Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.2020.tde-28012020-182713
Documento
Autor
Nombre completo
Dirección Electrónica
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Juriaans, Orlando Stanley (Presidente)
Cortes, Wagner de Oliveira
Ferraz, Raul Antonio
Miranda, Manuel Antolino Milla
Título en portugués
As álgebras plena de Colombeau e de Aragona
Palabras clave en portugués
Álgebra de Aragona
Conjunto interno
Resumen en portugués
Título en inglés
The full algebras of Colombeau and Aragona
Palabras clave en inglés
Aragona algebra
Generalized holomorphic functions
Internal set
Resumen en inglés
Colombeau generalized functions are natural environment in which linear and nonlinear relationship can be treated. This PhD thesis aims to continue the developing the Colombeau theory of generalized functions, as well as building new differential algebras in order to use a monomorphism with Schwartz distributions can be dipped. The first chapter of this thesis brings an introduction to the Colombeau theory and describes the main results that have been obtained in the literature, which are important for the development, we describe the main results - which are important for the development of this thesis. In order to help the reader and to make the text more accessible, mathematical evidence of these results are also presented in this chapter. In the second chapter, it was studied the maximal ideal of full Colombeau algebra of generalized functions and completely classified these ideals. We intro- duced the Aragona algebras and used a compactification process similar to Stone - Check, which was introduced by Khelif - Scarpalezos to obtain this classification. In particular, we completed a classification of Khelif - Scarpalezos that is applied for simplified algebras. This chapter also serves as the basis for this thesis. In chapter 3, we generalize the internal sets and membranes, introduced by Aragona - Fernandes -Juriaans -Oberguggenberger - Ver- naev, for the context of full algebra . Several results are then generalized to the context of full algebra. If f H() is a classic holomorphic function, Rf C the zero set of f and Gf Rf K the set of generalized zeros from f , we then related these two sets using the latest theories developed in this field and this work is presented in the Chapter 4.

ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.