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Resumo

Roger Ramirez Primolan. Dimensões Homológicas Relativas e Extensões Controlá-
veis. Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2023.

Em 1956, Hochschild desenvolveu uma teoria homológica para extensões de álgebras associativas. Sua

teoria ficou dormente pelas próximas décadas, mas resultados recentes a relacionaram com a Conjectura da

Dimensão Finitística: uma conjectura de 60 anos e central para teoria homológica de álgebras de dimensão

finita.

Neste trabalho daremos uma visão panorâmica das relações entre Teoria Homológica Relativa e a

Conjectura da Dimensão Finitística. Depois definimos e examinamos uma nova classe de extensões de

álgebras, chamadas de extensões controláveis. Provamos que essa classe transporta muito do comportamento

das dimensões homológicas clássicas para as dimensões homológicas relativas, resultando no cálculo da

dimensão global relativa de algumas extensões. Nós também traduzimos alguns resultados da teoria clássica

para o ambiente relativo, com destaque para uma generalização do comportamento homológico de álgebras

de caminho.

Palavras-chave: álgebra homológica relativa, dimensões homológicas, extensões controláveis, Conjectura

da Dimensão Finitística, álgebras de dimensão finita.





Abstract

Roger Ramirez Primolan. Relative Homological Dimensions and Controllable
Extensions. Thesis (Master’s). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2023.

In 1956, Hochschild developed an homological theory for extensions of associative algebras. His theory

went dormant for the next decades, but recent results related it to the Finitistic Dimension Conjecture: a 60

years old central conjecture for homological theory of finite dimensional algebras.

In this work we will present a panoramic view on the relations between Relative Homological Algebra

and the Finitistic Dimension Conjecture. We define and analyse a new class of extensions, the controllable

extensions. We proved that this class preserves much of the properties of classical homological dimensions

to the relative realm, in particular we are able to compute the relative global dimension of some extensions.

We also translated some results of homological algebra to relative homological algebra, in particular we

obtained a generalization of the homological behaviour of path algebras.

Keywords: relative homological algebra, homological dimensions, controllable extensions, Finitistic Di-

mension Conjecture, finite dimensional algebras.
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Introduction

In 1956, Hochschild developed an homological theory to study extensions of algebras
𝐵 ⊆ 𝐴. His theory went dormant until resent efforts related it to the Finitistic Dimension
Conjecture. In [XX13], the autors where able to bound the finitistic dimension of 𝐵 using
that of 𝐴 provided, among other things, that 𝐵 ⊆ 𝐴 is an extension of finite relative global
dimension. In [IM21], the authors explored relations among the algebras of an extension in
order to prove that the finiteness of the finitistic dimension of any one of them implies that
of the other. Again they needed extensions with certain finite conditions using relative
homological dimensions. The extensions considered in [IM21] are a generalization of
extensions defined in [CLMS22]. In both articles, the authors study how Han’s Conjecture
interacts with this extensions.

The aim of this work is to provide examples and ways to compute the relative global
dimension of extensions, focusing on the finite dimensional cases. To do so, we proved
some relative results analogous to classical theorems in Homological Algebra. For instance,
we proved a generalization of the homological behaviour of path algebras. Then we defined
a new class of extensions, proved some properties and constructed examples.

This work is organized as follows:

Part I consists of the theorical background needed.

Chapter 1 gives an overview of finite dimensional basic algebras with emphasis in the
connection between Algebra and Combinatorics.

Chapter 2 introduces the reader to the relevant homological definitions and results,
then we specialize it to finite dimensional basic algebras.

Chapter 3 discuss Relative Homological Algebra and its relations with the Finitistic
Dimension Conjecture.

Part II consists of our results.

Chapter 4 proves relative homological results that generalizes the behaviour observed
from classical homological theory or involves known extensions of algebras.

Chapter 5 proves our main results. We define a new class of extensions, discuss its
properties and show, via examples, that this class is not trivial. In particular, we provide
new examples of extensions with finite global dimension. We give a counterexample
showing that this class does not encompass all possible extensions.

Chapter 6 is a small conclusion about our work and what we were able to achieve.
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In order to make it easier to find the new results, definitions, and examples, they are
organized in the following table.

Table 1: Table with the new results together with a small description and the page where they are
found.

Novelty Description Page
Theorem 4.1.1 Equivalence for gldim(𝑇 [𝐵, 𝑁 ], 𝐵) = 1 61
Proposition 4.2.4 gldim(𝐴 ⊗𝕂 𝐵, 𝐵) ≧ gldim(𝐴) 68
Proposition 4.2.7 Combinatorial upper bound for gldim(𝐴 ⊗𝕂 𝐵, 𝐵) 71
Proposition 4.3.2 Lower bound for gldim(𝐵⋉𝑁 , 𝐵) and a sufficient con-

dition for it to be infinite
72

Proposition 5.1.4 Examples of controllable extensions using tensor al-
gebras extensions

76

Proposition 5.2.1 Properties satisfied by controllable extensions regard-
ing relative global dimensions

79

Theorem 5.3.4 Computation of some relative Ext groups 82
Corollary 5.3.5 Relative homological computations when the inde-

composable A↓B-projectives are (𝐴, 𝐵)-projectives
83

Corollary 5.4.2 Sufficient algebraic condition for gldim(A↓B) ≦

gldim(𝐴, 𝐵)

86
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Chapter 1

Finite Dimensional Algebras

In this chapter we present the theory of path algebras and representations of quivers.
The main references are [ASS06] and [Kir16]. We assume the reader is familiar with module
theory, tensor products, and category theory.

1.1 Historical Remarks
This section is heavily based on [Kle+07] and [Van13]. For an in depth analysis of His-

tory of Algebra we recommend the reader to look at [Kle+07] and [Van13], and references
therein.

Non commutative algebra started its blooming by a new example that behaved dif-
ferently from the objects studied at the time. That example was the quaternion numbers,
discovered by William Rowan Hamilton (1805–1865) in a paper from 1843 [Van13, Chapter
10, Hamilton’s Discovery of Quaternions]. Quaternions form a 4-dimensional real non
commutative and unital algebra, with basis given by 1, 𝑖, 𝑗 and 𝑘 and multiplication is given
by the rules:

• 1 is the identity.

• 𝑖2 = 𝑗
2
= 𝑘

2
= −1.

• 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖 and 𝑘𝑖 = −𝑖𝑘 = 𝑗 .

Nowadays we call the quaternions a division algebra.

After Hamilton’s discovery, the next decades saw an increase number of other exam-
ples of what we now call associative algebras. For instance, Arthur Cayley (1863-1895)
introduced full matrix rings in a series of two papers between 1855 and 1858, remarking
the non commutativity of this new object [Kle+07, Section 3.1.1.(iv)]. After a new theory
gains a considerable amount of examples it is possible to start looking at the patterns that
they, as a collective, have. This led to a first abstract definition of a finite dimensional
algebra by Benjamin Peirce (1809-1880) in 1870 [Kle+07, Section 3.1.2.(i)].

In the 1890’s, independently, Élie Cartan (1869-1951), Ferdinand Georg Frobenius (1849-
1917) and Theodor Molien (1861-1941) showed that any finite dimensional algebra over ℝ
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or ℂ is the sum of a nilpotent ideal and a semisimple algebra 𝐴 = 𝑁 ⊕ 𝐵 (a semisimple
algebra 𝐵 was an algebra without non trivial nilpotent bilateral ideals), every semisimple
algebra is the sum of simple algebras (algebras without non trivial bilateral ideals), and
that simple algebras are full matrix rings over a division algebra, see [Kle+07, Section
3.1.3.(i)].

The particularity of this classification is two fold: first it was only for specific fields,
second it was not an structural proof. Joseph Wedderburn (1882-1948) was able to improve
on both points in the main theorem of his paper “On Hypercomplex Numbers”, from
1908. See [Van13, Chapter 11, Maclagan Wedderburn]. Later this result was generalized
by Emil Artin (1898-1962), in 1927, for algebras satisfying the descending chain condition
[Van13, Chapter 11, Emil Artin]. For a modern version of the Wedderburn-Artin theory
we recommend [Lam91].

Theorem 1.1.1. [Van13, Chapter 11, Maclagan Wedderburn, Theorem 13] (Wedderburn’

Main Theorem) Let 𝐴 be a finite dimensional algebra over a field. Then:

1. 𝐴 = 𝑁 ⊕ Σ, where 𝑁 is a maximal nilpotent ideal of 𝐴 and Σ is semisimple.

2. Σ =

𝑛

⨁

𝑖=1

𝑆𝑖, where each 𝑆𝑖 is a simple algebra.

3. 𝑆𝑖 = Mat
𝑛𝑖
(𝐷𝑖), where 𝐷𝑖 is a division ring.

An important message that we take from this theorem is that semisimple algebras are
just sum of matrix rings.

To summarize, a finite dimensional algebra can be decompose as

𝐴 = Σ ⊕ 𝑁, (1.1)

where Σ is a semisimple algebra and 𝑁 is a nilpotent ideal. Intuitively, this result says
that any algebra is a sum of two things: a good part Σ and a complicated part 𝑁 . This
ideal nowadays is called Jacobson radical of 𝐴 and is one of the objects we are going to
study.

1.2 Algebras

In this section we define basic objects that will set the background of this work. Fix 𝕂

a field.

1.2.1 Basic Definitions
The main object of study are algebras over a field.
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Definition 1.2.1. By a 𝕂-algebra or simply an algebra (over 𝕂) 𝐴 we mean a 𝕂-vector

space together with a bilinear map ⋅ ∶ 𝐴 × 𝐴 ⟶ 𝐴 such that

1. Associativity: (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧), ∀ 𝑥, 𝑦, 𝑧 ∈ 𝐴.

2. Identity: there exists 1 ∈ 𝐴 such that 1 ⋅ 𝑥 = 𝑥 ⋅ 1 = 𝑥 , for any 𝑥 ∈ 𝐴.

3. Compatibility with vector space structure: For any 𝑥, 𝑦 ∈ 𝐴 and 𝜆 ∈ 𝕂, 𝜆(𝑥 ⋅ 𝑦) =

(𝜆𝑥) ⋅ 𝑦 = 𝑥 ⋅ (𝜆𝑦).

We say that an algebra is finite dimensional if it has finite dimension as a vector space.

By a homomorphism of 𝕂−algebras or algebra homomorphism between 𝐴 and 𝐵 we mean

a linear transformation 𝜙 ∶ 𝐴 ⟶ 𝐵 such that 𝜙(1𝐴) = 1𝐵 and 𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦), for all

𝑥, 𝑦 ∈ 𝐴.

Example 1.2.2. Some simple examples of algebras are:

1. Every field 𝕂 is an algebra over itself.

2. ℂ is a ℝ-algebra.

3. The full matrix ring Mat
𝑛
(𝕂) is a 𝕂-algebra.

4. The upper triangular 𝑛 × 𝑛 matrices over 𝕂, 𝑈𝑇𝑛(𝕂), form a 𝕂-algebra. The inclusion

of vector spaces 𝜄 ∶ 𝑈𝑇𝑛(𝕂) ⟶ Mat
𝑛
(𝕂) is an algebra homomorphism.

5. Given an algebra 𝐴 with multiplication ⋅ we can define its opposite algebra 𝐴𝑜𝑝 as

follows: as vector spaces 𝐴𝑜𝑝
= 𝐴 and the multiplication ⋆ of 𝐴𝑜𝑝 is 𝑥 ⋆ 𝑦 = 𝑦 ⋅ 𝑥 , for

all 𝑥, 𝑦 ∈ 𝐴.

6. Given an algebra 𝐴, we define its enveloping algebra as the tensor product of 𝐴 with

its opposite algebra, that is, 𝐴𝑒
≐ 𝐴 ⊗𝕂 𝐴

𝑜𝑝.

Next we define modules. Morally, they are how an algebra interact with the world and,
therefore, we study them as a “concrete” way to study the abstract object algebra. In this
text, we will work mainly with left modules.

Definition 1.2.3. By a left module over a 𝕂-algebra we mean a 𝕂-vector space 𝑀 together

with an algebra homomorphism 𝜙 ∶ 𝐴 ⟶ End
𝕂
(𝑀). The image of 𝑥 ∈ 𝐴 via 𝜙 is

called the action of 𝑥 on 𝑀 and denoted by 𝜙(𝑥)(𝑚) = 𝑥𝑚, ∀ 𝑚 ∈ 𝑀 . We say 𝑀 is a finite

dimensional module if it has finite dimension as a vector space. By an homomorphism of

𝐴-modules between 𝑀 and 𝑁 we mean a linear transformation 𝑓 ∶ 𝑀 ⟶ 𝑁 such that
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𝑓 (𝑥𝑚) = 𝑥𝑓 (𝑚), for all 𝑥 ∈ 𝐴 and 𝑚 ∈ 𝑀 . We say that a homomorphism is an epimorphism

if it is surjective and a monomorphism if it is injective.

We denote by 𝐴-Mod the category whose objects are all 𝐴-modules, the morphisms

are homomorphisms of 𝐴-modules and the composition is the usual function composition.

The full subcategory of 𝐴-Mod generated by all finite dimensional modules will be denoted

𝐴-mod.

By an (𝐴 − 𝐵)-bimodule we mean a left module over 𝐴 ⊗𝕂 𝐵
𝑜𝑝.

We will use interchangeably the following results/notations:

• (Right modules) The category of (finite dimensional) right 𝐴-modules is isomorphic
to the category of (finite dimensional) left 𝐴𝑜𝑝-modules, Mod-𝐴 ≅ 𝐴

𝑜𝑝-Mod (mod-
𝐴 ≅ 𝐴

𝑜𝑝-mod).

• (Bimodules) The category of bimodules is (𝐴 − 𝐵)-Bimod≅ 𝐴 ⊗𝕂 𝐵
𝑜𝑝-Mod. The

finite dimensional version will be denoted by lower case letters.

• The symbols ⟨𝑋 ⟩ will always mean structure generated by 𝑋 . If 𝑋 is a subset of an
algebra ⟨𝑋 ⟩ will be the subalgebra generated by 𝑋 ; if 𝑋 is a subset of a module, ⟨𝑋 ⟩

will mean a submodule; and so on. The context will make clear what type of creature
⟨𝑋 ⟩ is.

• For an (𝐴 − 𝐵)-bimodule 𝑀 we write 𝐴𝑀𝐵, for left modules, 𝐴𝑀 , and for a right
module, 𝑀𝐵.

Next we name different properties of modules.

Definition 1.2.4. Let 𝑀 ∈ 𝐴-Mod, we say that

1. 𝑀 ≠ 0 is simple if it has no submodules apart from 0 and 𝑀 .

2. 𝑀 is semisimple if it is a direct sum of simple modules

3. 𝑀 is indecomposable if it can not be written as a direct sum 𝑀 = 𝑁 ⊕ 𝑁
′ with

𝑁 ,𝑁
′
∉ {0, 𝑀}.

Next we state a famous theorem about the category of finite dimensional modules.

Theorem 1.2.5. [ASS06, I.4 Theorem 4.10](Krull–Schmidt theorem) If 𝐴 is a finite dimen-

sional 𝕂-algebra and 𝑀 is a finite dimensional 𝐴-module, then there exist a decomposition of

𝑀 into indecomposable modules

𝑀 ≅ 𝑀1 ⊕⋯ ⊕𝑀𝑛 (1.2)
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and if

𝑀 ≅ 𝑁1 ⊕⋯ ⊕ 𝑁𝑟

is another decomposition of 𝑀 into indecomposable modules, then 𝑛 = 𝑟 and there exists a

permutation 𝜎 ∈ Sym(𝑛) such that 𝑀𝑖 ≅ 𝑁𝜎(𝑖).

The above theorem says that if one is interested in studying 𝐴 − mod, then it suffices
to study indecomposable modules and homomorphisms between them. Once this specific
objects are well understood it is just a matter of taking the correct direct sum to obtain
any particular module.

Let us use this theorem to understand a finite dimensional algebra𝐴. By definition there
exist 1 ∈ 𝐴. This element has the following property: 12 = 1. We say that 1 is idempotent.
There are two possibilities: or we can write 1 = 𝑒1 + 𝑒2, with 𝑒1 ≠ 1 and 𝑒2 ≠ 1 idempotents
and orthogonal (meaning 𝑒1𝑒2 = 𝑒2𝑒1 = 0), or we can not. If we can decompose 1 as above,
we then ask the same question about 𝑒1 and 𝑒2. Since non zero orthogonal idempotents
are linearly independent, we eventually will obtain a maximal finite set of them {𝑒1,… , 𝑒𝑛}

with the added property that none 𝑒𝑖 can be written as a sum of two non trivial orthogonal
idempotents (excluding the sum 𝑒𝑖 = 0 + 𝑒𝑖). We call such a set a complete set of orthogonal
primitive idempotents or copi for short.

For each copi we can obtain a decomposition of 𝐴 viewed as an 𝐴-module as fol-
lows

𝐴 = 𝐴𝑒1 ⊕⋯ ⊕ 𝐴𝑒𝑛, (1.3)

and each submodule 𝐴𝑒𝑖 is indecomposable, see [ASS06, I.4 Corollaries 4.7 and 4.8.(a)]. By
(1.2.5) we obtain that two different copi’s have the same number of elements and, up to
reordering, they generate isomorphic modules 𝐴𝑒𝑖 ≅ 𝐴𝑓𝑖. An algebra is said to be basic if
there exists a copi such that 𝐴𝑒𝑖 ≇ 𝐴𝑒𝑗 , for all 𝑒𝑖 ≠ 𝑒𝑗 . By the (1.2.5), this definition does not
depend on the copi.

Basic algebras are important because one can show that, for any finite dimensional
algebra 𝐴, there exists a basic algebra 𝐴bas such that their module categories are equivalent
𝐴−mod ≅ 𝐴bas−mod. In other words, up to equivalence of categories, if module categories
are the correct way to study algebras, then for finite dimensional algebras one need to
worry only about the basic ones. See [ASS06, p. I.6] for details about this result.

1.2.2 Basic Constructions
Now we are going to construct some abstract algebras.

(a) Tensor algebra: Let 𝐴 be any algebra and 𝑁 any (𝐴 − 𝐴)-bimodule. Define

𝑁
1
= 𝑁 and 𝑁 𝑟

= 𝑁
𝑟−1

⊗𝐴 𝑁 , 𝑟 > 1,

where ⊗𝐴 denotes the tensor product over 𝐴. The tensor algebra of 𝐴 and 𝑁 is

• as vector spaces
𝑇 [𝐴,𝑁 ] ≐ 𝐴 ⊕ 𝑁 ⊕ 𝑁

2
⊕⋯ ⊕ 𝑁

𝑟
⊕⋯ .
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• the product of 𝑎 ∈ 𝐴 with other element will be the actions on the left and right.

• the product of 𝑛𝑟 ∈ 𝑁 𝑟 and 𝑛𝑠 ∈ 𝑁 𝑠 will be the element 𝑛𝑟 ⊗𝐴 𝑛𝑠 ∈ 𝑁
𝑟+𝑠.

The tensor algebra is an associative algebra with unit 1𝑇 [𝐴,𝑁 ] = 1𝐴.

(b) Matrix Algebras: If 𝐴 and 𝐵 are two algebras and 𝑀 ∈ (𝐵−𝐴)-Bimod. The matrix
algebra of this data is defined as follows: as vector spaces it is

Λ ≐
(

𝐴 0

𝑀 𝐵)
.

The multiplication of Λ is defined as

(

𝑎 0

𝑚 𝑏)
⋅
(

𝑎
′

0

𝑚
′
𝑏
′
)

=
(

𝑎𝑎
′

0

𝑚𝑎
′
+ 𝑏𝑚

′
𝑏𝑏

′
.)
.

This structure makes Λ an associative algebra with unity given by

(

1𝐴 0

0 1𝐵)
.

(c) Trivial Extension: For an algebra 𝐴 and an (𝐴 − 𝐴)-bimodule 𝑁 , the trivial extension
of 𝐴 by 𝑁 is the algebra whose underlying vector space is

𝐴 ⋉ 𝑁 ≐ 𝐴 ⊕ 𝑁

and product given by
(𝑎, 𝑛) ⋅ (𝑎

′
, 𝑛

′
) = (𝑎𝑎

′
, 𝑛𝑎

′
+ 𝑎𝑛

′
).

It is possible to prove that trivial extensions are associative and that their unity is (1𝐴, 0).
If one takes

𝐶 =
(

𝐴 0

0 𝐵)
and 𝑁 =

(

0 0

𝐵𝑀𝐴 0)
,

where 𝐴 and 𝐵 are algebras and 𝑀 is a (𝐵 − 𝐴)-bimodule, then 𝐶 ⋉ 𝑁 ≅ Λ, where Λ is the
matrix algebra constructed using 𝐴, 𝐵, and 𝑀 .

1.3 Jacobson Radical
This section is devoted to results regarding the Jacobson radical of an algebra and is

based on [ASS06], but here we work with left modules. Fix a 𝕂-algebra 𝐴.

Definition 1.3.1. [ASS06, I.1 Definition 1.2] The Jacobson radical of 𝐴 or simply radical

of 𝐴 is defined as

𝐽 (𝐴) ≐ ⋂

𝐼∈
𝐼 , (1.4)

where  is the set of all maximal left ideals of 𝐴.
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Example 1.3.2. By (1.1.1) we know that 𝕂2
= Mat

1
(𝕂) ⊕ Mat

1
(𝕂) is semisimple. Its

maximum ideals are precisely all the subspaces of dimension 1. But the intersection of all

the lines containing the origin (subspaces) in the plane (𝕂2) is zero, therefore 𝐽 (𝕂2
) = 0.

This argument can be generalized to show that 𝐽 (𝕂𝑛
) = 0, for all 𝑛 ∈ ℕ.

Here is a compilation of important results regarding the (Jacobson) radical, they allow
us to carry several computations.

Proposition 1.3.3. [ASS06, I.1 Corrolary 1.4] For an algebra 𝐴:

1. 𝐽 (𝐴) is the intersection of all maximal right ideals of 𝐴.

2. 𝐽 (𝐴) is a bilateral ideal.

3. If 𝐼 ⊆ 𝐴 is a two sided bilateral ideal of 𝐴 that is nilpotent (meaning 𝐼 𝑛 = 0 for some

power 𝑛 ∈ ℕ), then 𝐼 ⊆ 𝐽 (𝐴). If, in addition, 𝐴/𝐼 ≅
𝑟

⨁

𝑖=1

𝕂, then 𝐼 = 𝐽 (𝐴).

The Jacobson radical of a finite dimensional algebra is particularly well behaved

Proposition 1.3.4. [ASS06, I.2 Corrolary 2.3] If𝐴 is finite dimensional, then 𝐽 (𝐴) is nilpotent.

And we have a characterization of basic algebras using their radical.

Proposition 1.3.5. [ASS06, I.6 Proposition 6.2.(a)] A finite dimensional 𝕂-algebra is basic if

and only if the algebra 𝐴

𝐽 (𝐴)
is isomorphic to a sum of copies of 𝕂.

Now we use the above propositions in order to compute the radical of some tensor
algebras.

Corollary 1.3.6. Let 𝐵 be a basic finite dimensional 𝕂-algebra and 𝑁 a 𝐵 ⊗𝕂 𝐵
𝑜𝑝-module.

If 𝐴 = 𝑇 [𝐵, 𝑁 ] is finite dimensional, then

𝐽 (𝑇 [𝐵, 𝑁 ]) = 𝐽 (𝐵) ⊕ 𝑁 ⊕ 𝑁
2
⊕⋯ . (1.5)

Proof. Denote 𝐽 = 𝐽 (𝐵) ⊕ 𝑁 ⊕ 𝑁
2
⊕⋯, it is clear that

𝐴

𝐽

=

𝐵 ⊕ 𝑁 ⊕ 𝑁
2
⊕⋯

𝐽 (𝐵) ⊕ 𝑁 ⊕ 𝑁
2
⊕⋯

≅

𝐵

𝐽 (𝐵)

=

𝑚

⨁

𝑖=1

𝕂 . (1.6)
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Since 𝐴 = 𝑇 [𝐵, 𝑁 ] is finite dimensional, there must exist 𝑟 ∈ ℕ such that 𝑁 𝑟
= 0. By the

above proposition, let 𝑠 ∈ ℕ be such that 𝐽 (𝐵)𝑠 = 0.

Consider 𝑠 ⋅ 𝑟 elements in a matrix like array 𝑥11,… , 𝑥1𝑠, 𝑥21,… , 𝑥𝑟𝑠 ∈ 𝐽 and write
them, uniquely, as 𝑥𝑖𝑗 = 𝜌𝑖𝑗 + 𝑛𝑖𝑗 , with 𝜌𝑖𝑗 ∈ 𝐽 (𝐵) and 𝑛𝑖𝑗 in the bilateral ideal ⟨𝑁 ⟩. Then
𝑠

∏

𝑗=1

𝑥𝑖𝑗 =

𝑠

∏

𝑗=1

𝜌𝑖𝑗 + 𝑛𝑖 = 0 + 𝑛𝑖, for some 𝑛𝑖 ∈ ⟨𝑁 ⟩. Since 𝑁 𝑟
= 0 implies ⟨𝑁 ⟩

𝑟
= 0, we obtain

𝑟

∏

𝑖=1

𝑠

∏

𝑗=1

𝑥𝑖𝑗 =

𝑟

∏

𝑖=1

𝑛𝑖 = 0. (1.7)

This proves that 𝐽 𝑟 ⋅𝑠 = 0 and, therefore, 𝐽 is nilpotent. Finally we conclude that 𝐽 (𝑇 [𝐵, 𝑁 ]) =

𝐽 .

We are also interested in the action of 𝐽 (𝐴) on a left 𝐴-module. To understand what
happens we need another definition.

Definition 1.3.7. For 𝑀 ∈ 𝐴−Mod, the radical of 𝑀 with respect to A or simply the radical

of 𝑀 is defined as

𝐽𝐴(𝑀) ≐ ⋂

𝑁∈

𝐼 , (1.8)

where  is the set of all maximal left submodules of 𝑀 .

Remark 1.3.8. In the literature there is another notation rad𝐴𝑀 ≐ 𝐽𝐴(𝑀). We opted to

use 𝐽𝐴(𝑀) because of the next proposition.

It is easy to see that 𝐽 (𝐴) = 𝐽𝐴(𝐴) = 𝐽 (𝐴)𝐴. Next we have a result that generalizes this
behaviour and will be useful for us.

Proposition 1.3.9. [ASS06, I.3 Proposition 3.7.(d)] If 𝑀 ∈ 𝐴-mod, then

𝐽𝐴(𝑀) = 𝐽 (𝐴)𝑀. (1.9)

In terms of the radical, a finite dimensional module will be semisimple if and only if its
Jacobson radical is zero, see [ASS06, I.3 Corrolary 3.9.(c)]. Finally there is one more useful
thing we can do with radicals: to select the “semisimple” part of a module.



1.4 | PATH ALGEBRAS

13

Definition 1.3.10. For 𝑀 ∈ 𝐴-mod we define its top with respect to A or simply top as

top
𝐴
(𝑀) ≐

𝑀

𝐽𝐴(𝑀)

. (1.10)

1.4 Path Algebras
This section is mainly based on [ASS06].

There are several ways to study an abstract class of objects, in our case this class takes
the form of all (finite dimensional) algebras. The approach that we are going to take can
be summarized as follows: we construct a specific subclass of objects in such a way that
we can improve our intuition and computational power, then we study how to translate
this newly gained knowledge to (almost) all objects. This will be the aim of this section: to
construct path algebras and to convince one that this particular class of algebras is well
behaved.

Path algebras are, inherently, of combinatorial nature and we will begin by defining
the combinatorial foundation of path algebras: quivers.

Definition 1.4.1. [ASS06, II.1 Definition 1.1] A (finite) quiver is a 4-tuple 𝑄 = (𝑄0, 𝑄1, 𝑠, 𝑡)

where

1. 𝑄0 is a set of finite elements called vertices.

2. 𝑄1 is a set of finite elements called arrows.

3. 𝑠 ∶ 𝑄1 ⟶ 𝑄0 is a function called source.

4. 𝑡 ∶ 𝑄1 ⟶ 𝑄0 is a function called target.

For simplicity we will denote a quiver by 𝑄 when all the necessary information is clear.

One may note that quivers are the way algebraists refer to oriented graphs.

By a subquiver of a quiver 𝑄 = (𝑄0, 𝑄1, 𝑠, 𝑡) we mean a 4-tuple 𝑅 = (𝑅0, 𝑅1, 𝜎, 𝜏) such

that

1. 𝑅0 ⊆ 𝑄0.

2. 𝑅1 ⊆ 𝑄1.

3. the restriction of 𝑠 and 𝑡 to 𝑅1 coincides with 𝜎 and 𝜏, respectively.

There is a pictorial way to represent quivers (or oriented graphs), see Figure (1.1). The
vertices are represented by dots or numbers in a plane, the arrows as edges connecting
vertices, and the functions 𝑠 and 𝑡 as orientations of the edges.
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2 4 5 2 4 5 5

1 3 1 3 3

(𝑎) (𝑏) (𝑐)

𝜖 𝜖

𝛿
′

𝛼

𝛽

𝛾

𝛿

𝛼

Figure 1.1: Depiction of a quiver 𝑄: 𝑄0 is the set of vertex, the edges are 𝑄1 and the orientation, 𝑠 and
𝑡, can be inferred as follows: 𝑠(𝛼) = 1 and 𝑡(𝛼) = 2. In (a) we have a quiver 𝑄, in (𝑏) a subquiver 𝑅 of
𝑄, and in (c) we do not have a subquiver because the orientation of the edge 𝛿 changed.

By a path of length 𝑙 ≧ 0 from 𝑒 ∈ 𝑄0 to 𝑓 ∈ 𝑄0 in a quiver 𝑄 we mean a sequence of
arrows (𝛼𝑙,… , 𝛼1) such that 𝑠(𝛼1) = 𝑒, 𝑡(𝛼𝑙) = 𝑓 and 𝑠(𝛼𝑖) = 𝑡(𝛼𝑖−1), for all 𝑖 ∈ {2,… , 𝑙}, for
simplicity we will denote a path by a product 𝛼𝑙 ⋅… ⋅ 𝛼1. We identify all the paths of length
one of 𝕂𝑄 with 𝑄1. The elements of 𝑄0 are called paths of length zero or trivial paths and
to make a distinction between the vertex 𝑎 ∈ 𝑄0 and the path 𝑎 ∈ 𝑄0 we denote the later
by 𝑒𝑎. The idea of a path in a quiver is that you are walking in the graph preserving its
orientation, with that interpretation a path of length zero corresponds to standing still on
a vertex.

Definition 1.4.2. [Kir16, Definition 1.6] Let 𝑄 be a quiver. The path algebra of 𝑄, denoted

by 𝕂𝑄 is the algebra such that

• Its underlying vector space has all the paths of 𝑄 as a basis.

• The multiplication of the basis’ elements is

(𝛽𝑚 ⋅… ⋅ 𝛽0) ⋆ (𝛼𝑙 ⋅… ⋅ 𝛼0) = 𝛿𝑡(𝛼𝑙),𝑠(𝛽0)
𝛽𝑚 ⋅… ⋅ 𝛽0 ⋅ 𝛼𝑙 ⋅… ⋅ 𝛼0, (1.11)

where 𝛿 is the Kronecker delta. The multiplication of a general element of 𝕂𝑄 is

extended by distributivity.

Continuing with our analogy, the multiplication of two paths in 𝕂𝑄 is the path you
get if you walk through the first path and then proceed to walk the second path if their
end and beginning, respectively, coincide, and zero otherwise. For example, in quiver (a) of
Figure (1.1) the multiplication 𝛿 ⋅ 𝛾 = 0 because the paths don’t match, but we can multiply
𝛿 and 𝛽 in this order to obtain the path 𝛿 ⋅ 𝛽 of length 2.

Before we continue, let us analyse some examples of path algebras that generate well
known algebras.
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Example 1.4.3. Consider the quiver 𝑄 that has only a vertex and an arrow

𝑄 ∶ ∙

𝛼

Then 𝕂𝑄 has as basis {𝑒1, 𝛼, 𝛼2
, 𝛼

3
,…} and is easy to see that 𝕂 [𝑥] ≅ 𝕂𝑄, via 𝑥 ↦ 𝛼.

Example 1.4.4. Consider the quiver

𝑅 ∶ 1 2 3 4
𝛼 𝛽 𝛾

For each 1 ≦ 𝑎 ≦ 𝑏 ≦ 4 there is only one path that connects 𝑎 to 𝑏. Denote this path 𝜌𝑏𝑎,

e.g. 𝜌11 = 𝑒1 and 𝜌42 = 𝛾𝛽. It is easy to see that those are all the possible paths. Their

multiplication table is given by 𝜌𝑏𝑎𝜌𝑑𝑐 = 𝛿𝑎𝑑𝜌𝑏𝑐, which is precisely the multiplication table

of the usual basis for the lower triangular 4 × 4 matrices 𝐿𝑇4(𝕂) and we have 𝕂𝑅 ≅ 𝐿𝑇4(𝕂),

via 𝜌𝑏𝑎 ↦ 𝑒𝑏𝑎.

One of the main reasons to work with path algebras (and its quotients) is that we can
infer data from the algebra using combinatorics of quivers. This process allows one to
create a combinatoric-algebraic dictionary that helps comprehend the algebraic structure of
path algebras and of its quotients. Now we begin the construction of this dictionary.

• The concatenation of paths in a quiver (for the last time, oriented graph) is an
associative operation on a graph. This implies that the multiplication on 𝕂𝑄 is
associative, therefore path algebras are associative algebras.

• For any path 𝜌 in 𝕂𝑄, there exist a vertex 𝑎 ∈ 𝑄0 such that 𝜌 ends in 𝑎. In particular,
if we concatenate 𝜌 with the trivial path 𝑒𝑎𝜌 = 𝜌 we do nothing. Similarly for the
starting point of 𝜌. The algebraic property that arises from this is the following:
consider the element ∑

𝑎∈𝑄0

𝑒𝑎 ∈ 𝕂𝑄 (that is well defined because 𝑄0 is finite), then

(
∑

𝑎∈𝑄0

𝑒𝑎
)
𝜌 = 𝜌 = 𝜌

(
∑

𝑎∈𝑄0

𝑒𝑎
)

. In other words, 𝕂𝑄 is an unital algebra with unit given

by 1 = ∑

𝑎∈𝑄0

𝑒𝑎.

The next property of 𝕂𝑄 that we are going to deduce is more complex. Essentially we
are going to show that the paths of length zero {𝑒𝑎 | 𝑎 ∈ 𝑄0} form a copi for 𝕂𝑄. We have
seen that the sum of its elements equals 1 ∈ 𝕂𝑄, so we are done with completeness. If we
take 𝜌 = 𝑒𝑎 in the above discussion we get 𝑒2

𝑎
= 𝑒𝑎, this means that each 𝑒𝑎 is idempotent. By

the multiplication rule of 𝕂𝑄, 𝑒𝑎𝑒𝑏 = 𝛿𝑎,𝑏𝑒𝑎𝑒𝑏 = 0 if 𝑎 ≠ 𝑏, the idempotents are orthogonal.
The primitivity of this set of idempotents is a bit technical and we refer the reader to
[ASS06, I.4 Corollary 4.7 and II.1 Corollary 1.5] for a proof.

The above discussion provides a way to algebraically manipulate the vertex data of
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our quiver. The other part of a quiver, its arrows, also encode a lot of combinatorics and
now we are going to construct a bridge that takes this data, algebraically process it, and
returns a very special ideal.

Definition 1.4.5. [ASS06, II.1 Definition 1.9] If 𝑄 is a connected quiver. The ideal of arrows

of 𝕂𝑄 is the bilateral ideal generated by 𝑄1 ⊆ 𝕂𝑄 and denoted by

𝑅𝑄 = ⟨𝑄1⟩ ⊆ 𝕂𝑄. (1.12)

Let us analyse 𝑅𝑄 in order to understand how it translates combinatorial information
to the realm of algebra.

• Since 𝑅𝑄 is generated by the arrows, when we square this ideal

𝑅
2

𝑄
=

{
𝑛

∑

𝑖,𝑗=1

𝑟𝑖𝑟𝑗 | 𝑟𝑖, 𝑟𝑗 ∈ 𝑄1

}

(1.13)

the resulting ideal is generated by all the paths of length 2. We can carry on this
process as many times as we want and obtain that, if we are interested in looking at
the paths of length 𝑛 or greater, then we simply study 𝑅𝑛

𝑄
.

• What if we want to work with all the paths of length precisely 𝑛? Fear no more, the
space that we seek is

𝕂𝑄𝑛 ≐

𝑅
𝑛

𝑄

𝑅
𝑛+1

𝑄

. (1.14)

But we must know that we pay a price in order to consider just this paths: 𝕂𝑄𝑛 is a
vector space, not an ideal.

• We can specialize this idea even further. By the above discussion, the dimension of

𝕂𝑄1 =

𝑅𝑄

𝑅
2

𝑄

(1.15)

is the cardinality of 𝑄1 (the number of arrows of 𝑄), but even if we know all the
vertices of 𝑄, in general, this information does not specify 𝑄. To solve this problem,
given 𝑎, 𝑏 ∈ 𝑄0, it is easy to see that 𝑒𝑏𝑅𝑄𝑒𝑎 is the vector space of all paths that begin
at 𝑎 and end at 𝑏. In particular, if we instead consider the vector space

(𝑒𝑏𝕂𝑄𝑒𝑎)1 = 𝑒𝑏

𝑅𝑄

𝑅
2

𝑄

𝑒𝑎 (1.16)

its dimension is precisely the number of arrows of 𝑄 that start at 𝑎 and finish at
𝑏. Changing the idempotents, we can reconstruct 𝑄 from 𝕂𝑄 (spoiler for the next
section!).

• Ok... but what if we want to compute multiplications on 𝕂𝑄 without having to
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worry about an infinite basis? Then we can use the fact that 𝑅𝑛
𝑄

is a bilateral ideal
and construct the algebra

𝕂𝑄<𝑛 ≐

𝕂𝑄

𝑅
𝑛

𝑄

, (1.17)

whose natural basis, as vector space, is the paths of length up to 𝑛. Well, if you are
given a finite number of bridges (arrows) that connect a finite number of islands
(vertices) and you can only cross (multiply) up to a fixed number of them, then you
have only a finite number of paths (elements of a basis) to take (express an arbitraty
element).

1.5 Quotient of Path Algebras
This section is based on [ASS06]; it is necessary to make a disclaimer: we are working

with contravariant path concatenation, meaning that our path algebras are the opposite
algebras of the path algebras of [ASS06].

From now on we will start working with connected quivers, there will be only a few
exceptions to this rule but they will be as examples. To illustrate what a connected quiver
is it suffices to look at Figure (1.1): the quiver (a) is connected, the quiver (b) is not (it has
three connected components, but we will not use this terminology anywhere else) and the
quiver (c) is connected. The reason we can do this without compromising generality is that
if 𝑄 = 𝑅∪ 𝑆 is not connected, then 𝕂𝑄 = 𝕂𝑅⊕𝕂 𝑆, so if we study only connected quivers,
when we finish our studies we can glue the results together in an algebraic way.

All of the efforts of the previous section were to construct a dictionary looking in the
direction Combinatorics ↦ Algebra. In this section, we are going to reverse this direction
and construct a “codictionary”. This means that we want to obtain 𝑄 from 𝕂𝑄 without
knowing 𝑄, or, in a less enigmatic way, given an algebra 𝐴, how can we construct a useful
quiver for 𝐴? This question can be separated into three:

1. How to obtain 𝑄0?

2. How to obtain 𝑄1?

3. How to obtain 𝑠 and 𝑡, the directions of 𝑄1?

For the first question we already have a partial answer: for finite dimensional algebras 𝑄0

is related to the existence of a copi set.

For the second question we already have a hint: look at 𝑅𝑄 . The problem is that, by
assumption, we are working with an abstract algebra 𝐴, therefore this question need to be
specialized to: How to recover 𝑅𝑄 in an algebraic way?

To do so, we change our approach back to path algebras. Given a quiver, consider the
following

𝕂𝑄0 ≐ ⨁

𝑖∈𝑄0

𝕂 𝑒𝑖 and 𝕂𝑄1 ≐ ⨁

𝛼∈𝑄1

𝕂 𝛼. (1.18)

They are vector spaces, but we can add algebraic structures to them: 𝕂𝑄0 is a basic algebra
with copi given by {𝑒𝑖 | 𝑖 ∈ 𝑄0} and 𝑄1 is a 𝕂𝑄0 ⊗𝕂 𝕂𝑄0

𝑜𝑝-module via 𝑒𝑗𝛼𝑒𝑖 = 𝛿𝑗 ,𝑡(𝛼)𝛿𝑠(𝛼),𝑖𝛼.
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With this we can construct the tensor algebra 𝑇 [𝕂𝑄0,𝕂𝑄1]. It is easy to see that

𝕂𝑄 ≅ 𝑇 [𝕂𝑄0,𝕂𝑄1] (1.19)

and that 𝕂𝑄 is finite if 𝑄 is a (finite) quiver without any cycles (non trivial paths starting
and finishing in the same vertex). Therefore, if we have such a quiver, (1.3.6) says that

𝐽 (𝕂𝑄) = 𝑅𝑄 . (1.20)

En passant, we showed that for a acyclic quiver, 𝕂𝑄 is basic (Second part of [ASS06, II.1
Proposition 1.10]). But this result may not be true if 𝑄 has cycles. To see why, consider

𝕂𝑄, where 𝑄 is the quiver ∙ , then

𝕂𝑄 ≅ 𝕂[𝑥], 𝐽 (𝕂𝑄) = 0 = 𝐽 (𝕂[𝑥]), and 𝑅𝑄 ≅ ⟨𝑥⟩ ≠ 0.

The above discussion restricts in a natural way our scope: assume that 𝐴 is finite dimen-
sional and basic. Note that, upon the first assumption, the second one is not unreasonable,
once that every finite dimensional algebra over an algebraically closed field has its module
category equivalent to the module category of a basic finite dimensional algebra.

In order to not discard the data provided by cyclic quivers we consider a cleaver
ideal

Definition 1.5.1. [ASS06, II.2 Definition 2.1] A bilateral ideal 𝐼 ⊆ 𝕂𝑄 is said to be

admissible if there exists an integer 𝑚 > 1 such that

𝑅
𝑚

𝑄
⊆ 𝐼 ⊆ 𝑅

2

𝑄
. (1.21)

The idea of 𝐼 is simple: it contain all lengthy enough paths without containing any arrow.
Therefore, when we consider the quotient algebra 𝕂𝑄/𝐼 we have a finite dimensional
algebra and the data of all the arrows of 𝑄. Most of the above behaviour is carried to 𝕂𝑄/𝐼 .
For example, 𝑅𝑄/𝐼 ⊆ 𝕂𝑄/𝐼 is a nilpotent bilateral ideal (since 𝑅𝑚

𝑄
⊆ 𝐼 for some 𝑚) such

that
𝕂𝑄/𝐼

𝑅𝑄/𝐼

≅

𝕂𝑄

𝑅𝑄

≅ 𝕂𝑄0.

In other words, 𝕂𝑄/𝐼 is a basic finite dimensional algebra with 𝐽 (𝕂𝑄/𝐼 ) = 𝑅𝑄/𝐼 , see
[ASS06, II.2 Lemma 2.10]. We can also recover everything that we saw in the previous
chapter: {𝑒𝑎 = 𝑒𝑎 + 𝐼 | 𝑎 ∈ 𝑄0} is a copi [ASS06, II.2 Lemma 2.10] and the number of arrows
from 𝑎 to 𝑏 is the dimension of

𝑒𝑏

(𝑅𝑄/𝐼 )

𝑅
2

𝑄
/𝐼

𝑒𝑎 ≅ 𝑒𝑏

(𝑅𝑄)

𝑅
2

𝑄

𝑒𝑎

This allow us to answer the remaining questions and we can define a quiver for an
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arbitrary finite dimensional basic algebra.

Definition 1.5.2. [ASS06, III.3 Definition 3.1] Let𝐴 be a finite dimensional basic𝕂-algebra.

Its ordinary quiver or Gabriel quiver 𝑄𝐴 is defined as

1. (𝑄𝐴)0 is in bijection with a copi {𝑒1,… , 𝑒𝑛} of 𝐴.

2. The arrows of (𝑄𝐴)1 from 𝑖 to 𝑗 are in bijection with a basis of

𝑒𝑗

𝐽 (𝐴)

𝐽
2
(𝐴)

𝑒𝑖.

It can be shown that the Gabriel quiver of an algebra does not depend on the choice
of a copi [ASS06, II.3 Lemma 3.2]. Note that if we start with 𝐴 = 𝕂𝑄/𝐼 , then we get that
𝑄𝐴 = 𝑄, see [ASS06, III.3 Lemma 3.6], this is a way to see that we are able to shift all the
data from Algebra to Combinatorics.

But we can go a step further if to each arrow 𝛼 ∶ 𝑖 ↦ 𝑗 we associate a representative
𝑥𝛼 of a class of 𝑒𝑗𝐽 (𝐴)𝑒𝑖/𝐽 2(𝐴) in such a way that the set {𝑥𝛼 + 𝐽

2
(𝐴) | 𝛼 ∶ 𝑖 ↦ 𝑗 ∈ (𝑄𝐴)1}

is a basis for 𝑒𝑗𝐽 (𝐴)𝑒𝑖/𝐽 2(𝐴), and to each 𝑖 ∈ 𝑄0 associate the idempotent 𝑒𝑖 in the chosen
copi, then we obtain an well defined epimorphism of 𝕂-algebras

𝜙 ∶ 𝕂𝑄𝐴 ⟶ 𝐴

𝑖 ⟼ 𝑒𝑖

𝛼 ⟼ 𝑥𝛼

such that Ker(𝜙) ⊆ 𝕂𝑄𝐴 is admissible, see [ASS06, III.3 Lemma 3.3 and Theorem 3.7].
Therefore we have the following result

Theorem 1.5.3. [ASS06, III.3 Theorem 3.7] If 𝐴 is a finite dimensional basic 𝕂-algebra, then

there exists an admissible ideal 𝐼 ⊆ 𝕂𝑄𝐴 such that

𝐴 ≅

𝕂𝑄𝐴

𝐼

. (1.22)

This is a super useful result for computations and manipulation of algebras. To famil-
iarize with this result we look some examples of basic algebras defined using the above
isomorphism in mind.

Example 1.5.4. This examples that we are going to look will be useful down the line.
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(a) Algebra of Dual Numbers: consider the quiver

𝑄 ∶ 1

𝛼

The algebra of dual numbers is defined as 𝐴 ≐ 𝕂𝑄/⟨𝛼
2
⟩ and has dimension 2.

(b) Oriented 𝔸𝑛 with relations: Oriented 𝔸𝑛 is defined as the quiver

1 2 ⋯ 𝑛 − 1 𝑛
𝛼1 𝛼2 𝛼𝑛−2 𝛼𝑛−1

and we can consider the algebra

𝐴 ≐

𝕂𝔸𝑛

𝐽
2
(𝕂𝔸𝑛)

.

That is we are considering the quotient of 𝕂𝔸𝑛 by all the paths of length two 𝛼𝑖+1 ⋅ 𝛼𝑖,

1 ≦ 𝑖 < 𝑛.

1.6 Representations of Quivers
We have seen how useful quivers are to study algebra. Through the path algebra, we

are able to study all finite dimensional basic algebras and, when we look at their modules,
we are able to study, up to equivalence of categories, the module categories of any finite
dimensional algebra over 𝕂. The idea of this section is to use the combinatorics that was
so fruitful in the algebra setting to study the module category. This section is based on
[ASS06] and [Kir16].

As per usual, we start with exploratory computations. To facilitate matters, fix a
quiver 𝑄 = (𝑄0, 𝑄1) and its path algebra 𝐴 = 𝕂𝑄. Let 𝑀 ∈ 𝐴-Mod be any module and
𝜙 ∶ 𝐴 ⟶ End

𝕂
(𝑀) the action of 𝐴 on 𝑀 . By the previous sections we can decompose

the unity 1𝐴 = ∑

𝑖∈𝑄0

𝑒𝑖 as the trivial paths. If 𝑚 ∈ 𝑀 , then

𝑚 = 1𝑚 =
(

∑

𝑖∈𝑄0

𝑒𝑖
)
𝑚 = ∑

𝑖∈𝑄0

𝑒𝑖𝑚,

this shows that 𝑀 = ∑

𝑖∈𝑄0

𝑒𝑖𝑀 , but this sum is actually direct. In fact, define 𝑀𝑖 = 𝑒𝑖𝑀

and suppose that 0 = ∑

𝑖∈𝑄0

𝑚𝑖, with each 𝑚𝑖 ∈ 𝑀𝑖. Then multiplying by 𝑒𝑖 on the left we

obtain

0 = 𝑒𝑖0 = 𝑒𝑖
(

∑

𝑖∈𝑄0

𝑚𝑖

)
= 𝑚𝑖, by orthogonality. (1.23)

Now consider an arrow 𝛼 ∶ 𝑖 ↦ 𝑗 , then for 𝑚 ∈ 𝑀𝑟 we have 𝛼 ⋅𝑚 = 𝛼𝑒𝑖𝑒𝑟𝑚 = 𝛿𝑖,𝑟𝛼 ⋅𝑚. This
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means that the domain of the linear transformation 𝜙(𝛼) can be restrict to 𝑀𝑖, since for any
other vertex 𝑟 ≠ 𝑖, 𝑀𝑟 ⊆ Ker(𝜙(𝛼)). On the codomain, if 𝑚 ∈ 𝑀 , then 𝛼 ⋅ 𝑚 = 𝑒𝑗𝛼 ⋅ 𝑚 ∈ 𝑀𝑗 ,
shows that we can restrict it to 𝑀𝑗 . Our findings can be summarize as follows:

1. Each module has a direct decomposition 𝑀 = ⨁

𝑖∈𝑄0

𝑀𝑖, as vector spaces.

2. For any 𝛼 ∈ 𝑄1, we can restrict both the domain and codomain of 𝜙(𝛼) ∶ 𝑀𝑠(𝛼) ⟶

𝑀𝑡(𝛼), obtaining a linear transformation between this vector spaces.

How a homomorphism of 𝐴-modules 𝑓 ∶ (𝑀, 𝜙) ⟶ (𝑁 , 𝜓) behaves in this new approach?
By definition we know that 𝑓 (𝛼𝑚) = 𝛼𝑓 (𝑚), for any 𝑚 ∈ 𝑀 . But by our discussion we
can assume that 𝑚 ∈ 𝑀𝑠(𝛼), 𝛼𝑚 ∈ 𝑀𝑡(𝛼) and 𝛼𝑓 (𝑚) ∈ 𝑁𝑡(𝛼). If 𝑚 ∈ 𝑀𝑖, then 𝑓 (𝑚) = 𝑓 (𝑒𝑖𝑚) =

𝑒𝑖𝑓 (𝑚) ∈ 𝑀𝑖, i.e, for each 𝑖 ∈ 𝑄0 we can consider the linear transformation 𝑓𝑖 ∶ 𝑀𝑖 ⟶ 𝑁𝑖.
This says that the following diagram

𝑀𝑠(𝛼) 𝑀𝑡(𝛼)

𝑁𝑠(𝛼) 𝑁𝑡(𝛼)

𝜙(𝛼)

𝑓
𝑠(𝛼)

𝑓
𝑡(𝛼)

𝜓(𝛼)

(1.24)

is commutative, for any 𝛼 ∈ 𝑄1. We arrive at the following definition.

Definition 1.6.1. [Kir16, Definition 1.2] Let 𝑄 be a quiver. The category of representations

of 𝑄, denoted by Rep(𝑄), is defined as follows

1. (Objects) The objects are a pair. The first entry is a tuple of vector spaces indexed

by the vertices of 𝑄 (𝑀𝑖)𝑖∈𝑄0
. The second entry is a tuple of linear transformations

indexed by the arrows of 𝑄 (𝑇𝛼 ∶ 𝑀𝑠(𝛼) → 𝑀𝑡(𝛼))𝛼∈𝑄1
.

2. (Morphisms) We define a morphism 𝑓 ∶ 𝑀 = ((𝑀𝑖)𝑖∈𝑄0
, (𝑇𝛼 ∶ 𝑀𝑠(𝛼) → 𝑀𝑡(𝛼))𝛼∈𝑄1

) ⟶

𝑁 = ((𝑁𝑖)𝑖∈𝑄0
, (𝑇𝛼 ∶ 𝑁𝑠(𝛼) → 𝑁𝑡(𝛼))𝛼∈𝑄1

) as a tuple of linear transformations indexed

by 𝑄0 𝑓 = (𝑓𝑖 ∶ 𝑀𝑖 → 𝑁𝑖)𝑖∈𝑄0
such that

𝑀𝑠(𝛼) 𝑀𝑡(𝛼)

𝑁𝑠(𝛼) 𝑁𝑡(𝛼)

𝜙(𝛼)

𝑓
𝑠(𝛼)

𝑓
𝑡(𝛼)

𝜓(𝛼)

commutes for every 𝛼 ∈ 𝑄1

3. (Composition) Composition is done point-wise, i.e, 𝑔 ◦𝑓 = (𝑔𝑖)𝑖∈𝑄0
◦(𝑓𝑖)𝑖∈𝑄0

= (𝑔𝑖 ◦𝑓𝑖)𝑖∈𝑄0

The category rep(𝑄) is the full subcategory of Rep(𝑄) generated by all the objects such

that dim𝑀𝑖 < ∞, for all 𝑖 ∈ 𝑄0. We call the objects of this subcategory finite dimensional
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representations.

The next theorem show us how to study modules over 𝕂𝑄.

Theorem 1.6.2. Let 𝑄 be a quiver, then there exist equivalences of categories

𝕂𝑄 − Mod ≡ Rep(𝑄) and 𝕂𝑄 − mod ≡ rep(𝑄) (1.25)

Proof. See [Kir16, Theorem 1.7].

Remark 1.6.3. The categories Rep(𝑄) and rep(𝑄) are abelian, see [ASS06, III.1 Lemma

1.3].

By a relation on 𝐴 = 𝕂𝑄, we mean a sum of paths 𝜌 =

𝑟

∑

𝑖=1

𝜌𝑖 such that every 𝜌𝑖 has the

same beginning and end. Given an admissible ideal 𝐼 ⊆ 𝐴, it is possible to show that it
is generated, as an ideal, by a finite number of relations [ASS06, II.2 Corrolary 2.9]. For
a path 𝜌 = 𝛼𝑛⋯ 𝛼1, we define the evaluation of a representation of 𝑄 on 𝜌 as the linear

transformation 𝑇𝜌 = 𝑇𝛼𝑛
◦ ⋯ ◦ 𝑇𝛼1

. The evaluation of a representation on a relation 𝜌 =

𝑟

∑

𝑖=1

𝜌𝑖

is defined as 𝑇𝜌 =
𝑟

∑

𝑖=1

𝑇𝜌𝑖
.

Definition 1.6.4. [ASS06, III.1 Definition 1.4] A representation (𝑀𝑖, 𝑇𝛼) is said to be bound

by the relation 𝜌 if 𝑇𝜌 = 0. Given an admissible ideal 𝐼 , we say that the representation is

bound by 𝐼 if it is bound by every relation on 𝐼 .

The full subcategory of all representations of𝑄 bound by 𝐼 will be denoted by Rep(𝑄, 𝐼 ).
The full subcategory of all finite dimensional representations of 𝑄 bound by 𝐼 will be

denoted rep(𝑄, 𝐼 )

Theorem 1.6.5. There exist equivalences of categories

𝕂𝑄

𝐼

− Mod ≡ Rep(𝑄, 𝐼 ), and
𝕂𝑄

𝐼

− mod ≡ rep(𝑄, 𝐼 ) (1.26)

Proof. See [ASS06, III.1 Theorem.6] for an analogous proof for a similar result for right
modules.
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To summarize this chapter, we formalize the dictionary that we have constructed.

Table 1.1: dictionary between Combinatorics and Algebra

Combinatorics Algebra
Quivers Path algebras

concatenation is associative multiplication is associative
𝑄0 finite unital algebra and {𝑒𝑎 | 𝑎 ∈ 𝑄0} is copi

walks 𝑅𝑄

𝑄1 𝑅𝑄/𝑅
2

𝑄

arrows from a to b (𝑒𝑏𝕂𝑄𝑒𝑎)1 = 𝑒𝑏

𝑅𝑄

𝑅
2

𝑄

𝑒𝑎

paths of length up to 𝑛 𝕂𝑄<𝑛 =
𝕂𝑄

𝑅
𝑛

𝑄

paths of length 𝑛 𝕂𝑄𝑛 =
𝑅
𝑛

𝑄

𝑅
𝑛+1

𝑄

representations of quivers modules over path algebras
Gabriel quivers finite dimensional basic algebras

representations of quivers bound by relations modules over finite dimensional basic algebras

In (1.1), the line Gabriel quiver ↔ finite dimensional basic algebras is not a bijection. To see
this, consider the quiver

𝑄 ∶ ∙ .

Then, for any integer 𝑛 > 1, 𝑄 is the Gabriel quiver of

𝕂[𝑥]

⟨𝑥
𝑛
⟩

.

Finally, notice that if one is interested in studying module categories of finite dimensional
algebras up to categorical equivalence, then the algebraic side of the dictionary can be
considered without the basic restriction.
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Chapter 2

Homological Algebra

In this chapter we present Homological Theory of Associative Algebras. Then we
apply it to finite dimensional algebras and classification problems using the technology
developed in the first chapter. Our main references are [Rot09] and [Wei94].

2.1 Complexes and Homology

In this section we discuss homology theory for complexes of modules. This will be the
background theory for what we aim to study in Chapters 3, 4, and 5. We mainly follow
[Rot09] and [Wei94]. Fix 𝐴 a 𝕂-algebra and all modules will be left modules.

Definition 2.1.1. [Wei94, Definition 1.1.1] A chain complex of 𝐴 modules is a sequence

of 𝐴-modules {𝑀𝑛 | 𝑛 ∈ ℤ} and homomorphisms of 𝐴-modules {𝑑𝑛 ∶ 𝑀𝑛 → 𝑀𝑛−1 | 𝑛 ∈ ℤ}

⋯ 𝑀𝑛+1 𝑀𝑛 𝑀𝑛−1 ⋯
𝑑𝑛+1 𝑑𝑛

such that 𝑑𝑛 ◦ 𝑑𝑛+1 = 0, for all 𝑛 ∈ ℤ. Algebraically, this means that Im(𝑑𝑛+1) ⊆ Ker(𝑑𝑛). We

denote

(𝑀∙, 𝑑∙) ≐ ({𝑀𝑛}𝑛∈ℤ, {𝑑𝑛}𝑛∈ℤ)

or simply by 𝑀∙. We call the maps 𝑑∙ differentials.

As we do for most objects, we want a way for chain complexes to interact between them.
By a morphism of chain complexes 𝑓∙ ∶ 𝑀∙ ⟶ 𝑁∙ we mean a sequence of homomorphisms
of 𝐴-modules {𝑓𝑛 ∶ 𝑀𝑛 → 𝑁𝑛 | 𝑛 ∈ ℤ}
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⋯ 𝑀𝑛+1 𝑀𝑛 𝑀𝑛−1 ⋯

⋯ 𝑁𝑛+1 𝑁𝑛 𝑁𝑛−1 ⋯

𝑑𝑛+1

𝑓𝑛+1

𝑑𝑛

𝑓𝑛 𝑓𝑛−1

𝛿𝑛+1 𝛿𝑛

such that each square commutes, i.e., 𝑓𝑛−1 ◦ 𝑑𝑛 = 𝛿𝑛 ◦ 𝑓𝑛, ∀ 𝑛 ∈ ℤ. We define the
composition of morphisms of chain complexes as point-wise, that is, (𝑔 ◦𝑓 )𝑛 = 𝑔𝑛 ◦𝑓𝑛, ∀ 𝑛 ∈

ℤ. With this structure we obtain a category that we call category of chain complexes of
𝐴-modules and denoted by Ch(𝐴 − mod).

The above objects can be constructed in an analogous way for right 𝐴-modules and
(𝐴−𝐵)-bimodules, as those are simply left𝐴𝑜𝑝-modules and𝐴⊗𝕂𝐵

𝑜𝑝-modules, respectively.
Context will make clear what type of modules we are considering chain complexes of. The
category of chain complexes over a module category is well behaved, in the sense that
it has kernels, cokernels, zero object, finite sums, exact sequences of complexes, etc., see
[Rot09, Proposition 5.100].

Example 2.1.2. For any exact sequence of modules

0 𝐿 𝑀 𝑁 0

𝑓 𝑔

we can add infinitely many zero modules to obtain a chain complex. For instance, if we

define the position of 𝑁 as index 0, we can consider

⋯ 𝑀3 = 0 𝑀2 = 𝐿 𝑀1 = 𝑀 𝑀0 = 𝑁 𝑀−1 = 0 ⋯
𝑑4=0 𝑑3=0 𝑑2=𝑓 𝑑1=𝑔 𝑑0=0 𝑑−1=0

as an element of Ch(𝐴 − mod).

If for a chain complex 𝑀∙ exists an integer 𝑛 ∈ ℤ such that 𝑀𝑘 = 0 for all 𝑘 > 𝑛 + 1

or 𝑘 < 𝑛 − 1 we will omit all zero modules and differentials. So in the case of the exact
sequence, if we view one as a complex, we will keep writing it as an exact sequence.

One of the reasons to work with chain complexes is that we have a way to derive
information from it. The 𝑛𝑡ℎ homology of a chain complex (𝑀∙, 𝑑∙) is defined as

𝐻𝑛(𝑀∙, 𝑑∙) ≐

Ker(𝑑𝑛)

Im(𝑑𝑛+1)

⊆

𝑀𝑛

Im(𝑑𝑛+1)

. (2.1)

Essentially, the 𝑛
𝑡ℎ homology of a chain complex measures how far from an equality

Im(𝑑𝑛+1) ⊆ Ker(𝑑𝑛) is, since if 𝐻𝑛(𝑀∙) = 0, then the equality holds. If all 𝐻𝑛(𝑀∙) = 0, we
call 𝑀∙ an acyclic chain complex. By homology of a chain complex we mean the collection
{𝐻𝑛(𝑀∙) | 𝑛 ∈ ℤ}. Next we discuss the interaction between homology and chain complex
morphisms.
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Proposition 2.1.3. [Wei94, Exercise 1.1.2] If 𝑓∙ ∶ (𝑀∙, 𝑑∙) ⟶ (𝑁∙, 𝛿∙) is a morphism of

complexes, then

̄
𝑓𝑛 ∶ 𝐻𝑛(𝑀∙) ⟶ 𝐻𝑛(𝑁∙)

�̄� ⟼
̄

𝑓𝑛(𝑥)

is well defined. In particular, for each 𝑛 ∈ ℤ, 𝐻𝑛 ∶ Ch(𝐴−mod) ⟶ 𝐴−mod is a covariant

functor.

Proof. If 𝑥 ∈ Ker(𝑑𝑛), then 𝛿𝑛𝑓𝑛(𝑥) = 𝑓𝑛−1𝑑𝑛(𝑥) = 0 implies 𝑓𝑛(𝑥) ∈ Ker(𝛿𝑛) and it makes
sense to consider ̄

𝑓𝑛(𝑥) ∈ 𝐻𝑛(𝑁∙). To show that it does not depend on the representative
𝑥 ∈ Ker(𝑑𝑛), suppose that 𝑦 = 𝑑𝑛+1(𝑤) ∈ Im(𝑑𝑛+1), then 𝑓𝑛(𝑦) = 𝑓𝑛𝑑𝑛+1(𝑤) = 𝛿𝑛+1𝑓𝑛+1(𝑤) ∈

Im(𝛿𝑛+1).

A natural question to ask is: is there a property of Ch(𝐴 − mod) that the homology
does not distinguish. To answer it consider the following definition.

Definition 2.1.4. By an homotopy between two parallel morphisms of chain complexes

𝑓∙, 𝑔∙ ∶ 𝑀∙ ⟶ 𝑁∙ we mean a sequence of homomorphisms of 𝐴-modules {ℎ𝑛 ∶ 𝑀𝑛 →

𝑁𝑛+1}𝑛∈ℤ such that 𝛿𝑛+1ℎ𝑛 + ℎ𝑛−1𝑑𝑛 = 𝑓𝑛 − 𝑔𝑛. Pictorially,

⋯ 𝑀𝑛+1 𝑀𝑛 𝑀𝑛−1 ⋯

⋯ 𝑁𝑛+1 𝑁𝑛 𝑁𝑛−1 ⋯

𝑑𝑛+1

𝑓𝑛+1−𝑔𝑛+1

𝑑𝑛

𝑓𝑛−𝑔𝑛ℎ𝑛 𝑓𝑛−1−𝑔𝑛−1ℎ𝑛−1

𝛿𝑛+1 𝛿𝑛

(2.2)

In this case we say that 𝑓∙ and 𝑔∙ are homotopic.

Proposition 2.1.5. [Rot09, Theorem 6.14] If 𝑓∙ and 𝑔∙ are homotopic, then 𝐻𝑛(𝑓∙) = 𝐻𝑛(𝑔∙),

for all 𝑛 ∈ ℤ.

Proof. If 𝑥 ∈ Ker(𝑑𝑛), then (𝑓𝑛 − 𝑔𝑛)(𝑥) = (𝛿𝑛+1ℎ𝑛 + ℎ𝑛−1𝑑𝑛)(𝑥) = 𝛿𝑛+1ℎ𝑛(𝑥) ∈ Im(𝛿𝑛+1).

Example 2.1.6. Suppose, for a complex 𝑀∙, that 1𝑀∙
is homotopic to 0. If 𝑥 ∈ Ker(𝑑𝑛),

then 𝑥 = 1𝑥 = (𝑑𝑛+1ℎ𝑛 + ℎ𝑛−1𝑑𝑛)(𝑥) = 𝑑𝑛+1ℎ𝑛(𝑥) ∈ Im(𝑑𝑛+1). This means that 𝑀∙ is an exact

sequence.

We end with a technical but enlightening result about homotopy.
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Theorem 2.1.7. [Rot09, Theorem 6.10] If

0 𝑀∙ 𝑁∙ 𝐿∙ 0

𝑓∙ 𝑔∙

is an exact sequence of chain complexes, then there exists an exact sequence of 𝐴-modules

⋯ 𝐻𝑛+1(𝐿∙) 𝐻𝑛(𝑀∙) 𝐻𝑛(𝑁∙) 𝐻𝑛(𝐿∙) 𝐻𝑛−1(𝑀∙) ⋯
𝜕𝑛+1 𝐻𝑛(𝑓∙) 𝐻𝑛(𝑔∙) 𝜕𝑛

(2.3)

The morphisms 𝜕𝑛 are called connecting homomorphisms.

Proof. See, [Rot09] Proposition 6.9 and Theorem 6.10.

Remark 2.1.8. There is a pictorial way to remember the above result

𝐻∙(𝑀∙) 𝐻∙(𝑁∙)

𝐻∙(𝐿∙)

𝐻∙(𝑓∙)

𝐻∙(𝑔∙)𝜕∙
(2.4)

Dually one can define cochain complexes, morphisms of cochain complexes, and coho-
mology. Since they are analogous to the above definition, we omit them.

2.2 Projectives, Ext, and Tor

In this section we are going to discuss how to obtain (co)chain complexes from a
module. The main references are the same, [Rot09] and [Wei94]. Before we are able to
obtain a chain complex from a module, we will first derive a way to obtain an acyclic chain
complex. To do so we need some definitions.

Definition 2.2.1. An 𝐴-module 𝑃 is said to be projective if for every epimorphism 𝑔 ∶

𝑁 ⟶ 𝐿 and every homomorphism ℎ ∶ 𝑃 ⟶ 𝐿 there exists a homomorphism 𝜙 ∶ 𝑃 ⟶ 𝑁

such that ℎ = 𝑔 ◦ 𝜙. In diagrams,

𝑃

𝑁 𝐿 0

ℎ

𝜙

𝑔
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An injective module 𝐼 has the dual property: for every monomorphism 𝑓 ∶ 𝑀 ⟶ 𝑁 and

every homomorphism 𝑗 ∶ 𝑀 ⟶ 𝐼 there exists a homomorphism 𝜓 ∶ 𝑁 ⟶ 𝐼 such that

𝑗 = 𝜓 ◦ 𝑓 . In diagrams,

0 𝑀 𝑁

𝐼

𝑓

𝑗
𝜓

Example 2.2.2. The projective modules are precisely direct summands of free modules,

see [Rot09, Theorem 3.5]. Therefore, if {𝑒1,… , 𝑒𝑛} is a copi for a finite dimensional 𝕂-algebra

𝐴, then each direct summand of 𝐴

𝑃(𝑖) ≐ 𝐴𝑒1

is projective. If 𝐴 is basic, then one can think of 𝑃(𝑖) as all the paths of 𝐴 starting at the

vertex 𝑖.

It is possible to prove that for each module 𝑀 there exists a monomorphism 𝑀 → 𝐼

with 𝐼 injective (we say that the category has enough injectives) and an epimorphism
𝑃 → 𝑀 with 𝑃 projective (similarly, enough projectives). We can use this information to
obtain chain complexes of modules.

Fix 𝑀 ∈ 𝐴 − Mod and consider an epimorphism 𝑔 ∶ 𝑃0 → 𝑀 , think of it as a way to
approximate 𝑀 using “nice” modules. What is the error of this approximation? If 𝑀 were
to be projective, we could take 𝑔 to be the identity and we would not commit any error,
this intuition matches with the kernel of 𝑔 being zero; therefore we can think of ker(𝑔)
as a measure of how good we can approximate 𝑀 via 𝑔 . What to do with this error? We
could try to approximate it and we already have a way to proceed: let’s discover how far
from being projective it is! Consider an epimorphism 𝑑1 ∶ 𝑃1 → Ker(𝑔) with 𝑃1 projective.
Recursively, we will get a long exact sequence that has a name.

Definition 2.2.3. By a projective resolution of 𝑀 we mean an exact sequence

⋯ 𝑃1 𝑃0 𝑀 0
𝑑2 𝑑1 𝑔

such that each 𝑃𝑖 is projective. An injective resolution is an exact sequence

0 𝑀 𝐼
0

𝐼
1

⋯

𝑓 𝑑
0

𝑑
1

such that each 𝐼 𝑗 is injective.

The deleted projective resolution or simply deleted resolution of a projective resolution
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for 𝑀 is, by definition, the chain complex

⋯ 𝑃1 𝑃0 0.
𝑑2 𝑑1

In a similar way, we define the deleted injective resolution or simply deleted resolution of an
injective resolution as the chain complex

0 𝐼
0

𝐼
1

⋯
𝑑
0

𝑑
1

One can always recover the original resolution looking at the 0-(co)homology of the
deleted resolution.

Fix 𝑀,𝑁 ∈ 𝐴 − mod and consider a projective resolution for 𝑀 in 𝐴 − mod:

⋯ 𝑃𝑛+1 𝑃𝑛 ⋯ 𝑃0 𝑀 0

Applying the contravariant functor Hom𝐴(−, 𝑁 ) to the deleted projective resolution
above we obtain a cochain complex

Hom𝐴(𝑃∙, 𝑁 ) ∶ 0 Hom𝐴(𝑃0, 𝑁 ) Hom𝐴(𝑃1, 𝑁 ) Hom𝐴(𝑃2, 𝑁 ) ⋯

(2.5)

We define the 𝑛𝑡ℎ Ext group of 𝑀 and 𝑁 by the cohomology of the above cochain
complex, that is,

Ext
𝑛

𝐴
(𝑀,𝑁 ) ≐ 𝐻

𝑛
(Hom𝐴(𝑃∙, 𝑁 ))

It is possible to show that the above groups (or 𝕂-vector spaces in our framework) do
not depend on the chosen projective resolution of 𝑀 , as another resolution would produce
an isomorphic group. We have the following easy proposition.

Proposition 2.2.4. An 𝐴-module 𝑀 is projective if, and only if, Ext1(𝑀,𝑁 ) = 0, for all

𝐴-modules 𝑁 .

With this we conclude one of the ways of studying modules using (co)chain complexes:
fix a module, construct a projective resolution, construct a cochain complex applying
Hom𝐴(−, 𝑁 ), for some 𝑁 ∈ 𝐴−mod, take its cohomology, use it to derive properties from
the fixed module. The above proposition is one example of it: one can look at all the first
Ext groups with 𝑀 in the first coordinate in order to decide if 𝑀 is projective or not. We
also mention that it is possible to compute the Ext groups taking injective resolutions on
the second module, for more details see [Rot09] and [Wei94].

Consider 𝑀 and a projective resolution for it as above, but now suppose that 𝑁 is an
𝐴
𝑜𝑝-module. Then consider the following chain complex obtained applying 𝑁 ⊗𝐴 − to the

deleted projective resolution of 𝑀
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𝑁 ⊗𝐴 𝑃∙ ∶ ⋯ 𝑁 ⊗𝐴 𝑃2 𝑁 ⊗𝐴 𝑃1 𝑁 ⊗𝐴 𝑃0 0

We define the 𝑛𝑡ℎ Tor group of 𝑁 and 𝑀 by the homology of the above chain com-
plex

Tor
𝐴

𝑛
(𝑁 ,𝑀) ≐ 𝐻𝑛(𝑁 ⊗𝐴 𝑃∙).

Again, it is possible to show that the above groups (or𝕂-vector spaces in our framework)
do not depend on the chosen projective resolution of 𝑀 , as another resolution would
produce an isomorphic group. It is also possible to compute Tor groups using projective
resolutions of 𝑁 as an 𝐴

𝑜𝑝-module. The intuition for why to study Tor is the same as to
study Ext: we want to derive properties of a module looking at its Tor groups. Finally, the
long exact sequences for (co)homology groups yields.

Proposition 2.2.5. If 0 → 𝑀 → 𝑁 → 𝐿 → 0 is an exact sequence of 𝐴-modules, then

1. for any 𝑋 ∈ 𝐴 − mod there is a long exact sequence for the Ext groups

0 Hom𝐴(𝐿, 𝑋 ) Hom𝐴(𝑁 ,𝑋 ) Hom𝐴(𝑀,𝑋 )

Ext
1

𝐴
(𝐿, 𝑋 ) Ext

1

𝐴
(𝑁 ,𝑋 ) Ext

1

𝐴
(𝑀,𝑋 ) Ext

2

𝐴
(𝐿, 𝑋 ) ⋯

2. for any 𝑌 ∈ 𝐴
𝑜𝑝
− mod there is a long exact sequence for the Tor groups

⋯ Tor
𝐴

2
(𝑌 , 𝐿) Tor

𝐴

1
(𝑌 ,𝑀) Tor

𝐴

1
(𝑌 , 𝑁 ) Tor

𝐴

1
(𝑌 , 𝐿)

𝑌 ⊗𝐴 𝑀 𝑌 ⊗𝐴 𝑁 𝑌 ⊗𝐴 𝐿 0

There is also analogous long exact sequences for the functors Ext∗
𝐴
(𝑋,−) and Tor

𝐴

∗
(−, 𝑋 ).

In this work, the above groups will serve as a way to compute homological dimensions
that we will define in what follows. For that reason we will not give any explicit example
of said groups.

2.3 Homological Dimensions
In this section we will define some important homological invariants for our work.

The references are [ASS06], [Kir16], and [Hui95].
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As we discussed on the previous section, we may view a projective resolution by a
succession of projective approximations for a module. Naturally, it would be interesting to
find what is the best approximation among all the possible ones. This is the idea that we
develop in what follows.

Definition 2.3.1. Let 𝑀 ∈ 𝐴 − mod and 𝑃∙ → 𝑀 → 0 a projective resolution of 𝑀 as an

𝐴-modules. We define the length of 𝑃∙ as the least index 𝑛 such that 𝑃𝑛 ≠ 0 and 𝑃𝑛+𝑘 = 0

whenever 𝑘 > 0 and denote 𝓁(𝑃∙) = 𝑛. In case that there is no such index, we say that

𝓁(𝑃∙) = ∞. The projective dimension of 𝑀 as an 𝐴-module is the non negative integer

pd
𝐴
𝑀 ≐ min{𝓁(𝑃∙) | 𝑃∙ is a projective resolution for 𝑀 as an 𝐴-module}.

Similarly one defines injective dimension of an 𝐴-module.

Example 2.3.2. If 𝑃 is a projective 𝐴-module, then 1𝑃 ∶ 𝑃 → 𝑃 is a projective resolution

for 𝑃 as 𝐴-module, therefore pd
𝐴
𝑃 = 0.

A simple connection between projective dimensions and Ext-Tor groups is a conse-
quence of the definition of these groups using projective resolutions

Lemma 2.3.3. If Tor𝐴
𝑛
(𝑋,𝑀) ≠ 0 or Ext𝑛

𝐴
(𝑀, 𝑌 ) ≠ 0, for some appropriate 𝑋 and 𝑌 , then

𝑛 ≦ pd
𝐴
𝑀 .

We can use this point wise definition of dimension to derive an homological dimension
for the category 𝐴 − mod or, if you prefer, for 𝐴.

Definition 2.3.4. The global dimension of 𝐴 is defined as

gldim(𝐴) = sup{pd
𝐴
𝑀 | 𝑀 ∈ 𝐴 − mod}.

Example 2.3.5. An algebra 𝐴 is said to be semisimple when every 𝐴-module is projective.

Therefore pd
𝐴
𝑀 = 0, for all 𝑀 ∈ 𝐴 − mod, and gldim(𝐴) = 0. Simple computations show

that this is an equivalence: the semisimple algebras are precisely the algebras with global

dimension zero.

In a perfect world, the global dimensions would give us a measure of how complicated
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𝐴 − mod is and, therefore, how complicated 𝐴 is. But this is not the case. Consider 𝐵 the
algebra of dual numbers, that is,

𝐵 =

𝕂[𝑥]

⟨𝑥
2
⟩

.

The category 𝐵−mod has only two indecomposable modules 𝐵𝕂, the simple module with
𝑥 acting as zero, and 𝐵𝐵, the regular module. Obviously, 𝐵𝐵 is 𝐵-projective, but 𝐵𝕂 is not
and the best projective resolution for it is

⋯ 𝑃𝑛 = 𝐵 ⋯ 𝐵 𝐵 𝕂 0

therefore pd
𝐵
𝕂 = ∞ and gldim(𝐵) = ∞. This is not intuitive, since the small number of

indecomposable modules of 𝐵 − mod should not be measured as infinitely complicated. In
order to obtain a better invariant for this situation we define.

Definition 2.3.6. The finitistic dimension of 𝐴 is defined as

findim(𝐴) = sup{pd
𝐴
𝑀 | 𝑀 ∈ 𝐴 − mod and pd

𝐴
𝑀 < ∞}.

Example 2.3.7. If 𝐵 is as above, then findim(𝐵) = 0.

Notice that, if 𝐴 were simple enough in the previous measure of complexity, that
is, gldim(𝐴) = 𝑛 < ∞, then findim(𝐴) = gldim(𝐴) = 𝑛. In other words, the finitistic
dimension is a measure of complexity that is equal to the global dimension, when the
global dimension is finite, but can be finite in cases of infinite global dimensions. But in
what cases the finitistic dimension is finite and the global dimension is infinite? Well, this
is a conjecture...

Conjecture 2.3.8. (Little) Finitistic Dimension Conjecture If 𝐴 is a finite dimensional

𝕂-algebra, then

findim(𝐴) < ∞.

For an overview of the Finitistic Dimension Conjecture, we refer the reader to [Hui95]
and references therein. The Finitistic Dimension Conjecture is central in representation
theory of algebras. As one can see in [ARS95, Conjecture 11], it implies several other
conjectures. For instance, the Nakayama Conjecture (see [ARS95, Conjectures 8]) holds if
the Finitistic Dimension Conjecture holds.
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2.4 How to Compute Classical Homological
Dimensions

In this section we are going to discuss some results towards computing the classical
homological dimensions. The main reference is [Aus55]. We restrict the results for finite
dimensional 𝕂-algebras.

When we introduced the Tor and Ext functors we alluded to the idea of deriving
properties of modules using these groups. Then, on the next section, we associated an
homological invariant to each module, namely pd

𝐴
𝑀 . As a simple example, we enunciated

that 𝑀 is projective if, and only if, Ext1
𝐴
(𝑀,𝑋 ) = 0, for every 𝑋 ∈ 𝐴 − mod, if, and

only if, pd
𝐴
𝑀 = 0. Now, suppose that 0 → 𝑀 → 𝑁 → 𝐿 → 0 is an exact sequence of

𝐴-modules, and that Ext𝑛
𝐴
(−, 𝑀) = Ext

𝑛

𝐴
(−, 𝐿) = 0 are the zero functors, for all 𝑛 > 𝑘, then

the long exact sequence says that Ext𝑛
𝐴
(−, 𝑁 ) = 0, for all 𝑛 > 𝑘. If we inductively carry on

this process using a composition series for 𝑁 we obtain that the nullity of Ext∗
𝐴
(−, 𝑁 ) is

controlled by the nullity of Ext∗
𝐴
(−, 𝑆) for any simple module that appears as a factor in

the composition series. The above commentary, for the Ext groups, indicates that what
matters for projective dimensions is to understand when simple modules have trivial Ext
groups. This is formalized on the next result.

Proposition 2.4.1. [Aus55, Proposition 7 and Corollary 9] Let 𝐴 is a finite dimensional

𝕂-algebra and 𝑀 ∈ 𝐴 − mod. The following are equivalent:

1. pd
𝐴
𝑀 < 𝑛

2. Tor
𝐴

𝑛
(𝑆,𝑀) = 0, for every simple 𝐴𝑜𝑝-module.

3. Ext
𝑛

𝐴
(𝑀, 𝑆) = 0 for every simple 𝐴-module.

But we can specialize the above result for 𝑀 = 𝑆 a simple module, by doing so we
obtain that is enough to compute Tor and Ext on pairs of simple modules is order to
compute the projective dimension of simple modules. But if we apply the argument about
the composition series on the first coordinate of Ext (and the second of Tor) we see that by
computing it on all pairs of simple modules, we are actually computing gldim(𝐴). Again,
this is formalized on the next result.

Proposition 2.4.2. [Aus55, Corollary 12] Let 𝐴 be a finite dimensional basic algebra, then

the following are equivalent

1. gldim(𝐴) < 𝑛,

2. Ext
𝑛

𝐴
(𝑆𝑖, 𝑆𝑗) = 0, for all simple modules.
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3. Tor
𝑛

𝐴
(𝑆𝑖𝐴, 𝐴𝑆𝑗) = 0, for all simple modules.

Corollary 2.4.3. If 𝐴 is a finite dimensional 𝕂-algebra, then

gldim(𝐴) = max{pd
𝐴
𝑆 | 𝑆 is a simple 𝐴-module} = pd

𝐴

𝐴

𝐽 (𝐴)

,

where 𝐽 (𝐴) is the Jacobson radical of 𝐴.

Finally we end this section with results about how the global dimension change if we
do some operations with algebras. First, taking the opposite algebra does not change the
global dimension.

Proposition 2.4.4. [Aus55, Corollary 5] If 𝐴 is a finite dimensional basic algebra, then

gldim(𝐴) = gldim(𝐴
𝑜𝑝
).

Secondly, if we take tensor products of algebras, then we need only to sum each global
dimension.

Proposition 2.4.5. [Aus55, Theorem 16] If 𝐴 and 𝐵 are finite dimensional basic 𝕂-algebras,

then

gldim(𝐴 ⊗ 𝐵) = gldim(𝐴) + gldim(𝐵).

In particular, we get.

Corollary 2.4.6. If 𝐴 is a finite dimensional algebra, then

gldim(𝐴
𝑒
) = 2 gldim(𝐴).

Proof.

gldim(𝐴
𝑒
) = gldim(𝐴 ⊗𝕂 𝐴

𝑜𝑝
) = gldim(𝐴) + gldim(𝐴

𝑜𝑝
) = 2 gldim(𝐴).
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2.5 Applications to Bound Quiver Algebras

Recall that bound quiver algebras are algebras of the form

𝐴 =

𝕂𝑄𝐴

𝐼

,

where 𝐼 ⊲ 𝕂𝑄𝐴 is an admissible ideal and 𝑄𝐴 is the Gabriel quiver of 𝐴. In this section
we will discuss how to compute global dimensions of this type of algebras. The main
references are [ASS06], [Kir16], and [Far07].

A first approach to bound quiver algebras is to consider a finite and acyclic quiver
with 𝐼 = 0. The next result show how to compute a projective resolution for an arbitrary
module. Note that 𝑄 need not to be acyclic.

Proposition 2.5.1. [Kir16, Theorem 1.19] Let 𝑄 be a quiver. For any 𝕂𝑄-module 𝑉 we have

the following projective resolution

0 ⨁

𝛼∈𝑄1

𝑃(𝑡(𝛼)) ⊗ 𝕂 𝛼 ⊗ 𝑉𝑠(𝛼) ⨁

𝑖∈𝑄0

𝑃(𝑖) ⊗ 𝑉𝑖 𝑉 0
𝑑1 𝑑0 (2.6)

where 𝑑0(𝑝 ⊗ 𝑣) = 𝑝𝑣 and 𝑑1(𝑝 ⊗ 𝛼 ⊗ 𝑣) = 𝑝𝛼 ⊗ 𝑣 − 𝑝 ⊗ 𝛼𝑣. In particular

gldim(𝕂𝑄) ≦ 1.

It is easy to see that if 𝑄1 = ∅, then the above resolution has length 0 for any module.
Therefore gldim(𝕂𝑄) = 0. By the previous section, we need only to compute the projective
dimension of simple modules in order to understand when gldim(𝕂𝑄) = 1. Specializing
the above resolution for the simple module concentrated on the vertex 𝑖 we obtain

0 ⨁

𝛼∈𝑄1,𝑠(𝛼)=𝑖

𝑃(𝑡(𝛼)) 𝑃(𝑖) 𝑆(𝑖) 0

In particular, if there is an arrow on 𝑄, then there exists a vertex 𝑖 such that the above
resolution has length one. It is easy to prove that in this case, for the simple module
concentrated on 𝑖, pd

𝕂𝑄
𝑆(𝑖) = 1 and, therefore, gldim(𝕂𝑄) = 1.

What is not so obvious is that a basic finite dimensional 𝕂-algebra with global dimen-
sion one is a path algebra of a finite acyclic quiver.

Theorem 2.5.2. [ASS06, VII.1 Theorem 1.7.(b)] If 𝐴 is a basic, connected, and gldim(𝐴) = 1,

then 𝐴 ≅ 𝕂𝑄𝐴, where 𝑄𝐴 is the Gabriel quiver of 𝐴 and it is finite, connected, acyclic quiver

with 𝑄1 ≠ ∅.
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Remark 2.5.3. Algebras with global dimension at most one are called hereditary algebras.

The above results are a classification of hereditary, finite dimensional and basic algebras.

Now we turn our attention to quotients by non trivial admissible ideals. What makes it
easier to work with such algebras is that for finite dimensional algebras we can restrict the
scope to good epimorphisms. The main notion behind it is that o a superfluous submodule:
𝐿 ⊆ 𝑀 is superfluous if 𝐿 +𝑋 = 𝑀 , for 𝑋 another submodule, implies 𝑋 = 𝑀 . We say that
an epimorphism 𝑓 ∶ 𝑀 → 𝑁 is minimal if Ker(𝑓 ) is superfluous. Interacting this notions
with homological algebra we get the following definitions.

Definition 2.5.4. [ASS06, I.5 Definition 5.5.(b) and Definition 5.7.(b)] A projective cover is

a minimal epimorphism ℎ ∶ 𝑃 → 𝑀 with 𝑃 projective. A projective resolution 𝑃∙ → 𝑀 → 0

for 𝑀 is said to be minimal if each 𝑑𝑖 ∶ 𝑃𝑖 → Im(𝑑𝑖) is a projective cover

Proposition 2.5.5. [ASS06, I.5 Theorem 5.8.(a)] Let 𝐴 be a finite dimensional 𝕂-algebra and

{𝑒1,… , 𝑒𝑛} a copi. Then for any 𝑀 ∈ 𝐴 − mod there exists a projective cover

𝑃(𝑀) 𝑀 0,
ℎ

where 𝑃(𝑀) ≅ ⨁

𝑖∈𝑄0

𝑃(𝑖)
𝑛𝑖 , with 𝑛𝑖 ≧ 0, and top 𝑃(𝑀) ≅ top𝑀 .

Remark 2.5.6. The projective modules 𝑃(𝑖) = 𝐴𝑒𝑖 for a complete set of representatives of

the isoclasses of indecomposable projective modules, see [ASS06, I.5. Corollary 5.17.(b)].

This means that the only relevant projective modules of 𝐴 − mod are the 𝑃(𝑖)’s.

The projective cover is unique up to an isomorphism (see [ASS06, I.5.8.(b)]). As a
consequence of the above proposition, the category 𝐴 − mod for 𝐴 finite dimensional
admits minimal projective resolutions. One can show that if 𝑃∙ → 𝑀 → 0 is a minimal
projective resolution for 𝑀 , then its length is precisely pd

𝐴
𝑀 , hence the name. The kernel

of a projective cover for 𝑀 ∈ 𝐴 − mod is unique up to isomorphism. We will call it the
𝐴-syzygy of 𝑀 and we denote it by

Ω𝐴(𝑀) ∈ 𝐴 − mod.

We recursively denote Ω
0

𝐴
(𝑀) = 𝑀 and Ω

𝑛

𝐴
(𝑀) = Ω

𝑛−1

𝐴
(Ω𝐴(𝑀)), for an integer 𝑛 > 0. We

call Ω𝑛

𝐴
(𝑀) the 𝑛𝑡ℎ-syzygy of 𝑀 (with respect to 𝐴).

Lemma 2.5.7. 𝑀 ∈ 𝐴 − mod is projective if, and only if, Ω𝐴(𝑀) = 0.
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Proof. If 𝑀 is projective, then the identity 1𝑀 ∶ 𝑀 → 𝑀 is a projective cover and Ω𝐴(𝑀) =

0. Conversely, if Ω𝐴(𝑀) = 0, then a projective cover for 𝑀 is injective, and therefore an
isomorphism.

Now we turn to some computations using the notion of minimal resolutions.

Example 2.5.8. Let 𝑄 be the quiver

1 2 3 4 5
𝑎 𝑏 𝑐 𝑑

and 𝐴 =
𝕂𝑄

𝐽
2
(𝕂𝑄)

. Then the indecomposable projectives are

𝑃(1) ∶ 𝕂 𝕂 0 0 0

𝑃(2) ∶ 0 𝕂 𝕂 0 0

𝑃(3) ∶ 0 0 𝕂 𝕂 0

𝑃(4) ∶ 0 0 0 𝕂 𝕂

𝑃(5) ≅ 𝑆(5) ∶ 0 0 0 0 𝕂 .

1

1

1

1

A minimal projective resolution for 𝑆(1) is

0 𝑃(5) ≅ 𝑆(5) 𝑃(4) 𝑃(3) 𝑃(2) 𝑃(1) 𝑆(1) 0

and pd
𝐴
𝑆(1) = 4. Computing the minimal projective dimension of the other simple

modules, one sees that the projective dimension of 𝑆(1) is the maximum of said dimensions.

Therefore

gldim(𝐴) = 4.

Generalizing on the number of vertices, we obtain that

gldim(𝐴𝑛) = 𝑛 − 1,

where 𝐴𝑛 ≐
𝕂𝔸𝑛

𝐽
2
(𝕂𝔸𝑛)

, where the orientation of 𝔸𝑛 is all the arrows pointing to the same

direction.
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This is actually the upper bound of the following theorem.

Theorem 2.5.9. [Far07, Theorem] Let 𝐴 be a bound quiver algebra of an acyclic quiver and

𝑄𝐴 its Gabriel quiver. Then

gldim(𝐴) ≦ 𝑛 − 1,

where 𝑛 is the number of vertices of 𝑄𝐴.

The next two examples show that no such result can be obtained for cyclic quiv-
ers.

Example 2.5.10. Let 𝑄 be the quiver

2

1 3

𝑏𝑎

𝑐

and consider 𝐼 = 𝐽
2
(𝕂𝑄) = ⟨𝑏𝑎, 𝑐𝑏, 𝑎𝑐⟩ and 𝐿 = ⟨𝑏𝑎, 𝑐𝑏⟩. It is obvious that 𝐼 is admissible,

and 𝑅4

𝑄
⊆ 𝐿 ⊆ 𝑅

2

𝑄
is also admissible. But

gldim(

𝕂𝑄

𝐼

) = ∞ and gldim(

𝕂𝑄

𝐿

) = 3.
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Chapter 3

Relative Homological Algebra

In this chapter we discuss the theory developed by Hochschild in [Hoc56]. Then we
discuss the connections between of Hochschild’s relative homological theory and classical
homological problems made by [XX13], [Guo18], and [IM21].

3.1 Relative Homological Algebra

Definition 3.1.1. Let 𝐴 be a 𝕂-algebra. By a subalgebra of 𝐴 we mean a subspace 𝐵 ⊆ 𝐴

such that 1𝐴 ∈ 𝐵 and 𝑥 ⋅ 𝑦 ∈ 𝐵 whenever 𝑥, 𝑦 ∈ 𝐵, where ⋅ stands for the multiplication of

𝐴. We will call 𝐵 ⊆ 𝐴 an extension of algebras.

Throughout this chapter fix 𝐵 ⊆ 𝐴 an extension of algebras.

Example 3.1.2. Let 𝐴 be any 𝕂-algebra, then 𝐴 has two trivial subalgebras:

1. 𝕂 ≡ 𝕂 1𝐴 ⊆ 𝐴: the only one dimensional subalgebra of A

2. 𝐴 ⊆ 𝐴: the only dim𝕂 𝐴-dimensional subalgebra of A when A is finite dimensional.

Example 3.1.3. Let 𝐴 = Mat
2
(𝕂) denote the full 2 × 2 matrix ring over 𝕂. Let 𝐵 = 𝑈𝑇2(𝕂)

the upper triangular 2 × 2 matrices, 𝐶 = 𝕂 𝑒21 be the strictly upper triangular 2 × 2 matrices

and 𝐷 = 𝕂 𝑒11. Then 𝐵 ⊆ 𝐴 is an extension of algebras. Even though both 𝐶 and 𝐷 are

closed under the multiplication of 𝐴, they are not considered subalgebras since 𝐶 is a

non-unital ring and the identity of 𝐷 is 1𝐷 = 𝑒11 ≠ 𝑒11 + 𝑒22 = 1𝐴
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Example 3.1.4. Let 𝐴 = 𝑘𝑄, where 𝑄 is the following quiver

1

∙

2

∙

𝛼 (3.1)

and consider 𝐵 the subalgebra generated by the elements 1𝐴 = 𝑒1 + 𝑒2 and 𝛼. Then 𝐵 ⊆ 𝐴

is an extension of algebras. In this case 𝐵 is a bound quiver algebra and one can depict its

Gabriel quiver as

∙

1+2

𝛼

(3.2)

and the relation ideal of 𝐵 is generated by 𝛼2. Notice that 𝐵 is the algebra of dual numbers.

We want to study some homological theory that measures how complex an extension
𝐵 ⊆ 𝐴 is. To do so, we first need to define a class of chain complexes to work with. In order
to define them we need the notion of an (A,B)-exact sequence.

Definition 3.1.5. By an (A,B)-exact sequence we mean an exact sequence of 𝐴-

homomorphisms and 𝐴-modules

⋯ 𝑀𝑛+1 𝑀𝑛 𝑀𝑛−1 ⋯

𝑓𝑛+2 𝑓𝑛+1 𝑓𝑛 𝑓𝑛−1 (3.3)

such that, for any index, Ker(𝑓𝑛) is a direct summand of 𝑀𝑛 as 𝐵-modules. In other words,

there exists a 𝐵-module 𝑀 ′

𝑛
such that

𝐵𝑀𝑛 = 𝐵 Ker(𝑓𝑛) ⊕ 𝐵𝑀
′

𝑛
. (3.4)

There is a useful equivalence for an (𝐴, 𝐵)-exact sequence.

Lemma 3.1.6. Let

(𝑀∙, 𝑑∙) ∶ ⋯ 𝑀𝑛+1 𝑀𝑛 𝑀𝑛−1 ⋯
𝑑𝑛+2 𝑑𝑛+1 𝑑𝑛 𝑑𝑛−1 (3.5)

be an exact sequence of 𝐴-modules. Then the following are equivalent:

1. 𝑀∙ is (𝐴, 𝐵)-exact;

2. there exists a family of 𝐵-homomorphisms ℎ𝑛 ∶ 𝑀𝑛 ⟶ 𝑀𝑛+1, 𝑛 ∈ ℤ, such that

𝑑𝑛+1 ◦ ℎ𝑛 + ℎ𝑛−1 ◦ 𝑑𝑛 = 1𝑀𝑛
, and;
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3. there exists a family of 𝐵-homomorphisms ℎ𝑛 ∶ 𝑀𝑛 ⟶ 𝑀𝑛+1, 𝑛 ∈ ℤ, such that

𝑑𝑛 = 𝑑𝑛 ◦ ℎ𝑛−1 ◦ 𝑑𝑛.

Example 3.1.7. If 𝐵 ⊆ 𝐴 is an extension of 𝕂-algebras and 𝐵 is a semisimple algebra,

then every exact sequence of 𝐴-modules is (𝐴, 𝐵)-exact. Indeed, every 𝐵-submodule of

a 𝐵-module admits a 𝐵-complement. This type of extension always exist, just consider

𝕂 ⊆ 𝐴. For the other trivial extension, that is 𝐴 ⊆ 𝐴, the exact sequences are precisely all

the sequences of 𝐴-modules that split, see (3.1.6.2).

Algebraic homological theories are the study of complexes constructed using “special
well behaved” objects. In our case, those are going to be called relatively projectives and
relatively injectives. Our study will focus on relative projective modules.

Definition 3.1.8. An 𝐴-module 𝑃 is (𝐴, 𝐵)-projective or simply relatively projective when

for any diagram
𝑃

0 𝐿 𝑀 𝑁 0

𝜙

𝜓

𝑓

(3.6)

where the horizontal complex is (𝐴, 𝐵)-exact and 𝜙 ∶ 𝑃 → 𝑁 is a homomorphism of 𝐴-

modules, there exists an 𝐴-homomorphism 𝜓 ∶ 𝑃 ⟶ 𝑀 such that the triangle commutes,

that is, 𝑓 ◦ 𝜓 = 𝜙. Relatively injectives or (𝐴, 𝐵)-injectives are defined dually.

Example 3.1.9. The (𝐴, 𝐴)-projective modules are 𝐴 − mod. On the other side, the

(𝐴,𝕂)-projectives are the usual projective modules of 𝐴 − mod.

In general, for a tower of extensions of 𝕂-algebras 𝐶 ⊆ 𝐵 ⊆ 𝐴, there is a similar relation
between the relative exact sequences and relative projectives that extends the discussion
made about the trivial extensions. One can see this relation at Figure 3.1.

The next results guarantees that there is always a relative homological theory for any
extension of algebras.

Lemma 3.1.10. [Hoc56, Lemma 2] For any 𝑌 ∈ 𝐵-mod, 𝐴 ⊗𝐵 𝑌 is (𝐴, 𝐵)-projective
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(A,C)-exact sequences

(A,B)-exact sequences

(A,B)-projectives

(A,C)-projectives

Figure 3.1: Venn diagrams showing the relation between two extensions 𝐵 ⊆ 𝐴 (in red) and 𝐶 ⊆ 𝐴

(in blue) that form a tower 𝐶 ⊆ 𝐵 ⊆ 𝐴. Specializing 𝐵 = 𝕂 we obtain the relation between Relative
Homological Theory for 𝐵 ⊆ 𝐴 and Classical Homological Theory.

Example 3.1.11. Suppose that 𝑃 ∈ 𝐴 − mod is projective in the classical theory. In

particular, 𝑃 is (𝐴,𝕂)-projective. The above result states that 𝑃 is a direct summand of

𝐴 ⊗𝕂 𝑃 ≅ 𝐴
𝑛, where 𝑛 = dim𝕂 𝑃 . We have concluded, using relative homological theory,

that projectives in 𝐴 − mod are direct summand of free modules.

Corollary 3.1.12. For any extension of algebras 𝐵 ⊆ 𝐴 there exists enough relative projective,

that means, for any 𝑀 ∈ 𝐴-mod there exists an epimorphism of 𝐴-modules that admits a

section in 𝐵-mod
𝑃 ↠ 𝑀, (3.7)

with 𝑃 a relative projective module.

Proof. Simply take the multiplication map 𝜇 ∶ 𝐴⊗𝐵𝑀 ⟶ 𝑀 and the 𝐵-section 𝜈 ∶ 𝑀 ⟶

𝐴 ⊗𝐵 𝑀 is given by 𝜈(𝑚) = 1 ⊗𝐵 𝑚, for all 𝑚 ∈ 𝑀 .

There are analogous results for (𝐴, 𝐵)-injectives, for those we refer the reader to [Hoc56].
Now we make the main definitions of this work: the relative homological dimensions we
are going to study.

Definition 3.1.13. By an (𝐴, 𝐵)-projective resolution or simply a relative projective resolu-

tion of 𝑀 ∈ 𝐴-mod we mean an (𝐴, 𝐵)-exact sequence

⋯ 𝑃2 𝑃1 𝑃0 𝑀 0
𝑑2 𝑑1 𝑑0 (3.8)

where all 𝑃𝑖’s are (𝐴, 𝐵)-projectives. Dually we define (𝐴, 𝐵)-injective resolution.
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Proposition 3.1.14. For any 𝑀 ∈ 𝐴-mod there exists an (𝐴, 𝐵)-projective resolution.

Proof. Via restriction consider 𝑀 ∈ 𝐵-mod. Therefore, by (3.1.10), 𝐴 ⊗𝐵 𝑀 is (𝐴, 𝐵)-
projective. We know that the kernel of the multiplication (A-)homomorphism 𝜇𝑀 ∶ 𝐴 ⊗𝐵

𝑀 ⟶ 𝑀 is a 𝐵-direct summand of 𝐴 ⊗𝐵 𝑀 since 𝜇𝑀 admits a 𝐵-section. Denote 𝐾0 =

Ker(𝜇𝑀).
Again the module 𝐴 ⊗𝐵 𝐾0 is (𝐴, 𝐵)-projective, and 𝜇𝐾0

∶ 𝐴 ⊗𝐵 𝐾0 ⟶ 𝐾0 is a 𝐵-split
epimorphism, meaning that 𝐾1 = Ker(𝜇𝐾0

) is a 𝐵-direct summand of 𝐴 ⊗𝐵 𝐾0. Continuing
this process recursively one gets an exact sequence

⋯ 𝐴 ⊗𝐵 𝐾𝑟 ⋯ 𝐴 ⊗𝐵 𝐾0 𝐴 ⊗𝐵 𝑀 𝑀 0

𝜇𝐾𝑟
𝜇𝐾

1
𝜇𝐾

0
𝜇𝑀 (3.9)

that is (𝐴, 𝐵)-exact by definition and, therefore, an (𝐴, 𝐵)-projective resolution of 𝑀 .

Remark 3.1.15. The relative projective resolution constructed in (3.9) is called standard

relative (projective) resolution or simply standard (projective) resolution if the data is clear

from context.

Now we are able to define numbers that will measure how complicated our extension
is and will be the main focus of this work.

Definition 3.1.16. [Guo18] For 𝑀 ∈ 𝐴-mod we define its (𝐴, 𝐵)-relative projective dimen-

sion (or relative projective dimension) as

pd
(𝐴,𝐵)

𝑀 ≐ min{𝓁(𝑃∙) | 𝑃∙ ↠ 𝑀 is a relative projective resolution}. (3.10)

The relative global dimension of 𝐵 ⊆ 𝐴 is defined as

gldim(𝐴, 𝐵) ≐ sup{pd
(𝐴,𝐵)

𝑀 | 𝑀 ∈ 𝐴 − mod}. (3.11)

Remark 3.1.17. This definition is equivalent to the one in [XX13].

Example 3.1.18. Consider the extension 𝐴 ⊆ 𝐴, then every module is relatively projective.

This means that

pd
(𝐴,𝐴)

𝑀 = 0, ∀ 𝑀 ∈ 𝐴 − mod and gldim(𝐴, 𝐴) = 0.

This makes sense, if we don’t add anything to 𝐴, then we can not infer any data from the
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extension, so all the relative homological dimensions are zero.

Example 3.1.19. On the other hand, for the extension 𝕂 ⊆ 𝐴, the relative projective

modules are, precisely, the 𝐴-projective modules. Therefore

pd
(𝐴,𝕂)

𝑀 = pd
𝐴
𝑀, ∀ 𝑀 ∈ 𝐴 − mod and gldim(𝐴,𝕂) = gldim(𝐴).

Again this makes sense, we are considering the data that constructs 𝐴 from its smallest

subalgebra (in terms of dimension as vector spaces), therefore its relative homological

dimension must coincide with the classical homological dimensions.

Finally, we end this section discussing relative Ext and Tor groups. Let 𝑀 = 𝑀𝐴 ∈

𝐴
𝑜𝑝
− mod and 𝑁 = 𝐴𝑁 ∈ 𝐴 − mod. Take 𝑃∙ → 𝑀 → 0 an (𝐴𝑜𝑝

, 𝐵
𝑜𝑝)-projective resolution

for 𝑀𝐴 and 𝑄∙ → 𝑁 → 0 an (𝐴, 𝐵)-projective resolution for 𝐴𝑁 . Then we can consider the
following complexes:

𝑀 ⊗𝐴 𝑄∙ and 𝑃∙ ⊗𝐴 𝑁 .

We define the 𝑛𝑡ℎ (A,B) Tor group or simply 𝑛𝑡ℎ relative Tor group as

Tor
(𝐴,𝐵)

𝑛
(𝑀,𝑁 ) = 𝐻𝑛(𝑀 ⊗𝐴 𝑄∙).

It is possible to show that Tor(𝐴,𝐵)
𝑛

(𝑀,𝑁 ) = 𝐻𝑛(𝑃∙ ⊗𝐴 𝑁 ) and that Tor(𝐴,𝐵)
𝑛

(𝑀,𝑁 ) does not
depend on 𝑃∙ or 𝑄∙.

Similarly, if 𝑀,𝑁 ∈ 𝐴 − mod, 𝑃∙ → 𝑀 → 0 is an (𝐴, 𝐵)-projective resolution, and
0 → 𝑁 → 𝐼

∙ is an (𝐴, 𝐵)-injective resolution, then we define the 𝑛𝑡ℎ (A,B) Ext group or
simply 𝑛𝑡ℎ relative Ext group as

Ext
𝑛

(𝐴,𝐵)
= 𝐻

𝑛
(Hom𝐴(𝑃∙, 𝑁 )) = 𝐻

𝑛
(Hom𝐴(𝑀, 𝐼

∙
)).

Again, the above groups do not depend on the resolutions.

We have the following useful consequence.

Proposition 3.1.20. Let 𝑀 ∈ 𝐴 − mod. If pd
(𝐴,𝐵)

𝑀 = 𝑟 , then Ext
𝑛

(𝐴,𝐵)
(𝑀,𝑋 ) = 0 and

Tor
(𝐴,𝐵)

𝑛
(𝑌 ,𝑀) = 0, for all 𝑛 > 𝑟 , 𝑋 ∈ 𝐴 − mod, and 𝑌 ∈ 𝐴

𝑜𝑝
− mod.

Proof. Simply compute the Ext and Tor groups using a relative projective resolution for 𝑀
of length 𝑟 .

In particular, whenever Ext𝑛
(𝐴,𝐵)

(𝑀,𝑋 ) ≠ 0 or Tor(𝐴,𝐵)
𝑛

(𝑌 ,𝑀) ≠ 0, for some module, then
pd

(𝐴,𝐵)
𝑀 ≧ 𝑛.
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3.2 Relations with the Finitistic Dimension
Conjecture

In this section we discuss the connection between Relative Homological Algebra and
the Finitistic Dimension Conjecture made by the authors of [XX13]. In their paper, Xi
and Xu worked with Artin algebras, but we are going to state the results in terms of
finite dimensional 𝕂-algebras. There is also other ways to relate the Finitistic Dimension
Conjecture with extension of algebras, but they are not directely connected to Relative
Homological Algebra. For the other ways we refer the reader to references [23], [24], and
[26] of [XX13] and references therein. We also start introducing non trivial examples of
extensions while computing their relative homological dimensions.

As we have seen on the previous chapter, Relative Homological Algebra is defined
for all possible extensions of 𝕂-algebras. This universality has positive and negative
consequences. The positive is its potential for applications: if one is able to master Relative
Homological Algebra and discover all that this theory has to offer, then that person is
capable to prove several facts about finite dimensional algebras, for instance to decide
if the Finitistic Dimension is true or not, as we are going to see in this section. On the
negative side, even the specializations of Relative Homological Algebra, say for 𝐵 = 𝕂 in
order to get the classical case, are too complicated to tackle with our current technologies.
To work around this negative side, we are going to see some algebraic, combinatorial,
homological, and categorical conditions that allow one to “control ” Relative Homological
Algebra of some extensions. We begin by discussing the conditions imposed by the authors
of [XX13].

First we need some notations. Denote by (𝐴, 𝐵) the full subcategory of 𝐴 − mod
generated by all (𝐴, 𝐵)-projective 𝐴-modules.

Definition 3.2.1. An extension 𝐵 ⊆ 𝐴 is said to be 𝑛-hereditary if, for any exact sequence

of 𝐴-modules

0 𝑋𝑛 ⋯ 𝑋1 𝑋0,

such that each 𝑋𝑖 is (𝐴, 𝐵)-projective for 0 ≦ 𝑖 ≦ 𝑛 − 1, 𝑋𝑛 is also (𝐴, 𝐵)-projective. An

extension is said to be relatively hereditary if it is 𝑛-hereditary for some integer 𝑛 ≧ 0.

Corollary 3.2.2. If 𝐵 ⊆ 𝐴 is 𝑛-hereditary, then gldim(𝐴, 𝐵) ≦ 𝑛.

Remark 3.2.3. The condition for an extension to be 𝑛-hereditary is quite strong. If we

take 𝐶 = 𝕂 in Figure 3.1, we see that it corresponds to a relation between the large squares.

The above corollary is simply the observation that (𝐴, 𝐵)-exact sequences (left red square)
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are a particular case of (𝐴, 𝐶)-exact sequences (left blue square).

Xi and Xu provide the following example of extension that is 𝑛-hereditary but is not
(𝑛 − 1)-hereditary. The details are available on Section 2 of [XX13].

Example 3.2.4. Let 𝐴 be the algebra whose Gabriel quiver is

1 2 ⋯ 𝑛 + 1 𝑛 + 2
𝛼1 𝛼𝑛 𝛼𝑛+1

and relations are all paths of length two. Let 𝐵 be the subalgebra of 𝐴 generated by all

primitive idempotents and 𝛼𝑛+1. The extension 𝐵 ⊆ 𝐴 is 𝑛-hereditary and is not (𝑛 − 1)-

hereditary.

The first categorical and homological condition required by Xi and Xu is to work with
a category that interacts well with the homological theory for 𝐴.

Definition 3.2.5. [XX13] A subcategory  of 𝐴 − mod is said to be closed under syzygies

if, for any 𝑀 ∈ , its first syzygy Ω𝐴(𝑋 ) ∈  is also an object of . In particular, Ω𝑛

𝐴
(𝑋 ) ∈ ,

for any non negative integer 𝑛.

Lemma 3.2.6. [XX13, Lemma 2.4.(2)] If 𝐵 ⊆ 𝐴 is relatively hereditary, then (𝐴, 𝐵) is closed

under kernels of surjective homomorphisms in (𝐴, 𝐵). In particular, it is closed under taking

𝐴-syzygies.

The algebraic condition proposed in [XX13] is to impose that 𝐽 (𝐵) is a left ideal in 𝐴.
One of the major consequences of this fact is that if 𝑋 is an 𝐴-module, then 𝐽𝐵(𝑋 ) = 𝐽 (𝐵)𝑋

is a left 𝐴-module. This structure then can be extended to show that top
𝐵
(𝑋 ) and Ω𝐵(𝑋 )

are 𝐴-modules. For a stronger relation, in [XX13, Lemma 2.2], the authors show that

Ω
𝑖

𝐵
(𝐵𝑌 )

is an 𝐴-module provided 𝑖 ≧ 2.

When one consider extensions that satisfies both conditions, 𝐽 (𝐵) is a left ideal and
(𝐴, 𝐵) is closed for syzygies, it is possible to prove several connections about 𝐴 and
𝐵-modules. For instance, the radical condition assures that 𝐴Ω𝐵(𝑋 ) ≅ 𝐴Ω𝐴(𝐴 ⊗𝐵 𝑋 ) for
any 𝑋 ∈ 𝐴 − mod (see [XX13, Lemma 2.5]), but being close to syzygies and (3.1.10) says
that 𝐴Ω𝐴(𝐴 ⊗𝐵 𝑋 ) ∈ (𝐴, 𝐵), this is [XX13, Corollary 2.7.(3)].
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With the above discussion, if 𝑋 ∈ (𝐴, 𝐵), then

𝐴Ω𝐵(𝑋 ) ≅ 𝐴Ω𝐴(𝐴 ⊗𝐵 𝑋 ) ≅ 𝐴Ω𝐴(𝑋 ) ⊕ 𝐴Ω𝐴(𝑋
′
),

where 𝑋 ⊕ 𝑋
′
= 𝐴 ⊗𝐵 𝑋 as 𝐴-modules. Now, if we suppose that pd

𝐵
𝑋 < ∞, then when

we restrict the above isomorphism to 𝐵 − mod we obtain that

𝐵Ω𝐵(𝑋 ) ≅ 𝐵Ω𝐴(𝑋 ) ⊕ 𝐵Ω𝐴(𝑋
′
).

By hypothesis, Ω𝑛

𝐵
(𝑋 ) = 0, for some 𝑛 ≧ 1, and the above isomorphism says that

Ω
𝑛−1

𝐵
(Ω𝐴(𝑋 )) = 0, therefore pd

𝐵
Ω𝐴(𝑋 ) < ∞, see [XX13, Corollary 2.8].

Finally, before we present an idea of the proof of Xi and Xu’s main theorem, we need
the following technical lemma.

Lemma 3.2.7. [XX13, Lemma 2.9.(1)] Suppose that 𝐵 ⊆ 𝐴 is an extension of finite dimen-

sional 𝕂-algebras such that 𝐽 (𝐵) is a left ideal in 𝐴. If 𝑋 ∈ 𝐴−mod and 𝑛 ∈ ℕ are such that

𝐴Ω
𝑖

𝐵
(𝑋 ) ∈ (𝐴, 𝐵) for 0 ≦ 𝑖 ≦ 𝑛 − 1, then we have an isomorphism of 𝐴-modules

𝐴Ω
𝑗

𝐵
(𝑋 ) ≅ 𝐴Ω

𝑗

𝐴
(𝑋 ) ⊕

𝑗

⨁

𝑖=1

𝐴Ω
𝑗−𝑖+1

𝐴
(𝑇𝑖)

where 𝑇𝑖 = Ker(𝜇
Ω
𝑖

𝐵
(𝑋 )

∶ 𝐴 ⊗𝐵 Ω
𝑖

𝐵
(𝑋 ) → 𝑋 ), for 1 ≦ 𝑗 ≦ 𝑛.

Theorem 3.2.8. [XX13, Theorem 1.1] Let 𝐴 be a 𝕂-algebra and 𝐵 ⊆ 𝐴 a subalgebra such

that 𝐽 (𝐵) is a left ideal in 𝐴.

1. Suppose that (𝐴, 𝐵) is closed under taking 𝐴-syzygies. Then

findim(𝐵) ≦ findim(𝐴) + findim(𝐵𝐴) + 3,

where

findim(𝐵𝐴) = sup{pd
𝐵
𝑋 | there exists a decomposition 𝐵𝑋⊕𝐵 ≅ 𝐵𝐴 and pd

𝐵
𝑋 < ∞}.

2. Suppose that 𝐵 ⊆ 𝐴 is 𝑛-hereditary for a non negative integer 𝑛, then

gldim(𝐴) ≦ gldim(𝐵) + 𝑛 ≦ gldim(𝐴) + pd
𝐵
𝐴 + 𝑛 + 2.

Proof. We will only sketch the item (i). Let 𝑌 ∈ 𝐵 − mod with finite projective dimension.
If pd

𝐵
𝑌 < 3, the proposed upper bound is obviously true, so we can assume that 3 ≦ pd

𝐵
𝑌 .
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Then 𝑌
′
= Ω

2

𝐵
(𝑌 ) is an 𝐴-module. By the above discussion, Ω𝑗

𝐵
(𝑌

′
) = Ω

𝑗+2

𝐵
(𝑌 ) is (𝐴, 𝐵)-

projective for all 𝑗 ≧ 1.Denote𝑀 = Ω𝐵(𝑌
′
) = Ω

3

𝐵
(𝑌 ), then all𝐴-syzygies of𝑀 are relatively

projective and, if pd
𝐵
𝑌 = 𝑚, then, by the above lemma,

0 = 𝐴Ω𝐵(𝑌 ) ≅ 𝐴Ω
𝑚−2

𝐴
(𝑀) ⊕ 𝑁,

where 𝑁 is some 𝐴-module. Therefore pd
𝐴
𝑀 ≦ 𝑚 − 3. Let

0 𝑃𝑡 ⋯ 𝑃0 𝑀 0

be a minimal projective resolution for 𝑀 as an 𝐴-module. The finiteness of pd
𝐵 𝐵𝑀 implies

the finiteness of pd
𝐵 𝐵Ω

𝑗

𝐴
(𝑀), for any 𝑗 a non negative integer, therefore all modules

in the above sequence have finite projective dimension when viewed as 𝐵-modules. So
pd

𝐵
𝑀 ≦ 𝑡+max{pd

𝐵
𝑃𝑖} ≦ 𝑡+findim(𝐵𝐴). Finally, we have pd

𝐵
𝑋 = pd

𝐵
𝑀+3, 𝑡 ≦ findim𝐴

and
pd

𝐵
𝑋 = pd

𝐵
𝑀 + 3 ≦ findim𝐴 + findim(𝐵𝐴) + 3.

Since 𝑋 is an arbitrary 𝐵-module of finite projective dimension, we obtain

findim𝐵 ≦ findim𝐴 + findim(𝐵𝐴) + 3.

Remark 3.2.9. The above theorem states that, if findim𝐴 is finite, then findim𝐵 is finite

provided the conditions assumed on the extension 𝐵 ⊆ 𝐴.

We end [XX13] discussion with an equivalence that relates the Finitistic Dimension
Conjecture to Relative Homological Algebra.

Proposition 3.2.10. [XX13, Proposition 2.19] If 𝐵 ⊆ 𝐴 be an extension of 𝕂-algebras such

that 𝐽 (𝐵) is a left ideal in 𝐴 and 𝐽 (𝐴) = 𝐽 (𝐵)𝐴, then

gldim(𝐴, 𝐵) ≦ 1.

The condition 𝐽 (𝐴) = 𝐽 (𝐵)𝐴 is called radical full.

At the end of [XX13, Section 2] the authors provide the following construction.

Let 𝐵 be a finite dimensional 𝕂-algebra, with 𝕂 a perfect field. Write 𝐵 = Σ ⊕ 𝐽 (𝐵),
where Σ is a maximal semisimple subalgebra of 𝐵, and define

�̄� ≐

𝐵

𝐽
𝑛−1

(𝐵)

,
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where 𝑛 = min{𝑘 | 𝐽
𝑘
(𝐵) = 0}. Then we can construct the matrix algebra

𝐴 ≐
(

Σ 0

𝐽 (𝐵) �̄�.)

The 𝕂-algebra homomorphism

𝑏 = 𝑠 + 𝑗 ⟼
(

𝑠 0

𝑗
̄
𝑏)

is injective and we can think about the extension 𝐵 ⊆ 𝐴 via this homomorphism. The
extension 𝐵 ⊆ 𝐴 is radical full, 𝐽 (𝐵) is a left ideal in𝐴, and, therefore, gldim(𝐴, 𝐵) ≦ 1

Example 3.2.11. Consider 𝐵 =
𝕂[𝑥]

⟨𝑥
2
⟩
, the algebra of dual numbers. Then

𝐴 =

(

Σ 0

𝐽 (𝐵) �̄�)

=

(

𝕂 0

𝕂 𝕂)

≅ 𝕂𝑄,

where 𝑄 ∶ ∙ ∙ . In particular gldim(𝐴, 𝐵) ≦ 1.

This bound is not sharp, to see this we will compute all (𝐴, 𝐵)-projectives up to

isomorphism of 𝐴-modules. Notice that the category of finite dimensional 𝐵-modules

has only two indecomposable modules (up to isomorphism): 𝐵𝐵 and 𝐵𝕂. Therefore all

(𝐴, 𝐵)-projective modules can be constructed using the 𝐴-modules 𝐴𝐴 ⊗𝐵 𝐵 ≅ 𝐴𝐴 and

𝐴𝐴 ⊗𝐵 𝕂. For the first case we have 𝐴𝐴 ⊗𝐵 𝐵 = 𝐴𝐴 = 𝑀 ⊗ 𝑁 with

𝑀 ≅ 𝕂 𝕂 and 𝑁 ≅ 𝑆(2).
1

For the second case, let 𝑥 ∈ 𝐵𝕂 be a generator (as 𝐵-modules), then 𝛼 ⊗𝐵 𝑥 = 𝑒2 ⊗𝐵 𝛼𝑥 =

𝑒2 ⊗𝐵 0 = 0, by the simplicity of 𝐵𝕂. Therefore 𝐴⊗𝐵 𝕂 is generated by 𝑒1 ⊗𝐵 𝑥 and 𝑒2 ⊗𝐵 𝑥

with 𝛼 acting trivially. In other words, 𝐴 ⊗𝐵 𝕂 ≅ 𝑆(1) ⊕ 𝑆(2).

We have shown that, up to isomorphism, all the indecomposable 𝐴-modules are (𝐴, 𝐵)-

projectives, that is, 𝑆(1), 𝑆(2) and 𝑀 are (𝐴, 𝐵)-projectives. Since every 𝐴-module is a

sum of indecomposable modules, we conclude that the (𝐴, 𝐵)-projectives are, preciselly,

𝐴 − mod. Therefore gldim(𝐴, 𝐵) = 0.

We end this example by saying that one could prove that gldim(𝐴, 𝐵) = 0 using [XX13,

Lemma 2.12].

The above theory and construction can be used to prove the following equiva-
lence.
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Corollary 3.2.12. [XX13] The following statements are equivalent:

1. Every finite dimensional algebra over a perfect field has finite finitistic dimension.

2. Let 𝐵 ⊆ 𝐴 is a finite dimensional extension of algebras over a perfect field 𝕂 with 𝐽 (𝐵)

a left ideal in 𝐴 and findim(𝐴) < ∞. If gldim(𝐴, 𝐵) ≦ 1, then findim(𝐵) < ∞.

This equivalence obtained by Xi and Xu indicates that one can prove the Finitistic
Dimension Conjecture using relative homological data of extensions with finite relative
global dimension.

Xi and Xu’s work is not the only one that tackles the Finitistic Dimension Conjecture
using relative homology of extensions of algebras. In [IM21] the authors study strongly
proj-bounded extensions 𝐵 ⊆ 𝐴 in order to understand when the finiteness of the finitistic
dimension of 𝐵 implies that findim𝐴 < ∞ and vice-versa. One of the conditions for an
extension to be strongly proj-bounded is gldim(𝐴

𝑒
, 𝐵

𝑒
) < ∞. Their main theorem is.

Theorem 3.2.13. [IM21, Theorem 6.11] Let 𝐵 ⊆ 𝐴 be a strongly proj-bounded extension.

Then findim(𝐵) is finite if, and only if, findim(𝐴) is finite.

For an in depth discussion of [IM21] see 3.3.

In both cases, [XX13] and [IM21] indicates that it is interesting to obtain results
regarding extensions of finite relative global dimension. For the remainder of this text we
will take a look at some efforts to produce examples of such extensions.

Guo, in [Guo18], was able to construct examples of extensions of algebras while
obtaining bounds for their relative homological dimensions. We will not get into the
details, for that the reader is refered to [Guo18]. To understand this examples, we first
need a definition.

Definition 3.2.14. [Guo18, Definition 5.3] Let 𝐴 be a 𝕂-algebra and 𝐵, 𝐶, 𝑆 ⊆ 𝐴 three

subalgebras. We say that 𝐴 decomposes as a twisted tensor product of 𝐵 and 𝐶 over 𝑆 if

the following conditions hold:

1. 𝑆 is a semisimple subalgebra of 𝐴 such that 𝐴 = 𝑆 ⊕ 𝐽 (𝐴) as 𝑆𝑒-modules.

2. 𝐵 ∩ 𝐶 = 𝑆.

3. the multiplication map 𝜇 ∶ 𝐶 ⊗𝑆 𝐵 → 𝐴 is an isomorphism of (𝐶 − 𝐵)-bimodules.

4. 𝐽 (𝐵)𝐽 (𝐶) ⊆ 𝐽 (𝐶)𝐽 (𝐵).

We can understand twisted tensor products using quivers. Suppose that 𝐶 = 𝕂𝑅1/𝐼 , 𝐼
generated by the relations 𝜎𝑖, and 𝐵 = 𝕂𝑅2/𝐽 , 𝐽 generated by 𝜏𝑗 , and that (𝑅1)0 = (𝑅2)0
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holds. Consider the quiver 𝑄 such that 𝑄0 = (𝑅1)0 = (𝑅2)0 and 𝑄1 is the disjoint union of
(𝑅1)1 and (𝑅2)1. If 𝐿⊲𝕂𝑄 is the ideal generated by the relations 𝜎𝑖, 𝜏𝑗 and 𝛽𝛼, for 𝛼 ∈ (𝑅1)1

and 𝛽 ∈ (𝑅2)1, then

𝐴 =

𝕂𝑄

𝐿

is the twisted tensor product of 𝐵 and 𝐶 over Σ = ∑

𝑖∈𝑄0

𝕂 𝑒𝑖.

Corollary 3.2.15. [Guo18, Corollary 1.2] Let 𝐴 be a 𝕂-algebra and 𝐵, 𝐶, 𝑆 ⊆ 𝐴 three

subalgebras. If𝐴 decomposes as a twisted tensor product of 𝐵 and 𝐶 over 𝑆, then gldim(𝐴, 𝐵) ≧

gldim(𝐶).

Example 3.2.16. Let 𝐶 be the algebra whose Gabriel quiver is

𝔸𝑛+1 ∶ 1 ⋯ 𝑛 𝑛 + 1

and relations are 𝐽 2(𝕂𝔸𝑛+1). Suppose that 𝐵 is any bound quiver algebra over the same

vertices of 𝐶. If 𝐴 is the twisted tensor product of 𝐵 and 𝐶 over Σ = ∑

𝑖∈(𝔸𝑛+1)0

𝕂 𝑒𝑖, then

gldim(𝐴, 𝐵) ≧ gldim(𝐶) = 𝑛.

3.3 Combinatorial Approach to Relative Global
Dimensions

In this section we discuss the theory of [IM21] related to relative homological dimen-
sions. In their paper, Iusenko and MacQuarrie prove an upper bound for the relative global
dimension using combinatorics. This particular result will be very useful and important
for the next section, as it is the primary upper bound used to provide examples for the
extension that we will introduce.

As is the case for some combinatorial results, the proof of [IM21] main theorem for
relative homological algebra is technical and we will not enter in the details. We highly
recommend the reader to see the details by themselves in the original paper, since often
such combinatorial arguments can add a lot of intuition for what is happening.

Their theorem is

Theorem 3.3.1. [IM21, Theorem 3.2] Let Q be a quiver together with a partition 𝑉1,… , 𝑉𝑛 of

the vertices set of Q, satisfying the properties:
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1. There are no arrows from a vertex in 𝑉𝑖 to a vertex in 𝑉𝑗 if 𝑖 < 𝑗 ;

2. There are no arrows between distinct vertices in each 𝑉𝑖.

Let 𝐴 = 𝕂𝑄/𝐼 , with 𝐼 admissible, and let 𝐵 be a subalgebra of 𝐴 generated as a subalgebra

by the elements of a quiver 𝑅 which satisfies the following properties:

i. Each vertex of R is a sum of vertices of Q;

ii. The arrows 𝛽 of 𝑅 are linear combinations of paths in 𝑄 and have the property that for

any vertex 𝑒 of 𝑄 there are vertices ℎ, 𝑔 of 𝑄 such that 𝛽𝑒 = ℎ𝛽𝑒 and 𝑒𝛽 = 𝑒𝛽𝑔 ;

iii. for each vertex 𝑒 of 𝑄 and loop 𝛾 of 𝑄 at 𝑒, there is an element 𝛽 of 𝐵 such that 𝛾 = 𝑒𝛽.

Then the relative global dimension gldim(𝐴, 𝐵) is at most 𝑛 − 1.

Before we discuss what each condition in the theorem is saying, it is interesting to
discuss a particular case. Let 𝐴 be any finite dimensional 𝕂-algebra whose Gabriel quiver
is acyclic and let 𝐵 be the semisimple subalgebra generated by all the vertices of 𝐴. Then
the above theorem says that

gldim(𝐴) = gldim(𝐴, 𝐵) ≦ 𝑛 − 1,

where 𝑛 is the dimension of 𝐵 or number of vertices of 𝑄𝐴. This recovers the theorem
[Far07, Theorem].

And that is the idea of the proof: the several combinatorial conditions of the theorem
are needed so that we can treat the extension 𝐵 ⊆ 𝐴 as an “acyclic quiver ”, in the sense
that we only add data to 𝐵 in order to obtain 𝐴 that does not become a loop or cycle. This
is formalized in condition (iii), (1) and (2).

The other conditions are necessary so that the authors can use the partition 𝑉𝑖 to get
the finiteness of the relative projective dimension of any module. By studying the induced
modules 𝐴 ⊗𝐵 𝑀 under this combinatorial constrain, they are able to obtain a direct sum
𝐴𝐴 ⊗𝐵 𝑀 = 𝐴𝐴𝑆 ⊕ 𝐴𝐴𝐷 such that:

• the restriction of the multiplication 𝐴 ⊗𝐵 𝑀 to 𝐴𝑆 is surjective, denote 𝐾 the kernel
of the restriction.

• If 𝑀 is supported on vertices in 𝑉1 ∪⋯ ∪ 𝑉𝑚, in the sense that the vector spaces 𝑀𝑖

are trivial for all 𝑖 ∉ 𝑉1 ∪⋯ ∪ 𝑉𝑚, then the support of 𝐾 is 𝑉1 ∪⋯ ∪ 𝑉𝑚−1.

With the two facts above, a simple induction shows that

gldim(𝐴, 𝐵) ≦ 𝑛 − 1.

Corollary 3.3.2. [IM21, Corollary 3.3] Let 𝑄 be a quiver with vertices 1,… , 𝑛 such that there

are no arrows 𝑖 → 𝑗 when 𝑖 is strictly smaller than 𝑗 , and 𝐴 = 𝕂𝑄/𝐼 , with 𝐼 ⊲𝕂𝑄 admissible.
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If 𝐵 is a subalgebra of 𝐴 generated as a subalgebra by elements of a quiver 𝑅 satisfying the

following properties

1. the vertices of 𝑅 are sums of vertices of 𝑄.

2. the arrows 𝛽 of 𝑅 are such that 𝛽 = 𝑓 𝛽𝑒, for some 𝑒, 𝑓 vertices of 𝑄.

3. 𝑅 contains every loop of 𝑄.

Then gldim(𝐴, 𝐵) ≦ 𝑛 − 1.

The reason why Iusenko and MacQuarrie where interested in finding extensions of
finite relative global dimension is because they where interested in strongly proj-bounded
extensions.

Definition 3.3.3. [IM21, Definition 4.1] An extension of 𝕂-algebras 𝐵 ⊆ 𝐴 is proj-bounded

if it satisfies the following three conditions:

1. 𝐴/𝐵 has finite projective dimension as a 𝐵𝑒-module.

2. 𝐴/𝐵 is projective as either a left or a right 𝐵-module.

3. There exist a integer 𝑝 ≧ 1 such that (𝐴/𝐵)⊗𝐵𝑛 is projective as a 𝐵𝑒-module for any

𝑛 ≧ 𝑝. The least such 𝑝 is called index of projectivity.

Moreover, we say that 𝐵 ⊆ 𝐴 is strongly proj-bounded if it is proj-bounded and satisfies

pd
(𝐴

𝑒
,𝐵
𝑒
)
𝐴 < ∞.

In particular, pd
(𝐴

𝑒
,𝐵
𝑒
)
𝐴 < ∞ holds provided gldim(𝐴

𝑒
, 𝐵

𝑒
) < ∞. To apply the above

theorem for 𝐵𝑒 ⊆ 𝐴
𝑒 we need to understand tensor product of two algebras in terms of

quivers.

Definition 3.3.4. If 𝑄 and 𝑅 are two quivers, the product of 𝑄 and 𝑅, denoted by 𝑄 × 𝑅 is

the quiver whose vertices are

(𝑄 × 𝑅)0 ≐ 𝑄0 × 𝑅0,

that is the usual product of sets of the original vertices, and whose arrows are

(𝑄 × 𝑅)1 = (𝑄0 × 𝑅1) ∪ (𝑄1 × 𝑅0).

The source of the arrow (𝛼, 𝑖), with 𝛼 ∈ 𝑄1 and 𝑖 ∈ 𝑅0, is (𝑠(𝛼), 𝑖) ∈ 𝑄0 × 𝑅0 and its target is

(𝑡(𝛼), 𝑖). The definition for an arrow (𝑗 , 𝛽), 𝑗 ∈ 𝑄0 and 𝛽 ∈ 𝑅1, is analogous.
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If 𝐼 ⊲ 𝕂𝑄 and 𝐽 ⊲ 𝕂𝑅 are admissible, we define their product 𝐼 × 𝐽 to be the admissible

ideal of 𝕂𝑄 × 𝑅 generated by the following relations

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

(𝛼, 𝑡(𝛽))(𝑠(𝛼), 𝛽) − (𝑡(𝛼), 𝛽)(𝛼, 𝑠(𝛽)), 𝛼 ∈ 𝑄1, 𝛽 ∈ 𝑅1,

𝑄0 × 𝐽

𝐼 × 𝑅0

The above definition is a bit abstract, therefore an example should help elucidate what
is happening. If the reader is interested in other examples and more detailed computations,
we suggest [Ska11].

Example 3.3.5. Consider

𝑄 ∶ 1 2 3 and 𝑅 ∶ 1
′

2
′

3
′
.

𝛼 𝛽 𝜓 𝜔

Then 𝑄 × 𝑅 is given by

(1, 1
′
) (2, 1

′
) (3, 1

′
)

(1, 2
′
) (2, 2

′
) (3, 2

′
)

(1, 3
′
) (2, 3

′
) (3, 3

′
).

(𝛼,1
′
)

(1,𝜓)

(𝛽,1
′
)

(2,𝜓) (3,𝜓)

(𝛼,2
′
)

(1,𝜔)

(𝛽,2
′
)

(2,𝜔) (3,𝜔)

(𝛼,3
′
) (𝛽,3

′
)

If 𝐼 = 𝐽 = 0, then 𝐼 × 𝐽 ≠ 0 and it is comprised of the diagonal relations on all the squares

above. If one of them is not zero, say 𝛽𝛼 ∈ 𝐼 , then we simply make all the possible copies

of this relation (in the same way that we made copies of the arrows)

(𝛽, 1
′
)(𝛼, 1

′
), (𝛽, 2

′
)(𝛼, 2

′
), and (𝛽, 3

′
)(𝛼, 3

′
)

Lemma 3.3.6. [Les94, Lemma 1.3] For any quivers 𝑄 and 𝑅, and any admissible ideals

𝐼 ⊲ 𝕂𝑄 and 𝐽 ⊲ 𝕂𝑅, we have

𝕂𝑄

𝐼

⊗

𝕂𝑅

𝐽

≅

𝕂𝑄 × 𝑅

𝐼 × 𝐽

.
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Corollary 3.3.7. [IM21, Corollary 3.6] Let 𝐴, 𝐵 be as in (3.3.2), then

gldim(𝐴
𝑒
, 𝐵

𝑒
) ≦ 2𝑛 − 2.

Proof. By the above discussion, the vertices of 𝐴𝑒 are pairs (𝑖, 𝑗), with 𝑖 and 𝑗 vertices of 𝐴.
Simply consider the partition 𝑉𝑠 = {(𝑖, 𝑗) | 𝑗 − 𝑖 = 𝑠}. It is easy to see that all the conditions
are meet and that the above partition has 2𝑛 − 1 elements, therefore

gldim(𝐴
𝑒
, 𝐵

𝑒
) ≦ 2𝑛 − 1 − 1 = 2𝑛 − 2.

The above result was used by the authors to construct a class of strongly proj-bounded
extensions, see [IM21, Proposition 4.7]. Finally, they show that for 𝐵 ⊆ 𝐴 a strongly proj-
bounded extension of finite dimensional 𝕂-algebras, it suffices to know the finiteness of
the finitistic dimension of only one of the algebras. This adds another connection between
Relative Homological Algebra and the Finitistic Dimension Conjecture.

Theorem 3.3.8. [IM21, Theorem 6.11] Let 𝐵 ⊆ 𝐴 as above. Then findim(𝐵) is finite if, and

only if, findim(𝐴) is finite.

Remark 3.3.9. The strongly proj-bounded extensions also preserve another homological

conjecture, namely Han’s Conjecture. See [IM21, Corollary 6.17].
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Part II

Results
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Chapter 4

Classical-Relative Parallel

In this chapter we discuss some advances made in the computation of relative homolog-
ical dimensions of extensions of known constructions. Most of the results in this chapter
are based on results of the classical theory and use cleaver ways to transfer classical
resolutions to relative resolutions.

4.1 Tensor Algebra Extensions

Let 𝐵 be a 𝕂-algebra, 𝑁 a (𝐵 − 𝐵)-bimodule. By the tensor algebra extension we mean
𝐵 ⊆ 𝑇 [𝐵, 𝑁 ]. In this section we deduce some results about this extension that generalize
results about path algebras of finite acyclic quivers.

The results presented in this section are true if one consider gldim(𝑇 [𝐵, 𝑁 ], 𝐵) to be
the supremum of the relative projective dimension of any 𝑇 -module, instead of the finite
dimensional modules like our definition. Therefore one could consider infinite dimensional
𝑇 , 𝐵, and 𝑁 . But for the sake of clarity and compatibility with the rest of the text, we
will keep working with finite dimensional modules and algebras. For that reason, let 𝐵 be
a finite dimensional 𝕂-module, and 𝑁 a finite dimensional (𝐵 − 𝐵)-bimodule such that
𝑁

⊗𝐵𝑟
= 0 for some integer 𝑟 > 0. The main result of this section is.

Theorem 4.1.1. Let 𝐵 be a finite dimensional 𝕂-algebra and 𝑁 a finite dimensional (𝐵−𝐵)-

bimodule such that 𝑇 [𝐵, 𝑁 ] is finite dimensional. Then

gldim(𝑇 , 𝐵) = 1 ⟺ 𝑁 ≠ 0 (4.1)

We construct our proves based on the following result.

Theorem 4.1.2. [CLMS20, Theorem 2.5] There exists a (𝑇
𝑒
, 𝐵

𝑒
)-projective resolution for 𝑇 of



62

4 | CLASSICAL-RELATIVE PARALLEL

the form

0 𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑇 𝑇 ⊗𝐵 𝑇 𝑇 0

𝑔 𝑓

(4.2)

where 𝑓 (𝑥 ⊗ 𝑦) = 𝑥𝑦 and 𝑔(𝑥 ⊗ 𝑛 ⊗ 𝑦) = 𝑥𝑛 ⊗ 𝑦 − 𝑥 ⊗ 𝑛𝑦.

Proposition 4.1.3. Let 𝐵, 𝑁 , and 𝑇 as above. Then

gldim(𝑇 , 𝐵) ≦ 1. (4.3)

Remark 4.1.4. The above proposition generalizes (2.5.1) in the following sense: if one

consider 𝐵 = 𝕂𝑄0 and 𝑁 = 𝕂𝑄1, then 𝑇 [𝐵, 𝑁 ] = 𝕂𝑄 is the path algebra of 𝑄 and

gldim(𝕂𝑄) ≦ 1.

Proof. Let 𝑀 be a finite dimensional 𝑇 -module. Apply the functor −⊗𝑇 𝑀 to (4.2) in order
to obtain a chain complex of 𝑇 -modules

0 (𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑇 ) ⊗𝑇 𝑀 (𝑇 ⊗𝐵 𝑇 ) ⊗𝑇 𝑀 𝑇 ⊗𝑇 𝑀 0.

𝑔⊗𝑇 1𝑀 𝑓 ⊗𝑇 1𝑀 (4.4)

Use the well known isomorphisms

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

(𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑇 ) ⊗𝑇 𝑀 ≅ 𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑀

(𝑇 ⊗𝐵 𝑇 ) ⊗𝑇 𝑀 ≅ 𝑇 ⊗𝐵 𝑀

𝑇 ⊗𝑇 𝑀 ≅ 𝑀,

to write it as

0 𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑀 𝑇 ⊗𝐵 𝑀 𝑀 0,

𝜓 𝜙

(4.5)

where 𝜓(𝑡 ⊗ 𝑛 ⊗ 𝑚) = 𝑡𝑛 ⊗ 𝑚 − 𝑡 ⊗ 𝑛𝑚, with 𝑛𝑚 being the restriction to 𝑁 of the action of
𝑇 on 𝑀 , and 𝜙(𝑡 ⊗ 𝑚) = 𝑡𝑚.

To show that (4.5) is a (𝑇 , 𝐵)-projective resolution for 𝑀 , which would imply that
gldim(𝑇 , 𝐵) ≦ 1, it suffices to show that it admits a 𝐵-homotopy, see (3.5). The construction
of said 𝐵-homotopy is fully based on the proof of [CLMS20, Theorem 2.5].

We want homomorphisms of 𝐵-modules

𝑠 ∶ 𝑀 ⟶ 𝑇 ⊗𝐵 𝑀 and 𝑟 ∶ 𝑇 ⊗𝐵 𝑀 ⟶ 𝑇 ⊗𝐵 ⊗𝐵𝑁 ⊗𝐵 𝑀,
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such that

𝜙 ◦ 𝑠 = 1𝑀 (4.6)
𝑟 ◦ 𝜓 = 1𝑇⊗𝐵𝑁⊗𝐵𝑀

(4.7)
𝜓 ◦ 𝑟 + 𝑠 ◦ 𝜙 = 1𝑇⊗𝐵𝑀

. (4.8)

Define

𝑠 ∶ 𝑀 ⟶ 𝑇 ⊗𝐵 𝑀

𝑚 ⟼ 1 ⊗𝐵 𝑚.

It is clear that 𝑠, as above, is a homomorphism of 𝐵-modules and it satisfies (4.6).

We know that 𝑇 is ℤ-graded, its negative homogeneous components are zero and
𝑇𝑖 = 𝑁

⊗𝐵𝑖 for non-negative integers. Using that tensor products commute with direct sums,
we can consider 𝑇 ⊗𝐵 𝑀 as a ℤ-graded module with homogeneous components given by

(𝑇 ⊗𝐵 𝑀)𝑖 =

{

0, if 𝑖 < 0

𝑁
⊗𝐵𝑖

⊗𝐵 𝑀, if 𝑖 ≧ 0.

For each 𝑖 ∈ ℕ we will define a linear map 𝑟𝑖 ∶ (𝑇 ⊗𝐵𝑀)𝑖 ⟶ 𝑇 ⊗𝐵 𝑁 ⊗𝐵𝑀 . If 𝑖 = 0, define
𝑟0 ≐ 0. If 𝑖 > 0, let 𝑟𝑖 be the unique homomorphism of groups induced by the following
𝐵-multi-additive map

𝑅𝑖 ∶ 𝑁
𝑖
×𝑀 ⟶ 𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑀

(𝑛1,… , 𝑛𝑖;𝑚) ⟼

𝑖

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑚],

with 𝑛0 = 𝑛𝑖+1 ≐ 1𝐵 ∈ 𝐵. One way to understand 𝑅𝑖, and therefore 𝑟𝑖, is that it adds a
summand for each index 1 ≦ 𝑗 ≦ 𝑖 with 𝑛𝑗 viewed as an element on the second "coordinate"
of 𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑀 . Define

𝑟 =

∞

⨁

𝑖=0

𝑟𝑖 ∶ 𝑇 ⊗𝐵 𝑀 ⟶ 𝑇 ⊗𝐵 𝑁 ⊗𝐵 𝑀,

then 𝑟 is a homomorphism of 𝐵-modules. In fact,

𝑟(𝑏 ⋅ (𝑛1 ⊗⋯ ⊗ 𝑛𝑖 ⊗ 𝑚)) = 𝑟𝑖(𝑏𝑛1 ⊗⋯ ⊗ 𝑛𝑖 ⊗ 𝑚)

= 1 ⊗ 𝑏𝑛1 ⊗ [(𝑛2 ⊗⋯ ⊗ 𝑛𝑖)𝑚] +

𝑖

∑

𝑗=2

(𝑏𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑚]

= 𝑏 ⋅ (

𝑖

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑚])

= 𝑏 ⋅ 𝑟(𝑛1 ⊗⋯ ⊗ 𝑛𝑖 ⊗ 𝑚).

We now proceed to show that 𝑟 satisfies (4.7) and (4.8).
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For (4.7) we have

𝑟𝜓((𝑛1 ⊗⋯ ⊗ 𝑛𝑖) ⊗ 𝑛𝑖+1 ⊗ 𝑚) =

= 𝑟((𝑛1 ⊗⋯ ⊗ 𝑛𝑖+1) ⊗ 𝑚 − (𝑛1 ⊗⋯ ⊗ 𝑛𝑖) ⊗ [𝑛𝑖+1𝑚])

=

𝑖+1

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖+1)𝑚]

−

𝑖

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑛𝑖+1𝑚]

= (𝑛1 ⊗⋯ ⊗ 𝑛𝑖) ⊗ 𝑛𝑖+1 ⊗ [1 ⋅ 𝑚]

= 1𝑇⊗𝐵𝑁⊗𝐵𝑀
((𝑛1 ⊗⋯ ⊗ 𝑛𝑖) ⊗ 𝑛𝑖+1 ⊗ 𝑚).

For (4.8) we compute

(𝜓 ◦ 𝑟+𝑠 ◦ 𝜙)((𝑛1 ⊗⋯ ⊗ 𝑛𝑖) ⊗ 𝑚) =

= 𝜓

(

𝑖

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑚]

)

+ 1 ⊗ [𝑛1 ⊗⋯ ⊗ 𝑛𝑖]𝑚

=

𝑖

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1 ⊗ 𝑛𝑗) ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑚]

−

𝑖

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ [(𝑛𝑗 ⊗ 𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑚]

+ 1 ⊗ [𝑛1 ⊗⋯ ⊗ 𝑛𝑖]𝑚

= (𝑛1 ⊗⋯ ⊗ 𝑛𝑖) ⊗ 𝑚 − 1 ⊗ [(𝑛1 ⊗⋯ ⊗ 𝑛𝑖)𝑚] + 1 ⊗ [(𝑛1 ⊗⋯ ⊗ 𝑛𝑖)𝑚]

= 1𝑇⊗𝐵𝑀
((𝑛1 ⊗⋯ ⊗ 𝑛𝑖) ⊗ 𝑚).

Therefore by (3.5) we proved that (4.5) is a (𝑇 [𝐵, 𝑁 ], 𝐵)-projective resolution for any
𝑀 ∈ 𝑇 [𝐵, 𝑁 ] − mod and pd

(𝑇 [𝐵,𝑁 ],𝐵)
𝑀 ≦ 1. In particular

gldim(𝑇 [𝐵, 𝑁 ], 𝐵) ≦ 1. (4.9)

Remark 4.1.5. Before we continue to prove this section’s main theorem, let us understand

how to derive 4.1.2 from 4.1.3. Begin by specializing 4.5 with 𝑀 = 𝑇 , then we recover the

complex 4.2, that is, all the modules are the same, 𝜓 = 𝑔 and 𝜙 = 𝑓 . It is easy to verify that

the specialized complex is a complex of 𝑇 𝑒-modules.

Now we turn our attention to the 𝐵-homotopy obtained in 4.1.3. This homotopy shows that

the specialized complex is, actually, a short exact sequence, since the proposition proves

that it is a (𝑇 , 𝐵)-exact sequence. Therefore, to completely recover what was obtained in

[CLMS20, Theorem 2.5] it suffices to show that this 𝐵-homotopy is a is a 𝐵𝑒-homotopy,
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since the equalities 4.6, 4.7, and 4.8 follows from the left module structures and equalities

of functions are not disturbed by new added structure. Therefore, we compute

𝑟((𝑛1 ⊗⋯ ⊗ 𝑛𝑖 ⊗ 𝑡) ⋅ 𝑏) = 𝑟𝑖(𝑛1 ⊗⋯ ⊗ 𝑛𝑖 ⊗ (𝑡𝑏))

= 1 ⊗ 𝑛1 ⊗ [(𝑛2 ⊗⋯ ⊗ 𝑛𝑖)𝑡𝑏] +

𝑖

∑

𝑗=2

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑡𝑏]

= (

𝑖

∑

𝑗=1

(𝑛1 ⊗⋯ ⊗ 𝑛𝑗−1) ⊗ 𝑛𝑗 ⊗ [(𝑛𝑗+1 ⊗⋯ ⊗ 𝑛𝑖)𝑡]) ⋅ 𝑏

= 𝑟(𝑛1 ⊗⋯ ⊗ 𝑛𝑖 ⊗ 𝑡) ⋅ 𝑏, ∀ 𝑏 ∈ 𝐵, ∀ 𝑡 ∈ 𝑇 .

and

𝑠(𝑡 ⋅ 𝑏) = 𝑠(𝑡𝑏) = 1𝑇 ⊗𝐵 (𝑡𝑏) = (1𝑇 ⊗ 𝑡) ⋅ 𝑏 = 𝑠(𝑡) ⋅ 𝑏, ∀ 𝑏 ∈ 𝐵, ∀ 𝑡 ∈ 𝑇 .

In conclusion, by specializing 4.5 with 𝑀 = 𝑇 , one obtain the (𝑇
𝑒
, 𝐵

𝑒
)-exact sequence of

[CLMS20, Theorem 2.5].

Now we are able to prove this section’s main theorem.

(Proof of Theorem 4.1.1) It’s clear that if 𝑁 = 0, then

gldim(𝑇 , 𝐵) = gldim(𝐵, 𝐵) = 0.

Conversely, if 𝑁 ≠ 0, then compute the group Tor
(𝑇 ,𝐵)

1
(𝐵, 𝐵) using the (𝑇 , 𝐵)-projective

resolution
0 𝑇 ⊗𝐵 𝑁 𝑇 𝐵 0

𝑔 𝑓

(4.10)

obtained from (4.5) specifying 𝑀 = 𝐵. The differentials become
{

𝑓 (𝑏 + 𝑛1 + 𝑛2 ⊗ 𝑛3 +⋯) = 𝑏

𝑔(𝑡 ⊗ 𝑛) = 𝑡𝑛.

(4.11)

Applying 𝐵 ⊗𝑇 − to the deleted sequence we obtain a complex

0 𝐵 ⊗𝑇 𝑇 ⊗𝐵 𝑁 𝐵 ⊗𝑇 𝑇 0,

1𝐵⊗𝑇 𝑔 (4.12)

with
(1𝐵 ⊗𝑇 𝑔)(𝑏 ⊗𝑇 𝑡 ⊗𝐵 𝑛) = 𝑏 ⊗ 𝑡𝑛 = 𝑏 ⋅ (𝑡𝑛) ⊗ 1𝑇 = 0 ⊗ 1𝑇 = 0, (4.13)

since 𝑇 acts on 𝐵 on the right by projection, that is,

𝐵 ≅

𝑇 [𝐵, 𝑁 ]

⟨𝑁 ⟩

(4.14)
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Therefore 1𝐵 ⊗𝑇 𝑔 = 0 and

Tor
(𝑇 ,𝐵)

1
(𝐵, 𝐵) = 𝐵 ⊗𝑇 𝑇 ⊗𝐵 𝑁 ≅ 𝐵 ⊗𝐵 𝑁 ≅ 𝑁 ≠ 0.

In conclusion,
pd

(𝑇 ,𝐵)
𝐵 = 1 and gldim(𝑇 , 𝐵) = 1. (4.15)

□

There are a myriad of tensor algebras extensions. For instance, one could take 𝐵 = 𝕂𝑄

and add to it a finite number of arrows between elements of 𝑄0. In that case, 𝑁 would
have as basis all the added arrows, and the paths that they create. In order to see non
obvious constructions, the next example show a way in which one could add relations
while constructing a tensor extension.

Example 4.1.6. Let 𝐵 be the algebra given by

3 6

2 5

1 4

𝑐

𝑏 𝑒

𝑓𝑎

𝑑

with relations 𝑐𝑏 and 𝑏𝑎. Then we can take 𝑁 = 𝕂 𝑔 ⊕ 𝕂 𝛼 ⊕ 𝕂 𝛽 ⊕ 𝕂 𝛾 , with bimodule

structure given by

𝑔 = 𝑒5𝑔𝑒2, 𝛼 = 𝑔 ⋅ 𝑎, 𝛽 = 𝑒 ⋅ 𝑔, 𝛾 = 𝑒 ⋅ 𝛼 = 𝛽 ⋅ 𝑎 = 𝑒 ⋅ 𝑔 ⋅ 𝑎, and 𝑓 ⋅ 𝑔 = 0.

Then 𝑇 [𝐵, 𝑁 ] is the algebra whose Gabriel quiver is

3 6

2 5

1 4

𝑐

𝑏

𝑔

𝑒

𝑓𝑎

𝑑

and relations are generated by 𝑐𝑏, 𝑏𝑎, and 𝑓 𝑔 . In particular, gldim(𝑇 [𝐵, 𝑁 ], 𝐵) = 1.
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4.2 Inequality: Tensor Product of Two Algebras
In this section we present a lower bound for gldim(𝐴⊗𝐵, 𝐵) using classical homological

theory. Then we adapt the only combinatorial upper bound found in the literature to this
type of extension. By the extension 𝐵 ⊆ 𝐴⊗𝐵we mean the identification 𝐵 ≡ 𝕂⊗𝐵 ⊆ 𝐴⊗𝐵.
In this section ⊗ means ⊗𝕂.

We begin by proving some technical results.

Lemma 4.2.1. Let 𝐴 and 𝐵 be any 𝕂-algebras. If

𝑀∙ ∶ ⋯ 𝑀𝑛+1 𝑀𝑛 𝑀𝑛−1 ⋯
𝑑𝑛+1 𝑑𝑛

is an exact sequence of 𝐴-modules (not necessarily finite dimensional), then

𝑀∙ ⊗ 𝐵 ∶ ⋯ 𝑀𝑛+1 ⊗ 𝐵 𝑀𝑛 ⊗ 𝐵 𝑀𝑛−1 ⊗ 𝐵 ⋯
𝑑𝑛+1⊗1𝐵 𝑑𝑛⊗1𝐵

is an (𝐴 ⊗ 𝐵, 𝐵)-exact sequence.

Proof. It is trivial that 𝑀∙ ⊗ 𝐵 is a complex of 𝐴 ⊗ 𝐵-modules. By (3.1.6) there exists a
family of linear transformations 𝑇𝑛 ∶ 𝑀𝑛 → 𝑀𝑛+1 such that 𝑇𝑛−1𝑑𝑛 + 𝑑𝑛+1𝑇𝑛 = 1𝑀𝑛

. Apply
− ⊗ 𝐵 to this equation and use that it is a covariant functor to obtain

1𝑀𝑛⊗𝐵
= 1𝑀𝑛

⊗ 1𝐵 = (𝑇𝑛−1𝑑𝑛 + 𝑑𝑛+1𝑇𝑛) ⊗ 1𝐵

= (𝑇𝑛−1 ⊗ 1𝐵) ◦ (𝑑𝑛 ⊗ 1𝐵) + (𝑑𝑛+1 ⊗ 1𝐵) ◦ (𝑇𝑛 ⊗ 1𝐵).

This means that𝑀∙⊗𝐵 admits an 𝕂⊗𝐵 ≡ 𝐵-homotopy and, therefore, is an (𝐴⊗𝐵, 𝐵)-exact
sequence.

Lemma 4.2.2. Suppose that 𝑀 ∈ 𝐴 − mod is projective, then 𝑀 ⊗ 𝐵 ∈ 𝐴 ⊗ 𝐵 − mod is

𝐴 ⊗ 𝐵-projective.

Proof. Since 𝑀 is projective, there exists 𝑁 ∈ 𝐴 − mod and an integer 𝑛 > 0 such that
𝑀 ⊕ 𝑁 ≅ 𝐴

𝑛. Applying − ⊗ 𝐵 we obtain

(𝑀 ⊕ 𝑁 ) ⊗ 𝐵 ≅ (𝑀 ⊗ 𝐵) ⊕ (𝑁 ⊗ 𝐵) ≅ (𝐴
𝑛
) ⊗ 𝐵 ≅ (𝐴 ⊗ 𝐵)

𝑛
.

Corollary 4.2.3. If 𝑃∙ → 𝑀 is a projective resolution of 𝑀 ∈ 𝐴−mod, then 𝑃∙⊗𝐵 → 𝑀⊗𝐵

is an (𝐴 ⊗ 𝐵, 𝐵)-projective resolution for 𝑀 ⊗ 𝐵.
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Now that we are able to shift classical homological resolutions to the relative context,
we can obtain a lower bound.

Proposition 4.2.4. Let𝐴 and 𝐵 be finite dimensional 𝕂-algebras. Consider 𝐵 as a subalgebra

of 𝐴 ⊗ 𝐵, then

gldim(𝐴 ⊗ 𝐵, 𝐵) ≧ gldim𝐴. (4.16)

Proof. Let 𝑀 ∈ 𝐴 − mod and consider a minimal projective resolution for 𝑀

⋯ 𝑃𝑛 𝑃𝑛−1 ⋯ 𝑃0 𝑀 0.
𝑑𝑛 𝑑0 (4.17)

By (4.2.3),

⋯ 𝑃𝑛 ⊗ 𝐵 𝑃𝑛−1 ⊗ 𝐵 ⋯ 𝑃0 ⊗ 𝐵 𝑀 ⊗ 𝐵 0
𝑑𝑛⊗1𝐵 𝑑0⊗1𝐵

(4.18)
is an (𝐴 ⊗ 𝐵, 𝐵)-projective resolution for 𝑀 ⊗ 𝐵.

Since (4.17) is a minimal resolution of 𝑀 as 𝐴-module, each induced 𝐴-epimorphism
𝑑𝑛 ∶ 𝑃𝑛 ⟶ Im(𝑑𝑛) is a projective cover. Without losing any generality, by (2.5.5), assume
that each 𝑑𝑛 induces an isomorphism ̄

𝑑𝑛 ∶ top 𝑃𝑛 ⟶ top Im(𝑑𝑛). This yields a commutative
diagram

𝑃𝑛 Im 𝑑𝑛

𝑃𝑛

𝐽𝐴(𝑃𝑛)

Im 𝑑𝑛

𝐽𝐴(Im 𝑑𝑛)

𝑑𝑛

̄
𝑑𝑛

≅

where the vertical maps are the usual projections. In particular,

Ker 𝑑𝑛 ⊆ 𝐽𝐴(𝑃𝑛) = 𝐽 (𝐴)𝑃𝑛.

and
Ker(𝑑𝑛 ⊗ 1𝐵) = Ker(𝑑𝑛) ⊗ 𝐵 ⊆ 𝐽𝐴(𝑃𝑛) ⊗ 𝐵.

Computing the extension groups Ext
∗

(𝐴⊗𝐵,𝐵)
(𝑀 ⊗ 𝐵, 𝑆 ⊗ 𝐵), where 𝑆 ∈ 𝐴 − mod is any

simple module, using (4.18) one obtains the cochain complex

0 Hom𝐴⊗𝐵(𝑃0 ⊗ 𝐵, 𝑆 ⊗ 𝐵) Hom𝐴⊗𝐵(𝑃1 ⊗ 𝐵, 𝑆 ⊗ 𝐵) ⋯ .
(𝑑1⊗1𝐵)

∗
(𝑑2⊗1𝐵)

∗

(4.19)

For any 𝜙 ∈ Hom𝐴⊗𝐵(𝑃𝑛 ⊗ 𝐵, 𝑆 ⊗ 𝐵),

(𝑑𝑛+1 ⊗ 1𝐵)
∗
(𝜙)(𝑃𝑛+1 ⊗ 𝐵) = 𝜙(𝑑𝑛+1 ⊗ 1𝐵(𝑃𝑛+1 ⊗ 𝐵))

⊆ 𝜙(Im 𝑑𝑛+1 ⊗ 𝐵) = 𝜙(Ker 𝑑𝑛 ⊗ 𝐵)

⊆ 𝜙(𝐽𝐴(𝑃𝑛) ⊗ 𝐵) = 𝜙(𝐽 (𝐴)𝑃𝑛 ⊗ 𝐵).

Since 𝜙 is (𝐴 ⊗ 𝐵)-linear, given 𝑎 ∈ 𝐽 (𝐴) and 𝑝 ⊗ 𝑏 ∈ 𝑃𝑛 ⊗ 𝐵 we have the following
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computation

𝜙(𝑎𝑝 ⊗ 𝑏) = 𝜙((𝑎 ⊗ 1𝐵) ⋅ (𝑝 ⊗ 𝑏)) = (𝑎 ⊗ 1𝐵)𝜙(𝑝 ⊗ 𝑏) = 0

because 𝑆 is a simple 𝐴-module and 𝑎 ∈ 𝐽 (𝐴). This means that 𝜙(𝐽 (𝐴)𝑃𝑛 ⊗ 𝐵) = 0. In
particular, the differentials of (4.19) are all zero, and its cohomology becomes

Ext
𝑛

(𝐴⊗𝐵,𝐵)
(𝑀 ⊗ 𝐵, 𝑆 ⊗ 𝐵) = Hom𝐴⊗𝐵(𝑃𝑛 ⊗ 𝐵, 𝑆 ⊗ 𝐵), for 𝑛 ≧ 1.

If there exists 𝑓 ∈ Hom𝐴(𝑃𝑛, 𝑆) such that 𝑓 ≠ 0, then 𝑓 ⊗ 1𝐵 ∈ Hom𝐴⊗𝐵(𝑃𝑛 ⊗ 𝐵, 𝑆 ⊗ 𝐵) is a
non zero homomorphism. Again by the minimality of (4.17) this shows that

Ext
𝑛

𝐴
(𝑀, 𝑆) = Hom𝐴(𝑃𝑛, 𝑆) ≠ 0 ⟹ Ext

𝑛

(𝐴⊗𝐵,𝐵)
(𝑀 ⊗ 𝐵, 𝑆 ⊗ 𝐵) ≠ 0.

By (2.4.1), we conclude that

pd
(𝐴⊗𝐵,𝐵)

𝑀 ⊗ 𝐵 ≧ pd
𝐴
𝑀, ∀ 𝑀 ∈ 𝐴 − mod. (4.20)

In particular, there exists 𝑆 ∈ 𝐴 − mod simple such that

gldim(𝐴 ⊗ 𝐵, 𝐵) ≧ pd
(𝐴⊗𝐵,𝐵)

𝑆 ⊗ 𝐵 ≧ pd
𝐴
𝑆 = gldim𝐴. (4.21)

The above result states an inequality, but we are interested in computing gldim(𝐴, 𝐵).
We can do that by considering algebras whose global dimension in not finite.

Corollary 4.2.5. If 𝐴 and 𝐵 are finite dimensional 𝕂-algebras and gldim(𝐴) = ∞, then

gldim(𝐴 ⊗ 𝐵, 𝐵) = ∞.

Example 4.2.6. Consider 𝐵 any basic 𝕂-algebra and write it as 𝐵 ≅ 𝕂𝑄/𝐼 , where 𝐼 is an

admissible ideal, and consider 𝐴 as the algebra whose Gabriel quiver is

1

𝑥

and the relations are generated by 𝑥
𝑛, with 𝑛 > 1. Then gldim(𝐴) = ∞ and the above

corollary says that gldim(𝐴 ⊗ 𝐵, 𝐵) = ∞.

For a more concrete example, consider 𝐴 as above and 𝐵 as 𝔸5 with relations. That is,
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its Gabriel quiver is

1 2 3 4 5
𝛼 𝛽 𝛾 𝛿

and all the paths of length 2 generate the relations. By (3.3.6), 𝐴 ⊗ 𝐵 ≅ 𝕂𝑄/𝐽 , where 𝑄 is

the quiver

1 2 3 4 5
𝛼

𝑥1

𝛽

𝑥2

𝛾

𝑥3

𝛿

𝑥4 𝑥5

and 𝐽 is generated by all the paths of length two using arrows of 𝐵, 𝑥𝑛
𝑖
, and 𝑥2𝛼−𝛼𝑥1, 𝑥3𝛽−

𝛽𝑥2, etc. Then

gldim
(

𝕂𝑄

𝐽

, 𝐵
)
= ∞.

It would be nice to find an upper bound for gldim(𝐴⊗𝐵, 𝐵). To do that for a reasonable
class of 𝕂-algebras we are going to use the combinatorial upper bound for relative global
dimensions, and their proofs, obtained by the authors of [IM21]. One can read their results
in Section (3.3).

We are interested in applying the theorem (3.3.1) to 𝐵 ⊆ 𝐴⊗𝐵. The first thing we need
to do is to understand how the theorem’s conditions can be satisfied by this particular
type of extension. But this is easier than it sounds, because a good thing about (3.3.1) is
that the necessary conditions make it easy to see what 𝐴 and 𝐵 can not be. For example,
conditions 1 and 2 together say that both 𝐴 and 𝐵 can not have oriented cycles besides
loops.

Suppose that 𝐴 = 𝕂𝑄/𝐼 and 𝐵 = 𝕂𝑅/𝐽 , with 𝐼 and 𝐽 admissible, such that 𝑄 and 𝑅
don’t have oriented cycles besides, possibly, loops. Then, by (3.3.6), 𝐴 ⊗ 𝐵 ≅ 𝕂(𝑄 × 𝑅)/𝐿,
for some 𝐿 admissible. The image of an arrow 𝛽 ∈ 𝑅1 via the above isomorphism is

∑

𝑖∈𝑄0

(𝑖, 𝛽)

and that of a vertex 𝑒 ∈ 𝑅0 is
∑

𝑖∈𝑄0

(𝑖, 𝑒)

With the equations above, it is easy to see that the conditions 𝑖 and 𝑖𝑖 are always satisfied.
For the third condition to hold, any loop of 𝑄 × 𝑅 must come from 𝑅, which implies that 𝑄
must have no oriented cycles, while 𝐵 can have only loops. If 𝐵 has a loop, then condition
𝑖𝑖𝑖 is clearly satisfied.

But what can we do about conditions 1 and 2? Suppose that 𝑉1,… , 𝑉𝑛 and 𝑈1,… , 𝑈𝑚 are
partitions of the vertices of 𝑄 and of 𝑅, respectively, such that both satisfy conditions 1
and 2 of (3.3.1). Consider

𝑊𝑟 = ⋃

𝑖+𝑗=𝑟

𝑉𝑖 × 𝑈𝑗 ,
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then the family {𝑊2,… , 𝑊𝑛+𝑚} is a partition for (𝑄 × 𝑅)0.

Suppose that there is an arrow 𝜉 ∈ (𝑄 × 𝑅)1 from a vertex of 𝑊𝑟 to a vertex of 𝑊𝑠. Then
we have two options

{

𝜉 ∶ (𝑎, 𝑐) ⟶ (𝑏, 𝑐),

𝜉 ∶ (𝑎, 𝑐) ⟶ (𝑎, 𝑑),

where 𝑎, 𝑏 ∈ 𝑄0 and 𝑐, 𝑑 ∈ 𝑅0.

If 𝜉 ∶ (𝑎, 𝑐) ⟶ (𝑏, 𝑐), then 𝑎 ≠ 𝑏 because 𝑄 has no oriented cycles, even loops.
Therefore, for some 𝑗 > 𝑖, 𝑎 ∈ 𝑉𝑗 and 𝑏 ∈ 𝑉𝑖, once 𝑉1,… , 𝑉𝑛 satisfy condition 1. Say that
𝑐 ∈ 𝑈𝑙, then 𝑟 = 𝑗 + 𝑙 > 𝑖 + 𝑙 = 𝑠.

If 𝜉 ∶ (𝑎, 𝑐) ⟶ (𝑎, 𝑑) and 𝑐, 𝑑 ∈ 𝑈𝑙, then by condition 2 applied to the partition 𝑈1,… , 𝑈𝑚

we must have 𝑐 = 𝑑 and 𝜉 is an arrow of from a vertex of 𝑊𝑟 to itself, in particular also
holds that 𝑟 = 𝑠. If 𝑐 ∈ 𝑈ℎ and 𝑑 ∈ 𝑈𝑙, then by condition 1, we have ℎ > 𝑙. Say that 𝑎 ∈ 𝑉𝑖,
then 𝑟 = 𝑖 + ℎ > 𝑖 + 𝑙 = 𝑠.

This discussion shows that the partition 𝑊2,… , 𝑊𝑛+𝑚 of the vertices of 𝑄 × 𝑅 satisfy
conditions 1 and 2. Now we can apply (3.3.1) to the extension 𝐵 ⊆ 𝐴 ⊗ 𝐵 to obtain

gldim(𝐴) ≦ gldim(𝐴 ⊗ 𝐵, 𝐵) ≦ 𝑛 + 𝑚 − 2 + 1 − 1 = 𝑛 + 𝑚 − 2 < ∞. (4.22)

The above discussion can be summarized in the following proposition

Proposition 4.2.7. Let 𝑄 and 𝑅 be quivers such that

1. 𝑄 has no oriented cycles of any length;

2. There exists a partition 𝑉1,… , 𝑉𝑛 of 𝑄0 satisfying conditions 𝑖 and 𝑖𝑖 of (3.3.1);

3. 𝑅 has only loops as oriented cycles;

4. There exists a partition 𝑈1,… , 𝑈𝑚 of 𝑅0 satisfying conditions 𝑖 and 𝑖𝑖 of (3.3.1).

If 𝐴 = 𝕂𝑄/𝐼 and 𝐵 = 𝕂𝑅/𝐽 , with 𝐼 and 𝐽 admissible, then

gldim(𝐴 ⊗ 𝐵, 𝐵) ≦ 𝑛 + 𝑚 − 2. (4.23)

Example 4.2.8. Let us build on the previous example: where 𝐵’s quiver is 𝔸5, 𝐴’s is a

loop, and we keep the same relations. We have seen that

gldim(𝐴 ⊗ 𝐵, 𝐵) = gldim(𝐴) = ∞.
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But if we change their places, we get

gldim(𝐵 ⊗ 𝐴, 𝐴) ≧ gldim(𝐵) = 4.

We can apply the above proposition to this pair of algebras 𝐴 ⊆ 𝐵 ⊗ 𝐴, since all the loops

are in 𝐴. The partition of 𝐵’s vertices is simply the unitary sets {𝑖}, 𝑖 ∈ 𝔸5, and the partition

of 𝐴 is just its vertex. Therefore 𝑛 = 5, 𝑚 = 1, and

4 = gldim(𝐵) ≦ gldim(𝐵 ⊗ 𝐴, 𝐴) ≦ 5 + 1 − 2 = 4 ⟹ gldim(𝐵 ⊗ 𝐴, 𝐴) = 4.

This example can be generalized for 𝔸𝑛+1 with relations to obtain that there exist a pair of

algebras 𝐴 and 𝐵 such that

gldim(𝐴 ⊗ 𝐵, 𝐵) = ∞ and gldim(𝐵 ⊗ 𝐴, 𝐴) = 𝑛.

4.3 Inequality: Trivial Extensions
Let 𝐵 be a finite dimensional 𝕂-algebra and 𝑁 a finite dimensional (𝐵 − 𝐵)-bimodule.

By a trivial extension we mean the extension 𝐵 ⊆ 𝐸 = 𝐵 ⋉ 𝑁 . In this section we obtain a
lower bound for gldim(𝐸, 𝐵) based on the structure of 𝑁 .

Lemma 4.3.1. Let 𝐸 = 𝐵 ⊕ 𝑁 be the trivial extension of 𝐵 by 𝑁 . Then the kernel of the

multiplication map 𝜇𝑛 ∶ 𝐸 ⊗𝐵 𝑁
⊗𝐵𝑛

⟶ 𝑁
⊗𝐵𝑛 is 𝑁⊗𝐵(𝑛+1), for all 𝑛 ∈ ℕ.

Proof. We have 𝐸𝐵 = 𝐵𝐵 ⊕ 𝑁𝐵 and we can write

𝐸 ⊗𝐵 𝑁
⊗𝐵𝑛

= 𝐵 ⊗𝐵 𝑁
⊗𝐵𝑛

⊕ 𝑁 ⊗𝐵 𝑁
⊗𝐵𝑛

.

The multiplication map sends 𝐵⊗𝐵𝑁
⊗𝐵𝑛 bijectively to𝑁⊗𝐵𝑛 and𝑁⊗𝐵𝑁

⊗𝐵𝑛 to zero, therefore

Ker(𝜇) = 𝑁 ⊗𝐵 𝑁
⊗𝐵𝑛

= 𝑁
⊗𝐵(𝑛+1)

.

Proposition 4.3.2. One of the two holds:

1. if there exist 𝑚 ∈ ℕ such that 𝑁⊗𝐵𝑚
= 0 and 𝑟 is the maximal integer such that

𝑁
⊗𝐵𝑟

≠ 0, then pd
(𝐸,𝐵)

𝐵 = 𝑟 ;

2. if 𝑁⊗𝐵𝑚
≠ 0 for all 𝑚 ∈ ℕ, then pd

(𝐸,𝐵)
𝐵 = ∞.
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In particular, gldim(𝐸, 𝐵) ≧ 𝑟 or gldim(𝐸, 𝐵) = ∞, respectively.

Proof. We will prove this result computing the standard resolution for this extension, to
recall what is a standard resolution see (3.9). To do so, we begin by looking at the kernel
of the multiplication homomorphism

𝜇𝐵 ∶ 𝐸 ⊗𝐵 𝐵 → 𝐵

𝑒 ⊗𝐵 𝑏 ↦ 𝑒 ⋅ 𝑏.

By (4.3.1) for 𝑛 = 0 we obtain that Ker(𝜇𝐵) = 𝑁 . The next step is to compute the kernel
of the multiplication map 𝜇𝑁 ∶ 𝐸 ⊗𝐵 𝑁 → 𝐵. Again we evoke (4.3.1) for 𝑛 = 1 to get
Ker(𝜇𝑁 ) = 𝑁

⊗𝐵2. Now one sees that recursive applications of (4.3.1) shows that

⋯ 𝐸 ⊗𝐵 𝑁
⊗𝐵2

𝐸 ⊗𝐵 𝑁 𝐸 ⊗𝐵 𝐵 𝐵 0

𝜇3 𝜇2 𝜇1 𝜇0 0 (4.24)

is the standard (𝐸, 𝐵)-projective resolution of 𝐵.

Consider the deleted version of (4.24) and apply the functor 𝐵 ⊗𝐸 − to get the chain
complex

⋯ 𝐵 ⊗𝐸 𝐸 ⊗𝐵 𝑁
⊗𝐵2

𝐵 ⊗𝐸 𝐸 ⊗𝐵 𝑁 𝐵 ⊗𝐸 𝐸 ⊗𝐵 𝐵 0

1𝐵⊗𝐸𝜇3 1𝐵⊗𝐸𝜇2 1𝐵⊗𝐸𝜇1 (4.25)

And we have the following computations regarding the differentials

1𝐵 ⊗𝐸 𝜇𝑠+1 ∶ 𝐵⊗𝐸𝐸 ⊗𝐵 𝑁
⊗𝐵(𝑠+1)

⟶ 𝐵 ⊗𝐸 𝐸 ⊗𝐵 𝑁
⊗𝐵𝑠

1𝐵 ⊗𝐸 𝜇𝑠+1(𝑏⊗𝐸(𝛽 + 𝜂) ⊗ (𝑛1 ⊗… ⊗ 𝑛𝑠+1)) =

= (𝑏 ⊗𝐸 𝛽𝑛1 ⊗ (𝑛2 ⊗… ⊗ 𝑛𝑠+1)) + (𝑏 ⊗𝐸 𝜂𝑛1 ⊗ (𝑛2 ⊗… ⊗ 𝑛𝑠+1))

= 𝑏𝛽𝑛1 ⊗𝐸 1𝐸 ⊗ (𝑛2 ⊗… ⊗ 𝑛𝑠+1)

= 0.

Since all the differentials of (4.25) are zero, we have

Tor
(𝐸,𝐵)

𝑠
(𝐵, 𝐵) = 𝐵 ⊗𝐸 𝐸 ⊗𝐵 𝑁

⊗𝐵𝑠
≅ 𝑁

⊗𝐵𝑠
. (4.26)

If 𝑁⊗𝐵𝑠
≠ 0, for all 𝑠 ∈ ℕ, then Tor

(𝐸,𝐵)

𝑠
(𝐵, 𝐵) ≠ 0 for any 𝑠 and pd

(𝐸,𝐵)
𝐵 = ∞.

If some tensor power of 𝑁 eventually vanishes and 𝑟 = max{𝑁
⊗𝐵𝑠

≠ 0}, then (4.24) has
length 𝑟 , this implies pd

(𝐸,𝐵)
𝐵 ≦ 𝑟 . On the other hand,

Tor
(𝐸,𝐵)

𝑟
(𝐵, 𝐵) ≅ 𝑁

⊗𝐵𝑟
≠ 0, (4.27)

implying pd
(𝐸,𝐵)

𝐵 ≧ 𝑟 . In conclusion

pd
(𝐸,𝐵)

𝐵 = 𝑟 .
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Example 4.3.3. Consider 𝐵 any finite dimensional 𝕂-algebra. Write

𝐵 =

𝕂𝑄

𝐼

.

Let 𝐿 be a quiver of loops in the vertices of 𝐵, that is, 𝐿0 = 𝑄0 and for each 𝑥 ∈ 𝐿1 𝑠(𝑥) = 𝑡(𝑥)

holds. Think of 𝑁 = 𝕂 𝐿/𝐽
2
(𝕂 𝐿) as a (𝐵 − 𝐵)-bimodule in the following way: each vertex

acts via the natural identification, since 𝐿0 = 𝑄0, and each arrow of𝑄1 acts as zero. Consider

𝐴 =

𝕂𝑄
′

𝐽

where 𝑄′

0
= 𝑄0, 𝑄′

1
= 𝑄1 ∪ 𝐿1, and 𝐽 is generated by 𝐼 , 𝑥2 for each 𝑥 ∈ 𝐿1, and 𝛼𝑥, 𝑥𝛼 for

each 𝑥 ∈ 𝐿1 and 𝛼 ∈ 𝑄1. Then

𝐴 ≅ 𝐵 ⋉ 𝑁 .

In this case 𝑁⊗𝐵𝑟
≠ 0, for all 𝑟 ∈ ℕ. Therefore

gldim(𝐴, 𝐵) = ∞.

If we take 𝐵 = 𝕂 and 𝐿1 with only one arrow, then 𝐴 = 𝐵 ⋉ 𝑁 =
𝕂[𝑥]

⟨𝑥
2
⟩

and we recover

gldim
(

𝕂[𝑥]

⟨𝑥
2
⟩ )

= ∞.
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Chapter 5

Controllable Extensions

In this chapter we will define a new class of extensions that generalize much of the
behaviour of classical global dimensions to the relative realm. Then we state and prove
a theorem that, together with the literature, allows one to construct several classes of
extensions that are controllable and that sheds light on Jacobson radical compatibility’s.
Finally we give an example of extension that is not controllable.

5.1 Definition and Examples

In this section we define our main object: controllable extensions. As we have seen in
the previous part, relative homological algebra is built using trivial exact sequences of
𝐵-modules, in the sense that every kernel is a direct summand as a 𝐵-module. Morally,
we are discarding any algebraic complexity related to 𝐵. If we apply this idea with the
decomposition 𝐵 = Σ⊕𝐽 (𝐵) in mind, where Σ is a maximal semisimple subalgebra and 𝐽 (𝐵)
is the Jacobson radical of 𝐵, then we are discarding the data provided by 𝐽 (𝐵) (recall that
Σ is homologically trivial). The definition below is a way to formalize this intuition.

Definition 5.1.1. An extension 𝐵 ⊆ 𝐴 is said to be controllable if

gldim(𝐴, 𝐵) = gldim
(

𝐴

𝐴𝐽 (𝐵)𝐴)
. (5.1)

Denote the bilateral ideal ↓ 𝐵 ≐ (𝐴𝐽 (𝐵)𝐴)⊲𝐴 and the quotient algebra A↓B ≐ 𝐴/(𝐴𝐽 (𝐵)𝐴).

The controllable property becomes

gldim(𝐴, 𝐵) = gldim(A↓B).

Before we study the implications of controllable extensions, we present a few exam-
ples.
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Example 5.1.2. If 𝐵 is semisimple and 𝐴 a finite dimensional 𝕂-algebra, then 𝐴

𝐴𝐽 (𝐵)𝐴
=

𝐴

0
= 𝐴 and (5.1) simply becomes

gldim(𝐴, 𝐵) = gldim(𝐴) (5.2)

which is always true.

Example 5.1.3. If 𝐵 = 𝐴 and 𝐴 is a finite dimensional 𝕂-algebra, then 𝐴

𝐽 (𝐴)
is semisimple

and

gldim(𝐴, 𝐴) = 0 = gldim
(

𝐴

𝐽 (𝐴))
= gldim

(

𝐴

𝐴𝐽 (𝐴)𝐴)
(5.3)

We now use the theory obtained in the last chapter to get non trivial controllable
extensions. Basically the next results proves the following: if we take a quiver 𝑅 with
relations, add as many arrows as we want without adding any vertex or relations using
the new arrows, then we obtain a controllable extension.

Proposition 5.1.4. Let 𝑄 be a finite quiver, with or without loops, 𝑅 be a subquiver of 𝑄

such that

• 𝑅0 = 𝑄0, and;

• ∅ ≠ 𝑅1 ≠ 𝑄1.

If 𝐼 ⊲ 𝕂𝑅 is admissible, 𝐽 = ⟨𝐼 ⟩𝕂𝑄 is the ideal generated by all the relations of 𝐼 in 𝕂𝑄,

𝐴 = 𝕂𝑄/𝐽 and 𝐵 = 𝕂𝑅/𝐼 , then 𝐵 ⊆ 𝐴 is an extension of algebras and

gldim(𝐴, 𝐵) = 1 = gldim
(

𝐴

𝐴𝐽 (𝐵)𝐴)
. (5.4)

Proof. In this proof, [−]𝐼 denote the class of an element in 𝐵 and [−]𝐽 that of an element in
𝐴. It is easy to see that there exists an injection 𝐵 → 𝐴 via 𝐵 ∋ [𝑏]𝐼 ↦ [𝑏]𝐽 ∈ 𝐴, therefore
we have an extension 𝐵 ⊆ 𝐴.

Define 0 ≠ 𝑁 = span
𝐵
𝑒 {𝑄1 ⧵ 𝑅1} ⊆ 𝐴 and consider 𝑇 = 𝑇 [𝐵, 𝑁 ], the tensor algebra of 𝐵

and 𝑁 . The inclusion 𝜄 ∶ 𝑁 ⟶ 𝐴 is a (𝐵, 𝐵)-bimodule homomorphism and it induces a
unique 𝕂-algebra homomorphism

Φ ∶ 𝑇 = 𝑇 [𝐵, 𝑁 ] ⟶ 𝐴 (5.5)

such thatΦ(𝑏) = 𝑏, ∀ 𝑏 ∈ 𝐵, andΦ(𝑛) = 𝜄(𝑛) = 𝑛 ∈ 𝐴, ∀ 𝑛 ∈ 𝑁 . Notice thatΦ(𝐵) = 𝐵1𝐴 = 𝐵,
that is, Φ preserves 𝐵.
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Conversely, consider the following functions 𝜓𝑖 ∶ 𝑄𝑖 ⟶ 𝑇 [𝐵, 𝑁 ], 𝑖 = 0, 1 where
𝜓0(𝑟) = [𝑒𝑟]𝐼 ∈ 𝐵 ⊆ 𝑇 and

𝜓(𝛼) =

{

[𝛼]𝐼 ∈ 𝐵 ⊆ 𝑇 , if 𝛼 ∈ 𝑅1

[𝛼]𝐽 ∈ 𝑁 ⊆ 𝑇 , if 𝛼 ∈ 𝑄1 ⧵ 𝑅1.

One can easily verify that 𝜓0(𝑟)
2

= 𝜓0(𝑟), 𝜓0(𝑠)𝜓0(𝑟) = 0, if 𝑠 ≠ 𝑟 , and 𝜓1(𝛼) =

𝜓0(𝑡(𝛼))𝜓1(𝛼)𝜓0(𝑠(𝛼)). By the universal property of path algebras, see [ASS06, II.1 Theorem
1.8], there is a unique homomorphism of 𝕂-algebras

Ψ ∶ 𝕂𝑄 ⟶ 𝑇 = 𝑇 [𝐵, 𝑁 ] (5.6)

such that 𝜓(𝑒𝑖) = 𝜓0(𝑖), for any 𝑖 ∈ 𝑄0, and 𝜓(𝛼) = 𝜓1(𝛼), for any 𝛼 ∈ 𝑄1. It is also easy to
see that if 𝜌 ∈ 𝐼 is a relation, then by our hypothesis 𝜌 can be viewed as an element of 𝕂𝑄

and 𝜓(𝜌) = [𝜌]𝐼 = 0. In particular, since 𝐽 = ⟨𝐼 ⟩𝕂𝑄 , 𝐽 ⊆ Ker(𝜓). By the universal property
of quotient algebras, there is a unique homomorphism of 𝕂-algebras

Ψ ∶ 𝐴 ⟶ 𝑇 = 𝑇 [𝐵, 𝑁 ]

[𝑥]𝐽 ⟼ 𝜓(𝑥).

Using the universal properties above and their uniqueness one verifies that

Ψ ◦ Φ = 1𝑇 and Φ ◦ Ψ = 1𝐴. (5.7)

In particular,
gldim(𝐴, 𝐵) = gldim(𝑇 , 𝐵) = 1 (5.8)

where the second equality follows from 𝑅1 ≠ ∅ and (4.1.1).

Finally, by the hypothesis on 𝑅, the Gabriel quiver of 𝐴

𝐴𝐽 (𝐵)𝐴
is

𝑄 ⧵ 𝑅 =

{

(𝑄 ⧵ 𝑅)0 = 𝑄0

(𝑄 ⧵ 𝑅)1 = 𝑄1 ⧵ 𝑅1 ≠ ∅

Since 𝐼 is admissible we know that 𝐼 ⊆ 𝐽 (𝐵), which implies 𝐽 = 𝐴𝐼𝐴 ⊆ 𝐴𝐽 (𝐵)𝐴. In
particular,

gldim
(

𝐴

𝐴𝐽 (𝐵)𝐴)
= 1. (5.9)

Before we look at some examples using the above proposition, we state a corol-
lary.

Corollary 5.1.5. Let 𝑄 be a finite quiver, with or without loops, 𝑅 be a subquiver of 𝑄 such

that
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• 𝑅0 = 𝑄0, and;

• ∅ ≠ 𝑅1 ≠ 𝑄1.

If 𝐴 = 𝕂𝑄 and 𝐵 = 𝕂𝑅, then

gldim(𝐴, 𝐵) = 1 = gldim
(

𝐴

𝐴𝐽 (𝐵)𝐴)
. (5.10)

Example 5.1.6. Consider 𝐵 = 𝕂𝑄𝐵 and 𝐴 = 𝕂𝑄𝐴, where

3 3

𝑄𝐵 ∶ 1 2 𝑄𝐴 ∶ 1 2

In this case, both 𝐴 and 𝐵 are hereditary algebras, meaning that their classical global

dimension is equal to 1. The same is true about A↓B, since this algebra is the path algebra

of
3

1 2

By the above corollary, gldim(𝐴, 𝐵) = 1 = gldim(A↓B)

Example 5.1.7. We can also construct some examples that are more exotic. Let 𝐵 be the

algebra whose Gabriel quiver is the 𝔸5 with an extra vertex

6

1 2 3 4 5

and the relations of 𝐵 are generated by all the paths of length 2. Then gldim(𝐵) = 4. If we

take 𝐴 to be the algebra given by

6

1 2 3 4 5

with the same relations of 𝐵, then it is also true that gldim(𝐴) = 4. Yet the above proposition
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says that the extension 𝐵 ⊆ 𝐴 is controllable and

gldim(𝐴, 𝐵) = 1.

Generalizing this example we obtain a class of controllable extensions of finite dimensional

algebras 𝐵 ⊆ 𝐴 such that gldim(𝐵) = gldim(𝐴) is an arbitrary (positive) integer and

gldim(𝐴, 𝐵) = 1.

5.2 Properties
A definition is not justified only using abstract motivations/ideas and examples, we also

need some theory to backup its importance. The next proposition shows that controllable
extensions generalize some equalities that appear in classical global dimensions. In this
section ⊗ means ⊗𝕂. Recall that 𝐴𝑒

≐ 𝐴 ⊗𝕂 𝐴
𝑜𝑝.

Proposition 5.2.1. Let 𝐵 ⊆ 𝐴 and 𝐷 ⊆ 𝐶 be controllable extensions. We have the following:

1. if 𝐵𝑜𝑝 ⊆ 𝐴𝑜𝑝 is controllable, then gldim(𝐴
𝑜𝑝
, 𝐵

𝑜𝑝
) = gldim(𝐴, 𝐵).

2. if 𝐵⊗𝐷 ⊆ 𝐴⊗𝐶 is controllable, then gldim(𝐴⊗𝐶, 𝐵⊗𝐷) = gldim(𝐴, 𝐵)+gldim(𝐶, 𝐷).

3. if 𝐵 ⊆ 𝐴 ⊗ 𝐵 is controllable, then gldim(𝐴 ⊗ 𝐵, 𝐵) = gldim(𝐴).

4. if 𝐵𝑜𝑝 ⊆ 𝐴𝑜𝑝 and 𝐵𝑒 ⊆ 𝐴𝑒 are controllable, then gldim(𝐴
𝑒
, 𝐵

𝑒
) = 2 gldim(𝐴, 𝐵).

Proof. It is easy to see that the kernel of the homomorphism of algebras

𝜏 ∶ 𝐴
𝑜𝑝

⟶ (A↓B)
𝑜𝑝

𝑎 ⟼ [𝑎]

is 𝐴𝑜𝑝
𝐽 (𝐵)

𝑜𝑝
𝐴
𝑜𝑝

= 𝐴
𝑜𝑝
𝐽 (𝐵

𝑜𝑝
)𝐴

𝑜𝑝. Therefore 𝐴𝑜𝑝

↓𝐵
𝑜𝑝 ≅ (A↓B)

𝑜𝑝 as algebras and, by (2.4.4), we
get

gldim(𝐴
𝑜𝑝
, 𝐵

𝑜𝑝
) = gldim(𝐴

𝑜𝑝

↓𝐵
𝑜𝑝) = gldim((A↓B)

𝑜𝑝
) = gldim(A↓B) = gldim(𝐴, 𝐵),

proving 1.

For 2, we have that
𝐽 (𝐵 ⊗ 𝐷) = 𝐽 (𝐵) ⊗ 𝐷 + 𝐵 ⊗ 𝐽 (𝐷),

for finite dimensional algebras. In particular,

(𝐴 ⊗ 𝐶)(𝐽 (𝐵 ⊗ 𝐷))(𝐴 ⊗ 𝐶) = 𝐴𝐽 (𝐵)𝐴 ⊗ 𝐶 + 𝐴 ⊗ 𝐶𝐽 (𝐷)𝐶 = (↓ 𝐵) ⊗ 𝐶 + 𝐴 ⊗ (↓ 𝐷).

We claim that
(𝐴 ⊗ 𝐶)

↓(𝐵⊗𝐷)
≅ A↓B⊗𝐶↓𝐷.
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In fact, let 𝜋𝐴 ∶ 𝐴 ⟶ A↓B and 𝜋𝐶 ∶ 𝐶 ⟶ 𝐶↓𝐷 be the canonical algebra projections. Then
Ker(𝜋𝐴 ⊗ 𝜋𝐶) = (↓ 𝐵)⊗ 𝐶 + 𝐴⊗ (↓ 𝐷) = (↓ 𝐵 ⊗ 𝐷) and we have an induced isomorphism
of algebras

𝜙 ∶ (𝐴 ⊗ 𝐶)
↓(𝐵⊗𝐷)

⟶ A↓B⊗𝐶↓𝐷

[𝑎 ⊗ 𝑐] ⟼ [𝑎] ⊗ [𝑐].

All the above yields

gldim(𝐴 ⊗ 𝐶, 𝐵 ⊗ 𝐷) = gldim((𝐴 ⊗ 𝐶)
↓(𝐵⊗𝐷)

), by hypothesis
= gldim(A↓B⊗𝐶↓𝐷), by the isomorphism
= gldim(A↓B) + gldim(𝐶↓𝐷), by (2.4.5)
= gldim(𝐴, 𝐵) + gldim(𝐶, 𝐷), by hypothesis.

To prove 3, it is just the above argument for 𝕂 ⊆ 𝐴 and 𝐵 ⊆ 𝐵 since both of this extensions
are always controllable for finite dimensional basic algebras.

For 4, the argument for 2 says that gldim(𝐴
𝑒
, 𝐵

𝑒
) = gldim(A↓B) + gldim(𝐴

𝑜𝑝

↓𝐵
𝑜𝑝). We

know that 𝐴𝑜𝑝

↓𝐵
𝑜𝑝 = (A↓B)

𝑜𝑝, and gldim(A↓B) = gldim(𝐴
𝑜𝑝

↓𝐵
𝑜𝑝), see (2.4.4). Therefore,

gldim(𝐴
𝑒
, 𝐵

𝑒
) = gldim(A↓B) + gldim(𝐴

𝑜𝑝

↓𝐵
𝑜𝑝) = 2 gldim(A↓B).

We have seen, in (4.2.4), that for any finite dimensional 𝕂-algebras, gldim(𝐴 ⊗ 𝐵, 𝐵) ≧

gldim(𝐴) holds. Moreover, in the example (4.2.8), we have seen a family of extensions
{𝐵𝑛 ⊆ 𝐴𝑛 | 𝑛 ∈ ℕ} such that

gldim(𝐴𝑛, 𝐵𝑛) = gldim(𝐴𝑛) = 𝑛.

With the introduction of controllable extensions and (5.2.1.3), we now know that this
family is composed by controllable extensions.

5.3 Lower Bound for the Controllable Extension
Equality

In this section we will explore a way to obtain the inequality gldim(𝐴, 𝐵) ≧ gldim(A↓B)

theoretically. In the next section we will apply this result to compute the relative global
dimension of some extensions.

Fix 𝐴 a finite dimensional 𝕂-algebra, 𝐼 ⊲ 𝐴 a bilateral ideal, and 𝜋 ∶ 𝐴 ⟶ 𝐴/𝐼 the
canonical projection of algebras. Before we begin with relative dimensions, we explore a
way to study 𝐴/𝐼 − mod in 𝐴 − mod without losing any information.

Consider the functor Π ∶ (𝐴/𝐼 ) − mod ⟶ 𝐴 − mod induced by 𝜋 ∶ 𝐴 ⟶ (𝐴/𝐼 ).
On the objects, it takes an (𝐴/𝐼 )-module (𝑀, 𝜙𝑀), where 𝜙𝑀 ∶ (𝐴/𝐼 ) ⟶ End

𝕂
(𝑀) is a
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homomorphism of 𝕂-algebras, to the 𝐴-module (𝑀, 𝜓𝑀) defined by precomposition

𝜓 ∶ 𝐴 (𝐴/𝐼 ) End
𝕂
(𝑀)

𝜋 𝜙

(5.11)

and on the (homo)morphisms Π is the identity. To check that it is well defined we just need
to compute how the action of an arbitrary element 𝑎 ∈ 𝐴 affects a morphism 𝑓 ∶ 𝑀 ⟶ 𝑁

of (𝐴/𝐼 )-modules:

𝑓 (𝑎 ⋅ 𝑚) = 𝑓 (𝜙 ◦ 𝜋(𝑎)[𝑚]) = 𝜙 ◦ 𝜋(𝑎)𝑓 (𝑚) = 𝑎 ⋅ 𝑓 (𝑚), ∀ 𝑚 ∈ 𝑀, (5.12)

in other words, every (𝐴/𝐼 )-homomorphism is an 𝐴-homomorphism.

Denote by 𝐾(𝐼 ) ⊆ 𝐴−mod the full subcategory of all 𝐴-modules (𝑀, 𝜓𝑀) such that
𝐼 ⊆ Ker(𝜓). If (𝑀, 𝜓𝑀) ∈ 𝐾(𝐼 ), then by the universal property of the quotient algebra there
exists a unique algebra homomorphism 𝜙𝑀 ∶ (𝐴/𝐼 ) ⟶ End

𝕂
(𝑀) such that

𝐴 End
𝕂
(𝑀)

(𝐴/𝐼 )

𝜓𝑀

𝜋

𝜙𝑀

(5.13)

commutes, i.e., 𝜓𝑀 = 𝜙𝑀 ◦ 𝜋.

Let 𝑓 ∶ 𝑀 ⟶ 𝑁 be a homomorphism of 𝐴-modules such that 𝑀,𝑁 ∈ 𝐾(𝐼 ) and 𝑎 ∈ 𝐴,
then

𝑓 ((𝑎 + 𝐼 ) ⋅ 𝑚) = 𝑓 (𝑎𝑚) = 𝑎𝑓 (𝑚) = (𝑎 + 𝐼 ) ⋅ 𝑓 (𝑚), ∀ 𝑚 ∈ 𝑀, (5.14)

that is 𝑓 is also a homomorphism of (𝐴/𝐼 )-modules. This can be summarized in another
functor  ∶ 𝐾(𝐼 ) ⟶ (𝐴/𝐼 )−mod such that (𝑀, 𝜓𝑀) = (𝑀, 𝜓𝑀) and is the identity on
the morphisms.

The idea that we can view the category of (𝐴/𝐼 )-modules inside 𝐴-mod without losing
information is formalized on the next lemma

Lemma 5.3.1. It holds  ◦ Π = 1(𝐴/𝐼 )−mod and Π ◦  = 1𝐾(𝐼 ), where 1 denotes the identity

functor of the respective category.

Proof. Since both functors are the identity in the morphisms of their respective domains,
it suffices to compute only what is happening to the objects.

Let (𝑀, 𝜙𝑀) ∈ (𝐴/𝐼 )−mod, then  ◦ Π(𝑀, 𝜙𝑀) = (𝑀, 𝜙𝑀 ◦ 𝜋) = (𝑀, 𝜙𝑀) =

1(𝐴/𝐼 )−mod(𝑀, 𝜙𝑀), by the uniqueness of the universal property. On the other hand,
Π ◦(𝑀, 𝜓𝑀) = Π(𝑀, 𝜙𝑀) = (𝑀, 𝜓𝑀) = 1𝐾(𝐼 )(𝑀, 𝜓𝑀), by the commutativity and uniqueness
of the universal property.

This allows one to identify the categories (𝐴/𝐼 )−mod≡ 𝐾(𝐼 ) ⊆ 𝐴−mod. Since 𝐾(𝐼 ) is
a full subcategory, we get the following result
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Corollary 5.3.2. (Hom-functor Equality) Let 𝐴 be a finite dimensional 𝕂-algebra, 𝐼 ⊲ 𝐴 a

bilateral ideal, and 𝜋 ∶ 𝐴 ⟶
𝐴

𝐼
the canonical projection. Then

Hom𝐴/𝐼 (𝑀,𝑁 ) = Hom𝐴(𝑀,𝑁 ), (5.15)

for all 𝑀,𝑁 ∈ (𝐴/𝐼 )−mod. In particular, if 𝑀,𝑁 , 𝐿 ∈ (𝐴/𝐼 )−mod and 𝑓 ∶ 𝑀 ⟶ 𝑁 is an

(𝐴/𝐼 )-morphism, then 𝑓 ∗

(𝐴/𝐼 )
= Hom𝐴/𝐼 (𝑓 , 𝐿) = Hom𝐴(𝑓 , 𝐿) = 𝑓

∗

𝐴
.

There is an underlying interesting property of the Hom-functor Equality. By (2.4.2),
the classical homological dimensions are completely determined by homomorphisms.
Therefore, we have a way to study (𝐴/𝐼 ) − mod in 𝐴 − mod that preserves the part of
homological theory that interest us, and it becomes natural to investigates what is missing
for us to connect relative homological theory to this results. The next lemma is a link
between the theories.

Fix an extension 𝐵 ⊆ 𝐴 and a decomposition 𝐵 = Σ⊕ 𝐽 (𝐵). In the next results we want
to apply the Hom-functor Equality for the ideal 𝐼 =↓ 𝐵.

Lemma 5.3.3. If 𝑓 ∶ 𝑀 ⟶ 𝑁 is an epimorphism in A↓B-mod, then 𝑓 ∶ 𝑀 ⟶ 𝑁 as an

epimorphism of 𝐴-modules admits a 𝐵-section

Proof. Since Σ ⊆ 𝐵 is semisimple and A↓B-modules are Σ-modules via restriction, 𝑓 admits
a Σ-section

𝑀 𝑁 0

𝑓

ℎ

(5.16)

that is, a homomorphism of Σ-modules that satisfy 𝑓 ◦ ℎ = 1𝑁 .

The action of 𝑎 ∈ 𝐴 in any A↓B-module is to compute 𝜋(𝑎) and then consider its action
on the A↓B-module. Remember that 𝐵 = Σ ⊕ 𝐽 (𝐵) as vector spaces, so if 𝑏 ∈ 𝐵, then there
is a unique way to write 𝑏 = 𝜎 + 𝛽, with 𝜎 ∈ Σ and 𝛽 ∈ 𝐽 (𝐵). Compute

ℎ(𝑏 ⋅ 𝑚) = ℎ((𝜎 + 𝛽) ⋅ 𝑚) = ℎ(𝜎 ⋅ 𝑚) + ℎ(𝛽 ⋅ 𝑚) (5.17)
= 𝜎 ⋅ ℎ(𝑚) + ℎ(0) = 𝜎 ⋅ ℎ(𝑚) + 𝛽 ⋅ ℎ(𝑚) = 𝑏 ⋅ ℎ(𝑚), ∀ 𝑚 ∈ 𝑀. (5.18)

This means that ℎ ∈ 𝐵 − mod and the identity 𝑓 ◦ ℎ = 1𝑁 still holds.

Now we are ready to compute relative Ext -functors

Theorem 5.3.4. Let 𝐵 ⊆ 𝐴 be an extension of 𝕂-algebras such that all indecomposable
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projectives of A↓B −mod are (𝐴, 𝐵)-projective 𝐴-modules. Then

Ext
∗

(𝐴,𝐵)
(𝑀,𝑁 ) = Ext

∗

A↓B

(𝑀,𝑁 ), (5.19)

for all 𝑀,𝑁 ∈ A↓B −mod.

Proof. Let 𝑀 ∈ A↓B −mod and

𝑃∙ ∶ ⋯ 𝑃2 𝑃1 𝑃0 𝑀 0
𝑑2 𝑑1 𝑑0 (5.20)

a projective resolution for 𝑀 as an A↓B-module. Applying the functor Hom
A↓B

(−, 𝑁 ) to
the deleted version of 𝑃∙ we obtain a cochain complex

0 Hom
A↓B

(𝑃0, 𝑁 ) Hom
A↓B

(𝑃1, 𝑁 ) Hom
A↓B

(𝑃2, 𝑁 ) ⋯

𝑑
∗

1(A
↓B

)
𝑑
∗

2(A
↓B

)

(5.21)
whose cohomology groups are Ext

∗

A↓B

(𝑀,𝑁 ).

By our hypothesis on the indecomposable projectives and the above lemma, the exact
sequence 𝑃∙ is also an (𝐴, 𝐵)-projective resolution for 𝑀 as an 𝐴 module. This allow us
to use relative homology to study it. So applying the functor Hom

𝐴
(−, 𝑁 ) to the deleted

version of 𝑃∙ we obtain the following cochain complex

0 Hom
𝐴
(𝑃0, 𝑁 ) Hom

𝐴
(𝑃1, 𝑁 ) Hom

𝐴
(𝑃2, 𝑁 ) ⋯ ,

𝑑
∗

1𝐴
𝑑
∗

2𝐴 (5.22)

whose cohomology groups are Ext
∗

(𝐴,𝐵)
(𝑀,𝑁 ).

But by the Hom -functor Equality we have an equality of chain complexes

0 Hom
A↓B

(𝑃0, 𝑁 ) Hom
A↓B

(𝑃1, 𝑁 ) Hom
A↓B

(𝑃2, 𝑁 ) ⋯

0 Hom
𝐴
(𝑃0, 𝑁 ) Hom

𝐴
(𝑃1, 𝑁 ) Hom

𝐴
(𝑃2, 𝑁 ) ⋯

𝑑
∗

1A
↓B

𝑑
∗

2A
↓B

𝑑
∗

1𝐴
𝑑
∗

2𝐴

(5.23)
therefore they have the same cohomology

Ext
∗

A↓B

(𝑀,𝑁 ) = Ext
∗

(𝐴,𝐵)
(𝑀,𝑁 ). (5.24)

This way of computing the classical and relative Ext -functors has some nice conse-
quences regarding dimensions.

Corollary 5.3.5. Let 𝐵 ⊆ 𝐴 be an extension of 𝕂-algebras of finite dimension. If all the

indecomposable projective A↓B-modules are (𝐴, 𝐵)-projective, then
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1. pd
A↓B

𝑀 = pd
(𝐴,𝐵)

𝑀 , for any A↓B-module 𝑀 . In particular it holds for simple modules.

2. gldim(A↓B) ≦ gldim(𝐴, 𝐵).

3. If gldim(A↓B) is infinite, then 𝐵 ⊆ 𝐴 is controllable.

Proof. Suppose that pd
A↓B

𝑀 < ∞. Then a minimalA↓B-projective resolution for𝑀 is also an
(𝐴, 𝐵)-projective resolution and pd

A↓B

𝑀 ≧ pd
(𝐴,𝐵)

𝑀 . On the other hand, sinceA↓B is a finite

dimensional algebra, there exists a simple 𝑆 ∈ A↓B-mod such that 0 ≠ Ext

pd
A
↓B

𝑀

A↓B

(𝑀, 𝑆) =

Ext

pd
A
↓B

𝑀

(𝐴,𝐵)
(𝑀, 𝑆) and pd

A↓B

𝑀 ≦ pd
(𝐴,𝐵)

𝑀 , see (2.4.1). The infinite dimensional case is treated
similarly. This proves the first item and the rest follows trivially.

Remark 5.3.6. (Applications to Relative Dimensions) The above corollary states that if

one is interested in computing relative projective and relative global dimensions, then a

way to do that is by looking for the indecomposable projectives A↓B-modules among the

(𝐴, 𝐵)-projectives. For finite dimensional basic algebras in the category of finite dimen-

sional modules, the main category studied in this work, there are only a finite number of

(isoclasses of) indecomposable projectives, so the above theorem says that you can only

look at the direct summands of 𝐴 ⊗𝐵 𝑃A↓B
(𝑖), for 𝑖 ∈ (𝑄A↓B

)0 in order to (possibly) have a

lower bound for the relative global dimension.

5.4 Application: Jacobson Radical Compatibility
For this discussion we assume that 𝐵 ⊆ 𝐴 is an extension of finite dimensional basic

𝕂-algebras such that 𝐴𝐽 (𝐵) is a right ideal in 𝐴, where 𝐽 (𝐵) denotes the Jacobson radical
of 𝐵. Remember that, for any finite dimensional 𝐵-module 𝑋 , 𝐽𝐵(𝑋 ) denotes the radical of
𝑋 as a 𝐵-module and top

𝐵
(𝑋 ) ≐

𝑋

𝐽𝐵(𝑋 )
.

With our assumptions we can consider an exact sequence of 𝐴⊗𝑘 𝐵
𝑜𝑝-modules induced

by 𝐽 (𝐵) as follows

0 𝐴𝐽 (𝐵) 𝐴
𝐴

𝐴𝐽 (𝐵)
0, (5.25)

Apply the funtor − ⊗𝐵 𝑋 to (5.25), in order to obtain the following long exact sequence of
vector spaces

⋯ Tor
𝐵

1
(A↓B, 𝑋 ) 𝐴𝐽 (𝐵) ⊗𝐵 𝑋 𝐴 ⊗𝐵 𝑋 A↓B⊗𝐵𝑋 0.

(5.26)
Analysing the modules that appear above, one obtains that

1. 𝐴𝐽 (𝐵) ⊗𝐵 𝑋 = 𝐴 ⊗𝐵 𝐽 (𝐵)𝑋 ≅ 𝐴 ⊗𝐵 𝐽𝐵(𝑋 ).
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2. 𝐴⊗𝐵𝑋 is an (𝐴, 𝐵)-projective module and it appears with degree zero at𝑋 ’s standard
(𝐴, 𝐵)-projective resolution.

3. For the last module we claim that A↓B⊗𝐵𝑋 ≅ A↓B⊗Σ top 𝐵
(𝑋 ), where Σ ⊆ 𝐵 is a

semisimple subalgebra such that 𝐵 = Σ ⊕ 𝐽 (𝐵) as vector spaces. This is proved in
the next lemma.

Lemma 5.4.1. A↓B⊗𝐵𝑋 ≅ A↓B⊗Σ top 𝐵
(𝑋 ), as 𝐴-modules (or A↓B-modules).

Proof. Since Σ is semisimple, and all 𝐵-modules are Σ-modules by restriction, we get a
(𝐵,Σ)-exact sequence

0 𝐽𝐵(𝑋 ) 𝑋 top
𝐵
(𝑋 ) 0

0 𝐽𝐵(𝑋 ) 𝑋 top
𝐵
(𝑋 ) 0

𝜄 𝜋

ℎ1
ℎ0

𝜄 𝜋

where ℎ0 and ℎ1 are the Σ-homotopy, that is, they satisfy 𝜋 ◦ℎ0 = 1top
𝐵
(𝑋 ) and 𝜄 ◦ℎ1+ℎ0 ◦𝜋 =

1𝑋 .

Restricting the action of 𝐵 when necessary, we can consider the following homomor-
phisms of 𝐴-modules

{

Φ = 1A↓B
⊗Σ 𝜋 ∶ A↓B⊗Σ𝑋 ⟶ A↓B⊗Σ top 𝐵

(𝑋 )

Ψ = 1A↓B
⊗Σ ℎ0 ∶ A↓B⊗Σ top 𝐵

(𝑋 ) ⟶ A↓B⊗Σ𝑋.

Let 𝑇𝐵 = ⟨[𝑎]𝑏 ⊗Σ 𝑥 − [𝑎] ⊗Σ 𝑏𝑥 | [𝑎] ∈ A↓B, 𝑏 ∈ 𝐵, 𝑥 ∈ 𝑋 ⟩ = ⟨[𝑎] ⊗Σ 𝑏𝑥 | [𝑎] ∈ A↓B, 𝑏 ∈

𝐽 (𝐵), 𝑥 ∈ 𝑋 ⟩ be the 𝐴-submodule of 𝐴 ⊗Σ 𝑋 such that

A↓B⊗Σ𝑋

𝑇𝐵

≅ A↓B⊗𝐵𝑋

and compute
Φ([𝑎] ⊗Σ 𝑏𝑥) = [𝑎] ⊗Σ 𝑏𝑥 = [𝑎] ⊗Σ 0 = 0,

for any 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐽 (𝐵) and 𝑥 ∈ 𝑋 . Therefore 𝑇𝐵 ⊆ Ker(Φ) and there is a unique
homomorphism of 𝐴-modules

𝜙 ∶ A↓B⊗𝐵𝑋 ⟶ A↓B⊗Σ top 𝐵
(𝑋 )

such that Φ = 𝜙 ◦ 𝜋𝑇𝐵
, that is 𝜙([𝑎] ⊗𝐵 𝑥) = [𝑎] ⊗Σ [𝑥], for any 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋 . Here

𝜋𝑇𝐵
∶ 𝐴 ⊗Σ 𝑋 ⟶ 𝐴 ⊗𝐵 𝑋 is the canonical projection. Composing Ψ with 𝜋𝑇𝐵

we get a
homomorphism of 𝐴-modules

𝜓 = 𝜋𝑇𝐵
◦ Ψ ∶ A↓B⊗Σ top 𝐵

(𝑋 ) ⟶ A↓B⊗𝐵𝑋

that satisfies 𝜓([𝑎] ⊗Σ [𝑥]) = [𝑎] ⊗𝐵 ℎ0([𝑥]), for any 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋 .
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Calculate

𝜙 ◦ 𝜓([𝑎] ⊗Σ [𝑥]) = 𝜙([𝑎] ⊗𝐵 ℎ0([𝑥]))

= [𝑎] ⊗Σ 𝜋 ◦ ℎ0([𝑥]) = [𝑎] ⊗Σ [𝑥], by the homotopy

and

𝜓 ◦ 𝜙([𝑎] ⊗𝐵 𝑥) = 𝜓 ◦ 𝜙([𝑎] ⊗𝐵 (𝜄 ◦ ℎ1(𝑥) + ℎ0 ◦ 𝜋(𝑥)))

= 𝜙([𝑎] ⊗Σ (𝜋 ◦ 𝜄 ◦ ℎ1(𝑥) + 𝜋 ◦ ℎ0 ◦ 𝜋(𝑥)))

= 𝜙([𝑎] ⊗Σ �̄�) = 𝑎 ⊗𝐵 ℎ0 ◦ 𝜋(𝑥)

= [𝑎] ⊗𝐵 ℎ0 ◦ 𝜋(𝑥) + 0

= [𝑎] ⊗𝐵 ℎ0 ◦ 𝜋(𝑥) + [𝑎] ⊗𝐵 𝜄 ◦ ℎ1(𝑥) = [𝑎] ⊗𝐵 𝑥,

for any 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋 , we obtain that A↓B⊗𝐵𝑋 ≅ A↓B⊗Σ top 𝐵
(𝑋 ) as modules over 𝐴

(or A↓B).

With the above remarks we can study the following short exact sequence of 𝐴-modules
obtained from (5.26)

0 Im(𝐴 ⊗𝐵 𝐽𝐵(𝑋 )) 𝐴 ⊗𝐵 𝑋 A↓B⊗Σ top 𝐵
(𝑋 ) 0 (5.27)

Suppose that 𝑋 is a semisimple 𝐵-module, that means that 𝐽𝐵(𝑋 ) = 0. Then the above
sequence yields

𝐴 ⊗𝐵 𝑋 ≅ A↓B⊗Σ top 𝐵
(𝑋 ), (5.28)

as modules over 𝐴 or A↓B.

Supose that 𝐴 =
𝕂𝑄

𝐼
, with 𝐼 ⊲ 𝕂𝑄 is admissible, 𝐵 =

𝕂𝑅

𝐽
, where 𝐽 ⊲ 𝕂𝑅 is admissible,

and 𝑄0 = 𝑅0 is a finite quiver and the arrows of 𝑅 are linear combinations of non trivial
paths of 𝑄. The later condition implies that 𝐽 (𝐵) ⊆ 𝐽 (𝐴) and that A↓B ≐ 𝐴/(𝐴𝐽 (𝐵)𝐴) has
the same vertices of 𝐴, since 𝐴𝐽 (𝐵)𝐴 ⊆ 𝐴𝐽 (𝐴)𝐴 = 𝐽 (𝐴) and 𝐽 (A↓B) =

A↓B

𝐽 (𝐴)/(𝐴𝐽 (𝐵)𝐴)
.

Fix Σ = ⨁

𝑖∈𝑅0

𝕂 𝑒𝑖. If 𝑖 ∈ 𝑅0 = 𝑄0, then we can specify 𝑋 = 𝑆𝐵(𝑖) = 𝑆𝐴(𝑖) in (5.28), here

𝑆𝐵(𝑖) denotes the simple 𝐵 (or 𝐴) module concentrated at vertex i. Doing so, we obtain
that

𝐴 ⊗𝐵 𝑆𝐵(𝑖) ≅ A↓B⊗Σ𝑆𝐵(𝑖) = A↓B 𝑒𝑖 ⊗Σ 𝑆𝐵(𝑖) ≅ A↓B 𝑒𝑖 = 𝑃A↓B
(𝑖). (5.29)

where 𝑃A↓B
(𝑖) = A↓B 𝑒𝑖 are representatives of the isoclasses of indecomposable projectives

of A↓B −mod.

We proved the following statement.

Corollary 5.4.2. Let 𝐵 ⊆ 𝐴 be an extension of basic finite dimensional 𝕂-algebras. Write

𝐴 = 𝕂𝑄/𝐼 , with 𝐼 ⊲ 𝕂𝑄 admissible, and 𝐵 = 𝕂𝑅/𝐽 , with 𝐽 ⊲ 𝕂𝑅. If
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• the vertices of 𝑅 and 𝑄 are the same.

• the arrows of 𝑅 are linear combinations of non trivial paths of 𝑄.

• 𝐴𝐽 (𝐵) is a right ideal of 𝐴.

Then

gldim(A↓B) ≦ gldim(𝐴, 𝐵). (5.30)

In particular, if gldim(A↓B) = ∞, then 𝐵 ⊆ 𝐴 is controllable.

Proof. The above discussion proved that every indecomposable A↓B-projective module is
(𝐴, 𝐵)-projective, therefore the conditions of (5.3.5) are satisfied and the result follows.

Now we are able to construct examples of controllable extensions without doing any
homological computations, simply relying on the literature and looking at ideals!

Example 5.4.3. Consider 𝐴 = 𝕂𝔸𝑛, denote the arrows of 𝔸𝑛 by 𝛼𝑖 ∶ 𝑖 → 𝑖 + 1. Let 𝐵 be

the path algebra of the quiver whose vertices are the same of 𝔸𝑛 and whose arrows are

𝛼𝑖+1𝛼𝑖, for 𝑖 = 1,… , 𝑛 − 1. Pictorially, we are considering cases like this one

𝐴 ∶ 1 2 3 4 5 6

𝐵 ∶ 1 2 3 4 5 6

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5

𝛼2𝛼1

𝛼3𝛼2

𝛼4𝛼3

𝛼5𝛼4

In this case we have that 𝐽 (𝐵) consist of all paths of 𝔸𝑛 with even order and 𝐴𝐽 (𝐵) =

𝐽
2
(𝐴) = 𝐽

2
(𝕂𝔸𝑛) is a bilateral ideal. Therefore

A↓B =

𝕂𝔸𝑛

𝐽
2
(𝕂𝔸𝑛)

,

and

gldim(A↓B) = 𝑛 − 1 ≦ gldim(𝐴, 𝐵).

But we can apply the theorem (3.3.1) to obtain that gldim(𝐴, 𝐵) = 𝑛 − 1.

We can go a step further, 𝐽 (𝐵)𝐴 is also a bilateral ideal since 𝐴𝐽 (𝐵) = 𝐽 (𝐵)𝐴. This says

that, if we work with the extension 𝐵𝑜𝑝 ⊆ 𝐴𝑜𝑝, then an analogous result holds:

gldim(𝐴
𝑜𝑝
, 𝐵

𝑜𝑝
) = 𝑛 − 1 = gldim(𝐴, 𝐵).
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We can state our findings as

Corollary 5.4.4. Fix 𝑛 ∈ ℕ. There exist an extension 𝐵𝑛 ⊆ 𝐴𝑛 of 𝕂-algebras such that

gldim(𝐵) = gldim(𝐴) = 1, 𝐵 ⊆ 𝐴 is controllable and

gldim(𝐴, 𝐵) = 𝑛.

Finally we end this section with a result that allows one to look at 𝐴−mod in order to
bound gldim(𝐴

𝑜𝑝
, 𝐵

𝑜𝑝
). First we need a lemma that generalizes [ASS06, Theorem I.5.13.(a)

and (b)].

Lemma 5.4.5. Let 𝐴 be a finite dimensional algebra and 𝐷(−) = 𝐻𝑜𝑚𝕂(−,𝕂) ∶ 𝐴 −

mod ⟶ 𝐴
𝑜𝑝
− mod be the dual functor, then

1. the image of an (𝐴, 𝐵)-exact sequence by 𝐷(−) is an (𝐴𝑜𝑝
, 𝐵

𝑜𝑝)-exact sequence.

2. if 𝑃 ∈ 𝐴 − mod is (𝐴, 𝐵)-projective, then 𝐷(𝑃) is (𝐴𝑜𝑝
, 𝐵

𝑜𝑝)-injective in 𝐴𝑜𝑝
− mod

3. if 𝐸 ∈ 𝐴 − mod is (𝐴, 𝐵)-injective, then 𝐷(𝐸) is (𝐴𝑜𝑝
, 𝐵

𝑜𝑝)-projective in 𝐴𝑜𝑝

Proof. Consider an (𝐴, 𝐵)-exact sequence

0 𝑀 𝑁 𝐿 0.

𝑓 𝑔

𝑟 𝑠

(5.31)

By definition 𝑟 and 𝑠 are homomorphisms of 𝐵-modules that satisfy

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑔𝑠 = 1𝐿

𝑓 𝑟 + 𝑠𝑔 = 1𝑁

𝑟𝑓 = 1𝑀 .

Apply 𝐷(−) to the above exact sequence to obtain the following structure

0 𝐷(𝐿) 𝐷(𝑁 ) 𝐷(𝑀) 0,

𝐷(𝑔) 𝐷(𝑓 )

𝐷(𝑠) 𝐷(𝑟)

(5.32)

where 𝐷(𝑔) and 𝐷(𝑓 ) are homomorphisms of 𝐴𝑜𝑝-modules, and 𝐷(𝑟) and 𝐷(𝑠) are homo-
morphisms of 𝐵𝑜𝑝-modules, see [ASS06, I.2 Standard dualities 2.9].
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Compute

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝐷(𝑠)𝐷(𝑔) = 𝐷(𝑔𝑠) = 𝐷(1𝐿) = 1𝐷(𝐿)

𝐷(𝑟)𝐷(𝑓 ) + 𝐷(𝑔)𝐷(𝑠) = 𝐷(𝑓 𝑟 + 𝑠𝑔) = 𝐷(1𝑁 ) = 1𝐷(𝑁 )

𝐷(𝑓 )𝐷(𝑟) = 𝐷(𝑟𝑓 ) = 𝐷(1𝑀) = 1𝐷(𝑀),

which proves statement i.

Assume that 𝑃 ∈ 𝐴-mod is (𝐴, 𝐵)-projective and consider the following structure in
the category of finite dimensional 𝐴𝑜𝑝-modules

0 𝑀 𝑁 𝐿 0,

𝐷(𝑃)

𝑓

𝜙

𝑔

𝑟 𝑠 (5.33)

where the horizontal line is (𝐴𝑜𝑝
, 𝐵

𝑜𝑝
)-exact. Applying 𝐷(−), using 𝐷2

≅ 1 (see [ASS06, I.2
Standard dualities 2.9]), and statement i we get

𝑃

0 𝐷(𝐿) 𝐷(𝑁 ) 𝐷(𝑀) 0,

𝐷(𝜙)

𝐷(𝑔) 𝐷(𝑓 )

(5.34)

with the horizontal line being (𝐴, 𝐵)-exact. By hypothesis on 𝑃 there exists a homomor-
phism of 𝐴-modules 𝜓 ∶ 𝑃 ⟶ 𝐷(𝑁 ) such that 𝐷(𝜙) = 𝐷(𝑓 )𝜓. We compute

𝜙 = 𝐷
2
(𝜙) = 𝐷(𝐷(𝑓 )𝜓) = 𝐷(𝜓)𝐷

2
(𝑓 ) = 𝐷(𝜓)𝑓

and 𝐷(𝜓) ∶ 𝑁 ⟶ 𝐷(𝑃). This proves statement ii.

A proof of statement iii is similar to that of statement ii and will be omitted.

Corollary 5.4.6. If every indecomposable A↓B-module is (𝐴, 𝐵)-injective, then every inde-

composable (A↓B)
𝑜𝑝-projective module is (𝐴𝑜𝑝

, 𝐵
𝑜𝑝
)-projective. In particular every result from

(5.3.5) holds for 𝐵𝑜𝑝 ⊆ 𝐴𝑜𝑝.

Remark 5.4.7. The finite dimensional condition is necessary because 𝐷(−) is not alge-

braically well behaved for infinite dimensional modules.

If we assume that 𝐵 ⊆ 𝐴 is an extension of algebras such that 𝐵 and 𝐴 have the same
vertices, the arrows of 𝐵 are linear combinations of non trivial paths of 𝐴, and 𝐽 (𝐵)𝐴 is a
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bilateral ideal in𝐴, then a similar (dual) argument involving the short exact sequence

0 𝐽 (𝐵)𝐴 𝐴
𝐴

𝐽 (𝐵)𝐴
≐ A↓B 0

𝜄 𝜋

proves that every indecomposable A↓B-injective module is (𝐴, 𝐵)-injective. When a
monomorphism 𝑓 ∶ 𝑀 → 𝑁 is lifted from A↓B −mod to 𝐴 − mod it is possible to
prove it admits a 𝐵-retraction, the dual result that we computed for epimorphisms. This
culminates in the following result.

Corollary 5.4.8. Let 𝐵 ⊆ 𝐴 be an extension of basic finite dimensional 𝕂-algebras. Write

𝐴 = 𝕂𝑄/𝐼 , with 𝐼 ⊲ 𝕂𝑄 admissible, and 𝐵 = 𝕂𝑅/𝐽 , with 𝐽 ⊲ 𝕂𝑅. If

• the vertices of 𝑅 and 𝑄 are the same.

• the arrows of 𝑅 are linear combinations of non trivial paths of 𝑄.

• 𝐽 (𝐵)𝐴 is a left ideal of 𝐴.

Then

gldim(A↓B

𝑜𝑝
) ≦ gldim(𝐴

𝑜𝑝
, 𝐵

𝑜𝑝
). (5.35)

In particular, if gldim(A↓B

𝑜𝑝
) = ∞, then 𝐵𝑜𝑝 ⊆ 𝐴𝑜𝑝 is controllable.

We end this section with an example that uses the above theory to compute
gldim(𝐴

𝑒
, 𝐵

𝑒
).

Example 5.4.9. Again consider 𝐴 = 𝕂𝔸𝑛, denote the arrows of 𝔸𝑛 by 𝛼𝑖 ∶ 𝑖 → 𝑖 + 1. Let

𝐵 be the path algebra of the quiver whose vertices are the same of 𝔸𝑛 and whose arrows

are 𝛼𝑖+1𝛼𝑖, for 𝑖 = 1,… , 𝑛 − 1.

As we have seen before we can use the results from this section and (3.3.1) to compute

gldim(𝐴, 𝐵) = 𝑛 − 1 = gldim(𝐴
𝑜𝑝
, 𝐵

𝑜𝑝
).

Consider the extension 𝐵
𝑒
⊆ 𝐴

𝑒. Then we have 𝐽 (𝐵𝑒) = 𝐽 (𝐵) ⊗ 𝐵
𝑜𝑝
+ 𝐵 ⊗ 𝐽 (𝐵

𝑜𝑝
). Take an

element 𝑏 ⊗ 𝑗 , with 𝑏 ∈ 𝐵 and 𝑗 ∈ 𝐽 (𝐵𝑜𝑝). Then for any vectors 𝑎𝑖 ∈ 𝐴, 𝑖 = 1,… , 4, we have

(𝑎1 ⊗ 𝑎2)(𝑏 ⊗ 𝑗)(𝑎3 ⊗ 𝑎4) = 𝑎1𝑏𝑎3 ⊗ 𝑎2𝑗𝑎3 ∈ 𝐴 ⊗ 𝐴
𝑜𝑝
𝐽 (𝐵

𝑜𝑝
),

since 𝐴𝑜𝑝
𝐽 (𝐵

𝑜𝑝
)𝐴

𝑜𝑝
⊆ 𝐴

𝑜𝑝
𝐽 (𝐵

𝑜𝑝
). Similarly, 𝐴 ⊗ 𝐴

𝑜𝑝
⋅ 𝐽 (𝐵) ⊗ 𝐵

𝑜𝑝
⋅ 𝐴 ⊗ 𝐴

𝑜𝑝
⊆ 𝐴𝐽 (𝐵) ⊗ 𝐴

𝑜𝑝.
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This says that

𝐴
𝑒
𝐽 (𝐵

𝑒
)𝐴

𝑒
⊆ 𝐴

𝑒
𝐽 (𝐵

𝑒
).

Therefore

gldim(𝐴
𝑒
, 𝐵

𝑒
) ≧ gldim

(

𝐴
𝑒

𝐴
𝑒
𝐽 (𝐵

𝑒
)𝐴

𝑒)
= gldim((A↓B)

𝑒
) = 2 gldim(A↓B) = 2𝑛 − 2.

And (3.3.7) yields gldim(𝐴
𝑒
, 𝐵

𝑒
) ≦ 2𝑛 − 2. For the sake of completeness

gldim(𝐴
𝑒
, 𝐵

𝑒
) = 2𝑛 − 2 = 2 gldim(𝐴, 𝐵)

and all the involved extensions are controllable.

5.5 Counterexamples

We end this chapter with a section dedicated to counterexamples.

Example 5.5.1. A natural question would be if every controllable extension has the

compatibility “𝐴𝐽 (𝐵) is a bilateral ideal in 𝐴". That is not the case. For example, consider

the following extension

𝐴 ∶ 1 2 3 4

𝐵 ∶ 1 2 3 4.

𝛼 𝛽 𝛾

𝛼 𝛽

Then 𝐴 = 𝑇 [𝐵, 𝑁 ], where 𝑁 ≐ ⟨𝛽, 𝛽𝛼, 𝛾𝛽⟩. By 4.1.1 we have gldim(𝐴, 𝐵) = 1. Notice that

A↓B ∶ 1 2 3 4,

𝛽

by simple computations or using 5.1.4. Therefore

gldim(𝐴, 𝐵) = 1 = gldim(A↓B),

but the Jacobson radical compatibilities explored in the results do not hold.

Example 5.5.2. This is another example of a controllable extension without the Jacobson
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radical compatibility. Consider

2 2

𝐴 ∶ 1 4 𝐵 ∶ 1 4

3 3

𝑦 𝑥

𝑧
𝑏 𝑏

where the dotted line means that we are consider the relation 𝑏𝑧 − 𝑦𝑥 in 𝐴. Then

2

A↓B ∶ 1 4

3

𝑦 𝑥

𝑧

with relation 𝑦𝑥 . It is easy to show that gldim(A↓B) = 2.

Notice that 𝐴𝐽 (𝐵) = ⟨𝑏⟩ is not a bilateral ideal since 𝑏𝑧 = 𝑦𝑥 ∉ 𝐴𝐽 (𝐵). To compute

gldim(𝐴, 𝐵) we will use that 𝐵 has only 5 isomorphism classes of indecomposable modules.

They are represented by 𝑆(𝑖), for 𝑖 = 1, 2, 3, 4, and

0

𝐼 ∶ 𝕂 0

𝕂

1

Simple computations show that

𝐴 ⊗𝐵 𝑆(1) ≅ 𝑃𝐴(1), 𝐴 ⊗𝐵 𝑆(2) ≅ 𝑃𝐴(2), 𝐴 ⊗𝐵 𝑆(3) ≅ 𝑆(3), 𝐴⊗𝐵 ≅ 𝑃𝐴(4), 𝑎𝑛𝑑 𝐴 ⊗𝐵 𝐼 ≅ 𝐴𝐼 .

Since we computed the induced modules 1 using indecomposable 𝐵-modules and obtained

only indecomposable modules, we have that every (𝐴, 𝐵)-projective module can be written

as a direct sum of the above 𝐴-modules. Using this we obtain the following minimal

1 Induced modules are modules of the form 𝐴 ⊗𝐵 𝑀 for some 𝐵-module 𝑀 .



5.5 | COUNTEREXAMPLES

93

(𝐴, 𝐵)-projective resolution for 𝑆(4)

0 𝑃(1) 𝑃(2) ⊕ 𝐼 𝑃(4) 𝑆(4) 0.

In particular, gldim(𝐴, 𝐵) ≧ 2. From (3.3.1) we obtain 2 ≦ gldim(𝐴, 𝐵). Therefore

gldim(𝐴, 𝐵) = 2 = gldim(A↓B).

Example 5.5.3. The most natural question to ask is is every finite dimensional extension

is controllable. Sadly, this is not true.

To see why, consider 𝐴 = 𝕂𝑄 and 𝐵 = 𝕂𝑅 where

3

𝑄 ∶ 1 2 𝑅 ∶ 1 2 + 3

𝑏

𝑎

𝑎+𝑏

that is, 𝐵 is the subalgebra generated by 𝑒1, 𝑒2 + 𝑒3, and 𝑎 + 𝑏. The category 𝐴 − mod has

only 6 non isomorphic indecomposable modules, they are the simple modules 𝑆(1), 𝑆(2),

and 𝑆(3), and

0 𝕂 𝕂

𝑀 ∶ 𝕂 𝕂 𝑁 ∶ 𝕂 0 𝐿 ∶ 𝕂 𝕂

0

1

1 1

1

The indecomposable 𝑆(2) = 𝑃(2), 𝑆(3) = 𝑃(3), and 𝐿 = 𝑃(1) are (𝐴, 𝐵)-projectives because

they are 𝐴-projectives. To see that 𝑆(1) = ⟨𝑥⟩ is (𝐴, 𝐵)-projective we compute

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑒2 ⊗𝐵 𝑥 = 𝑒2(𝑒2 + 𝑒3) ⊗𝐵 𝑥 = 𝑒2 ⊗𝐵 (𝑒2 + 𝑒3)𝑥 = 0

𝑒3 ⊗𝐵 𝑥 = 0

And (𝑎 + 𝑏) ⊗𝐵 𝑥 = (𝑒2 + 𝑒3) ⊗𝐵 (𝑎 + 𝑏)𝑥 = 0 by simplicity, implying 𝑎 ⊗𝐵 𝑥 = −𝑏 ⊗𝐵 𝑥 ∈

(𝐴 ⊗𝐵 𝑆(1))2 ∩ (𝐴 ⊗𝐵 𝑆(1))3 = 0. Therefore 𝐴 ⊗𝐵 𝑆(1) = ⟨𝑒1 ⊗𝐵 𝑥⟩ ≅ 𝑆(1).
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Computing in a similar fashion 𝐴 ⊗𝐵 𝑀 , denote 𝑀1 = 𝕂 𝑥 and 𝑀2 = 𝕂 𝑦, then

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑒2 ⊗𝐵 𝑥 = 0, 𝑒3 ⊗𝐵 𝑥 = 0

𝑎 ⊗𝐵 𝑥 = 𝑒2(𝑎 + 𝑏) ⊗𝐵 𝑥 = 𝑒2 ⊗𝐵 (𝑎 + 𝑏)𝑥 = 𝑒2 ⊗𝐵 𝑦

𝑏 ⊗𝐵 𝑥 = 𝑒3(𝑎 + 𝑏) ⊗𝐵 𝑥 = 𝑒3 ⊗𝐵 (𝑎 + 𝑏)𝑥 = 𝑒3 ⊗𝐵 𝑦

𝑒1 ⊗𝐵 𝑦 = 0

𝑎 ⊗𝐵 𝑦 = 0, 𝑏 ⊗𝐵 𝑦 = 0.

In terms of representations we get

0 ⟨𝑒3 ⊗𝐵 𝑦⟩

𝑀 ∶ ⟨𝑥⟩ ⟨𝑦⟩ ⟹ 𝐴 ⊗𝐵 𝑀 ∶ ⟨𝑒1 ⊗𝐵 𝑥⟩ ⟨𝑒2 ⊗𝐵 𝑦⟩

0

1

1

1

and 𝐴 ⊗𝐵 𝑀 ≅ 𝐿 = 𝑃(1) is indecomposable, so 𝑀 is not (𝐴, 𝐵)-projective. Clearly the

kernel of 𝐴⊗𝐵𝑀 → 𝑀 is 𝑆(3) and is (𝐴, 𝐵)-projective. Therefore pd
(𝐴,𝐵)

𝑀 = 1. Due to the

symmetry of the algebras we also get pd
(𝐴,𝐵)

𝑁 = 1.

But 𝐽 (𝐵) = ⟨𝑎 + 𝑏⟩ ⟹ 𝐴𝐽 (𝐵)𝐴 = ⟨𝑎, 𝑏⟩ = 𝐽 (𝐴), so A↓B is semisimple and we obtain

gldim(𝐴, 𝐵) = 1 > 0 = gldim(A↓B).

The Examples (5.5.2) and (5.5.3) were presented to me by Prof. Kostiantyn Iusenko and
Prof. John MacQuarrie during private meetings.
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Chapter 6

Conclusions

Our work - first motivated by the results of [XX13] that connected Relative Homo-
logical Algebra to the Finitistic Dimension Conjecture, [Guo18] examples, and later by
[IM21] combinatorial bound - faced a dormant theory that had not being updated with
recent representation theoretical techniques. More precisely, there were little examples of
extensions of algebras using Gabriel’s approach to finite dimensional algebras: the use of
a combinatorial data - quivers - to understand them.

We could summarize our findings as an effort to interact representation theory of
quivers with Relative Homological Algebra, trying to use the computational ease of quivers
to obtain relative dimensions.

In that sense, we defined a new class of extensions. Controllable extensions (5.1) are
extensions of algebras that preserve much of the computation properties of classical global
dimensions regarding algebraic operations (5.2.1).

Due to the universality of Hochschild’s relative homological theory, when one studies
generalizations of classical homological results, it is necessary to show that they encompass
non trivial examples. With that in mind, we obtained the result computing the relative
global dimension of tensor extensions of algebras in (4.1.1), and found lower bounds for
other classically motivated extensions in (4.2.4) and (4.3.2).

These classically motivated results were used to compute relative homological dimen-
sions. The tensor extension result, being an equality, was sufficient to obtain a class of
non trivial controllable extensions of algebras with relative homological dimension equal
to one (5.1.4). For the other results we were able to obtain controllable extensions with
infinite relative global dimensions (4.3.3), or used the combinatorial upper bound of [IM21],
see (3.3.1), to compute controllable extensions of algebras with any finite relative global
dimension (4.2.8).

Finally, we obtained a sufficient condition for the global dimension an extension to be
bounded bellow by the controllable condition, that is, the inequality

gldim(A↓B) ≦ gldim(𝐴, 𝐵).

This sufficient condition is algebraic in the sense that it imposes compatibilities between
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the Jacobson radicals of 𝐴 and 𝐵, see (5.4.2). This result was combined with (3.3.1) to get
the relative finite dimension examples (5.4.3). Then we showed some examples that lie
outside the scope of our results in 5.5.
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