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Resumo

Kaue de Mello Nogueira Piza. Teoria Categorial das Probabilidades. Dissertação

(Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,

2023.

Este trabalho tem como objetivo apresentar alguns dos principais conceitos da abordagem categorial à

teoria das probabilidades. Nele são apresentados alguns capítulos com conceitos que são requisitos para

um melhor entendimento dos resultados finais (abordagem da teoria das probabilidades via teoria da

medida, teorias das categorias). As duas abordagens aqui descritas são: Monadas de Giry e Categorias de

Markov. No contexto da primeira abordagem são apresentadas as principais definições, no contexto da

segunda é demontrado um teorema de composição análogo ao já conhecido no contexto clássico de teoria

ergódica.

Palavras-chave: Probabilidade. Teoria das Categorias. Monadas. Categoriais Monoidais.





Abstract

Kaue de Mello Nogueira Piza. Categorical Probability Theory. Thesis (Master’s).

Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2023.

This work aims to present some of the main concepts of the categorical approach to probability theory.

We first lay down some prerequisites definitions and results from classical probability theory (measure

theoretic) and category theory, then we define two main approaches to the subject: One, the first one

historically and most classic, via Giry monads and then moves to the more recent concept of a Markov

category. At the end, we show a recent result that is an analogue to classical decomposition theorems in

ergodic theory.

Keywords: Probability. Category Theory. Monads. Monoidal Categories.
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Introduction

Probability theory is usually developed within the realm of measure theory, heavily
depending on analytical methods and, hence, local properties of the underlying spaces. As
pointed out in Fritz, 2020, this approach of probability (and statistics) can be compared to
programming in machine level code.

The first ideas in a more general framework on which one can develop probability
theory are exposed in Lawvere, 1962, it starts with and axiomatic approach into “systems
of Markov kernels", within this context we can define in a much more general way concepts
from probability theory such as random variables, independence, statistics and so on. This
approach was further developed in Giry, 1982, with the approach of monads on the
category of measurable spaces, it shows that to develop those systems of Markov kernels
we just need a suitable class of measurable spaces and one of probability measures on it,
with those we can define a monad on this category, the Giry monad, and this system of
Markov kernels arises naturally from the Kleisli construction.

The most recent approach to the categorical construction (as to the author’s knowledge)
is in the seminal paper Fritz, 2020, with the notion of a Markov category. A Markov
category is a symmetric monoidal one with additional structure (such as “copying" and
“discarding") that behaves like categories of Markov kernels. The idea of categories that
behaves like those of Markov kernels comes from Lawvere, 1962 and Giry, 1982, they
are axiomatized in a very similar way to their form as presented in this work in Cho and
Jacobs, 2019, where the notions of “copying" and “discarding" are axiomatically introduced
in this context (in Cho and Jacobs, 2019 they are called affine CD categories).

Within this categorical framework we get a few advantages comparing to the measure
theoretic approach: One of them is greater generality, we are dealing with categories that
satisfies some conditions, hence we don’t need to restrain ourselves to probability theory,
the results achieved are valid to every category with the structure as developed, hence
some of the results can be translated into different contexts. Another benefit from this
categorical approach is that once we get a result from a category that satisfies the axioms
of Markov category, this result is automatically valid to any category that models them,
hence, we get to prove only once results that are automatically valid to set-ups ranging
from probability theory on finite sets to completely general Markov kernels between
measurable spaces and also to (some) stochastic processes, since all of them are models do
a Markov category.

Follows an outline of this work:
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• We first start with basic definitions from measure theory and probability theory, fol-
lowing some canonical references such as Taylor, 1973, Varadhan, 2001, Billings-
ley, 1986 and some more focused on our context such as Panangaden, 2009.

• In the second chapter we give and overview of prerequisite concepts from category
theory, the main definitions and results, here the reference is the canonical Lane,
1998 and the more focused on out context Perrone, 2021.

• In the chapter about Giry Monads we give the first categorical approach to the
subject, as in Lawvere, 1962 and Giry, 1982, following Perrone, 2018. We finish
with a result on the Kantorovich monad as detailed in Perrone, 2018.

• In the Markov categories chapter we detail the approach of Markov categories as in
Fritz, 2020.

• We conclude with a Miscellaneous chapter containing two results, one with the
categorical analogue of a theorem on ergodic decomposition due to Moss and
Perrone, 2023 and other with an analogue of the Fischer-Neyman factorization
theorem due to Fritz, 2020.
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Chapter 1

An overview of probability
theory

We start recollecting basic definitions up to the construction of the integral for a
real-valued measure. Then we move to the analysis of real-valued random variables. Some
of the results here (e.g. the Kolmogorov’s 0 − 1 law) will be seen in the general context
of category theory. The idea is to build the intuitive background needed to grasp the
ideas behind the categorical framework, for example, why choosing a monad seems like a
reasonable setting to develop categorical probability theory? Why the Kleisli contruction
on the Giry monad gives us the Markov kernels from the space of measures? And so
on.

At the same time, all the definitions here are not strictly necessary for what will be
developed in the next chapters. One can go on to a very deep understanding of the theory
later developed thinking about “random maps" and “deterministic maps" in a very intuitive
way without any lost, as will be pointed in future chapters.

The outline of the chapter is:

• Recollection of basic concepts of measure theory and integration, the main references
are Panangaden, 2009 and Billingsley, 1986

• Definition of basic concepts of probability theory and random variables, as in
Billingsley, 1986, Taylor, 1973 and Varadhan, 2001.

• Some classical results, as the law of large numbers and the Kolmogorov 0 − 1 law as
in Taylor, 1973.

1.1 Main definitions of Measure Theory

Definition 1.1.1. A measurable space is a pair (Ω,Σ) where Ω is a set and Σ is a family of
subsets of Ω satisfying the following conditions:

1. ∅ ∈ Σ
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2. If 𝐴 ∈ Σ then 𝐴
𝑐
∈ Σ

3. For a countable family {𝐴𝑖}𝑖∈ℕ ⊂ Σ we have ∪𝑖∈ℕ𝐴𝑖 ∈ Σ

The family Σ satisfying this conditions is called a 𝜎-algebra on Ω, its elements are called
measurable sets. If we relax the third condition to ask only for the closure under unions
only for finite families then we have a 𝜎-field. Also, if in the third condition we ask not
for general countable union but for the countable union of pairwise disjoint sets then we
have a 𝜆-system over Ω, also called a Dynkin system over Ω.

Lemma 1.1. For any family {Σ𝛼}𝛼∈Λ of 𝜎-algebras over some set Ω the intersection of this
family is again a 𝜎-algebra.

The above lemma makes well defined the following:

Definition 1.1.2. For a set Ω and a subset Σ ⊂ (Ω) the 𝜎-algebra generated by Σ is the
intersection of all 𝜎-algebras on Ω that contains Σ, it is denoted by 𝜎(Σ).

One important example is the 𝜎-algebra of the borelians. Consider a topological space
(Ω, 𝜏), the 𝜎-algebra generated by all the open sets of (Ω, 𝜏) is called the borelian 𝜎-algebra
of Ω, denoted by (Ω, 𝜏), a set in (Ω, 𝜏) is called a Borel set, or a borelian set. When the
topology is clear from the context we denote the borelians just by (Ω). Whenever we use
a topological or metric space, unless otherwise stated, we are always assuming it endowed
with the Borel 𝜎-algebra.

Proposition 1.2. Consider 𝑓 ∶ Ω → Ω
′ a function between two sets and ΣΩ

′ a 𝜎-algebra on
Ω

′, then the set {𝑓 −1
(𝐴) ∣ 𝐴 ∈ ΣΩ

′} is a 𝜎-algebra of Ω. Which is called the 𝜎-algebra on Ω

induced by 𝑓 .

Lemma 1.3. Consider 𝑓 ∶ Ω → Ω
′ a function between sets and  ⊂ (Ω

′
), then:

{𝑓
−1
(𝐴) ∣ 𝐴 ∈ } = {𝑓

−1
(𝐴) ∣ 𝐴 ∈ 𝜎()}

That is, is a 𝜎-algebra is generated by some set, then the induced 𝜎-algebra is the same as the
set of pre-images of the generating set.

Usually, in the light of the above result (and this will be clearer shortly), we only know
the elements of a 𝜎-algebra that generated it, that is, we have some set of subsets and want
to measure things for them (like volume), but to do measure theory we need to have a
measure space, so we need a 𝜎-algebra, one can take the 𝜎-algebra generated by those
subsets, which is usually what we do, like with the Borel 𝜎-algebra. The problem is that
with that approach we actually don’t know who the elements of the 𝜎-algebra generated
are1 and, depending on the context they can be quite complicated. The following two
results, the monotone class theorem and the Dynkin’s 𝜆 − 𝜋 theorem are quite handy in
those contexts.

The notation 𝐴𝑛 ↑ 𝐴 is used when we have a nested family of sets {𝐴𝑖}𝑖∈ℕ where
𝐴𝑖 ⊂ 𝐴𝑖+1 for all 𝑖 ∈ ℕ and with ∪𝑛∈ℕ𝐴𝑖 = 𝐴, analogously we write 𝐴𝑛 ↓ 𝐴 if 𝐴𝑖 ⊃ 𝐴𝑖+1 for
all 𝑖 ∈ ℕ and ∩𝑛∈𝑁𝐴𝑖 = 𝐴.

1 Remember of the definition of the 𝜎-algebra generated by some set, is highly nonconstructive, is the
intersection of all 𝜎-algebras containing it.
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Definition 1.1.3. A family of sets  is called monotone if it is closed under ↑ and ↓. That
is, for a family {𝐴𝑖}𝑖∈ℕ ⊂  if 𝐴𝑖 ↑ 𝐴 then 𝐴 ∈  and if 𝐴𝑖 ↓ 𝐴 then 𝐴 ∈ .

Like with 𝜎-algebras arbitrarily intersection of monotone classes is again a monotone
class, then we can define the monotone class generated by a set. Two quite straightforward
results are that a 𝜎-algebra is always monotone and that a monotone 𝜎-field is a 𝜎-algebra.
Hence if we only have closedness under finite unions but we also have closedness for
set-sequence convergence (↑ and ↓) we get closedness under countable unions. One direct
way to see this result is that if we take, for a 𝜎-field  the monotone class generated by it,
then we get a 𝜎-algebra, and by definition, this 𝜎-algebra contains the 𝜎-algebra generated
by  , the monotone class theorems says that those are actually equal:

Theorem 1.4 (monotone class theorem). Consider a set Ω and  a 𝜎-field over Ω. The
monotone class generated by  and the 𝜎-algebra generated by  are equal.

Note that, if we have a 𝜎-field, taking the monotone class generated by it is a much
more intuitive process, we are just picking up, alongside the elements of the 𝜎-field, the
union of all nested increasing sequences and the intersection of all nested decreasing
sequences of elements of the 𝜎-field. The theorem says that in this context this very
“constructive" process generates for us the 𝜎-algebra at the same time, hence we have a
way to describe the elements of the 𝜎-algebra generated by the 𝜎-field.

Definition 1.1.4. A 𝜋-system is a family of sets closed under finite intersections.

Definition 1.1.5. A 𝜆-system over a set Ω is is a family of subsets of Ω,  , where:

• Ω ∈ 

• 𝐴 ∈  then 𝐴
𝑐
∈ 

• For a family {𝐴𝑖}𝑖∈ℕ with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ if 𝑖 ≠ 𝑗 for 𝑖, 𝑗 ∈ ℕ, we have that ⋃
𝑖∈ℕ

𝐴𝑖 ∈ 

It is quite straightforward from the definitions to check that something that is a
𝜋-system and a 𝜆-system is a 𝜎-algebra.

Theorem 1.5 (Dynkin 𝜋 −𝜆 theorem). If  is a 𝜋-system and  is a 𝜆-system then  ⊂ 
implies 𝜎() ⊂ .

Again, this is a theorem that makes the generated 𝜎-algebra more well behaved in some
scenarios, if we know how the elements of some  are then we know how the elements of
the generated 𝜎-algebra looks like.

Definition 1.1.6. Consider (Ω,ΣΩ) and (Ω
′
,ΣΩ

′) two measurable spaces, a function 𝑓 ∶

Ω → Ω
′ is called a measurable function if 𝑓 −1

(𝐴) ∈ ΣΩ for all 𝐴 ∈ ΣΩ
′ . That is, if the inverse

image or measurable sets are measurable sets.

Proposition 1.6. Consider (Ω,ΣΩ) a measurable space and (Ω
′
, 𝑑) a metric space. If a family

of measurable functions {𝑓𝑛 ∶ Ω → Ω
′
∣ 𝑛 ∈ ℕ} converges pointwise to a function 𝑓 , then 𝑓 is

measurable.

Definition 1.1.7. A measurable function with finite range is called a simple function.

Theorem 1.7. Consider (Ω,ΣΩ) a measurable space and a non-negative measurable function
𝑓 ∶ Ω → ℝ. Exists a family of simple functions {𝑠𝑛}𝑛∈ℕ, with 𝑠𝑖 ≤ 𝑓 and 𝑠𝑖 ≤ 𝑠𝑖+1 for all 𝑖 ∈ ℕ
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that converges pointwise to 𝑓 .

Definition 1.1.8. Consider (Ω,ΣΩ) a measurable space. A measure 𝜇 on (Ω,ΣΩ) is a
function 𝜇 ∶ ΣΩ → ℝ≥0 where:

• 𝜇(∅) = 0

• For a collection {𝐴𝑖}𝑖∈ℕ ⊂ ΣΩ of pairwise disjoint elements of ΣΩ, we have that

𝜇

(

⋃

𝑖∈ℕ

𝐴𝑖

)

= ∑

𝑖∈ℕ

𝜇(𝐴𝑖)

A triple of a set Ω, a 𝜎-algebra ΣΩ and a measure 𝜇, (Ω,ΣΩ, 𝜇), is called a measure space. A
measure with image in [0, 1] is called a probability measure.

One example that will be very recurrent for us of a measure is the Dirac measure:
Consider a measure space (Ω,ΣΩ, 𝜇), define the Dirac measure for an element 𝑥 ∈ Ω

by:

𝛿𝑥(𝐴) =

{

1 , 𝑥 ∈ 𝐴

0 , 𝑥 ∉ 𝐴

Note that 𝛿𝑥 is a probability measure and also, if we vary 𝑥 and fix 𝐴, 𝛿−(𝐴) is a
measurable function on Ω. Sometimes, to make that two points of view evident we use the
notation 𝛿(𝑥, 𝐴) instead of 𝛿𝑥(𝐴), hence 𝛿 becomes a function 𝛿 ∶ Ω × ΣΩ → [0, 1].

1.2 Integration

Definition 1.2.1. We say that a simple 𝑠 function in a measure space (Ω,ΣΩ, 𝜇) is integrable
if for every 𝑎 in the range of 𝑠 with 𝑎 ≠ 0 we have that 𝜇(𝑠−1(𝑎)) < ∞.

Definition 1.2.2. Consider (Ω,ΣΩ, 𝜇) a measure space and 𝑠 ∶ Ω → ℝ a simple integrable
function, the integral of 𝑠 over Ω with respect to the measure 𝜇 is defined as:

∫
Ω

𝑠𝑑𝜇 = ∑

𝑦∈𝑠(Ω)

𝑦𝜇(𝑠
−1
(𝑦))

Remember that, by definition 𝑠(Ω) is finite, and by the characterization of simple integrable
function this integral as defined above is well defined.

Definition 1.2.3. Consider 𝑓 a non-negative real-valued measurable function of the
measure space (Ω,ΣΩ, 𝜇), we say that 𝑓 is integrable if the set Γ of all non-negative simple
functions 𝑠 ≤ 𝑓 contains only integrable functions and we define its integral by:

∫
Ω

𝑓 𝑑𝜇 = sup

𝑠∈Γ

∫
Ω

𝑠𝑑𝜇

For a function 𝑓 we define 𝑓+ = max(𝑓 , 0) and 𝑓− = max(−𝑓 , 0)
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Definition 1.2.4. Consider 𝑓 a measurable function on (Ω,ΣΩ, 𝜇), we say that 𝑓 is inte-
grable if both 𝑓+ and 𝑓− are and define its integral by:

∫
Ω

𝑓 𝑑𝜇 =
∫
Ω

𝑓+𝑑𝜇 −
∫
Ω

𝑓−𝑑𝜇

Lemma 1.8. Consider 𝑓 a non-negative measurable function in (Ω,ΣΩ, 𝛿𝑥), then

∫
Ω

𝑓 𝑑𝛿𝑥 = 𝑓 (𝑥)

Definition 1.2.5. For an integrable measurable function 𝑓 in a measure space (Ω,ΣΩ, 𝜇)

and a measurable set 𝐴 ∈ ΣΩ, we denote by

∫
𝐴

𝑓 𝑑𝜇

the integral of 𝑓 restricted to the measurable space (𝐴,ΣΩ∩𝐴, 𝜇𝐴), where 𝜇𝐴 is the restriction
of the measure 𝜇 to the subspace (𝐴,ΣΩ ∩ 𝐴).

Theorem 1.9 (Monotone convergence theorem). Consider {𝑓𝑛}𝑛∈ℕ a sequence of measurable
functions in a measurable space (Ω,ΣΩ, 𝜇) and

1. For all 𝑥 ∈ Ω we have that 𝑓𝑖(𝑥) ≤ 𝑓𝑖+1(𝑥), and 0 ≤ 𝑓𝑖(𝑥) ≤ ∞ for all 𝑖 ∈ ℕ.

2. sup
𝑛∈ℕ

𝑓𝑛(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ Ω.

Then:

∫
Ω

𝑓 𝑑𝜇 = sup

𝑛∈ℕ

∫
Ω

𝑓𝑛𝑑𝜇

The Riesz representation theorem states that every bounded linear functional 𝑇 on
the space of compactly supported continuous functions on a space (Ω,ΣΩ, 𝜇) is the same
as integration over Ω with respect to the measure 𝜇, that is, for any measurable 𝑓 , we
have

𝑇 𝑓 =
∫
Ω

𝑓 𝑑𝜇

Considering the Riemann integral we can apply this theorem to say that there is a
measure on ℝ that represents the Riemann integral, that is, exists a measure 𝜇 such that
for any measurable 𝑓 we have:

∫

∞

−∞

𝑓 (𝑥)𝑑𝑥 =
∫
ℝ

𝑓 𝑑𝜇

Where the left-hand side represents the traditional Riemann integral and the right hand
side of the equation the integral as we have just constructed. This measure 𝜇 is called the
Lebesgue measure on ℝ.

For example, the measure that represents the functional that for every measurable
function 𝑓 evaluates it at the point 𝑥 ∈ Ω is the Dirac measure 𝛿𝑥 .
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1.3 Basic concepts of probability theory
Definition 1.3.1. Consider a probability space (Ω,Σ,ℙ) and (Ω

′
,Σ

′
) a measurable space.

A (Ω
′
,Σ

′
)-valued random variable is a measurable function 𝑋 ∶ Ω → Ω

′. When (Ω
′
,Σ

′
) =

(ℝ,(ℝ)) we will say that 𝑋 is just a random variable, omitting the (Ω
′
,Σ

′
). We will

abbreviate “random variable" by r.v.

Whenever the space (Ω,Σ,ℙ) is irrelevant to some property we are proving about a r.v.
𝑋 , we will omit it from the definition. Hence, when the reader see just “a r.v. 𝑋 " declared,
we are assuming a general space (Ω,Σ,ℙ) where this r.v. is defined on.

Remark. Consider 𝑋 a r.v. in the space (Ω,Σ,ℙ) and 𝑓 ∶ ℝ → ℝ a measurable function.
Then 𝑓 𝑋 is again a r.v.

Definition 1.3.2. Consider a probability space (Ω,Σ,ℙ) and 𝑋 a r.v. on it. We define the
probability distribution measure on ℝ associated with 𝑋 the measure 𝜇𝑋 defined as

𝜇𝑋 (𝐴) = ℙ(𝑋
−1
(𝐴)) = ℙ({𝜔 ∈ Ω ∣ 𝑋 (𝜔) ∈ 𝐴}) = ℙ(𝑋 ∈ 𝐴)

Definition 1.3.3. A function 𝐹 ∶ ℝ → [0, 1] with the following properties:

• 𝐹 is monotone.

• 𝐹 is right-continuous2.

• lim𝑥→+∞ 𝐹(𝑥) = 1

• lim𝑥→−∞ 𝐹(𝑥) = 0

Is called a distribution function.

Definition 1.3.4. Consider 𝑋 a random variable, we define the probability distribution
function of 𝑋 , 𝐹𝑋 ∶ ℝ → [0, 1] as

𝐹𝑋 (𝑥) = ℙ(𝑋 ≤ 𝑥) = ℙ(𝑋
−1
(−∞, 𝑥))

Remark. It can be easily proved from the definitions that 𝐹𝑋 is a distribution function for
𝑋 a r.v.

Theorem 1.10. There is a one-to-one correspondence between probability measures 𝜇 defined
on (ℝ,(ℝ)) and distribution functions.

Proof. Consider a measure 𝜇 and define 𝐹𝜇(𝑥) = 𝜇((−∞, 𝑥]) and for a distribution function
𝐹 define 𝜇𝐹 ((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎) for all −∞ ≤ 𝑎 ≤ 𝑏 ≤ ∞. To complete the proof use
Carathéodory Extension Theorem to extend uniquely 𝜇𝐹 to a measure 𝜇𝐹 . Then it suffices
to show that 𝐹𝜇𝐹 = 𝐹 and 𝜇𝐹𝜇

= 𝜇.

Definition 1.3.5. A r.v. on the probability space (Ω,Σ,ℙ) is called a discrete random
variable if there is a countable 𝐵 ⊂ ℝ such that ℙ(𝑋 ∈ 𝐵) = 1.

2 And since it is monotone, it has left limits.
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Definition 1.3.6. A distribution function 𝐹 is is discrete if exists {𝑥𝑗 }𝑗∈ℕ ⊂ ℝ and weights
{𝑝𝑗 }𝑗∈ℕ ⊂ ℝ with ∑

𝑗∈ℕ
𝑝𝑗 = 1 such that 𝐹(𝑥) = ∑

{𝑗 ∣𝑥𝑗≤𝑥}
𝐹(𝑥𝑗)𝑝𝑗

Definition 1.3.7. A distribution function 𝐹 is called absolutely continuous if exists a
non-negative measurable function 𝑓 ∶ ℝ → ℝ+ such that 𝐹(𝑏) − 𝐹(𝑎) = ∫

𝑏

𝑎
𝑓 (𝑡)𝑑𝑡.

Remark. It follows from results of measure theory that if 𝐹 is an absolutely continuous
function then it is differentiable a.e. and 𝑑𝐹 = 𝑓 a.e.

Definition 1.3.8. A distribution function 𝐹 is called singular if 𝐹 is continuous and 𝑑𝐹 = 0

a.e.

Theorem 1.11. Consider 𝐹 a distribution function. 𝐹 can be written as a convex combination
of a discrete, an absolutely continuous and a singular distribution function. That is, there
is 𝑎, 𝑏, 𝑐 ∈ [0, 1] and 𝐹𝑎, 𝐹𝑑 , 𝐹𝑠 a absolutely continuous, discrete and singular distribution
functions, respectively with 𝐹 = 𝑎𝐹𝑎 + 𝑏𝐹𝑑 + 𝑐𝐹𝑑 .

Definition 1.3.9. Consider a probability space (Ω,Σ,ℙ) and 𝑋 a r.v. on this space where
∫
Ω
|𝑋 |𝑑ℙ < ∞, then we define the expectation of 𝑋 , denoted as 𝐸[𝑋 ] by

𝐸[𝑋 ] =
∫
Ω

𝑋𝑑ℙ

And we define its variance, denoted by 𝑉 𝑎𝑟[𝑋 ] as 𝐸[𝑋 2
] − 𝐸[𝑋 ]

2.

Lemma 1.12. Consider a probability space (Ω,Σ,ℙ) and 𝑋 a r.v. on this space where
∫
Ω
|𝑋 |𝑑ℙ < ∞ and 𝑋 ≥ 0. Then

𝐸[𝑋 ] =
∫
ℝ

𝑥𝜇𝑋 (𝑑𝑥)

Lemma 1.13. Consider 𝑋 a r.v. and 𝑓 ∶ ℝ → ℝ a measurable function, and that 𝐸[𝑓 𝑋 ]

exists. Then
𝐸[𝑓 𝑋 ] =

∫
ℝ

𝑓 (𝑥)𝜇𝑋 (𝑑𝑥)

Assuming that the second integral exists.

Proposition 1.14. Consider 𝑋 a r.v. with 𝑋 ≥ 0, then:

∑

𝑛≥1

ℙ(𝑋 ≥ 𝑛) ≤ 𝐸[𝑋 ] ≤ 1 +∑

𝑛≥1

ℙ(𝑋 ≥ 𝑛)

Corollary 1.14.1. Consider 𝑋 where ℙ(𝑋 ∈ ℕ) = 1, then

𝐸[𝑋 ] = ∑

𝑛∈ℕ

ℙ(𝑋 ≥ 𝑛)

Proposition 1.15 (Jensen’s Inequality). Consider 𝜙 ∶ ℝ → ℝ a convex function and 𝑋 an
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integrable r.v. with 𝜙𝑋 integrable, then:

𝜙(𝐸[𝑋 ]) ≤ 𝐸[𝜙𝑋 ]

Proposition 1.16 (Chebyshev’s Inequality). Consider 𝑓 ∶ ℝ+ → ℝ a positive monotone
non-decreasing function and 𝑋 a positive r.v. Then

ℙ(𝑋 ≥ 𝑎) ≤

1

𝑓 (𝑎)

𝐸[𝑓 𝑋 ]

Definition 1.3.10. Consider (Ω,Σ,ℙ) a probability space and 𝐴1,… , 𝐴𝑛 ∈ Σ events. We
say that they are independent if for all {𝑛1,… , 𝑛𝑝} ⊂ {1,… , 𝑛} with 𝑛𝑖 ≠ 𝑛𝑗 for 𝑖 ≠ 𝑗 we have
that:

ℙ

[

𝑝

⋂

𝑖=1

𝐴𝑛𝑖

]

=

𝑝

∏

𝑖=1

ℙ[𝐴𝑛𝑖
]

Definition 1.3.11. For 𝑋1,… , 𝑋𝑛 r.v. we say that they are independent if for every family
{𝐵𝑖 ⊂ (ℝ) ∣ 𝑖 = 1,… , 𝑛} we have

ℙ

[

𝑛

⋂

𝑖=1

{𝑋𝑖 ∈ 𝐵𝑖}

]

=

𝑛

∏

𝑖=1

ℙ[𝑋𝑖 ∈ 𝐵𝑖]

For a non finite set {𝑥𝛼 ∣ 𝛼 ∈ Γ} we say that the r.v. are independent if the are for every
finite subset of Γ.

Proposition 1.17. Consider 𝑋 and 𝑌 two independent r.v. with 𝐸[|𝑋 |] < ∞ and 𝐸[|𝑌 |] < ∞,
then:

𝐸[𝑋𝑌 ] = 𝐸[𝑋 ]𝐸[𝑌 ]

1.4 First results

Definition 1.4.1. For a set of random variables 𝑋1,… , 𝑋𝑛 we say that they are identically
distributed if 𝐹𝑋𝑖

= 𝐹𝑋𝑗
for all 𝑖 and 𝑗 in {1,… , 𝑛}.

Remark. When we have a set of r.v. {𝑋1,… , 𝑋𝑛} we will denote the fact that they are
independent and identically distributed by i.i.d.

Theorem 1.18 (Weak Law of Large Numbers). Consider {𝑋𝑖}𝑖∈ℕ i.i.d. r.v. with 𝐸[𝑋
2

1
] < ∞

and 𝐸[|𝑋 |] < ∞. Let us denote 𝐸[𝑋1] = 𝜇. Then

lim
𝑛→∞

𝐸
[

∑
𝑛

𝑖=1
𝑋𝑖

𝑛

− 𝜇
]
= 0
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1.5 Convergence

Definition 1.5.1. Consider (Ω,Σ,ℙ) a probability space, 𝑋 a r.v. on it and {𝑋𝑖 ∣ 𝑖 ∈ ℕ} a
sequence of r.v. defined on it. We say that 𝑋𝑛 → 𝑋 almost everywhere in ℙ (denoted by
a.e. in ℙ) if exists a set 𝐴 ∈ Σ with ℙ[𝐴] = 1 and 𝑋𝑛(𝜔) → 𝑋 (𝜔) for all 𝜔 ∈ Ω. When the
probability measure is clear from the context we will just say 𝑋𝑛 → 𝑋 a.e. in ℙ by 𝑋𝑛 → 𝑋

a.e.

Proposition 1.19. Consider (Ω,Σ,ℙ) a probability space, 𝑋 a r.v. on it and {𝑋𝑖 ∣ 𝑖 ∈ ℕ} a
sequence of r.v. defined on it, then 𝑋𝑛 → 𝑋 a.e. is equivalent to

lim
𝑛→∞

ℙ

[

⋂

𝑖≥𝑛

{𝜔 ∈ Ω ∣ |𝑋𝑖(𝜔) − 𝑋 (𝜔)| ≤ 𝜖}

]

= 1

for all 𝜖 > 0.

Definition 1.5.2. Consider (Ω,Σ,ℙ) a probability space, 𝑋 a r.v. and {𝑋𝑖 ∣ 𝑖 ∈ ℕ} a sequence

of r.v. defined on it. We say that 𝑋𝑛 converges to 𝑋 in probability, denoted by 𝑋𝑛

ℙ

−→ 𝑋 if
ℙ[|𝑋𝑛 − 𝑋 | > 𝜖] → 0 for every 𝜖 > 0.

Lemma 1.20. If 𝑋𝑛 → 𝑋 a.e. then 𝑋𝑛

ℙ

−→ 𝑋 .

Lemma 1.21. If 𝑋𝑛

ℙ

−→ 𝑋 then exists a subsequence 𝑋𝑛𝑘
→ 𝑋 a.e.

Definition 1.5.3. For a given 𝑝 ∈ ℝ>0 we say that 𝑋𝑛

𝐿
𝑝

−→ 𝑋 if

lim
𝑛→∞

𝐸[|𝑋𝑛 − 𝑋 |
𝑝
] → 0

Lemma 1.22. 𝐿𝑝 convergence for some 𝑝 ∈ ℝ>0 implies probability convergence.

Theorem 1.23. Suppose 𝑋𝑛

ℙ

−→ 𝑋 and exists 𝑝 ∈ ℝ>0 and r.v. 𝑌 with 𝐸[𝑌
𝑝
] < ∞ and 𝑥𝑛 ≤ 𝑌 ,

then 𝑋𝑛

𝐿
𝑝

−→ 𝑋 .

Theorem 1.24 (Borel-Cantelli). Consider (Ω,Σ,ℙ) a probability space and {𝐸𝑛}𝑛∈ℕ ⊂ Σ,
then:

∑

𝑛∈ℕ

ℙ[𝐸𝑛] < ∞ ⇒ ℙ
[
lim sup

𝑛∈ℕ

𝐸𝑛

]
= 0

Remark. A point 𝜔 ∈ Ω is in lim sup
𝑛∈ℕ

𝐸𝑛 if and only if exists a sequence {𝑛𝑗 }𝑗∈ℕ, strictly
increasing, such that 𝜔 ∈ 𝐸𝑛𝑗

for every 𝑗 ∈ ℕ. On other terms, a point is in the 𝑙𝑖𝑚𝑠𝑢𝑝 if
given any event 𝐸𝑛 we can always find another one 𝐸𝑚 with 𝑚 > 𝑛 with 𝜔 ∈ 𝐸𝑚, so, the
point 𝜔 never “stops to appear", or appear infinitely often. This justify a frequent notation,
in the context of probability theory, for the 𝑙𝑖𝑚𝑠𝑢𝑝 of a sequence of events 𝐸𝑛 as 𝐸𝑛 i.o.
(infinitely often).
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Corollary 1.24.1. Consider a sequence {𝑋𝑛}𝑛∈ℕ of r.v. i.i.d. where 𝐸[𝑋 4

1
] < ∞, then

𝑛

∑

𝑖=1

𝑋𝑖

𝑛

→ 𝐸[𝑋1] a.e.

Theorem 1.25. Consider (Ω,Σ,ℙ) a probability space and {𝐸𝑛}𝑛∈ℕ ⊂ Σ independent events,
then:

∑

𝑛∈ℕ

ℙ[𝐸𝑛] = ∞ ⇒ ℙ
[
lim sup

𝑛∈ℕ

𝐸𝑛

]
= 1

Corollary 1.25.1. Consider (Ω,Σ,ℙ) a probability space and {𝑋𝑛}𝑛∈ℕ r.v. i.i.d., then:

𝐸[|𝑋1|] = ∞ ⇒ ℙ
[
lim sup

𝑛→∞

(|𝑋𝑛| ≥ 𝑛)
]
= 1

and, for any 𝑐 ∈ ℝ

𝐸[|𝑋1|] = ∞ ⇒ ℙ [{𝜔 ∣ (𝑋1 +⋯ + 𝑋𝑛)/𝑛 → 𝑐}] = 0

We now focus on a new type of convergence, convergence in distribution. To start we
need to define weak measure convergence.

Definition 1.5.4. Consider ℙ, {ℙ𝑛}𝑛∈ℕ measures on (ℝ,(ℝ)). We say that ℙ𝑛 → ℙ weakly,
denoted by ℙ𝑛

𝑤

−→ ℙ if for all 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 we have ℙ(𝑎, 𝑏) = 0 and

ℙ𝑛[(𝑎, 𝑏]] → ℙ[(𝑎, 𝑏]]

Lemma 1.26. Consider 𝐹 , {𝐹𝑛}𝑛∈ℕ distribution functions and 𝜇𝐹 , {𝜇𝐹𝑛}𝑛∈ℕ its associated mea-
sures, then 𝜇𝐹𝑛

𝑤

−→ 𝜇 if, and only if, 𝐹𝑛(𝑥) → 𝐹(𝑥) for all 𝑥 ∈ ℝ continuity points of 𝐹 .

Definition 1.5.5. Consider 𝐹 , {𝐹𝑛}𝑛∈ℕ distribution functions and 𝜇𝐹 , {𝜇𝐹𝑛}𝑛∈ℕ its associated

measures, then we say that 𝐹𝑛 → 𝐹 in distribution, denoted by 𝐹𝑛

𝑑

−→ 𝐹 if 𝜇𝑛
𝑤

−→ 𝜇 or,
equivalently, if 𝐹𝑛(𝑥) → 𝐹(𝑥) for all 𝑥 ∈ ℝ continuity points of 𝐹 .

Definition 1.5.6. Consider {𝑋𝑛}𝑛∈ℕ and𝑋 r.v., we say that𝑋𝑛 converges to𝑋 in distribution,

denoted by 𝑋𝑛

𝑑

−→ 𝑋 if 𝐹𝑋𝑛

𝑑

−→ 𝐹𝑋 .

Remark. Note that, unlike the other convergences we have defined so far, the convergence

𝑋𝑛

𝑑

−→ 𝑋 is defined in terms of their distribution functions, which are real functions, so the
r.v. {𝑋𝑛}𝑛∈ℕ and 𝑋 can be all defined in different probability spaces and we can still talk
about their convergence.

Theorem 1.27 (Helly-Bray). Consider {ℙ𝑛}𝑛∈ℕ a family of probability measures in ℝ. Then
ℙ𝑛

𝑤

−→ ℙ is and only if for every continuous bounded real function 𝑓 we have:

∫
𝑓 𝑑ℙ𝑛 → ∫

𝑓 𝑑ℙ
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in other notation:
𝐸[𝑓 𝑋𝑛] → 𝐸[𝑓 𝑋 ]

Lemma 1.28. For random variables, probability convergence implies distribution conver-
gence.

1.6 Characteristic Functions
Definition 1.6.1. Consider (Ω,Σ,ℙ) a probability space and 𝑋 a r.v. on it. Then we define
its characteristic function 𝜙𝑋 ∶ ℝ → ℂ as:

𝜙𝑋 (𝑡) = 𝐸[𝑒
𝑖𝑡𝑋
] =

∫
Ω

𝑒
𝑖𝑡𝑋
𝑑ℙ

Lemma 1.29. Some properties of the characteristic functions:

• 𝜙𝑋 (0) = 1

• |𝜙𝑋 (𝑡)| ≤ 1

• 𝜙𝑋 is positive defined3

• 𝜙𝑋 (−𝑡) = 𝜙𝑋 (𝑡)

• 𝜙𝑋 is uniformly continuous.

Definition 1.6.2. Consider 𝜇 a probability measure on (ℝ,(ℝ)), then we can define the
characteristic function associated with 𝜇 by:

𝜙𝜇(𝑡) = ∫
𝑒
𝑖𝑡𝑥
𝜇(𝑑𝑥)

We saw that probability measures in (ℝ,ℝ) are in one to one correspondence with dis-
tribution functions, now we state that the same occurs with characteristic functions:

Theorem 1.30. Consider 𝜇, 𝜈 two probabilities measures in (ℝ,(ℝ)), then 𝜇 = 𝜈 if, and
only if, 𝜙𝜇 = 𝜙𝜈.

Theorem 1.31. Exists a constant 𝑘 ∈ ℝ>0 such that for all 𝑎 > 0 and 𝜇 probability measure
in (ℝ,), we have4

𝜇
([

−

1

𝑎

,

1

𝑎]

𝑐

)
≤

𝑘

𝑎
∫

𝑎

0

(1 − Re(𝜙𝜇(𝑡)))𝑑𝑡

Theorem 1.32 (Lévy Continuity Theorem). For a given sequence of random variables 𝑋𝑛,
if 𝜙𝑋𝑛

(𝑡) → 𝜙(𝑡) for all 𝑡 ∈ ℝ and some function 𝜙 which is continuous at 𝑡 = 0, then 𝑋𝑛

converges in distribution to some random variable 𝑋 with 𝜙𝑋 = 𝜙.

3 Remember that for a complex valued real function 𝑓 ∶ ℝ → ℂ to be positive defined means that for all
𝑛 ∈ ℕ, 𝑧 ∈ ℂ

𝑛 and 𝑡 ∈ ℝ
𝑛 we have that ∑𝑛

𝑖,𝑗=1
𝑧𝑖𝑓 (𝑡𝑖 − 𝑡𝑗 )𝑧𝑗 ≥ 0.

4 Where Re is the real part of a complex number.
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Now a proposition that helps to find the functional form of the characteristic func-
tion.

Proposition 1.33. Consider 𝑋 a random variable with 𝐸[|𝑋 |
𝑘
] ≤ ∞ for some 𝑘 ≥ 0, then 𝜙𝐾

admits an expansion of order 𝑘 around zero, meaning:

𝜙𝑋 (𝑡) =

𝑘

∑

𝑗=0

(𝑖𝑡)
𝑗

𝑗 !

𝐸[𝑋
𝑗
] +

𝑡
𝑘

𝑘!

𝑟𝑘(𝑡)

with

• |𝑟𝑘 | ≤ 4𝐸[|𝑋 |
𝑘
]

• lim𝑡→0 𝑟𝑘(𝑡) = 0

Now an important result that follows from the Levy Continuity Theorem

Proposition 1.34. Let {𝑋𝑖} be a family of i.i.d r.v. where 𝐸[𝑋𝑖] = 𝜇, then define 𝑌𝑖 = 𝑋𝑖 − 𝜇,
we assume that 𝐸[|𝑋𝑖|

2
] < ∞ and 𝜎

2
= 𝑉 𝑎𝑟[𝑌𝑖], then

∑
𝑛

𝑖=1
𝑌𝑖

√

𝑛

𝑑

−→ 𝑁 (0, 𝜎
2
)

Theorem 1.35. Consider 𝑋𝑖 i.i.d. r.v., where 𝜇 = 𝐸[|𝑋𝑖|] < ∞, then:

∑
𝑛

𝑗=1

𝑛

ℙ

−→ 𝜇

1.7 Series of random variables

Theorem 1.36. Consider {𝑋𝑖}𝑖∈ℕ a series of random variables, we define 𝑆𝑛 = ∑
𝑛

𝑖=1
𝑋𝑖, then

𝑆𝑛 is again a random variable and we can define its associated measure 𝜇𝑆𝑛
, we have the

following results:

• If exists some probability measure 𝜇 with 𝜇𝑆𝑛

𝑤

−→ 𝜇, so 𝐹𝑆𝑛

𝑑

−→ 𝐹𝜇, then exists a random

variable 𝑆 with 𝑆𝑛

ℙ

−→ 𝑆, and 𝜇𝑆 = 𝜇.

• If 𝑆𝑛
ℙ

−→ 𝑆 then 𝑆𝑛 → 𝑆 a.e.

So, in order to prove that a series of random variable converges almost everywhere it is
enough to prove that the sequence of measures associated with the partial sums converges
weakly.

Theorem 1.37 (Kolmogorov 1-Series Theorem). Consider {𝑋𝑖}𝑛∈ℕ a sequence of independent
r.v. where 𝐸[𝑋𝑖] = 0 and 𝐸[𝑋

2

𝑖
] < ∞ for all 𝑖 ∈ ℕ, then 𝑆𝑛 converges a.e.

Theorem 1.38 (Kolmogorov 2-Series Theorem). Consider {𝑋𝑖}𝑛∈ℕ a sequence of independent
r.v. where 𝐸[𝑋𝑖] = 𝑎𝑖, with 𝑎𝑖 ∈ ℝ and 𝐸[𝑋

2

𝑖
] < ∞ for all 𝑖 ∈ ℕ, then if ∑

𝑖∈ℕ
𝑎𝑖 converges and

∑
𝑖∈ℕ

𝑉 𝑎𝑟[𝑋𝑖] converges we have that 𝑆𝑛 converges a.e.
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Theorem 1.39 (Kolmogorov 3-Series Theorem). Consider {𝑋𝑖}𝑛∈ℕ a sequence of independent
r.v. Consider a 𝑐 ∈ ℝ>0 and 𝑌𝑖 = 𝑋𝑖 if |𝑋𝑖| ≤ 𝑐 and 0 otherwise. If:

• ∑
𝑖∈ℕ

ℙ[𝑋𝑖 ≠ 𝑌𝑖] ≤ ∞

• The sequence 𝑆𝑌
𝑛
= ∑

𝑖∈𝑛
𝐸[𝑌𝑖] converges.

• ∑
𝑖∈ℕ

𝑉 𝑎𝑟[𝑌𝑖] ≤ ∞

Then 𝑆𝑛 converges a.e.

1.8 Law of Large Numbers
Theorem 1.40 (The Strong Law of Large Numbers). Consider {𝑋𝑖}𝑖∈ℕ a sequence of i.i.d. r.v.
with 𝐸[|𝑥𝑖|] < ∞ and 𝐸[𝑋1] = 𝜇, then:

∑
𝑛

𝑖=1
𝑋𝑖

𝑛

− 𝜇 → 0 a.e.

Definition 1.8.1.

Consider (Ω,Σ,ℙ) a probability space. For a random variable 𝑋 on it we call the 𝜎-
algebra generated by it the smallest one that makes 𝑋 a measurable function, that denoted
by 𝜎(𝑋 ), for a sequence of independent random variables {𝑋𝑖}𝑖∈ℕ we define the tail 𝜎-
algebra generated by it, denoted by Σ𝑇 ({𝑋𝑖}𝑖∈ℕ), the intersection of all 𝜎(𝑋𝑘, 𝑋𝑘+1,…) for
𝑘 ∈ ℕ, that is:

Σ𝑇 ({𝑋𝑖}𝑖∈ℕ) = ⋂

𝑘∈ℕ

𝜎 ({𝜎(𝑋𝑘, 𝑋𝑘+1,…) ∣ 𝑘 ∈ ℕ})

Theorem 1.41 (Kolmogorov 0-1 Law). Consider {𝑋𝑖}𝑖∈ℕ a family of random variables, then
an event 𝐴 ∈ Σ𝑇 ({𝑋𝑖}𝑖∈ℕ) if, and only if, ℙ[𝐴] = 0 or ℙ[𝐴] = 1.

Theorem 1.42 (The Second Strong Law of Large Numbers). Consider 𝜙 ∶ ℝ → ℝ+ a
function with the following properties:

• 𝜙 is an even function.

• For 𝑥 > 0 we have that 𝜙(𝑥)

𝑥
is an increasing function and 𝜙(𝑥)

𝑥
2

is a decreasing function.

And {𝑋𝑖}𝑖∈ℕ a family of random variables with 𝐸[𝑋𝑖] = 0 and {𝑎𝑛}𝑛∈ℕ a increasing divergent
sequence of real numbers. Then if ∑

𝑖∈ℕ

1

𝜙(𝑎𝑖)
𝐸[𝜙(𝑋𝑖)] converges we have that ∑

𝑖∈ℕ

𝑋𝑖

𝑎𝑖

converges
a.e. and ∑

𝑛

𝑖=1

𝑋𝑖

𝑛
converges to 0 a.e.
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Chapter 2

Category Theory

Here we will develop the basic concepts of category theory, we start with the definition
of categories and functors and then move on to representable functors, limits and colimits
and adjoints. The idea is to give to the reader not familiarized with the subject a theoretical
minimum, we will always move within the theory in parallel with examples from different
fields (geometry, algebra, etc.). The notion that will be really relevant for the remaining
of the text is that of an adjoint, so if the reader is familiarized with the concept and its
characterization in terms of a unit and a counit this chapter can be skipped.

Follows an outline of the chapter:

• We first define categories and functors, as in Lane, 1998

• We define the notion of representability and the Yoneda Lemma, then move on to
the concepts of limits and colimits, as in Perrone, 2021

• We finish with the notion of adjunction, following Lane, 1998 and Borceux, 1994.

2.1 Categories and functors

Definition 2.1.1. A category 𝐶 consists of two collections, one of objects, denoted by
Ob(𝐶) and one of morphisms Mor(𝐶) with the following properties:

• Each morphism has assigned two objects, the source and target (or domain and
codomain), if a morphism 𝑓 has source 𝑎 and target 𝑏 this will be denoted by
𝑑 ∶ 𝑎 → 𝑏.

• Each object 𝑎 ∈ Ob(𝐶) has a distinguished morphism 𝑖𝑑𝑎 ∶ 𝑎 → 𝑎 called the identity
morphism.

• For each pair of morphism 𝑓 ∶ 𝑎 → 𝑏 and 𝑔 ∶ 𝑏 → 𝑐 exists a morphism 𝑓 𝑔 ∶ 𝑎 → 𝑐,
called the composition

This structure must satisfy:
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• For each morphism 𝑓 ∶ 𝑎 → 𝑏 we have:

𝑓 𝑖𝑑𝑎 = 𝑖𝑑𝑏𝑓 = 𝑓

• For 𝑓 ∶ 𝑎 → 𝑏, 𝑔 ∶ 𝑏 → 𝑐 and ℎ ∶ 𝑐 → 𝑑 we have

ℎ(𝑔𝑓 ) = (ℎ𝑔)𝑓

That is, the composition is associative.

Morphisms are also called arrows, we will use this terms interchangeably. We denote the
collection of morphisms between one object 𝑎 and other 𝑏 in a category 𝐶 by hom𝐶(𝑎, 𝑏).

Some common examples of category are:

• Set where objects are sets and moprhism set-functions.

• Top where objects are topological spaces and morphisms continuous functions.

• Vect where objects are vector spaces and morphisms linear transformations.

Definition 2.1.2. Consider a category 𝐶 and two objects 𝑎, 𝑏 ∈ Ob(𝐶), we say that 𝑎 and
𝑏 are isomorphic, denoted by 𝑎 ≅ 𝑏 if exists morphisms 𝑓 ∶ 𝑎 → 𝑏 and 𝑔 ∶ 𝑏 → 𝑎 with
𝑓 𝑔 = 𝑖𝑑𝑏 and 𝑔𝑓 = 𝑖𝑑𝑎. Is for a given 𝑓 exists 𝑔 as above we say that 𝑓 is invertible or that
𝑓 is an isomoprhism.

Definition 2.1.3. A grupoid is a category where every morphism is invertible.

Definition 2.1.4. Given a category 𝐶 the opposite category, denoted by 𝐶
𝑜𝑝 is the one

where the objects are the same and a morphism 𝑓
𝑜𝑝

∶ 𝑎 → 𝑏 in 𝐶
𝑜𝑝 is a morphism 𝑓 ∶ 𝑏 → 𝑎

in 𝐶.

Definition 2.1.5. A morphism 𝑓 ∶ 𝑎 → 𝑏 in a category 𝐶 is called a monomorphism if for
every object 𝑐 ∈ Ob(𝐶) and arrows 𝑔1, 𝑔2 ∶ 𝑐 → 𝑎 we have that if 𝑓 𝑔1 = 𝑓 𝑔2 then 𝑔1 = 𝑔2.

Definition 2.1.6. A morphism 𝑓 ∶ 𝑎 → 𝑏 in a category 𝐶 is called an epimorphism if for
every object 𝑐 ∈ Ob(𝐶) and arrows 𝑔1, 𝑔2 ∶ 𝑏 → 𝑐 we have that if 𝑔1𝑓 = 𝑔2𝑓 then 𝑔1 = 𝑔2.

Definition 2.1.7. Consider 𝐶 and 𝐷 two categories, a functor 𝐹 ∶ 𝐶 → 𝐷 consists of:

• For each object 𝑎 ∈ Ob(𝐶) and object 𝐹𝑎 ∈ Ob(𝐷).

• For each morphism 𝑓 ∈ hom𝐶(𝑎, 𝑏) a morphism 𝐹𝑓 ∈ hom𝐷(𝐹𝑎, 𝐹𝑏).

Such that:

• For any 𝑎 ∈ Ob(𝐶), 𝐹𝑖𝑑𝑎 ≅ 𝑖𝑑𝐹𝑎.

• For every pair of composable morphisms 𝑓 ∶ 𝑎 → 𝑏 and 𝑔 ∶ 𝑏 → 𝑐 in 𝐶, 𝐹(𝑔𝑓 ) =
𝐹𝑔𝐹𝑓 in 𝐷.

Definition 2.1.8. A functor 𝐹 ∶ 𝐶
𝑜𝑝

→ 𝐷 is also called a contravariant functor 𝐹 ∶ 𝐶 → 𝐷.

Definition 2.1.9. A presehaf on a category 𝐶 is a functor 𝐹 ∶ 𝐶
𝑜𝑝

→ Set.
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For example, for the category Set, the hom functor hom ∶ 𝐴 ↦ homSet(𝐴,ℝ) is a
presheaf.

Definition 2.1.10. Consider 𝐶 and 𝐷 categories, 𝐹 and 𝐺 functors 𝐹 , 𝐺 ∶ 𝐶 → 𝐷, a natural
transformation 𝛼 between 𝐹 and 𝐺, denoted by 𝛼 ∶ 𝐹 → 𝐺 consists of:

• For each object 𝑎 ∈ Ob(𝐶), a morphism 𝛼𝑎 ∶ 𝐹𝑎 → 𝐺𝑎, called the component of 𝛼 at
𝑎.

• for each morphism 𝑓 ∈ hom𝐶(𝑎, 𝑏), the following diagram commutes:

𝐹𝑎 𝐹𝑏

𝐺𝑎 𝐺𝑏

𝐹𝑓

𝛼𝑎 𝛼𝑏

𝐺𝑓

Definition 2.1.11. Consider 𝐶 a category, a subcategory 𝑆 of 𝐶 consist of:

• A sub collection of objects of 𝐶, that is, Ob(𝑆) ⊂ Ob(𝐶).

• For each pair of composable morphisms 𝑓 ∶ 𝑎 → 𝑏 and 𝑔 ∶ 𝑏 → 𝑐 in 𝐶 with
𝑓 , 𝑔 ∈ Mor(𝑆), then 𝑔𝑓 ∈ Mor(𝑓 ).

Definition 2.1.12. A subcategory 𝑆 of a category 𝐶 is called wide if Ob(𝑆) = Ob(𝐶).

Some common examples of wide subcategories are:

• The category of sets and injective functions is a wide subcategory Set.

• The category of metric spaces and Lipschitz functions is a wide subcategory of the
category os metric spaces and continuous functions.

Definition 2.1.13. A subcategory 𝑆 of a category 𝐶 is called full if given any two objects
𝑎, 𝑏 ∈ Ob(𝑆), hom𝑆(𝑎, 𝑏) = hom𝐶(𝑎, 𝑏).

Some common examples:

• The category of abelian groups is a full subcategory of the category of groups.

• The category of finite dimensional vector spaces is a full subcategory of the category
of vector spaces. The category of compact Hausdorff spaces is a full subcategory of
the category of topological spaces.

Definition 2.1.14. Consider a functor between categories 𝐹 ∶ 𝐶 → 𝐷, we say that 𝐹 is:

• Faithful if for every pair of morphisms 𝑓 , 𝑔 ∈ Mor(𝐶), if 𝐹𝑓 = 𝐹𝑔 then 𝑓 = 𝑔 .

• Full if for every 𝑔 ∈ hom𝐷(𝐹𝑎, 𝐹𝑏) exists an arrow 𝑓 𝑖𝑛 hom𝐶(𝑎, 𝑏) with 𝐹𝑓 = 𝑔 .

• Essentially surjective if for every object 𝑏 ∈ Ob(𝐷) exists an object 𝑎 ∈ Ob(𝐶) with
𝐹𝑎 = 𝑏.

• Fully faithful if it is full and faithful.
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Definition 2.1.15. Consider 𝐶 and 𝐷 categories, we say that thwey are equivalent if
existys functors 𝐹 ∶ 𝐶 → 𝐷, 𝐺 ∶ 𝐷 → 𝐶 and natural isomorphisms 𝜂 ∶ 𝐺𝐹 → 𝑖𝑑𝐶 and
𝜇 ∶ 𝐹𝐺 → 𝑖𝑑𝐷.

Definition 2.1.16. A functor 𝐹 ∶ 𝐶 → 𝐷 defines an equivalence of categories if, and only
if, thes fully faithful and essentially surjective.

2.2 The Yoneda lemma
Definition 2.2.1. Consider a category 𝐶, we say that a functor 𝐹 ∶ 𝐶 → Set is repre-
sentable if it is naturally isomorphic to the functor hom𝐶(𝑐,−) for some object 𝑐 ∈ Ob(𝐶).
We call 𝑐 the representing object.

Theorem 2.1 (Yoneda embedding). Consider 𝐶 a category, and 𝑏, 𝑐 ∈ Ob(𝐶). There is a
natura bijection

hom𝐶(𝑐, 𝑑) ≅ homPSh(𝐶)(hom𝑐(−, 𝑐), hom𝑐(−, 𝑑))

Lemma 2.2 (Yoneda lemma). Consider 𝐶 a category, 𝑐 ∈ Ob(𝐶) and 𝐹 ∶ 𝐶
𝑜𝑝

→ Set a
presheaf in 𝐶, consider the map

homPSh(𝐶)(hom𝐶(−, 𝑐), 𝐹) → 𝐹𝑐

defined as
𝛼 ∈ homPSh(𝐶)(hom𝐶(−, 𝑐), 𝐹) ↦ 𝛼𝑥(𝑖𝑑𝑐) ∈ 𝐹𝑐

This is a bijection and it is natural both in 𝑐 and in 𝐹 .

2.3 Limits and Colimits

Definition 2.3.1. Consider 𝐶 a category and 𝐽 a small category1 and consider 𝑥 and object
of 𝐶. The constans diagram at 𝑥 indexed by 𝐽 is the functor 𝐹𝑋 ∶ 𝐽 → 𝐶 where:

• 𝐹𝑋 𝑖 = 𝑥 for all 𝑖 ∈ Ob(𝐽 ).

• 𝐹𝑥𝑓 = 𝑖𝑑𝑥 for all 𝑓 ∈ Mor(𝐽 ).

Definition 2.3.2. Consider 𝐶 a category and 𝐽 a small category, 𝑥 and object of 𝐶 and
𝐹 ∶ 𝐽 → 𝐶 a functor. A cone over 𝐹 with tip 𝑥 is a natural transformation from the constant
diagram at 𝑥 indexed by 𝐽 to the functor 𝐹 . A cone under 𝐹 , or a cocone, with bottom 𝑥 , is
a natural transformation from the functor 𝐹 to the constant diagram at 𝑥 .

So, in a more descriptive way, a cone over 𝐹 is, for every 𝑗 ∈ Ob(𝐽 ) a morphism 𝛼𝑗 ∶

𝑥 → 𝐹𝑗 such that for every morphism 𝑚 ∶ 𝑗 → 𝑖 the following triangle commutes:

𝑥

𝐹𝑗 𝐹 𝑖

𝛼𝑗 𝛼𝑖

𝐹𝑚

1 One in which the objects as well as the morphisms forms a set.
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Or, in a more case, consider the following diagram:

𝐹𝑖

𝐹𝑗 𝐹𝑘

𝐹 𝑙

𝐹𝜙𝑖𝑘𝐹𝜙𝑖𝑗

𝐹𝜙𝑗 𝑙 𝐹𝜙𝑘𝑙

Then a cone over 𝐹 with tip 𝑥 can be seen as the following diagram:

𝑥

𝐹𝑖

𝐹𝑗 𝐹𝑘

𝐹 𝑙

𝛼𝑖
𝛼𝑗

𝛼𝑙

𝛼𝑘

𝐹𝜙𝑖𝑘𝐹𝜙𝑖𝑗

𝐹𝜙𝑗 𝑙 𝐹𝜙𝑘𝑙

So, the intuition is that a cone with tip 𝑥 over a diagram is an object that “sees" all the
diagram. And a cocone, analogously, is one seen by the diagram, (all the dashed arrows
reversed).

Definition 2.3.3. Consider 𝐽 and 𝐶 as in the above definition, and 𝐹 ∶ 𝐽 → 𝐶 a diagram,
we define the presheaf 𝐶𝑜𝑛𝑒(−, 𝐹) ∶ 𝐶

𝑜𝑝
→ Set as:

• For an object 𝑥 ∈ Ob(𝐶), 𝐶𝑜𝑛𝑒(𝑥, 𝐹) is the set of cones over 𝐹 with tip 𝑥 .

• For a morphism 𝑓 ∶ 𝑥 → 𝑦 we get a map 𝐶𝑜𝑛𝑒(𝑦, 𝐹) → 𝐶𝑜𝑛𝑒(𝑥, 𝐹) with the
compositions 𝛼𝑖𝑓 as described in the diagram below (using the example above):
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𝑥

𝑦

𝐹𝑖

𝐹𝑗 𝐹𝑘

𝐹 𝑙

𝑓

𝛼𝑖
𝛼𝑗

𝛼𝑙

𝛼𝑘

𝐹𝜙𝑖𝑘𝐹𝜙𝑖𝑗

𝐹𝜙𝑗 𝑙 𝐹𝜙𝑘𝑙

We also define the functor 𝐶𝑜𝑛𝑒(𝐹 ,−) ∶ 𝐶 → Set by:

• For an object of 𝐶, 𝑥 , 𝐶𝑜𝑛𝑒(𝐹 , 𝑥) is the set of cocones with tip 𝑥 .

• For a morphism 𝑓 ∶ 𝑥 → 𝑦, we get the morphism 𝐶𝑜𝑛𝑒(𝐹 , 𝑥) → 𝐶𝑜𝑛𝑒(𝐹 , 𝑦) analo-
gously with the one above, composing the arrows.

Definition 2.3.4. Consider 𝐹 ∶ 𝐽 → 𝐶 a diagram as in the above definition, a limit of 𝐹 , if
it exists, is an object lim 𝐹 ∈ Ob(𝐶) representing the presheaf 𝐶𝑜𝑛𝑒(−, 𝐹). A colimit of 𝐹 , if
it exists, is an object colim𝐹 ∈ Ob(𝐶) representing the functor 𝐶𝑜𝑛𝑒(𝐹 ,−).

So, breaking into pieces the definition, the object lim 𝐹 is equipped, by definition of
representation, with a natural isomorphism

hom𝐶(−, lim 𝐹) → 𝐶𝑜𝑛𝑒(−, 𝐹)

by the Yoneda lemma, the natural elements (or fibers) of this transformation are specified
by universal elements of

𝐶𝑜𝑛𝑒(lim 𝐹 , 𝐹)

That is, given a diagram

𝐹𝑖

𝐹𝑗

𝐹𝑘

𝑎𝑖𝑗

𝑎𝑗𝑘

Its limit is an object lim 𝐹 and arrows 𝜙, such that the following diagram com-
mutes:
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𝐹𝑖

lim 𝐹 𝐹𝑗

𝐹𝑘

𝑎𝑖𝑗

𝜙𝑗

𝜙𝑖

𝜙𝑙
𝑎𝑗𝑘

And for every object 𝑥 ∈ Ob(𝐶) with arrows 𝜃− such that the following diagram
commutes:

𝐹𝑖

𝑥 𝐹𝑗

𝐹𝑘

𝑎𝑖𝑗

𝜃𝑗

𝜃𝑖

𝜃𝑙
𝑎𝑗𝑘

Exists a unique morphism 𝑢 ∶ 𝑥 → lim 𝐹 such that the following diagram com-
mutes:

𝐹𝑖

𝑥 lim 𝐹 𝐹𝑗

𝐹𝑘

𝑎𝑖𝑗

𝑢

𝜃𝑖

𝜃𝑘

𝜃𝑗

𝜙𝑗

𝜙𝑖

𝜙𝑙

𝑎𝑗𝑘

So, if we use the analogy that a cone over a diagram with tip 𝑥 represents the fact
that 𝑥 “sees" the objects and morphisms in the diagram, the limit would be the closest
one to see it, every other cone over it with another tip will see the diagram “trough" its
limit.

The notion of a colimit has an analogous interpretation, but now it is “seen" by the
diagram ans it sees every objects that is seen by the diagram.

Definition 2.3.5. A category is called complete if it has all limits, that is, every diagram
in the category has a limit. A category is called cocomplete if it has all colimits.

A lot of very important categorical concepts can be defined in terms of limits and
colimits, such as the product, we will define some of these concepts but for each one we
will also break down the definition to give a more constructive one.

Definition 2.3.6. The limit of a discrete diagram (one with only the identity arrows) is
called the product of the diagram. For a discrete diagram with objects {𝑎𝑖}𝑖∈ℕ ⊂ Ob(𝐶),
for some category 𝐶, the product is usually denoted by ∏

𝑖∈ℕ
𝑎𝑖. The colimit is called the

coproduct and denoted by ∐
𝑖∈ℕ

𝑎𝑖.

Consider the discrete diagram with only two objects
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𝑎 𝑏

in the category Set. By definition, the limit will be a set 𝑎×𝑏with functions 𝜋𝑎 ∶ 𝑎×𝑏 → 𝑎

and 𝜋𝑏 ∶ 𝑎 × 𝑏 → 𝑏:

𝑎 × 𝑏

𝑎 𝑏

𝜋𝑏𝜋𝑎

Such that for every set 𝑐 and morphisms 𝑓𝑎 ∶ 𝑐 → 𝑎, 𝑓𝑏 ∶ 𝑐 → 𝑏 exists a unique 𝑢 ∶ 𝑐 → 𝑎×𝑏

such that the following diagram commutes:

𝑐

𝑎 × 𝑏

𝑎 𝑏

𝑢
𝑓𝑏𝑓𝑎

𝜋𝑏𝜋𝑎

The 𝑎 × 𝑏 is the usual cartesian product, 𝜋𝑎 is the projection in the first coordinate and
𝜋𝑏 in the second, the 𝑢 is the function defined as 𝑢(𝑥) = (𝑓𝑎(𝑥), 𝑓𝑏(𝑥)), hence 𝜋𝑎𝑢 = 𝑓𝑎 and
𝜋𝑏𝑢 = 𝑓𝑏.

Definition 2.3.7. Consider a category 𝐶 and two morphisms 𝑓 , 𝑔 ∈ hom𝐶(𝑎, 𝑏). The limit
of the following diagram:

𝑎 𝑏

𝑓

𝑔

Is called the equalizer of the arrows 𝑓 and 𝑔 and the colimit the coequalizer.

From the definition, the limit would be and object 𝑒 and morphisms 𝑝, 𝑞 ∶ 𝑒 → 𝑎 such
that the following diagramms commutes:

𝑒

𝑎 𝑏

𝑝 𝑞

𝑓

𝑒

𝑎 𝑏

𝑝 𝑞

𝑔

Which amounts to 𝑞 = 𝑓 𝑝 and 𝑞 = 𝑔𝑝, hence 𝑝𝑓 = 𝑝𝑔 . So we can omit the arrow
𝑞, and find ourselves with the usual definition of equalizer: An object 𝑒 and a morphism
𝑝 ∶ 𝑒 → 𝑎 such that 𝑓 𝑝 = 𝑔𝑝 (it “equalizes" the arrows), and for every object 𝑐 and arrow
ℎ ∶ 𝑐 → 𝑎 with 𝑓 ℎ = 𝑔ℎ exists a unique 𝑢 ∶ 𝑐 → 𝑒 such that 𝑢𝑝 = ℎ.

Definition 2.3.8. Consider three objects 𝑎, 𝑏, 𝑐 ∈ Ob(𝐶) of a category 𝐶, and morphisms
𝑓 ∈ hom𝐶(𝑎, 𝑐) and 𝑔 ∈ hom𝐶(𝑏, 𝑐), like the diagram below:
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𝑎

𝑏 𝑐

𝑓

𝑔

The limit of this diagram is called the pullback, or fibered product. The object lim is usually
denoted by 𝑎 ×𝑐 𝑏, the maps giving the universal cone are denoted by 𝑓

∗
𝑔 ∈ hom𝐶(𝑎 ×𝑐 𝑏, 𝑎)

and 𝑔
∗
𝑓 ∈ hom𝐶(𝑎 ×𝑐 𝑏, 𝑏), as in the diagram below:

𝑎 ×𝑐 𝑏 𝑎

𝑏 𝑐

𝑓
∗
𝑔

𝑔
∗
𝑓 𝑓

𝑔

For example, if we are in the category of sets and the maps 𝑓 and 𝑔 are inclusions
(both 𝑎 and 𝑏 are subsets of 𝑐), then the pullback is the intersection.

Definition 2.3.9. Consider three objects 𝑎, 𝑏, 𝑐 ∈ Ob(𝐶) of a category 𝐶, and morphisms
𝑓 ∈ hom𝐶(𝑐, 𝑎) and 𝑔 ∈ hom𝐶(𝑐, 𝑏), like the diagram below:

𝑎

𝑏 𝑐
𝑔

𝑓

The colimit of this diagram is called the pushout. The object colim is usually denoted
by 𝑎 ⊔𝑐 𝑏, the maps giving the universal cone are denoted by 𝑓∗𝑔 ∈ hom𝐶(𝑎, 𝑎 ⊔𝑐 𝑏) and
𝑔∗𝑓 ∈ hom𝐶(𝑏, 𝑎 ⊔𝑐 𝑏), as in the diagram below:

𝑎 ⊔𝑐 𝑏 𝑎

𝑏 𝑐

𝑓∗𝑔

𝑔∗𝑓

𝑔

𝑓

Definition 2.3.10. The limit of the empty diagram, if it exists, is called the terminal object
of a category. The colimit of the empty diagram, if it exists, is called the initial object.

Definition 2.3.11. A functor that preserves limits is called continuous. A functor that
preserves colimits is called cocontinuous.

Theorem 2.3. Representable functors are continuous.
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2.4 Adjunctions

Definition 2.4.1. Consider two categories 𝐶 and 𝐷 and functors 𝐹 ∶ 𝐶 → 𝐷 and 𝐺 ∶ 𝐷 →

𝐶, an adjunction between 𝐹 and 𝐺 is a bijection

hom𝐷(𝐹𝑐, 𝑑) ≅ hom𝐶(𝑐, 𝐺𝑑)

natural for each 𝑐 ∈ Ob(𝐶) and 𝑑 ∈ Ob(𝐷). We say that 𝐹 is the left-adjoint and 𝐺 is
the right-adjoint, this relation is represented by 𝐹 ⊣ 𝐺. Two morphisms related by this
bijection are called transposed to each other. We will use the symbols ♯ and 𝑓 𝑙𝑎𝑡 to denote
the transpose. That is, for a morphism 𝑓 ∈ hom𝐷(𝐹𝑐, 𝑑) its image under the bijection is
denoted by 𝑓

♭
∈ hom𝐶(𝑐, 𝐺𝑑), and for a map 𝑔 ∈ hom𝐶(𝑐, 𝐺𝑑), its image under the bijection

is denoted by 𝑔
♯
∈ hom𝐷(𝐹𝑐, 𝑑), as the image below pictures:

hom𝐷(𝐹𝑐, 𝑑) hom𝐶(𝑐, 𝐺𝑑)

♭

♯

Now for an alternative definition of adjunction:

Theorem 2.4. Consider two categories 𝐶 and 𝐷 and functors 𝐹 ∶ 𝐶 → 𝐷 and 𝐺 ∶ 𝐷 → 𝐶.
Suppose we have a pair of natural transformations 𝜂 ∶ 𝑖𝑑𝐶 → 𝐺𝐹 and 𝜖 ∶ 𝐹𝐺 → 𝑖𝑑𝐷 satisfying
the following (known as the triangle inequalities)

𝐹 𝐹𝐺𝐹

𝐹

𝐹𝜂

𝑖𝑑𝐹

𝜖𝐹

𝐺 𝐺𝐹𝐺

𝐺

𝜂𝐺

𝑖𝑑𝐺

𝐺𝜖

Then 𝐹 ⊣ 𝐺. The transformations 𝜂 and 𝜖 are called the unit and the counit, respectively, of
the adjunction 𝐹 ⊣ 𝐺.

With the above theorem we get an adjunction from the unit and counit transformations.
But from a given adjunction we can construct 𝜂 and 𝜖. Consider 𝐹 ⊣ 𝐺 as in the definition
above. Now, for a given 𝑐 ∈ Ob(𝐶) we have a natural bijection hom𝐷(𝐹𝑐, 𝑑) ≅ hom𝐶(𝑐, 𝐺𝑑),
which is the same as to say that we have an isomorphism of functors:

hom𝐷(𝐹𝑐,−) ≅ hom𝐶(𝑐, 𝐺−) ∶ 𝐷 → Set

So, for any 𝑐 ∈ Ob(𝐶), the functor hom𝐶(𝑐, 𝐺−) is representable, and represented by the
object 𝐹𝑐. By the Yoneda lemma, that means that this isomorphism of functors is specified
uniquely by an element of hom𝐶(𝑐, 𝐺𝐹𝑐), and this morphisms has to be the image of 𝑖𝑑𝐹𝑐 by
the bijection, that is (𝑖𝑑𝐹𝑐)♭, this is the unit, for a given 𝑐 ∈ Ob(𝐶), 𝜂𝑐 = 𝑖𝑑

♭

𝐹𝑐
. Analogously,

for a given object 𝑑 ∈ Ob(𝐷), we can define (𝑖𝑑𝐺𝑑)
♯, an that would be our counit. Hence,

we can either construct the adjunction/define it by means of an unit and a counit of derive
them from the adjunction itself.

Theorem 2.5. Right-adjoint functors are continuous and left-adjoint functors are cocontinu-
ous.
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2.5 Monads

Definition 2.5.1. Consider a category 𝐶, a monad on 𝐶 consists of of a triple (𝑇 , 𝜂, 𝜇):

• 𝑇 is an endofunctor 𝑇 ∶ 𝐶 → 𝐶

• 𝜂 is a natural transofrmation 𝜂 ∶ id𝐶 → 𝑇

• 𝜇 is a natural transformation 𝜇 ∶ 𝑇
2
→ 𝑇

Such that all the following diagrams commutes

𝑇
3

𝑇
2

𝑇
2

𝑇

𝑇𝜇

𝜇𝑇 𝜇

𝜇

𝑇 𝑇
2

𝑇

𝑇

𝜂𝑇

𝑖𝑑

𝜇

𝑇 𝜂

𝑖𝑑

We call 𝜂 the unit and 𝜇 the multiplication of the monad.

There are two intuitive ways to look at monads, one is seeing a monad over a category
as a space of generalized elements, or the closure, and the other as the space where we
can evaluate formal expressions, we will look into this interpretations in the following
chapter.

2.6 Monoidal categories

Definition 2.6.1. A monoidal category is a triple (𝐶,⊗, 𝐼 ) where 𝐶 is a category, ⊗ ∶

𝐶 × 𝐶 → 𝐶 is a bifunctor, a distinguished object 𝐼 called the unit of the monoidal category
and natural isomorphism 𝛼, 𝜆, 𝜌 described as:

• 𝛼 ∶ (− ⊗ −) ⊗ − → − ⊗ (− ⊗ −), called associator, where for each 𝑐, 𝑐
′
, 𝑐

′′
∈ Ob(𝐶)

we have a isomorphism:

𝛼𝑐,𝑐′,𝑐′′ ∶ (𝑐 ⊗ 𝑐
′
) ⊗ 𝑐

′′
→ 𝑐 ⊗ (𝑐

′
⊗ 𝑐

′′
)

• 𝜆 ∶ (𝐼 ⊗ −) → −, called left unitor, where for each 𝑐 we have an isomorphism:

𝜆𝑐 ∶ 𝐼 ⊗ 𝑐 → 𝑐

• 𝜌 ∶ (− ⊗ 𝐼 ) → −, called right unitor where, again, we get the isomorphism for each
object:

𝜌𝑐 ∶ 𝑐 ⊗ 𝐼 → 𝑐

And the natural isomorphisms 𝛼, 𝜆, 𝜌 are subjected to coherence conditions: For objects
𝑎, 𝑏, 𝑐, 𝑑 ∈ Ob(𝐶) the following diagrams commutes
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𝑎 ⊗ (𝑏 ⊗ (𝑐 ⊗ 𝑑)) (𝑎 ⊗ 𝑏) ⊗ (𝑐 ⊗ 𝑑) ((𝑎 ⊗ 𝑏) ⊗ 𝑐)

𝑎 ⊗ ((𝑏 ⊗ 𝑐) ⊗ 𝑑) (𝑎 ⊗ (𝑏 ⊗ 𝑐)) ⊗ 𝑑

𝑖𝑑𝑎⊗𝛼𝑏,𝑐,𝑑

𝛼𝑎,𝑏,𝑐⊗𝑑 𝛼𝑎⊗𝑏,𝑐,𝑑

𝛼𝑎,𝑏,𝑐⊗𝑖𝑑𝑑

𝛼𝑎,𝑏⊗𝑐,𝑑

𝑎 ⊗ (𝐼 ⊗ 𝑏) (𝑎 ⊗ 𝐼 ) ⊗ 𝑏

𝑎 ⊗ 𝑏

𝛼𝑎,𝐼 ,𝑏

𝑖𝑑𝑎⊗𝜆𝑏 𝜌𝑎⊗𝑖𝑑𝑏

A monoidal category is called strict if the isomorphisms 𝛼, 𝜆, 𝜌 are identities, in this case
the coherence conditions are trivial.

Definition 2.6.2. A braided monoidal category is a monoidal category (𝐶,⊗, 𝐼 ) with a
natural isomorphism swap ∶ (− ⊗ −) → (− ⊗ −), where swap

𝑎,𝑏
∶ 𝑎 ⊗ 𝑏 → 𝑏 ⊗ 𝑎. This

isomorphism is called the braiding or the swap isomorphism, such that the following
diagrams commutes for all objects in 𝐶:

𝑎 ⊗ (𝑏 ⊗ 𝑐)

(𝑎 ⊗ 𝑏) ⊗ 𝑐 (𝑏 ⊗ 𝑐) ⊗ 𝑎

(𝑏 ⊗ 𝑎) ⊗ 𝑐 𝑏 ⊗ (𝑐 ⊗ 𝑎)

𝑏 ⊗ (𝑎 ⊗ 𝑐)

swap
𝑎,𝑏⊗𝑐𝛼𝑎,𝑏,𝑐

swap
𝑎,𝑏
⊗𝑖𝑑𝑐 𝛼𝑏,𝑐,𝑎

𝛼𝑏,𝑎,𝑐 𝑖𝑑𝑏⊗swap
𝑎,𝑐

and

(𝑎 ⊗ 𝑏) ⊗ 𝑐

𝑎 ⊗ (𝑏 ⊗ 𝑐) 𝑐 ⊗ (𝑎 ⊗ 𝑏)

𝑎 ⊗ (𝑐 ⊗ 𝑏) (𝑐 ⊗ 𝑎) ⊗ 𝑏

(𝑎 ⊗ 𝑐) ⊗ 𝑏

swap
𝑎⊗𝑏,𝑐

𝛼
−1

𝑎,𝑏,𝑐

𝑖𝑑𝑎⊗swap
𝑏,𝑐

𝛼
−1

𝑐,𝑎,𝑏

𝛼
−1

𝑎,𝑐,𝑏
swap

𝑎,𝑐
⊗𝑖𝑑𝑏

Those are called the hexagon identities.

Braided monoidal categories are the ones with a notion of commutativity, but not in
the sence we are used to, it just says to us that we have to have a way to swap elements
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in the tensors product and not that this squares to the identity, as we would expect in
a notion of commutativity, this notion is better translated by the notion os a symmetic
monoidal category, as defined below

Definition 2.6.3. A symmetric monoidal category is a braided monoidal category for
which the swap map satisfies the additional condition:

swap
𝑎,𝑏

swap
𝑏,𝑎

≅ 𝑖𝑑𝑏⊗𝑎

Definition 2.6.4. A semicartesian category is a monoidal one (𝐶,⊗, 𝐼 ) where the unit 𝐼 is
a terminal object.

Now, as we have seen monads are a sructure upon a category, we need to find a way
to make this monad structure compatible with the monoidal structure in the cases where
we have an underlying category with this structure, that is what the next definitions are
for.

Definition 2.6.5. Consider (𝐶,⊗𝐶 , 𝐼𝐶) and (𝐷,⊗𝐷, 𝐼𝐷) two monoidal categories. A functor
𝑇 ∶ 𝐶 → 𝐷 is called a lax monoidal functor (or just monoidal functor, in our context), if
we have natural transformations 𝑇𝑎,𝑏 ∶ 𝑇 𝑎 ⊗𝐷 𝑇 𝑏 → 𝑇 (𝑎 ⊗𝐶 𝑏) and 𝑇0 ∶ 𝐼𝐷 → 𝑇 𝐼𝐶 such that
the following diagrams commutes:

(𝑇 𝑎 ⊗𝐷 𝑇 𝑏) ⊗𝐷 𝑇 𝑐 𝑇 𝑎 ⊗𝐷 (𝑇 𝑏 ⊗𝐷 𝑇 𝑐)

𝑇 (𝑎 ⊗𝐶 𝑏) ⊗𝐷 𝑇 𝑐 𝑇 𝑎 ⊗𝐷 𝑇 (𝑏 ⊗𝐶 𝑐)

𝑇 ((𝑎 ⊗𝐶 𝑏) ⊗𝐶 𝑐) 𝑇 (𝑎 ⊗𝐶 (𝑏 ⊗𝐶 𝑐))

𝛼𝐷

𝑇𝑎,𝑏⊗𝐷𝑖𝑑𝑇 𝑐 𝑖𝑑𝑇 𝑎⊗𝐷𝑇𝑏,𝑐

𝑇𝑎⊗
𝐶
𝑏,𝑐 𝑇𝑎,𝑏⊗

𝐶
𝑐

𝑇𝛼𝐶

𝑇 𝑎 ⊗𝐷 𝐼𝐷 𝑇 𝑎 ⊗𝐷 𝑇 𝐼𝑐

𝑇 𝑎 𝑇 (𝑎 ⊗𝐶 𝐼𝑐)

𝑖𝑑𝑇 𝑎⊗𝐷𝑇0

𝜌𝐷 𝑇𝑎,𝐼𝑐

𝑇𝜌𝐶

and
𝐼𝐷 ⊗𝐷 𝑇 𝑎 𝑇 𝐼𝐶 ⊗𝐷 𝑇 𝑎

𝑇 𝑎 𝑇 (𝐼𝐶 ⊗𝐶 𝑎)

𝑇0⊗𝐷𝑖𝑑𝑇 𝑎

𝜆𝐷
𝑇𝐼𝑐 ,𝑎

𝑇𝜆𝐶

Where the 𝜌𝑖, 𝜆𝑖 and 𝛼𝑖 are the right unitor, left unitor and associator, respectively, for
each monoid with 𝑖 ∈ {𝐶, 𝐷}. Sometimes, when the notation may cause confusion, a lax
monoidal functor may be denoted by a pair (𝑇 ,Φ), in those cases, Φ is denoting the natural
transformation 𝑇𝑎,𝑏 that we used in our definition. To keep the notation lighter we used
the 𝑇𝑎,𝑏 convention and 𝑇0, but we will use sometime the pair notatio, distinguishing the
natural transofrmation, in those cases it is also common to denote 𝑇0 by just Φ, without
any parameters. We will denote it by Φ0.

Definition 2.6.6. Consider (𝐶,⊗𝐶 , 𝐼𝐶) and (𝐷,⊗𝐷, 𝐼𝐷) monoidal categories and
(𝑇 ,Φ

𝑇
), (𝐹 ,Φ

𝐹
) ∶ (𝐶,⊗𝐶 , 𝐼𝐶) → (𝐷,⊗𝐷, 𝐼𝐷) lax monoidal functors. We say that a natural

transformation 𝜃 ∶ (𝑇 ,Φ
𝑇
) → (𝐹 ,Φ

𝐹
) is a monoidal natural transformation if the following

diagrams commutes
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𝑇 𝑎 ⊗𝐷 𝑇 𝑏 𝐹𝑎 ⊗𝐷 𝐹𝑏

𝑇 (𝑎 ⊗𝐶 𝑏) 𝐹(𝑎 ⊗𝐶 𝑏)

𝜃𝑎⊗𝐷𝜃𝑏

Φ
𝑇

𝑎,𝑏
Φ
𝐹

𝑎,𝑏

𝜃𝑎⊗
𝐶
𝑏

and
𝐼𝐷

𝑇 𝐼𝑐 𝐹𝐼𝐶

Φ
𝐹

0
Φ
𝑇

0

𝜃𝐼
𝐶

Definition 2.6.7. Consider a monoidal category (𝐶,⊗, 𝐼 ) and a monad on it (𝑇 , 𝜂, 𝜇). We say
that 𝑇 is a monoidal monad if 𝑇 is a lax monoidal endofunctor and 𝜂, 𝜇 are monoidal natural
transformations. Following the above notations, a monoidal monad will be sometimes
denoted by (𝑇 , 𝜂, 𝜇,Φ

𝑇
,Φ

𝑇

0
).
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Chapter 3

Giry Monads

In this chapter we develop one of the most classical approaches of categorical proba-
bility, the one by means of a Giry monad, [Giry, 1982, Lawvere, 1962]. The fundamental
idea is to begin with the category of measurable spaces, and find a convenient notion to
connect a measurable space to the space of probability measures over it, demanding a few
basic things, indispensable to the core ideas of probability theory, this connection must
take place in the category of measurable spaces, after all, that is where we know how to
do things in the first place, we mus have a way to evaluate our measures (the expected
value), we must be able to get the notion of joint distribution and marginals. It turns out
that the first two requirements are well modeled by the notion of a monad, the last two
when we endow it with a monoidal structure.

Once we get the basic model, we can start to relax our premises, for example, we know
that for a monad we have associated a Kleisli category, what this category would be in this
context? And we see that from the category of measurable spaces and the monad we are
gonna build upon it we can via the Kleisli construction get to the category of measurable
spaces with Markov Kernels, and so on.

Follows a short outline of the chapter:

• The first two sections contains the main definitions to follow along, the categories
Meas and Stoch and the notion of a monad. The main references are Lane, 1998
and Voevodsky, 2004.

• Then we go to explain the Kleisli construction and also how to see monads as a
model to “generalized" elements of the underlying category. The main references
are Perrone, 2018, Lane, 1998 and Marmolejo and Wood, 2010.

• We introduce the notion of a Giry monad. The references are Giry, 1982, Lawvere,
1962 and Perrone, 2018.

• A short categorical detour to show that we can view monads as adjunctions and
vice-versa and with a description of monoidal categories. The principal references
are Lane, 1998 and Fritz and Perrone, 2018.

• Two final sections with a further discussion in the Giry monad construction and
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also one overview of the construction of the Kantorovich Monad, a Giry Monad over
the category of complete metric spaces, the main reference for this part is Perrone,
2018.

3.1 The categories Meas and Stoch
We start with the category Meas of measurable spaces (Ω,ΣΩ) with measurable func-

tions as the morphisms. The category Stoch has again as objects measurable spaces (Ω,ΣΩ),
but now a morphism (Ω,ΣΩ) → (Ω

′
,ΣΩ

′) is given by a map

𝑓 ∶ ΣΩ
′ × Ω → [0, 1]

we denote 𝑓 (𝑆, 𝑐) by 𝑓 (𝑆 ∣ 𝑐) and the morphisms 𝑓 have the following properties:

• 𝑓 (− ∣ 𝑐) ∶ ΣΩ
′ → [0, 1] is a probability measure in (Ω

′
,ΣΩ

′) for every 𝑐 ∈ Ω

• 𝑓 (𝑆 ∣ −) ∶ Ω → [0, 1] is measurable for every 𝑆 ⊂ ΣΩ
′ .

The composition law with another 𝑔 ∶ ΣΩ
′′ × Ω

′
→ [0, 1] is given by

𝑔𝑓 (𝑆 ∣ 𝑐) =
∫
ℎ∈Ω

′

𝑔(𝑆 ∣ ℎ)𝑓 (𝑑ℎ ∣ 𝑐)

known as the Chapman-Kolmogorov formula. In order to see that this new composite
actually is a morphism in the category, that is, satisfy the two conditions of the morphisms
we note:

• The 𝜎-additivity in 𝑆 follows from the same property in 𝑔 and the dominated con-
vergence theorem.

• The measurability in 𝑐 for a fixed 𝑆, first assume that 𝑔 is simple, then follows from
the measurability assumption on 𝑓 , the it follows for any 𝑔 by the definition of the
Lebesgue integral.

The identity morphisms are the indicator functions on the first parameter, that is 𝑖𝑑(𝑆 ∣

𝑐) = 1 if 𝑐 ∈ 𝑆 and 0 otherwise.

To verify that Stoch is a category and see some of its properties, the reader may consult
Panangaden, 2009, chapter 5, he actually constructs a more general category SRel, where
𝑓 (− ∣ 𝑐) is a subprobability but the results are naturally applied to Stoch as we defined
here (more in line with Voevodsky, 2004 and Fritz, 2020). We will also treat in a lot of
details the category Stoch in the next chapter.

3.2 The Kleisli category construction: monads as
generalized elements

Let us take a closer look in the definition of a monad. We are given a category 𝐶, the
first thing we have to have, an endofunctor 𝑇 ∶ 𝐶 → 𝐶, that is, to each element 𝑐 we assign
a new one, 𝑇 𝑐, let us call 𝑇 𝑐 the extension of 𝑐 by 𝑇 in 𝐶. We also need, for each morphism
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𝑓 ∶ 𝑐 → 𝑐
′, a morphism that takes our extension of 𝑐 by 𝑇 and led us to the extension of 𝑐′

by 𝑇 , hence, a coherent way to move from our base ground, 𝑐, to its extension (so far that
is only the definition of a functor). We will call now 𝑇 an extension, as explained. Now we
also need the natural transformation 𝜂, which is, for each element 𝑐, a map 𝜂𝑐 ∶ 𝑐 → 𝑇 𝑐,
hence, an embedding of 𝑐 into its extension and for each map 𝑓 ∶ 𝑐 → 𝑐

′ we must have
𝜂𝑐′𝑓 = 𝜂𝑐𝑇 𝑓 , in diagrams:

𝑐 𝑐
′

𝑇 𝑐 𝑇 𝑐
′

𝜂𝑐

𝑓

𝜂
𝑐
′

𝑇 𝑓

Now 𝜂𝑐 will be the base element 𝑐 inside its extension 𝑇 𝑐. One natural question is: If
we are talking about “generalized elements" and 𝑇 is the extension of one element into
its generalized form, why do we need 𝜂? Why don’t just say that the base element inside
its extension is, well, just 𝑇 𝑐? Let us see an example: Consider the category Set, and a set
𝑋 , take 𝑇 for the power endofunctor, that is, 𝑇 (𝑋 ) = (𝑋 ), we have a notion of element
in 𝑋 , of course, it is a set, but we also have a natural way, for every 𝑥 ∈ 𝑋 to see it as an
element of (𝑋 ), its singleton {𝑥} ∈ (𝑋 ), and in this context, that is what the 𝜂𝑋 would
be, the map 𝜂𝑋 ∶ 𝑋 → (𝑋 ) that takes each element into its singleton. So the 𝑇𝑋 is not
quite the right “depiction" for 𝑋 inside its extension 𝑇𝑋 , but this is rather represented by
𝜂𝑋 , that is the intuition behind the 𝜂 transformation in the monad definition, the depiction
of object in the base category inside their extensions.

In the same way that 𝜂 was our depiction of elements inside their extensions, 𝜇 will be
our depiction of generalized elements of generalized elements, into generalized elements,
we will explain it better below.

Consider a context where we would need this notion of a generalized element, like
if we are applying something (a limit, le us say) and the result may not live within our
original object 𝑐, then we can extend that object by 𝑇 and find that this result lives within
𝑇 𝑐, if we have a monad structure, 𝜂 give us a way to embed our original object in a coherent
way to live alongside this result, so our extension is well behaved, 𝜇 tells us that we only
need to extend our object once, to make room for our result, if we have to extend it twice,
that is, our result is actually in 𝑇

2
𝑐, we have a way to go back to our original extension

𝑇 𝑐, by means of 𝜇 ∶ 𝑇
2
→ 𝑇 . And this is consistent with our embedding 𝜂, since by the

definition of a monad we have: 𝜇𝑇 𝜂 ≅ 𝑖𝑑 ≅ 𝜇𝜂𝑇 . For a formal approach of monads as
generalized elements the reader can consult Marmolejo and Wood, 2010.

In our example, the way to go from subsets of subsets of a set to subsets of the same
set is just to take the union, so the union is our 𝜇 ∶  →  .

Definition 3.2.1. Consider a category 𝐶 and (𝑇 , 𝜂, 𝜇) a monad on it. A morphism 𝑘 ∈

hom𝐶(𝑐, 𝑇 𝑐
′
) is called a Kleisli morphism of 𝑇 from 𝑐 to 𝑐

′.

Definition 3.2.2. Consider a category 𝐶 and (𝑇 , 𝜂, 𝜇) a monad on it, also two Kleisli
morphisms 𝑓 ∈ hom𝐶(𝑐, 𝑇 𝑐

′
) and 𝑔 ∈ hom𝐶(𝑐

′
, 𝑇 𝑐

′′
), then the Kleisli composition of 𝑓 anf

𝑔 , denoted by 𝑔 ◦𝐾 𝑓 is defined as 𝑔 ◦𝐾 𝑓 = 𝜇(𝑇 𝑔)𝑓 , or, in diagrams:
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𝑐 𝑇 𝑐
′

𝑇 𝑇 𝑐
′′

𝑇 𝑐
′′

𝑐
′

𝑓

𝑔◦𝐾 𝑓

𝑇 𝑔 𝜇

𝑔

Definition 3.2.3. Given a category 𝐶 and a monad (𝑇 , 𝜂, 𝜇) on it. The Kleisli category of
𝑇 , denoted by 𝐶𝑇 is the category where objects are the objects of 𝐶 and morphisms are the
Kleisli morphisms of 𝑇 . The composition is given by the Kleisli composition.

For one object in the Kleisli category, its identity 𝑖𝑑
𝐶𝑇

𝑐
is a map 𝑖𝑑

𝐶𝑇

𝑐
∈ hom𝐶(𝑐, 𝑇 𝑐), from

the definitions above it follows that this identity must satisfy the following equation:

𝜇𝑐𝑇𝑐𝑖𝑑
𝐶𝑇

𝑐
= 𝑖𝑑

𝐶

𝑐

And this equality must hold for any 𝑐 ∈ Ob(𝐶), from the definition of monad we see that
𝑖𝑑

𝐶𝑇

𝑐
= 𝜂𝑐, that is why 𝜂 is called the unit of the monad, because in the Kleisli category of

the monad its fibers are the identity maps of the elements.

Before focusing on the Eilenberg-Moore construction, let us see what the Kleisli
construction would look like in our example of sets and the monad of subsets.

A Kleisli morphism from a set 𝑋 to a set 𝑌 is a multi-valued function 𝑓 ∶ 𝑋 → (𝑌 ),
that for every element in 𝑋 associates a subset in 𝑌 , for another multi-valued function
𝑔 ∶ 𝑌 → (𝑍), the Kleisli composition would be taking first the image under 𝑓 , then
applying the power set functor in the map 𝑔 to go from (𝑌 ) to 2

(𝑍), that is, consider
𝑥 ∈ 𝑋 , we take the image 𝑓 (𝑥) ⊂ 𝑌 , then we apply 𝑔 for each element in 𝑓 (𝑥) and apply
the union (𝜇) in all of those, in other words

(𝑔 ◦𝐾 𝑓 )(𝑥) = ⋃

𝑦∈𝑓 (𝑥)

𝑔(𝑦) ⊂ 𝑍

To summarize the example, the powerset functor with singleton inclusion as unit and
union as multiplication/composition is a monad on the category of sets, and the Kleisli
category of this nomad is the category of sets and multi-valued functions.

3.3 The first Giry monad

Consider the category Meas of measurable spaces and the endofunctor 𝑃 that for each
space 𝑋 ∈ Ob(Meas) assigns the space 𝑃𝑋 of probability measures on 𝑋 , as described
in the begining of the chapter. For each space 𝑋 , we have a map 𝜂𝑋 ∶ 𝑋 → 𝑃𝑋 that
evaluates the Dirac measure, that is, 𝜂𝑋 (𝑥) = 𝛿𝑥 for 𝑥 ∈ 𝑋 , and for each space 𝑋 we get a
map 𝜇𝑋 ∶ 𝑃𝑃𝑋 → 𝑃𝑋 which maps a measure ℙ ∈ 𝑃𝑃𝑋 to the measure 𝜇𝑋ℙ

∈ 𝑃𝑋 defined
by:

𝐴 ∈ Σ𝑋 ↦
∫
𝑃𝑋

𝑝(𝐴)𝑑ℙ(𝑝)
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Lemma 3.1. (𝑃, 𝜂, 𝜇), as described above, is a monad over Meas.

The proof can be consulted in Perrone, 2018 .This monad is one of the class of monads
called Giry monads. By the definition given in Giry, 1982 a Giry monad is “the monad
on a category of suitable spaces which sends each suitable space 𝑋 to the space of suitable
probability measures on 𝑋 ", hence there is a nonunique definition of a Giry monad, this
one we’ve constructed is one of them, one of the main challenges of categorical probability
theory, as we will see, is to find good classes of suitable spaces and suitable probability
measures. For example one can ask for 𝑋 to be a complete metric space, or compact
Hausdorff spaces.

Proposition 3.2. The Kleisi category of Meas is the category Stoch.

The proof can be consulted in Perrone, 2018.

3.4 The Eilenberg-Moore category and the adjuction
equivalence

Definition 3.4.1. Consider (𝑇 , 𝜂, 𝜇) a monad over a category 𝐶. A 𝑇 -algebra is a pair (𝑐, ℎ),
where 𝑐 ∈ Ob(𝐶) and ℎ ∈ hom𝐶(𝑇 𝑐, 𝑐) where the following diagrams commutes:

𝑇
2
𝑐 𝑇 𝑐

𝑇 𝑐 𝑐

𝑇 ℎ

𝜇𝑐
ℎ

ℎ

𝑐 𝑇 𝑐

𝑐

𝜂𝑐

𝑖𝑑𝑐

ℎ

The object 𝑐 is called underlying object of the algebra and the morphism ℎ the structure
map of the algebra. A morphism 𝑓 ∶ (𝑐, ℎ) → (𝑐

′
, ℎ

′
) between two 𝑇 -algebras is an arrow

𝑓 ∈ hom𝐶(𝑐, 𝑐
′
) where

𝑇 𝑐 𝑐

𝑇 𝑐
′

𝑐
′

ℎ

𝑇 𝑓 𝑓

ℎ
′

commutes.

Definition 3.4.2. For every monad (𝑇 , 𝜂, 𝜇) on a category 𝐶 and object 𝑐 ∈ Ob(𝐶) we get
an algebra (𝑇 𝑐, 𝜇𝑐), which is called the free algebra generated by 𝑐. A 𝑇 -algebra is called
free if it is of this form for some object 𝑐 in 𝐶.

Definition 3.4.3. Consider 𝐶 a category and (𝑇 , 𝜂, 𝜇) a monad over it. With the definition
above we get a category, the category of 𝑇 -algebras, which is called the Eilenberg-Moore
category of 𝑇 and denoted by 𝐶

𝑇 .

Proposition 3.3. Consider (𝑇 , 𝜂, 𝜇) a monad on a category 𝐶, (𝑐, ℎ) a 𝑇 -algebra and 𝑎 ∈

Ob(𝐶), then there is a natural bijection:

hom𝐶(𝑐, 𝑎) ≅ hom
𝐶
𝑇 (𝑇 𝑐, 𝑎)
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For a proof, the reader can consult Lane, 1998, as for the other proof of the results
presented in this section. Both constructions, the Eilenberg-Moore and the Kleisli are
“equivalent" to each other, in the following sense:

Lemma 3.4. Consider (𝑇 , 𝜂, 𝜇) a monad on a category 𝐶. There is an equivalence of categories
between 𝐶𝑇 (the Kleisli category of 𝑇 ) and the full subcategory of 𝐶𝑇 of the free 𝑇 -algebras.

Now we focus on a standard result about monads, that the notion of a monad is dual
to the notion of adjunction.

Lemma 3.5. For an adjunction (𝐹 , 𝐺, 𝜂, 𝜖), the triple (𝐺𝐹, 𝜂, 𝐺𝜖𝐹) is a monad in the associated
category.

The proof is quite straightforward from the definitions, so this lemma shows us that
every adjunction gives rise to a monad, and the following proposition shows us the
converse:

Proposition 3.6. Consider 𝐶 a category and (𝑇 , 𝜂, 𝜇) a monad over it. There are functors
𝐹
𝑇
, 𝐺

𝑇 and 𝜂
𝑇
, 𝜖

𝑇 such that (𝐹 𝑇
, 𝐺

𝑇
, 𝜂

𝑇
, 𝜖

𝑇
) ∶ 𝐶 → 𝐶

𝑇 is an adjunction and the monad defined
over 𝐶 by it is the starting monad (𝑇 , 𝜂, 𝜇).

Proof. Define 𝐺𝑇 by the functor that forgets about the structure map of the algebra and 𝐹
𝑇

the ones that maps 𝑐 ∈ Ob(𝐶) into the algebra (𝑇 𝑐, 𝜇𝑐) (the free 𝑇 -algebra on 𝑐). Then it is
a straightforward calculation to see that (𝑇 , 𝜂, 𝜇) ≅ (𝐺

𝑇
𝐹
𝑇
, 𝜂

𝑇
, 𝐺

𝑇
𝜖
𝑇
𝐹
𝑇
) where 𝜖

𝑇
(𝑐, ℎ) = ℎ

and 𝜂
𝑇
= 𝜂.

3.5 Further into the Giry monad

As we’ve seen in the first Giry moand section, we can construct a Giry monad by the
following steps: Taking the category Meas and defining the endofunctor 𝑃 and the one
that assigns for each space 𝑋 the space 𝑃𝑋 of probability measures on it. The unit of
this monad is the Dirac measure natural transformation 𝛿𝑋 ∶ 𝑋 → 𝑃𝑋 that maps each
element 𝑥 ∈ 𝑋 into the Dirac measure 𝛿𝑥 and the composition law of the monad is given by
taking expectation 𝐸 ∶ 𝑃𝑃 → 𝑃 , that is for a given measure ℙ ∈ 𝑃𝑃𝑋 we assign 𝐸ℙ ∈ 𝑃𝑋

by

𝐸ℙ ∶ 𝐴 ↦
∫
𝑃𝑋

𝑝(𝐴)𝑑ℙ(𝑝)

Usually we are not just interest in uderstand the measures in the measurable spaces,
but also the joint distributions in the product spaces. That is way the natural setting to
a categorical probability theory should be not just a Giry monad on Meas but also a
monoidal structure in this category. This structure is given by the canonical set-theoretical
product, we will still use the notation 𝑋 ⊗ 𝑌 to keep it consistent with the following
sections. At the same time, we need to give a monoidal structure to the Giry monad 𝑃 we
have constructed, this amount to the transformations Φ𝑇 and Φ

𝑇

0
, in the context of Giry

monads we will call them ∇
𝑃 and ∇

𝑃

0
, and omit the 𝑃 of the notation when the monad is

clear from the context.
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Now we will keep to work with our intuition on Meas but assume a more general
context, that we are in a semicartesian monoidal category 𝐶, the 𝐼 can be interpreted as a
deterministic state, this notion can be justified by the fact that for every space 𝑋 we have
that 𝑋 ⊗ 𝐼 ≅ 𝑋 , so considering the states of 𝐼 alongside with the ones of 𝑋 is the same of
just looking for 𝑋 , hence, there is no randomness associated with the object 𝐼 .

Definition 3.5.1. A Giry moand is called affine if 𝑃(1) ≅ 1.

In the context of affine Giry monads with a monoidal structure we can forget about
the map ∇

𝑃

0
.

Remembering the definition, ∇ is such that

∇𝑋,𝑌 ∶ 𝑃𝑋 ⊗ 𝑃𝑌 → 𝑃(𝑋 ⊗ 𝑌 )

Also, let us assume that this category is not only a monoidal one but a symmetric
monoidal one, hence our set up is a symmetric semicartesian monoidal category (𝐶,⊗, 𝐼 )

with an affine Giry monoidal monad (𝑃, 𝛿, 𝐸,∇).

In this setting, given a measure ℙ1 ∈ 𝑃𝑋 and a measure ℙ2 ∈ 𝑃𝑌 there is a canonical
way, via ∇, to assign a joint probability measure ∇(ℙ1 ⊗ ℙ2) ∈ 𝑃(ℙ1 ⊗ ℙ2).

In the same way we described a monoidal monad, we could define an opmonoidal
monad, one where the endofunctor is an oplax monoidal endofunctor, that is, we have
natural transformation Δ

𝑃

𝑋,𝑌
∶ 𝑇 (𝑋 ⊗ 𝑌 ) → 𝑋 ⊗ 𝑌 (all the diagrams in the definitions are

constructed in an analogous way), and within this context for a joint probability measure
𝑝 ∈ 𝑃𝑋 we get a pair or marginal distributions Δ(𝑝) = (𝑝𝑋 , 𝑝𝑌 ) ∈ 𝑃𝑋 ⊗ 𝑃𝑌 .

In this context of a monad with both structures, a monoidal and an opmonoidal
structure, we can define a bimonoidal monad by the means of interactions of Δ and ∇

with the monoidal structure ⊗ and the braiding structure swap. Resuming, the following
diagram must commute:

𝑃(𝑊 ⊗ 𝑋 ) ⊗ 𝑃(𝑌 ⊗ 𝑍)

𝑃(𝑊 ⊗ 𝑋 ⊗ 𝑌 ⊗ 𝑍) 𝑃𝑊 ⊗ 𝑃𝑋 ⊗ 𝑃𝑌 ⊗ 𝑃𝑍

𝑃(𝑊 ⊗ 𝑌 ⊗ 𝑋 ⊗ 𝑍) 𝑃𝑊 ⊗ 𝑃𝑌 ⊗ 𝑃𝑋 ⊗ 𝑃𝑍

𝑃(𝑊 ⊗ 𝑌 ) ⊗ 𝑃(𝑋 ⊗ 𝑍)

∇𝑊⊗𝑋,𝑌⊗𝑍 Δ𝑊⊗𝑋⊗Δ𝑌⊗𝑍

≅ 𝑖𝑑𝑃𝑊⊗swap
𝑃𝑋,𝑃𝑌

⊗𝑖𝑑𝑃𝑍

Δ𝑊⊗𝑌 ,𝑋⊗𝑍
∇𝑊⊗𝑌⊗∇𝑋⊗𝑍

Ans the Giry monad we have defined actually has a bimonoidal structure (which is
to say that all the operations of forgeting randomness 𝑋 → 𝐼 , taking the expectation 𝐸

and the Dirac measure 𝛿 are coherent with the bimonoidal structue ∇,Δ), and Δ∇ ≅ 𝑖𝑑−⊗−.
Hence, we have a categorigal notion of joints and marginals. For complete definitions the
reader can consult the section 1.2.2 and the appendix A of Perrone, 2018, and Fritz and
Perrone, 2018 for complete proofs.
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3.6 The Kantorovich Monad

The idea of this section is to show an application of the Giry monad approach to
probability theory. We start with a metric space 𝑋 and construct a metric in 𝑃𝑋 and then
define the Kantorovich Monad over the category of metric spaces. The reference for this
section, including the detailed proofs of the results, is Perrone, 2018.

Definition 3.6.1. The category Met is the category where objects are metric spaces
(𝑋, 𝑑𝑋 ) and morphisms 𝑓 ∶ 𝑋 → 𝑌 are short functions, that is, functions where, for all
𝑥, 𝑥

′
∈ 𝑋 we have

𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑥
′
)) ≤ 𝑑𝑋 (𝑥, 𝑥

′
)

We can endow the category with a monoidal structure by defining 𝑋 ⊗ 𝑌 to be the product
set with the metric

𝑑𝑋⊗𝑌 ((𝑥, 𝑦), (𝑥
′
, 𝑦

′
)) = 𝑑𝑋 (𝑥, 𝑥

′
) + 𝑑𝑌 (𝑦, 𝑦

′
)

Definition 3.6.2. The category CMet is the category of complete metric spaces, with
morphisms and monoidal structure just as in Met

Lemma 3.7. CMet is a full subcategory of Met.

Whenever we talk about a probabiolity measure in a metric space we are considering
the 𝜎-algebra of the borelians and a Radon probability measure.

Definition 3.6.3. Consider a metric space 𝑋 , a probability measure ℙ on 𝑋 has finite first
moment if the expected distance between two random points is finite, that is

∫
𝑋

𝑑𝑋 (𝑥, 𝑦)𝑑ℙ(𝑥)𝑑ℙ(𝑦) < ∞

Definition 3.6.4. For 𝑋 a metric space, 𝑃𝑋 will denote the set of probability measures of
finite first moment on 𝑋 .

Considering the push forward of measures it is clear that 𝑃 ∶ Met → Set is a functor,
now we want to endow the set 𝑃𝑋 itself with a metric. That is what we will do, but rather
for the category CMet

Definition 3.6.5. Consider 𝑋 ∈ Ob(CMet), The Wasserstein space 𝑃𝑋 associated with
𝑋 is the set of probability measures with finite first moment with metric defined as

𝑑𝑃𝑋 (ℙ1,ℙ2) = inf

ℙ∈Γ(ℙ1,ℙ2)
∫
𝑋×𝑋

𝑑𝑋 (𝑥, 𝑦)𝑑ℙ(𝑥, 𝑦)

Where Γ(ℙ1,ℙ2), as defined in the first chapter, is the set of probability measures on 𝑋 ×𝑋

with marginals ℙ1 and ℙ2.

One interpretation of the metric in the Wasserstein space, is that for two distribu-
tions over 𝑋 the distance measures the amount of work needed to change one into the
other.
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Theorem 3.8. If 𝑋 is a complete metric space, then its Wasserstein space is also complete.

With the above theorem and the the technical lemma 2.1.14 in Perrone, 2018 we
conclude that 𝑃 ∶ CMet → CMet is an endofunctor, called the Kantorovich functor.

Considering that finitely supported measures with rational coefficients are dense in
𝑃𝑋 , and those measures can be completely determined by powers of 𝑋 up to permutations,
one can see 𝑃𝑋 as the colimit of the diagrams of powers of 𝑋 within the category 𝐶𝑀𝑒𝑡,
using this we can define the Kantorovich functor as the colimit of power functors1, within
that framework we can characterize the map 𝐸 (the integration of a measure on measures
to a measure) by a universal property, taking 𝛿 to be the canonical Dirac transformation
we endow 𝑃 with the structure of a monad.

Here we just painted a very general picture of how the monad structure arises, bute one
thing is worth noting, that already point out the power of the approach: As observed in the
last paragraph, 𝐸 is the usual integration on the space of measures, but it arises naturally
from a colimit of power functors, that is, it is a way to integrate without integration.

To wrap upon this section, we mention a result that makes our point of the power of
the categorical approach to the subject, consider ConvBan the category whose object are
convex subsets of Banach spaces and morphisms short affine maps, with this definition we
have a canonical functor ConvBan → CMet𝑃 and this functor is actually an equivalence
of categories, that is:

Theorem 3.9. ConvBan ≅ CMet𝑃

Where CMet𝑃 denotes the Eilenberg-Moore category, as described in the previsous
sections.

1 The construction is much more intricate than just taking powers of the space, and can be consulted in
details in Perrone, 2018.
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Chapter 4

Markov Categories

In this chapter we lay the basic notions of categorical probability theory in its most
recent developments. We will follow closelly the treatment in the seminal paper Fritz,
2020 and we refer to this paper for the reader interested in a more detailed exposition of
the subject. Follows a layout of the chapter:

• We start giving detailed definitions on the categories FinStoch and Stoch, following
the expositions in Fritz, 2020, Moss and Perrone, 2023 and Perrone, 2023.

• We move to the important notion of a deterministic morphism in a Markov category,
showing that if we have only deterministic morphisms, our category is “trivial” (in
the sense that it is cartesian). WE also state a strictification theorem, the mains
reference for this and the next sessions is Fritz, 2020.

• The we define important notions within the context of Markov categories that
extendes the classical ones, joint states, conditioning and the notion of almost surely.

• In the last section we give the main definitions from statistics as developed in the
framework of Markov categories, preparing for the first result in the next chapter.

4.1 Building up from two examples

We will start by defining a Markov category in a constructive/intuitive way, then in
the next section we give the formal definition alongside with the main concepts withn
Markov Categories.

We will start with two examples, Stoch and FinStoch. The objects of FinStoch are
finite sets and the objects of Stoch are measurable spaces. A morphism between two
objects can be called a channel sometimes in the context of Markov categories.

In FinStoch morphisms between two sets 𝑋 and 𝑌 , 𝑓 ∶ 𝑋 → 𝑌 are stochastic matrices,
that is a matrix with rows indexed by elements of 𝑋 and columns indexed by elements of
𝑌 , with positive entries and where the sum at each column adds up to 1. Hence we can see
a morphism 𝑓 ∶ 𝑋 → 𝑌 as a function 𝑓 ∶ 𝑋 × 𝑌 → [0, 1], with 𝑓 (𝑥, 𝑦) ↦ 𝑓 (𝑦 ∣ 𝑥) such
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that for any 𝑥 ∈ 𝑋 we have
∑

𝑦∈𝑌

𝑓 (𝑦 ∣ 𝑥) = 1

One can interpret 𝑓 (𝑦 ∣ 𝑥) as the transition probability from state 𝑥 to state 𝑦. But note
that for each fixed 𝑥 ∈ 𝑋 we get a function 𝑓𝑥 ∶ 𝑌 → [0, 1] with 𝑓 (𝑦 ∣ 𝑥) and, by definition,
this is a probability measure, hence we can also see a morphism 𝑓 ∶ 𝑋 → 𝑌 as a familly of
probability measures on 𝑌 indexed (or parametrized) by 𝑋 , the familly 𝑓𝑥 . Hence we can
see the morphisms 𝑓 as a function from 𝑋 to the space of probability measures over 𝑋 ,
denoted by 𝑃𝑋 .

In the context of Stoch a morphism 𝑓 ∶ 𝑋 → 𝑌 is a Markov kernel from the measurable
space (𝑋,Σ𝑋 ) to the measurable space (𝑌 ,Σ𝑌 ), which is a map 𝑓 ∶ 𝑋 × Σ𝑌 → [0, 1] with
𝑓 ∶ (𝑥, 𝑆) ↦ 𝑓 (𝑆 ∣ 𝑥) that is measurable in the first argument and is a probability measure
in the second argument. That is inspired by the morphisms we had in FinStoch, cince if
we consider 𝑓𝑥 = 𝑓 (− ∣ 𝑥) ∶ Σ𝑌 → [0, 1] we get a probability measure (in the context of
FinStoch we could see it as only “acting" on the elements of 𝑌 , not on subsets of it).

From any measurable function 𝑓 ∶ 𝑋 → 𝑌 we get a kernel 𝐾𝑓 defined as

𝐾𝑓 (𝑆 ∣ 𝑥) = 𝛿𝑓 (𝑥)(𝑆)

that is, the dirac measure on the point 𝑓 (𝑥). This is a function defined on 𝑋 ×Σ𝑌 with takes
values in [0, 1], it is by definition measurable in the first coordinate and is a probability
measure in the second coordinate.

Now suppose we have a distinguished object, called unit, denoted by 𝐼 (in the context
of Stoch and FinStoch 𝐼 is the one-point space). A morphism 𝑓 ∶ 𝐼 → 𝑋 , for a measurable
space 𝑋 , is called a source in Stoch, note that a source is a morphism 𝑓 ∶ {⋅} × Σ𝑌 → [0, 1]

which is a probability measure on the second coordinate, but that is just a probability
measure, and any probability measure ℙ on 𝑌 trivially defines such a morphism 𝐼 → 𝑌 ,
hence there is a correspondence between morphisms from the unit to a measurable space
and probability measures on that space.

In order to Stoch and FinStoch to become a category we need to have identity
morphisms 𝑖𝑑𝑋 ∶ 𝑋 → 𝑋 and composition 𝑔𝑓 with 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 . So let us
look at those for each one of the categories: In the FinStoch one the identity morphism is
just the identity matrix and the composition is matrix multiplication, tha can be written
as:

𝑔𝑓 (𝑧 ∣ 𝑥) = ∑

𝑦∈𝑌

𝑔(𝑧 ∣ 𝑦)𝑓 (𝑦 ∣ 𝑥)

for 𝑧 ∈ 𝑍 and 𝑥 ∈ 𝑋 . This formula is also known as the Chapman-Kolmogorov for-
mula.

For the Stoch category, identity is the Dirac measure, in the following sense:

𝑖𝑑𝑋 ∶ 𝑋 × Σ𝑋 → [0, 1]

with
𝑖𝑑𝑋 (𝑆 ∣ 𝑥) = 𝛿𝑥(𝑆)
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and composition is given by

𝑔𝑓 (𝑆 ∣ 𝑥) =
∫
𝑌

𝑔(𝑆 ∣ 𝑦)𝑓 (𝑑𝑦 ∣ 𝑥)

whete the symbol 𝑓 (𝑑𝑦 ∣ 𝑥) means that integration is with respect to the measure 𝑓𝑥 =

𝑓 (− ∣ 𝑥) defined in Σ𝑌 , that is 𝑓 (𝑑𝑦 ∣ 𝑥) = 𝑑𝑓𝑥 , hence we can rewrite the above equation
as

𝑔𝑓 (𝑆 ∣ 𝑥) =
∫
𝑌

𝑔(𝑆 ∣ 𝑦)𝑑𝑓𝑥

It is straightforward to verify that those compositions satisfies the categorical requisites
of associativity and coherence with identities.

Within Markov categories we also have a notion of parallel composition. That is, for
two objects 𝑋 and 𝑌 we want a composite object 𝑋 ⊗ 𝑌 , which is going to be the space
of joint distributions. Now is the time for us to introduce the notation that will be used
throghout this chapter, string diagrams. Within some category as the ones we are building
here (for now, with a “product" ⊗ and a unit 𝐼 ), we denote a morphism 𝑓 ∶ 𝑋 → 𝑌 as the
one below:

𝑌

𝑓

𝑋

Joint distributions are represented by parallel lines, hence for 𝑓1 ∶ 𝑋1 → 𝑌1 and
𝑓2 ∶ 𝑋2 → 𝑌2, the product 𝑓1 ⊗ 𝑓2 is denoted in the following diagram:

𝑌1

𝑓1

𝑋1

𝑌2

𝑓2

𝑋2

To make clear the difference from a morphism like 𝑓1 ⊗ 𝑓2 to a generic morphism
𝑔 ∶ 𝑋1 ⊗ 𝑋2 → 𝑌1 ⊗ 𝑌2 we denote the second by:

𝑋1

𝑌1

𝑋2

𝑌2

𝑔

Note that diagrams are always readed from bottom up.

We also have a special notation for a morphism 𝑝 ∶ 𝐼 → 𝑋 , as follows:
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𝑝

𝑋

We also ask for a swap morphism, that is, for any 𝑋 and 𝑌 objects an isomorphism
swap

𝑋,𝑌
∶ 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋 .

Finally, we impose two more things on out category: For each object𝑋 we cave assoated
a map copy

𝑋
∶ 𝑋 → 𝑋 ⊗ 𝑋 , the copy map and a map del𝑋 ∶ 𝑋 → 𝐼 called delete or

discard. Those are represented in string diagrams by:

== del𝑋copy
𝑋

The copy, in the context of Stoch and FinStoch is the diagonal assignation, that is
copy

𝑋
∶ 𝑋 → 𝑋 ⊗ 𝑋 defined by copy

𝑋
(𝑥) = (𝑥, 𝑥).

Now for the del𝑋 map, the unit 𝐼 has only the trivial measure 1, hence the delete (or
forget) map is sending to the trivial measure, by summing (in the context of Stoch) or
integrating (in FinStoch) the probabilities.

Given now a state (distribution) 𝑝 on some 𝑋 ⊗ 𝑌 we can get the marginal distribution
on 𝑌 by composing the state with 𝑖𝑑𝑋 ⊗ del𝑌 , that is, “forgetting” about 𝑌 , which gives us
a distribution (state) 𝑝𝑋 in 𝑋 .

The maps copy and del are to satisfy the following axioms:

Copying and deleting eitheir one of the “coordinates” is the same as the identity:

𝑋

𝑋

=

𝑋

𝑋 𝑋

𝑋

=

Copying either one of the corrdinates after a copy leads to the same result:

𝑋 𝑋

𝑋

=

𝑋 𝑋 𝑋

𝑋

𝑋

Copying and then swaping is equivalent to copying:

𝑋 𝑋

𝑋

=

𝑋

𝑋𝑋
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We also enforce this maps to be compatible with the the (⊗, 𝐼 ) structure we have so
far.

The last thing we nees, to properly model our examples, is to ask a condition that is
analogue to “the sum of all probabilities is one", called a normalization condition, this is
reflected in the last axiom:

𝑌

𝑓

𝑋

=

𝑋

Morphisms that satisfies this axiom are also calle unital morphisms.

Definition 4.1.1. A symmetric monoidal category (C, ⊗, 𝐼 ) with a distinguished com-
mumtative comonoid structure (copy

𝑋
,del𝑋 ) for each object 𝑋 , that is compatible with

tensor product and for which all morphisms are unital is called a Markov Category.

Follows from our definitions that del𝑋 = id𝐼 , this together with our last condition (the
normalization one, or “naturality of del”) adds up to the fact that 𝐼 is a terminal object
in the Markov category, or, put differently, that a Markov category is a semicartesian
symmetric monoidal one. The details and some other insights on this equivalence can be
consulted in remarks 2.2 - 2.5 in Fritz, 2020.

In order to get the reader more comfortable with string diagramms, we’ll detail the
description of being “compatible” with tensor product in the above definition both in
diagramms and with string diagramms.

The compatibility ammounts to two conditions:

=

𝑋 ⊗ 𝑌

𝑋 ⊗ 𝑌 𝑋

=

𝑌

𝑋 ⊗ 𝑌

𝑋 ⊗ 𝑌

𝑋 𝑌 𝑋 𝑌

𝑋 𝑌

Where the first one can be described as the commutativity of the following dia-
gram:

𝑋 ⊗ 𝑌 𝐼

𝑋 ⊗ 𝑌 𝐼 ⊗ 𝑌 𝐼 ⊗ 𝐼

del𝑋⊗𝑌

id
del𝑋 ⊗ id id⊗del𝑌

And the second one of the following:
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𝑋 ⊗ 𝑌 (𝑋 ⊗ 𝑌 ) ⊗ (𝑋 ⊗ 𝑌 )

(𝑋 ⊗ (𝑌 ⊗ 𝑋 )) ⊗ 𝑌

(𝑋 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑌

𝑋 ⊗ 𝑌 (𝑋 ⊗ 𝑋 ) ⊗ 𝑌 (𝑋 ⊗ 𝑋 ) ⊗ (𝑌 ⊗ 𝑌 )

id

copy
𝑋⊗𝑌

≅

(id⊗swap)⊗id

≅

copy
𝑋
⊗ id id⊗ copy

𝑌

4.2 Deterministic morphisms
One of the main notions in Markov categories is the one of a “deterministic morphism”,

those will translate the idea of morphisms with a “randomnnes” on it, follows the formal
definition:

Definition 4.2.1. In a markov category (C, ⊗, 𝐼 ), a morphism 𝑓 ∶ 𝑋 → 𝑌 is called
deterministic if it commutes with copy

𝑋
, in the following sense:

𝑓 𝑓

=

𝑓

𝑌 𝑌𝑌 𝑌

𝑋𝑋

Let us see what a deterministic morphism means in the context of Stoch of measurable
space and Markov kernels.

The diagram

𝑓

𝑌 𝑌

𝑋

Translates to the morphism (Σ𝑌 ⊗ Σ𝑌 ) × 𝑋 → [0, 1] (𝑆 × 𝑇 , 𝑥) ↦ 𝑓 (𝑆 ∣ 𝑥)𝑓 (𝑇 ∣ 𝑥) and
the diagram

𝑓 𝑓

𝑌 𝑌

𝑋

translates to the morphism (𝑆 × 𝑇 , 𝑥) ↦ 𝑓 (𝑆 ∩ 𝑇 ∣ 𝑥). For those morphisms to be equal we
must have 𝑓 (𝑆 ∣ 𝑥)

2
= 𝑓 (𝑆 ∣ 𝑥) for all 𝑆 ∈ Σ𝑌 , which means that the probability measure

𝑓 (− ∣ 𝑥) ∶ Σ𝑌 → [0, 1] is a zero-one valued measure, and it can be seen that this condition
is actually enough (see Fritz, 2020, lemma 4.2), hence the deterministic morphisms in
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Stoch are exactly the kernels where the associated probability measure is a zero-one
measure.

Now for a technical lemma on the behaviour of deterministic morphisms

Lemma 4.1. Consider 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 morphisms in a markov category.

• If 𝑓 and 𝑔 are deterministic then 𝑔𝑓 is also deterministic.

• If 𝑔𝑓 is detemrinistic and 𝑓 is a deterministic epimorphisms, then 𝑔 is deterministic as
well.

• If 𝑓 and 𝑔 are inverse isomorphisms and if one of them is deterministic, the the other
one. is also deterministic.

Proof. The first and last one comes directly from the definition. Fro the second one we
note the following computation:

𝑔

𝑓 𝑓

𝑔 𝑔

=

𝑓

=

𝑔 𝑔

𝑓

The following is an important characterization of categories with only deterministic
maps:

Proposition 4.2. For a Markov category C, the following are equivalent:

1. Every morphism of C is deterministic.

2. The copy structure forms a natural transformation.

3. The monoidal structure of C is cartesian

The first proof can be consulted in Fritz, 2020 and the second one atMoss and Perrone,
2023.

4.3 The 2-category Markov and a strictification
theorem

As we have seen a monoidal category is called strict if the associator and the left and
right unitors are both identity natural transformations.

Definition 4.3.1. A Markov category is called strict if its underlying monoidal structure
is strict.



48

4 | MARKOV CATEGORIES

Definition 4.3.2. The 2-category Markov is the one where objects are Markov categories,
1-morphisms are functors 𝐹 ∶ C → D where for every 𝑋 ∈ Ob(C) the following diagram
commutes:

𝐹𝑋

𝐹𝑋 ⊗ 𝐹𝑋 𝐹(𝑋 ⊗ 𝑋 )

copy
𝐹𝑋

𝐹(copy
𝑋
)

≅

those morphisms are called Markov functors. The 2-morphisms 𝛼 ∶ 𝐹 → 𝐺 are monoidal
natural transformations where the components are deterministic. An equivalence in this
category Markov is called a comonoid equivalence. A Markov functor wich is faithfull is
called a Markov embedding.

Here a technical characterization of comonoid equivalences, usefull to prove equiva-
lence in some contexts:

Proposition 4.3. A symmetric monoidal functor 𝐹 ∶ C → D is a comonoid equivalence if,
and only if, it is an equivalence of categories and for every object 𝑌 in the category D exists
an object 𝑋 in the category C and a deterministic isomorphism 𝑖 ∶ 𝑌 → 𝐹𝑋 , thst is, where
the following diagram commutes

𝑌 𝐹𝑋

𝑌 ⊗ 𝑌 𝐹𝑋 ⊗ 𝐹𝑋

copy
𝑌

𝑖

copy
𝐹𝑋

𝑖⊗𝑖

Proof. The first direction is immediate, we can just take 𝑋 = 𝐹
−1
𝑌 , where 𝐹

−1 is the the
inverse equivalence 𝐹

−1
∶ D → C of 𝐹 . Now for the converse, for a given 𝑌 ∈ D, we select

a 𝑋𝑌 object of C and a isomoprhism 𝑖 ∶ 𝑌 → 𝐹𝑋𝑌 that makes the diagram comutes, then
those choices of 𝑋𝑌 and 𝑖 determines an equivalence 𝐺 ∶ D → C that right adjoint to 𝐹

via the counit 𝜖 ∶ 𝐹𝐺 → idD and unit 𝜂 ∶ idC → 𝐺𝐹 . By definition 𝜂 has deterministic
components, then we just need to show the same thing for 𝜂, which is equivalent to show
that, for every 𝑋 object of C, the following diagram commutes:

𝐹𝑋 𝐹𝐺𝐹𝑋

𝐹𝑋 ⊗ 𝐹𝑋 𝐹𝐺𝐹𝑋 ⊗ 𝐹𝐺𝐹𝑋

𝐹(𝑋 ⊗ 𝑋 ) 𝐹(𝐺𝐹𝑋 ⊗ 𝐺𝐹𝑋 )

𝐹𝜂𝑋

copy
𝐹𝑋

copy
𝐹𝐺𝐹𝑋

≅

𝐹𝜂𝑋⊗𝐹𝜂𝑋

≅

𝐹(𝜂𝑋⊗𝜂𝑋 )

The lowe square commuters by naturality and since 𝐹𝜂𝑋 is the inverse of 𝜖𝐹𝑋 , which is
deterministic, it is also deterministic. Hence the only thing left is to prove that 𝐺 preserves
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comonoids, considering an object of the form 𝐹𝑋 , for 𝑋 object of C, then in the following
diagram

𝐺𝐹𝑋 𝐺𝐹𝑋 𝑋 𝐺𝐹𝑋

𝐺(𝐹𝑋 ⊗ 𝐹𝑋 ) 𝐺𝐹(𝑋 ⊗ 𝑋 ) 𝑋 ⊗ 𝑋 𝐺𝐹𝑋 ⊗ 𝐺𝐹𝑋

id𝐺𝐹𝑋

𝐺 copy
𝐹𝑋

id𝐺𝐹𝑋

𝜂
−1

𝑋

𝐺𝐹 copy
𝑋

𝜂𝑋

copy
𝑋

copy
𝐺𝐹𝑋

𝐺𝐹𝑋,𝑋

𝐺𝐹𝑋,𝐹𝑋

𝜂
−1

𝑋⊗𝑋

𝜂𝑋⊗𝜂𝑋

The left square commutes by 𝐹 being a monoidal functor, the middle one by definition
of 𝜂 and the right one by the fact that 𝜂 has deterministic components. A general case,
considering any object 𝑌 of D can be reduced to the above via the map 𝑖.

Now for a result that allows us to work only within strict Markov categories and hence
prove things using string diagramms, a more detailed proof can be consulted in theorem
10.17 of Fritz, 2020.

Theorem 4.4. Any Markov category is comonoid equivalent to a strict one.

Proof. Consider a Markov catecory C and the subcategory of deterministic morphisms Cdet,
this subcategory is monoidal cartesian, hence we can choose a strict monoidal category
C′

det and a symmetric monoidal equivalence 𝐹det ∶ C′

det → Cdet, we extend C′

det to a category
C′ by considering the same objects but the morphisms from 𝑋 to 𝑌 as the morphisms in C
between 𝐹det𝑋 and 𝐹det𝑌 , hence we get a functor 𝐹 ∶ C′

→ 𝐶 extending 𝐹det, since C′

det, it
follows that C′ inherit a Markov structure, from the fact that 𝐹det is symmetric monoidal
and 𝐹 is its extension we see that the criterion of the last proposition is satisfied.

4.4 Joint States and Conditioning

A joint state is simply a state in the joint 𝑋 ⊗𝑌 , that is, a 𝑝 ∶ 𝐼 → 𝑋 ⊗𝑌 , as the diagram
below:

𝑝

𝑋 𝑌

Definition 4.4.1. Given a joint state 𝑝 ∶ 𝐼 → 𝑋 ⊗ 𝑌 a conditional distribution of 𝑝 given



50

4 | MARKOV CATEGORIES

𝑋 is a morphism 𝑝|
𝑋
∶ 𝑋 → 𝑌 such that:

𝑝 =

𝑝

𝑝|
𝑋

𝑋 𝑌

𝑋 𝑌

Definition 4.4.2. A Markov category is said to have conditional distributions if every
joint state 𝑝 ∶ 𝐼 → 𝑋 ⊗ 𝑌 has a conditional distribution 𝑝|

𝑋
.

There is just one stepback in the above definition of conditioning, it is not “recursive”
in the following sense: If we have a state 𝑝 ∶ 𝐼 → 𝑋 ⊗ 𝑌 ⊗ 𝑍 then we would like to get a
conditional 𝑝|

𝑋⊗𝑌
∶ 𝑋 ⊗ 𝑌 → 𝑍 with a “composition”, first we condition on 𝑋 and then on

𝑌 , but the second conditioning is not a conditioning in the sense of the above definition,
since we are only conditioning distributions, hence the following definition:

Definition 4.4.3. Consider C a Markov category. We say that this category has condition-
als if for every morphism 𝑓 ∶ 𝐴 → 𝑋 ⊗ 𝑌 exists 𝑓 |

𝑋
∶ 𝑋 ⊗ 𝐴 → 𝑌 with:

𝑋

𝑓 |
𝑋

=𝑓

𝑓
𝐴

𝑋 𝑌

𝑌

𝐴

Now for a lemma that justify the above definition, as motivated before, the proof can
be consulted in Fritz, 2020, lemma 11.11.

Lemma 4.5. Consider a Markov category C with conditionals, then for any morphism
𝑓 ∶ 𝐴 → 𝑋 ⊗ 𝑌 ⊗ 𝑍 we have that

𝑓 |
𝑋⊗𝑌

= (𝑓 |
𝑋
)
|
|𝑌
◦ (swap

𝑋,𝑌
id𝐴)

Proof. Note that the lemma can be transcribed in string diagrams as:

𝑓 |
𝑋⊗𝑌

𝑍

𝑋 𝑌 𝐴

= (𝑓 |
𝑋
)
|
|𝑌

𝑍

𝑋 𝑌 𝐴
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which can be verified from the diagrams:

(𝑓 |
𝑋
)
|
|𝑌

𝑍𝑋 𝑌

𝑓

𝐴

𝑓 |
𝑋

𝑓

(𝑓 |
𝑋
)
|
|𝑌

𝑍𝑋 𝑌

𝐴

= = 𝑓|𝑋

𝑓

(𝑓 |
𝑋
)
|
|𝑌

𝑍𝑋 𝑌

𝐴

=

𝑓

𝑍𝑋 𝑌

𝐴

𝑓 |
𝑋

= 𝑓

𝐴

𝑋 𝑌 𝑍

So 𝑓 |
𝑋⊗𝑌

is, up to swapping coordinates, like conditioning first on 𝑋 and then on
𝑌 . Now a usefull result on Markov categories with conditioning, it says that we gave a
disintegration property on them, for a proof the reader may consult proposition 11.17 in
Fritz, 2020.

Proposition 4.6. Consider C a Markov category with conditional. For every 𝑔 ∶ 𝐴 → 𝑋
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and 𝑓 ∶ 𝑋 → 𝑌 exists a 𝑠 ∶ 𝐴 ⊗ 𝑌 → 𝑋 such that:

𝑔

𝑓

𝑠

=

𝑔

𝑓

Proof. We just define 𝑠 to be the consitional of the composite morphism (𝑓 ⊗ id) ◦ copy ◦𝑔 ,
then the definition of conditionals implies the diagram on the right.

We now focus on the conpect of positivity.

Definition 4.4.4. A Markov category is positive if for all morphisms 𝑓 ∶ 𝑋 → 𝑌 and
𝑔 ∶ 𝑌 → 𝑍 with 𝑔𝑓 deteministic we have the following identity:

𝑔

𝑓

𝑔

=

𝑓

𝑓

Lemma 4.7. If a Markov category has conditionals then it is positive.

Proof. We select 𝑠 as in 4.6, then we get that:

𝑔

𝑓

𝑠

=

𝑔

𝑓
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And using determinism we get

𝑠

𝑓𝑓

𝑔 𝑔

=

𝑠

𝑓𝑓

𝑔 𝑔

𝑓

𝑔

=

𝑓

𝑔

For example, consider Stoch, to say it is positive is to say that given measurable spaces
(𝑋,Σ𝑋 ), (𝑌 ,Σ𝑌 ), (𝑍,Σ𝑍) and morphisms 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 , then

∫
𝑦∈𝑇

𝑔(𝑆 ∣ 𝑦)𝑓 (𝑑𝑦 ∣ 𝑥) = 𝑓 (𝑇 ∣ 𝑦)
∫
𝑦∈𝑌

𝑔(𝑆 ∣ 𝑦)𝑓 (𝑑𝑦 ∣ 𝑥)

for all 𝑆 ∈ Σ𝑍 , 𝑇 ∈ Σ𝑌 and 𝑥 ∈ 𝑋 . But since 𝑔𝑓 is deterministic and as we have observed,
deterministic morphisms in Stoch satisfies

𝑔𝑓 (𝑈 ∣ 𝑥) =
∫
𝑦∈𝑌

𝑔(𝑈 ∣ 𝑦)𝑓 (𝑑𝑦 ∣ 𝑥) ∈ {0, 1}

for 𝑈 ∈ Σ𝑌 . We can consider, for simplicity, that 𝑔𝑓 is zero valued, then the integrand
vanishes almost ssurely, hence 𝑦 ↦ 𝑓 (𝑈 ∣ 𝑦) vanishes almost surely, with respect to the
measure 𝑓𝑥 = 𝑓 (− ∣ 𝑥) on all 𝑌 , hence both sides of the first equation vanishes, then we
get the equality. The we just proved that Stoch satisfies the positivity condition hence it
is a positive Markov category.

Lemma 4.8. If C1 → C2 is a Markov embedding and C2 is positive, then C1 is positive.

also

Lemma 4.9. Consider C a positive Markov category, then for a morphism 𝑓 ∶ 𝐴 → 𝑋 ⊗ 𝑌

the following are equivalent:

1. The morphism 𝑓 is deterministic.

2. Both of its marginals are deterministic.

Proof. The first implication, assuming 𝑓 deterministic comes from the definition itself,
since the marginalization morphism is deterministic. Now assuming that both marginal
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are deterministic, we can check the determinism of 𝑓 by the following computation:

𝑓 𝑓

𝑓
𝑓 𝑓

𝑓 𝑓𝑓 𝑓

= = =

The middle step if from the assumption, the first and last ones comes from the notion
of conditional independence and some of its technical features, that can be consulted in
proposition 12.14 of Fritz, 2020.

We know from lemma 4.1 that for two morphisms 𝑔 and 𝑓 with 𝑔𝑓 deterministic and
𝑓 a deterministic epi we get that 𝑔 is also deterministic. In the context of positive Markov
categories, we can drop the deterministic condition from 𝑓 . Hence if a composition is
deterministic and the first factor is epi, then the second factor is also deterministic. To
state the result:

Lemma 4.10. Consider C a positive Markov category. 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 two
morphisms in C. If 𝑔𝑓 is deterministic and 𝑓 is an epimorphism then 𝑔 is also deterministic.

Proof. The proof is analogous to the proof of 4.1.

Definition 4.4.5. A Markov category C is called casual if: Whenever

𝑓

ℎ1

=
𝑔

𝑓

ℎ2

𝑔

holds for all morphisms involved, then

𝑓

ℎ1

=𝑔

𝑓

ℎ2

𝑔

also holds.

Now for the relation between casuality and conditionals:

Proposition 4.11. If a Markov category C has conditionals then it is casual.
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Proof. Consider the morphism 𝑠 as in 4.6, then we get

𝑓

ℎ1

𝑔 =
𝑔

𝑓

ℎ1

𝑠

=
𝑔

𝑓

ℎ1

𝑠

if we exchange, in this diagram, ℎ1 by ℎ2 we get that the left diagram is equal with ℎ2 or
ℎ2 by assumption, hence the equality of the right diagram with ℎ2 and ℎ2, which is the
definition of a casual Markov category.

The reverse statement is not true. For example Stoch doesn’t have conditionals, but it
is casual (Fritz, 2020, example 11.35).

4.5 The notion of almost surely
Definition 4.5.1. Consider C a Markov category and a morphism 𝑝 ∶ Θ → 𝑌 , we define,
for two morphisms 𝑓 , 𝑔 ∶ 𝑋 → 𝑌 the notion of 𝑝-almost surely equality, denoted by
𝑓 =𝑝−a.s. 𝑔 if

𝑝

𝑓

=

𝑝

𝑔

In the category Cat 𝑝-a.s. equality is to day that 𝑓 (𝑇 ∣ −) and 𝑔(𝑇 ∣ −) are almost
surely equal with respect to the probability measure 𝑝(− ∣ 𝑎) for all fixed 𝑎, 𝑆 and 𝑇 .

Lemma 4.12. Consider C a Markov category and 𝑝 ∶ Θ → 𝑋 . If 𝑓1, 𝑓2 ∶ 𝑋 → 𝑌 and
𝑔1, 𝑔2 ∶ 𝑋 → 𝑍 such that 𝑓1 =𝑝−a.s. 𝑓2 and 𝑔1 =𝑝−a.s. 𝑔2, then:

𝑝

𝑓1
𝑔1

=

𝑝

𝑓2
𝑔2

Proof. This comes directly from the associativity and commutativity of the comultiplication
and the definition of almost surely above.

To keep the notation consisend, since we are using 𝑝|
𝑋

do denote conditioning, for a
𝑝 ∶ 𝐼 → 𝑋 ⊗ 𝑌 , we will denote the marginal distributions by 𝑝|

𝑚

𝑋

1.

1 In Fritz, 2020, the marginals are denoted by 𝑝(𝑥), with a lowercase of the object.
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Proposition 4.13. In a Markov category C, consider a joint distribution 𝑝 ∶ 𝐼 → 𝑋 ⊗ 𝑌 , the
conditional 𝑝|

𝑋
∶ 𝑋 → 𝑌 is unique 𝑝|

𝑚

𝑋
-a.s.

Proof. It is a direct consequence from the identity

𝑝 =

𝑝

𝑝|
𝑋

𝑋 𝑌

𝑋 𝑌

Given by the definition of conditioning.

Definition 4.5.2. For a Markov category C, a C-probability space on it is a pair (𝑋, 𝑝)

where 𝑋 is an object of C and 𝑝 ∶ 𝐼 → 𝑋 a distribution. When C is clear from the context or
irrelevant for the result we drop the category name from the notation. For two probability
spaces (𝑋, 𝑝) and (𝑌 , 𝑞) a morphism 𝑓 ∶ 𝑋 → 𝑌 is measure preserving if 𝑓 𝑝 = 𝑞.

Definition 4.5.3. Suppose that a Markov category C is casual. The category of probability
spaces over C and Markov kernels, denoted by ProbStoch(C) has as objects probability
spaces (𝑋, 𝑝), (𝑌 , 𝑞) and as morphisms maps 𝑓 ∶ 𝑋 → 𝑌 which are measure preserving
𝑝-a.s. That is, where 𝑓 𝑝 = 𝑞 modulo 𝑝-a.s. equality.

To see that his indeed defines a category the reader can consult Fritz, 2020, proposition
13.9. With the notion of almost surely we can generalize definitions such as what it means
to a morphism to be deterministic, such as:

Definition 4.5.4. In a Markov category C and a distribution 𝑝 ∶ Θ → 𝑋 , we say that
𝑓 ∶ 𝑋 → 𝑌 is 𝑝-a.s. deterministic if:

𝑓 𝑓

=
𝑓

𝑝 𝑝

In the catgory Stoch a Markov kernel 𝑓 to be 𝑝-a.s. deterministic means that for all
𝜃 ∈ Θ we have

∫
𝑥∈𝑅

𝑓 (𝑆 ∣ 𝑥)𝑓 (𝑇 ∣ 𝑥)𝑝(𝑑𝑥 ∣ 𝜃) =
∫
𝑥∈𝑅

𝑓 (𝑆 ∩ 𝑇 )𝑝(𝑑𝑥 ∣ 𝜃)

for all 𝑅 ∈ Σ𝑋 and 𝑆, 𝑇 ∈ Σ𝑌 . Analogously to the case of deterministic morphisms, Markov
kernels satisfying this condition are exactly those where 𝑓 (𝑆 ∣ 𝑥) ∈ {0, 1} for every 𝑆 ∈ Σ𝑋

𝑝(− ∣ 𝜃)-a.s. for all 𝜃.
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In the same way we have generalized the result from 4.1 for positive Markov categories,
we have the same generalization considering almost surely deterministic maps

Proposition 4.14. Consider, within a Markov category C, morphisms 𝑓 ∶ 𝑋 → 𝑌 and
𝑔 ∶ 𝑌 → 𝑍 such that 𝑔𝑓 is deterministic. If 𝑓 is deterministic or C is positive, then 𝑔 is 𝑓 -a.s.
deterministic.

Proof. For the first item, we can observe from the definitions

=
𝑔

𝑓

𝑓

𝑓

=

𝑔

𝑓 𝑓
𝑓

𝑔𝑔

=

𝑔𝑔

𝑓

For the seccond observation we use the definition of positivity and associativity to get:

=
𝑔

𝑓

𝑓

𝑔

=
𝑓 𝑓

𝑓

𝑔 𝑔

𝑓

𝑔 𝑔

𝑓

= =

𝑔

𝑔

𝑓

=

𝑓

𝑔 𝑔

𝑓

A proof can be consulted in Fritz, 2020, proposition 13.5. Note that if we take 𝑔𝑓 =

𝑖𝑑 and C positive, then 𝑔 is 𝑓 -a.s. deterministic. Hence, in a positive Markov category,
reversable arrows are almost surely deterministic with respect to their inverse.

Definition 4.5.5. We say that a Markov category C is strictly positive if morphisms

Θ 𝑋 𝑌 𝑍

𝑝 𝑓 𝑔
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such that 𝑔𝑓 are 𝑝-a.s. deterministic then it is also valid that:

𝑔

𝑓

𝑔

=𝑝-.a.s

𝑓

𝑓

Lemma 4.15. If a Markov category C has conditionals then it is strictly positive.

Proof. The proof goes exactly as in 4.7 but now with the aditional distribution 𝑝 in the
bottom of the diagram.

4.6 Statistics in the categorical probability
framework

Definition 4.6.1. Given an object 𝑋 in a Markov category C, called a sample space, a
statistical model with values in 𝑋 consists of a pais (Θ, 𝑝) where Θ is an object in C and
𝑝 ∶ Θ → 𝑋 .

Definition 4.6.2. A statistic for a statistical model 𝑝 ∶ Θ → 𝑋 is a deterministic morphism
𝑠 whose domain is 𝑠.

Definition 4.6.3. A statistic 𝑠 ∶ 𝑋 → 𝑉 for a statistical model 𝑝 ∶ Θ → 𝑋 is sufficient if
there is a morphism 𝛼 ∶ 𝑉 → 𝑋 such that:

𝑝

𝛼

𝑠

𝑋 𝑉

𝑝

𝑠

𝑋 𝑉

=

Θ Θ

Lemma 4.16. Consider a statistical model 𝑝 ∶ Θ → 𝑋 in a Markov category ans 𝑠 ∶ 𝑋 → 𝑉 ,
𝑡 ∶ 𝑉 → 𝑊 statistics for it. If 𝑠 is sufficient for 𝑝 and 𝑡 is sufficient for 𝑠𝑝, then the composite
is also sufficient for 𝑝.

Proof. Consider 𝛼 the “sufficiency witness" for 𝑠 with respect to 𝑝 and 𝛽 the witness of
sufficiency for 𝑡 with respect to 𝑠𝑝. We just need to show that 𝛼𝛽 is a sufficiency witness
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for 𝑡𝑠 with respect to 𝑝, and this comes from:

𝑝

𝛼

𝑠

𝑝

𝑠

𝑡

=

𝑡

𝑝

𝛽

𝛼

𝑠

𝑡

=
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Chapter 5

Miscellaneous

This chapter contains two applications of the theory developed so far, both analogues
to result that we have in the classical context. One due to Fritz, 2020, of a version of the
Fischer-Neyman factorization theorem, the other one due to Moss and Perrone, 2023,
where the notions of a dynamical system and an ergodic decomposition are introduced in
the framework of Markov categories and then an ergodic decomposition theorem within
this framework is proved. The title Miscellaneous was choosen due to the potential of
expanditure of this chapter, new results and interpretations of classical contexts within
Markov categories are constantlly being published (such as Perrone, 2023).

5.1 The Fischer-Neyman factorization theorem
Theorem 5.1 (A synthetic Fischer-Neyman factorization theorem). Consider C a strictly
positive Markov category. The a statistic 𝑠 ∶ 𝑋 → 𝑉 is sufficient for a statistical model
𝑝 ∶ Θ → 𝑋 if, and only if, there is a 𝛼 ∶ 𝑉 → 𝑋 such that 𝛼𝑠𝑝 = 𝑝 and 𝑠𝛼 =𝑠𝑝-a.s. id𝑉

5.2 A synthetic ergodic decomposition theorem
Definition 5.2.1. In a Markov category 𝐶, let 𝑝 ∶ 𝐼 → 𝑋 be a state, and let 𝑓 ∶ 𝑋 → 𝑌 be
a morphism. A disintegration of 𝑝 via 𝑓 , or a Bayesian inversion of 𝑓 with respect to 𝑝 is a
morphism 𝑓

+

𝑝
∶ 𝑌 → 𝑋 such that the following holds.

𝑓

𝑋 𝑌

𝑓

𝑓
+

𝑝

𝑋 𝑌

=

𝑝
𝑝

Definition 5.2.2. Let 𝑝 ∶ 𝐼 → 𝑋 be a state in a Markov category. A decomposition of 𝑝
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consists is a pair (𝑞, 𝑘) where:

• 𝑞 is a state 𝑞 ∶ 𝐼 → 𝑌 ,

• 𝑘 is a morphism 𝑘 ∶ 𝑌 → 𝑋

such that 𝑘 ◦ 𝑞 = 𝑝.

Definition 5.2.3. Let (𝑞 ∶ 𝐼 → 𝑌 , 𝑘 ∶ 𝑌 → 𝑋 ) be a decomposition of 𝑝 ∶ 𝐼 → 𝑋 . We say
that (𝑞, 𝑘) is a trivial decomposition of 𝑝 if and only if 𝑘 is 𝑞-almost surely equal to

𝑌 𝐼 𝑋.
del 𝑝

We call the state 𝑝 indecomposable if all its decompositions are trivial.

Proposition 5.2. Every indecomposable state is deterministic.

Proof. Let 𝑝 ∶ 𝐼 → 𝑋 be an indecomposable state. We can decompose 𝑝 as 𝑝 = 𝑖𝑑 ◦ 𝑝, and
by hypothesis this decomposition is trivial. Therefore, the identity 𝑖𝑑 is 𝑝-almost surely
equal to

𝑋 𝐼 𝑋.
del 𝑝

That is,
𝑋𝑋

=

𝑝

𝑋𝑋

𝑝

=

𝑝

𝑋

𝑝

𝑋

𝑝

Hence 𝑝 is deterministic.

Definition 5.2.4. Given a monoid 𝑀 , we will denote by B𝑀 the category associated with
it (with a single arrow and morphisms given by 𝑀), for a category C a dynamical system
is a functor B𝑀 → C. We say that the image of the one object of B𝑀 in C is a dynamical
system in C with monoid 𝑀 .

For example, taking 𝑀 = ℕ and C = Stoch we get that A dynamical system is a
discrete time Morkov chain.

Definition 5.2.5. Let 𝑋 be a dynamical system with monoid 𝑀 in a Markov category C.
The Markov colimit or Markov quotient of 𝑋 over the action of 𝑀 is an object, which we
denote by 𝑋𝑖𝑛𝑣 together with a deterministic map 𝑟 ∶ 𝑋 → 𝑋𝑖𝑛𝑣, which is a colimit both in
C and in the subcategory C𝑑𝑒𝑡 of deterministic morphisms.

Definition 5.2.6. Consider 𝑋 a dynamical system in Stoch with monoid 𝑀 . A measurable
set 𝐴 ∈ Σ𝑋 is called invariant if for every 𝑚 ∈ 𝑀 , it is associated Markov kernel 𝑘𝑚 is such
that 𝑚(𝐴 ∣ 𝑥) = 𝛿𝑥(𝐴).

Proposition 5.3. Let 𝑋 be a deterministic dynamical system1 in Stoch with monoid 𝑀 .

1 In the sense that it is a dynamical system in the subcategory C𝑑𝑒𝑡 .
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Then the Markov quotient 𝑋𝑖𝑛𝑣 exists, and it is given by the same set 𝑋 , equipped with the
invariant 𝜎-algebra.

Proof. We construct the kernel 𝑟 ∶ 𝑋 → 𝑋𝑖𝑛𝑣 as follows,

𝑟(𝐴|𝑥) = 1𝐴(𝑥) =

{

1 𝑥 ∈ 𝐴

0 𝑥 ∉ 𝐴

for every 𝑥 ∈ 𝑆 and every measurable (invariant) set 𝐴 ∈ Σ𝑋𝑖𝑛𝑣
. This is the kernel induced by

the function 𝑋 → 𝑋𝑖𝑛𝑣 considering the set-theoretic identity. This function is measurable,
and so it induces a well-defined Markov kernel. For every 𝑚 ∈ 𝑀 , every 𝑥 ∈ 𝑋 and every
measurable (invariant) set 𝐴 ∈ Σ𝑋𝑖𝑛𝑣

,

∫
𝑋

𝑟(𝐴|𝑥
′
)𝑚(𝑑𝑥

′
|𝑥) =

∫
𝑋

1𝐴(𝑥
′
)𝑚(𝑑𝑥

′
|𝑥) = 𝑚(𝐴|𝑥) = 1𝐴(𝑥) = 𝑟(𝐴|𝑥),

where we used invariance of 𝐴. Hence, 𝑟 is left-invariant.

Let 𝑠 ∶ 𝑋 → 𝑆 be a right-invariant Markov kernel. Define the kernel 𝑠 ∶ 𝑋𝑖𝑛𝑣 → 𝑆

simply by
𝑠(𝐵|𝑥) ∶= 𝑠(𝐵|𝑥)

for all 𝑥 ∈ 𝑋𝑖𝑛𝑣 (equivalently, 𝑥 ∈ 𝑋 ) and all measurable 𝐵 ⊆ 𝑆. To see that 𝑠 is measurable
in 𝑥 , consider a Borel-generating interval (𝑟 , 1] ⊆ [0, 1] for some 0 ≤ 𝑟 < 1. We have to
prove that the set

𝑠
∗
(𝐵, 𝑟) ∶= {𝑥 ∈ 𝑋𝑖𝑛𝑣 ∶ 𝑠(𝐵|𝑥) > 𝑟}

is measurable in 𝑋𝑖𝑛𝑣, i.e., as a subset of 𝑋 , is measurable and invariant. We know that
it is measurable as a subset of 𝑋 , since 𝑠 is a Markov kernel. Let us prove the invarianc
property: Using the fact that 𝑠 is right-invariant, and that 𝑠∗(𝐵, 𝑟) is measurable as a subset
of 𝑋 ,

𝑠(𝐵|𝑥) =
∫
𝑋

𝑠(𝐵|𝑥
′
)𝑚(𝑑𝑥

′
|𝑥)

=
∫
𝑠
∗
(𝐵,𝑟)

𝑠(𝐵|𝑥
′
)𝑚(𝑑𝑥

′
|𝑥) +

∫
𝑋⧵𝑠

∗
(𝐵,𝑟)

𝑠(𝐵|𝑥
′
)𝑚(𝑑𝑥

′
|𝑥)

Now let us use that 𝑚 is deterministic, so that either we have 𝑚(𝑠
∗
(𝐵, 𝑟)|𝑥) = 1, or 𝑚(𝑋 ⧵

𝑠
∗
(𝐵, 𝑟)|𝑥) = 1. In the first case, we have that 𝑠(𝐵|𝑥′

) > 𝑟 on a set of measure 1, therefore
𝑠(𝐵|𝑥) > 𝑟 , i.e. 𝑥 ∈ 𝑠

∗
(𝐵, 𝑟). In the latter case, 𝑠(𝐵|𝑥′

) ≤ 𝑟 on a set of measure 1, and therefore
𝑠(𝐵|𝑥) ≤ 𝑟 , i.e. 𝑥 ∉ 𝑠

∗
(𝐵, 𝑟). Since 𝑚 is deterministic, these are the only possibilities, and so

we have that

𝑚(𝑠
∗
(𝐵, 𝑟)|𝑥) =

{

1 𝑥 ∈ 𝑠
∗
(𝐵, 𝑟)

0 𝑥 ∉ 𝑠
∗
(𝐵, 𝑟).

This means precisely that 𝑠∗(𝐵, 𝑟) is invariant, and so 𝑠 is measurable. Therefore, 𝑠 is a
well-defined Markov kernel 𝑋𝑖𝑛𝑣 → 𝑆.
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For uniqueness, note that 𝑠 is the only possible choice of kernel 𝑋𝑖𝑛𝑣 → 𝑆 making

𝑋

𝑋𝑖𝑛𝑣 𝑆

𝑋

𝑚

𝑟

𝑠

𝑠

𝑟

𝑠

commute: let 𝑘 ∶ 𝑋𝑖𝑛𝑣 → 𝑆 be another such kernel. Then for all 𝑥 ∈ 𝑋 and every measurable
𝐵 ⊆ 𝑋 ,

𝑘(𝐵|𝑥) =
∫
𝑋𝑖𝑛𝑣

𝑘(𝐵|𝑥
′
) 𝛿(𝑑𝑥

′
|𝑥) =

∫
𝑋𝑖𝑛𝑣

𝑘(𝐵|𝑥
′
) 𝑟(𝑑𝑥

′
|𝑥) = 𝑠(𝐵|𝑥).

Moreover, by construction, 𝑠 is deterministic if and only if 𝑠 is. Hence the derired universal
property of 𝑋𝑖𝑛𝑣.

Definition 5.2.7. Let 𝑋 be a dynamical system with monoid 𝑀 in a Markov category C.
An invariant state 𝑝 ∶ 𝐼 → 𝑋 is ergodic if for every invariant deterministic observable
𝑐 ∶ 𝑋 → 𝑅, the composition 𝑐 ◦ 𝑝 is deterministic.

Definition 5.2.8. Let 𝑋 be a dynamical system with monoid 𝑀 in a Markov category C
and 𝑌 an object of 𝐶 with a state 𝑞 ∶ 𝐼 → 𝑌 and a morphism 𝑘 ∶ 𝑌 → 𝑋 . We say that 𝑘 is
𝑞-almost surely ergodic if

• 𝑘 is 𝑞-almost surely invariant, and

• whenever 𝑟 ∶ 𝑋 → 𝑅 is invariant and deterministic (not just almost surely), then
𝑟 ◦ 𝑘 is 𝑞-almost surely deterministic.

Proposition 5.4. Let 𝑋 be a dynamical system with monoid 𝑀 in a Markov category C,
and suppose that the Markov colimit 𝑋𝑖𝑛𝑣 of 𝑋 exists. Let 𝑌 be an object of 𝐶 with a state
𝑞 ∶ 𝐼 → 𝑌 and a 𝑞-almost surely invariant morphism 𝑘 ∶ 𝑌 → 𝑋 . Then 𝑘 is 𝑞-almost surely
ergodic if and only if the composition with the universal cocone

𝑌 𝑋 𝑋𝑖𝑛𝑣

𝑘 𝑟

is 𝑞-almost surely deterministic.

Proof. We prove the following result first: An invariant state 𝑝 ∶ 𝐼 → 𝑋 is ergodic if and
only if the composition with the universal cocone

𝐼 𝑋 𝑋𝑖𝑛𝑣

𝑝 𝑟

is deterministic.

First, suppose that the composite 𝑟 ◦ 𝑝 is deterministic. Let 𝑐 ∶ 𝑋 → 𝑅 be an invari-
ant deterministic observable. By definition of Markov colimit, 𝑐 factors (uniquely) as a
composite 𝑐 ◦ 𝑟 , where 𝑐 ∶ 𝑋𝑖𝑛𝑣 → 𝑅 is deterministic. Therefore

𝑐 ◦ 𝑝 = 𝑐 ◦ 𝑟 ◦ 𝑝 = 𝑐 ◦ (𝑟 ◦ 𝑝)
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is a composite of deterministic maps, and hence is deterministic. This is true for every
invariant deterministic 𝑐, and so 𝑝 is ergodic.

The converse follows by taking 𝑐 in the definition of ergodicity to be 𝑟 ∶ 𝑋 → 𝑋𝑖𝑛𝑣,
which is deterministic and invariant.

For the result stated, it is a direct application for the one proved above.

Theorem 5.5 (Synthetic ergodic decomposition theorem). Let C be a Markov category. Let
𝑋 be a deterministic dynamical system in 𝐶 with monoid 𝑀 . Suppose that

• 𝑋 has disintegrations;

• The Markov colimit 𝑋𝑖𝑛𝑣 of the dynamical system exists.

Then every invariant state of 𝑋 can be written as a composition 𝑘 ◦ 𝑞 such that 𝑘 is 𝑞-almost
surely ergodic.

The proof goes exactly as in Moss and Perrone, 2023:

Proof. Let 𝑝 ∶ 𝐼 → 𝑋 be an invariant state. Consider the map 𝑟 ∶ 𝑋 → 𝑋𝑖𝑛𝑣, and form the
disintegration 𝑟

+

𝑝
∶ 𝑋𝑖𝑛𝑣 → 𝑋 .

𝑟

𝑋 𝑋𝑖𝑛𝑣

𝑟

𝑟
+

𝑝

𝑋 𝑋𝑖𝑛𝑣

=

𝑝

𝑝

By marginalizing the equation above over 𝑋𝑖𝑛𝑣, we see that 𝑝 = 𝑟
+

𝑝
◦ 𝑟 ◦ 𝑝, i.e. we are

decomposing 𝑝 into the composition of 𝑟 ◦ 𝑝 ∶ 𝐼 → 𝑋𝑖𝑛𝑣 followed by 𝑟
+

𝑝
. Now denote 𝑟 ◦ 𝑝

by 𝑞.

Let us show that 𝑟+
𝑝

is 𝑞-almost surely ergodic. To see that 𝑟+
𝑝

is 𝑞-almost surely left-
invariant, note that for all 𝑚 ∈ 𝑀 ,

𝑟

𝑟
+

𝑝

𝑋𝑋𝑖𝑛𝑣

=

𝑚

𝑋𝑋𝑖𝑛𝑣

𝑚

𝑋𝑋𝑖𝑛𝑣

==

𝑟

𝑚𝑟 𝑚

𝑚

𝑟

𝑋𝑋𝑖𝑛𝑣

=

𝑋𝑋𝑖𝑛𝑣

𝑟

=

𝑟

𝑟
+

𝑝

𝑋𝑋𝑖𝑛𝑣

𝑝

𝑝 𝑝

𝑝

𝑝

𝑝

𝑞 𝑞

using, in order, the definition of 𝑟+
𝑝

as a disintegration, right-invariance of 𝑟 , determinism
of 𝑚, left-invariance of 𝑝, and again the definition of 𝑟+

𝑝
as a disintegration.



66

5 | MISCELLANEOUS

By 5.4, all that remains to be shown in order to prove 𝑞-almost sure ergodicity is that
𝑟 ◦ 𝑟

+

𝑝
is 𝑞-almost surely deterministic. To see this, note that since 𝑟 is deterministic, we

can apply

𝑌 𝑌

𝑓

𝑓
+

𝑝

𝑌𝑌

=

𝑓

𝑓

𝑌𝑌

=

𝑓 𝑓

𝑝

𝑝

𝑝

with 𝑟 in place of 𝑓 . The proposition tells us that 𝑟 ◦ 𝑟+
𝑝

is 𝑞-almost surely equal to the
identity, which is deterministic.
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