the property
that 𝑓 ∈ Σ implies 𝑖𝑑𝐴 ⊗ 𝑓 ∈ Σ for any object 𝐴 in  then the category of fractions
of [Σ−1] is a monoidal category. Observe that such property is the third axiom of the
definition of Grothendieck prelopologies 4.1, but we do not want to show that [Σ−1]
is monoidal, we want to show that 𝑃𝑆ℎ()[Σ−1] ≃ 𝑆ℎ(, 𝐿). It seems that requiring the
property 𝑈𝑖 → 𝑈 ∈ Σ ⟹ 𝑉 ⊗ 𝑈𝑖 → 𝑉 ⊗ 𝑈 ∈ Σ in  implies that the same holds in the
presheaf category, that is, 𝑦(𝑈𝑖) → 𝑦(𝑈 ) ∈ Σ′ ⟹ 𝑦(𝑉 )⋆ 𝑦(𝑈𝑖) → 𝑦(𝑉 )⋆ 𝑦(𝑈 ) ∈ Σ′, which
leads to the preservation of the monoidal structure. Furthermore, given the importance of
the equalizers in the fourth axiom that defines Grothendieck prelopologies, I believe our
sheafification also preserves equalizers or, at least, pseudo-pullbacks. In the end, we want
also any Grothendieck lopos to be a category (monoidally) equivalent to 𝑆ℎ(, 𝐿) for some
Grothendieck prelopology 𝐿.

The above reasoning leads to sheaf theories where the sheaf categories change accord-
ingly to what properties we want the sheafification to preserve and in each one we would
have a respective proper notion of covering (possibly, some sheaf categories will not look
like sheaves anymore) . The panoramic view is of the form:

𝑃𝑆ℎ()[−1]

𝑃𝑆ℎ() 𝑃𝑆ℎ()[−1
𝑤 ] 𝑃𝑆ℎ()[ −1]

𝑃𝑆ℎ()[−1]

𝑃𝑆ℎ()[−1]

where all the arrows are sheafifications/localizations.  denotes the class for morphism
{𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) ∶ {𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿(𝑈 )}, with 𝐿 a Grothendieck prelopology, 𝑤
denotes the class for morphism {𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) ∶ {𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝐿𝑤(𝑈 )} with 𝐿𝑤 a
weak Grothendieck prelopology,  denotes the class for morphism {𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) ∶
{𝑈𝑖 → 𝑈 }𝑖∈𝐼 ∈ 𝑃(𝑈 )} where 𝑃 would be a covering responsible for providing a reflector that
only preserves products,  denotes the class for morphism {𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) ∶ {𝑈𝑖 →
𝑈 }𝑖∈𝐼 ∈ 𝐸(𝑈 )} where 𝐸 would be a covering responsible to provide a reflector that only
preserves equalizers, and  denotes the class for morphism {𝑖𝑈𝑖 ∶ 𝑆({𝑈𝑖}) → 𝑦(𝑈 ) ∶ {𝑈𝑖 →
𝑈 }𝑖∈𝐼 ∈ 𝐽 (𝑈 )} where 𝐽 would be a covering responsible to provide a reflector that preserves
all finite limits, therefore, it would be a Grothendieck topology. In this way, 𝑃𝑆ℎ()[ −1]
is a Grothendieck topos and maybe, assuming that all reflectors preserve terminal objects,
there is a way to have that 𝑃𝑆ℎ()[−1][−1] is also a Grothendieck topos. The reader may
wonder if 𝑃𝑆ℎ()[−1][−1] could be enough to obtain a Grothendieck topos and I guess
not because 𝑃𝑆ℎ() → 𝑃𝑆ℎ()[−1] is preserving the non-cartesian monoidal structure
while 𝑃𝑆ℎ(𝐶) → 𝑃𝑆ℎ(𝐶)[−1] preserves the cartesian monoidal structure, which is the
one of interest in the classical sheafification. Additionally, probably 𝑃𝑆ℎ()[−1][ −1]
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is an example of a monoidal topos – it is a topos since 𝑃𝑆ℎ()[ −1] is a Grothendieck
topos and it is monoidal because 𝐿𝑤 should be preserving the non-cartesian structure. I
highlight that for us the non-cartesian structure in 𝑃𝑆ℎ() is always given by the Day
convolution and induced by the non-cartesian product in , because we also want the
resulting category to be monoidal closed. Of course, it is not clear if this will happen in
all those sheaf categories, but the Day convolution seems the best candidate to make this
happen. Definitely, there are plenty of calculations to run and check the above statements
to make them rigorous and precise.

Finally, I wonder about the behavior of the subjects in each one of those sheaf categories.
We know that in 𝑃𝑆ℎ()[ −1] we obtain locales, in 𝑃𝑆ℎ(𝑄)[−1] we obtain unital semi-
cartesian quantales (possibly, 𝑃𝑆ℎ()[−1] also provides unital semicartesian quantales),
and in 𝑃𝑆ℎ() we have Heyting algebras. Whatever the answer, I believe that this is
an interesting scenario to have in mind when discussing toposes with distinct internal
logics.
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