• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2010.tde-28042010-113745
Document
Author
Full name
Leandro Candido Batista
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2010
Supervisor
Committee
Lourenco, Mary Lilian (President)
Pellegrino, Daniel Marinho
Rodrigues, Leonardo Pellegrini
 
Title in Portuguese
Zeros de polinômios em espaços de Banach
Keywords in Portuguese
Análise funcional
Lema de Phelps
Polinômios
Zeros de Polinômios
Abstract in Portuguese
Este trabalho aborda principalmente dois tópicos em Análise Funcional. No primeiro tópico, estudamos zeros de polinômios em espaços de Banach reais. Apresentamos resultados devidos a J. Ferrer, estabelecendo que todo polinômio fracamente contínuo sobre os subconjuntos limitados de um espaço de Banach, de dual não separável na topologia fraca estrela, admite um subespaço linear fechado de dual não separável na topologia fraca estrela, no qual o polinômio se anula. No segundo tópico, exibimos a versão multilinear do Lema de Phelps devido a R. Aron, A. Cardwell., D. García e I. Zalzuendo.
 
Title in English
Zeros of polynomials on real Banach spaces
Keywords in English
Functional analysis
Phelps' Lemma
Polynomials
Zeros of polynomials
Abstract in English
We study two topics in Functional Analysis. In the first topic, we study zeros of polynomials on real Banach spaces. We present results due to J. Ferrer, stating that every polynomial weakly continuous on bounded subsets of a Banach space, whose dual is not separable in the weak-star topology, admits a closed linear subspace whose dual is not separable in the weak- star topology either, where the polynomial vanishes. In the second topic, we show a multilinear version for the Phelps' Lemma by R. Aron, A. Cardwell., D. García and I. Zalzuendo.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2010-10-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.