• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2013.tde-27092013-115220
Document
Auteur
Nom complet
Oscar Eduardo Ocampo Uribe
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Goncalves, Daciberg Lima (Président)
Barros, Tomas Edson
Guaschi, John
Rigas, Alcibiades
Vendruscolo, Daniel
Titre en portugais
Grupos de tranças Brunnianas e grupos de  homotopia da esfera S2
Mots-clés en portugais
Comutadores
grupos cristalográficos
grupos de Bieberbach
grupos de homotopia das esferas
grupos de tranças de superfícies
grupos simpliciais
tranças Brunnianas
Resumé en portugais
A relação entre os grupos de tranças de superfícies e os grupos de homotopia das esferas é atualmente um tópico de bastante interesse. Nos últimos anos tem sido feitos avanços consideráveis no estudo desta relação no caso dos grupos de tranças de Artin com n cordas, denotado por Bn, da esfera e do plano projetivo. Nessa tese analisamos com detalhes as interações entre a teoria de tranças e a teoria de homotopia, e mostramos novos resultados que estabelecem conexões entre os grupos de homotopia da 2-esfera S2 e os grupos de tranças sobre qualquer superfície. No andamento deste trabalho, descobrimos uma conexão surpreendente dos grupos de tranças com os grupos cristalográficos e de Bieberbach: para n maior ou igual que 3, o grupo quociente Bn/[Pn, Pn] é um grupo cristalográfico que contém grupos de Bieberbach como subgrupos, onde Pn é o subgrupo de tranças puras de Bn. Com isto obtivemos uma formulação de um Teorema de Auslander e Kuranishi para 2-grupos finitos e exibimos variedades Riemannianas compactas planas que admitem difeomorfismo de Anosov e cujo grupo de holonomia é Z2k . Além disso, durante esta tese, detectamos e, quando possível, corrigimos algumas imprecisões em dois importantes artigos nessa área de estudo, escritos por J. Berrick, F. R. Cohen, Y. L. Wong e J. Wu (Jour. Amer. Math. Soc. - 2006) assim como por J. Y. Li e J.Wu (Proc. London Math. Soc. - 2009).
Titre en anglais
Brunnian braid groups and homotopy groups of the sphere S2
Mots-clés en anglais
Bieberbach groups
Brunnian braids
commutators
crystallographic groups
homotopy groups of spheres
simplicial groups
surface braid groups
Resumé en anglais
The relation between surface braid groups and homotopy groups of spheres is currently a subject of great interest. Considerable progress has been made in recent years in the study of these relations in the case of the n-string Artin braid groups, denoted by Bn, the sphere and the projective plane. In this thesis we analyse in detail the interactions between braid theory and homotopy theory, and we present new results that establish connections between the homotopy groups of the 2-sphere S2 and the braid groups of any surface. During the course of this work, we discovered an unexpected connection of braid groups with crystallographic and Bieberbach groups: for n greater or equal than 3, the quotient group
Bn/[Pn, Pn] is a crystallographic group that contains Bieberbach groups as subgroups, where Pn is the pure braid subgroup of Bn. This enables us to obtain a formulation of a theorem of Auslander and Kuranishi for finite 2-groups, and to exhibit Riemannian compact flat manifolds that admit Anosov diffeomorphisms and whose holonomy group is Z2k. In addition, during the thesis, we have detected, and where possible, corrected some inaccuracies in two important papers in the area of study, by J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu (Jour. Amer. Math. Soc. - 2006), and by J. Y. Li and J. Wu (Proc. London Math. Soc. - 2009).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2013-10-04
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.