• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2012.tde-27062012-154612
Document
Author
Full name
Renata Rodrigues Marcuz Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2012
Supervisor
Committee
Ferraz, Raul Antonio (President)
Goncalves, Jairo Zacarias
Cristo, Osnel Broche
Paques, Antonio
Veloso, Paula Murgel
 
Title in Portuguese
Unidades de ZC2p e Aplicações
Keywords in Portuguese
grupos dos quaternios
unidades centrais de aneis de grupos
Unidades de aneis de grupo
Abstract in Portuguese
Seja p um número primo e seja uma raiz p - ésima primitiva da unidade. Considere os seguintes elementos i := 1 + + 2 + ... + i-1 para todo 1 i k do anel Z[] onde k = (p-1)/2. Nesta tese nós descrevemos explicitamente um conjunto gerador para o grupo das unidades do anel de grupo integral ZC2p; representado por U(ZC2p); onde C2p representa o grupo cíclico de ordem 2p e p satisfaz as seguintes condições: S := { -1, , u2, ... uk } gera U(Z[]) e U(Zp) = <2> ou U(Zp)2 = <2> e -1 U(Zp); que são verificadas para p = 7; 11; 13; 19; 23; 29; 53; 59; 61 e 67. Com o intuito de estender tais ideias encontramos um conjunto gerador para U(Z(C2p x C2) e U(Z(C2p x C2 x C2) onde p satisfaz as mesmas condições anteriores acrescidas de uma nova hipótese. Finalmente com o auxílio dos resultados anteriores apresentamos um conjunto gerador das unidades centrais do anel de grupo Z(Cp x Q8); onde Q8 representa o grupo dos quatérnios, ou seja, Q8 := .
 
Title in English
Units of ZC2p and Applications
Keywords in English
Cental Units of Integral Group Rings
Group Rings over Integers
Quaternion Group.
Untis of Group Rings
Abstract in English
Let p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don't know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese.pdf (644.42 Kbytes)
Publishing Date
2012-07-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.