Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2019.tde-26042019-091040
Document
Author
Full name
Juliane Trianon Fraga
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Lourenco, Mary Lilian (President)
Bernardes Junior, Nilson da Costa
Pedra, Walter Alberto de Siqueira
Title in Portuguese
Propriedade de Bishop-Phelps-Bollobás
Keywords in Portuguese
Operadores que atingem a norma
Propriedade beta de Lindenstrauss
Propriedade de Bishop-Phelps-Bollobás
Abstract in Portuguese
Este trabalho tem como objetivo principal estudar determinadas propriedades de pares de espaços de Banach de forma que satisfaçam a Propriedade de Bishop-Phelps-Bollobás para operadores (BPBp), acompanhando a evolução histórica do assunto. Inicialmente apresentamos demonstrações dos Teoremas de Bishop-Phelps e Bishop-Phelps-Bollobás, e em seguida passamos a estudar as versões destes resultados para operadores, entre as quais enfatizamos a segunda. Com esse objetivo, definimos a Propriedade de Bishop-Phelps-Bollobás para operadores, introduzida por Acosta et al. em [AAGM08], e apresentamos dois resultados deste artigo, que afirmam que se os espaços de Banach X e Y têm dimensão finita, então (X,Y) satisfaz a BPBp, e que se o espaço de Banach Y tem a propriedade beta de Lindenstrauss, então (X,Y) satisfaz a BPBp para todo espaço de Banach X. Em seguida estudamos o artigo [AGKM17], que apresenta uma classe de espaços de Banach Y tais que (c0,Y) satisfaz a BPBp, e mostra que embora nesta classe estejam contidos os espaços de Banach uniformemente convexos e aqueles que satisfazem a propriedade beta, ela ainda contêm outros exemplos de espaços.
Title in English
Bishop-Phelps-Bollobás property
Keywords in English
Bishop-Phelps-Bollobás property
Operators which attain their norm
Property beta of Lindenstrauss
Abstract in English
The main purpose of this work is to study certain properties of pairs of Banach spaces in a way that satisfies the Bishop-Phelps-Bollobás property for operators (BPBp), following the historical evolution of the subject. Firstly we present proofs of the Bishop-Phelps and Bishop-Phelps-Bollobás theorems, and then proceed to study versions of these results for operators, of which we emphasize the second one. To this purpose, we define the Bishop-Phelps-Bollobás property for operators, introduced by Acosta et al. in [AAGM08], and present two results of this paper, which state that if X and Y are finite-dimensional Banach spaces, then (X,Y) satisfies BPBp, and that if the Banach space Y has the property beta of Lindenstrauss, then (X,Y) satisfies BPBp for every Banach space X. Next we study paper [AGKM17], which presents a class of Banach spaces Y such that (c0,Y) satisfies BPBp, and shows that although this class contains the uniformly rotund spaces and those satisfying property beta, there are other examples of spaces in it.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-05-29