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Resumo

Folheacgoes do tipo 3-2-1 para fluxos de Reeb em S?

Neste trabalho, estudamos sistemas globais de segoes transversais para
fluxos de Reeb associados a formas de contato tight na 3-esfera. Tais fluxos
incluem, em particular, fluxos Hamiltonianos em R* restritos a niveis de ener-
gia regulares estrelados. Um sistema global de segoes transversais adaptado
a um fluxo em S% ¢ uma folheacdo singular de S® cujo conjunto singular,
chamado de amarracao, consiste de um numero finito de 6rbitas periddicas
e as folhas regulares sao transversais ao fluxo. Como demonstrado por H.
Hofer, K. Wysocki e E. Zehnder em [HWZ03|, fluxos de Reeb associados a
formas de contato tight nao degeneradas em S® admitem um sistema global
de secoes transversais, cujas folhas regulares sao esferas furadas. Tais sis-
temas sdo construidos como a projecao em S? de uma folheacdo de R x S3
por curvas pseudo-holomorfas.

Utilizando a teoria de curvas pseudo-holomorfas em simplectizacoes, es-
tudamos a existéncia de um tipo de sistema de secOes transversais, que
chamamos de folheacao 3-2-1, possuindo exatamente trés 6rbitas na amar-
racao, com indices de Conley-Zehnder respectivamente 3, 2 e 1. Mais pre-
cisamente, apresentamos condicoes suficientes sob as quais trés orbitas de
Reeb formam a amarracao de uma folheacao 3-2-1.

Palavras-chave: Dinamica Hamiltoniana, Fluxos de Reeb, Curvas pseudo-

holomorfas, Folheacdes de energia finita

Este trabalho foi financiado pelo processo n® 2016,/10466-5, Fundacdo de Am-
paro a Pesquisa do Estado de Sao Paulo (FAPESP).

il



iv

O presente trabalho foi realizado com apoio da Coordenagdo de Aperfeicoa-
mento de Pessoal de Nivel Superior - Brasil (CAPES) - C6digo de Financiamento
001.



Abstract

In this work, we study global systems of transversal sections for Reeb flows
associated with tight contact forms on the 3-sphere. These flows include, in
particular, Hamiltonian flows on R* restricted to star-shaped regular energy
levels. A global system of transversal sections naturally generalizes the con-
cept of global surface of section. It is a singular foliation of S® whose singular
set consists of finitely many periodic orbits, called binding orbits, and the
regular leaves are transverse to the flow. As proved by H. Hofer, K. Wysocki
and E. Zehnder in [HWZ03], Reeb flows associated with non-degenerate tight
contact forms on S® admit a global system of transversal sections whose reg-
ular leaves are punctured spheres. Such system is the projection to S® of a
foliation of R x S? by pseudo-holomorphic curves.

The aim of this work is to use the theory of pseudo-holomorphic curves
in symplectizations to study the existence of a particular type of system of
transversal sections, called 3-2-1 foliation, which has exactly three binding
orbits with Conley-Zehnder indices respectively 3, 2 and 1. More precisely,
we give sufficient conditions under which three Reeb orbits are the binding
orbits of a 3-2-1 foliation.

Keywords: Reeb Flows, Hamiltonian dynamics, finite energy foliations,

pseudoholomorphic curves

This study was financed by grant #2016/10466-5, Sao Paulo Reserch Fundation
(FAPESP).

This study was financed in part by the Coordenacao de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.



vi



Contents

[1 Contact geometry and Reeb dynamics|

[LI Contact structures . . . ... ... .. ... 0.
(1.1.1  Hypersurtaces ot contact type| . . . . . . .. ... ...
(1.1.2  Symplectization of a contact manifold. . . . . . .. ..
(1.1.3  Hamiltonian dynamics| . . . . . .. ... ... ... ..

|1'2 I;§:§:t2 !!It!i!{il ----------------------------
(1.2.1  'The Conley-Zehnder index| . . . . . . ... ... ....

(1.3 'T'he asymptotic operator| . . . . . . .. . ... ... ... ...

2 Finite energy surfaces|

2.1 Almost complex structures in symplectizations| . . . . . . . ..

2.2 Finite energy surfaces|. . . . . . .. ... ... 0oL

Asymptotic behavior|. . . . . .. ... L.

Somewhere injective curves|. . . . . . ... .00

Algebraic invariants|. . . . . .. ... ... ... ...

P21
P22
P23
P21

Fredholm theory| . . . ... .. ... ... ... ....

p3

Bubbling-off analysis| . . . . .. ... ... ... ........

[2.3.1 Elliptic Regularity and compactness|. . . . . . . .. ..
[2.3.2 Bubbling{. . . . . ... ... ... 0.
[2.3.3  Germinating sequences| . . . . . .. .. ... ... ...
[2.3.4  Soft-rescaling near a negative puncturel . . . . . . . ..
[2.3.5 Bubbling-oft tree| . . . . . . ... ... 00000

Vil

11
15
20



viii CONTENTS

[2.3.6  Estimating Conley-Zehnder indices| . . . . . . .. ... 45

2.4  Transverse foliationsl . . . . . . ... . ... ... ... .... 50
[2.4.1  Finite energy foliations| . . . . . . . . ... .. .. ... ol

[2.4.2  Open book decompositions|. . . . . . ... .. .. ... 53

B 3-2-1 Folian T R l 55
3.1 Main Theoreml . . ... ... ... oL 55
[3.1.1  Sketch of the proot of Theorem|3.0 . . . . .. .. ... 58

[3.2  Proot of Proposition 3.6 . . . . ... ... ... ... ..... 09
3.3 Proof of the main theorem| . . . . . . . ... ... ... .... 61
[3.3.1 A special spanning disk for the orbit /5. . . . . . . .. 61

[3.3.2  The Bishop family| . . . . ... .. ... ... ... .. 62

3.3.3 Thecasem-dug=0| .. ... ... .. ... . ..... 68

B.3.4 Thecase [\ ugdA >0 .. ..o 72

4 Proof of the case 7 - dug = 0 75
4.1 Foliating a solid torus in the case I'y =0 . . . . . ... .. .. 76
4.2 Foliating a solid torus in the case I'y ={0}| . . . . .. .. ... 86
[4.3 A cylinder asymptotic to P, and Py . . . . . ... ..o 88
[4.3.1  Limiting behavior|. . . . . . . ... ... ... ..... 91

[4.4 A family of cylinders asymptotic to P, and P3| . . . . . . . .. 99
[4.4.1  Bubbling-oft analysis for the family of cylinders| . . . . 101

[4.4.2  Proot of Proposition [4.28. . . . . . ... ... ... .. 108

M43  The foliationl . .. .. .. ... 0oL 115

5 Idea of the proof of case [, ugd\ > 0| 117
5.1 Glung . . .. .. .. 117
[>.1.1  Pregluing| . . .. ... .. ... ... ... ....... 118

5.2 Idea of the proof of case [, ugdA >0 .. .. ......... 120
[A__Proof of Lemma 3.9 125

(B Intersection Theory| 131




Introduction

In this thesis we use the theory of pseudoholomorphic curves in symplec-
tizations to study the existence of finite energy foliations for Reeb flows on
S3,

We consider S® equipped with the contact form A = f\g|ss, where
f 8% — R\ {0} is smooth and )y is the standard contact form )\, =
25:1 x;dy; — y;dr; on R* with coordinates (z1,Z2,y1,v2). The Reeb vector
field Ry associated with the contact form A is uniquely determined by the
equations

in,dA =0, AR)) =1

The flow of R, is called Reeb flow. The symplectization of (S3,)\) is the
symplectic manifold (R x S3 d(e®))), where a is the coordinate on R. We
consider pseudoholomorphic maps @ : (S \T,j) = (R x S3,.J), where S is
a closed Riemann surface, I' C S is a finite set, and the almost complex
structure J is defined as

Ja% =Ry, Jlkerr =,

for any complex structure J on ker A compatible with d\. Due to results
of [Hof93] and [HWZ96], if a pseudoholomorphic curve has finite energy, its
projection onto S® converges near the ends to periodic orbits of the Reeb
flow.

A finite energy foliation F for the contact manifold (S3, ) is a collection
of J-holomorphic curves with uniformly bounded energy, whose images form
a smooth foliation of R x S®. In [HWZ03|, H. Hofer, K. Wysocki and E.
Zehnder proved that for any nondegenerate contact form A = f\g on S3,
there exists a finite energy foliation for (53, \). The projection of F onto S3
is a singular foliation of S? satisfying the following properties. The singular
set consists of finitely many periodic orbits of the Reeb flow, called bindings,
having Conley-Zehnder indices in {1,2,3}. The regular leaves are punctured
spheres transverse to the Reeb vector field. Each component of the boundary
of the regular leaves is one of the bindings.
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Figure 1: A 3 — 2 — 1 foliation cut by a plane. The dots represent periodic
orbits P;, P, and P3; with Conley-Zehnder indices respectively 1, 2 and 3.
The bold curves represent two rigid cilinders connecting P, and Pj, a rigid
cylinder connecting P, and P, and a rigid disk with boundary P,. The
dashed curves represent a family of planes with boundary P;. The dotted
curves represent a family of cylinders connecting P, and P;. The arrows
indicate the Reeb flow. The 3-sphere is viewed as R3 U {oo}.

If the singular set of the finite energy foliation JF consists of a unique orbit
P, then P has Conley-Zehnder index 3 and the projection of F onto S? is
an open book decomposition with pages diffeomorphic to disks, where every
page is a global surface of section for the Reeb flow. This kind of foliation was
obtained in [HWZ98] for Hamiltonian flows on R* restricted to strictly convex
energy levels. Such foliations were also studied in [HSalll, Hry12 [Hry14].

The first result on the existence of a finite energy foliation for S® other
than the one that projects onto an open book decomposition is due to N.
de Paulo e P. Salomdo. In |[dPSal§|, the authors study the existence of a
finite energy foliation that projects to a singular foliation of S3, called 3-2-3
foliation, having an orbit with Conley-Zehnder index 2 and two orbits with
Conley-Zehnder index 3 as bindings.

The results of [HWZ98| and [dPSal8] cited above apply to weakly convex
contact forms, that is, such that every closed Reeb orbit has Conley-Zehnder
index > 2. Hence, it is natural to ask about the existence of energy levels of
Hamiltonians on R* that admit transverse foliations with index 1 orbits as
bindings. The results in this thesis go in the direction of the solution of this
question. From assumptions about the Reeb flow and three prescribed Reeb
orbits P, P, and P;, with Conley-Zehnder index 3, 2 and 1 respectively, we
study the existence of a finite energy foliation that projects onto S® as a
singular foliation, that we call 3 — 2 — 1-foliation, having the orbits P;, P,
and P; as bindings. See figure [I}

Our main theorem is the following:
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Theorem. Let \ be a nondegenerate tight contact form on S® Let P, =
(x1,Th), P2 = (x2,T%) and P3 = (3,T3) be simply covered closed Reeb orbits
with Conley-Zehnder indices respectively 1, 2 and 3. Assume that the orbits
Py, Py and P; are unknotted, P, and P; are not linked fori # j, i,7 € {1,2,3}
and the following conditions hold:

(i) Ps spans an embedded disk whose interior is transverse to the Reeb flow;
(ZZ) T < Ty < T3 < 2T1,'

(7ii) Py is the only Reeb orbit with Conley-Zehnder index 2 not linked to P
with period < Tj;

(iv) Py is the only Reeb orbit with Conley-Zehnder index 1 not linked to Ps
with period < Tb;

(v) There is no C'-embedding W : S* — S* such that x5(Th") = V|g140}
and each hemisphere is a strong transverse section.

Then Py, P, and Ps are the binding orbits of a 3 —2 — 1 foliation.

We also prove that the hypothesis (v) is necessary to the existence of a
3 — 2 — 1 foliation.

The proof of the main theorem depends on a result about gluing of pseu-
doholomorphic curves that is stated in Chapter 5, but is not proved in this
thesis.

Outline of the Thesis

Chapters 1 and 2 consist of preliminary results. In Chapter 1 we recall
some relevant definitions and results about contact geometry and Reeb flows
and present the definition and important properties of the asymptotic oper-
ator. The subject of Chapter 2 is the theory of pseudoholomorphic curves in
symplectizations. We recall results of [HWZ96, [HWZ95b, HWZ99b| about
asymptotic behavior, algebraic invariants and Fredholm theory. We finish
the chapter recalling facts about finite energy foliations.

In chapter 3 we define 3 — 2 — 1 foliations, state the main theorem and
give the first steps of the proof. Following the ideas of [Hof93, HWZ95a,
HWZ99a, HSall], we consider a family of pseudoholomorphic disks with
boundary in a special embedded disk with spanning P3;. From a bubbling-off
process and exploring the non-compactness of the space of such disks and the
properties of its compactification, one can prove the existence of finite energy
pseudoholomorphic curves. By our linking hypotheses we have to consider
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two possibilities: either 1. The boundaries of the family of disks converge to
the orbit P53 or 2. The family of disks breaks before approaching Ps.

In chapter 4 we conclude the proof of case 1. In chapter 5 we present an
idea of the proof of case 2.



Chapter 1

Contact geometry and Reeb
dynamics

1.1 Contact structures

Let M be a smooth manifold of dimension 2n + 1. A contact structure &
on M is a maximally non-integrable hyperplane distribution on M. This is
equivalent to the following: £ can be locally written as the kernel of a 1-form
A such that A A (d\)" is a non-vanishing (2n + 1)-form. If £ is a contact
structure on M, the pair (M, ) is called a contact manifold.

If n is odd, the sign of the local form A A (d\)™ depends only on £ = ker A,
not on the choice of A. So the contact structure induces an orientation on
M. Assume that M is oriented. We call the contact structure & positive if
the orientation of M and the orientation given by & agree. Otherwise, we say
that & is negative.

We say that the contact manifold (M,€) is co-orientable if the bundle
TM/§ — M is trivial. This is equivalent to the existence of a globally
defined 1-form A such that & = ker \.

A 1-form on M such that £ = ker A is a contact structure, that is, AA(d\)"
is a volume form on M, is called a contact form. If X\ is a contact form on
M, we also call the pair (M, \) a contact manifold.

In this thesis we will only consider co-orientable contact manifolds.

The Reeb vector field Let (M, \) be a closed contact manifold. The
contact form A defines a vector field R, called Reeb vector field, uniquely
defined by

)\(R)\) = 1, Z.de)\ =0.
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The Reeb vector field is transverse to the contact structure £, so that the
tangent bundle T'M naturally splits into

TM =RR, & €. (1.1)
If {¢": M — M},er is the flow of Ry, then (p')*\ = A, Indeed

d

E(got)*)\ = (@)L, A = (") (ip,d\ + dig, \) = 0 ,Vt € R.

Consequently, the linearized flow dy' : TM — T M leaves the splitting TM =
RR) & £ invariant.

The restriction of d\ to £ = ker A is nondegenerate, so that (£, d)\) is a
symplectic vector bundle over M. Moreover, the map dy! : § — E(y) is
symplectic with respect to dA.

1.1.1 Hypersurfaces of contact type

Let (W?" w) be a symplectic manifold. A vector field Y defined on an
open set of W is called a Liouville vector field if it satisfies Lyw = w, where
Lyw is the Lie derivative of w in the direction of Y. A compact hypersurface
M in (W,w) is said to have contact type if there exists a Liouville vector
field on a neighborhood of M that is transverse to M. Every hypersurface
of contact type is a contact manifold, by the following proposition.

Proposition 1.1. Let M C (W?*" w) be a hypersurface of contact type and
let Y be a Liouville vector field defined on a neighborhood U of M that is
transverse to M. Then the 1-form X := iyw|y satisfies A\ = w and A A
(dN)" s is a volume form on M.

A proof of Proposition can be found in [Gei08, Lemma 1.4.5] or
[HSa09, Prop. 1.6].

Star-shaped hypersurfaces on R?*"

Definition 1.2. A regular hypersurface S C R?*" is said to be star-shaped
with respect to the origin if every half-line starting at the origin intersects S
transversely in exactly one point.

Consider R*" with coordinates (z1,- -+ , Ty, Y1, "+, Yn) equipped with the

canonical symplectic form wy = >"" ; dx; A dy;. The vector field X (z) = £,

2= (1, ", Tn, Y1, ,Yn) € R* is a Liouville vector field. Indeed, ixwy =
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Ao, where \q is the Liouville 1-form

1 n
-3 Z zidy; — yidw;.
i=1

Using the Cartan formula we get
LXWO = dixwo + ixdwo = d)\o = Wwp.

It follows that every hypersurface S C R?" that is star-shaped with respect
to the origin is a contact manifold equipped with the contact form \y|g.

Let S be a hypersurface S C R?" that is star-shaped with respect to the
origin. For x € S?"71 let f(x) € RT be defined by /f(x)x € S. Define
PSPt — S by ¢(x) = v/ f(x)x. Then 1 is a diffeomorphism.

Proposition 1.3. The Reeb vector field Xy, on S associated with the con-
tact form Ao|s is equivalent to Reeb vector field Xgxy| o, o O S*#=1 associated
with the contact form fg|gzn—1.

Proof. For every z € S*! and v € T,,S*""1, we have
(V" Aols)a(v) = Ao(dipav)
( VS (VA fx),v)z + \/f(:c)v>

= f(@)wo <%CL‘,U>
= [(#)(A0)z(v)
It follows that Y. X x|, 1 = Xagls- O

1.1.2 Symplectization of a contact manifold

Let (M, \) be a contact manifold. The symplectization of (M, \) is given
by the manifold R x M equipped with the symplectic form d(e®)), where a
is the coordinate on R and A is interpreted as the 1-form on R x M given by
the pullback of A under the natural projection R x M — M.

The vector field Y = 2 is a Liouville vector field, so that (M, \) can
be realized as a hypersurface of contact type of its symplectization (R X
M, d(e"N)).

More generally, if ¢ satisfies {¢, ¢’} € C°(R,R*") and the 1-form A, on
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R x M is defined by
Ao(a, z)(h, k) = p(a)\(z)(k), Y(a,z) € Rx M, (h,k) € Tiam)(Rx M), (1.2)

then (R x M, d\,) is a symplectic manifold.

1.1.3 Hamiltonian dynamics

A Hamiltonian system is a triple (W,w, H) where (W,w) is a symplectic
manifold and H : W — R is a smooth function, that is called a Hamiltonian
function. The Hamiltonian vector field associated with (W, w, H) is the vector
field defined on W by

iXHw = —dH .

The vector field X is well defined because w is non-degenerate.
Let x : R — W be a solution of the equation

Then the Hamiltonian function is constant along x. Indeed,

%H(m(t)) =dH(Xy(z(t))) = —w(Xy, Xy) =0.
Therefore all the trajectories lie in energy levels of the Hamiltonian function.
Let S = H !(e) be a regular energy level of H. Assume that S C (W, w)
is a hypersurface of contact type. Racall that for a Liouville field Y defined
on a neighborhood of S and transverse to .S, the form A = iyw|g is a contact
form on S. Hence Xp|s and the Reeb vector field R, lie in the kernel of w|s.
Since ker w|g is 1-dimensional, there exists a function a : S — R\ {0} such
that Xpy|s(z) = a(z)Ra(z), Yo € S. Thus, the trajectories of Xp|g and Ry
are the same, modulo reparemetrization.

1.1.4 Classification of contact structures in dimension 3

Let (M3 €) be a contact manifold of dimension 3. An embedded disk
D C M satisfying

TOD C & and T,D # &,, Vp € 0D

is called an overtwisted disk.

The contact structure & on M is called overtwisted if it admits an over-
twisted disk. Otherwise, £ is called tight. If & = ker A\ globally, we call the
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contact form overtwisted (tight) if & = ker A is overtwisted (tight).

In this thesis, we will deal with co-oriented tight contact structures on
S3.

Consider R* with coordinates (z1, 2,1, ¥2). The Liouville 1-form

2
1
Ao = 5 ;l‘zd% — yidx; (1-3)

restricts to a contact form on S®. By a result of Bennequim [Ben83|, the
contact structure {, = ker(\g|gs) is tight. By a Theorem of Eliashberg [E1i92],
& = ker(X\glgs) is the only positive tight contact structure on S®, up to
diffeomorphism.

1.2 Reeb orbits

Let (M, ) be a closed contact manifold of dimension 3. We call a pair
P = (x,T), where x : R — S? is a periodic trajectory of @(t) = Ry(z(t)) and
T > 0 is a period of x, a closed Reeb orbit. We identify P = (z,T) with the
C>(R/Z, M)

R/Z induced by the loop

element of

Xy % — M, xp(t) =x(Tt), (1.4)
where the quotient is relative to the translations ¢ — xr(t + ¢). The set of
periodic Reeb orbits will be denoted by P(\). If T is the minimal positive
period of x, we call P simply covered or prime. If m > 1 is an integer, the
m!" iterate of P will be denoted by P™ := (z, mT).

Assume M = S3. The self-linking number sl(L) of a knot L C S® trans-
verse to £ is defined as follows. Consider S? oriented by AAd), choose a Seifert
surface F_:] Y for L and a smooth nonvanishing section Z of |y, — X. The sec-
tion Z is used to slightly perturb L to another knot L. = {exp,(eZ,)|z € L}
transverse to £ and X. A choice of orientation for Y induces orientations
of L and L.. The self-linking number sl(L) of L is the oriented intersection
number L. - ¥ of L, and X. It is independent of the choices of Z and 3.
Proofs of these facts can be found in [Gei08]. If P = (z,T) is a closed Reeb
orbit, we define its self-linking number by sl(P) = sl(z(R)).

LA Seifert surface for L is an orientable, embedded, connected and compact surface ¥
such that L = 0.
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The orbit P = (z,T) is called unknotted if z(R) is an unknot | We say
that a set of orbits U}, P, = (z;,T;) is an unlink if U,—;z;7, is an unlink.

We say that two orbits P and P are linked if the linking number
Ik(2r, 1) is nonzero. [

We call the orbit P = (z,T) nondegenerate if 1 is not an eigenvalue of
de™ e, - If every orbit P € P()) is nondegenerate, then the contact form A
is called nondegenerate.

Periods of Reeb orbits We call a number T" > 0 a period if there exists
a T-periodic orbit P € P(\).

Fix C > 0. If the contact form A is nondegenerate, then there exists a
finite number of orbits in P(\) with period less that C'. This is a consequence
of the following lemma.

Lemma 1.4. Let A\ be a nondegenerate contact form on a closed manifold
M. Fiz C > 0 and let (z,T) € P(\) be a prime orbit satisfying T < C.
Then there exists a neighborhood V. C M of z(R) such that if (Z,T) € P(A\)\
{(z,T)} satisfies T < C, then Z(R) NV = (0. In particular, there exists a
finite number of orbits in P(\) with period < C.

Proof. Consider a Poincaré section D at x(0) such that Ty)D = &). Let
U C D be a neighborhood of z(0) such that the first return map

¢:U—=D, ¢(z)=¢ ()

is defined and ¢(U) C U, so that the iterate ¢* : U — U is defined for
every k > 1. Here 7* : U — R™ is the first return map defined by 7*(z) =
inf{t > 0] ¢'(z) € D}. Computing the derivative of ¢ at z(0) and using
T = 7*(x(0)), we obtain

du(0) = dip" le(a(0))-
Since the orbit (x,T') is nondegenerate, then

da(0) — id = dp” |¢(w(oy) — id

2A knot is a copy of S' embedded in S3. More generally, a link with n components is
a disjoint union of n copies of S* embedded in S3. A knot K is called unknot or trivial
knot if there exists a embedded disk D C S® such that K = dD. Allink L = | || L; is

called unlink or trivial link if there exist n disjoint embedded disks Dy, ..., D,, in S* such
3k(zr,z5) = lk(Zp,z7) and lk(zr,Z4) = 0 if and only if the homology class of

t € R/Z s z(Tt) in H1(S?\ Z(R), Z) is zero.
“4not linked # unlink, but unlink = not linked.



1.2. REEB ORBITS 11

is an isomorphism. Using the inverse function theorem, we conclude that
there exists a neighborhood U; C U of z(0) such that z(0) is the only fixed
point of ¢ in U. For any k > 1, we have d¢*z(0) = dp" |¢(4(0)). Since the
orbit (z,nT) is nondegenerate, then d¢*z(0) —id = d™ |¢(z(0)) — id is an
isomorphism, so that x(0) is the only fixed point of ¢* in a neighborhood
Up C U of z(0). Fix N € N such that NT > C and define U = (-, Uy.
Then z(0) is the only periodic point of ¢ in U with period < 2N. Shrinking
U if necessary, we can assume that ¢(U) C U and for every y € U,

T

[ (y) = (@ (O)] < 5

Let (z,T) € P(A\)\ {(z,T)} be a prime orbit such that z(0) € . Then z(0)
is a periodic point of ¢ with period M > 2N. It follows that |7*(¢"(2(0))) —
™(x(0))] < £, for k=0,..., M —1. Since S (68(2(0))) = T, we have

M-1

_ T
T—MT| < “(F(z — —
| <) T (¢R(@(0) - T < M
k=0
It follows that T T
C’<NT<M§:MT—M§§T.

We have proved that if an orbit (z,7) € P(\) \ {(x,T)} satisfy T < C,
then Z(R) does not intersect the section . Let V be a neighborhood of z(R)
in M such that any orbit intersecting the neighborhood V also intersects the
section U. Then any orbit (Z,T) € P(A)\ {(x, T)} satisfying T' < C satisfies
T(R)NY = 0. O

Thus, if A is nondegenerate, we can define o(C') as any real number sat-
isfying
0<o(C)<min{T",|T"=T"|:T" #T" periods , 7", 7" < C} .  (1.5)

The number o(C) will be important later in Chapters [2] and [4l

1.2.1 The Conley-Zehnder index

An axiomatic definition Let Sp(n) denote the symplectic group in di-
mension 2n. Consider the set 3*(1) of paths ¢ € C*°(]0, 1], Sp(1)) such that
©(0) = I and det(p(1) — I) # 0.

The Conley-Zehnder index is a map p : 2*(1) — R that can be axiomat-
ically characterized as follows.
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Theorem 1.5 (JHWZ03, Theorem 8.1]). There is a unique surjective map
w:X*(1) = Z, called the Conley-Zehnder index, that satisfies the following
azioms[]

(1) The map s — p(p®) is constant if {p°} is a homotopy of paths in X*(1);

(2) If ¢ : [0,1] — Sp(1) is a smooth loop based at I, then

w(p) = 2Maslov(y) + u(p), Ve € X*(1)

(3) If o € X*(1), then pu(p™") = —pu(p)

_( cos(mt) —sin(mt) B
W 1ot = (o) o). then () = 1.
Fix a nondegenerate orbit P = (z,7T) € P(A). The vector bundle x%.¢ —
S! becomes a symplectic bundle with the bilinear form d\.
Let U : 2%& — S' x R? be a symplectic trivialization and consider the

arc of symplectic matrices ® € C>([0, 1], Sp(1)) defined by
®(t) = Vo dSOTt|€z(o) © ‘I’(Yl :

The arc @ satisfies ®(0) = I and, since P is nondegenerate, det(®(1)—1) # 0.
Thus, ® € ¥*(1).

Definition 1.6. We define the Conley-Zehnder index of the orbit P relative
to the trivialization W by

PP W) = pu(®) € Z .

This index only depends on the homotopy class [f| of the trivialization W
and we denote p(P, [V]) = u(P, V).

Global trivializations of the tight contact structure & on S3 Later
on, we will only deal with the tight contact structure & = ker A\g|gs on 52,
that is a trivial symplectic bundle. Here )\q is the Liouville 1-form defined

5The Maslov index is a function that assigns an integer to every path of symplectic
matrices v : % — Sp(n). This function is homotopy invariant and induces an isomorphism
m1(Sp(n)) — Z. Definitions can be found in [MS17] or [HWZ95b].

6Let £ 2 B be a vector bundle of rank k. Two trivializations ¥,® : E — B x R*
are homotopic if there exists a trivialization F : E x [ — (B x I) x R¥ =2 (B x RF) x I

of the vector bundle E x I 2% B x I such that, for every e € E, F(e,0) = (¥(e)) and
F(e, 1) = (®(e), 1).
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in Now we show that the Conley-Zehnder index is independent of the
choice of global symplectic trivialization of &g.

Let W, 0 : & — 53 x R? be two symplectic trivializations of & and let
P € P(\) be a nondegenerate orbit, where A is a contact form such that
& = ker \. Then the trivializations ¥ : 25& — R/Z x R? and ¥’ : 25.&) —
R/Z x R? are homotopic. This is a consequence of the fact that the orbit P
is contractible and of the following lemma.

Lemma 1.7. Let ¢ : D — S® be a continuous map. Then any two trivializa-
tions of the bundle ¢*&y are homotopic.

Proof. Let Uy, Wy : ¢*&y — D x R? be two symplectic trivializations of the
bundle ¢*¢, & D. Consider the map f : D — Sp(1) defined by a — U, o
U5 {ayxre2. Since D is contractible, the map f : D — Sp(1) is homotopic to
a constant map. Since Sp(1) is path connected, any constant map = € D —
c € Sp(1) is homotopic to the constant map = € D — id € Sp(1). Thus,
there exists a homotopy H : D x I — Sp(1) between f : D — Sp(1) and the
constant map r € D — id € Sp(1). Define G : ¢*¢y x [ — D x R? x I by

Gle,t) = (p(e), H(p(e),t) - Walp-10p0e) (€), 1), for (e,t) € ¢*&y x 1.

Then G defines a homotopy between the trivializations ¥, and W,. In fact,
G is a bundle morphism with inverse given by

Gz, 0,t) = (U3 [aywre (H (2, )7 - 0), ), for (v,0,t) € D x R? x [,

G(e> 0) = (p<6)7 H(p(€)7 0) : \p2|p*1(p(e))(€)v O)
= (p(e), (¥1 0 U3 M) ey xr2 - Yalp-1(p(e)) (€), 0) = Wy (e), Ve € ¢*&
and
G(e, 1) = (p(e), H(p(e), 1) - Walp-1(p(ep) (€), 1)
= (p(e), id - lp2|p—1(p(e))<€)a 1) = \D2<€), Ve € ¢*fo
H

A geometric description of the Conley-Zehnder index Following

[HWZ03|, we present a geometric construction for the index p: ¥*(1) — Z.
Fix & € ¥*(1). Let z € C\ {0} and let 6 : [0,1] — R be a continuous

argument for z(t) := ®(t)z, that is, ™" = é&, Vo<t<l.

Define the winding number of z(t) = ®(t)z by

A(z) = 0(1) — 6(0) € R
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and the winding interval of the arc ® by

[(®) = {A(2)|z € C\ {0}} .

It is proved in [HWZ03] that the length of this interval is strictly smaller than
%. Thus, the winding interval either lies between two consecutive integers or
contains precisely one integer. Define

2k + 1, if I(®) C (k,k + 1)
@) = { 2k, if k € 1(®)

It is proved in [HK99|] that ® +— u(®P) satisfies the assumptions of Theorem
Thus, it agrees with the Conley-Zehnder index.

Recall that the spectrum of a matrix A € Sp(1) with det(A — 1) # 0
satisfies the following: either o(A4) = {\, A} C S*\ {1}, 0(A) = {\, A1} C
(0,00) \ {1} or o(A) = {\,A\7'} C (—0,0).

Definition 1.8. We say that an arc ® € X*(1) is hyperbolic positive if
a(®(1)) C (0,00) \ {1}, hyperbolic negative if o(P(1)) C (—o0,0) \ {—1},
or elliptic if the eigenvalues are in S*\ {1}.

Let z € C\ {0}. The winding number A(z) is an integer if and only if
there exists A > 0 such that ®(1)z = Az. Thus, an arc is positive hyperbolic
if and only if it has even index. For a negative hyperbolic arc, there exists
z € C\ {0} such that ®(1)z = —\z, for some X > 0, so that A(z) = k + 3,
for some k € Z. Thus pu(®) = 2k + 1. Elliptic arcs also necessarily have odd
indices.

Let P = (x,T) € P(X) be nondegenerate and assume that for all n € Z,
the orbit P™ = (x,nT) is nondegenerate. Fix a symplectic trivialization
U zhé — S' x R% The trivialization ¥ induces a trivialization of x7,.&
that we also denote by W. The following Lemma is a consequence of the
properties of the Conley-Zehnder index proved in [HWZ03|.

Lemma 1.9. Assume X\ is nondegenerate, let P = (x,T) be a closed Reeb
orbit and fix positive integers 1 < | < k. The following assertions hold.

(1) If (P, %) = 1, then u(P',¥) = 1;
(2) p(P*, W) <0 <= (P, ¥)<0;
(8) If P is a hyperbolic orbit, then u(P', V) = lu(P,V);

(4) If (P, W) = 2, then k,1 and u(P', V) belong to {1,2} and P is hyper-
bolic. If l =1 and k = 2, then u(P,¥) = 1.
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1.3 The asymptotic operator

Let £ 5 X be a smooth vector bundle. A complex structure J on E is
a smooth fiberwise linear map satisfying J2 = —I on 7 '(z), for all z € X.

Definition 1.10. Let (£ = X, w) be a symplectic vector bundle and let .J
be a smooth complex structure on E. J is said to be w-compatible if

we(+, Jo)

defines a positive definite inner product on E,, for all x € X. This is equiv-
alent to requiring that for all x € X, w,(J,+, Jo+) = w, and w,(v, Jv) > 0,
for 0 £ v e nt(z).

The set J(E,w) of w-compatible complex structures on (E,w) is non
empty and contractible. A proof of this fact can be found in [MS17].

Definition of the asymptotic operator Let (M, ) be a closed contact
manifold of dimension 3 and let R be the associated Reeb vector field. Let
P = (z,T) be a closed Reeb orbit and let h be a vector field along z7 :
St = R/Z — M, that is, h : S' — TM is a smooth function satisfying
h(t) € TyryM,Vt € S'. We can define the Lie derivative Lgh of h by

Lph(t) = di‘ls dg T (@(Tt+ ) (t + %) , (1.6)

where ¢! is the flow of R. Note that it is the same as defining the Lie
derivative of h as the Lie derivative of any extension of A to a neighborhood
of h(t) in M. Let V be a symmetric (torsion-free) connection on 7M. We
can use dxp(t)0;, = TR(xp(t)) to write

TLrh = Lrrh = [TR,h] = Vrgh — V, TR = V,h — TV, R, (1.7)

where h is any extension of h and V, is the covariant derivative along 2.
We conclude that the differential operator V, - —=T'V.R maps sections of 27§
to sections of x%.¢ and is independent of the choice of symmetric connection.

Choosing some J € J(&,d)), we associate to the orbit (z,7) the un-
bounded differential operator [

Apy :D(Apy) = WH2(SY ah&) € L*(Sh, a4€) — L*(S*, 25€) (1.8)

"We say that Y € WiP(2%€) (or YV € L(xx€)) if in any trivialization ¥ : x%¢ —
St x R?, where Y takes the form Y = (y1(t), y2(t)), the function (y1,2) : S* — R? is in
Whr(S1 R?) (or L?(S1,R?)).
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defined by
Apy(h) = —=J(Vih —TVLR) .

Definition 1.11 (Asymptotic operator). The operator Ap ; defined by (1.8)
is called the asymptotic operator associated to the orbit P and the complex
structure J.

The asymptotic operator in unitary trivializations

Definition 1.12. A wunitary trivialization of the bundle (z4€,d\,J) is a
trivialization U : z%& — S x R? of z4.¢ satisfying

(1.9)

d)\ = \I/*dxl N dl’g
Jo¥ =vJ ’

where (z1,12) are coordinates on R? and Jy = [ (1) _(1) }

Proposition 1.13. In any unitary trivialization ¥ of (%€, dX, J), the oper-
ator Ap ; takes the form

d
LS = —Joa - S(t)

where S(t) is a path of symmetric matrices given by S(t) = —Jod(t)d(t) ",
and ¢(t) is the linearized flow restricted to & in the trivialization V.

Proof. Consider the path of symplectic matrices
¢(t> =W, 0 d(PTt|§z(0) © ‘1151 )

where ¢’ is the Reeb flow. Note that for every ¢ € R, the matrix S(t) =
—Joo(t)p(t) is symmetric. Indeed, since ¢(t) is symplectic, we have the
identity

d T d -1 -1 -1

@ (hoT ) = Lo = 6000 (110)

Using (1.10)) and the identity (¢(t)™")T = —Jyp(t)Jo, we get

ST = (=hd(t)e(t) )T = (6(t) )T o(t)" Jo
= (¢(t) )T (=)o~ ()d()g ™ (1) = —Jod(t)d (1) = S(t).

Joo(t)" Jo =
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Along 2(Tt), ToryyM = Span{TR,V; ' e1, ¥; "es}, where e; = (1,0) and
es = (0,1). In this coordinates for 25T M, the linearized flow can be repre-
sented by a 3 x 3 matrix written in blocks

dipr((0)) = { : ¢(£ } '

Using the identity

d

Zer(@(0)) = T(dR o pri)dipr(x(0)),

we conclude that dR(x(T't)) can be written in the same coordinates above as

TdR(z(Tt)) = %dQOTt( (0)) o dere(2(0) ™

(1.11)
_ {8 é(t()]] {(1) ¢(t)—(1)] = {8 sz'ﬁ(t)gb—l(t())] 1.11

Now we compute W o Ap ;o Ut Let n: S* — R% n(t) = (ai(t),as(t)) be
a smooth function. Let (¢, 1, x2) be coordinates in a neighborhood of x(T't)
in M such that 2(T't) = (t,0,0), &(t,0,0) = TR, 32(£,0,0) = ¥~'e; and
72-(t,0,0) = U~'e,. Then

VoApyoUt(n)(t) =0T {—J (Vtak( )aik -V, (652 TR) (t,0, 0)]
= —JyU { K(t )aik + ay(t )VTR% —ap(t)V 3% } (t,0,0)
:_Jon(t)—JO\Il{ ()(vaataxk ~V.o TR) (t,0 0]

We write T'R(t, z1, x2) in coordinates near x(Tt) as

0 0
TR(t,Il,ZEQ) = 7”0(25,[)31,5(]2) +7”1(t ZEl,JZQ)— —|—T2(t l‘l,ZEQ)

ot 0z, Oxy
so that T'R(t,0,0) = %. Using these coordinates and equation (1.11)), we
obtain o 9 9 8 5
V.o TR(t,0,0)= 2L 7 29 1y,

oz, 8a7k a’El a’Ek 81’2 EE a
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Since V is symmetric, we conclude that

ar; 0
o Apy o U (n)(t) = —Jyilt) + Jo (“k<t> 5 ax-)

= —Jon(t) + Jo(medRme) (L, 0,0)n(t)
= —Jon(t) + Jod(t)(t) n(t)

Properties of the operator Lg The unbounded operator
Ls : D(Lg) = WH(S', R?) c L*(S',R?) — L*(S',R?)

is self-adjoint. Its spectrum consists of real eigenvalues which only accumu-
late at +oo and —oo. [

If n(t) is an eigenfunction of Lg with corresponding eigenvalue A € R
and n(t) is not identically zero in L?(S',R?), then n(t) solves the linear first
order differential equation

—Jon(t) — S(t)n(t) = In(t), n(t+1) =n(t) .

Hence n(t) # 0 for all t € S*. It follows that n(¢) has a well defined winding
number given by

N ()
wind(n, \) := deg (t — ||n(t)||> €Z.

The following properties about this winding number are proved in [HWZ95h)].
Proposition 1.14. [HWZ95b/

e Given nonzero eigenfunctions x(t) and y(t) associated to the same
etgenvalue X\, we have

wind(z, \) = wind(y, \)

8Tt is easy to see that Lg is symmetric with respect to the usual inner product in
L?(S',R?), that is, D(Lg) is dense and f; (Lsx(t),y(t))dt = fsl (x(t), Lsy(t)), for all x,y €
W12(S1 R?). Since Lg is symmetric and surjective, then Lg is self-adjoin (see Proposition
8.3 in [Tayl1]). Also, Lg is a bijection, because 0 = R(Lg)®™ = ker L% = ker Lg. Since
Lg is symmetric and bijective, Lgl is symmetric. By Hellinger-Toeplitz Theorem, L§1 is
bounded. Since the embedding W'2(S*,R?) — L?(S?,R?) is compact, it follows that Lg"
is a compact self-adjoint operator. Applying the Spectral Theorem to Lgl, we conclude
that the spectrum of Lg consists of real eigenvalues which only accumulate at +o0c and
—00.
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so that we can define wind(\) := wind(x, \), for any eigenfunction
associated to .

o If X # p € o(Lg) satisfy wind(\) = wind(u) and z(t),y(t) are non-
vanishing X, p-eigenfunctions, respectively, then x(t),y(t) are pointwise
linearly independent.

o Given k € Z, there exists precisely two eigenvalues \, u € o(Lg), count-
ing multiplicities, such that wind(\) = wind(u) = k

o If \,u€o(Ls) and A < p, then wind(\) < wind(p).

Properties of the asymptotic operator Ap; Given ¥ : 25.{ — ST xR?
a trivialization and t — Y (¢) a section such that Y () # 0 for all t € S*, we
define

N R 1040)
wind(Y, ¥) := deg (t Y ))H) (1.12)

This definition just depends on the homotopy class of the trivialization W,
and we denote wind(Y, [V]) = wind(Y, ¥), for any W in class [V].

The properties of the operator Lg discussed above imply similar proper-
ties for the asymptotic operator Ap ;, that we summarize below.

Proposition 1.15. The unbounded operator Ap has discrete real spectrum

accumulating only at +00. Fiz [V] a homotopy class of unitary trivializations.
Then

o Given nonzero eigensections n1(t) and ny(t) associated to the same
eigenvalue \, we have

wind(ny, [W]) = wind(n,, [V])

so that we can define wind(A, [¥]) := wind(n, [¥]), for any eigensection
1 associated to \.

o If\+# p € o(Apy) satisfy wind(\, [¥]) = wind(y, [¥]) and n(t), v(t) are
non-vanishing \, u-eigensections, respectively, then n(t), v(t) are point-
wise linearly independent.

e Given k € Z, there exists precisely two eigenvalues A\, 1 € o(Ap),
counting multiplicities, such that wind(\, [V]) = wind (g, [¥]) =k

o If \,pe a(Apy) and X < p, then wind(\, [¥]) < wind(y, [¥]).

0 ¢ o(Apy) if and only if the orbit P = (x,T) is nondegenerate.
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The Conley-Zehnder index Define

vp9 = max{r < O|v is an eigenvalue of Ap} (1.13)

v* = min{r > 0|v is an eigenvalue of Ap} (1.14)

and fixing a trivialization ¥ of z%.£, define

p = wind(v%*) — wind(vp7) .

One can check that p € {0,1}.

Definition 1.16. We define the (generalized) Conley-Zehnder index of the
orbit P relative to the unitary trivialization ¥ as

A(P,0) = 2wind(vp™, ¥) + p. (1.15)

It is proved in [HWZ95b, Theorem 3.10] that for any nondegenerate orbit
P cP(N),
[(P, W) = p(P, V)

where p(P, V) is the Conley-Zehnder index defined in [1.2.1]

1.4 The action functional

Let (M, ) be a closed contact manifold of dimension 3. We define the
action functional A: C>*(S' =R/Z, M) — R by

A(v)zlkizélv*k-

First variation of the action functional Let v € C*°(S', M) and let
h € T'(v*TM) be a vector field along . Consider a function u : (—¢, €)x S' —
M, (s,t) — u(s,t) satisfying

u(0.1) = 7(1) 1
%(O,t) _ppy VPSS
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d "
d_ /Slu(s,-))\
d 0
/51£ U)\(st <at)dt
0
/S1£<965 <8t)dt
/ i du)\ + di (u)\)) 9 dt
75 o5 (0,¢) \ Ot

- [ xwe)sar

Then

In the last equality we used the fact that fsl dz’g(u*/\)(o,t) (%) dt = 0, since
the integrand is the differential of a function on S*.

d
% A(’Ys) = 0 for

It follows that ~ is a critical point of A, that is,

all smooth curve s — 7, satisfying 79 = =, if and only if 4(¢) points in the
direction of the Reeb vector field R(~(t)) for all ¢. Indeed, assume that v is a
critical point of A and that there exist Y € I'(y*T'M) and an open set U of
St such that dA(Y (y(¢)),7(t)) > 0 on U. Consider f > 0 a smooth function
with support in U and define the vector field X = fY € I'(y*T'M). Tt follows
that dA(X, %) > 0 and [, dA(X(t),7(t))dt > 0 on U, a contradiction.

It is clear that for any T-periodic solution z : R — M of &(t) = R(x(t)),
the loop zr : S' — M; x7p(t) = x(Tt) is a critical point of the action
functional. On the other hand, every critical point satisfying (¢) # 0,Vt €
St and A(y) = T is the reparametrization of a T-periodic Reeb orbit. Indeed,
assume 7 is a critical point satisfying §(¢) # 0,Vt € S1, i.e, 4(t) = f(t)R(t)
and f(t) # 0. Let T'= A(y). Then there exists a reparametrization o(t) =
~v(g(t)) such that a( ) = TR(o(t)). Indeed, consider f : R — R 1-periodic
and h(t) = [, f(r)dr. Since h(t +1) =T + [; f(7)dr, :h can be seen as a
degree one map Sl — S'. Since f(t) # 0 Vi, then £h is a diffeomorphism
(bijective immersion). Define g(t) = (3h)7*(t) and o(t) = v(g(t)). Then
o(t) =TR(c(t)).

The asymptotic operator as the “hessian of A, in the direction &”
Let v(t) = z(Tt) and let X, Y € ['(7*¢) be vector fields along v in the contact
direction. Let uw : U x St — M, (r,s,t) — u(r,s,t) be a smooth function
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such that

ou ou
£) =(t), =(0,0,t) = X(t) and =(0,0,t) = Y(t
where U > 0 is an open set in R%. Define @ : U — C>*(S', M) by a(r,s) =
u(r, s, -). It follows that

0 . ou ou
E(AO w)(s,r) = /S1 dNurs) (a(r,s,t), E(r,s,t)) dt.

Let J be a dA-compatible smooth complex structure on ¢ and let g be
the Riemannian metric on M defined by g(u,v) = Au)A(v) + d\(7eu, Jmev).
Let V be the Levi-Civitta connection associated with g. Then

62

. 0
0sor (Aoi)

~or

ou ou
dX\u(rs —(r,s,t), —(r,s,t) ) dt
s (G0 G0

= ar‘(o,o) Ll —d/\(J’/TgatU, J’/TgaSU)dt

(0,0)

—/ (97«|(0,0)g(—J7r5(9tu,ﬂg@su)dt
S1

:/ g(vX(t)(—JﬂgatU(T,O,t)|T:0,Y(t))
Sl

+ g(—Jﬂ-g’y(t)a vX(t)ﬂ-gasukovovt))dt.
=0

In the last equality we have used Vxg = 0. For the first term in the integral
above, we compute

Vx(=Jme0wu(r,0,t))|,—0 = —JVx (Qpu(r,0,t) — A Opu(r,0,t))R(u(r,0,t))) =0
= —J{Vx0u(r,0,t)|,—o — VxA(Qu(r,0,t))|,—oR(7(t))
= AMA())VxRlyw

where in the first equality, we have used m:0;u(0,0,t) = 0.
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Remark 1.17. VxA(Owu(r,0,1))|,—0 = 0. Ideed,

ot

_Q.U*A(Q)
or ot 0.0)

. o 0 0 0
‘dw(ﬁ at) oon Ot “<8r)

-[5 )

=0.

VxA(Bru(r,0,1))]r=0 = (u"V) 2 u”A ( a)

(0,0,1)

(0,0,¢)

In the last equality we have used dA(X(t),7(t)) = 0 and \(0,u) = 0 along
— (0,0,1)f]

Remark 1.18. VxuOwu(y(t)) = VX (7(t)). Indeed, consider local coordi-

nates (z1,...,, x2n+1) on M near y(t) and write
Owu(r,0,t) = Z Orug(r, O,t)i(u(r, 0,t)),
A 8xk

= Zarui((), 0, t)%(y(t)), y(t) = Z%(t)i
' ' I

Thus,

V(1) = 3 0,004(0,0,1) -2 (4(1)) + 3 44()8,s(0,0,1)V 5 -
X () Otu”y - - rUtUE\Y, Y, 833% Y — Yk rWi\U, U, 871093;,3’
VX (1) = 3 00,500, 0,6) - (5(1)) + 3 0,s(0, 0, 3 () ¥ 0 2

ol Y - i tUrg\YU, Y, axl Y — rUi\U, U, T)Y1 o axz.

The equality follows from V being symmetric.

It follows from the remarks above that

V(= Jmedu(r,0,4))r—o = —J (Vs X — TVxR) (1(t)).

9Also, we have used the formula dw(X,Y) =X -w(Y) - Y - w(X) — w([X,Y]).
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We conclude that

o2
0sOr

(Aoa)

= / X (Aps(X),JY) dt
00 /s (1.16)

- T/Sl AN(Y (1), LrX (£))dt ,

where Ap ; is the asymptotic operator defined in (1.8]).



Chapter 2

Finite energy surfaces in
symplectizations

2.1 Almost complex structures in symplectiza-
tions

Let W is a smooth manifold. An almost complex structure on W is a
complex structure on the tangent bundle TW. If J is an almost complex
structure on W, the pair (W, J) is called an almost complex manifold.

Definition 2.1. Let (W, J) be an almost complex manifold and let (X, 7)
be a Riemann surface. A smooth map u : ¥ — W is called a J-holomorphic
curve if the differential du is complex-linear, that is, satisfies the equation

J(u)odu=duoj .

Let (W,w) be a symplectic manifold. An w-compatible almost complex
structure on (W,w) is an w-compatible complex structure on TW (see defi-
nition [1.10). We denote the set of w-compatible almost complex structures
on (W,w) by J(W,w).

Let (M, ) be a closed contact 3-manifold and let & = kerd\ be the
associated contact structure. Recall that (£,d\|¢) is a symplectic vector
bundle. Fixed a d\-compatible complex structure J € J(&,dN), there is a
canonical extension .J of the complex structure J to T(R x M) defined by

JO, =Ry, Jle=J. (2.1)

Here a is the coordinate on R and R, is the Reeb vector field associated with

25
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A. These equations uniquely define the extension J because of the splitting
TRxM)=RI, ®RR,dE .

Note that for all (h, k) € T(R x M),
J(h, k) = (=A(k), Jmek 4+ hR)y) .

Proposition 2.2. The almost complex structure J defined by ([2.1)) is dXy-
compatible, where \, is the 1-form defined by (1.2)), for any ¢ € C*(R, (0, +00))
satisfying ¢’ > 0.

Proof. Let (a,m) € R x M and (h,k), (M, k') € T(qm) (R x M). First note
that
dXs(a,m) = d(am) A A + (@) dA |

where ¢ is seen as a function (a,m) — ¢(a). Then

d\s(J(h, k), (W, K)) = dhg (=A(K), Jmk + hRy), (=A(K), Jrk' + W' Ry))
= ¢'(a)(=A(R)D = ¢'(a)(=A(K)h + d(a)dAm Ik, J7k')
= dgo ANA((h, k), (W K)) + (a)dA(k, k')
= d/\¢<<h7 k)v (hlv K ))7

proving that J is a linear symplectomorphism. Also

do((h, k), J(h ) = dro((h, k), (—=A(K), Tk + hRy))
= ¢'(a)hh — ¢'(a)(=A(k))A(K) + ¢(a)dA(k, JTk)
= ¢'(a)(h* + A(k)?) + ¢(a)d(nk, J7k),

so that d\s((h, k), J(h, k)) > 0, if (h, k) # 0. O

2.2 Finite energy surfaces

Let (M, ) be a closed contact manifold of dimension 3. Fixing an almost
complex structure J € J(§,d)\), we are interested in J-holomorphic curves

i: (a,u): (S,5) = (Rx M,J)

where S = S\ T, (S,7) is a closed Riemann surface and T is a finite set of

points in S.
Define

Y ={¢ e C*(R,[0,1])|¢' 2 0)} (2:2)
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and for ¢ € X, let Ay be the 1-form on R x M defined by

As(a, 2)(h, k) = ¢(a)A(m) (k).

If i = (a,u) is a J-holomorphic curve, we can compute in local holomorphic
coordinates s + it € C

&*dA¢(8s, 8t) == d/\¢(l~t.;, lNLt)
1 N -
= = (holiin, Tis) + doi, Ti))

= & ($(a)(a? + 0 + A + Mw)?) + (@) (fmnf3 + mul3)

) (2.3)
where | - |3 = dA(+, J-). Therefore, if @ is J-holomorphic, then

0§/ﬂ*dx\¢ S o0,
S

for any ¢ € 3, since (2.3)) is non-negative. Also, E(a) = 0 if and only if @ is
constant.

Definition 2.3 (Energy). We define the energy of a J-holomorphic curve
u:S —Rx M by
B(@) =suwp [ ad(on) .
S\T

PEYL

where ¥ is defined by (2.2)).

Definition 2.4 (Finite energy surface). Let (S, 7) be a closed Riemann sur-
face and let I' C S be a finite set. A smooth map @ : S\I' - R x M is
called a finite energy surface if it is J-holomorphic and satisfies the energy
condition

0 < E(il) < +00 . (2.4)

The elements of I' are called punctures.

Write 4 = (a,u). Let z € I' be a puncture and take a holomorphic
chart ¢ : (U,0) — (p(U),z) centered at z. We call (s,t) = (e 2m(s+i0)
positive exponential coordinates and (s,t) ~ @(e2"5+*)) negative exponential
coordinates around z.

Set @(s,t) = @ o (e 2+ for s >> 1. Using (2.3)), Stokes Theorem
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and the energy condition (2.4, one can prove that the limit

m(z) = lim u*A (2.5)
S—>+00 {S}XSI

exists.

The puncture z is called remowvable if m = 0, positive if m > 0 and negative
if m < 0. By an application of Gromov’s removable singularity theorem
[Gro85], one can prove that @ can be smoothly extended to a removable
puncture. Thus, in the following we assume that all punctures are positive
or negative and use the notation I' = I'" UT~ to distinguish positive and
negative punctures.

If @ : S\I' = Rx M is a finite energy surface, then I # (). Indeed, suppose
I' = (). Since 9S = 0, we conclude by Stokes Theorem that [¢@*d\g = 0 for
any ¢ € X, which contradicts E(u) > 0. Again using Stokes Theorem and
([2-3), one can show that I' £ (.

Definition 2.5 (d\-area). The d\-area of a J-holomorphic curve is given by

the formula
mm:/m@:/mw.
S S

By (2.3), A(a) > 0 and A(a) = 0 if and only if 7 - du = 0.

Theorem 2.6. [HWZ95b, Theorem 6.11] Let 4 = (a,u) : C\I' — R x
M be a finite-energy punctured sphere, where I' C C 1is the finite set of
negative punctures and oo s the unique positive puncture. If w-du = 0, where
7 :TS? = RRy @& — & is the projection, then there erists a nonconstant
polynomial p : C — C and a periodic Reeb orbit P = (x,T) € P(\) such that

p 1 (0)=T and = Fpop,

where Fp : C\ {0} — R x M is defined by Fp(z = 2™t = (T's, 2(Tt)).

Remark 2.7. Note that in Theorem [2.6] if p has degree &, then the asymptotic
limit of @ at oo is P* = (x, kT).

Corollary 2.8. If i = (a,u) : C — R x M is a finite-energy plane, then
Jruwdx > 0.

2.2.1 Asymptotic behavior

The existence of a finite energy surface in the symplectization R x M
is equivalent to the existence of closed Reeb orbits in (M, ). This is a
consequence of the following theorem proved in [Hof93| and [HWZ96].
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Theorem 2.9. Let & = (a,u) : S\ ' = R x M be a finite energy surface.
Assume z is non removable and let € = +1 be the sign of m(z), defined in
(2.5)). Fiz a sequence s,, — +00. Then there erists a non constant trajectory
of the Reeb flow x : R — M with period T' > 0 and a subsequence s,, such
that

lim {t — u(s,,,t)} = {t — z(eTt)}

k—+o0

in the C°°(S*, M) topology. If the orbit (x,T) is nondegenerate, then

lim {t+— u(s,t)} = {t — x(eT't)} .
S——+00
In the nondegenerate case, there is a unique periodic orbit (z,T") associ-
ated with the puncture z. It has period T' = |m| and is called the asymptotic
limit of u at z.

Definition 2.10. A Martinet’s tube for a simply covered orbit P = (z,T) €
P(A) is a pair (U, ), where U is a neighborhood of z(R) in M and ¢ : U —
St x B is a diffeomorphism (here B C R? is an open ball centered at the
origin) satisfying

e There exists f : S’ x B — R* such that flsixgoy = T, df[s1xg0y =0
and ¢*(f(df0+x1dzs)) = A, where 6 is the coordinate on S' and (1, 7o)
are coordinates on R?;

e Y(xp(t)) = (¢,0,0).
The coordinates (6, x1,x9) are referred to as Martinet’s coordinates.

The existence of such Martinet’s tubes is proved in [HWZ96| for any
simply covered orbit P € P(\).

From now on we assume that )\ is nondegenerate.

A more precise description of the asymptotic behavior of a finite energy
surface is given by the following theorem of [HWZ96].

Theorem 2.11 ([HWZ96|). Let A be a nondegenerate contact form on M.
Let zog € T" be a positive puncture of the finite energy j—holomorphic sphere
@ = (a,u) : S2\T — R x M and let (s,t) be positive exponential coordi-
nates near zy. Let P = (x,T) be the asymptotic limit of u at zy and let
k be a positive integer such that T = k'T,,;,, where T, s the least posi-
tive period of x. Let (0,x1,x5) be Martinet’s coordinates in a neighborhood
U C M of Puin = (2, Thnin) given by a Martinet’s tube (U,v). Then the
map You(s,t) = (0(s,t), x1(s,t), x2(s,1)) is defined for all large s and either
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(z1(s,t), x2(s,t)) = 0 or there are constants so, Aij, 7o € RY, ag € R, a func-
tion R : R x ST — R? and an eigensection v(t) of the asymptotic operator
Ap s (1.8), associated with a negative eigenvalue o € o(Ap.y), such that

0001 (als.£) — (T + ag))] < Age™™
0101(0(5,) — k)| < Ay

(w1(5. ), 2(5. ) = 2% (e(2) + R(5,1)) (20
0101 R(s. ). 10308 (a(s) — )] < Ao

for all large s and i,j7 € N. Here 0(s,t) is seen as a map on the universal
cover R of S*, e : St — R? represents the eigensection v(t) in the coordinates
induced by ¥, and « : [sg,00) — R is a smooth function such that o(s) —
Q, as s — 00.

A similar statement holds if zy is a negative puncture. In this case, we
use negative exponential coordinales near zg, e~ "°% is replaced by €% and the
eigenvalue o of Ap j is positive.

The eigenvalue o and the eigensection v(t), as in Theorem [2.11} will be
refered to as the asymptotic eigenvalue and asymptotic eigensection of u at
the puncture z;.

2.2.2 Somewhere injective curves

Definition 2.12. A J-holomorphic curve % : S\ I' — R x M is called
somewhere injective if there exists a point 2o € S\ I' satisfying

i (@i(20)) = {20} and dii(z) #0 .

Every finite energy curve with nondegenerate asymptotic limits factors
through a somewhere injective one. This is the content of Theorem and
Corollary below, that are generalizations of the corresponding result
about finite energy planes proved in Theorem 6.2 of [HWZ95h].

Theorem 2.13. Let @ : (S\T,5) — (R x M,.J) be a nonconstant finite
enerqy j—holomorphic curve asymptotic to nondegenerate Reeb orbits, where
(S,7) is a closed Riemann surface and I' C S is a finite set. Then there
exrists a factorization

U=0V0¢,
where

e 0:(S'\I",j) = (Rx M, J) is a finite energy J-holomorphic curve that
s embedded outside a finite set of critical points and self-intersections.
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e v:(S,7) = (5,7 is a holomorphic map of positive degree.

A proof of theorem can be found in [Nell5].
One of the ingredients of the proof, that will be useful to us later, is the
lemma below, that follows from results in [Sie(8].

Lemma 2.14. Assumew : (S\I',j) — (Rx M, .J) is a finite energy curve and
2o € ' is a puncture whose asymptotic limit P = (x,T) is nondegenerate.
Then a punctured neighborhood U of z in S \ T' can be biholomorphically
identified with the punctured unit disk D =D\ {0} C C and

u(z) =v(z*) V2 e D,

where k € 7" divides the multiplicity of the orbit P and v : (D,7) — (R x
M, J) is an embedded finite energy map. If w: (S"\ I, 7)) = (R x M, J) is
another finite energy curve with puncture z;, € S’ then the images of u near
2o and w near z{, are either identical or disjoint.

In particular, if @ : C\I' — R x M is a finite energy sphere with a unique
positive puncture at oo, then we have the following corollary, which will be
useful later.

Corollary 2.15. Let i : C\I' = R x M be a finite energy sphere asymptotic
to nondegenerate Reeb orbits and with a unique positive puncture at oo. Then
there exists a somewhere injective finite energy sphere 0 : C\ T — R x M
and a polynomial p : C — C mapping I' to I' such that

u=1"vop.

Proof. Using Theorem [2.13] the proof follows the same arguments found in
the end of the proof of [HWZ95b, Theorem 6.2]. By Theorem [2.13] @ factors
as 0 o ¢, for a finite energy curve v : (S’,7') = R x M and a holomorphic
map ¢ : (5%,i) — (9, 7') with deg ¢ > 0.

First we show that we can assume (5, j') = (5%,4). Using Poincaré¢ du-
ality, the formula ¢, (1) N+ = p.(-N*(+)) for the cap product and degp > 0,
we conclude that p* : H'(S") — H'(S?) is injective, and consequently that
H,(S") = 0. This implies that S’ is the topological 2-sphere. By the Uni-
formization theorem, (S’, ;') is biholomorphic to the Riemann sphere (52, 1).
Thus, we can assume @ = ¥ o ¢, where ¢ : (S%,i) — (S52,4) is a holomorphic
map with positive degree.

After a reparametrization, we can assume oo is a positive puncture of
0. Note that © must have only one positive puncture, p(cc) = oo and
¢(C) = C. This follows from the surjectivity of ¢ and the fact that @ has
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a unique positive puncture at co. The conclusion of the proof follows form
the fact that any homolomorphic map S? — S? mapping C to itself is a
extension of a polynomial to the Riemman sphere.

O

2.2.3 Algebraic invariants

Let A be a nondegenerate contact form on M, fix J € J(§,d\) and let
w:S\I'=>Rx M bea J-holomorphic finite energy surface.

Let m: TM = RRy, ® & — £ be the projection along the Reeb vector field
and assume that 7 - du is not identically zero. In [HWZ95b], it is proved
that the set where 7 - du vanishes is finite, and it is defined a local degree
associated to each zero of 7 - du, that is always positive. The integer

wind, (@) > 0

is defined as the sum of such local degrees over all zeros of 7 - du.

The bundle (u*¢,d\,J) — S has a unitary trivialization. Indeed, since
[ # (), S\ T has the homotopy type of a wedge of circles. This implies that
the first Chern class of the complex bundle (u*¢, J) is zero and, thus, (u*¢, J)
is trivial. [

Consider a unitary trivialization W : (u*¢,d)\, J) — S x R2. For z € T fix
positive cylindrical coordinates (s,t) at z and define

windeo (@, 2, ¥) = lim wind (¢ — 7 - Osu(s, €:t), Uly(se,ye) €Z (2.7

s—+00

where €, is the sign of the puncture z. The winding number on the right
is defined as in (1.12), and is independent of the choice of J and of the
holomorphic chart. This limit is well defined since 7-Jsu(s, t) does not vanish
for s sufficiently large. The asymptotic winding number of % is defined by

wind, (@) = Z winde (@, z, ¥) — Z windo (@, z, ¥) .
zel'+ zel'~

It is proved in [HWZ95b| that this sum does not depend on the chosen
trivialization W.

Remark 2.16. Later on we will only deal with the tight contact structure &,
on S3, which is a trivial symplectic bundle. Consider a global symplectic

Y(u*g, J) trivial complex bundle = (u*&,dA, J) — S has a unitary trivialization. See
[MS17], sections 2.6 and 2.7 for more details.
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trivialization
U:é— S xR? .

Then wind. (@, z, ¥) is the winding number of the asymptotic eigensection
given by Theorem [2.11] with respect to the trivialization W. Also, by Lemma
m, wind (@, z, ¥) does not depend on the chosen global symplectic trivial-
ization.

Theorem 2.17. [HWZ95V, Theorem 5.6] Let u = (a,u) be a finite energy
surface defined on S\ T, where (S,j) is a closed Riemann surface and ' C S
is a finite set consisting of nonremovable punctures. Assume that 7 - du is
not identically zero. Then

wind, (2) = windw (@) — x(5) + #I, (2.8)
where x(S) is the Euler characteristic of S.

Definition 2.18. A finite energy plane u is called fast if its asymptotic limit
at 0o is a simply covered Reeb orbit and wind, (@) = 0.

2.2.4 Fredholm theory

Fix J € J(€,d)\) and let @ : S\ T — R x M be a J-holomorphic finite
energy surface.

Let U : (u*¢,d\) — S x R? be a symplectic trivialization. Fix a puncture
z € I" and let P = (2,T) be the asymptotic limit of @ at z. The trivial-
ization ¥ induces a homotopy class of oriented trivializations [W,] of z%.&.
Define p¥(2) := u(P, ¥,), where u(P, ¥,) is the Conley-Zehnder index of the
asymptotic limit P of w at z, with respect to the trivialization W,.

Definition 2.19. We define the Conley-Zehnder index of @ by

pi) = u(z2) = > u(2).

zel'+ zel'—

It is proved in [HWZ95b| that this sum does not depend on the chosen
trivialization W.

Let (S,7) and (S5, ') be Riemman surfaces and let
i:(S\T,j) = (Rx M,.J), o:(S\I",j") = (R x M,.J)

be finite energy J holomorphic surfaces. We say that (i, (S,;),I') and
(0, (57, 7"),1") are equivalent if there exists a biholomorphic map ¢ : (S, j) —
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(57, 7) satisfying ¢(I') =TV and @ = 0 o ¢. We denote by [(a, (S,7),T")] the
equivalence class of (4, (S5,7),1).

In [Dra04|, it is proved that the (equivalence classes of) finite energy
spheres in the neighborhood of [(@, (S, 7),")], where @ is a somewhere injec-
tive finite energy surface, are described by a nonlinear Fredholm equation
having Fredholm index equal to

ind(a) := p(a) — x(S) + #I. (2.9)

Due to the R-action, the kernel of the linearized Fredholm operator is at least
one-dimensional unless the image of « is a cylinder over a periodic orbit, in
which case 7o du = 0.

The following result was proved for embedded finite energy surfaces in
[HWZ99b] and generalized for somewhere injective finite energy surfaces in
|[Dra04].

Theorem 2.20. There ezists a residual set Jreq C J(&,dN) such that, if
= (a,u): S\T' = R x M is a somewhere injective finite enerqy surface for
J e Treg, then

0 <ind(a) := p(u) — x(S) + #I" .

If m o du is not identically zero, then

1 <ind(a) := p(a) — x(S) + #I .

2.3 Bubbling-off analysis

This section follows mainly the exposition of [HSall| and [HLSal5].

In this section, ) is a nondegenerate tight contact form on S3. We fix a
Riemannian metric g on S® and consider the Riemannian metric gy on R x 3
defined by

go = da ® da + Tgsg,

where mgs : R x S — S% and a : R x S — R are the projections onto the
second and the first coordinates respectively. For any (a,z) € R x S% and
any linear map L : C — T{, ) (R x S?) we denote by |L| the norm induced
by the Euclidean inner product of C and the metric go.

2.3.1 Elliptic Regularity and compactness

Theorem 2.21 (Elliptic regularity). Let (W, J) be an almost complex man-
ifold and (S, j) be a Riemannian surface without boundary. If u: S — W is
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a C* map and satisfies 0;(u) = 0, then u is C*.

Theorem 2.22. Let (W, J) be an almost complex manifold and (S, j) a closed
Riemann surface. Let {U;};>1 be an increasing sequence of open sets in S
and u; : U; — W a sequence of C* pseudoholomorphic maps. Defining
U = U;Uj, assume that for all compact set A C U, there exists a compact set
K C W and a constant C > 0 such that

u;(A) C K, for j large and limsup |du;|pea) < C
Jj—00
Then there exists a C* map v : U — W satisfying 0;(u) = 0 and a subse-

quence uj, such that
N [e.o]
uj, —u in Cp, |

that is, uj, — w uniformly with all derivatives on compact subsets of U.

Proofs of theorems and can be found in [HSa09].

2.3.2 Bubbling

Lemma 2.23 (Ekeland-Hofer). Let (X,d) be a complete metric space and
f: X = [0,400) a continuous function. For any ¢y > 0 and xo € X, there
ezist €, € (0, o] and x{, € Bae,(x0) such that

Proof. Suppose the claim is false, that is, there exist zy € X and ¢y > 0 such
that, for every ¢ € (0,¢] and 2’ € By, (), at least one of the following is
true

o f(a')e < f(xo)eo

e dz € By (') such that f(x) > 2f(2').

We will find a Cauchy sequence {zy} satisfying f(zxn) — oo, in contradiction
to the fact that X is complete. Taking 2’ = xg and € = ¢y, we find z; €
B, (x) satisfying f(x1) > 2f(x¢). Assume we have {xg,...,zy} satisfying
d(zpi1, ) < €27 and f(zpy1) > 2f(xy,) forall n = 0,..., N — 1. Since
d(xn,70) < €027V . 429 < 2¢, we have 2y € By, (7). Consider
¥ = xy and € = €27 V. Since, by assumption, f(zy) > 2V f(zg), we
conclude there exists xx 1 satisfying d(xny1,2n) < €27V and f(ryi) >
2f(zn). Thus {xy} is a Cauchy sequence and f(zx) — 00, as N — o0.

O]
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Proposition 2.24. Fiz J € J(£,d)\) and let J be the induced almost complex
structure on R x S® defined by formula . Let {U,} be an increasing
sequence of open sets in C and let U, = (an, uy) : U, — R x S3 be a sequence
of smooth maps satisfying 05(t,) = 0, Vn and sup,, E(i,) = C < co. Define
U = U,U, and assume there exits a sequence z, € U, such that |di,(z,)| —
+00 and z, — zoo € U. Then there exist subsequences {u,,} and sequences
2}, = Zoos O, T — 0T with f—’; — 0" such that the family of maps

Oy B1(0) - R x S?
’I‘k

2 (ny (2 + 002) — Ay ()t (2 + 512))

converges in C2°. to a J-holomorphic plane v : C — R x M satisfying 0 <

loc

E(v) < C and supg |dv| < oo.

Proof. The proof follows Proposition 3.67 of [HSa09|. Define R,, = |dii,(z,)]
1

and €, = Rn,?. By applying Lemma [2.23| to |da,(2)], z, and €,, we find
0 < € <e, and 2, with |2/, — z,| < 2¢, such that

|dan('zq/@)|6% > |dﬂn<zn)|€n = e, Ry

and
12—z, < €, = |din(2)| < 2|din(2,)] -

It follows that
sup |du,(2)| < 2|da,(2))]| - (2.10)

|z—zp | <en

Define R/, = ||du,(z],)||. Note that €, R > €,R, — +00 and define

Up - BEnR$L(0> — R x 53

/
2 (an (z; + %) — an(2)), Uy, (z,’1 + %))

If 2 € Bu g (0), using that the norm |- | is R-invariant and (2.10]) we get

|don(2)] =

1
di, (z; + %) ‘ = <2 V. (2.11)

Fixed ng, using the mean value inequality and ({2.11)), and noting that ©,,(0) €
{0} x M, we conclude that 0,(Be, g, (0)) is contained in a compact set.

By Theorem , there is a subsequence v,, and a J-holomorphic curve
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v:C — R x M, such that
Up, — 0 inCp,, .

Clearly |do|c < oo and, by Fatou’s Lemma, we get E(0) < C. Since
|d0,,, (0)| = limy, |dD,,, (0)] = 1, it follows that E(0) > 0.

Defining 0, = R+ and r, = ﬁ, we have 65,7, — 07 and f—’; — 0",
n nE=tng
The family of maps vy := 0, : B1(0) — R x S? satisfies the statement of
Tk
Proposition [2.24] O

2.3.3 Germinating sequences

Fix C' > 0. Since )\ is nondegenerate, there is just a finite number of
orbits in P(\) with period < C. Define ¢(C') as any real number satisfying

0<o(C)<min{T",|T"=T"|: T #T" periods , T, T" < C} . (2.12)

Now we fix an arbitrary J € J(€,d)\) and consider a sequence of .J-
holomorphic curves

¥y = (bp,vy) : Br,(0) C C — R x S?

satisfying
R, — 00, R, € (0,+oc] (2.13)
E(i,) < C, ¥n (2.14)
/ vrd) < o(C), ¥n (2.15)
Br,, (0)\D
{b,(2)} is uniformily bounded (2.16)

Definition 2.25. Such a sequence @, of J-holomorphic curves satisfying

(2.13))-(2.16)) will be referred to as a germinating sequence.

Proposition 2.26. Let v, be a germinating sequence. Then there exists a
finite set T' C D, a J-holomorphic map © = (b,v) : C\T — R x S3 and a
subsequence of vy, still denoted by v,, such that

O, =0 in C2(C\T,R x S?%).
Also, E(v) < C.

Proof. Let 'y C C be the set of points z € C such that there exists a
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subsequence vy, and a sequence ¢; € B, (0) with ¢; — 2z and
‘dﬁnj(gl” — 090, ]_> o0 .

If Ty = (), then by Theorem [2.22, we find a J-holomorphic map @ : C — Rx 3
such that, up to a subsequence, o, — © in C7° (C, R x S?). In this case, ' = 0.

Now assume I'y # (. If zg € 'y, there exists a period 0 < Ty < C and
sequences 1) — 07, n — 0o and z) — 2z such that

lim viod\ > T .

) —00 J
J BT»]. (z;))

Indeed, by Proposition [2.24] there exists a subsequence {7, } and sequences
2), — 2o, Tk, Op — 01, with %2 — 0T, such that the sequence of maps

Gy, : Bijr (0) = R x $?

% to a J-holomorphic plane @ : C — R x M satisfying 0 <
E(a) < C and supg |di| < co. Then there exists a period Ty < C such that
Ty = [, u*d). Using Fatou’s Lemma, we obtain

Ty = /u*d)\ < lim inf/ updA = lim inf/ U, A
C k=00 By, (0) k=00 JBs, ny (2})

Consider 0,0 as the new sequence 0,. Now let I'y € C\ {20} be the

J
set of points z; # z such that there exists a subsequence v,; and sequence
¢ € Ban (0) with ¢ = 21 and |doy, (¢;)| — oo.

converges in C}°

As before, if I'y = (), we have a J-holomorphic map @ : C\ {2} — R x S?
such that, up to subsequence, ¥, — 0 in C;2(C\ {2}, R x S?). In this case,
we define I' = Ty = {20}.

If Ty # 0 and z; € 'y, there exist a period 0 < T} < C and sequences
ri =0, n; — oo and zj — z such that

lim veidA > T .

| —>
Jee BT]' (Zjl)

Considering 0,1 as the new sequence @, define I'y C C\ {zg, 21} as before.
J
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Repeating this argument, let z; € I'; C C\ {z0,...,2;_1}. Note that

C > lim E(9,) > lim [ vy d\

n—o0 n—oo C

Z;Qﬂ%; opdA =Tyt + T,

l
Té’ (Z])

It follows that there exists i such that I';, # 0 and I'; :~(D for ¢ > ig.
We end up with a finite set I' = {2, ..., z;,} and a J-holomorphic map

7:C\T - RxS?
such that up to a subsequence,
U, — v in C},.. .
It follows from that I' C D. The inequality E(0) < C follows from

(2.14) and Fatou’s Lemma. O

Definition 2.27. A J-holomorphic map o : C\I' — R x S? as in Proposition
2.26] is called a limit of the germinating sequence.

If T # (), then ¥ is non-constant. In this case, all the punctures z = z; € T
are negative and oo is a positive puncture. To prove this, define for any € > 0

me(z) == /BB( )v*/\ :

Here 0B.(z) is oriented counterclockwise. This is equivalent to use negative
exponential coordinates as defined in Section [2.2]

me(z) = / v*A = lim vp A = lim vrd\ .
dBc(z) "0 JOB.(z) %0 JBe(2)
For j large, B, (2}), defined as in the proof of Proposition , is contained
in B.(z). It follows that

me(z) = lim vrdA > lim vidA>T; > 0.

n—oo Be(z) J]—00 BT] (Z;) J

This implies that © is non constant and the puncture z is negative. Also, as
a consequence of 0 < F(v) < oo, we know that ¥ has at least one positive
puncture. Thus, oo is a positive puncture.
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2.3.4 Soft-rescaling near a negative puncture

Assume I' # () and let © = (b,v) : C\T — R x M be a limit of a
germinating sequence 0, = (b,, v,). Let z € I'. We define the mass m(z) of
z by

m(z) = lim m(z) = lim vA=T,>0(C)>0, (2.17)

e—0t e—0t dB.(z)

where T, is the period of the asymptotic limit of v at z.

Since m.(z) is a non-decreasing function of €, we can fix € small enough

so that o
0 <me(z) —m(z) < %. (2.18)

Choose sequences z, € B.(z) and 0 < ¢,, < €, Vn, so that

b (zn) < bu(C), VC € Bu(2), (2.19)

/ vrdh = o(C). (2.20)
Be(2)\Bs,, (2n)

Since z is a negative puncture, implies that z, — 2. Hence the ex-
istence of ¢, as in follows from (2.17). We claim that liminf §, = 0.
Otherwise, we choose 0 < ¢ < liminfd, < e. From (2.18)), we get the
contradiction

a(C)

— > me(z) —m(z) > me(z) — me(z)

= lim vy dA
"% J Be(2)\B (2)

> lim vrdA=o0(C) .

"% J Be(2)\Bs,, (2n)

Thus, we can assume 9,, — 0.

Now take any sequence R, — 400 satisfying

€
5an < 5

and define the sequence of J-holomorphic maps @, = (cn,w,) : Br,(0) —
R x S? by

(€)= (b (2 + 60C) — b2 + 26,), 00 (20 + 6,0)) . (2.21)
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It follows from (2.20) that
/ wrd\ < o(C), Vn .
Br,, (0)\D
Moreover, by the definition of w,, E(w,) < E(0,) < C and @,(2) €
{0} x M. Thus, w, is a germinating sequence.

Let @ = (c,w) : C\I" — R x S® be a limit of 1, as in Proposition [2.26]
If T £ (), then w is not constant. If TV = (), then

/w*d)\ = lim [ w;d\ = lim vrdA
= lim (/ v;d)\—/ deA) (2.22)
e\ U Be(2) Be(2)\Bsy, (2n)
=m(z) — o(C)

>T,—0(C)>0.

Thus @ is non-constant as well. From Fatou’s Lemma we get 0 < E(w) < C.

This also implies that the period of the asymptotic limits of w are bounded
by C.

Proposition 2.28. The asymptotic limit Py, of w at oo coincides with the
asymptotic limit P, of v at the negative puncture z € I'.

To prove Proposition [2.28, we need the following Lemma from [HWZ03].

Lemma 2.29. [HWZ03, Lemma 4.9] Consider constants e > 0 and C >
0 and let o(C) be as defined in (2.12). Identifying S* = R/Z, let W C
C>(S1, S?) be an open neighborhood of the set of periodic orbits P = (z,T) €
P(N) with T < C, viewed as maps x7 : S' — 53, zp(t) = x(Tt). We assume
that W is S*-invariant, meaning that y(- +c) € W &y € W,Vc € S, and
that each of the connected components of W contains at most one periodic
orbit modulo S*-reparametrizations. Then there exists a constant h > 0 such
that the following holds. If i = (a,u) : [r, R]xS* — RxS? is a J-holomorphic
cylinder satisfying

B(i) < C, wd) < o(C), / wA>e and r+h< R—h,
{r}xs?

[r,R]x St
then each loop t € S* — wu(s,t) is contained in W for all s € [r + h, R — h].

Proof of Proposition[2.28. Let W be an open neighborhood of the set of



42 CHAPTER 2. FINITE ENERGY SURFACES

periodic orbits P = (z,T) € P(\) with T' < C' as in Lemma Let Wy
and W, be connected components of W containing P., and P, respectively.

Since v, — v, we can choose 0 < ¢y < e small enough so that, if 0 < p < ¢
is fixed, then the loop

t € St v, (zn + pe?™)

belongs to W, for n large. Since w,, — w, we can choose Ry > 1 large enough
so that, if R > Ry is fixed, then the loop

t € St w,(Re™™) = v, (2, + 0, Re™™)

belongs to W, for n large.

By (2.17) and (2.20), we can show that

e :=lim inf/ v >0 (2.23)
9Bs,, Ro(2n)

Consider, for each n, the J-holomorphic cylinder C,, : [M hﬂ] x St —

2r 7 27w

R x S, defined by C,,(s,t) = 0, (2, + 2"+, Tt follows from (2.20) that
/ Crd\ < o(C) (2.24)
[ln Rodn lgﬂ] % Sl

for n large. Using (2.23)) and (2.24]) and applying Lemma we find h > 0

so that the loop

t— C,(s,t)
is contained in W for all s € [% + h, 13;0 — h] and n large. But
1 ,
C, (? — h, t) = vp(2n + eoe_%he%”) eEW.,,
T

for all n large and

™

In Ry,
C, ( n2 Chi h,t) = Un(2n + Ro0,e®™e*™) € W,

for all n large. Thus W, =W, and P,, = P..

Proposition 2.30. FEither

o fC\F/ w*d\ > 0 or
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. fc\r, w*d\ =0 and #I" > 2.

Proof. If TV # (), then 0 € T’. This fact follows from ¢,(0) = infc,(Bg,)
and the fact that the punctures in I'” are negative. Arguing by contradiction,
assume

/ w*d\ =0 and #I' =1 .
c\I

Thus, IV = {0}. By Theorem there exists a polynomial p : C — C
and an orbit P = (x,T) such that I" = p~'(0) and 0 = Fp o p, where
Fp:C\ {0} = R x S% is defined by Fp(¢ = e**t1)) = (T's, 2(Tt)). Since
0 is the only root of p, we have p({) = A(", for some A #0andn > 1. It
follows that P" = P,, where P, = (z,,T,) is the asymptotic limit of v at z,
that coincides with the asymptotic limit of w at oo, and

’LT)(C _ e27r(s+it)) — FP(Ae2wn(s+it)> _ (Tz (S + lggA) ,xZ(th)> _
™n

Thus, we have the contradiction

m(z) =T, = / w'A = lim wiA = lim v —o(C)
oD

= / v'A—0o(C) <m(z) — @.
OB.(z)

Here we have used (2.18)), (2.20) and ([2.22). O

2.3.5 Bubbling-off tree

Consider a finite rooted tree [| 7 = (E,{r}, V), with edges oriented away
from the root, and a finite set U of finite energy J-holomorphic spheres.
The pair B = (7,U) is called a bubbling-off tree if it satisfies the following
properties

2A tree T = (E,V) is a connected graph with no cycles. A rooted tree is a tree
T = (V,E) with a distinguished vertex r € V, called the root of 7. We denote a rooted
tree T = (V, E) with root r € V by T = (V,{r}, E). The edges of a rooted tree have a
natural orientation away from the root. Consider a rooted tree T = (V, {r}, E') with edges
oriented away from the root. Each vertex v distinct from the root has a unique incoming
edge e = (u,v) and possibly many outgoing edges {f; = (v,w;)},i = 1,...,N. We call
the vertex u the parent of v and the vertices w;,i = 1,..., N the children of v. A leaf is
a vertex with no children. There is a level structure on V defined by the following: The
level of a vertex is the minimal number of edges necessary to reach the root plus one.
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e There is a bijective correspondence between vertices ¢ € V' and finite-
energy punctured spheres i, : C\ T, = R x S* € U;

e Each sphere 1, has exactly one positive puncture at oo and 0 < #I';, <
oo negative punctures, where I'; is the set of negative punctures of ,;

e If the vertex ¢ is not the root then ¢ has an incoming edge e from a
vertex ¢', and #I'y outgoing edges f1,..., fur, to vertices pi, ..., pur,
of T, respectively. The edge e is associated to the positive puncture of
t, and the edges f1,..., fur, are associated to the negative punctures
of @,. The asymptotic limit of 4, at its positive puncture coincides
with the asymptotic limit of 4, at its negative puncture associated to
e. In the same way, the asymptotic limit of u, at a negative puncture
corresponding to f; coincides with the asymptotic limit of u,, at its
unique positive puncture;

o If the d\-area of 1, vanishes then #I'y > 2.

The following Theorem is a simpler case of the SF'T Compactness theorem
from [BEHT03].

Theorem 2.31. Let {u, = (a,,u,)} be a germinating sequence with a non-
constant limit i : C\T' — R x S%. Up to a subsequence of i, still denoted by
Uy, there exists a bubbling-off tree B = (T,U) with the following properties

e U, = u, where r is the root of the tree T.

o For every vertex q of T there exist sequences z1, 61 € C and ¢l € R
such that

Up (2L 4 08-) + ¢ — U,4(-) in Cp(C\T,) as n — oo. (2.25)
Here i+ ¢ := (a + c,u), where u = (a,u) and ¢ € R.

Proof. After a selection of a subsequence, we can assume @, — @ in C;2(C\
[ R x S3). We start with a tree containing just the root r as a vertex and
let @, = u. If T = (), we define T = ({r},r,0) and B = (T,{a,}) and we
have finished the construction of the bubbling-off tree.

Otherwise, let z € I'. As in Section we define a germinating se-
quence {w,,} by [221). Let w, : C\I', - R x M be a limit of the
germinating sequence {w,,}. By Proposition the asymptotic limit of
at the negative puncture z coincides with the asymptotic limit of w, at oc.
By Proposition 2.30] if the d\-area of w, vanishes, then #I', > 2. We add a
vertex ¢, to the tree, an edge f, from r to ¢, and let @, = w,. We do the
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same for all z € I'. If I, = () for all z € T" we have finished the construc-
tion and define 7 = ({r} U{q.}.er., 7, {f: }2er). Otherwise, we continue this

process for every puncture ¢, € I',, for every z € I
By Proposition the periods of the asymptotic limits strictly de-
creases when going down the tree. Since T,|T — T'| > o(C) > 0, for T, T"
periods and T # T, this process has to finish after a finite number of steps.
O

2.3.6 Estimating Conley-Zehnder indices

Remark 2.32. The tight contact structure & on S is a trivial symplectic
bundle. We will fix a global symplectic trivialization ¥ : £, — S® x R? and
compute the index wind,, defined by and the Conley-Zender index p
with respect to this trivialization. We will denote wind (-, -) = wind (-, -, ¥)
and p(-) = p(-, ¥). Recall that on (S?,&), the index wind,, and the Conley-
Zehnder index do not depend on the chosen global trivialization of &.

Lemma 2.33. Let 0 : (S\T,j) = R x S® be a finite energy curve and let

z € T be a puncture with asymptotic limit P = (z,T). Define v}° and v}

by (1.13) and (1.14)) respectively. If m - dv does not vanish identically, then

(1) wind (0, 2) < wind(v™9) if z is a positive puncture.
(2) winde (0, z) > wind(vP*%) if z is a negative puncture.

The proof follows immediately from the definition of wind.,, Proposition
and Theorem [2.11]
The following Lemma will be useful later.

Lemma 2.34. Let i = (a,u) : C\T — R x S® be a finite energy J-
holomorphic curve such that every puncture in I is negative, mo du does not
vanish identically and for every asymptotic limit P of u, p(P) € {1,2,3}.
Then wind, (@) = 0 and for all z € ' U {oo}, wind(z) = 1.

Proof. By the definition of the Conley-Zehnder index in (1.15)), for every
asymptotic limit P of @, one of the following options hold

u(P) =1 = wind(rvp®?) =0, wind(vp”)

u(P) =2 = wind(rp?) =1, wind(v%”)
W(P) =3 = wind () = 1, wind(v}")

1
1 (2.26)
2

Then, by the definition of wind.,, if P is the asymptotic limit of @ at z we
have
windy (2) < wind(vp?) < 1, if z = oo,

2.27
windy(z) > wind(v3”)) > 1, if z € T (2.27)
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It follows that wind. (@) < 1 — #I". Since wind,(a) > 0, we have
0 < wind, (@) = windy (@) — 1+ #I' <0 .

Thus wind, = 0 and wind (@) = 1 — #I". Using (2.27)), we conclude

0 > wind(00) — 1 =) windy(z) — #I' = Y windu(z) =1 >0 .
zel zel
Then wind(z) = 1, for all z € I' U {oo}. O

Now we present some results of [HSall| that will be useful later.

Lemma 2.35. [HSall, Lemma 3.3] Let T = {z1,--- , zxy} C C be non-empty
and finite, and let @ = (a,u) : C=C\T — R x S? be a finite energy surface
with exactly one positive puncture at oo and negative punctures at the points
of I'. If @ us asymptotic to P at oo and is asymptotic to P; at z;, for
7 =1,..., N, then the following assertions are true:

i Joutd\ >0 and p(Px) <1=3j€1,...,n such that u(P;) < 1.
i, Jou'dd=0and p(Px) =1= p(P;) =1, ¥Vj=1,...,N.
iii. [u*d\ =0 and p(Psx) <0 = p(P;) <0, Vj=1,...,N.

Proof. Let v} > 0 > v be the special eigenvalues of the operators Ap,,
for 5 = 1,...,N, as defined in and (1.13). In the same way, let
VP2 > 0 > 12 be the special eigenvalues of the operator Ap_. Suppose, by
contradiction, that u(P;) > 2, Vj =1,...,N, u(Px) < 1 and 7 o du does
not vanish identically. Tt follows from (1.15) - ) and Lemma that

windu (@, 00) < wind(r27) < 0,
winda (i, 2;) > wind(v;*") > 1, Vj=1,..., N.

Theorem implies that

1—N <wind,(a)+1—-N
= wind, (@) + xs2 — (V + 1)
= wind (%)
= wind Zwmd a, z;)

<0-N,
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which is a contradiction. Assertion 7. is proved. Now assume 7 o du vanishes
identically. If Py, = (o, T ), denote by 7 > 0 the minimal positive period
of the Reeb trajectory .. Theorem implies that each orbit P; is of the
form P; = (2w, k;7) for some integer k; > 1 and T, = Zjvzl kjT. It follows
from Lemma, that

W(Px)=1=pnP;) =1 Vj=1,....N
H(P) 0= u(P) <0, ¥j=1,...,N

O

Lemma 2.36. [HSalll, Lemma 8.4] Let {z1,...,zn}, & = (a,u), P, P1,... Py
be as in the statement of Lemma [2.35 Assume that at least one of the fol-
lowing assertions is true

i w(Pj)>2,¥j=1,....N, [su*d\ >0 and wind (@, c0) < 1.
i u(P;)>2,Vj=1,...,N, and p(Px) < 2.
Then uw(P;) =2,¥j=1,...,N.

Proof. Assume i. Asin the proof of Lemma[2.35] it follows from the definition
of wind,, and that wind (@, z;) > 1, for j = 1,..., N. Suppose, by
contradiction, that there exists jy such that p(Pj,) > 3. Then, again from the
definition of winds and (1.17]), we have winde (4, zj,) > 2. Consequently,

1—N=x(S*—(N+1)
< wind, (@) + x(5%) — (N +1)

= wind.. (%)

N
= windu (@, 00 — Y _ windo (i, ;)
j=1
<1-(N-1)-2
= —N,

a contradiction.

Now assume . If fC u*dX\ > 0, by the definition of wind,, and equation
(L13), pu(Px) < 2 implies windeo (@, 00) < 1. Then 4. holds. If [ u*dX\ = 0,
Py = (To,Ts) and 7 is the minimal period of x., then it follows from
Theorem that each orbit P; is of the form P; = (2, k;7) for integers
ki > 1 and T, = Zj\le k;jT. Lemma implies that p(P;) € {1,2} for
j=1,...,N. Our assumption implies u(P;) =2, Vj =1,..., N. O]
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Lemma 2.37. [HSall, Lemma 3.9] Let v = (b,v) be a non-constant limit
of a germinating sequence {0, = (by,v,)}. Then the asymptotic limit P, at
the (unique) positive puncture of v satisfies u(Ps) > 2.

Proof. Following Theorem let B = (T,U) be the bubbling-off tree as-
sociated with the germinating sequence v,, and the limit v, so that if r is the
root of T, @, = 0. Suppose, by contradiction, that @, : C\ T, — R x S? is
asymptotic to Py, at its positive puncture oo and p(Ps) < 1. If T, = (), then,
by the formula and Lemma [2.33] @, is a finite energy plane satisfying

winde (@, 00) < wind(vp?) <0 .

By Theorem [2.17, we have wind,(@,) < 0, a contradiction. If T', # (), we
can use Lemma to find a negative puncture z € I', and a closed Reeb
orbit P; such that u, is asymptotic to Py at z and pu(P;) < 1. Thus, if ¢ is
the vertex immediately below r, corresponding to the puncture z, then the
asymptotic limit of @, : C\T';, — R x S? at its unique positive puncture is P;.
If ¢ is a leaf, we have a contradiction. If ¢ is not a leaf, we can use Lemma
2.35] again to find a negative puncture z € I'; and a closed Reeb orbit P
such that @, is asymptotic to P, at z and p(F») < 1. Since the tree has a
finite number of vertices, continuing this process we end up finding a leaf [
so that @; : C — R x S3 is a finite energy plane with asymptotic limit Py
satisfying u(Py) < 1, which implies wind.(u;) < 0, a contradiction. ]

Proposition 2.38. [HSall, Proposition 3.10] Let {0, = (bn,v,)} be a ger-
minating sequence and © = (b,v) : C\T' — R x S a non-constant limit of
Up. Assume that at least one of the following holds:

(i) T # 0, fC\F v*d\ > 0 and wind.(0,00) < 1;

(i1) U is asymptotic al oo to some Reeb orbit Py, satisfying u(Py) < 2.

Then there exists a Reeb orbit Py = (xo,Ty) and a finite energy plane ty =
(ag,up) : C — R x S3, satisfying:

(1) ug : C — S3 is an immersion transversal to the Reeb vector field;
(2) w(Py) =2 and ug is asymptotic to Py at the puncture co;
(3) if some Reeb orbit P = (x,T) satisfies v,(C) N xz(R) = 0 Vn, then

up(C) N z(R) = 0. If in addition P is simply covered and satisfies
wu(P) > 3, then up(C) Nz(R) = (.
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Proof. Following Theorem let B = (T,U) be the bubbling-off tree as-
sociated with the germinating sequence v,, and the limit v, so that if r is the
root of T, then u, = v. To prove Proposition we need the following
lemma.

Lemma 2.39. If a vertez q of T is not the root and u, is asymptotic to the
closed Reeb orbit P at its (unique) positive puncture, then u(P) = 2.

Proof. Let I' be the set of negative punctures of 0. Lemma implies that
w(P,) > 2,¥Vz € ', where P, is the asymptotic limit of ¢ at z. Using Lemma
we conclude that u(P,) = 2 Vz € T'. The orbits P, are precisely the
asymptotic limits at the positive punctures of the curves in the second level
of the bubbling-off tree. We can apply Lemmas and to the curves
in the second level of the tree to conclude that all negative asymptotic limits
of these curves have Conley-Zenhder index equal to 2. We can repeat this
argument inductively on each level of the tree to conclude the proof. O

First assume that ' = (). Then we are in case (ii): 0 : C - R x S®is a
finite energy plane and its asymptotic limit satisfies 1(Px) < 2. By Theorem

Lemma and the formula (L.15), we have

1
0 < wind,(?) = wind (7, 00) — 1 < §,u(POO) -1

so that u(Pyx) = 2 and wind,(0) = 0. We set 49 = 0 and Py = Py. As a
consequence of the definition of wind,, we conclude that

RRxuy(z) ® dug(2)(ToC) = Ty S* , V2 € C (2.28)

proving that u is an immersion transverse to R).
Now assume I' # 0. The tree 7 has a leaf ¢ distinct from the root r. We
set Uy 1= u,. By Lemma [2.39, we know that

ﬂ():(ao,U@)ZC—)RXSS

is a finite energy plane asymptotic to a closed Reeb orbit satisfying u(Fy) = 2.
Now we show that ug is an immersion transverse to the Reeb vector field.

By Theorem [2.17] Lemma and the formula (1.15)), we have
1
0 < wind, () = wind (g, 00) — 1 < §,u(P0) —1=0,

so that wind, (%) = 0. As a consequence of the definition of wind,, we
conclude that @, satisfies (2.28)), proving that ug is an immersion transverse
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to R)\.

Thus, in both cases, we found a finite energy plane iy = (ag,up) : C —
R x S? satisfying (1) and (2).

Now we prove that (8) holds for the plane u. Let P = (x,T) € P(\)
satisfying v, (Bg,(0)) Nx(R) =, Vn. Consider the finite energy immersion

F.C\{0} 5 RxS (s (—Tbg’d,x (—Targé))
2 2

and define
A={(2¢) € Cx(C\0)]i(z) = F(()} -

If the set A is not empty, it consists of isolated points. Indeed, assume that
(2*,¢*) is not an isolated point of A. Since both iy and F' are immersions,
we can use Lemma 2.4.3 of [MS04| to find open neighborhoods O and O
of z* and (* respectively, and a holomorphic diffeomorphism f : O — O’
such that F'o f = 1y on O. Since ug is transverse to the Reeb flow, we
get a contradiction. Now assume A # () and choose (z*,(*) € A. The
maps Uy and F intersect transversally at the pair (z*,(*). By positivity and
stability of intersections of pseudo-holomorphic immersions, (see Theorem
2.6.3 and exercise 2.6.7 of [MS04]) we find z; — z* and n; — oo such that
Uy, (2;) € F(C\ {0}). This contradicts the fact that v,(C) N z(R) = 0, Vj.
So we have proved that A = () and consequently uo(C\ {0}) NP = 0.

If, in addition, P = (z,T) is simply covered and pu(P) > 3, then it follows
from the fact that u(Py) = 2 and item (4) in Lemma [1.9| that P and P, are
geometrically distinct. This proves (3).

O

2.4 Transverse foliations

To state the main theorem of this Thesis, which will be done in Chapter
we need the concept of transverse foliation adapted to a flow. This is a refined

version of the concept of global systems of transverse sections introduced in
[HWZ03|.

Definition 2.40 (Transverse Foliation). [HSal8| Let M be a closed oriented
3-manifold and let ¢' be a flow on M. A transverse foliation for ¢' consists
of

e A finite set P of simple periodic orbits of ¢!, called binding orbits;

e A smooth foliation of M\Upep P by properly embedded surfaces. Every
leaf is transverse to ¢' and has an orientation induced by ¢' and M.
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For every leaf ¥ there exists a compact embedded surface ¥ < M
so that ¥ = ¥\ 0¥ and X is a union of connected components of
UpepP. An end z of Y is called a puncture. To each puncture z there
is an associated component P, € P of 9%, called the asymptotic limit
of ¥ at z. A puncture z of ¥ is called positive if the orientation on P,
induced by ¥ coincides with the orientation induced by ¢'. Otherwise
z is called negative.

Transverse foliations adapted to Reeb flows on S3 can be obtained as the

projection onto S% of a stable finite energy foliation in the symplectization
R x S3. See Definition below.

2.4.1 Finite energy foliations

Consider S equipped with a nondegenerate tight contact form \ =

f>\0|53.

Definition 2.41. [HWZ03| A stable finite energy foliation for (S®, X, J) is a
smooth foliation F of R x S3 with the following properties.

e There exists a uniform constant C' > 0 such that for every leaf F' € F,

there exists an embedded finite energy J-holomorphic sphere @ : 52 \
[ = R x S? satisfying

F=a(S*\T) and E(a)<C;

e The translation

T.(F)=r+F:={(r+a,m)|(a,m) e F},Fe F,reR
defines an R-action on F;

The asymptotic limits of a leaf FF = a(S* \ ') € F are defined to
be the asymptotic limits of @ at its punctures. For every leaf F, the
asymptotic limits are simply covered, their Conley-Zehnder indices are
contained in {1,2,3} and their self-linking numbers are equal to —1;

If F = a(S?\I') € F, then @ has precisely one positive puncture, but an
arbitrary number of negative punctures. We define ind(F") := ind(a).
The index does not depend on the choice of . If F'is not a fixed point
of the R-action, then ind(F') € {1, 2}.
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Consider a leaf I’ € F that is not a fixed point of the R-action. Write
[=T*uUl'"=T"uly Uly UTy, where I'; is the set of punctures having
Conley-Zehnder index j. Note that by definition I'" = 1. Denote by u* the

Conley-Zehnder index of the unique positive puncture. Then, by formula
(2.9) for the Fredholm index,

ind F = p" — 3#0; — 24T, — #T7 — 2+ 1+ #0] + #1, + #15
=pt =1 = 2475 — #Iy

Since, by definition, ind(F') > 1, we get
2405 + #1, < pt —2.
Using u* € {2, 3}, we conclude
pted{2,3}, #I'; =0 and #I', <1.

Note that there is no restriction on #I'; .
Therefore, a leaf F' € F which is not a fixed point of the R-action satisfies
one of the following alternatives.

o nt =3, #I'; =0 and ind F = 2.
o =3 #I', =1 and ind(F) = 1.
o =2 #I'; =0 and ind(F) = 1.

In any case, the number of negative punctures with Conley-Zehnder index 1
is arbitrary.

By definition, the energies F(u) are uniformly bounded. Since the periods
of the asymptotic limits are bounded by the energy and ) is nondegenerate,
the number of all asymptotic limits appearing in F is finite.

The existence of stable finite energy foliations for generic almost complex
structures J was proved in [[TWZ03|.

Theorem 2.42 (Hofer-Wysocki-Zehnder). Let A be a nondegenerate tight
contact form on S3. There exists a residual subset of J(&,dN) in the C*-
topology such that there exists a stable finite energy foliation for (S®,\,J)
containing a finite energy plane and satisfying the following properties:

e The fixed points of the R-action on F are orbit cylinders;

e Let p: R x S — S3 be the projection onto the second factor. If two
leaves F' and G do not belong to the same orbit of the action, then

p(F) ﬁp(G) = 0;
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o If F € F is not a fived point of the R-action, then p(F') is an embedded
punctured sphere in S which is transverse to the Reeb flow and coverges
at the punctures to the asymptotic limits of F.

o Denote by P the set of asymptotic limits of F. Then p(F) is a singular
foliation of S* having P as the singular set.

It follows from the Fredholm theory of [HWZ99b| that a leaf satisfying
ind(F) = 2 belongs to a 2-parameter family of leaves, all having the same
asymptotic limits, where one parameter is defined by the R-action on F. The
image of the 2-parameter family under the projection p : R x §3 — S3 is a
1-parameter family of embedded punctured spheres.

A leaf satisfying ind(F") = 1 belongs to a 1-parameter family defined by
the R-action. The projection of this family onto S3 is an isolated embedded
punctured sphere, that is called a rigid surface.

The existence of a transverse foliation adapted to any nondegenerate Reeb
flow on (53, &), where & is the tight contact structure on S3, is a corollary
of Theorem [2.42] We state this corolary below.

Theorem 2.43 ([HWZ03|). Let ¢' be a nondegenerate Reeb flow on (S3,&).
Then ¢t admits a transverse foliation. The binding orbits have self-linking
number —1 and Conley-Zehnder indices in {1,2,3}. Every leaf S s a punc-
tured sphere and has precisely one positive puncture. One of the following
conditions holds:

e The asymptotic limit of ¥ at its positive puncture has Conley-Zehnder
index 3 and the asymptotic limit of ¥ at any negative puncture has
Conley-Zehnder index 1 or 2. There exists at most one negative punc-
ture whose asymptotic limit has Conley-Zehnder index 2.

e The asymptotic limit of ¥ at its positve puncture has Conley-Zehnder
index 2 and the asymptotic limit of ¥ at any negative puncture has
Conley-Zehnder index 1.

2.4.2 Open book decompositions

Assume that the foliation F given by Theorem has precisely one
fixed point of the R-action, that is, there is precisely one asymptotic limit P
in P. Then u(P) = 3 and F consists of a cylinder over the orbit P and a
family of pseudoholomorphic planes asymptotic to P. The projection of F
onto S* is an open book decomposition ﬂ with pages of disk type, all having

3An open book decomposition of a 3-manifold M is a pair (L, p) where L C M is a link
and p: M\ L — S! is a fibration such that each fiber p=1(6) is the interior of a compact
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Figure 2.1: An open book decomposition cut by a plane. The dots represent
a periodic orbit with Conley-Zehnder index 3. The dashed curves represent
a family of planes with boundary P. The 3-sphere is viewed as R? U {oo}.

the orbit P as boundary. By the arguments in [HWZ98]|, one can show that
the regular leaves of p(F) are global surfaces of section for the Reeb flow
associated with A. Moreover, the first return map is conjugated to an area-
preserving diffeomorphism of the open unit disk. Since the area of the disk is
finite, Brouwer’s translation theorem gives a periodic point of the first return
map. It is a initial condition to a periodic solution of the Reeb vector field
which is different from P. If the return map has a second periodic point,
then by a Theorem of J. Franks [Frad2| on area-preserving homeomorphisms
of the open annulus, the return map has infinitely many periodic points, so
that X, has infinitely many periodic orbits. This is the case of dynamically
convex contact forms.

Definition 2.44. A contact form X on S? is called dynamically convex if
w(P) > 3 for all periodic solution P of the associated Reeb vector field X,.

If the contact form A\ is nondegenerate and dynamically convex, then the
finite energy foliation given by Theorem has precisely one fixed point of
the R-action, and we conclude the following corollary of Theorem [2.42]

Corollary 2.45. The Reeb vector field X, associated with a nondegenerate
and dynamically convex contact form A = fXg on S® possesses a global surface

of section. Further, there are either 2 or infinitely many periodic orbits of
X

It is proved in [HWZ98§]| that the statement above holds true without the
nondegeneracy condition on .

embedded surface Sy — M satisfying 0Sp = L. L is called the binding and the fibers are
called pages. If the pages are disks we say that (L, p) has disk-like pages.



Chapter 3

3-2-1 Foliations and the main
theorem

In this chapter, we define 3 — 2 — 1 foliations, state the main theorem of
this thesis and give a sketch of its proof.

3.1 Main Theorem

Let A be a nondegenerate tight contact form on S3. Let R, be the asso-
ciated Reeb vector field and denote by ¢! the flow of R).

Before defining 3 —2 — 1 foliations, we need the definition of strong trans-
verse sections.

Definition 3.1 (Strong transverse section). Let ¥ < S% be a compact
embedded surface such that ¥ = X\ X is transverse to o' and 93 consists of a
finite number of simple orbits in P(\). X is called a strong transverse section
if every orbit P, = (z,T) associated to an end z of > has a neighborhood
on Y parametrized by ¢ : (ro,1] x R/Z — X, such that ¢(1,t) = xp(t),
Vt € R x Z, and the section of x7.£ defined by

w0 = o0,

satisfies
d)‘(n(t)v ‘CRn(t» 7& 07 Vt € R x Z>

where L is the Lie derivative in the direction of Ry as defined in (1.6).

Remark 3.2. Any transverse section given by the projection of a J-holomorphic
curve satisfies the definition above. Indeed, assume ¥ = u(S), where 4 =

29
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(a,u) : S — R x S% is a finite energy J-holomorphic curve. Then, by The-
orem [2.11}, for every puncture z with asymptotic limit P, the section 77,
where 7 is defined as in Definition is an eigensection of the asymptotic
operator Ap; associated with a nonzero eigenvalue ¢ and n(t) # 0, Vt € S*.
Thus, by the definition of Ap; in (1.8) and equation , we have

1 1
dA(n(t), Lan(t)) = ZdA((), JApn(t)) = edA(n(t), Jn(?)) # 0, V.
Remark 3.3. In what follows we fix a global unitary trivialization
Ui — S xR? (3.1)

of the tight contact structure & = ker X on S®. All indices are computed with
respect to this fixed trivialization. Recall that in (53, &) the Conley-Zehnder
index and the index wind,, do not depend on the chosen global trivialization.

Definition 3.4 (3-2-1 Foliation). A 3-2-1 foliation for the Reeb flow ¢’ on
(S3,& = ker \) is a transverse foliation for (' satisfying the following prop-
erties: The set P of binding orbits consists of three prime orbits P, P, and
P3; with Conley-Zehnder indices respectively 1, 2 and 3. P, U P, U P3 is a
unlink. The foliation of S% \ Upcp P consists of

e A pair of cylinders V; and V5, asymptotic to P3 at their positive punc-
tures and to P, at their negative punctures. T :=V; U Vo U P, U P3 is
homeomorphic to a torus and 7'\ z3(R) is C'-embedded. T divides S®
into two closed regions R, and Ry with boundary 7.

A disk D C R, asymptotic to P, at its positive puncture;

A cylinder U C R, asymptotic to P at its positive puncture and to P;
at its negative puncture;

DUU is a C'-embedded disk with boundary P, and transverse to T’

A 1-parameter family F; C R4 of planes asymptotic to P at its positive
puncture;

A l1-parameter family of cylinders C, C Ry asymptotic to Ps at its
positive puncture and to P; at its negative puncture;

e Every regular leaf of the foliation is a strong transverse section.

See figure (3.1
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Figure 3.1: A 3 —2 — 1 foliation cut by a plane. The dots represent periodic
orbits P, P, and P3; with Conley-Zehnder indices respectively 1, 2 and 3.
The bold curves represent two rigid cylinders connecting P, and Ps, a rigid
cylinder connecting P, and P, and a rigid disk with boundary P,. The
dashed curves represent a family of planes with boundary P;. The dotted
curves represent a family of cylinders connecting P, and P;. The arrows
indicate the Reeb flow. The 3-sphere is viewed as R3 U {oo}.

Now we state the main theorem of this thesis.

Theorem 3.5. Let \ be a nondegenerate tight contact form on S®. Let
P = (21,Th), Py = (29,T3), P3 = (x3,T3) € P(\) be simply covered closed
Reeb orbits with Conley-Zehnder indices respectively 1, 2 and 3. Assume that
the orbits Py, P, and Ps are unknotted, P, and P; are not linked for i # j,
i,7 € {1,2,3} and the following conditions hold:

(i) Ps spans an embedded disk whose interior is transverse to the Reeb flow;
(ZZ) T < Ty < T3 < 2T1,'

(7ii) Py is the only Reeb orbit with Conley-Zehnder index 2 not linked to P3
with period < Tj;

(iv) Py is the only Reeb orbit with Conley-Zehnder index 1 not linked to P,
with period < Th;

(v) There is no C'-embedding ¥ : S* — S® such that z5(Ts-) = V|s1.0)
and each hemisphere is a strong transverse section.

Then Py, P, and Ps are the binding orbits of a 3 —2 — 1 foliation.

Condition (v) in Theorem is also necessary. This is the content of
Proposition [3.6] below.
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Proposition 3.6. Assume there exists a 3-2-1 foliation for the Reeb flow !
and let Py = (x9,Ty) be the binding orbit with Conley-Zehnder indezx 2, as
in Definition [3.4l Then there is no C'-embedding ¢ : S* — S3 such that

12(Ts-) = P|g1xqoy and each hemisphere is a strong transverse section.

3.1.1 Sketch of the proof of Theorem [3.5

Following [Hof93, HWZ95a, HWZ99al, HSall], we consider a Bishop fam-
ily of disks with boundary on a suitable disk D spanning P3;. By hypothesis
there is an orbit with Conley-Zehnder index 2 not linked to P;. So, we have
to consider the possibility that the Bishop family breaks before it approaches
dD. We divide our analysis into two cases:

e Either the boundaries of the disks in the Bishop family tend to Ps, or

e The Bishop family breaks before it approaches 0D.

In the first case, the Bishop family produces either a plane asymptotic to
P3, so that we have a family of such planes, or a rigid cylinder asymptotic
to Py and to P, and a rigid plane asymptotic to P, so that we can apply
the gluing theorem to produce a family of planes asymptotic to P;. Using
our assumptions, we prove that the family of planes is noncompact. The
closure of the family of projected planes is a solid torus Ry C S3. The family
of planes, together with a pair of rigid cylinders and a rigid plane to P,
form part of the 3 — 2 — 1 foliation. By the Fredholm theory of [HWZ99b],
the plane asymptotic to P, lies in a one dimensional family of such planes
in a symplectic cobordism. We show that the family is non compact, and
produces a rigid cylinder asymptotic to P, and P;. Applying the gluing
theorem again, we produce a 1-parameter family of cylinders asymptotic to
the orbits P3 and P;. This completes the 3 — 2 — 1 foliation.

We do not give a complete proof to the second case in this thesis, how-
ever, we present the main ideas of the proof in Chapter 5. In the second
case, we just obtain a rigid plane to P, from the Bishop family. As in the
first case, using the rigid plane to P, we can prove the existence of a rigid
cylinder connecting P, and P;. Using gluing, we can obtain a family of pe-
sudoholomorphic half-cylinders with boundary in D and a negative puncture
asymptotic to P;. We show that the boundaries of the half-cylinders in this
family "go in the direction of the boundary of D". If this family breaks be-
fore it approaches the boundary, we use gluing theorem again to produce a
family of disks with boundary in D. We repeat this process until we obtain
a family of disks or half-cylinders whose boundaries converge to 9D. After
this step we produce either a cylinder connecting P; and P; or a plane to Ps.
From this point on, the analysis is basically the same as in the first case.
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3.2 Proof of Proposition [3.6

In this section we use the notation of Definition [3.4]

Lemma 3.7. If there exists a C'-embedding 1 : S* — S® such that xo(Ty-) =
Y]sixqoy and (S?)\z2(R) is transverse to the Reeb flow, then we can assume
that |s2\s1x10y 15 also transverse to T \ (x3(R) U za(R)) = V1 U V5.

Proof. Define
F:RxS*—= 8
(t,2) = ¢' o y().
Then F satisfies F(t,-)(S' x {0}) = ¢(S! x {0}), Vt € R, and

dF(1)(a,v) = aR(¢" o y(x)) + dspf/;(x) ~dpyv

for every (t,z) € R x S? and (a,v) € R x T,,S?. We claim that for every
r e S?\ S x {0} and ¢t € R, dF(t, ) is surjective. Since 1) is transverse to
the Reeb flow away from S* x {0}, we know that ¢ o di),, is surjective. Since
dy' preserves the splitting 7'S® = RR @ ¢, it follows that m¢ o dgofﬁ(z) o di, is
surjective. We conclude that dF(t,z) is surjective for all z € S?\ S' x {0}
and ¢ € R. In particular, F is transverse to 7'\ z3(R) on R x (S%\ S* x {0}).
This implies [| that for almost all t € R, F'(t,-)|s2\g1x{0} is transverse to 7T'.
Also, F(t,-)*d\ = (' o ¥)*d\ = 1p*d), and it follows that F(¢,-) is still
transverse to the flow for all £ € R. Thus, we can replace ¢ with F(t,-) for
some t such that F'(t,-)|s2\s1xf0y M T to get the desired embedding. O

Lemma 3.9. Assume that v : S? — S is a C' embedding such that
x2(Ts) = Pls1xqoy and such that each hemisphere is a strong transverse sec-
tion. Then 1 is transverse to the torus T along Ps.

The proof of Lemma [3.9]is given in Appendix [A]

Proof of Proposition[3.6. Suppose, by contradiction, that v : S — S3 is a
C' embedding such that z5(T%-) = 1[g1x50} and such that each hemisphere
is a strong transverse section.

Let T = Vi UV, U P, U P3 be the torus given by Definition T
divides S® into two connected regions R, e Ro. The region R, contains an

! Applying the following theorem to F' restricted to S\ (S* x {0}):

Theorem 3.8 (J[GP10]). Let X, S and Y be smooth manifolds, Z submanifold of Y and
F:X xS —Y smooth. If F is transverse to Z, then for almost all s € S, fs := F(s,")
1s transverse to Z.
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embedded disk with boundary xs(R), so that P, is contractible in R;. One
can also show, using Mayer-Vietoris sequence, that the holomology class of
x7, generates Hi(Roq,7Z).

Since, by Lemma Y is transverse to the torus 7" along P,, we know
that the image of any neighborhood of S x {0} C S? by 1 intersects both
R, and R, away from (S' x {0}). This implies that the sphere (S5?)
intersects the torus 7' away from z3(R). Indeed, one of the hemispheres of
¥ (S?) intersects R, and can not be contained in R, because this would
imply P; contractible in R, which is a contradiction since the holomology
class of xp, generates Hy(R2,Z).

By Definition the orbits P; and P, are not linked, that is, the linking
number 1k(P;, P3) is zero. Note that the image of each closed hemisphere
of S? by 1 is a Seifert surface for P, which is transverse to the Reeb flow.
Then 1k(P,, Ps) is the intersection number of P; and v restricted to one of
the hemispheres of S?. Since lk(P, P5) = 0 and g2 S1x{0} is transverse to
P, we conclude that ¢(S%) N P; = (). By Lemmas and [3.9] we know
that ¢ h T\ P;. Thus, ¢ intersects T transversely and the intersection
¥(S?) NT is contained in a closed subset of T'\ P;. We conclude that the
preimage of the intersection 1)(S?)NT by 4 is a 1-dimensional submanifold of
S? which is a closed subset of S2. It follows that each connected component
of v~ ((S?)NT) is diffeomorphic to St

St x {0} is one of the connected components of the boundary of a region
R C S? such that 1)(R) C Ro. Thus, one of the other connected components
of the boundary of R, that we denote by S, is such that |s is homologous
to Tap, in Roe. Denoting HY(T,Z) = Z[xar,] @ Z[m], the homology class of
Yls in HY(T,Z) is (1,1) for some [ € Z. Since S does not intersect zo(R),
must be zero, that is, the class of ¢|g is (1,0). This implies that ¢(S) and
x9(R) divide T into two connected regions with boundary z5(R) U 9(S).

Now fix an orientation on S' x {0} C S5? in such a way that ¢|g1 0
preserves orientation. Consider the closed hemispheres of S?, that we call
H, e H_, with the orientation induced by the orientation of S' x {0}. Tt
follows that

O<T2:/ Top, A = PN .
St Hy
Since v is transverse to the Reeb flow Ry in Hy \ S* x {0}, then ¢*d\ > 0
in Hy \ S* x {0}. Let B be the connected region of S* bounded by S* x {0}
and S. Since B is contained in one of the hemispheres of S?, then

O</¢*d)\:/ m2i}2)\—/¢*)\:Tg—/ A (3.2)
B St s P(S)
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Since 1(S?) does not intersect P, we know that one of the regions of T
bounded by P, and #(S), that we denote by A, satisfies either A C V; or
A C Vi, Recall that V; and V5 are oriented in such a way that dA|V; o is an
area form, Pj is a positive asymptotic limit and P, is a negative asymptotic
limit. Then we have

O</d)\:/ )\—/ )\:/ A=T5 . (3.3)
A () z2(R) P(S)

Leading to a contradiction.

3.3 Proof of the main theorem

In this section we present the first steps in the proof of Theorem [3.5]
Consider S? equipped with a nondegenerate tight contact form \. Let P,
P, and Pj be closed Reeb orbits satisfying the hypotheses of Theorem [3.5]

3.3.1 A special spanning disk for the orbit P;

Let F' be a closed disk embedded in S® such that OF is transverse to
the contact structure & = ker \. The contact structure induces a singular
distribution

(EnTF)*
on F', called the characteristic distribution of F'. Observe that

T,F =¢|,= (E,NT,F)* =0

T,FNE, &= ELNT,F)?™ =¢,nT,F .

The characteristic foliation can be parametrized by a smooth vector field V
on F in a canonical way, see [HWZ95bl Section 4] for details. In other words,
V, = 0if and only if T, F' = {, and RV, = T,F'N¢§, if and only if T,F'NE, & &,.
Moreover, we can assume that V' points outwards at the boundary OF.

Let p € F' be a nondegenerate zero of V/, that is, the linearization dV,,
is an isomorphism of §, = T,F. If a and b are the eigenvalues of dV},, then
ab # 0. The point p is called elliptic if ab > 0 and hyperbolic if ab < 0. An
elliptic point is called nicely elliptic if a and b are real numbers.

Denote by o the orientation of F' so that the induced orientation on the
boundary satisfies A|rgr > 0. We also have a fiberwise orientation o’ of {|r
induced by d\. A nondegenerate zero p of V, where by definition 7,F" = &,
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is positive if o coincides with o' and negative otherwise. Negative elliptic
points are sinks and positive elliptic points are sources for the vector field V,
see [HWZ95b| for details.

The following theorem is a particular case of [HWZ95al, Theorem 3.2].

Theorem 3.10 ([HWZ95a]). Let A be a contact form on S® with associated
contact structure & and Reeb vector field Ry. Assume there ezists a non-
degenerate and simply covered orbit P = (x,T) satisfying u(P) = 3, which
spans an embedded disk Fy whose interior is transverse to Ry. Then there
exists an embedded disk F spanning P whose interior is transverse to R and
whose characteristic foliation is transverse to OF and possesses precisely one
singular point e, which is positive and nicely elliptic.

By hypothesis (i) of Theorem [3.5] we know that the orbit P; spans an
embedded disk whose interior is transverse to R). Applying Theorem [3.10]
to the orbit P = P53 we obtain an embedded disk D spanning P3; with special
properties. The vector field V' that parametrizes the characteristic distribu-
tion (£ NTD)* points outwards at 9D and has precisely one zero e in the
interior of D, which is a positive nicely elliptic singularity and a source for
the dynamics of V.

3.3.2 The Bishop family

In this section, we follow the exposition of [HSall| and [HLSal5|.

Let D be the disk obtained by applying Theorem to the orbit P;.
Identifying S? with {0} x S C R x S? we identify D with {0} x D C R x S5.
Following ideas of [Hof93, [HWZ95a, [HWZ99a], we consider the boundary
value problem

i = (a,u) :D— R xS is an embedding,
dii-i = J(a) - da,
a=0 on JD, u(dD)C D\ {e},

u(0D) winds once positively around e.

(3.4)

Here i denotes the standard complex structure on C and J is any complex
structure in J (&, d\). The disk D is oriented so that A|sp > 0 and the loop
u(0D) is oriented by orienting D counterclockwise.

Define, for any J € J(&,d\),

M(J) = {@ = (a,u) : D = R x S* solution of | u(OD)NOD =0} .

It is proved in [Hof93] that there exists J € J(&,d\) and a continuous
map ¥ : [0,¢) x D — R x S? such that ¥ : (0,¢) x D — R x S? is a smooth



3.3. PROOF OF THE MAIN THEOREM 63

embedding, ¥(0,D) = {e} and
U(r,-): D — R x S? satisfies (3.4), for 7 € (0, €).

Note that if @ is a solution of (3.4), then also @ o ¢ is a solution for
every biholomorphism ¢ : D — ID. The group G of all such biholomorphisms
has dimension 3. It is proved in [Hof93] that for any J € J(&,d\), the
linearization of J; at any @ € M(J) is surjective and its Fredholm index
is 4. An application of the implicit function theorem turns M(J) into a
4-dimensional smooth manifold. One can show that (4,¢) — @o ¢ is a
smooth, proper and free right action of G on M(J). This implieﬂ that

II: M(J) — # is a smooth principal G-bundle with one dimensional

base space %, where II is the quotient projection.

It is also proved in |[Hof93| that if @, € M(J) satisfies @, — @ in
Ce (D, R x S*) and @ is non-constant, then @ solves (3.4)).

Next, we want to parametrize the one dimensional base space @ To
do so, we need some additional facts.

Fix g € M(J) and let to = II(zg) € 24 Tt is proved in [Hof93] that if

G
s is a section of M(J) — % defined around t, satisfying s(t9) = o, then

there exists a neighborhood U of ¢y in # such that the map

O:UxD—-RxS®

(t.2) o s(1)(2) (3:5)

is a smooth embedding onto its image.

Each leaf [ of the characteristic foliation is a trajectory of the vector field
V. Since there are no singularities other than e, 0D is the image of a Reeb
trajectory and V points outwards at 0D, the a-limit of [ is the source e and [
hits 0D transversally in forward and finite time. Moreover, [ has finite length
since e is nicelly elliptic.

As proved in [Hof93| Lemma 19|, the strong maximum principleﬂ implies
that if & € M(J), then u(0D) intersects the leaves transversally. Since u(0D)
winds once around e in D, it hits every leaf exactly once.

Following [HWZ95al, choose a leaf [; of the characteristic foliation and
denote its length by 7. We can define a smooth map 7 : % — (0,7) as
follows.

Fix @ = (a,u) € M(J). For any ¢ € G, uo p(JdD) intersect I, at the

2By the caracterization of smooth principal bundles.
3a.k.a Hopf Lemma.
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same point p, (). Set
7(II(w)) = length of the piece of [; connecting e to p.(a) .

It follows from the existence of local embeddings as in (3.5 that 7 is a local
diffeomorphism.

Intersections The following result is a consequence of Theorem 4.4 of
[HWZ95al.

Theorem 3.11 ([HWZ95a]). Let Y C %% be a connected component con-
taining disks arbitrarily close to the constant (0,e). If 4 : D — R x M is a
smooth map and y € TI7Y(Y) is a sequence satisfying ty — @ in C™, then
a(D)N (R x z3(R)) = 0.

The following proposition is a consequence of the arguments in the proof
of [HWZ95al, Theorem 4.4 and will be useful later.

Proposition 3.12. Let J € J(§,d\). Consider a point z € ID, an open
neighborhood U of z in D and a sequence y, = (ag,ux) : U — R x S of
J-holomorphic maps satisfying ux(U N OD) C D\ 0D, Vk. Assume i =
(a,u) : U — R x S is a J-holomorphic map such that @, — @ in C2(U)

and [,u*d\ > 0. If u(z) € xz3(R), then for k large enough, there exists
Ox € U satisfying ug(0r) € x3(R).

A proof of Proposition can be found in [HLSal5l Corollary 6.11].

Generic almost complex structures Let I' C D be a finite non empty
set and consider the mixed boundary value problem

(= (a,u) :D\T = R x S* is an embedding
div-i = J(u) - di
a=0 on 0D, u(dD)C D\ {e}

u(0D) winds once positively around e (3.6)

/iww>amm<m
D\T'

| Every z € I' is a negative puncture

Here we do not fix the complex structure on D.
The following proposition is a consequence of results in [HWZ99b].
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Proposition 3.13. There exists a residual set J., C J(§,d)\) such that

the following holds. Assume J € «792@n and u is a J-holomorphic solution
of (3.6) asymptotic to a closed Reeb orbit P, at each puncture z € T'. If
u(P,) > 2, Yz € T, then there exists at most one puncture in I and if there

is a puncture 2o, then u(P,,) = 2.

Let J1!

ben C J(€,dN) be the residual set obtained by Theorem [2.20, and
define

R 1 2
‘-77“59 T ‘-77“eg N *Zﬂeg‘

Limiting behavior of the Bishop family There exists J € J(,d\) and
a disk 0, = (b,v) € M(J) arbitrarily close to the constant (0, e) satisfying

5(D) N (R x z3(R)) = 0.

Every such o, is automatically Fredholm regular for a Fredholm theory of
pseudoholomorphic disks with boundary in the embedded surface {0} x D'\
{e}, which is totally real in (R x M, .J), as proved in [Hof93]. If J' € J,., is
a C'* small perturbation of J, then we can find a disk 0, € M(J') as a C*
small perturbation of v,. Reverting the notation back to J and v,, it follows
that we could have assumed J € [J,.4 from the beginning.

Let Y be the connected component of % containing I1(7,). The set of

solutions @ of in IT71(Y) satisfying @(D) N (R x x3(R)) = 0 is closed in
I171()). This follows from Theorem Since it is also open, non-empty
and I171(Y) is connected, every @ € T171()) satisfies (D) N (R x z3(R)) = 0.

Define

"= sup 7(a).
aell=1(Y)

Fix two other leaves [; and [_; of the characteristic foliation of D distinct of
[1 in such a way that {l1,[;,{_1} is ordered according to the Reeb flow along
the boundary.

Now we consider a sequence 7, — 7* and choose disks @, = (a,,u,) €
7)) satisfying 7,, = 7(1,,) and the normalization condition u, (1) € Iy, u,(i) €
l; and u,(l_y) € I_y. Define

['o = {z € D|3n; — oo and z; — z such that |d,, (z;)| — oo}

We need the following Theorem of [HWZ95al.

Theorem 3.14 ([HWZ95al). 3 0 < p < 1 such that for every sequence
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U, € M(J) satisfying t,(w) € 1, for w € {1,7,—1}, we have

sup sup |di,(z)] < oo .

n  p<|z|<1
By Theorem I'oC D\ JD.
Note that
0<C:= sup FE(u)<T;. (3.7)
aeM(J)

Indeed, let @ € M(J). Since 4 is nonconstant, we have E(@) > 0. Denote by
D, the component of D \ u(0D) which contains the singular point e. Recall
that D is transverse to the Reeb vector field and oriented in such a way that
d\r > 0. Using Stokes theorem and a(0D) = 0, we can estimate for any
¢ € C*(R,[0,1])

/ Wy = / S0V uA= [ $(0)dA
D oD Du

§/ d)\</d)\:/ A=Ts.
u D Py

Passing to a subsequence, still denoted by u,, we may assume [’y is fi-
nite. This follows from and from the same arguments used in the
proof of Proposition Thus, by Theorem there exists a smooth
J-holomorphic map

Uy = (ao,UO) ZD\FO — R x Sd
and a subsequence, still denoted by u,, such that
Uy — Ug, in Cpo(D\ ) .

Arguing as in section [2.3.3] we conclude that I'y consists of negative punctures
of fLO.

Lemma 3.15. Ty # 0.

> (D,R x S?) and 4 is non
constant. As remarked before, this implies that g solves . By Theorem
B.11] up(0D) Na3(R) = @. Thus, iy € II71(Y) and 7(Gp) = 7. We take a
local section sq of M defined on a neighborhood Uy of TI(g) in % and define
Dy : Uy x D — R x 83 by ®(t,2) = so(t)(z). As explained before, @ is
a smooth embedding into R x S3. Thus, we can find elements @ € II71())
satisfying 7(a) > 7(1g) = 7%, a contradiction. O

Proof. Suppose I'y = (. Then 4, — g in C°
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Lemma 3.16. 4, is an embedding, ap = 0 on 0D and ug(0D) C D\ {e}
winds once and positively around e.

Proof. Since @, — g in C7%., a, = 0 on 0D and u,(0D) C D\ {e} winds once
and positively around e for every n, we have ag = 0 on 9D and ug(9D) C
D\ {e} winds once and positively around e. Using the fact that ay satisfies
the strong maximum principle, one can show that g is an embedding near
OD. It follows from results in [McD91]| that self-intersections or critical points
of 1y would imply self-intersections or critical points of u, for n large, which
contradicts the fact that u, is an embedding for every n. Thus, @y is an
injective immersion. It follows from Lemma that 1 is an embedding.
[

Fix any zg € Iy and let Py = (z9,Tp) be the asymptotic limit of @y at 2.
As in Section we define the mass of zy by

m(zo) = lim me(z),

where

n—0o0 Be (ZO)

Now we proceed as in the soft rescaling done in Section Fix ¢ > 0 such

that
o(C)
5
Choose z, defined by a,(z,) = inf(a,(B(20))) and let 0 < ¢,, < € be defined

by
/ wid\ = o (C).
Be(20)\Bs, (n)

It follows that z, — 2y and, up to a subsequence, ¢, — 0. Take R, — +00
such that 0, R, < § and define

me(zg) — m(zp) <

Up = (by,v,) : Bg,(0) = R x S° (3.8)
2 (an(2n + 002) — an(2n + 20,), Un (20 + 0,2))

The sequence v, is a germinating sequence, according to Definition [2.25] Let
It = {z € C|3z; — z and subsequence iy, s.t. |di,,(2;)] — oo}.  (3.9)

Passing to a subsequence, we can assume ['; is finite. Let

o=(b,v):C\I} = Rx S
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be a limit of v,, according to Definition [2.27] Then v has a unique positive
puncture at co and v is asymptotic to Py at oo. Thus, using Lemma [2.37
we obtain the following.

Lemma 3.17. If z € [y and g is asymptotic to P al z, then u(P) > 2.

Now we divide our analysis into two cases:
1) m-dug =0
2) fD\FO upd\ >0

3.3.3 The Case w-dug =0
In this section, we use the same notation as in |3.3.2]

Proposition 3.18. Assume w - dug = 0. After reparametrizing, we can
asssume L'y = {0} and

iy — Fp,, in C2(D\ {0},R x S?) ,

where Fp, denotes the map 2"+ s (Tys, x3(Tst)) on D\ {0}.

Proof. Since 7 - dug = 0, there exists a Reeb trajectory & such that ug(D \
[y) € Z(R). It follows from Lemma that 7 is periodic and Z(R) =
uo(0D) C D. By the properties of the disk D given by Proposition [3.10} we
have Z(R) = z3(R). Consider the map F : D\ {0} — R x S? given by

z = 2™y (Tys, z4(Tst)) .

One can prove using Carleman’s Similarity Principle that 3k € Z* and a
holomorphic map ¢ : D — D satisfying ¢(0D) = ID, Ty = ¢~ 1(0) and
©lop : OD — OD has degree k, and such that

ug = Fop.

Since T3 is the minimal positive period of x3, uo(0D) winds k times around e
in D. It follows from Lemma that £k = 1 and ¢ is a biholomorphism. [J

Let 0, = (bn, v,) be the germinating sequence defined in for zp =0
and let I'; be defined as in (3.9). Let 0 := (b,v) : C\T;7 — R x S% be a
limit of the sequence v,,. Then © has a unique positive puncture at oo and
the points in I'y are negative punctures. By Proposition [3.18 we know that
¥ is asymptotic to P3 at oo. Also, if T'; # ), then 0 € I'y. This is because
b,(0) = inf b,(Bg,(0)) and the points in I'; are negative punctures.
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Py

Py

Figure 3.2: Case 7 - dup = 0 and Figure 3.3: Case 7 - dup = 0 and
=0 [y #0

Lemma 3.19. f(C\F1 v¥d\ > 0.

Proof. Suppose that 7modv vanishes identically. Then, by Theorem [2.6] there
exists a polynomial p : C — C such that 'y = p~*(0) and © = Fp, o p. Since
Ps is prime, p must have degree 1. This implies I'; = {0}, a contradiction
with Proposition [2.30] O

Corollary together with the fact that P5 is simply covered implies
that © = (b,v) is somewhere injective.
Thus, we can apply Theorem to conclude

1< p(Py) = > p(Po) = xse + #T1+1<2= > p(P.) + #1,

zelr zely

where P, is the asymptotic limit of v at z. The only possibilities for the set
of punctures I'; are

o BEither I'; =0 or
o I') = {0} and pu(Fp) =2.

The bubbling-off tree in the case I'y = {0} Assume that I’y = {0}
and u(Py) =2 . Let w: C\ Ty — R x S? be the unique vertex immediately
below v in the bubbling-off tree B associated with the germinating sequence
U, and the limit o.

We can apply Lemma to the curve w to conclude that every asymp-
totic limit of w has Conley-Zehnder index equal to 2. Using this fact we can
prove the following lemma.

Lemma 3.20. 0 : C\ Ty — R x S? is somewhere injective.
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Proof. Arguing by contradiction, we assume that @ is not somewhere injec-
tive. Then there exist a polynomial p : C — C and a somewhere injective
finite energy sphere @ : C\ IV — R x S® such that degp > 1, p™1(I") =T
and w factors as

wW=1muop.

Let P be the asymptotic limit of w at oo and P,, be the asymptotic limit of
@i at co. Then Pd#? = P. Using Lemma [1.9|(#ii) and p(P) = 2, we conclude
that degp = 2 and p(P,) = 1. By Theorem applied to @, we have the
estimate

0< p(Po) = Y p(Po) = xs2 + #T +1=1= > p(Po) =2+ #I" + 1,

2 el” z'el”

where P, is the asymptotic limit of % at 2’. We conclude ), . pu(P.r) < #I
and consequently u(P,) < 1,Vz € T".

Suppose that ¢ € I' is a regular point of p. Then p is a biholomorphism
in a neighborhood of ¢ and, if 2’ = p({), then

P =P. .

This leads to the contradiction p(F;) = 2 > 1 > pu(Py). We conclude
that if T'y # (), it consists of critical points of p. Since degp = 2, we have
# Critp = 1. Tt follows that #I's < 1 and consequently #I" < 1.

By Proposition , we know that f(c\r w*d\ > 0. Consequently, we have
fc\r, u*d\ > 0. By Theorem applied to @, we have the estimate

1< p(Poc) = Y pl(Po) =24+ #T + 1= =Y pu(Pur) + #I".
el /eI

We conclude that IV = {z'} and pu(P,) = 0. It follows that I'y = {(},
p(¢) =2, p'(¢) =0 and

By lemma [I.9] this leads to a contradiction. We have proved that @ is some-
where injective. O

By Theorem we have the estimate
0<ind(w) <2—2#y =2+ #9+1=1— #Is.

Thus, we conclude that #I'y < 1 and consequently, by Lemma we have
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Py

P,

Figure 3.4: Case m-dug =0 and 'y # 0

f(c\rz w*d\ > 0. Again by Theorem we obtain
1 < ind(@) < 1— #, .

Thus, #I's = 0 and w is the only leaf in the bubbling-off tree. By Proposition
the leaf is asymptotic to an orbit P = (z,T) such that u(P) = 2 and P
do not intersect the image of w. Then P is not linked to Ps. Since T < Tj,
it follows from the hypotheses of Theorem that

P=P.

So far, we have a J-holomorphic cylinder © : C\ {0} — R x S? asymptotic
to P3 at its positive puncture co and to P, at its negative puncture 0, and a
J-holomorphic plane asymptotic to P».

The bubbling off tree obtained in the case 7 - dup = 0 In conclusion,
in the case 7 - dug = 0, we have two possibilities:

1. Either I'y =0 and o : C — R x S3, or

2. Ty = {0}, o : C\ {0} — R x S? is asymptotic to P at its positive
puncture oo and to P at its negative puncture z = 0. In this case we
also obtain a J-holomorphic plane @ : C — R x S3 asymptotic to Ps.

We continue the analysis of the case moduy = 0 in Chapter[d] In the case
I'y = 0, we show that © belongs to a 1-parameter family of J-holomorphic
planes asymptotic to P;, whose projection foliates a region in S3. This is the
first step to obtain the 3 — 2 — 1 foliation. In the case I'y = {0}, we apply
the Gluing theorem [5.2] to the cylinder @ : C\ {0} — R x S* and the plane
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w: C — R x S? to obtain a l-parameter family of J-holomorphic planes
asymptotic to Ps.

3.3.4 The case fD\I‘O usdX > 0

We continue using the notation of In this case, (1o, j) is a solution
of (3.6). Remember we have assumed J € J2, where J2 is given by
Proposition [3.13] By Lemma [3.15] we know that [y # () and, if z € Ty and
fip is asymptotic to P at z, then u(P) > 2. Thus, Proposition implies
that Ty consists of a single point z = 0 and pu(FP) = 2, where P, is the

asymptotic limit of ugy at 0.
Proposition 3.21. u(0D) Nx3(R) = 0.

Proof. Assume there exists z € D such that uy(z) € z3(R). By Lemma [3.12]
applied to the sequence ,, we obtain a sequence {0} in D\ {0} satisfying
un(6,) € x3(R), for n large enough. It is a contradiction, since u,(D) N
z3(R) =0, Vn. O

Consider the germinating sequence v, = (bn,v,) : C\ T} — R x S?
as defined in (3.8), and let © = (b,v) be a limit of the sequence 0,,. Then ¥
satisfies the hypotheses of Lemma and it follows that for all z € I'yU{oo},

w(P.) =2,

where P, is the asymptotic limit of v at z. Using Lemma [3.20] we conclude
that v is somewhere injective.
By Theorem we have the estimate

0 < ind(?) < u(Py) — p~ (D) — xs2 + #L'1 + 1
=2 24D — 24 #T) + 1
=1— 240 .

We conclude that #I'; < 1 and consequently, by Proposition fC\Fl v\ >
0. By Theorem [2.20] again, we have the estimate

1 <ind(d) < 1— 24T .

Hence, #I'; = 0.

Let Py = (x0,1p) be the asymptotic limit of o at co. It follows from
Propositionthat Py is not linked to Ps. Also, Ty < T3 and pu(FPy) = 2. By
the hypotheses of Theorem[3.5] P, is the only orbit satisfying these properties.
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Py

P

Figure 3.5: Case [p, ,, ugdA > 0

Thus,
Py=P.

We continue the analysis of the case fD\FO usdA > 0 in Section [5.2

73
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Chapter 4

Proof of Theorem 3.5 in the case
w-dug =0

Following Section we consider a sequence @, = (a,,u,) € M(J)
and a J-holomorphic map

fLOI(CLo,Uo)ZD\FO—)RXS?’

such that, passing to a subsequence, @, — G in C2.(D\I'g). In this chapter
we assume
moduy=0.

With this assumption, by Proposition [3.18, we have
7]0 = FP3 )
where Fp, denotes the cylinder e?™5+%) s (Tys, 23(T5t)) in D\ {0}.

Fix ¢ > 0 such that m.(0) — m(0) < # and choose z, defined by
an(2n) = inf(a,(B(0))). We also choose 0 < ¢,, < € satisfying

/ wdr = o(C).
Bc(0)\Bs,, (2n)

It follows that 2z, — 0 and, up to a subsequence, 9, — 0. Take R, — oo
such that 4, R, < 5 and define

Up = (by,v,) : B, (0) = R x S°

2 (an(2n + 002) — an(2n + 20,), Un (20 + 6,2)) (4.1)

75
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The sequence 9, is a germinating sequence as in Definition 2.25 Let
I't = {z € C|3z; — z and subsequence iy, s.t. |di,, (z;)] = oo}.  (4.2)
Passing to a subsequence, we can assume #I'; < co. Let
o= (bv):C\I' - RxS?

be a limit of the germinating sequence @, as in Definition Then ¢ has a
unique positive puncture at co and the points of I'; are negative punctures.
Also, v is asymptotic to P3 at co. As proved in Section [3.3.3 we have two
possibilities for I'y:

e Either I'; = () and © is a plane asymptotic to P

e or['; = {0} and © is a cylinder asymptotic to Ps at its positive puncture
and to P; at its negative puncture.

4.1 Foliating a solid torus in the case I'y = ()

In this case o : C — R x S% is a J-holomorphic finite energy plane
asymptotic to the orbit P;. Tt follows from Lemma that

wind,(0) =0 .
As a consequence of the definition of wind,, we conclude
RX,(z) ® dvo(2)(T.C) = Ty(»)S?, ¥z € C |

proving that v is an immersion transverse to the Reeb flow. In particular,
this implies that v is an immersion. Now we prove that v is an embedding.
Since ¥ is an immersion, it is enough to prove that v is injective to conclude
that it is an embedding in any closed ball By C C, R’ > 0. Let AC Cx C
be the diagonal and consider the set

D :={(z1,22) € Cx C\ Al|t(2z1) = 0(22)} .

D consists only of isolated points in C x C\ A. Indeed, if D has a limit
point in C x C\ A, then we find, using Carleman’s similarity principle as
in [HWZ95h], a polynomial p of degree at least 2 and a J-holomorphic map
f:C — R x S?such that o = f op. This forces zeros of dv, contradicting
the fact that ¥ is an immersion. If D # (), using positivity and stability of
intersections of pseudo-holomorphic immersions, we obtain self-intersections
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Py

to

Figure 4.1: Case 7 -dug =0 and I'; = ()

of the maps v,,. However, we know that each u,, and consequently each v,
is an embedding. It follows, form Theorem [2.11) Lemma [2.14] and the fact
that the orbit Pj is prime, that v is an embedding near the boundary, that is,
there exists R > 0 such that 0~'(0(Bg)) = Bg and 0|c\p, is an embedding.
This shows that v is an embedding.

A family of planes asymptotic to P; The following Theorem is proved
in [HWZ99b)|.

Theorem 4.1 ([HWZ99b]). Assume that the J-holomorphic finite energy
plane W = (d,w) : C — RxS? is an embedding asymptotic to a nondegenerate
simply covered orbit P = (x,T) satisfying n(P) = 3 . Then there exists e > 0
and an embedding

®=(a,®): (—e,¢e) xC—RxS*
so that

(ii) For any T € (—e¢,¢€), the map d, := &(r,-) : C — Rx S is an embedded
finite energy J-holomorphic plane asymptotic to P;

(iii) ®(1,C)N P = 0, V7 and the map ® : (—e,e) x C — S>\ P is an
embedding;

(iv) Let w, be a sequence of embedded fast finite energy J-holomorphic
planes all asymptotic to P satisfying w, — @ in C;2(C) as n — +oo.

Then there exist sequences A,, B,, in C with A, — 1, B, — 0, ¢, in R
with ¢, — 0 and 7, in (—€,€) with 7, — 0 such that

Wy (2) = (ar, (Anz + Bp) + ¢n, @, (Anz + By))
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for sufficiently large n.

By applying the above theorem to the plane v we obtain a maximal 1-
parameter family of finite energy planes asymptotic to the orbit Ps

Uy = (br,v;), TE(T-,T4) .

The family satisfies v, (C)Nv,,(C) = 0, Y7y # 7. Indeed, if there are 7 # 7
such that v, (C) Nv,(C) # 0, then v, (C) = v,,(C) and we would obtain
an S'-family of embedded planes that provides an open book decomposition
[ with disk-like pages to S, with binding orbit Ps. Since each plane in
the family is fast and consequently transverse to the Reeb flow, it clearly
contradicts the fact that P, and P, are not linked to Ps.

Now we describe how the family {v.} breaks as 7 — 7. We assume that
7_ =0 and 74 =1 and 7 strictly increases in the direction of R,.

Limiting behavior

Proposition 4.2. Consider a sequence v, := 0., in the family {0, } satisfying
7. — 07, Then there exists a J-holomorphic finite energy cylinder @, -
C\{0} — R x 8% which is asymptotic to Py at the positive puncture oo and to
P, at its negative puncture and a finite energy J-holomorphic plane iy C —
R x S3 asymptotic to P> at oo, such that, after suitable reparametrizations
and R-translations, the following hold

(1) Up to subsequence, v, — 4, in Cpo(C\ {0}) as n — oo.

loc

(i) There exist sequences 6,7 — 07, z, € C and ¢, € R such that, up to

subsequence, U (0,) + ¢ = Uy in CP2(C) as n — oo.

Proof. After a holomorphic reparametrization of v,, and R translation, we can
assume {7,} is a germinating sequence as defined in (2.13)-(2.16]). Indeed,
we can take sequences z, € C and 0 < 4, such that b,(z,) = inf b,(C) and
fC\Bsn(zn> vid\ = o(T3), and define

Un(2) = (an(2),un(2)) = (bn(zn + 0n2) — byu(2n + 20,), Vn (20 + 0n2)) -

Then a,(2) = 0, ¥n and

/ Uy d\ = / vrd\ = o(T3). (4.3)
C\D C\Bs,, (zn)

L An open book decomposition of a 3-manifold M is a pair (L, p), where L C M is a link
and p: M\ L — S! is a fibration such that each fiber p~1(6) is the interior of a compact
embedded surface Sy — M satisfying Sy = L. L is called the binding and the fibers are
called pages. If the pages are disks we say that (L, p) has disk-like pages.




4.1. FOLIATING A SOLID TORUS IN THE CASET; =) 79

Hence, changing the notation back to v, we can assume {0, } is a germinating
sequence.

Let @, : C\ T, — R x S® be a limit of 0, and let B = (T,U) be the
bubbling-off tree obtained as in Theorem [2.31]

We claim that P; is the asymptotic limit of @, at co. Indeed, let W C
C>(S', S3) be an S'-invariant neighborhood of the set of periodic orbits P =
(2, T) € P(\) with T < T3, viewed as maps xp : S* — S3 xp(t) = x(Tt),
such that each connected component of VW contains at most one periodic orbit
modulo S'-reparametrizations. Using the normalization condition (4.3)), we
can apply Lemma and find Ry > 1 such that for R > Ry, the loops
t — u,(Re™™) and {t — v,(Re®™)},n € N belong to W. For R fixed, the
sequence of loops t — v, (Re®™) converges to t — u,(Re®™) in C>(S!, S3),
so that for n large and R > Ry, t — u,(Re™®™) and t — v, (Re™™) belong to
the same connected component of W. This implies that P; is the asymptotic
limit of @, at oo.

We first note that #I', # 0. Indeed, if ', = @, then @, : C — R x S3
would satisfy the hypotheses of Theorem which contradicts the fact that
the family {0,} is maximal.

Since Pj is simply covered, we know that #, is somewhere injective. By
Theorem we have the estimate

0 <ind(d,) =3— Y u(P.) =2+ #T, + 1.

ZGFT

By Lemma [2.37, u(P.) > 2, Vz € T',.. Hence,

2HT, < > p(P) <2+ #T,

ZEFT

which implies that #I", < 2.

Now we prove that #I', = 1. Suppose, by contradiction, that #I", = 2.
Since 1, is somewhere injective, we can use Theorem to obtain the
estimate

0 <ind(d,) = p(Ps) = > p(P) =2+ #0, +1=4-Y uP.).

ZGFT ZGFT

Since p(P,) > 2 for all z € T',, the only possibility is u(P,) = 2 for all
z € Iy and ind(@,) = 0. By Theorem this implies that [, ujdA = 0.
By Theorem [2.6] there exists a non-constant polynomial p : C — C and
a Reeb orbit P = (x,T) such that p~*(0) = T, and @, = Fp o p, where
Fp: C\ {0} = R x M is defined by Fp(z = >6+#)) = (T's, 2(Tt)), and
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the asymptotic limit of @, at co is PP = (x,degp - T). Since Pj is simply
covered, degp = 1. This implies that #p~1(0) = 1, a contradiction. Thus we
have proved that #I'. = 1. Since b,(0) = inf b,(C) and the puncture in T,
is negative, we have I, = {0}.

Now we show that f(C\{o} urd\ > 0. Suppose 7 - du, = 0. Then, by
Theorem there exists a polynomial p : C — C and an orbit P = (x,T)
such that I" = p~1(0) and © = Fpop, where Fp : C\ {0} — R x 5% is defined
by Fp(( = ¥ 6+)) = (Ts,z(Tt)). Since 0 is the only root of p, we have
p(¢) = A", for some A # 0 and n > 1. Since P; is prime, we have n = 1
and P = Pj3. Thus,

. . log A
(¢ = 20 = Fp, (Ae¥T(H) (T3 ( += ) ,x3<T3t>) .
T
and we have the contradiction

T3 = / w A= lim [ vid\=T5—0(C).

Here we have used (4.3). We conclude that f(C\{O} urdA > 0.
By Theorem we have

1 <ind(u,) =3 — p(BRo) =24+ # +1=3— u(H) ,

where P, is the asymptotic limit of @, at 0. Hence u(Fy) = 2.

Following the arguments of Section we find sequences 6, — 07 and
zZn — 2o such that the sequence

Wy, = (b(2p + On) — bp(2n + 20,), Un(2n + 20,°))

is a germinating sequence. Let @, = (a,,u,) : C\ T, = R x S? be a limit
of the sequence w,. By Lemma [2.39 all asymptotic limits associated to the
punctures of @, have Conley-Zehnder index equal to 2. By Lemma this
implies that %, is somewhere injective. Then, we can apply Theorem to
g and obtain

0 <ind(fg) =2 — 240, — 2+ #L, + 1 .

Hence #I'; < 1. By Proposition we have f(C\Fq uzd\ > 0. Again
by Theorem we have ind(@,) > 1 and consequently #I'; = 0. By
Proposition [2.38, we conclude that the asymptotic limit of 4, at oo is an
orbit Py satisfying 1(FP) = 2 not linked to Pj. Since the period of P is less
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than T3, by the hypotheses of Theorem 3.5 we have
Py= P

and 44 is a plane asymptotic to Ps. O

By Lemma [2.34] wind,(a,) = 0 and wind.(i,) = 0. It follows that the
projections u, : C\ {0} — S% and u, : C — S* are immersions transverse to
the Reeb flow.

Proposition is still valid if we consider a sequence {v,, }, 7, = 17. In
this case, denote by @, : C\ {0} — R x S% and 4, : C — R x S° respectively
the finite energy J-homolorphic cylinder and the finite energy J-homolorphic
plane obtained as the SFT-limit of a subsequence of {v,, }.

Proposition 4.3. (i) For any S'-invariant neighborhood Ws of the loop
t — z3(Tst) in C°(R/Z,S®), there exists Ry >> 1 such that for R >
Ry, the loop t — v, (Re*™™) belongs to Wi.

(11) For any S'-invariant neighborhood Wy of the loop t — x9(Tot) in
C>(R/Z,S?), there exist ¢, > 0 and Ry >> 0 such that the loop
t = vp(2, + Re®™) belongs to W for Ri6, < R < ¢;.

(111) Given any neighborhood V of u,(C\ {0}) Uu,(C) U P, U P35, we have
v, (C) C V for n large. A similar statement works for any sequence
Tn — 17 with ug and u, replaced by w, and u, respectively.

Proof. The proof of (i) and (ii) is an application of Lemma Let W be
an Sl-invariant neighborhood of the set of periodic orbits P = (x,T) € P(\)
with T < T3, viewed as maps z7 : S' — 53, x7(t) = x(T't), such that each of
the connected components of WV contains at most one periodic orbit modulo
Slreparametrizations and such that W,, W5 C W. Using the normalization
condition we can apply Lemma and find Ry >> 1 such that for
R > Ry, the loops t — u,.(Re™®™) and {t — v,(Re”*)},n € N belong to W.
By the asymptotic behavior of the planes v,, we know that for each n, the
loop t — v, (Re*T™) belongs to Ws for R large enough. We conclude that for
any R > Ry and n large, the loop t — v, (Re?™) belongs to Ws.

Let z, — 0 and 9,, — 0 be the sequences obtained by soft rescaling near
z = 0 as in the proof of Proposition such that passing to a subsequence,
we have

Op(2n + 0n) — by (2 + 20,) — 44

in C°

> (C), as n = +o00. Applying Lemma as in the proof of Proposition
we find ¢ > 0 small and R; >> 1 such that for every R satisfying
d,R1 < R < ¢ and n large, the loop t — v,(z, + Re*™) belongs to W;.
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The proof of (iii) is a consequence of (i), (ii) and the fact that v, converges
uniformly to u, on compact subsets of C\ {0} and w,, = v,(2,,+9,-) converges
uniformly to u, on compact subsets of C.

O]

The projected curves are embeddings

Proposition 4.4. The curves u,(C\ {0}), u,.(C\ {0}), u,(C) and u;(C) do
not intersect Py U Ps.

Proof. We first prove that u,.(C\{0})NPs = §. Consider F': C\{0} — RxS®
defined by F(e?"(*#)) = (T's,23(Tt)). Note that F is a finite energy .J-
holomorphic immersion. Define

A={(z¢) € C\ {0} x C\ {0}[a,(2) = F(C)} -

If the set A is not empty, it consists of isolated points. Indeed, assume that
(z*,¢*) is not an isolated point of A. Since both %, and F' are immersions,
we can use Lemma 2.4.3 of [MS04] to find open neighborhoods O and O
of z* and (* respectively, and a holomorphic diffeomorphism f : O — O’
such that F'o f = 4, on O. Since u, is transversal to the Reeb flow, we
get a contradiction. Now assume A # () and choose (z*,(*) € A. The
maps %, and F intersect transversally at the pair (z*,(*). By positivity and
stability of intersections of pseudo-holomorphic immersions, we find z; — 2*
and n; — oo such that 0,,(z;) € F'(C\ {0}). This contradicts the fact that
vy, (C) Nz3(R) = 0, Vj. So we have proved that A = () and consequently
u(C\{0}) N Py =0,

To prove that u,.(C\ {0}) N P, = ), we proceed in the same way, noting
that v, (C)Nz2(R) = 0, Vn. Indeed, by assumption, P, and P are not linked.
Then the linking number lk(z2(R), z3(R)) is zero. Since each v, (C) is a Seifert
surface for z3(R), lk(z2(R), z3(R)) is the intersection number of zo(R) and
v, (C). If PyNw,(C) # 0, there are positive and negative intersections. But
this contradicts the fact that v,, is transverse to R).

By the same arguments above, we prove that u, (C\{0}), u4(C) and u;(C)
do not intersect P, U Pj.

Using Proposition [4.4] and Theorem we conclude the following.

Proposition 4.5. The projected curves u, : C\{0} — S3, ul. : C\ {0} — S3,
u, : C— S® and u, : C — S3 are embeddings which do not intersect any of
their asymptotic limits.
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Uniqueness
Definition 4.6 ([Siell]). Let a: S\T, > Rx S*and v: S\T, - R x S3

be finite energy J-holomorphic curves asymptotic to the same nondegenerate
periodic orbit P € P()\) at certain punctures z, € I, and z, € T',. We say
that u and v approach P in the same direction at these punctures if n, = cn,
for ¢ > 0, where 7, and 7, are the asymptotic eigensections of @ at z, and of
U at z, respectively, defined in Theorem 2.11} In case n, = cn,, with ¢ < 0,

we say that u and v approach P in opposite directions.

Proposition 4.7. Up to reparametrization and R-translation, u, = ﬂ;, and

U, s the unique finite energy J-holomorphic plane asymptotic to Py. Also, if
u-(C\ {0}) # u,(C\ {0}), then (up to reparametrization and R-translation)
4, : C\{0} = RxS® and @ : C\ {0} = R x S® are the unique finite energy
j—holomorphic cylinders asymptotic to P at its positive puncture and to Ps
at its negative puncture that do not intersect Py U Py. Moreover, G, and ),
approach Py in opposite directions.

Proof. The proof follows the ideas of [dPSal8, Proposition C.1]|.

First we prove that i, and 4 coincide up to reparametrization and R-
translation. Suppose that i, and % do not coincide. This is equivalent to
uy(C) # ul(C). Since P, is unknotted, u(P) = 2 and m(S?) = 0, we have

q

from Theorem 1.3 in [HWZ95b] that
u,(C)NP =0, uw,(C)NP =90

and u,,u, are embeddings. By Theorem 1.4 in [HWZ95b], u,(C) # u,(C)

q q

and uy(C), u (C) N P, = ) imply
ug(C) Nug(C) =0 .

Let o be the asymptotic eigensection of @, at oo and ¢’ the asymptotic
eigensection of @ at co. Since by Lemma [2.34 winde = wind¢’ = 1 and
vp,. is the only negative eigenvalue of Ap, with winding number equal to
1, it follows that 0,0 are vj, ?-eigensections. Since the eigenspace of v -

eigensections is one dimensional, we find a constant ¢ # 0 such that

o=co .

Assume ¢ > 0. Since uy(C) Nu,(C) = @), by Theorem we conclude that
[tg] * [Gg] > 0. Since u,(C), u(C) does not intersect P, the orbit P is even
and

do(tig, 00) := wind(vp,?)—wind(o) = 0, do (i, 00) := wind(v?)—wind(c’) = 0,
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then we obtain, using Theorem [B.1]

[@g] * [i7g] = 0.

This contradiction shows that the only possibility is ¢ < 0. This implies that
uy(C) Ul (C) Uzy(R) form a C'-embedded sphere, where each hemisphere
is a strong transverse section, a contradiction with the hypotheses of The-
orem . We have proved that 4, and @ coincide up to reparametrization
and R-translation. By the same arguments, we prove that any finite energy
J-holomorphic plane asymptotic to P, coincides with @, up to reparametriza-
tion and R-translation.

Now we prove the assertions about the cylinders @, and @,. Assume
u,(C\{0}) # u/(C\{0}). Following Theorem [2.11] let 7, be the asymptotic
eigensection of @, at +00 and let n_ be the asymptotic eigensection of @, at 0.
Similarly, define 7, and n’_ for 4,.. Denote by wind(n. ), wind(n’.) the winding
numbers of 1y, 7/, computed with respect to a global trivialization of £. By
Lemma wind(n-) = wind(n") = 1. Also, n_ and 1’ are associated to
the eigenvalue v,” defined in (1.13), since there is just one positive eigenvalue
of the asymptotic operator Ap, with winding number equal to 1. Since the
eigenspace of 1/1’3‘2)5 is one dimensional, we conclude that there exists a nonzero
constant ¢ so that . = cn_.

Assume ¢ > 0, that is, 4, and 4. approach P; in the same direction. Since
we assume u,(C \ {0}) # u.(C\ {0}), it follows, by Carleman’s similarity
principle, that the images of u, and u/. do not coincide in any neighborhood
of 0. By Theorem this implies that [a,]* [@.] > 0. Since u,(C\ {0}) and
u,(C\ {0}) do not intersect P, U Py, the orbit P, is even,

do(ty,0) := wind(vp,”) — wind(ny.), do(i,,00) := wind(vp?) — wind(n-) =0

and similarly, do(,,0) = do(@,,00) = 0, then, by Theorem we obtain
[@,] * [@.] = 0. This contradiction shows that ¢ < 0, that is, @, and @,
approach P, in opposite directions.

By the same arguments, we conclude that @, and @, are the unique cylin-
ders with the properties given in the statement.

]

The following proposition can be proved by Proposition [4.4] and Theorem
B.2l

Proposition 4.8. The images of the projected curves u,, u, and {v.},7 €
(0,1) are mutually disjoint. Assume u,(C\ {0}) # ul.(C\ {0}). Then the
images of u,, u., u, and {v.}, 7 € (0,1) are mutually disjoint.
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The foliation

Proposition 4.9. The cylinders u, and u, satisfy u,(C\{0})Nu.(C\{0}) =
0. The union of the image of the family {v, : C — S3}, 7 € (0,1) with the
images of uq, ur, u., T2 and xs determine singular foliation of a closed region

Ry such that ORy =T, where T = zo(R) Uz3(R) Uu,(C\ {0})Uu,(C\ {0}).

Proof. First we prove that u,(C\ {0}) Nu.(C\ {0}) = 0. Suppose by con-
tradiction that u,.(C\ {0}) = u,(C\ {0}). We will show that every point

p € 8%\ (ur(C\{0}) Uny(C) Uzs(R) U z3(R))
lies in the image of the family {v,}. Let
p € 8%\ (ur(C\ {0}) Ung(C) Uzs(R) U z3(R))

and consider a neighborhood V of u,.(C\ {0}) U u,(C) U z5(R) U z3(R) such
that p ¢ V. By Proposition we have v, (C),v,,(C) C V for some 7y
sufficiently close to 0 and oq sufficiently close to 1. The surface S = v, (C)U
Vg (C) U z3(R) is a piecewise smooth embedded sphere. By Jordan-Brouwer
separation theorem, S divides S? into two regions A; and Ay with boundary
S and disjoint interior. One of these regions, say A; contains p and the other
contains u,(C\ {0}) Uuy(C) U zo(R) U zs(R). The intersection of the image
of the family {v:};c(0,1) with A; is non empty, open and closed. Thus p is in
the image of the family {v:}-c(,1).

It follows that S* = u,(C\ {0}) Uuy(C) Uza(R) Uz3(R) U{v-(C)}reo)-
But this contradicts the fact that P, is not linked to P3 and the curves u,, u,
and v, are transverse to the Reeb flow. We conclude that

ur(C\{0}) N, (C\{0}) = 0.

The surface T' = x9(R) U z3(R) Uw,(C\ {0}) Uu.(C\ {0}) is a piecewise
smooth embedded torus. By Jordan-Brouwer separation theorem, T divides
S3 into two closed regions R; and R,. Only one of the regions, say R,
contains the image of the family {v,} and the plane u,(C). Now we show

that the images of u,, u,, u.., z2, x5 and {v,} foliate the closed region R;.
Let

p € R\ (22(R) Uzs(R) Uur(C\ {0}) Un(C\{0}) Ury(C))

and let V be a neighborhood of z5(R)Uz3(R)Uu, (C\{0})Uu,.(C\{0})Uu,(C)
such that p ¢ V. By Proposition we have v, (C),v,,(C) C V for some
7o sufficiently close to 0 and o sufficiently close to 1. The surface S =
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Figure 4.2: The foliation obtained so far

U7, (C) Uy, (C)Uz3(R) is a piecewise smooth embedded sphere. By Jordan-
Brouwer separation theorem, S divides S® into two regions A; and A, with
boundary S and disjoint interiors. One of these regions, say A; contains p
and is contained in R;. Thus the intersection of the image of the family {v, }
with A; is open, closed and non empty. This implies that p is in the image
of v, for some 7 € (0, 1). O

Proposition 4.10. The closure of the image of the family {v, : C — S},
that is, the union of the image of the family with the images of uq, u,, u,, xo
and xs is homeomorphic to a solid torus.

Proof. We follow the proof of the Solid torus theorem in [Rol03]. Consider
the (piecewise smooth) embedded torus 7' = z5(R) U 23(R) U w,(C \ {0}) U
ul.(C\{0}). Let R, be the union of the image of the family of planes {v, } with
the image of u, and T, so that ORy = T. The curve z2(R) is the boundary
of an embedded disk D contained in R; such that D C 7él. Let N be a
bicollar neighborhood of D in R4, so that N NT is an annular neighborhood
of x9(R) in 7. The boundary of R, \ N is the union of two disks on ON and
the set 7'\ N, which is an annulus. Thus R, \ N is bounded by a piecewise
smooth 2-sphere in S3. By the generalized Schonflies theorem, Ry \ N is
homeomorphic to a closed 3-ball. Tt follows that R, is homeomorphic to a
3-ball with a D? x [0, 1] attached (by mapping D? x {0} and D? x {1} onto
disjoint disks on the boundary of the 3-ball). Since R; is orientable, Ry is
homeomorphic to D? x S*. O

4.2 Foliating a solid torus in the case I'y = {0}

Let
6:(b,v):(C\F1—>R><S3
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Py

Figure 4.3: Case m-dug =0 and 'y # 0

Figure 4.4: Gluing theorem =- family of planes

be a limit of the germinating sequence 7, as defined in (3.8)). In this section,
we assume I'; = {0}. In this case,

7:C\{0} > RxS*

is a finite energy cylinder asymptotic to P; at its positive puncture and to
P; at its negative puncture. The unique vertex immediately below v in the
bubbling-off tree B associated with the germinating sequence v,, and the limit
v is a plane

w:C—RxS?

asymptotic to Ps.

A family of planes asymptotic to P; By the Gluing Theorem and
Theorem we obtain a maximal 1-parameter family of planes asymptotic
to the orbit Ps

0, = (by,v,), TE(T_,74)

such that o, converges, in the SFT sense, to the broken curve (,w) as
T — 7. Also, both the J-holomorphic planes @, and the projections v, :
C — S? are embeddings. This is a consequence of the following Theorem of
[HWZ95h).

Theorem 4.11 (J[HWZ95D, Theorem 1.3]). Consider S* equipped with a tight
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contact form \. Assume @ = (a,u) : C — R x S® is a finite energy plane
asymptotic to a simply covered and unknotted orbit P. If u(P) < 3, then
w(C)NP =0 andu:C — S*\ P is an embedding.

By the same arguments used in Section [4.1] we conclude that 0, converges,
as T — 7_, to a broken curve (¢/,w), where ¢ : C\ {0} — R x S is a cylinder
asymptotic to P3 at its positive puncture oo and to P, at its negative puncture
0 such that v'(C\ {0}) Nv(C\ {0}) = 0. By Proposition [£.10} the union of
the image of the family {v,} with the images of v, v/, w, x5 and z3 is a solid
torus.

4.3 A cylinder asymptotic to P and P,

In this section, we use a symplectic cobordism to find a 1-parameter family
of generalized pseudoholomorphic planes asymptotic to P,, which "breaks’
and produces a pseudoholomorphic cylinder asymptotic to P, at its positive
puncture and to P; at its negative puncture.

Symplectic cobordism Following [HWZ98| we define a symplectic cobor-
dism between (S*, X\ = f)\o) and (S®, A\g), where A is a dynamically convex
contact form on S®. Given 0 < r; < 79, with :—i irrational, let A\p = fg\g be
the contact form associated to the ellipsoid

2, .2 2, 2
]ty 5+ Yy
E:{($1;y1,x2>y2)€R4| — L4202 :1} ;

2
1 T3

-1
that is, fg(z,y) = (@ AN
1 2
The Reeb vector field Xg defined by Ag has precisely two simply covered

periodic orbits Py and P;. Both periodic orbits and its iterates are nondegen-
erate. Their Conley-Zehnder indices are u(Py) = 3 and u(P) =2k +1>5

where k > 2 is determined by k < 1 + (jj—i) < k+ 1. See [HWZ95al, Lemma
2

1.6] for a proof of these facts.
We choose 0 < r; < ry small enough so that

fg < f pointwise on S*
and a smooth function h : R x S? — R* satisfying

h(a,-) = fg, if a < =2,

h(a,") = f, if a >2, (4.4)
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R
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~
\j

[

JE, A

Figure 4.5: The almost complex structure J

oh oh
s 3 —_— — 3, .
aa_OonRxS andaa>a>00n[1,1]><5 (4.5)

In view of (£.5), the 2-form d(h\o) restricted to [—1,1] is a symplectic form.

We consider the family of contact forms {\, = h(a,)\g,a € R}. The
contact structure £ = ker A\, does not depend on a. Choose Jg € J(§,dA\g)
and let {J, € J(§,d\,),a € R} be a smooth family of d\,-compatible com-
plex structures on & so that J, = Jifa > 2 and J, = Jg if a < —2. We
consider smooth almost complex structures J on the symplectization R x S®
with the following properties. On (R \ [—1,1]) x S®, we consider

j|£ = Ja and jaa =X>\a .

On [-1,1] x S? we only require .J to be compatible with the symplectic form
d(hXo). The space of such almost complex structures on R x S3 is non-empty
and contractible in the C*°-topology and will be denoted by J (A, J, Ag, Jg).

Generalized finite energy surfaces

Definition 4.12. Let (S, j) be a closed Riemann surface and let I' C S be a
non empty finite set. A smooth map @ : S\T' — R x S? is called a generalized
finite energy surface if it is J-holomorphic, that is, satisfies diioj = J(i)od4,
for some J € J(\, J, A\g, Jg), as well as the energy condition

0 < E(u) < +o0,

where the energy is defined as follows. Let X be the collection of smooth
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functions ¢ : R — [0, 1] satisfying ¢/ > 0 and ¢ = 5 on [—1,1]. Then

E(@) = sup /S LN, (4.6)

IS

Theorem is still valid for almost complex structures in J (A, J, Ag, Jg).
Theorem 4.13 ([HWZ99b|). There exists a residual set JE. C T (N, J, A\g, Jg)

‘ reg
such that if i = (a,u) : S2\T — R x S? is a somewhere injective generalized

finite energy sphere for J € jrfg, then
0 <ind(a) = p(a) — xsz + #I .

We are interested in the space of all finite energy generalized J-holomorphic
planes asymptotic to the orbit P, for fixed J € jrfg.
The following theorem is a consequence of results in [HWZ99b].

Theorem 4.14 ([HWZ99b]). Let 4y : C — R x S* be an embedded finite
enerqy J-holomorphic plane, asymptotic to a non degenerate, simply covered
orbit P = (x,T) satisfying p(P) = 2. Then there exists a smooth embedding

d:Cx(—e€) > RxS?

with the following properties:
o O(-,0) = dip;

e Forevery T € (—¢,¢), the map z — ®(z,7) is a generalized finite energy
J-holomorphic plane asymptotic to P;

e If @i, is a sequence of finite energy J-holomorphic planes asymptotic to
P satisfying @, — g in CPo.(C) as n — +oo, then there exist sequences
A, B, in C with A, — 1, B, — 0 and 7, in (—¢,€) with 7, — 0 such
that

Gin(2) = ®(Anz + By, )

for sufficiently large n.

A family of J-holomorphic planes asymptotic to P, From now on we
fix J € JE,, where J%, is given by Theorem )

Let © be the space of generalized finite energy J-holomorphic planes
asymptotic to P, modulo holomorphic reparametrizations. By Theorem

4.14] © is a smooth 1-dimensional manifold.

Lemma 4.15. The space © 1is non-empty.
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Proof. Let 1, = (a4, u,) : C — R x S% be the J-holomorphic plane asymp-
totic to P, given by Theorem After a R-translation we can assume
min,ec aq(2) > 2, so that 4, = (a,, u,) can be viewed as a generalized finite
energy J-holomorphic plane asymptotic to P. O

By the proof of Lemma we have @, € ©. Let © be the connected
component of © containing 1.

4.3.1 Limiting behavior

Definition 4.16 (Bubbling-off tree). Consider a finite, rooted and oriented
(away from the root) tree T, and a finite set U of (generalized) finite energy
pseudoholomorphic spheres. The pair B = (7,U) is called a bubbling-off
tree if satisfy the following properties

e There is a bijective correspondence between vertices ¢ € 7 and finite-
energy punctured spheres 4, : C\ T, - R x S* € U. Each 1, :
C\ T, — R x S is pseudoholomorphic with respect to either J, Jg
or J. Moreover, each ordered path (qi,...,qy) from the root ¢, = r
to a leaf qy, where gy is a direct descendant of g, contains at most
one vertex g; such that a,, is J-holomorphic, in which case Ug; 18 J-

holomorphic V1 < j < i, and 1y, is Jg-holomorphic Vi < j < N.

e Bach sphere 4, has exactly one positive puncture at oo and 0 < #I';, <
oo negative punctures, where I'; is the set of negative punctures of ,.

e If the vertex ¢ is not the root then ¢ has an incoming edge e from a
vertex ¢’, and #I'; outgoing edges fi,..., fur, to vertices pi,...,pur,
of T, respectively. The edge e is associated to the positive puncture of
u, and the edges f1,..., fur, are associated to the negative punctures
of @g. The asymptotic limit of @, at its positive puncture coincides
with the asymptotic limit of 4, at its negative puncture associated to
e. In the same way, the asymptotic limit of u, at a negative puncture
corresponding to f; coincides with the asymptotic limit of u,, at its
unique positive puncture. If 4, is J-holomorphic, then Uy, is either
J or J-holomorphic. If U, is either J or Jp holomorphic, then Uy, 1s
necessarily Jg-holomorphic, Vi = 1,. .., #I,.

o If the contact area of @, vanishes and @, is J or Jg-holomorphic, then
#I', > 2.

Consider a sequence 0, = (a,,v,) of generalized finite energy planes rep-
resenting elements of ©' . The energy E(?,) is uniformly bounded by T5.
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The following statement is a corollary of the SF'T' compactness theorem of
IBEHT03].

Theorem 4.17 (|[HS16|,Theorem 3.11). Up to a subsequence of 0, still de-
noted by U,, there exists a bubbling-off tree B = (T,U) with the following
properties

o For every vertex q of T there exist sequences z1, 01 € C and ¢ € R
such that

Op(2d +08) + ¢ — 0,(+) in Co(C\Ty) as n — o0 (4.7)
Here 0+ ¢ := (a+ ¢,v), where v = (a,v) and c € R

o The curve v, 1s asymptotic to Py at oo and the asymptotic limits of all
curves Vg are closed orbits with periods < T of the Reeb flow of either
A or Ag.

Lemma 4.18 (|[HS16], Lemma 3.12). Let 29,62, ¢? be sequences such that
(4.7) holds for all vertices q of T. Then we can assume, up to a selection
of a subsequence still denoted by u,, that one of the three mutually excluding

possibilities holds for each vertex q.

(I) ¢ is bounded, a,(z, + 64-) is C}

0 (C\ Ty)-bounded and 0, is a J-
holomorphic curve;

(II) ¢f — —00, an(z8 +0%-) = +o0 in C (C\Ty) as n — oo and Uy is a
J-holomorphic curve;

(III) ¢t — +00, an(2l + 03-) = —oo in CY)

L (C\Ty) asn — oo and 9, is a
Jg-holomorphic curve.

Moreover, if q is a vertex for which (I1II) holds, then 4, is asymptotic at its
positiwve puncture to a closed Reeb orbit having period strictly less than T.
In particular, (II1) does not hold for the root r.

The following lemma is proved using the maximum principle combined
with estimates for cylinders with small area (Lemma [2.29)).

Lemma 4.19 (|[HS16, Lemma 3.13|). Let 2),62, ¢l be sequences such that

n-nr-n

[4.7) holds for the root r. Then, by Theorem Py = (x9,Ty) is the

asymptotic limit of @, at the positive puncture co. For every R/Z-invariant
neighborhood W of t — xo(Tot) in C°(R/Z,S®) and for every number M >
0, there exist Ry > 0 and ng such that if R > Ry and n > ng, then the loop
t = v, (28 + 67 Re™ ) belongs to W and a’ (2! + 07 e™™) + ¢ > M.
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Let ©' be the connected component of © containing ,.Since ©’ is a con-
nected 1-dimensional manifold without boundary, it is diffeomorphic either
to S! or to an open interval. It can not be diffeomorphic to S!, since it
contains the family {[(a, + ,u,)]}t>0 of equivalence classes of translations
of i, Thus, the family is diffeomorphic to an interval and we can assume
© = {[0; = (br,v:)]}re(r_ +o0), Where for 7 >0, 0, = (aq + 7, u,). Consider
a sequence v, := U,, satisfying 7, — 7_.

Proposition 4.20. The bubbling-off tree obtained as an SFT-limit of the
sequence [0y, as in Theorem s as follows. The tree has vertices r,q,
where r s the root and q is a leaf and direct descendant of r. The root r
corresponds to a J-holomorphic cylinder @, : C\ {z} — R x S® asymptotic
to Py at its positive puncture oo and to Py at its negative puncture. The leaf
q corresponds to a J-holomorphic plane asymptotic to P;.

Proof. Let B = (T,U) be the bubbling-off three given by Theorem and
let 9, : C\ T, — R x 93 be the finite energy sphere associated to the root
of 7. By Lemma #, is not Jg-holomorphic. Now we show that @, is
J-holomorphic.

Suppose, by contradiction, that @, is J-holomorphic. By Theorem m,
U, is asymptotic to P, at co. Since P, is simply covered, v, is somewhere
injective. If T, = (), then o, € ©, contradicting the fact that the interval ©
is maximal. Assume I, # (). By Theorem [4.13] it follows that

0<ind(@,)=2- > u(P.)—2+#I, +1. (4.8)
zel'y
Then
> u(P)—#T,. <1, (4.9)
zel'y

Contradicting the fact that for all z € ', the asymptotic limit P, of v, at
z is a closed Reeb orbit of \g, which is a dynamically convex contact from,
that is, j(P,) > 3, for all z € I',. Thus, 9, is J-holomorphic.

Let m := min a,(C). We claim that

lim sup (min b,(C)) <m .

n

To prove the claim, suppose by contradiction that limsup,, (minb,(C)) >
m > 2. Then there exists a subsequence 0, = (b, , vy, ) satisfying min b,, (C) >
m. By the definiton of .J, the planes Up,, are j—holomorphic. By the hypothe-
ses of Theorem , U is the only J-holomorphic plane asymptotic to Ps, up
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to reparametrization and R-translation. This implies [0, ] = [a, + T, u,| for
a sequence 7, > 0. This contradicts the fact that ©' is an interval.

Now we show that I', # (). Suppose, by contradiction, that o, is a J-
holomorphic plane. Let z,, J, and ¢, be the sequences given by Theorem

4.17, such that
Un(2n + 6n°) + ¢ = 0p(+) in Cp(C) as n — oo.

The limit 0, satisfies [£.1§(II), so that ¢, — —oo and b, (z, + 0,+) — 400
in CP.(C) as n — oo. By Lemma there exists Ry > 0 such that
bn(2n + 0p2) > m — ¢, > m for |z| > Ry and n large enough. For |z| < Ry,
by Lemma [£.I8(II), we have b,(z, + 8,2) > m, for n large enough. Thus,
inf b,(C) > m for n large enough. This contradicts lim sup,, inf b, (C) < m,

and concludes the proof of I, # ().

So far, we know that o, : C\T', - Rx M is a J-holomorphic sphere and
I, # (. The next step is to prove that every negative asymptotic limit of o,
has Conley-Zehnder index equal to 1.

I) If ¢ is not the root and P, is the asymptotic limit of 9, at oo, then
1(Pos) 2 1.

Suppose, by contradiction, that pu(Px) < 0. The curve 9, : C\ T, —
R x S3 factors as

Vg =1uop,

where @ : C\ I” — R x S? is a somewhere injective finite energy sphere and
p is a polynomial. If P is the asymptotic limit of % at oo, then Pd¢? = P
By Lemma [1.9] u(Ps) < 0 implies p(P) < 0.

By Theorem [4.13]

0 <indi:=p(P) = > p(Pu)+#T,— 1,

z'el”

where P,/ is the asymptotic limit of @ at z’.

If " = (), we already have a contradiction. Otherwise, there exists z}, € T”
such that u(P,;) < 0. Let 2 € Ty be such that p(z) = z5. Then P,, = PZIZ,
for some k < degp, where P, is the asymptotic limit of 0, at z,. By Lemma
[1.9] we have p(P,,) < 0.

Since the tree has a finite number of vertices, by induction we find a leaf
[ of the tree such that the finite energy plane 7; : C — R x S is asymptotic
to an orbit P with u(P) < 0, a contradiction.
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IT) For every z € I';, we have pu(P.) = 1, where P, is the asymptotic limit
of v, at z.

By Theorem [2.20] we have

0<indd, =2— Y pu(P.)+# 1.

ZEFT

It follows that
> u(P) <HT, +1.

ZEFT

Since, by Claim I), we have 1 < u(P,), for every z € I',, then there exists
at most one puncture zy € I', such that u(P.,,) > 2. If there exists such
puncture, we have ind v, = 0. By Theorem [2.20] this implies 7 o dv, = 0.
By the definition of bubbling-off tree (Definition [4.16)), this implies #I', > 2.
By Theorem [2.6] there exists a periodic orbit P and a polynomial p : C — C
such that p~1(0) = I', and @, = Fp o p, where Fp is the cylinder over the
orbit P. This contradicts the fact that P, is simply covered.

We conclude that u(P,) =1, for all z € I',. We also proved that moduv, #
0.

IIT) o, is a cylinder asymptotic to P, at its negative puncture.
By Lemma [2.34] we conclude that wind..(7,,2) = 1, Vz € T, U {oc}.
Recall that
u,(C)Nae(R) =10 .

Thus, the curves 4, and o, satisfy condition (2) of Theorem Here 4, is
the plane asymptotic to P, obtained by Theorem It follows from The-
orem that the projected curve u, does not intersect any of the negative
asymptotic limits of ©,. This implies that P, is contractible in S* \ P,, for
every P, asymptotic limit of v, at z € [',. Consequently,

Ik(Py, P.) = Ik(P., P) =0, Vz € T,.

Since, by hypothesis, the orbit P; is the only orbit with Conley-Zehnder
index 1 and period less than 75 that is not linked to Ps, it follows that

P.=P, VzeT, .

Moreover, the hypothesis T, < 277 implies that #I',. = 1.

IV) Now we prove that the next (and last) level of the bubbling-off tree
consists of a J-holomorphic plane.
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Let 9, : C\T; = R x S% be the finite energy sphere associated to the
only vertex that is a direct descendant of the root r. The asymptotic limit of
U4 at oo is Py, that is a simply covered orbit. It follows that 9, is somewhere
injective. By the definition of bubbling-off tree, ¥, is either J-holomorphic
or J-holomorphic. By Theorem we have

0<indfy=1- Y u(P.)+#0y—1=#Iy— > u(P.),

z€lyq z€ly

where P, is the asymptotic limit of 9, at z € I';. Since by Claim I), u(P,) > 1
for all z € 'y, then ind 9, = 0 and pu(P,) =1, for all z € [',,.

Suppose, by contradiction, that v, is J-holomorphic. By Theorem m
we have 7 o dv, = 0. By the definition of bubbling-off tree 4.16] this implies
#I'y > 2. Theorem and the fact that P, is simply covered lead to a
contradiction. We have proved that v, is J-holomorphic.

Suppose that T'; # (. By the definition of bubbling-off tree, if [ is a
vertex of the tree that is a direct descendant of ¢, then v; is necessarily Jg-
holomorphic. The asymptotic limit of 9; at oo is equal to P, for some z € I',.
But p(P,) =1 for all z € 'y, contradicting the fact that all closed orbits of
Xg have Conley-Zehnder index > 3.

We have proved that T'; = 0. This finishes the proof of Proposition [4.20]

O

Proposition 4.21. The curve v, = (b,,v,) : C\ {0} — R x S% and the
projection v, : C\ {0} — S are embeddings. The projection v, does not
intersect any of its asymptotic limits.

To prove Proposition we need the following.
Proposition 4.22. Let 4 : R x S' = R x S be a finite energy cylinder
asymptotic to prime orbits P = (x,T) at +00 and P = (z,T) at —o0, and
satisfying

cP 4P,

e P and P form an unlink,

o u(P), u(P) € {1,2,3}.
Then u(R x SHYN P =0 and u(R x SY) N P = 0.

Remark 4.23. In Proposition [4.22] the fact that the contact form )\ in S is
tight is crucial.
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Proof. The proof follows the arguments of the proof of Theorem 1.3 in
[HWZ95b], so we just sketch the proof here and refer to the results in
[HWZ95b] when necessary.

A finite energy surface @ : C\I' — R x 53 such that 7-du is not identically
zero can intersect its asymptotic limits in at most finitely many points. This
is proved in [HWZ96, Theorem 5.2]. This allows the definition of an algebraic
intersection index as follows. Take a small embedded 2-disk D transversal to
the periodic orbit at a point x(t) of P and tangent to & = ker A at x(t), that
is, Tyyp = &x(r)- We orient the disk in such a way that T, ,p and &) have
the same orientation. Let M € R be such that all the intersection points of
u with P are contained in u((—oo, M) x S'). Let ¢ : D — S® be a disk map
to P such that ¢(D) N P = ). Such disk exists because P U P is the trivial
link. Glue the disk D to [—oo, M] x S! along —oco x S* to form a new disk
D. Let @ : R x S' — S® be the map obtained by defining @(—o0,t) = Z(Tt)
and u(+00,t) = x(Tt). Define U : D — S® by

Ul—oo,mxst =, Ulp=¢.

Consider U, : H1(0D,Z) — H,(S*\P,Z). If « is the generator of H;(0D),
then since U(0D) U P = (), there exists an integer, that we call int(u), such
that

U.(a) = int(u)[0D] € H(S*\ P,Z) .

Here we used the fact that H,(S®\ P) is generated by [0D].

It follows from the proof of Theorem 4.6 in [HWZ95b] that int(u) is
the oriented intersection number of U with P. Also, all the intersections
are in the image of the map w, since there is no intersections of P with
(D). Following the proof of Theorem 4.6 in [HWZ95b|, one can show that
int(u) > 0, so that int(u) = 0 if and only if u(R x S*) U P = (). Thus, to
show that u(R x S') N P = (), it is sufficient to show that int(u) = 0.

Let ® : U — S® be an embedding of an open neighborhood U of the zero
section of £|p. We require that ®(0,) = p and the fiberwise derivative of ®
at 0, is the inclusion of ¢ into T,5%.

Consider a non vanishing section v(t) of £ along P which is contained in
U. Define the loop B(v) by B(v)(t) = P owv(t) for 0 <t < T. It is contained
in S3\ P and we denote by [3(v)] € H;(S?\ P) the homology class generated
by this loop. Fix the global trivialization ¥ : £ — S3 x R2. Let wind(v, ¥) be
the winding number of the small section v(¢) with respect to the trivialization
. Tt is proved in [HWZ95b] that

wind(v, U)[0D] — [B(v)] € Hy(S*\ P)
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Figure 4.6: The foliation of the region R, and the cylinder v, connecting the
orbits P, and P;.

is independent of the section v as described above. We define a constant c(u)
by

(wind(v, W) — ¢(u))[0D] = [6(v)] .
If we choose, for example, the special section v(t) such that ®ov(t) = u(s*,t)
for some large s* € R, then by definition

[6(v)] = int(u)[0D]
and taking the limit as s* — oo, we have
windo, (@, 00) — ¢(u) = int(u) .

It is proved in [HWZ95b| that there exists an embedded disc F' = ¢(ID) with
©(0D) = P whose characteristic distribution has e > 1 positive elliptic
points, and that

c(u) =2t —1 .

By Lemma we have wind., (@, 00) = 1, so that
int(u) =2 —2e" .

Since int(u) > 0 and e™ > 1, then int(u) = 0 and e = 1. This shows that
wRxSHNP = @.fWe can repeat the arguments replacing P by P and show
that u(R x S') N P = @ and conclude the proof. O

Proof of Proposition[{.21. From Proposition we conclude that o, does
not intersect its asymptotic limits. Thus o, satisfies condition (3) of Theorem
Applying Theorem we conclude the proof. O

Proposition 4.24. Up to reparametrization, ¥, is the unique J-holomorphic
cylinder asymptotic to Py, at co and to Py at 0 that do not intersect the
orbits P1 and P,. Moreover, the cylinder v, and the plane u, approach P, in
opposite directions, according to Definition [{.6.
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Figure 4.7: Gluing theorem = family of cylinders asymptotic to P; and P,

Proof. The proof follows the ideas of [dPSal8, Proposition C.1]|. Following
Theorem let 71 be the asymptotic eigensection of 7, at oo and let 7/, be
the asymptotic eigensection of ¥, at co. By Lemma wind, (g, 00) =
wind(?,,00) = 1. Using p(P;) = 2, formula and Proposition [I.15]
we conclude that v 7 is the unique negative eigenvalue of Ap, with winding
number 1. By the properties of the asymptotic operator Ap, given in Section
1.3, we know that the eigenspace of v ? is one dimensional. Thus, there
exists ¢ # 0 such that 1, = cn;.. Suppose ¢ > 0, that is, 9, and %, approach
P5 in the same direction. By Carleman’s similarity principle, the images of
0, and 4, do not coincide in any neighborhood of co. By Theorem we
have [0,] * [4,] > 0. On the other hand, we can apply Theorem to the
curves ¥, and 4, to get [0, *[G,] = 0. With this contradiction, we prove that
U, and u, approach Ps in opposite directions, that is, ¢ < 0.

Using the same arguments, one can show that any cylinder with the
properties given in the statement must have the same image as v,. ]

4.4 A family of cylinders asymptotic to P, and
Ps

So far we have foliated a region R; C S* homeomorphic to a solid torus
with boundary equal to the torus 7= P; U w,(C\ {0}) Uu.(C\ {0}) U P.
The complement of Ry in S3 is a closed region that we denote by R,. In
the previous section we found an embedded pseudoholomorphic cylinder o, :
C\ {0} — R x S3. The projected curve v, is also embedded and its image is
contained in the interior of Rs.

Applying the Gluing Theorem to the broken cylinder (@,,7,), we ob-
tain a family of pseudoholomorphic cylinders {w, : C\ {0} - R x S3},7 €
[R, 4+00), asymptotic to the orbits P; and P, converging to the broken cylin-
der (@, ,) in the sense of the SFT compactness theorem as 7 — 400.

Proposition 4.25. For every T € [R, +00), W, is an embedding, the projec-
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tion w, : C\{0} — S® is an embedding which does not intersect its asymptotic
limits and w,(C\ {0}) C R,.

Proof. By Proposition and Theorem we conclude that @, and w,
are embeddings and w, does not intersect its asymptotic limits. Applying
Theorem to w, and any J-holomorphic plane asymptotic to P3; whose
projection is in Ry, we conclude that w,.(C\ {0})) C R.. O

The following is Theorem 4.5.44 of [Wen05].

Theorem 4.26 ([Wen03]). Let i = (a,u) : S\I' = Rx M be an embedded J-
holomorphic finite energy sphere with ind(@) = 2, such that every asymptotic
limat is simply covered and has odd Conley-Zehnder index. Then there ezists
a number § > 0 and an embedding

F:Rx(=6,0)xS*\T =R x M
(0,7,2) = (a;(2) + 0,u,(2))

such that

e for 0 € R and 7 € (=9,0), the maps U = F(J,T,-) are (up
to parametrization) embedded J-holomorphic finite energy spheres and
6(070) = ﬂ

e The map F(7,2) = u,(2) is an embedding (—6,0) x S’\T' — M and its
image never intersects the asymptotic limits. In particular, the maps
u, : S*\T — M are embedded for each 7 € (—9,0) with mutually
disjoint images which do not intersect their asymptotic limats.

e For any sequence Uy, : S* \T' — R x M such that for each puncture
in I', v, has the same asymptotic limit as u, with the same sign, and
O, — @ in C2 (S?\T), there is a sequence (o, ) — (0,0) € Rx(—4,0)
such that U, = (g, 7,) © i for some sequence of diffeomorphisms gy, :

S2\T — S?\ T and k sufficiently large.

Remark 4.27. In Theorem , no genericity assumption is required for J.

Applying the theorem above to the maps w,, we obtain a maximal smooth
one parameter family of maps, that we denote again by w,, 7 € (7_, 7). We
assume the normalization 7~ =0, 7, = 1 and @, — (@, 0,), as 7 — 0.

Proposition 4.28. Consider a sequence w, = (¢,,w,) : C\ {0} = R x S?,
where W, = W,, and o, — 07. Then after suitable reparametrizations and
R-translations, we have
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(i) Up to subsequence, W, — u, in CP2(C\ {0}) as n — oc.

(it) There exist sequences 8 — 07 and d, € R such that, up to subse-
quence, Wy (0n-) + d, — 0, in Co(C\ {0}) as n — oo.

loc

A similar statement holds for any sequence 1, — 17 with U, replaced with

~1/
u,..

The Proof of Proposition is the subject of Sections 4.4.1| and [4.4.2]

4.4.1 Bubbling-off analysis for the family of cylinders

In this section, we follow the ideas of [HWZ03| Section 6.2].

Consider a sequence w, = (cp, w,) : C\ {0} = R x S3, where w,, = 10y,
and o, — 07T

Note that since all cylinders w, are asymptotic to P; and P;, we have
0 < E(w,) <Ts.

We reparametrize the sequence so that

/ way = 20 (4.10)
C\D

2
Define
© = {z € C\ {0}|3 subsequence w,, and z; = z s.t. |V, (z;)| — oo}

By the same arguments used in the proof of Proposition we can assume
that © is finite and © C D\ {0}. Also, there exists a J-holomorphic map

w:C\({0lUuB) =R xS
such that, up to a subsequence, still denoted by w,,
w, — w in Cpy. (C\ ({0} UO),R x 5%)

and E(ID) S T3.
The punctures in {0} U© are non-removable and negative, and the punc-
ture z = oo is positive. Indeed for any e sufficiently large or small, we have

/ w'A = lim UJ:;)\ S [Tl, Tg],
9B¢(0)

where 0B(z) is oriented counterclockwise. It follows that oo is a positive
puncture and 0 is a negative puncture. If z € ©, then for any sufficiently
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small €, we have

/ w'A = lim wy A = lim wyd\ >T >0,
8B.(2)

n—oo aBg(Z) n—ro0 B€ (Z)

where T' < T3 is a period. This follows from the same arguments used in
Section . It follows that z is a negative puncture.

By the same arguments used in the proof of Proposition we conclude
that the asymptotic limit of w at oo is Ps.

Lemma 4.29.
/ wdh >0 .
C\({o}ue)

Proof. 1f © = {, then it follows from that [o, g w*dA > 22 Tn the
case © # (), suppose f(C\({O}U@) w*d\ = 0. By Theorem there exists a
polynomial p : C — C and a periodic orbit P € P(\) such that p~1(0) =
{0} U© and w = Fpop, where Fp is the cylinder over the orbit P. But this
implies degp > 2, contradicting the fact that the asymptotic limit of w at
oo is Ps, that is a prime orbit. O

Soft rescaling near zo € ©. Assume © # () and take a puncture 2, € ©.
Let P, = (x,,,T.,) be the asymptotic limit of w at zp. As in Section
we define the mass of zy by

m(zp) = }g& me(2o) me(z0) = nh_g)lo B wrd

where 0B.(zy) is oriented counterclockwise. Now we proceed as in the soft
rescaling done in Section Fix € > 0 such that

o(T3)
5

Choose z, defined by ¢,(z,) = inf(c,(B(20))) and 0 < 4, < € by

/ wid\ = o(Ty).
Be(20)\Bs,, (2n)

It follows that z, — zo and, up to a subsequence, 9, — 0. Take R, — oo
such that 0, R, < 5 and define

me(zo) — m(z) <

¥y, = (bn,v,) : Bg,(0) = R x S°

4.11
2> (en(zn + 0n2) — cn(zn + 20,), Wy (2n + 0n2)) ( )
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The sequence v, is a germinating sequence according to Definition Let
0, = {z € C|32z; — z and subsequence w,, s.t. [di,,(2;)| = oo} . (4.12)
Passing to a subsequence, we can assume O, is finite. Let
o= (bv):C\O; - RxS*

be a limit of v,, as defined in [2.27], Then v has a unique positive puncture at
oo and v is asymptotic to Py at co. Thus, using Lemma we conclude
the following.

Lemma 4.30. If z € © and @ is asymptotic to P at z, then u(P) > 2.

Since Pj is prime, it follows that w is somewhere injective. By Theorem

we have
1<ind(@) =3— ) w(P.)+#6

ze{0}UO

and consequently

> u(P) <2+ #6 . (4.13)

ze{0}UO

This proves the following lemma.

Lemma 4.31. Assume © # 0. Then p(Fy) < 1. If u(Py) =1, then #0 =1
and p(P,) = 2, where P, is the asymptotic limit of W at the unique point
z € 0.

Soft-rescaling near z = 0. For any € > 0, define

m(0) = lim wrdA,
7700 J Be(0)\{0}

and define the mass of the puncture z = 0 by

m(0) = ll\I{I(l) me(0) . (4.14)

Note that, for n large and e small, we have

/ wrd\ = / wy A — lim wi\ = / wiA—Ty. (4.15)
Be(0)\{0} 8B.(0) =0 JaB4(0) 9B.(0)
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It follows that

m(O) = lim wi\ — T1 = TO — T17
<~0.JB.(0)

where Tj is the period of the asymptotic limit Py = (xg,7p) of w at the
puncture z = 0. We have two cases:

e cither m(0) =0 or

e m(0) > 0= m(0) > o(T3).

I) First assume that m(0) > o(73) > 0. We claim that there is a sequence

0, — 0 satisfying
j/ w;;dA::m(o)—-ﬂg2 (4.16)
D,y (\{0} 2

Indeed, there exists a sequence 9,, satisfying the equation above, since using
[.10) and [o 1y widA = T3 — Ty =2 m(0) > o(C), we conclude

/ wfld)\Zm(O)—ﬂ>O.
D\{0} 2

Now we show that liminfd, = 0, so that, passing to a subsequence, still
denoted by 6, the claim is true. Suppose that there exists 0 < € < liminf §,,.
Then we have the contradiction

— = lim wrdA > lim wrdA > m(0)
2 i=ee By o0} =0 J gy (0)\{0}

and the claim is proved.

Let ¢y > 0 be small enough so that the disks B (v), v € © U {0} are
disjoint. Define

0n(2) = (bp(2),v0(2)) = (cn(0n2) — cn(20,), W (0,2)) (4.17)

for z € B« (0) \ {0}. Note that 0, satisfies the normalization

/ ﬁﬁ:/ whdh = m(0) — &)
D\{0} By, (0\{0} 2
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It follows that, for j large and ¢y small we have the estimate

/ vy dA :/ v dA —/ vy dA
B B D\{0}

s2\p s2\{0)

/Beo<o>\{0} watA = (m(o) N @) (4.18)

<m(0) + @ - (m(O) — @) =o(C)

Define ©q as the set of bubbling points of the sequence v,,. Using the proof
of Proposition we obtain, passing to a subsequence, O finite and ©y C
D\ {0}. Also, there exists a J-holomorphic map @ : C\ {0} U6y — R x S3
such that, passing to a subsequence

U, — Vg in Cﬁi((c \ {O} U @0) .

The map @y is non-constant, the punctures in {0} U©, are non-removable
and negative, and the puncture z = oo is positive.

Lemma 4.32. The asymptotic limit of vy at its unique positive puncture
z = 00 is equal to Py, the asymptotic limit of w at {0}.

Proof. Let W be an open neighborhood of the set of loops
{t e 8" 2(Tt +c)|P = (2,T) € P()\), c€R}

such that each connected component of WV contains at most one periodic
orbit modulo S'-reparametrization. Let P, be the asymptotic limit of ¥ at
o0o. Let W, and W, be connected components of W containing P,, and F,
respectively.

>, we can choose 0 < €, < ¢ small enough so that, if
0 < p < ¢ is fixed, then the loop

Since w,, — w in C7°

t € S w,(pe™)

belongs to W, for n large. Since v,, — v in C}2, we can choose Ry > 1 large

loc?

enough so that, if R > Ry is fixed, then the loop
t € S v, (Re®™) = w, (5, Re™™)

belongs to W, for n large.
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By (4.16), we can show that

e := lim inf/ wrA >0 (4.19)
0Bs,, Ry (0)

Consider, for each n, the J-holomorphic cylinder C, : [%, %} x St —

R x S, defined by C,,(s,t) = t,(e2"+). It follows from (.18) that

Crd\ < o(C 4.20
/{} (A < o(C) (4.20)

for n large. Using (4.19)) and (4.20]) and applying Lemma we find h > 0

so that the loop
t— Cy(s,t)

belongs to W for every s € [% + b,

5 — h} and n large. Since h > 0,
we have

| )
C, (% - h,t) = wn(eoe_%he?m) €Wy
T

for all n large and

1
On ( H2RO(Sn + h, t) _ wn(R05n€27rh€27rt) c Woo

™

for all n large. Thus W, =W, and Py, = F,. n
Lemma 4.33. Either

. f((:\{o}u@o vodA >0 or

¢ fC\{O}ueo vidA =0 and #6, > 1.

Proof. Indeed, suppose, by contradiction, that fC\{o}ueo v*d\ = 0 and O =
(). Then
To :/ v*A = lim wr A
oD

= / wy A + lim wy A
Bs,, (0)\{0} <=0J8B.(0)

a contradiction. O
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IT) Now assume m(0) = 0. Let € > 0 be small enough so that m.(0) < 0(53).
Define
Un(2) = Wp(0,2), z€ C\ {0}
for any sequence 9,, — 0. We have
/ vy dA :/ w;dA S/ wy dA.
B \Bs, B\Bj B\{0}
Thus,
C
lim sidr < me(0) < ZE) (4.21)

It follows that {o,} has no bubbling points. Ideed, if there is a bubbling-
off point, arguing as in the proof of Proposition [2.26] we conclude that
limy, o0 [5 . \B, UndA =T, for some period T

e n

Thus, passing to a subsequence, there exists a J-holomorphic map @y =
(bo,vo) : C\ {0} — R x S3 such that

Up, — g in Cp(C\ {0}) .

It follows from (4.21)) that

/ vodA =0 .
C\{o}

Indeed, if f(C\{O} vidA > 0, then fC\{o} vid\ > o(T3), which contradicts (4.21)).
We claim that 9, is non-constant. Indeed,

/ UZ)‘:/ w:)\:/ w;;/\—/ Wy .

oD aBgn 835 Be\Bén

Thus,
/ oA = lim vy A = lim / w;)\—/ wy A :/ WA .
oD N0 Jam n=oo \ JoB. Be\Bs,, 9B,

Taking the limit as e — 0, we get

/ US)\:TOZTl.
oD

It follows that 7y is a cylinder over a Ty-periodic Reeb orbit P = (z,Tp).
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Lemma 4.34. F, = P;.

Proof. Choose now an S'-invariant neighborhood W in C°°(S?, 53) separat-
ing the loops associated with periodic solutions of period < T3 from each
other. For fixed n, we know that

(t = wy(ee®™)) — 21 (Tt) as e = 0 .
We choose a sequence §,, — 0 such that
(t = w, (0,e*™)) €W, Vn .

Recalling that 4
(t = w(ee®™)) = xo(Tt) as e — 0,

We conclude, from estimate (4.21) and Lemma arguing as in Section
that P = P, = R, 0

We conclude the analysis of the case m(0) = 0.

Going back to the case m(0) > o(73) > 0, if the mass of the puncture
z = 0 of 9y is positive or ©g # 0, we repeat the process. It necessarily stops
after finitely many iterations, when we reach punctures with zero mass or
run out of bubbling-off points. This follows from Lemmas [2.30| and 4.33]
We obtain a tree of finite energy spheres having a unique positive puncture
whose asymptotic limit agrees with the asymptotic limit of the corresponding
negative puncture belonging to the previous level. The leaves of the tree
correspond to finite energy planes originating from the bubbling-off points
and a cylinder over the orbit P;, originating from the puncture z = 0.

We are ready to proof Proposition [4.28

4.4.2 Proof of Proposition 4.28

First we show that the mass of the puncture z = 0, as defined in (4.14]),
is positive. Suppose m(0) = 0. Then, by the analysis done in Section [£.4.1]
either

1) © =0 and w : C\ {0} — R x S? is asymptotic to P at z = oo and
asymptotic to P; at z =0, or

2) ©={z,...,z}and w: C\ {0} UO : R x S? is asymptotic to Ps at
z =00, to Py at z = 0 and to orbits P; satisfying u(P;) > 2 at each z;,
ie{l,..., k}.
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Py

z=0 z€0O

ZO@ h
=0 P,

Figure 4.8: An (a priori) possible bubbling-off tree

Option 1) can not occur, since it would contradict the fact that the family
of cylinders {@,} is maximal.

Now we show that option 2) also leads to a contradiction. Suppose 2)
holds. By Lemma we have k = 1 and p(P) = 2, where P = (&,7T) is
the asymptotic hmlt of w at the unique puncture in ©. The orbit P is not
linked to P3;. This follows from positivity and stability of intersections and
the fact that P is the limit of contractible links contained in the image of
the embedded cylinders w,,, which do not intersect Ps. Since T < T, by the
hypotheses of Theorem . we conclude that P = P,. But T also satisfies
T3 > T, + T = T + T5, contradicting the hypothesis T5 < 277 of Theorem
3.5l This contradiction shows that m(0) > 0.

As explained before, one of the leaves of the bubbling-off tree obtained
from the sequence w, is a cylinder over the orbit P, originated from the
puncture z = 0. By the same arguments used in the proof of theorem [4.20]
using the fact that p(P;) = 1, we conclude that u(Py) > 1.

Now we show that © = (). Suppose © # ). Then by Lemma [4.31] we
have p(Py) = 1, #0 = 1 and u(P) = 2, where P is the asymptotic limit at
the unique puncture in ©. The orbit P is not linked to Ps. This is because
P is the limit of contractible links contained in the image of the embedded
cylinders w,,. Since T < T3, by our hypotheses we conclude P="P. But T
also satisfies T5 > Ty + T > T + T contradicting the assumption 75 < 27}.
This contradiction proves © = ().

So far, we know that @ : C\ {0} — R x S% is a J-holomorphic cylinder
asymptotic to P at oo and to the orbit Py at 0. By (4.13]), we have u(Fy) < 2,
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so that

The second level of the bubbling-off tree obtained from the sequence w,
consists of a unique vertex associated with a finite energy sphere 7 : C \
{0} UBy — R x S asymptotic to Py at its positive puncture oo.

Claim: pu(Fy) = 2. To prove the claim, suppose by contradiction that
wu(Py) = 1. If 9y is somewhere injective, using Theorem we have

0<1—u(Fy)— Y u(P)+#6,

2€0¢

where P! is the asymptotic limit of ¥y at the puncture z. By the same
arguments used in the proof of Theorem using the fact that u(P) =1,
we conclude that p(P)) > 1. By Lemma we have p(P?) > 2. We
conclude that #0¢ = 0 and 7 - dvg = 0, which contradicts Lemma 4.33

If ¥ is not somewhere injective, there exists a somewhere injective .J-
holomorphic curve iy : C\ ' — R x S% and a polynomial p : C — C such
that 99 = g o p, p(Oy U{0}) =T and p~}(T') = ©y U {0}. This implies that
Py = Pfoegp, where P, is the asymptotic limit of #y at co. Using Lemma
and the assumption u(Py) = 1, we conclude that u(P,) = 1. For every
2 € ©g U {0}, we have P’ = (P%)*, where p(z) = w, k | degp and P is the
asymptotic limit of @y at the puncture w. Since u(P?) > 1, Vz € 6y U {0},
using Lemma we conclude that pu(PY) > 1, Vz € I'. Applying Theorem
to the curve 4y we have

0<1—) p(PY)+#I—1,

zel

where P} is the asymptotic limit of g at the puncture z € I'. It follows that
w(PY) =1, Vz € I'. By Theorem [2.20 we have 7 - dug = 0, which implies
m-dvy = 0. It follows from Theorem that 09 = Fp o p, where Fp is a
cylinder over an orbit P € P()\), p: C — C is a polynomial and Py = Pd°s?.
Since p(Py) = 1, we conclude, using Lemma [1.9] that u(P) = 1. By Lemma
.33 we have ©y # 0. Let 2 € ©p. Then pu(P’) > 2 and P’ = P*, where
k | degp. This implies that 2 < pu(P*) < u(P4e?) = 1, a contradiction. We
have proved the claim pu(Fy) = 2.

Now we prove that the mass m(0) of the puncture z = 0 of ¥y is zero,
according to definition . This implies that vy is asymptotic to P; at its
unique negative puncture z = 0.
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Claim: m(0) = 0. Suppose, by contradiction, that m(0) > 0.

If ¥ is not somewhere injective, there exists a somewhere injective .J-
holomorphic curve @ : C\T' — R x S? and a polynomial p : C — C such
that 99 = g o p, p(©p U {0}) =T and p~}(T") = ©y U {0}. This implies that
Py = P8P where P, is the asymptotic limit of iy at co. Using Lemma ,
we conclude that u(Py) =1 and degp = 2. For every z € Oy U {0}, we have
P? = (PY)*, where p(z) = w, k | degp and P is the asymptotic limit of g
at the puncture w. Since p(PY) > 1, Vz € ©g U {0}, using Lemma [1.9 we
conclude that u(P*) > 1, Vz € I'. Applying Theorem to the curve g
we have

0<1=> p(PY)+#I—1,

zel

where P! is the asymptotic limit of 4y at the puncture z € I'. It follows
that u(P"*) =1, Vz € T" and 7 - dug = 0. This implies that 7 - dvy = 0.
It follows from Theorem that o9 = Fp o p, where Fp is a cylinder over
an prime orbit P € P(\), p: C — C is a polynomial and Py = PP, By
Lemma [1.9, we have degp, u(P) € {1,2}. Since, by assumption, 7y is not
somewhere injective, then y(P) = 1 and degp = 2. By Lemma [£.33] we
have ©g # (. Let z € ©y. Then P’ = P* where k | 2 = degp. Since
we know that p(P*) = p(PY) > 2 and p(P?) = 2, by Lemma [1.9] we have
((P?) = 2. The orbit P? is not linked to Ps. This follows from positivity and
stability of intersections and the fact that P! is the limit of contractible links
contained in the image of the embedded cylinders w,,, which do not intersect
Ps. Also, the period of P! is < T3. By the hypotheses of Theorem [3.5], we
have P} = P,. This implies T3 > Ty 4+ 1% > T} + 15, where T is the period
of Py, a contradiction with the hypothesis T5 < 27}.

If vy is somewhere injective, then we have

0 < ind(d) =2 — u(Fy) = Y u(PY) + #6.

FIS(SH

If ind(vg) = 0, then 7 - dvg = 0 and by Lemma we have g # (). Using
p(Py) > 1 and p(P?) > 2, Vz € O, we have

1< p(Py) =2— > u(PY)+#6 <2 — #6.

FIS(SH

It follows that ©g = {2} and u(P?) = 2. The orbit P? is not linked to Ps and
has period < T5. By the hypotheses of Theorem [3.5] we have P? = P5. This
implies T35 > T + 15 > 11+ 15, where 1§ is the period of Fj, a contradiction



112 CHAPTER 4. PROOF OF THE CASE 7 - dug =0

with the hypothesis T5 < 27}. If ind(9y) > 1, we have

1< u(Py) < 1= u(PY)+ #6.

FISSH

Thus #0 = 0 and p(PY) = 1. Following the same arguments used to prove
the claim u(Fy) = 2, we get a contradiction with m(0) > 0. We have proved
the claim m(0) = 0. Consequently we have

Pl =P,

We claim that ©y = (. To prove this claim, first note that, since g
is asymptotic to P, which is a prime orbit, we know that vy is somewhere
injective. Then we have

0 <ind(fo) =2 —pu(P) — > u(PY) +#60 =1 u(P’)+ #6,.

2€09 2€OQq

Tt follows that ©y = {z} and u(P?) = 2. The orbit P? is not linked to P
and has period < T3. By the hypotheses of Theorem [3.5] we have P! = P,.
This implies T3 > T} + T5, which contradicts the hypothesis T3 < 27}.

Now we show that Fy = P,. By positivity and stability of intersections
and the fact that the images of the cylinders w, do not intersect Pj, we
conclude that vy(C\ {0}) does not intersect Ps. Since P is not linked to P,
we conclude that P is not linked to P5. Since the period of P is < T3 and
Py is not linked to P3, by the hypotheses of Theorem we conclude that

Py=P;.
So far, we have proved the following.

Proposition 4.35. Consider a sequence W, = (cp,w,) : C\ {0} = R x S3,
where W, = w,, and o, — 0%. There exists a cylinder w : C\ {0} — R x §®
asymptotic to Py at its positive puncture oo and to Py at its negative puncture
0 and a cylinder vy : C\ {0} — R x S3 asymptotic to Py at its positive
puncture oo and to Py at its negative puncture 0, such that, after suitable
reparametrizations and R-translations, we have

(C\ {0}) as n — oc.

(i) Up to subsequence, w, — w in C72,

(ii) There exist sequences 67 — 07 and d, € R such that, up to subse-
quence, Wy(0,,°) + d,, — 0o in Cpo(C\ {0}) as n — oo.
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A similar statement holds for any sequence 1, — 1= with W replaced with a
cylinder W' with the same asymptotics as w and Uy replaced with a cylinder
Uy with the same asymptotics as .

It follows from the uniqueness of the cylinder @, (Proposition that
Uo = U, = ¥,, up to reparametrization and R-translation. By the surjectivity
of the gluing map, we conclude that w = w,. It follows from the uniqueness
of the cylinders @, and @ (Proposition that @’ is either @, or @/, up to
reparametrization and R-translation.

Proposition 4.36. Consider a sequence w, = W, in the family {;}rco1)
such that o, — 07. Then

(1) For any S'-invariant neighborhood Ws of the loop t — x3(Tst) in
C>(R/Z,S?), there exists Ry >> 1 such that for R > Rs, the loop
t — w, (Re*™) belongs to W;.

(ii) For any S*-invariant neighborhood Wy of the loop t > xo(Tot) in
C>(R/Z,S?), there exist ¢ > 0 and Ry > 1 such that the loop t
wy(Re¥™ ) belongs to Wh for Ryd, < R < €.

(1ii) For any S'-invariant neighborhood Wi of the loop t — z(Tit) in
C>(R/Z,S3), there exist ¢, > 0 such that the loop t — w,(pe*™™)
belongs to Wy for p < €10,.

(iv) Given any neighborhood YV C Ry of w(C\{0})Uv,.(C\0)UP,UP,U Ps,
we have w,(C\ {0}) C V, for n large.

A similar statement holds for any sequence w,, such that 7, — 17, with w
replaced by w'.

Proof. We can assume that W;,7 = 1,2,3 contains only the periodic orbit
t — x;(T;+) modulo S'-reparametrizations. Let YW be an S'-invariant neigh-
borhood of the set of periodic orbits P = (z,T) € P(A\) with T' < T3, viewed
asmaps xp : St — S3 xp(t) = z(T't), such that each of the connected compo-
nents of W contains at most one periodic orbit modulo S'-reparametrizations
and such that W, UW, UW5 C W.

Using the normalization condition (4.10)) we can apply Lemma and
find R3 >> 1 such that for R > Rs, the loops {t — w,(Re®™)},n € N
belong to WW. By the asymptotic behavior of the cylinders w,,, we know that
for each n, the loop t — w,(Re* ") belongs to Wjs for R large enough. We
conclude that for any R > Rs and n large, the loop t — w, (Re?*™™) belongs
to Ws. Assertion (i) is proved.



114 CHAPTER 4. PROOF OF THE CASE 7 - dug =0

Now we prove (ii). Recall that the asymptotic limit of @ at z = 0 is the
orbit P,. We can apply as in the proof of Proposition to find eo > 0
small and Ry >> 1 such that for every R satisfying §,Rs < R < ¢; and n
large, the loop t — w, (Re?*™) belongs to Wh.

To prove (i), first recall that the mass of the puncture z = 0 of the
sequence 0, is zero. Applying[2.29 as in the proof of Lemma[1.34] we find ¢; >
0 small and a sequence &/, — 0 such that t — w,,(6,0'e*™) = v, (p'e*™) € W,
for 0, < p’ < €. The sequence v,(6),-) converges in C;2 to the cylinder over
Py, so that applying Lemma [2.29] again, we conclude that for n large, the
loop t + v,(8/,re*™) belongs to W, for every r < 1. We conclude that for
any p < 0,6, and n large enough, the loop t — w(pe®™™) belongs to W.

The proof of (iv) is a consequence of (i), (ii), (iii), the convergence of w,
to w in C72(C\ {0}) and the convergence of w,(0,-) + d, to ¥, in Co(C\

[

op.

The only step left to conclude the proof of Proposition is to prove
that 0" = ).

Proposition 4.37. @' = u..
Proof. Fix 19 € (0,1). The surface
S = w.,(C\ {0}) Uw(C\{0})Uv,.(C\{0}) UP,UP,U Ps

bounds two open connected regions in S®. One of these open connected
regions, that we call A, is contained in R, because S does not intersect any
of the curves foliating the interior of the region R;.

We will show that A is foliated by cylinders in the family {w,}. Let p e A
and let V C Ry be a small neighborhood of S in Ry separating p and S. By
Proposition for 75 < 7o sufficiently small, we have w.(C\ {0}) C V.
Also, w(C\ {0}) C VN A, since there are points in the image of the family
w, converging to points in a compact subset of 4,(C\ {0}), as 7 — 0. Let
B C A be the region limited by w., (C\ {0})U P U Py Uwy(C\{0}). Thus,
the image of the family w,, 7 € [7{, o] is open, closed and non empty in B.
It follows that p is in the image of w, for some 7 € (7], 79). We conclude that
A is foliated by the images of the cylinders {w,}, 7 € (0, 7).

Since every neighborhood of a compact set of u,.(C\{0}) in Ry is contained
in A, the family w,, 7 € (0, 7), foliates A and the cylinders in the family w,
do not intersect each other, we conclude that @' = /. O

The proof of Proposition is complete.
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4.4.3 The foliation

Proposition 4.38. The images of {w,},7 € (0,1), u,, u

rs Ur, P17 P2 and
Ps form a singular foliation of the region Ro.

Proof. From the arguments in the proof of Proposition we have foliated
a region A in Ry bounded by

S = w,, (C\ {0}) Uw(CT\ {0}) Uv,(C\ 0)U P, UP,U P,

where 19 € (0,1) is fixed. Repeating the same arguments in the proof of
Proposition [4.37, with u, replaced by u,., we foliate the complement of A in
Ro. ]

The proof of Theorem [3.5]is complete.
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Chapter 5

Idea of the proof of Theorem 3.5
in case f]D\I‘O ugdA > 0

5.1 Gluing

The gluing process allows us to approximate a broken curve, consisting
of two rigid pseudoholomorphic curves sharing a common asymptotic limit,
with a family of pseudoholomorphic curves. In this section, we follow the
exposition of [Nell3], [Wenl6] and [AD14] to state the gluing theorem.

Let J be a regular almost complex structure on the symplectization R x S3
and let P, and P_ be two closed Reeb orbits. We denote by

S(P,,P.)

the moduli space of somewhere injective J-holomorphic cylinders converg-
ing to P, at its positive puncture and to P_ at its negative puncture, and
S(P,,0) the moduli space of J-holomorphic planes asymptotic to P,.

Remark 5.1. Unless otherwise stated, in what follows the notation S(P;, P_)
can also denote the case "P_ = ()", so that our statements can refer both to
cylinders and planes.

We define the space of unparametrized trajectories by
M(P,,P-) i= S(Py, P-)/(S" x R)

(or M(Py,0) := S(Py,0)/Aut(C)) and denote by 7 : S(Py, P-) = M(P;, P-)
the quotient map. Consider the R-action on M(P,, P_) by translations
= (a,u) — (a+c,u), c € R. We denote the quotient space by

~

M(P,,P.) = M(P,,P.)/R.

117
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Theorem 5.2 (Gluing). Let P, = (z,1,), P, = (y,T})) and P, = (2,T1)
(where possibly P, = () be closed Reeb orbits. Let u € S(P,, P,) and
v € S(P,, P,) be parametrized solutions with Fredholm index 1, represent-

ing equivalence classes (Cy,C,) € M(Py, P)) x M(P,, P.). Then there exists
Ry € R and a differentiable map

U : [Ry,00) = S(Py, P,)
such that U = wo U is an embedding
U : [Ry, 00) = M(P,, P,)

satisfying A
lim W(R) = (Cy,C,) .

R—+oc0

Theorem 5.3 (Surjectivity of the gluing map). With the same notation
of Theorem assume that the orbit P, is simply covered. If there exists
a sequence Wy, in M(Px,Pz) converging to (C,,C,), then w, belongs to the
image of 0, for n sufficiently large.

5.1.1 Pregluing

Given [u] € M(P}, P*) and [0] € M(PY, PY) such that P* = P}, we will
construct a one parameter family of curves

WR = a#Rla )
that are not J-holomorphic, but are asymptotic to P} and P. For each R
fixed, the curve wg is called preglued map.

Let P* = P} = (y,Ty), P} = (¢,T;) and P” = (2,7.). We are assuming
that, after fixing p = y(0), cylindrical coordinates (s,t) near —oo for @ and
(s',t") near +oo for v, we have

lim u(s,t) = lim o(s' t) =y(Tt) .

5——00 §'—+o00

Take a Riemannian metric ¢ on M, that can be defined by ¢ = A\ - X +
d\(m-, Jr-). Writing in coordinates

a(s,t) = (a(s,t),u(s,t)), o(s',t") = (b(s', 1), v(s, 1)),
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we have
a

(s,t) =Ts+n(s,t)

u(s,t) = expyryU(s, t), for s <<0
b(s, t) =Ts +n'(st)

v(s',t') = expyryV(s',t'), fors>>0

S,

(5.1)

where U and n decay exponentially as s — —oo and V', 1’ decay exponentially
as 8 — +oo. This follows from the asymptotic behavior of @ and ¢ near the
punctures. See Theorem [2.11}

To define the preglued map, we need two cutoff functions 8, and S5 in
C>(R, [0,1]) satisfying for 0 < e < & fixed

mo={y S8 me-{y 2T e

Fix parametrizations of @ and ¢ and parametrization of the orbit (y,T)

such that (5.1)) holds.
Define the preglued map wg(s,t) = (cr(s,t), wg(s,t)) by

v(s + 2R, 1), s<—R
wr(s,t) = ¢ expyry (Br(s)V (s + 2R, t) + B (s)U(s — 2R, 1)), s €[—R,R]
u(s — 2R, t), s> R
b(s + 2R, t) — 2RT, s<-R
cr(s,t) =< Ts+ Br(s)n (s +2R,t) + B (s)n(s — 2R, t), s € [—R,R]
a(s —2R,t) + 2RT, s>R

The map wg is defined for R sufficiently large, such that for s € [—R, R],
u(s — 2R, t) = expy iy U(s — 2R, t) and v(s + 2R, 1) = exp,y) V(s + 2R, t).

If ¥ is a plane, we have not defined wg(0) yet. Recall that we write
(s, t) = v(e*™T), We define for z € B, 2:r(0) ,

wR(Z) = T_9RT © ’1}(647”%2’)’

where the map 7, : R x S? — R x S3 is defined by 7.(a,x) = (a + ¢, z), for
ceR.

Properties of the preglued map
e wg is asymptotic to P} at z = oo and asymptotic to P? at z = 0.

o for s € [—e¢, €], wr(s,t) = (Ts,y(1Tt)).
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o If s <R, wr(s—2R,t) = (b(s,t) —2RT,v(s,t)). It follows that Topr o
wr(s —2R,t) = 0(s,t) in C2, as R — oc.

o If s > —R, wgr(s+ 2R, t) = (a(s,t) + 2RT,u(s,t)). It follows that
T_opr © Wr(s + 2R, t) — u(s,t) in CX, as R — oo.

loc

e wp converges to (T's,y(Tt)) as R — oo in C°

loc*

o Jwp — 0in C®

loc*

Construction of the gluing map Using a version of the implicit function
theorem, one can show that there exists a distinguished J-holomorphic curve
wr = ¥(R) € S(P, P) close to the preglued map wg, for R sufficiently large,
which has the form W(R) = exp,, (n(R)), where n(R) € W, (wiTW). This
can be proved by the same arguments found in [ADI4] and the Fredholm
theory of [Dra04].

5.2 Idea of the proof of Theorem [3.5]in the case
g, widA > 0

In Section [3.3.4) we obtained a .J-holomorphic curve iy : D\ {0} — Rx S?
satisfying

g = (ag,up) : D\ {0} — R x S3 is an embedding ,
ap =0 on ID, ue(0D) C D\ {e}, (5.3)
uo(0D) winds once positively around e,

ug is asymptotic to P, at z =0,

where D is the disk spanning the orbit P; obtained by Theorem [3.10, We
also obtained a J-holomorphic plane 7 : C — R x $3 asymptotic to Ps.

By Proposition , we obtain a J-holomorphic cylinder 4, : C \ {0} —
R x S3 asymptotic to P at its positive puncture z = oo and to P; at its
negative puncture z = 0. By Proposition [£.24] we know that v and o,
approach the orbit P in opposite directions, according to definition

Now we can apply the Gluing theorem to the curves 4y and v, to
obtain a 1-parameter family of J-holomorphic punctured disks

Up = (GR,UR) D \ {0} — R x SS, R e [RQ, +OO) (54)
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satisfying

agr =0 on ID, ugr(dD) C D\ {e},

ur(0D) winds once and positively around e,
in(D\ {0}) N (R x 25(R)) = 0,

g is asymptotic to P, at z = 0.

(5.5)

We need the following proposition, whose proof is not given in this thesis.

Proposition 5.4. Let &t = (a,u) : D\ {0} = R x S be a J-holomorphic
curve satisfying

a=0 on JD,
u(0D) C D\ {e}, (5.6)

u 18 asymptotic to Py at z = 0,

Consider two J-holomorphic curves © : C\ T, — R x S and @ : C\
'y — R x S3, asymptotic to P, at its unique positive puncture z = oo, with
#I,, #I'y < 1 and such that v and ©' approach Py in opposite directions. Let
wr:D\T, = R x S R> Ry be the family of J-holomorphic curves given
by Theorem applied to the curves @ and v, and let W} : D\ T, — R x 53,
R > Ry, be the family of j—holomorphic curves given by Theorem applied
to the curves u and v'. Then for R and s sufficiently large, the following
holds: If z = ™) and wr(2) = expgy,; V(2), where V is a section on
U# R T(R x S%), then wy(2) = expyy o (—V(2)).

By surjectivity of gluing (Theorem [5.3)), we know that the family of disks
given by Theorem applied to the curves 1y and © coincide with the family
of disks obtained in Section B.3.21

Recall that in Section [3.3.2] we fixed a leaf [; of the characteristic foliation
of D and denoted its length by 7. We defined for each disk @ € M(J),

7([u]) = length of the piece of I; connecting e to p.(u)

where p.(@) is the intersection point of [; and u(0D). 7(u) is well defined
because u(0D) hits every leaf exactly once. In the same way we can define
define 7" = 7(1p) = length of the piece of [; connecting e to p.(), where
P«(Tp) is the intersection point of I; and uy(9D).

Now we apply Proposition to the curves gy, v and v,. One can show
that for R large, any curve up in the family satisfies 7([ag]) > 7%, where
we also define 7([tg]) = length of the piece of [; connecting e to p.(ig) and
ps«(tg) is the intersection point of [; and ug(90D).
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The family of cylinders ag, R € [Rg, +00) extends to a maximal family
of J-holomorphic curves satisfying (5.5), that we also denote by g, R €
(R_,+00).

We need the following facts about the family ug, that are left without
proof.

1. 4R is an embedding near JD;
2. Up is an immersion for all R € (R_, +00);
3. for R 7£ R/, fLR(&D) N ﬂR/(aD) = @

Consider a sequence i, = tp,, such that R, — RT. After an analysis
similar to the one done in Sections 4.4.1| and [4.4.2], we can show that, after
suitable reparametrizations and R-translations, we have the following

(i) There exists a .J-holomorphic curve @; : D\ {0} — R x S® such that,
up to subsequence, @, — 4 in C2(D\ {0}) as n — oc.

(ii) There exist sequences 0, — 07, R, — +oo and d,, € R, and a J-
holomorphic curve 97 : C\ {0} — R x 52 such that, up to subsequence,
defining @, : Bg,(0) \ {0} = R x S by w, = @,(0,") + d,, we have
Wy, — 71 in Cp2(C\ {0}) as n — oo.

Note that, since each curve g satisfies 7([ug]) > 7" and 7([tug]) is a decreas-
ing function of R, we have 7([u;]) > 7*.

If modu, = 0, then, by the same arguments of Proposition we know
that ; is a reparametrization of the J-holomorphic curve F : D\ {0} —
R x S3, F(z = e?™571) = (Tys, 23(Tst)), and 7 is a cylinder asymptotic to
Pj5 at its unique positive puncture z = oo and asymptotic to either P, or P;
at its unique negative puncture z = 0.

If fﬂ)\{o} uyd\ > 0, then u; is asymptotic to P, at its unique negative
puncture z = 0 and we can apply the Gluing theorem to the curves u,
and v to obtain a family of disks

ip:D— R xS® R€E[Ry,+o0),

such that for each R, 7([ag]) > 7([1]) > 7*.
We claim that there exists a family of J-holomorphic disks 4, = (a,, u,) :
D — R x S? satisfying

a, =0 on ID, u,(0D)C D\ {e},
u,(0D) winds once positively around e, (5.7)
un(DA\{0}) N (R x 23(R)) = 0.



5.2. IDEA OF THE PROOF OF CASE [, ufd\ >0 123

such that 7([@,]) — 7 as n — oo, or a family of J-holomorphic punctured
disks w,, = (¢, w,) : D\ {0} — R x S? satisfying

¢, =0 on dD, w,(0D) C D\ {e},
w, (0D) winds once and positively around e, (5.8)

w, is asymptotic to P; at z = 0.

such that 7([w,]) — 7 as n — oco. The argument to proof the claim is as
follows.

Suppose, by contradiction, that no such families of J-holomorphic curves
exist. Let 7o be the supremum of 7([@i]) over all J-holomorphic disks @ :
D — R x S satisfying and let @, be a sequence of disks satisfying
(5.7) and such that 7([a@,]) = 7o as n — co. Repeating the analysis done in

Section we find a J-holomorphic punctured disk

asymptotic to P, at z = 0 such that @, — U in C2(D\ {0}) as n — oo and
T(llsw) = Too. Also, there exist sequences d,, — 07 and d,, € R such that, up
to subsequence, we have @,(0,-) + d, — 0 in C;2(C) as n — oco. Applying
the Gluing theorem to the punctured disk 4., and the cylinder v,, we
obtain a family of J-holomorphic punctured disks

iy = (ay,uy) : D\ {0} = R x S* R € [R® +0)
satisfying

a® =0 on 0D, uP(0D) C D\ {e},

uy (0D) winds once and positively around e,
ar(D\ {0}) N (R x z3(R)) =0,

ug 1s asymptotic to P at z = 0.

(5.9)

Applying Proposition to the curves ., ¥ and ?,, one can show that for
R large, we have 7 > ¢ > 7([u%]) > Too-

The family u% extends to a maximal family of J-holomorphic punctured
disks satisfying (5.9), that we also denote by a3, R € (R_,+o0). Taking the
limit as R — R_, we obtain a .J-holomorphic punctured disk 1 : D\ {0} —
R x S3 asymptotic to P, at its unique negative puncture and satisfying

T > T([Woo]) > Too-
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Gluing w., with the plane v and applying Proposition one can show that
there exists a family of disks wg : D — R x S3 satisfying and such that
T([WR]) > T, & contradiction.

We conclude that there exists either

1. a family of J-holomorphic disks @, = (an,up) : D — R x S3 satisfy-
ing and such that 7([@,]) — 7 as n — oco. Following the same
arguments used in Section [3.3.2] after suitable reparametrizations and
R-translations, we have the following:

(i) Passing to subsequence, 4, — F in Cpo(D\ {0}) as n — oo, where
F(z = 26+t = (Tys, 23(Tht));

(ii) There exist sequences 6, — 07, R, — +oo and d, € R, and
a J-holomorphic curve oo : C\ I'se — R x S such that, up to
subsequence, defining 1, : Bg, (0) — Rx S by w,, = 1, (0,) +d,,
we have W, — U in CP2(C\T'x) as n — oo. The curve 0y
is either a plane asymptotic to P; or 'y, = {0} and 7 is a
cylinder asymptotic to P5 at its positive puncture oo and to P at
its negative puncture z = 0;

(ili) If ' = {0}, there exist sequences 0/, — 07 and d/, € R such that,

up to subsequence, we have 4, (3)-) — 0 in C;2(C) as n — oc.

2. or a family of J-holomorphic punctured disks @, = (a,, u,) : D\ {0} —
R x S? satisfying (5.8)) and such that 7([a,]) — 7 as n — oo. Following

the same arguments used in Sections and after suitable
reparametrizations and R-translations, we have the following

(i) Passing to subsequence, 4, — F in C2.(D\{0}) as n — oo, where
F(z = e¥H)) = (Tys, 25(Tst));

(ii) There exist sequences §, — 07, R, — +oo and d, € R, and a
J-holomorphic curve oo : C\ {0} — R x S* such that, up to
subsequence, we have @, (0,) — s in CPo(C\ ') as n — oo.
The curve v, is either a cylinder asymptotic to Ps at its positive
puncture z = oo and to P; at its negative puncture z = 0 or a
cylinder asymptotic to P5 at its positive puncture oo and to P at

its negative puncture z = 0;

(iii) If © is asymptotic to P, at z = 0, there exist sequences 0/, — 0
and d/ € R such that, up to subsequence, we have ,(0)-) — 0,
in C2(C\ {0}) as n — oo.

In both cases, we can prove Theorem by the same arguments of Chapter
M4l



Appendix A

Proof of Lemma 3.9

In this Appendix, we prove Lemma 3.9, which is restated below.

Lemma A.l. Assume that ¢ : S? — S% is a C' embedding such that
x2(Ts) = Pls1xqoy and such that each hemisphere is a strong transverse sec-
tion. Then v s transverse to the torus T along Ps.

Let P = (z,T) € P(A) be a prime orbit such that p(P) = 2. The orbit P
is hyperbolic and lies in the intersection of its stable manifold W (P) and its
unstable manifold W~ (P). The tangent spaces of W*(P) along the periodic
solution ¢ + z(t) are spanned by the Reeb vector field R(x(t)) and vector
fields vE(t) € &)

Fix a symplectic trivialization ¥ : 25 — R/Z x R?. Let

D(t) = Wy 0 d'|e(a(o)) © Uy -

We know that ®(T) has two eigenvalues 3, 71, where 3 > 1.

For each t, v™(t) is an eigenvector of do”|¢(z(t)) associated with the
eigenvalue 3. In the same way, v (t) is an eigenvector of dp’|£(z(t)) associ-
ated with the eigenvalue 37!. Changing v®(¢t) with —v®(¢) if necessary, we
can assume {v™(t),v"(t)} is a positive basis for &, for each ¢. The basis
{v=(t),v*(t)} determines four open quadrants in &,¢). Let (I) and (III) be
the open quadrants between Ro~ () and Ru™(t) following the positive orien-
tation and (II) and (IV) the open quadrants between Ru™(¢) and Ro~(¢).

Proposition A.2. Let t — v(t) € {ry) be a section such that

wind(v, V) =1 .
If d\(v(t), Lru(t)) > 0, Vt € S* | then v(t) belongs to regions (I) or (I11)
for every t € SY. If d\(v(t), Lrv(t)) < 0, Vt € S1 | then v(t) belongs to
regions (I1) or (IV) for every t € S*.

125



126 APPENDIX A. PROOF OF LEMMA [3.9

Proof. Let S(t) = —Jo®(t)®~'(t). Recall that t — S(t) is T-periodic, and
for each ¢, S(t) is real and symmetric. Define A(t) = JyS(t).

The sections v=(t) are solutions of
z(t) = A(t)x(t) (A1)

satisfying
vH(T) = =vt(0), v (T)=pv(0).

We will use Floquet theory to change coordinates so that the equation
(A.1) changes to
y(t) = By(t),

with B constant.

In the basis {v~(0),v"(0)}, ®(T) has the form

-t}

We want to find a matrix B satisfying e’? = ®(T') and a T-periodic map
t — P(t) such that ®(t) = P(t)e'®, Vt € R, so that with the change of
variables y = P~!(t)z, the equation (A.1]) becomes y(t) = By(t).

Define

1 |Inp 0
B_T{o —mA’

and t — P(t) by
d(t) = P(t)e'.

The map t — P(t) is T-periodic. In fact,

D)’ = d(t)P(T) =d(t+T) = P(t+T)e'Pe’™ = @(t) = P(t + T)e'”.

If z(t) is a solution of & = A(t)x(t), then y(t) = P(t)'z(t) satisfy

g(t) = (P())a(t) + P(t) (1)
= —P(t)"'P(t) + P(t) " (P(t)y(t) + P(t) " A(t)(P(t)y(t))
= (=P(t)""P(t) + P(t) A1) P(t))y (D).
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Using the identities ®(t) = A(t)®(t) and ®(t) = P(t)e'?, we get

A)P(t)etf = &(t) = P(t)e'’ B + P(t)e'?
= P(t)B + P(t) = A(t)P(t)
= B = —P(t)"'P(t) + P(t) " A(t) P(¢).

Then y(t) = By(t). In the same way, if y(t) solves y(t) = By(t), then
z(t) = P(t)y(t) solves (A.1)).
In the basis {P~1(¢)v=(0), P~ (¢t)v*(0)}, the equation y(t) = By(t) be-

comes
{ y1(t) = Aya(t)
Ya(t) = —Aya(1),
where A = £ In f3.
Writing
p(t) cosn(t)
p(t) sinn(t),

{ Y1 (t)
Yya(t)
PP()C(E) = p*(8) (—2Asin ¢ (¢) cos ((t)) . (A.2)

Let t — v(t) € &) be a section on z*¢{. We want to compute

We get

dA\(v(t), Lru(t)).
In the symplectic trivialization ¥, Lrv(t) takes the form

Lpo(t) = %v(t) — JoS()u(t).

So that
dA(v(t), Lru(t)) = dXo(v(t),0(t) = JoS(t)v(t))
= dXo(v(t),0(t)) — dXo(v(t), A(t)v(t)).

Writing v(t) in the basis {v=(0),v"(0)} as

we have

dXo(u(t), 5(t)) = Cr(1)*6(t),
where C'is a positive constant.
For t fixed, let s — x4(s) be the solution of (A.1)) such that z(t) = v(t).
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Writing x:(s) = z1(s)v~(0) + 22(s)v*(0), we have
Pl (t)u(t) = a1 (t)(P(1) 0™ (0)) + z2(P(t) "0 (0)),
so that the functions x; and x, satisfy

leg(t) = —/\Ig(t),

Then
A(t)v() At)zi(t) = 24(t)
( Jv™(0) + 22(t)v™(0)
21(t)v™(0) — Aza(t)v™(0).

It follows that

dAo(v(t), A(t)u(t)) = C (v (t)va(t ) /\vl( Jva(t))
= C (—=2Xr*(t) cos(t) sin6(t))
= C (=2Xp*(t) cos n(t) sinn(t))
= Cp*(t)n(t),

where z1(s) = p(s) cosn(s), xa = p(s)sinn(s). The last equality follows from
(2.

We conclude that
dA(v(t), Lr(1)) = Cr2()(8(t) —i(t)). (A.3)
Assume that ¢ — v(t) € ) satisfy wind(v, ®) =1 and

dA(v(t), Lru(t)) >0, VE€R .
By (A.3)), we have '
0(t) > n(t), vt € R.

Note that wind(v*(¢), ¥) = 1. This follows from ,LL(P) = 2 and the geometric
description of the Conley-Zehnder index given in This implies that

wind(v(t), P(t)"'v*(0)) = wind(v(t),v=(t)) = 0 .

Now we show that for all t € R, v(¢) lies in regions (I) or (II). In the regions
(T1) and (IV), we have, by (A2), 6(t) > n(t) > 0. So that the existence
of ¢ such that v(t) € (II) or (IV) would force wind(v(t), P(t)"'v*(0)) > 1.
Suppose that, for some to, v(to) is in the direction of P~*(¢o)v™(0), then, using
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(A22), we have 0(t) > 7(to). But this would force v(t) to go to (II) or (IV),
which is impossible. Suppose that v(tg) is in the direction of P~ (tg)v(0).
Then 6(ty) > 7(ty) = 0. This implies that 6(t) is growing at t,. Since
wind(v(t), P(t)"'v*(0)) = 0, this would force the existence of ¢; > to such
that 0(t,) = 0(ty) and A(t1) < 0, a contradiction with (t;) > 7(t;) = 0. We
conclude that v(t) lies in regions (I) or (II), for every t € R.

By a similar argument, we conclude that if ¢ — wv(t) € &) satisfies
wind(v, ) = 1 and dA\(v(t), Lrv(t)) > 0, Vt € R, then for every t € R, we
have v(t) € (II) or v(t) € (IV). O
Lemma A.3. Let t — n(t) € £ be a vector field along xo(T-) such that
{n(t), R(z2(Tut))} generates dV(TS?) along xo(Ty-) and let t — n'(t) € &
be a section along xo(Ty-) such that {n'(t), R(x2(Tat))} generates the tangent
space of T along xo(Ty+). Then wind(n', V) = wind(n, ¥) = 1.

Proof. Using the fact that 1) restricted to each hemisphere of S? is trans-
verse to the Reeb flow, we can follow the arguments of [HSalll Section 6] to
conclude that

wind(n,¥) = 1.

In the same way, if v is a section such that {v(t), R(x2(t))} generates the
tangent space of the disk D along xy, where D is the disk given by the
definition of 3-2-1 foliation we have

wind(v, ¥) = 1.
Since 7' is transverse to D along x5, we obtain
wind(n', ¥) =1 .

]

Proof of Lemma[3.9 Let t — n(t) € € be a section along x5(T3-) such that

{n(t), R(z2(Tyt))} generates d¥(T'S?) along o(T5-).

Let u: (—¢,€) x S — W(S?); (s,t) — u(s,t) be a smooth function such
)

that
{ %(07 Y) = 'TQTQ
smuls,t)| _y = n(t)
Fix an orientation on S* x {0} C S? in such a way that g1y preserves

orientation. Consider the closed hemispheres of S?, that we call H, e H_,
with the orientation induced by the orientation of S* x {0}. It follows that

0< Ty = / 1'2;2)\ = w*d)\ .
S1

Hy
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Since v is transverse to the Reeb flow Ry in Hy \ S* x {0}, then ¥*d\ > 0
in H. \ S* x {0}. This implies that 0 is a local maximum of the function
s+ A(u(s, -)).

It follows from and that

d2
5 (ACu(s, )

-7 / (), Lan())dt <0 . (AA)
Sl

s=0

Since 9|y, is a strong transverse section, we have
dA(n(t), Lrn(t))dt < 0, Vt € S*.

Let t — 1/(t) € £ be a section along xo(T3-) such that {n/(t), R(x2(Tt))}
generates the tangent space of T" along z5(75-).
Let v: (—€,¢) x St = T, (s,t) — v(s,t) be a smooth function such that

{ v(0,-) = Tap,

To(s,t)],_, =1'(1).

Recall that V; and V5 are oriented in such a way that dA|V], is an area form,
Pj is a positive asymptotic limit and P, is a negative asymptotic limit. This
implies that 0 is a local minimum of the function s — A(v(s, -)).

It follows from (1.7)) and (1.16) that

d2
TS (A, )

_ / AN (), L (£))dt > 0 . (A.5)
g1

s=0

Since V; and V5 are strong transverse sections, we have
d\(n'(t), Lrn (t))dt > 0, ¥t € S*.

Now we can apply Proposition to the sections 1 and 7’ to conclude
the proof. O



Appendix B

Intersection theory of punctured
pseudoholomorphic curves

In this appendix we state some results of [Siell| that were used in the
thesis. Some of the theorems stated here are simpler versions of the results
of [Siell] cited, that are enough for our purposes.

Let (M,\) be a contact manifold, fix J € J(& d)\) and consider the
almost complex structure J in R x M defined by (2.1)).

In [Sield], it is defined a generalized intersection number of pseudoholo-
morphic curves, denoted by [-] * [-], which counts the algebraic intersection
number plus an asymptotic intersection number at punctures.

Theorem B.1. [Siell, Corollary 5.9] Let u : (X \T,j) — R x M and
v (\T,5") = R x M finite energy J-holomorphic curves. Assume that
no component of u or v lies in an orbit cylinder. Then the following are
equivalent:

(1) la] * [o] = 0.
(2) All of the following hold:

— The map u does not intersect any of the positive asymptotic limits
of v;

— The map v does not intersect any of the negative asymptotic limits
of u;

— If P is a periodic orbit so that at z € ', u is asymptotic P™*
and at w € I, ¥ is asymplotic to P™ then: If z and w are both

positive, then do(u,z) = 0 and Wind(yﬁ%i”gz’[q)]) > Wind(yﬁ%i"?“”m) Cf z
and w are both negative, then do(v,w) = 0 and —windWping (2D _

muw
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wind(uf,‘;f;z (@]
——— PR [f 2 is a negative puncture and w s a positive punc-

ture, then do(u z) = do(v,w) = 0 and P™ and P™ are both even
orbits, or equivalently

wind?, (4, 2)  wind (@, w)

m, m,w

(3) All of the following hold:

— The map u does not intersect any of the asymptotic limits of v.
— The map v does not intersect any of the asymptotic limits of u.

— If P is a pertodic orbit so that at z € I', u 1s asymptotic to P™* and
at w € I, ¥ is asymptotic to P™, then dy(u,z) = do(0,w) = 0.
Further, ifP 15 elliptic, then either m, and m,, are both positive

nd wind(v Ve[ _ Wmd(y”m“”[@]), or m, and m,, are both negative

and Wind(””’ﬁz’[q)]) — wind(Vpin, [ . f P is odd hyperbolic then either

Mw
m, and mw are both even or m, = m,,.

Theorem B.2. [Siell, Theorem 2.4] Let u : (X \T,j) — R x M and
o (X\I,5) = R x M asymptotically cylindrical J-holomorphic curves.
Assume that no component of u or v lies in an orbit cylinder and that the
projected curves u and v do not have identical image on any component of
their domains. Then the following are equivalent:

(1) The projected curves u and v do not intersect;
(2) All of the following hold:

— The map u does not intersect any of the positive asymptotic limits
of v;

— The map v does not intersect any of the negative asymptotic limits
of u;

— If P is a periodic orbit so that at z € ', u is asymptotic P™*

and at w € T, ¥ is asymptotic to P™ then: Ifz and w are both
wind2 (#1,2) > wind®, (9,w)
= :

positive or both negative punctures, then
If z is a negative puncture and w is a positive puncture, then

wind®(@,2) _ |p*(P™)/2) _ [u®(P™)] _ wind (i, w)
m, N m, N Moy N My

(3) All of the following hold:
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— The map u does not intersect any of the asymptotic limits of v.
— The map v does not intersect any of the asymptotic limits of u.
— If P is a periodic orbit so that at z € I, u is asymptotic to P™* and

wind® (#1,2) _ wind® (9,w)
my Maw

at w € I, U is asymptotic to P™, then

Definition B.3 ([Siell]). Let @ : X\ I" - Rx M and 0 : ¥’ \I" = R x M
be finite energy J-holomorphic curves asymptotic to the same nondegenerate
periodic orbit P € P(\) at certain punctures z € I' and w € IV. We say that
u and v approach P in the same direction at these punctures if n, = cn, for
c¢ > 0, where 7, and 7, are the asymptotic eigensections of @ at z and of v
at w respectively, defined in Theorem In case 1, = cn, with ¢ < 0, we

say that w and v approach P in opposite directions.

Theorem B.4. [Sielll, Theorem 2.5] Let P be a simple even orbit and let
i: 3\ = RxMand o :E\I" = R x M be connected finite energy
J-holomorphic curves. Assume that at punctures z € I' and w € IV, @ and ©

approach P in the same direction, and that there do not exist neighborhoods
U of zand V of w so that u(U \ {z}) = v(V \ {w}). Then

(]  [8] > 0 .

Theorem B.5. [Siell, Theorem 2.6] Let @ : X\ T' — R x M be a connected
simple finite energy J-holomorphic curve. Assume that t does not have image
contained in an orbit cylinder. Then the following are equivalent:

(1) The projected map u: S\ T — M is an embedding.

(2) The algebraic intersection number int(u, U.) between t and an R-translate
te = (a4 c,u) is zero for all c € R\ {0}.

(8) All of the following hold:

— u does not intersect any of its asymptotic limits.

— If P is a periodic orbit so that u is asymptotic at z € T' to P™*
and u is asymptotic at w € T to P™w, then Yinde(@2) _ winds(@w)

If (1), (2) or (3) holds, then

o The map u s an embedding.

o The projected map u 1S an immersion which 1s everywhere transverse
to the Reeb vector field.

o For each z € T, we have ged(m,, windo (@, 2)) = 1.
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