• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2020.tde-27012020-204816
Document
Author
Full name
Andre Quintal Augusto
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Rodrigues, Leonardo Pellegrini (President)
Aurichi, Leandro Fiorini
Batista, Leandro Candido
Fajardo, Rogerio Augusto dos Santos
Grando, Thiago
Title in Portuguese
Relações entre subespaços, ciclicidade e hiperciclicidade em espaços de Banach
Keywords in Portuguese
Ciclicidade
Hiperciclicidade
Operadores sub-hipercíclicos
Sub-hiperciclicidade
Abstract in Portuguese
Dado um espaço de Banach $X$, um operador linear limitado $T$ em $X$ é dito {\it hipercíclico} se existir um vetor $x \in X$ tal que o conjunto $\orb{(x,T)} \eqdef \{x, Tx, T^2x, T^3x, \ldots T^nx \ldots \}$ é denso em $X$. Em \cite, Madore e Martínez-Avendaño estenderam o conceito de hiperciclicidade para subespaços: dado um subespaço $M \subsetneq X$, um operador $T$ é dito {\it sub-hipercíclico em $M$} se existir $x \in X$ tal que $\orb{(x,T)} \cap M$ seja denso em $M$. Sendo um conceito razoavelmente novo, ainda há muita dúvida sobre quais resultados envolvendo operadores hipercíclicos se estendem naturalmente para operadores sub-hipercíclicos. Este trabalho contribui nesse sentido. Entre os resultados obtidos no segundo capítulo, destacamos a existência de operadores sub-hipercíclicos para qualquer subespaço $M$ de um espaço de Banach e a densidade (na topologia da convergência pontual) do conjunto dos operadores sub-hipercíclicos em $\mathcal(X)$. Estudamos ainda no terceiro capítulo o {\it Critério de Sub-Hiperciclicidade}, exibindo um contra-exemplo e um novo critério que funciona em espaços de Banach não necessariamente separáveis. Além disso, no quarto capítulo deste trabalho estudamos também a relação entre hiperciclicidade e ciclicidade via operadores da forma $I + K$, com o intuito de responder a pergunta: será que existe um espaço de Banach onde todo operador hipercíclico satisfaz o chamado {\it Critério de Hiperciclicidade}? Por fim, inspirados na relação entre hiperciclicidade e sub-hiperciclicidade, terminamos o trabalho definindo o conceito de {\it sub-ciclicidade} e explorando relações entre todos os conceitos vistos na tese.
Title in English
Relationships between subspaces, ciclicity and hypercyclicity in Banach spaces
Keywords in English
Ciclicity
Hypercyclicity
Subspace-hypercyclic operators
Subspace-hypercyclicity
Abstract in English
Given a Banach space $X$, a bounded linear operator $T$ in $X$ is {\it hypercylic} if, for some $x \in X$, the set $\orb{(x,T)} \eqdef \{x, Tx, T^2x, T^3x, \ldots T^nx \ldots \}$ is dense in $X$. In \cite, Madore and Martínez-Avendaño extended the notion of hypercyclicity to subspaces: an operator $T$ is {\it subspace-hypercyclic} for some subspace $M \subsetneq X$ if there is some $x \in X$ such that $\orb{(x,T)} \cap M$ is dense in $M$. Since this is a relatively new concept, there is a lot of questions regarding which results for hypercyclic operators holds for subspace-hypercyclic operators. This work contributes in this area. Amongst the results obtained in the second chapter, we highlight the existence of subspace-hypercyclic operators for any given subspace $M$ of a Banach space and the SOT-density of the set of subspace-hypercyclic operators on $\mathcal(X)$. In the third chapter, we study the {\it Subspace-Hypercyclicity Criterion}, showing a counter-example to this criterion and devising a new one that works on nonseparable Banach spaces. Beyond that, on the fourth chapter we also study the relationship between hypercyclicity and cyclicity using scalar-plus-compact operators, with the goal of answering the question: is there a Banach space where every hypercylic operator satisfy the so-called {\it Hypercyclicity Criterion}? Lastly, inspired by the relationship between hypercyclicity and subspace-hypercyclicity, we end this work by introducing the concept of {\it subspace-cyclicity} and connecting all the concepts studied in this thesis
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese.pdf (1.07 Mbytes)
Publishing Date
2020-04-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.