• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.2020.tde-27012020-204816
Documento
Autor
Nome completo
Andre Quintal Augusto
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Rodrigues, Leonardo Pellegrini (Presidente)
Aurichi, Leandro Fiorini
Batista, Leandro Candido
Fajardo, Rogerio Augusto dos Santos
Grando, Thiago
Título em português
Relações entre subespaços, ciclicidade e hiperciclicidade em espaços de Banach
Palavras-chave em português
Ciclicidade
Hiperciclicidade
Operadores sub-hipercíclicos
Sub-hiperciclicidade
Resumo em português
Dado um espaço de Banach $X$, um operador linear limitado $T$ em $X$ é dito {\it hipercíclico} se existir um vetor $x \in X$ tal que o conjunto $\orb{(x,T)} \eqdef \{x, Tx, T^2x, T^3x, \ldots T^nx \ldots \}$ é denso em $X$. Em \cite, Madore e Martínez-Avendaño estenderam o conceito de hiperciclicidade para subespaços: dado um subespaço $M \subsetneq X$, um operador $T$ é dito {\it sub-hipercíclico em $M$} se existir $x \in X$ tal que $\orb{(x,T)} \cap M$ seja denso em $M$. Sendo um conceito razoavelmente novo, ainda há muita dúvida sobre quais resultados envolvendo operadores hipercíclicos se estendem naturalmente para operadores sub-hipercíclicos. Este trabalho contribui nesse sentido. Entre os resultados obtidos no segundo capítulo, destacamos a existência de operadores sub-hipercíclicos para qualquer subespaço $M$ de um espaço de Banach e a densidade (na topologia da convergência pontual) do conjunto dos operadores sub-hipercíclicos em $\mathcal(X)$. Estudamos ainda no terceiro capítulo o {\it Critério de Sub-Hiperciclicidade}, exibindo um contra-exemplo e um novo critério que funciona em espaços de Banach não necessariamente separáveis. Além disso, no quarto capítulo deste trabalho estudamos também a relação entre hiperciclicidade e ciclicidade via operadores da forma $I + K$, com o intuito de responder a pergunta: será que existe um espaço de Banach onde todo operador hipercíclico satisfaz o chamado {\it Critério de Hiperciclicidade}? Por fim, inspirados na relação entre hiperciclicidade e sub-hiperciclicidade, terminamos o trabalho definindo o conceito de {\it sub-ciclicidade} e explorando relações entre todos os conceitos vistos na tese.
Título em inglês
Relationships between subspaces, ciclicity and hypercyclicity in Banach spaces
Palavras-chave em inglês
Ciclicity
Hypercyclicity
Subspace-hypercyclic operators
Subspace-hypercyclicity
Resumo em inglês
Given a Banach space $X$, a bounded linear operator $T$ in $X$ is {\it hypercylic} if, for some $x \in X$, the set $\orb{(x,T)} \eqdef \{x, Tx, T^2x, T^3x, \ldots T^nx \ldots \}$ is dense in $X$. In \cite, Madore and Martínez-Avendaño extended the notion of hypercyclicity to subspaces: an operator $T$ is {\it subspace-hypercyclic} for some subspace $M \subsetneq X$ if there is some $x \in X$ such that $\orb{(x,T)} \cap M$ is dense in $M$. Since this is a relatively new concept, there is a lot of questions regarding which results for hypercyclic operators holds for subspace-hypercyclic operators. This work contributes in this area. Amongst the results obtained in the second chapter, we highlight the existence of subspace-hypercyclic operators for any given subspace $M$ of a Banach space and the SOT-density of the set of subspace-hypercyclic operators on $\mathcal(X)$. In the third chapter, we study the {\it Subspace-Hypercyclicity Criterion}, showing a counter-example to this criterion and devising a new one that works on nonseparable Banach spaces. Beyond that, on the fourth chapter we also study the relationship between hypercyclicity and cyclicity using scalar-plus-compact operators, with the goal of answering the question: is there a Banach space where every hypercylic operator satisfy the so-called {\it Hypercyclicity Criterion}? Lastly, inspired by the relationship between hypercyclicity and subspace-hypercyclicity, we end this work by introducing the concept of {\it subspace-cyclicity} and connecting all the concepts studied in this thesis
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tese.pdf (1.07 Mbytes)
Data de Publicação
2020-04-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.