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Resumo

Cáceres-Rigo, A. C. Bases apertadas em espaços de Banach. 2022. Tese (Doutorado)
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.
No presente trabalho, estudamos espaços de Banach com bases apertadas e provamos
dicotomias que envolvem noções diferentes de minimalidade e novos tipos de bases apertadas.
Introduzimos a noção de sistema admissível de blocos para codificar diferentes tipos de
mergulhos entre espaços de Banach com base de Schauder. Dados um espaço de Banach
E com base de Schauder normalizada (en)n e um sistema admissível de blocos (DE,AE),
definimos a noção de AE-mergulho e suas respetivas noções de AE-minimalidade e AE-
aperto associadas. Estendendo os métodos usados por V. Ferenczi e C. Rosendal para provar
a ‘terceira dicotomia’ no programa de classificação de espaços de Banach por subespaços,
provamos que um espaço de Banach E com um sistema admissível de blocos (DE,AE) contém
um subespaço infinito dimensional com base que é ou AE-apertada ou AE-minimal. Como
corolário obtém-se a ‘terceira dicotomia’ de Ferenczi e Rosendal: todo espaço de Banach
contém um subespaço que ou é minimal, ou possui uma base apertada. Também como
corolário provamos que toda sequência básica normalizada (en)n tem uma subsequência que
ou é uma base apertada por sequências, ou é uma base spreading. Outras dicotomias entre
noções de minimalidade e de aperto são demonstradas. Estendemos a definição de base de
Schauder apertada e de base de Schauder apertada com constantes para o caso de espaços
de Banach com base transfinita. Damos caracterizações de tais noções neste contexto e
estudamos suas propriedades.
Palavras-chave: Bases de Schauder apertadas, espaços minimais, dicotomias em espaços
de Banach, bases spreading, bases transfinitas.
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Abstract

Cáceres-Rigo, A. C. Tightness in Banach spaces. 2022. Tese (Doutorado) - Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.
In this work, we study Banach spaces with tight bases and we prove dichotomies involving
different types of minimality and new types of tightness. We introduce the notion of
admissible system of blocks to code various kinds of embeddings between Banach spaces
with Schauder bases. Given a Banach space E with normalized Schauder basis (en)n and
an admissible system of blocks (DE,AE), we define an AE-embedding and the respective
notions of AE-minimality and AE-tightness associated to it. Extending the methods used by
V. Ferenczi and C. Rosendal to prove the ‘third dichotomy’ in the program of classification
of Banach spaces up to subspaces, we prove that a Banach space E with an admissible
system of blocks (DE,AE), contains an infinite dimensional subspace with a basis which is
either AE-tight or AE-minimal. As a corollary, we obtain the ‘third dichotomy’ of Ferenczi
and Rosendal: every Banach space contains a subspace that is either minimal or it has a
tight basis. Also as a corollary we prove that every normalized basic sequence (en)n has a
subsequence which is either a tight-by-sequences basis or it is spreading. Other dichotomies
between notions of minimality and tightness are demonstrated. We extend the definition of
tight Schauder basis and tight-with-constants Schauder basis to the case of Banach spaces
with transfinite basis. We give characterizations of these notions in this context and study
their properties.
Keywords: Tight bases, minimal spaces, dichotomies on Banach spaces, spreading bases,
transfinite bases.
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Chapter 1

Introduction

1.1 The motivation: Classification of Banach spaces up to subspaces

The notion of tightness in Banach spaces with Schauder basis has its beginnings in the work
of V. Ferenczi and Ch. Rosendal [22] as a fundamental concept in the search for a dichotomy
for minimality in the Classification Program of Banach spaces up to subspaces started by
W. T. Gowers in 2002, see [29].

The program aims to classify subspaces of Banach spaces into “inevitable” classes of infinite
dimensional Banach spaces. Conditions for a class to be considered of interest for the
Program were given by Gowers:

a) The classes must be inevitable, that is, every Banach space must belong to a class.

b) A class must be hereditary for closed subspaces or, if the property that determines
the class is defined for basic sequences, then the class must be hereditary for block
subspaces.

c) Two different classes must be disjoint.

d) The property that determines the class must give additional information about the
space of operators defined over the space or over its subspaces.

A Banach space X is decomposable if it can be written as the direct sum of two
closed infinite-dimensional subspaces, otherwise X is said indecomposable. A Banach space
is said hereditarily indecomposable (or HI) if all its infinite-dimensional subspaces are
indecomposable. The first example of an HI space (we shall refer to this space as GM)
was given in 1994 by W. Gowers and B. Maurey [30] and its construction was the answer
to the unconditional basis problem, providing the first example of a Banach space (GM)
without unconditional basic sequences.

A version Gu of GM with an unconditional basis given by Gowers in [26] was used to solve the
Banach’s hyperplane problem: Is every Banach space isomorphic to its closed hyperplanes?
A closed subspace Y ⊆ X is a closed hyperplane if its codimension is equal to 1. Gu was

1



2 CHAPTER 1. INTRODUCTION

the first example of a space which is not isomorphic to any of its hyperplanes (recall that all
subspaces of codimension 1 in any Banach space are mutually isomorphic). In [30] T. Gowers
and B. Maurey noticed that every HI space is not isomorphic to any proper subspace. So,
GM is, in fact, not isomorphic to proper subspaces.

A space is asymptotically unconditional if there is a constant C such that any sequence of
n successive vectors whose supports belong to [n,∞) is C-unconditional. An asymptotically
unconditional and HI version G of GM was also given by Gowers in [27].

1.2 Working on dichotomies

In 1996 Gowers showed a first dichotomy (see [28]) giving the first two examples of inevitable
classes:

Theorem (First dichotomy). Every Banach space has a separable subspace that is either
hereditary indecomposable, or has an unconditional basis.

The first dichotomy provided the answer to the Homogeneous Banach space problem,
formulated by S. Banach: is ℓ2 the only infinite-dimensional Banach space (up to
isomorphism) which is isomorphic to all its infinite-dimensional subspaces? A space with
such property of being isomorphic to all of its infinite dimensional subspaces is called an
homogeneous space.

Gowers in [28] combined his dichotomy result with a corollary of the results of R. Komorowski
and N. Tomczak-Jaegermann (see [34] and [35]): If X is an homogeneous Banach space then
either X is isomorphic to ℓ2 or fails to have an unconditional basis. Using this result and
the first dichotomy, if X has an HI subspace it fails to be homogeneous and if it has a
subspace with unconditional basis then itself has an unconditional basis, so by the result of
Komorowski and Tomczak-Jaegermann, X is isomorphic to ℓ2. Therefore,

Theorem (Theorem 1 in [28]). A Banach space is homogeneous if and only if it is isomorphic
to ℓ2.

Later in 2002, Gowers showed a second dichotomy (see [29]):

Theorem (Second dichotomy). Any Banach space contains a subspace with a basis such that
no pair of disjointly supported block subspaces are isomorphic, or any two block subspaces
have isomorphic subspaces.

This last condition was named as quasi-minimality by Gowers. A Banach space is minimal if
it can be isomorphically embedded in all its closed subspaces. Clearly, every minimal space
is quasi-minimal. Then it is possible to subdivide such spaces in those which do not have any
minimal subspace (which Gowers called strictly quasi-minimal spaces) and those which have
a minimal subspace. This division does not give additional information about the properties
of the spaces, therefore does not seem to be the type of result the program is looking for. At
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that moment, a dichotomy involving minimality was missing, and the program was at the
following state:

Theorem (Theorem 7.7 in [29]). Let X be a Banach space. Then X has a subspace Y with
one of the following properties, which are mutually exclusive and all possible.

(1) Y is hereditarily indecomposable.

(2) Y has an unconditional basis and no pair of disjointly supported block subspaces are
isomorphic.

(3) Y has an unconditional basis and is strictly quasi-minimal.

(4) Y has an unconditional basis and is minimal.

The spaces GM and G are examples of the first type, Gu is an example of the second
type. Tsirelson’s space T and its p-convexifications T(p) with 1 < p < ∞ (see [25]) have an
unconditional basis and no minimal subspaces, indeed they are strictly quasi-minimal (see
[10] for this) so they are examples of the third type. The classical spaces c0, ℓp, the dual of
Tsirelson space T∗ and Schlumprecht space S (see [2]) are of the fourth type.

1.3 The answer for the dichotomy for minimality

If Y and X are Banach spaces, we write Y ↪→ X to say that Y is isomorphically embeddable
in X. In 2007, V. Ferenczi and Ch. Rosendal (see [22]) introduced the notion of tightness
and responded with three new dichotomies to the gap involving minimality left by Gowers.

Suppose X = [xn]n is a Banach space with Schauder basis. A Banach space Y is tight in
X if there is a sequence (In)n of successive finite subsets of N, such that for all A infinite
subset of N, Y does not isomorphically embed in [xn, n /∈ ∪i∈AIi]. (xn)n is a tight basis for
X if any Banach space Y is tight in X, and X is tight if it has a tight basis.

A useful and beatiful characterization of tightness was given by V. Ferenczi and G. Godefroy
in 2012 using Baire category, see [18]: Y is tight in X = [xn]n if, and only if,

EY = {u ∈ 2ω : Y ↪→ [xn : n ∈ supp(u)]}

is meager in 2ω.

Tightness is, in a sense, an opposite notion to minimality. It is clear that a tight space is not
minimal. The dichotomy associated to minimality and tightness that Ferenczi and Rosendal
obtained is called the third dichotomy and it is the pivotal point of this work.

Theorem (Third dichotomy). Every Banach space contains a subspace with a basis which
is either tight or minimal.

In [22], some special types of tightness were also presented and studied. Suppose X = [xn]n is
tight and for all Y = [yn]n block subspace of X the subsets Ii witnessing such tightness satisfy



4 CHAPTER 1. INTRODUCTION

∀i ∈ N (Ii = supp(yi)), then we say that X is tight by support if ∀i ∈ N (Ii = ran(yi)),
X is tight by range. Recall that if x ∈ X, then supp(x) := {n ∈ N : x∗

n(x) ̸= 0}
and ran(x) := [min supp(x),max supp(x)], where (x∗

n)n is the sequence of biorthogonal
functionals of the basis (xn)n.

Two Banach spaces are comparable if one embeds into the other. “No two disjointly supported
block subspaces of a Banach space X with basis are isomorphic” is equivalent to “no two
disjointly supported block subspaces of X are comparable”. Those conditions are equivalent
to saying that X is tight by support. So, the second dichotomy of Gowers can be written in
terms of a stronger form of tightness and a weaker form of minimality as follows:

Theorem (Second dichotomy). Any Banach space contains a subspace with a basis either
tight by support or quasi-minimal.

Ferenczi and Rosendal also gave a fourth and a fifth dichotomies, contrasting forms of
tightness and minimality, and presented the relations between different types of tightness and
HI, unconditional basis and quasi-minimality notions. A basis (xn)n in a Banach space X is
subsequentially minimal if every subspace of X contains an isomorphic copy of a subsequence
of (xn)n. The basis (xn)n is locally-minimal if X is K-crudely finitely representable in any
of its subspaces for some K. We shall enunciate the fourth and fifth dichotomies.

Theorem (4th dichotomy, [22]). Every Banach space contains a basic sequence that is either
tight by range, or subsequentially minimal.

Theorem (5th dichotomy, [22]). Every Banach space contains a basic sequence that is either
tight with constants or locally-minimal.

With the important contribution of Ferenczi and Rosendal to the program, the list of classes
was refined and improved to six main classes (19 secondary classes, see [22] for a detailed
exposition), as follows:

Theorem (Theorem 8.4 in [22]). Any infinite dimensional Banach space contains a subspace
of one of the types listed in the following list:

(1) HI, tight by range.

(2) HI, tight, sequentially minimal.

(3) Tight by support.

(4) Unconditional basis, tight by range, quasi-minimal.

(5) Unconditional basis, tight, sequentially minimal.

(6) Unconditional basis, minimal.

In a companion paper [23], Ferenczi and Rosendal gave several examples of tight Banach
spaces. So, they proved in [23] that G and G∗ are of type (1); Gu and G∗

u are of type (3)
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(besides those, several examples were given); T and T(p) are of type (5). Later in 2011, V.
Ferenczi and Th. Schlumprecht provided an example χGM of a space of type (2), constructing
a version of GM tight and sequentially minimal, see [24]. Finally, in 2014, the first example
χ(4) of a Banach space of type (4) was given by S. Argyros, A. Manoussakis and A. Pelczar
[4].

1.4 Going into the proofs

The main tool used in the proof of the third dichotomy is the generalized asymptotic game
which is a generalization of the infinite asymptotic game. Namely, the infinite asymptotic
game on a Banach space E with Schauder basis (en)n between two players I and II is a
game with infinite rounds where players are taking turns alternatively. The player I in the
k-th round chooses a natural number nk and player II plays a finitely supported vector xk

with nk < supp(xk). The outcome is the sequence (xn)n, and player II wins if the outcome
belongs to a certain pre-fixed subset of Eω. Infinite asymptotic games were studied in [44]
and previously in [40].

A modification of the infinite asymptotic game was used by Ferenczi in [17] to prove that
a space saturated with subspaces with a Schauder basis, which embed into the closed
linear span of any subsequence of their basis, must contain a minimal subspace. This result
generalized the methods and the result of Pelczar in [42]: a Banach space saturated with
subsymmetric basic sequences contains a minimal subspace.

In [22] were combined the techniques in [17] and in [44] to prove the third dichotomy. The
generalized asymptotic game on a Banach space E with Schauder basis, with parameters
C ≥ 1 and the basic sequence (yn)n, used in such proof is a game with infinite rounds between
player I and player II where in the k-th round, I plays a natural number nk and player
II responds with a natural number mk and a not necessarily normalized finitely supported
vector xk such that supp(xk) ⊆ ∪k

i=0[ni,mi]. The outcome of the game is the not necessarily
block sequence (xn)n, and player II wins the game if the outcome is C-equivalent to the
sequence (yn)n.

In order to prove the third dichotomy they proceed by contradiction and, in a very
summarized way they proceed as follows. In the generalized asymptotic game take C ≥ 1

and a prefixed basis (yn)n. Say that II wins the generalized asymptotic game, which depends
on C and on (yn)n, if (xn)n is C-equivalent to (yn)n. Such game is equivalent to an open
Gale-Stewart game, so it is determined. By contradiction, suppose that E is a Banach
space with basis (en)n having no tight block subspaces. It is proved that if E is in some
way “saturated” with block subspaces where the player I always has a winning strategy
playing the generalized asymptotic game in those subspaces, then E contains a tight block
subspace. Therefore, supposing there is no tight block subspaces implies that there are some
block subspaces where player I fails to have a winning strategy. By the determination of the
game, in such subspaces player II has a winning strategy for the game and this is used to
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construct a minimal block subspace.

1.5 The problem to be solved

Ferenczi and Rosendal also state the following result:

Theorem (Theorem 3.16, [22]). Every Banach space with a basis contains a block subspace
E = [en]n satisfying one of the following properties:

(1) For any [yn]n block subspace of E, there is a sequence (In)n of successive intervals in N
such that for any A ∈ [N]∞, [yn]n does not embed into [en, n /∈ ∪i∈AIi], as a sequence
of disjointly supported vectors, respectively as a block sequence.

(2) For any [yn]n block subspace of E, (en)n is equivalent to a sequence of disjointly
supported vectors of [yn]n, respectively (en)n is equivalent to a block sequence of [yn]n.

They suggested that the proof of the last theorem follows by modifying the embedding
notions in each case, but no proof was given. In the context of the third dichotomy
the underlying embedding is the isomorphic embedding. That is, we say that Y = [yn]n

isomorphically embeds in E = [en]n if (yn)n is equivalent to a (basic) sequence in E. After
a standard perturbation argument, one can ask that such basic sequence is a sequence of
finitely supported vectors of E. In the frame of Theorem 3.16 in [22], we can think of other
forms of embeddings: on the first case Y “embeds” in E if (yn)n is equivalent to a sequence
of disjointly supported vectors of E; and on the second case Y “embeds” in E if (yn)n is
equivalent to a block sequence of E. Another example of a different type of embedding is to
say that Y “embeds” in E if (yn)n is equivalent to some subsequence of (en)n.

Those ways of interpreting the embedding notion are coded in what we called an admissible
system of blocks, which basically is a pair (DE,AE) associated to a Banach space E with
a fixed basis (en)n, where DE is a set of blocks for E (that is, a set containing the possible
bases of subspaces we admit to consider) and AE is an admissible set for E (the set of infinite
sequences of vectors which are the images of the respective embedding). For example, in the
case of “being equivalent to a subsequence of (en)n”, DE would be the set which elements
are the vectors of the basis and AE is the set of all subsequences (en)n. This coding for
embedding through admissible sets A of vectors naturally leads us to define the notions of
A-minimality and A-tightness, which depend on A. We modify the methods in [22] to use
this admissible systems and prove the following theorem.

Theorem (Theorem 6.5.1). Let E be a Banach space with normalized basis (en)n and
(DE,AE) be an admissible system of blocks for E. Then E contains a DE-block subspace
X which is either AE-tight or AE-minimal.

The third dichotomy is a particular case for certain DE and AE. We also obtain a proof of
Theorem 3.6 in [22] as a corollary of Theorem 6.5.1.

We define a basic sequence (yn)n to be tight by sequences in a Banach space E with Schauder
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basis (en)n, if the set

Eyn := {u ∈ 2ω : [yn]n
s
↪→ [en : n ∈ supp(u)]}

is meager in 2ω, where [yn]n
s
↪→ [xn]n if there is a subsequence (zn)n of (xn)n equivalent to

(yn)n. If all basic sequences (yn)n are tight by sequences in E, we say that (en)n is a tight-
by-sequences basis of E. If E has such a basis, then E is a tight-by-sequences space. This
definition follows the same spirit of the definition of tightness via the characterization given
in [18], but using the notion of “embedding as a subsequence”. As we already mentioned,
this embedding corresponds to a particular choice of sets DE and AE. So, as corollary of
Theorem 6.5.1 and using the Galvin-Prikry Theorem, we obtain:

Theorem (Corollary 6.5.5). For any normalized basic sequence (en)n in a Banach space,
there is a subsequence of (en)n which is either a tight-by-sequences basis or spreading.

Another focal point in our research was to obtain a generalization of tightness for a Banach
space with transfinite bases. In this direction we prove a characterization for comeager
subsets of 2α, with α a limit ordinal (see [32] for usual Set Theory notation). We use this
characterization to define tightness in this context as follows: Let X and Y be Banach
spaces, X with transfinite normalized basis (xγ)γ<α. We say that Y is tight in (xγ)γ<α if
EY = {u ∈ 2α : Y ↪→ Xsupp (u)} is meager in 2α. If any Banach space Y is tight in (xγ)γ<α

then (xγ)γ<α is a tight transfinite basis for X. We say that X is tight if it has a tight basis.

We show that the properties obtained from this definition extend the ones presented in
Chapter Four for the Schauder basis case. Finally we list some open problems.

We have divided this thesis in seven chapters. With the objective of providing a self-
explanatory document, in Chapter Two we present some preliminary notions in Banach
spaces and the majority of the notation. Chapter Two is divided in two sections: the first
one is about basic result in Banach spaces with Schauder basis and the second one is about
Banach spaces with transfinite bases. In Chapter Three we introduce some concepts of
infinite games theory and other tools of descriptive set theory. In Chapter Four, we expose
known facts about minimality and tightness, and prove in detail (giving some different proofs
from the originals) basic results involving tight Banach spaces which appear in [22] and [18].
In Chapter Five, we define and study the basic properties of admissible families, sets and
systems of vectors. Also, we define the concepts of A-minimality and A-tightness and we
give some basic properties. In Chapter Six, we prove the A-tight - A-minimal dichotomy
and provide its corollaries. Finally, in Chapter Seven, we provide a definition of tight Banach
spaces with transfinite basis and study some of its properties and relations.

This research received the financial support of FAPESP, Process 2017-18976-5. 6
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Chapter 2

Preliminaries on Banach spaces
In this chapter we will present some well known results in Banach space theory which will
appear repeatedly in the arguments and constructions developed along this document. We
begin with some general considerations about notation in Section 1. In Section 2, results
in Banach spaces with Schauder basis are presented. In Section 3 we introduce some initial
definitions and results on Banach spaces with transfinite basis, which will be used in Chapter
7.

2.1 Notation

The notation that we shall use is standard from the literature on this subject. We shall
consider separable or non-separable infinite dimensional Banach spaces. When we refer to
a Banach space we are assuming it is infinite dimensional and a subspace of it will be also
infinite dimensional and closed, unless stated otherwise. Unless a distinction is necessary,
we shall denote the Banach space (X, ∥·∥) only by X. For X Banach, we denote as X∗ its
topological dual space (the Banach space of bounded functionals over X) with its usual
norm.

SX , BX and BX denote the unit sphere, the open and closed ball of X, respectively. For
ε > 0 and x ∈ X, BX(x, ε) and BX(x, ε) denote the open and closed ball in X centered in
x with radius ε, respectively.

Let A be a non-empty set. |A| denotes the cardinality of A, P(A) denotes the power set of
A, [A]<∞ and [A]∞ denote the set of finite subsets of A and the set of infinite subsets of A,
respectively. For an ordinal κ ≥ 1, we write [A]κ to denote the set of subsets of A which
have κ elements, and write [A]<κ to denote the set of subsets of A which have less than κ

elements.

If X is a Banach space, we write (xn)n instead of (xn)n<ω to denote a sequence of vectors of
X and we write (yn)n ⪯ (xn)n to denote that (yn)n is a subsequence of (xn)n. If (xn)n ∈ Xω,
we denote as span(xn) the linear span of {xn : n ∈ N} and [xn]n the closed linear span of X
generated by {xn : n ∈ N}. If A ∈ P(N), then [xn : n ∈ A] (or [xn]n∈A) denotes the closed
linear subspace generated by {xn : n ∈ A}.

Given A,B ⊂ N and assuming that maxA and minB exist, we write A < B to mean that
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maxA < minB. So, when we refer to a sequence (In)n of successive finite subsets of N, we
are saying that In < In+1 for every n ∈ N. Also, when we refer to an interval I of natural
numbers, we are meaning that I = [a, b] ∩N, for some 0 ≤ a ≤ b.

2.2 Banach spaces with Schauder basis

In the following section we will consider separable Banach spaces, specifically Banach spaces
with basis. Our main references for this sections are [1], [36] and [38].

2.2.1 Schauder Basis and basis constant

Definition 2.2.1. A sequence of elements (xn)n of a Banach space X is a Schauder basis
(or a basis) for X if, and only if, for each x ∈ X there is a unique sequence of scalars (λn)n

such that

x =
∞∑
n=0

λnxn.

If there is M > 0 such that for every n ∈ N, ∥xn∥ ≤ M , then the basis is bounded. (xn)n is
seminormalized if it is bounded and 0 < inf ∥xn∥, for n ∈ N. If ∥xn∥ = 1 for every n ∈ N,
then the basis (xn)n is normalized.

Those types of bases are named after J. Schauder who first introduced them in 1927. It is
easy to prove from the definition that if (xn)n is a basis for X, then {xn : n ∈ N} is a set of
linearly independent vectors. Also, if X has a basis then X is separable because the set of
rational finite linear combinations of vectors of the basis is dense in X.

Additionally, if (xn)n is a basis for X and (an)n is a sequence of non-zero scalars, then
every x ∈ X has a representation

∑∞
n=0 λnxn in terms of the basis, which can be written as∑∞

n=0 (λn/an)anxn, which is a unique representation of x in terms of the sequence (anxn)n.
This means that (anxn)n is also a basis for X. Thus, from a basis (xn)n we can always obtain
a normalized basis (xn/∥xn∥)n for X.

The following norm can be defined in X

|||x||| = sup
k∈N

∥
k∑

n=0

λnxn∥, (2.1)

where
∑∞

n=0 λnxn is the representation of x in the basis (xn)n. It is easy to see that (X, |||·|||)
is a Banach space and by the Open Mapping Theorem it can be proved that |||·||| is a norm
equivalent to ∥·∥. It is important to notice that the norm |||·||| in the preceding definition
depends not only on the basis (xn)n, but also on the original norm ∥·∥ of the space.

Notation 2.2.2. For X a Banach space with basis (xn)n and A ∈ [N]<∞. We denote by PA

the natural projection over X that takes a vector
∑∞

n=0 λnxn to the vector
∑

n∈A λnxn. For
a natural number k ≥ 1, we denote by Pk the projection P[0,k−1].
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Remark 2.2.3. We are considering infinite linear combinations indexed on ω (later in
some limit ordinal). For that reason we preferred to start the sum in 0. Also, because of the
usual set theory identification of the natural number k ≥ 1 with the set of its predecessors
{0, 1, ..., k − 1}, we choose to denote by Pk the projection P[0,k−1] (instead of P[0,k]).

Notice that for every k ≥ 0 and x =
∑∞

n=0 λnxn we have

|||Pk(x)||| ≤ sup
l≤k

∥
l∑

n=0

λnxn∥ ≤ sup
l∈N

∥
l∑

n=0

λnxn∥ = |||x|||,

therefore, Pk is bounded and |||Pk||| = 1. Also, notice that for k ≥ 1, the projection P{k} is
equal to Pk+1 − Pk, thus P{k} is bounded. Since PA =

∑|A|
i=1 P{ai}, PA is bounded for any

A = {a1, ..., a|A|} ∈ [N]<∞.

Definition 2.2.4. If (xn)n is a basis for the Banach space X, then the number

C = sup
k≥1

∥Pk∥

is called the basis constant of the basis (xn)n. If such number C is equal to 1 we say that the
basis is monotone.

Notice that for k ≥ 0, if x =
∑k−1

n=0 λnxn ∈ X is normalized, then ∥Pk(x)∥ = 1, therefore
∥Pk∥ ≥ 1 for every k ≥ 1. This implies that the basis constant of any basis is always greater
than or equal to 1, so the basis (xn)n is monotone if every Pk has norm exactly 1.

Renorming the space (X, ∥·∥) with basis (xn)n with the equivalent norm |||·||| defined in
Equation (2.1), it is clear that (xn)n is a monotone basis of (X, |||·|||).

Let X be a Banach space over the field K and (xn)n be a basis for X. We can consider for
each k ∈ N, the function x∗

k : X → K, defined by x =
∑∞

n=0 λnxn 7→ λk. Notice that each
x∗
k can be seen as the composition of the canonical isomorphism between the linear span of

the vector xk and K, with the bounded operator P{k}. Therefore, x∗
k is bounded for every

k ∈ N as we summarize in the next definition.

Definition 2.2.5. If (xn)n is a basis for the Banach space X, we define the coordinate
functionals (x∗

k)k as the functionals that map x∗
k : x =

∑∞
n=0 λnxn 7→ λk, for every k ∈ N.

Notice that if (xn)n is a basis for X, then any x ∈ X can be represented as x =
∑∞

n=0 x
∗
n(x)xn.

2.2.2 Basic sequences and block subspaces

After defining a Schauder basis for a Banach space an immediate question is whether every
separable Banach space has a basis. This question was formulated by S. Banach in 1932 and
was an open problem for many years. The relation between the basis existence problem and
the Approximation Problem was independently remarked by S. Mazur (there are no written
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records before 1950) and A. Grothendieck (approximately in 1953), see 5.7.4.14 in [43] for
more information.

The Approximation Problem asked whether every Banach space has the approximation
property. Recall that a Banach space Y has the approximation property if every compact
operator from any Banach space X to Y is the norm limit of finite-rank operators from X to
Y . Banach spaces with basis were known to satisfy this property, but an answer for general
Banach spaces was not given until 1973 when P. Enflo negatively solved the problem. In
[15], Enflo gave an example of a separable reflexive Banach space lacking the approximation
property and, therefore, failing to have a Schauder basis.

Nevertheless, the fact that every Banach space contains a subspace with basis was already
known by S. Banach (it can be found in his 1932 book without demonstration; the first
known demonstration was given 26 years later using techniques previously developed by S.
Mazur, see pp. 361 of [38] for more detailed information). This leads us to the following
definition and theorem.

Definition 2.2.6. A sequence (xn)n in a Banach space X is a basic sequence if it is a
Schauder basis for [xn]n.

Theorem 2.2.7. Every infinite dimensional Banach space contains a basic sequence.
Additionally, given ε > 0, such basic sequence can be chosen with basis constant less than or
equal to 1 + ε.

Proof. See [1], Theorem 1.4.4.

Suppose that (xn)n is a basis for the Banach space X. We define the support of x ∈ X (in
symbols supp(x)) in the basis (xn)n as the set {n ∈ N : x∗

n(x) ̸= 0}. Given a subset A of
N, we define Ax =

∑
n∈A x∗

n(x)xn, when it exists. Notice that the set of finitely supported
vectors (vectors with support in [N]<∞) in the basis (xn)n of X coincide with span(xn).
The range of a vector x is defined as ran(x) = [min supp(x),max supp(x)], if x is a finitely
supported vector and ran(x) = [min supp(x),∞), if it is not finitely supported. The support
and the range of the zero vector of X is the empty set.

If n ∈ N and x ∈ X, we write n < x if n < min supp(x). Given two finitely supported
vectors x and y of X, we write x < y if supp(x) < supp(y). A sequence of finitely supported
vectors (yn)n is called a block basis if yn < yn+1, for all n ∈ N.

It is important to notice that a block basis is a basic sequence and its basis constant is,
at most, the basis constant of the basis. If X is a Banach space with basis (xn)n, then a
subspace Y is a block subspace of X (in symbols Y ≤ X) if there is a block basis (yn)n of
(xn)n such that Y = [yn]n. If Y is a block subspace and u ∈ Y we denote as supp

Y
(u) the

support of u with respect to the natural block basis of Y .
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2.2.3 Embedding and equivalence of basic sequences

Notation 2.2.8. Let X and Y be Banach spaces, and K ≥ 1.

• We say that X is isomorphic to Y with constant K (denoted as Y ≃K X) if there exists
a one-to-one bounded linear operator T from X onto Y such that T−1 is bounded and
K ≥ ∥T∥ · ∥T−1∥.

• We say that X contains a K-isomorphic copy of Y , or Y is K-embeddable in X

(denoted as Y ↪→K X), if Y ≃K Z for some Z subspace of X.

• We say that Y is isomorphically embeddable in X, or just embeddable, (in symbols
Y ↪→ X), if Y ↪→K X, for some K ≥ 1. In this case we say that X contains an
isomorphic copy, or just a copy, of Y .

It is easy to prove that if (xn)n is a basic sequence in X and T : X → Y is an isomorphism
into a Banach space Y , then (T (xn))n is a basic sequence in Y . The next definition can be
found in [14].

Definition 2.2.9. Let K ≥ 1. Two basic sequences (xn)n and (yn)n are K- equivalent (in
symbols (xn)n ∼K (yn)n) if, and only if, for all k ∈ N and every finite sequence of scalars
(ai)

k
i=0 we have

1

K
∥

k∑
n=0

anxn∥ ≤ ∥
k∑

n=0

anyn∥ ≤ K∥
k∑

n=0

anxn∥.

Two basic sequences are equivalent if there is K ≥ 1 satisfying that such sequences are
K-equivalent.

In the literature (see [12], for example it) is also common to define K-equivalence of basic
sequences as: (xn)n ∼K (yn)n if, and only if, there is an isomorphism T : [xn]n → [yn]n such
that T (xn) = yn for all n ∈ N and such that ∥T∥∥T−1∥ ≤ K; and two basic sequences
are equivalent if they are K-equivalent for some K ≥ 1. This definition of K-equivalence
is not the same as the definition of K-equivalence given in Definition 2.2.9. However, basic
sequences are equivalent in the sense of existence the isomorphism T mentioned above if,
and only if, they are equivalent in the sense of Definition 2.2.9.

An equivalent way to define the equivalence of two basic sequences (xn)n and (yn)n is the
following: a series

∑∞
n=0 λnxn converges if, and only if, the series

∑∞
n=0 λnyn converges. It

is easy to verify that “being equivalent to” is an equivalence relation over the set of all
basic sequences in a Banach space X. In particular, if (xn)n ∼C (yn)n and (yn)n ∼K (zn)n

then (xn)n ∼CK (zn)n. Another useful and basic fact we will use frequently is the following
theorem proved by C. Bessaga and A. Pełczynski in 1958.

Theorem 2.2.10. Let X be a Banach space with basis (xn)n, Y a subspace of X and ε > 0.
Then Y contains a basic sequence (yn)n (1 + ε)-equivalent to a block basis of (xn)n. Such
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sequence (yn)n can be chosen normalized.

Proof. See [36], Theorem I.1.14.

The next fundamental theorem (proved in 1940 by M. Krein, D. Milman, and M. Rutman)
establishes that sufficiently small perturbations of basic sequences are basic sequences
equivalent to the original one.

Theorem 2.2.11 (Principle of small perturbations). Let (xn)n be a basic sequence in a
Banach space X with basis constant C. If (yn)n is a sequence in X such that

2C
∞∑
n=0

∥xn − yn∥
∥xn∥

= θ < 1,

then (xn)n ∼ (yn)n. In particular,

• (yn)n is a basic sequence (with basis constant at most C(1 + θ)(1− θ)−1),

• If (xn)n is a basis of X, so is (yn)n.

Proof. See [1], Theorem 1.3.9.

2.2.4 Shrinking and boundedly complete bases

Given a basis (xn)n for the Banach space X, we can consider the associated coordinate
functionals (x∗

n)n which form a basic sequence in X∗, but not always a basis for X∗. The
classical example to illustrate this is ℓ1 with the canonical basis en = (0, ..., 0, 1, 0, ...) with
1 in the position n, for every n ∈ N. The sequence (en)n is a basis for ℓ1 but the coordinate
functionals fail to be a basis for ℓ∗1, which is not separable. This leads us to the following
definition.

Definition 2.2.12. Let (xn)n be a basis for the Banach space X. We say that (xn)n is
shrinking if, and only if, (x∗

n)n is a basis for X∗, i.e. [x∗
n]n = X∗.

Proposition 2.2.13. Let (xn)n be a basis for the Banach space X. (xn)n is shrinking if,
and only if, whenever x∗ ∈ X∗,

lim
N→∞

∥x∗|[xn]n>N
∥ = 0,

where
∥x∗|[xn]n>N

∥ = sup{|x∗(y) : y ∈ S[xn]n>N
|}

Proof. See [1], Proposition 3.2.6.

A notion in a sense dual to the shrinking condition is the notion of boundedly complete
basis.
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Definition 2.2.14. Let X be a Banach space. A basic sequence (xn)n in X is boundedly
complete if for any sequence of scalars (λn)n such that supm∈N ∥

∑m
n=0 λnxn∥ < ∞, the series∑∞

n=0 λnxn converges.

The main relation between shrinking and boundedly complete bases is that given a basis
(xn)n for a Banach space, (xn)n is boundedly complete if, and only if, the sequence of
coordinate functionals (x∗

n)n is a shrinking basic sequence, see Theorem 4.4.14 in [38]. The
following theorem characterizes the bases of a reflexive Banach space, when it has one. It
was proved by R. James in 1951.

Theorem 2.2.15. Let X be a Banach space with a basis. Then, X is reflexive if, and only
if, all bases of X are shrinking and boundedly complete, which happens if, and only if, some
basis of X is both shrinking and boundedly complete.

Proof. See [38], Theorem 4.4.15.

2.2.5 Unconditional, symmetric and subsymmetric bases

Another important type of bases are unconditional bases which first appear in a work of
Karlin in 1948. Recall that a series

∑∞
n=0 zn converges unconditionally if

∑∞
n=0 zπ(n) converges

for every permutation π : N→ N.

Definition 2.2.16. A basis (xn)n for X is unconditional if for every x ∈ X the series∑∞
n=0 x

∗
n(x)xn converges unconditionally. A basis which is not unconditional is called

conditional.

It is possible to characterize unconditionally convergent series on a Banach space as follows.

Theorem 2.2.17. Let X be a Banach space. The series
∑∞

n=0 xn in X is unconditionally
convergent if, and only if,

∑∞
n=0 αnxn converges whenever (αn)n in ℓ∞.

Proof. See Theorem 4.2.8 in [38].

For each (αn)n in ℓ∞, define T(αn)n : X → X such that T(αn)n(x) =
∑∞

n=0 αnx
∗
n(x)xn. As

a consequence of Theorem 2.2.17 and the Uniform Boundedness principle, the following
theorem is obtained.

Theorem 2.2.18. Suppose that (xn)n is an unconditional basis for a Banach space X. Then
for each (αn)n in ℓ∞ the map T(αn)n is a bounded linear operator, and

sup{∥T(αn)n∥ : (αn)n ∈ Sℓ∞} < ∞.

Proof. See Theorem 4.2.25 in [38].

Notice that for each (ϵi)i sequence of signs (that is each ϵi is equal to +1 ou −1), T(ϵi)i is
bounded and (ϵi)i ∈ Sℓ∞ . This is a motivation for the next definition.
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Definition 2.2.19. If (xn)n is an unconditional basis for X, we define the unconditional
constant K of (xn)n as follows

K := sup{∥T(ϵn))n∥ : (ϵn)n sequence of signs}.

For such K we say that (xn)n is K-unconditional.

When the space has an unconditional basis, one obtain the following characterization.

Theorem 2.2.20. Suppose that X is a Banach space with unconditional basis (xn)n.

• The basis (xn)n is shrinking if, and only if, ℓ1 is not embedded in X.

• The basis (xn)n is boundedly complete if, and only if, c0 is not embedded in X.

Proof. See Theorem 4.4.21 of [38].

We now present the following theorem due to R. James which follows directly from Theorems
2.2.15 and 2.2.20.

Theorem 2.2.21. Let X be a Banach space with an unconditional basis. Then, X is reflexive
if, and only if, X does not contain copies of c0 or ℓ1.

For the special case of a space with unconditional basis, two other types of basis can be
defined: symmetric and subsymmetric. Symmetric bases were independently introduced by
I. Singer in 1961 and by M. Kadets and A. Pełczynski in 1962, see 5.6.3.24 in [43] for this
reference. First, we write Π to denote the set of all permutations over N.

Definition 2.2.22. Let X be a Banach space with unconditional basis (xn)n. We say that
(xn)n is symmetric if, and only if, (xn)n is equivalent to (xσ(n))n, for any σ ∈ Π.

As we mention for general Schauder basis and unconditional basis, for a symmetric basis
(xn)n of X the following operators over X are bounded:

Tσ,(ϵi),k(x) :=
k∑

i=0

x∗
i (x)xσ(i),

where σ ∈ Π, k ∈ N and (ϵi)
k
i=0 is a finite sequence of signs, see Theorem 22.1 and Proposition

22.1 in [46]. By the Uniform Boundedness principle, the following number is well defined

C := sup
σ∈Π

sup
ϵi=±1,
k∈N

∥Tσ,(ϵi),k∥ < ∞. (2.2)

Definition 2.2.23. Let X be a Banach space and (xn)n a symmetric basis for X. We define
the symmetric constant C, as the constant given in Equation (2.2). In this case we say that
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(xn)n is a C-symmetric basis.

Also, it can be proven that the symmetric constant C is the smallest constant such that

∥
∞∑
i=0

ϵiλixσ(i)∥ ≤ C∥
∞∑
i=0

λixi∥, (2.3)

for any σ ∈ Π, (ϵi)i sequence of signs and (λi) ∈ c00, see Proposition 22.1 in [46]. In fact
such condition characterizes the symmetric constant of a symmetric basis (xn)n, and in
several references ([1], for example) is given as definition. Now, we will define the notion of
subsymmetric basis for a Banach space.

Definition 2.2.24. Let X be a Banach space with unconditional basis (xn)n. We say that
(xn)n is subsymmetric if, and only if, (xn)n is equivalent to any of its subsequences.

Any symmetric basis is subsymmetric (see Proposition 22.2 in [46]) but the converse is
false (see Remark 9.2.5 in [1]). Let Σ be the set of infinite increasing sequences of natural
numbers. For the case in which (xn)n is subsymmetric, the associated bounded operators
are the following (see page 569 in [46]):

T(mi),(ni)(x) :=
∑
i∈N

x∗
ni
(x)xmi

,

where ((mi), (ni)) ∈ Σ×Σ and they are uniformly bounded too (see Theorem 21.2 in [46]).
By doing an analogous procedure to the one we did before with symmetric basis, we can
define the subsymmetric constant as follows

Definition 2.2.25. Let X be a Banach space with subsymmetric basis (xn)n. The
subsymmetric constant is the smallest constant C ≥ 1 such that given any scalars (λi) ∈ c00,
we have

∥
∞∑
i=0

ϵiλixni
∥ ≤ C∥

∞∑
i=0

λixi∥,

for all (ni)i ∈ Σ and (ϵi)i sequence of signs. In this case we say that (xn)n is C-subsymmetric.

Without assuming unconditionality, we have the following definition:

Definition 2.2.26. Let C ≥ 1. Define a basis (xn)n to be C-spreading if it is C-equivalent
to all its subsequences. A basis (xn)n is spreading if it is C-spreading for some C ≥ 1.

Notice that every C-subsymmetric basic sequence is C-spreading.

2.2.6 Some examples of Banach spaces with Schauder basis

Classical spaces

In this subsection we want to point out some well known properties of classical Banach
spaces c0 and ℓp, with p ∈ [1,∞), see [1] and [38]. Let us note that such spaces are equipped
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with the canonical monotone basis (en)n, formed by the coordinate vectors en(i) = 1 if
n = i and 0 otherwise. The spaces c0 and ℓp and their respective subspaces are mutually
non-isomorphic, see Corollary 2.1.6 in [1].

The spaces ℓp are reflexive for 1 < p < ∞: if 1/p + 1/q = 1, then ℓ∗p is isometric to ℓq. The
dual space of c0 can be isometrically identified with ℓ1, and the dual of ℓ1 is isometric to ℓ∞,
which is not separable.

Any basis of ℓp with 1 < p < ∞ is shrinking and boundedly complete, whereas the
canonical basis is 1-unconditional and symmetric. The canonical basis of ℓ1 is unconditional,
symmetric, boundedly complete but not shrinking (in fact, ℓ1 cannot have a shrinking basis
because its dual is not separable).

In contrast with the canonical basis of ℓ1, the canonical basis of c0 is shrinking but not
boundedly complete. For each n ∈ N consider sn =

∑
i≤n ei. The sequence (sn)n is called the

summing basis of c0, and it is neither shrinking nor boundedly complete. The canonical basis
of c0 is unconditional and symmetric, but the summing basis is conditional, and therefore
cannot be either symmetric or subsymmetric.

Tsirelson’s space

We give the definition of the Tsirelson’s space T following the Figiel-Johnson construction,
see [25]. Actually, T is the dual space of the original space constructed by B. S. Tsirelson in
1974 (see [49]) which was the first example of a Banach space not containing copies of c0 or
any ℓp. Over c00 it is defined a norm as the solution to the equation:

∥x∥T = max

{
∥x∥∞, sup

{
1

2

n∑
i=1

∥Eix∥T : n ≤ E1 < E2 < ... < En, Ei ⊆ N interval

}}
(2.4)

Tsirelson’s space T is obtained as the completion of c00 under this norm. Notice that the norm
is given implicitly in the last equation, and this represents the most important difference
between Tsirelson’s type spaces and classical ones (what “implicit” norm should formally
mean still remains to be understood). Such way of defining norms has led to the construction
of several Tsirelson’s type spaces with exotic properties. Examples of spaces with properties
like the ones we are studying (mainly notions of tightness) will be of this type.

The space T is reflexive, the coordinate vectors (en)n constitute an 1-unconditional basis
for it, and it has no subsymmetric basic sequences, see Theorem I.8 in [11]. T∗ has similar
properties, that is: it is reflexive with no copies of c0 or any ℓp, the coordinate functionals
(e∗n)n form a 1-unconditional basis for it, which has no subsymmetric basic sequences.
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p-convexification of Tsirelson’s space

The procedure of convexification, and conditions to apply it was first presented by T. Figiel
and W. B. Johnson in [25]. As Tsirelson’s space has a 1-unconditional basis (en)n, it is
possible to define its p-convexification for 1 < p < ∞ (also described in [25]). For 1 < p < ∞
consider

T(p) =

{
x = (xn)n : xp :=

∞∑
n=0

sgn(xn)|xn|pen ∈ T

}
,

equipped with the norm
∥x∥(p) = ∥xp∥1/pT .

That is,

∥x∥(p) = max

∥x∥∞, sup

 1

21/p

(
n∑

i=1

∥Eix∥pT

)1/p

: n ≤ E1 < E2 < ... < En, Ei intervals


 .

The p-convexification of Tsirelson’s space T(p) is the Banach space (T(p), ∥·∥(p)). The
coordinate vectors in T(p) forms a 1-unconditional basis for T(p). Also, T(p) has no copies of
c0 or any ℓq, with q ∈ [1,∞).

Symmetrization of the p-convexification of Tsirelson’s space

Consider the following procedure to symmetrize a Banach space (see X.B. in [11]). Let X

be a Banach space with basis (xn)n. Define the following norm over span(xn):

|||x||| = sup{
∑
n

|λn|xσ(n) : σ : N→ N is a permutation},

for x =
∑

n λnxn ∈ span(xn). The symmetrization S(X) of X is the completion of X under
that norm. It is immediate that (xn)n is a symmetric basis for S(X).

Symmetrizing Tsirelson’s space results in a space isomorphic to ℓ1 (see [11], page 97). In
this section we are interested in mentioning some properties of S(T(p)), 1 < p < +∞: it is a
reflexive Banach space whose canonical basis is symmetric, it is saturated with isomorphic
copies of subspaces of T(p) (see Section X.E. in [11]), for that reason S(T(p)) has no copies
of c0 or any ℓp.

Schlumprecht’s space

Constructed by T. Schlumprecht in 1991 (see [45]), it is the first example of an arbitrarily
distortable space (see [39] for a nice presentation of this notion and its relations with other
concepts on Banach spaces). Its norm definition follows the Tsirelson’s scheme, in fact it is
a mixed Tsirelson space, see [5] page 15 for more information. Schlumprecht’s space S is the
completion of c00 equipped with the norm defined by the implicit equation
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∥x∥ = max

{
∥x∥∞, sup

{
1

f(n)

n∑
i=1

∥Eix∥ : (Ei)
n
i=1 sequence of successive intervals, n ∈ N

}}
,

where f(n), in general, must satisfy certain conditions specified in Lemma 1 of [45], but is
usually taken as f(n) = log2(n + 1). The coordinate sequence (en)n is a 1-unconditional,
subsymmetric basis for S. It has no copies of c0 and any ℓp, with 1 ≤ p < ∞ (and therefore
is reflexive and all bases are boundedly complete and shrinking).

2.2.7 Finite representability and some technical propositions

Definition 2.2.27. Let X and Y be Banach spaces. We say that X is finitely representable
in Y if given any finite subspace F of X and ε > 0, F is (1 + ε)-embeddable in Y .

Proposition 2.2.28. Every Banach space X is finitely representable in c0.

Proof. See [1], Example 11.1.2.

Also we have the following well known proposition which will be useful in the next chapters.

Proposition 2.2.29. Let X be a Banach space with basis (xn)n with basis constant C and
let M ≥ 1. Then, there is a constant c ≥ 1 which depends on C and M , such that if (zn)n and
(yn)n are normalized block bases of (xn)n which differ only in M terms, then (yn)n ∼c (zn)n.

Proof. Let X be a Banach space with basis (xn)n with basis constant C. Let M ≥ 1,
(yn)n and (zn)n be two normalized block bases of (xn)n such that ∀n ∈ J (yn ̸= zn) and
∀n /∈ J (yn = zn) for some J ∈ [N]M . Consider N \ J with its increasing order.

By the Proposition 2.2.28 applied to [yn]n, we know that for every finite sequence of scalars
(αn)n∈J , we have

sup
n∈J

|αn| ≤ 2∥
∑
n∈J

αnyn∥. (2.5)

Using the relations we mentioned between projections and the basis constant of a block basis
with the basis constant C of (xn)n it is seen that

∥
∑
n∈J

λnyn∥ ≤ 2CM∥
∞∑
n=0

λnyn∥. (2.6)

and

∥
∑

n∈N\J

λnyn∥ ≤ ∥
∞∑
n=0

λnyn∥+ ∥
∑
n∈J

λnyn∥ ≤ (2CM + 1)∥
∞∑
n=0

λnyn∥. (2.7)
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Thus, using Equations (2.6) in (2.5) we obtain

M sup
n∈J

|λn| ≤ 4CM2∥
∞∑
n=0

λnyn∥. (2.8)

Therefore, by Equations (2.7) and (2.8), and using that (zn)n is normalized, we obtain

∥
∞∑
n=0

λnzn∥ = ∥
∑
n∈J

λnzn +
∑

n∈N\J

λnzn∥

= ∥
∑
n∈J

λnzn +
∑

n∈N\J

λnyn∥

≤ ∥
∑
n∈J

λnzn∥+ (2CM + 1)∥
∞∑
n=0

λnyn∥

≤ M sup
n∈J

|λn|+ (2CM + 1)∥
∞∑
n=0

λnyn∥

≤ 4CM2∥y∥+ (2CM + 1)∥
∞∑
n=0

λnyn∥

= C(2M + 1)2∥
∞∑
n=0

λnyn∥.

Then, ∥
∑∞

n=0 λnzn∥ ≤ C(2M + 1)2∥
∑∞

n=0 λnyn∥. Notice that C(2M + 1)2 only depends on
M and C. In a similar way, we can prove that ∥

∑∞
n=0 λnyn∥ ≤ C(2M +1)2∥

∑∞
n=0 λnzn∥ So,

if c = C(2M + 1)2, for example, we have that (yn)n ∼c (zn)n.

2.3 Banach spaces with transfinite basis

In this section we shall introduce the definition and some results involving transfinite basis
(also known as long basis) of a Banach space. A transfinite basis is a generalization of
Schauder basis which is indexed on an ordinal greater than ω. For this section we are
following the references [31] and [47].

The class of all the ordinals is denoted by Ord. In general we shall use Greek letters to
denote ordinals. As usual, we denote by ω and ω1 the first infinite ordinal and the first
uncountable ordinal, respectively. Given α and β ordinal numbers, we denote as α+ β, α · β
and αβ the usual arithmetic operations with ordinal numbers (see Definitions 2.18, 2.19 and
2.20 in [32]).

We say that two well-ordered sets (A,<) and (B,<′) are isomorphic (or have the same
order-type) if, and only if, there is an order preserving bijection f : A → B, that is,
∀a ∈ A ∀b ∈ A(a < b ⇒ f(a) <′ f(b)). Since every well-ordered set is isomorphic to a
unique ordinal number (see Theorem 2.12 in [32]), we say that the well-ordered set (A,<)
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has order type α ∈ Ord (in symbols otp(A) = α), if A is isomorphic to the ordinal number
α.

We define α < β ⇐⇒ α ∈ β, for every α, β ∈ Ord. < is a linear ordering of the class
Ord. Each ordinal is identified with the set of its predecessors: α = {β ∈ Ord : β < α}, and
this set is denoted by the interval of ordinals [0, α). If α < β are ordinals the interval [α, β]
denotes the set {γ ∈ Ord : α ≤ γ ≤ β}. In a similar way we define intervals of the type (α, β),
[α, β) or (α, β]. Over any already defined interval of ordinals we consider the order topology
(see 39 in Part II of [48]). Notice that [α, β] with such topology is compact (see 43 in Part
II of [48]). Given A,B ⊆ γ ∈ Ord, we write A < B to mean that ∀α ∈ A ∀β ∈ B (α < β).

2.3.1 Transfinite basic sequences

A transfinite sequence is a function whose domain is an ordinal and we shall denote it by
(aβ)β<α or (aβ : β < α), if it is convenient. We extend the natural definitions of normalized,
seminormalized and bounded sequences to this context of transfinite sequences. In this work
we shall distinguish between sequences (always over ω) and transfinite sequences (over a
previously fixed ordinal). A subsequence (aβn)n of a transfinite sequence (aβ)β<α shall be
indexed over ω, meanwhile a transfinite subsequence (aβγ )γ<δ, can be indexed over any
ordinal δ < α.

Definition 2.3.1. Let X be a Banach space and α ∈ Ord. Consider (yβ)β<α a transfinite
sequence of vectors of X. We say that the transfinite series

∑
β<α yβ converges to y ∈ X (in

symbols y =
∑

β<α yβ) if there is a unique continuous function S : [1, α] → X such that

S(1) = y0, S(α) = y, S(β + 1) = S(β) + yβ, for β < α.

Notice that in the particular case where α = ω, the last definition coincides with the usual
definition of a sum of a series in a Banach space. If y =

∑
β<α yβ, since [1, α] is compact

and the function S in Definition 2.3.1 is continuous, S([1, α]) is a compact subset of X, and
therefore separable. Also, for each ε > 0 the set {β < α : ∥yβ∥ > ε} is finite and therefore
yβ = 0 for every except a countable number of β < α. The following definition can be found
in [31].

Definition 2.3.2. A transfinite sequence (xβ)β<α of vectors in a Banach space X is called
a transfinite basis for X if for every x ∈ X there is a unique transfinite sequence of scalars
(aβ)β<α such that x =

∑
β<α aβxβ.

In the same way we observed for the case of Schauder basis, if (xγ)γ<α is a transfinite basis
for X, it is possible to define the canonical projections Pβ : X → X for 0 ≤ β < α by
Pβ(
∑

γ<α aγxγ) =
∑

γ<β aγxγ. Such projections are uniformly bounded (see Theorem 4.6 in
[31]). This gives us the next definition.

Definition 2.3.3. Let (xβ)β<α be a transfinite basis for the Banach space X. The basis
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constant C associated to (xβ)β<α is defined as

C := sup{∥Pβ∥ : β < α}.

If C = 1, the transfinite basis is called monotone.

Again, it is possible to define the coordinate functionals associated to a transfinite basis
(xγ)γ<α of a Banach space X as the functions x∗

β defined over X such that x∗
β(
∑

γ<α aγxγ) =

aβ, for each β < α. Such functions are bounded and it is possible to represent each x ∈ X

as x =
∑

β<α x
∗
β(x)xβ.

Let (xβ)β<α be a transfinite basis. We denote as span(xβ)β<α and [xβ]β<α the linear span
and the closed subspace of X generated by {xβ : β < α}, respectively. A transfinite sequence
(xβ)β<α of vectors in a Banach space X is a transfinite basic sequence if (xβ)β<α is a
transfinite basis for [xβ]β<α. The support supp(x) of x ∈ [xβ]β<α is the set {β < α : x∗

β(x) ̸=
0}. For x, y ∈ [xβ]β<α finitely supported vectors, we write x < y if supp(x) < supp(y).

Definition 2.3.4. Let (xγ)γ<α be a transfinite basic sequence. We say that a transfinite
sequence (yξ)ξ<β is a transfinite block subsequence of (xγ)γ<α if, and only if, for all ξ < β,
yξ is a non-zero finitely supported vector and for all ν < ξ < β, yν < yξ. In the case that
β = ω, then (yξ)ξ<β is a block subsequence of (xγ)γ<α.

Proposition 2.3.5. A transfinite block subsequence of a transfinite basis is a transfinite
basic sequence.

As in the case of a Schauder basis, the constant basis of a transfinite block subsequence is
controlled by the constant basis of the transfinite basic sequence.

Proposition 2.3.6. Let (xγ)γ<α be a transfinite basis for a space X. Let (yn)n be a block
subsequence of (xγ)γ<α. Then, there is (γn)n an increasing sequence with elements in α, such
that (yn)n ≤ (xγn)n.

Proof. Let (xγ)γ<α and (yn)n be as in the hypothesis. Since (supp(yn))n is a sequence
of successive finite subsets of α, otp(∪n∈ωsupp(yn)) = ω. Thus, it is possible to index
∪n∈ωsupp(yn) as {γi : i ∈ ω} with xγi < xγi+1

, for every i ∈ ω. Consequently, (yn)n is
a block basis of (xγi)i.

Notation 2.3.7. Let X be a Banach space with transfinite basis (xγ)γ<α. For each u ⊆ α,
denote the closed subspace of X spanned by the transfinite subsequence (xγ)γ∈u by

Xu = [xγ : γ ∈ u].

As it is known, the structure of the subspaces of a Banach space with basis is strongly
described by the block subspaces. The standard gliding hump argument, method used
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to prove Theorem 2.2.10, among others, is not extendable to the case of transfinite basic
sequences. The following theorem shows the conditions valid in this context:

Theorem 2.3.8. Let (xγ)γ<α be a transfinite basis of X and Y an infinite dimensional
closed subspace of X. Then, there exists β ≤ α and a closed subspace Z = [zn]n of Y such
that

(i) Pβ : Z → Xβ is an embedding.

(ii) For every ε > 0 there exists a semi-normalized block basis (wn)n in Xβ and a normalized
sequence (zn)n in Z such that

∑
n ∥Pβzn − wn∥ < ε.

(iii) There is a block sequence (wn)n of X which is equivalent to (zn)n.

(iv) If we additionally assume that Y has a Schauder basis (yn)n, then the sequence (zn)n

in (ii) can be chosen to be a block basis of (yn)n.

Proof. See Proposition 1.3 in [3].

The next definitions can be found in [3]:

Definition 2.3.9. Let X be a Banach space with basis (xγ)γ<α.

(i) (xγ)γ<α is called unconditional if for all subsets A of α, the operators PA :→ X, given
by PA(x) =

∑
γ∈A x∗

γ(x)xγ, are uniformly bounded.

(ii) Let C ≥ 1. (xγ)γ<α is called C-spreading if, and only if, all its subsequences are C-
spreading.

(iii) Let C ≥ 1. (xγ)γ<α is called C-subsymmetric if, and only if, all its subsequences are
C-subsymmetric. (xγ)γ<α is subsymmetric if it is C-subsymmetric for some C ≥ 1.

(iv) (xγ)γ<α is called shrinking if, and only if, every subsequence (xγn)n of (xγ)γ<α is
shrinking.

(v) (xγ)γ<α is called boundedly complete if, and only if, every subsequence (xγn)n of (xγ)γ<α

is boundedly complete.

Theorem 2.3.10. Let (xγ)γ<α be a transfinite basis of a Banach space X. Then X is
reflexive if, and only if (xγ)γ<α is both shrinking and boundedly complete.

Proof. See Proposition 1.6 in [3].



Chapter 3

Preliminaries of Descriptive Set Theory
In this chapter, we will introduce some basic concepts and notations of descriptive set theory.
Particularly, those related with Polish spaces, trees and infinite games (fundamental tools
involved in the proof of the dichotomy theorem in the fifth chapter). Our main references
in this chapter are [33] for descriptive set theory and [16] for definitions and notations of
general topology.

Let us recall some definitions from topology. Let (X, τ) be a topological space. There are
three topological properties that a subset A ⊆ X can satisfy which shall be recurrent in our
work and it is worth to recall: A being meager in X, A being comeager in X and A satisfying
the Baire property. We say that A is meager in X if there is a sequence of nowhere dense
subsets (Fi)i (i.e. the interior of the closure of each Fi is empty) such that A = ∪iFi. A is
comeager in X if X \ A is meager in X. A has the Baire property (BP) if it is almost an
open set of X, that is, if there is some meager set B on X and O ∈ τ such that A = O△B.

3.1 Trees and sequence spaces

Let A be a nonempty set. Define A<ω :=
⋃

n≥1A
n, the set of all finite sequences from A. Let

n ≥ 1. For s = (s0, ..., sn−1) ∈ An, we say that the length of a is n, in symbols length(a) = n.
Define A0 := {∅}, where ∅ is the empty sequence and set length(∅) = 0. If a sequence s is
infinite we say that length(s) = ∞.

If s is a sequence from A and m ∈ N (if s is finite we require m ≤ length(s)), we define
s ↾ m := (s0, ..., sm−1) as the restriction of s to m. Given s and t sequences of elements of A
with s finite, we say that s is an initial segment of t and t is an extension of s (in symbols
s ⊑ t) if there is some m ≤ length(t) such that s = t ↾ m. If s ⊑ t but s ̸= t, then we
say that t is a proper extension of s. Also, ∅ ⊑ s for every sequence s. For s ∈ An and t

a sequence from A, we define the concatenation s⌢t of s with t as the sequence such that
(s⌢t)i = si for 0 ≤ i < n and (s⌢t)n+i = ti, for n ≤ i < length(t).

Definition 3.1.1. A tree on a set A is a subset T ⊆ A<ω closed under taking initial segments:
if t ∈ T and s ⊑ t, then s ∈ T (in particular ∅ ∈ T ). The elements of T are called nodes of
T . An infinite branch of T is a sequence x ∈ Aω such that ∀n ∈ N(x ↾ n ∈ T ). The set of
all infinite branches of T is called the body of T and is denoted as [T ]. A tree T is pruned if
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all s ∈ T have a proper extension t ∈ T .

Notation 3.1.2. Denote by Tr the set of trees over N.

Consider A with its discrete topology and Aω with the product topology. Note that Aω

is a completely metrizable topological space. The standard basis for the topology over Aω

consists of the sets
Ns = {t ∈ Aω : s ⊑ t},

where s is a finite sequence from A. It is easy to see that s ⊑ t if, and only if, Nt ⊆ Ns.
Also, (Aω)n (n ≥ 1), and (Aω)ω are homeomorphic to Aω.

Remark 3.1.3. If xn ∈ Aω, for every n ∈ N and x ∈ Aω, then xn −−−→
n→∞

x if, and only if,
∀i ∈ N(xn(i) = x(i), for all n large enough).

In the particular case of 2ω = {0, 1}ω all the properties above are valid. The space 2ω with
such topology is called the Cantor space. If s = (si)i ∈ 2ω, define supp(s) = {i ∈ N : si = 1}.
Notice that P(N) can be identified with 2ω using the characteristic functions: let A ∈ P(N),
then the characteristic function χA belongs to 2ω and A = supp(χA). Thus, families of
subsets of N sometimes will be seen as families of sequences of N. Therefore, any F ⊆ P(N)

can be seen as a topological subspace of 2ω. For convenience, a basic open subset of 2ω

determined by s ∈ 2ω and J ∈ [N]<∞ is given by

Ns,J := {u = (un)n ∈ 2ω : ∀n ∈ J(un = sn)}.

If s = (si)i and t = (ti)i belong to 2ω, then we define the sequence

s ∪· t = χsupp (s)∪supp (t) ∈ 2ω.

The following proposition presents a characterization of meager sets in 2ω.

Proposition 3.1.4. Let B be a subset of 2ω. The following assertions are equivalent:

(i) B is comeager,

(ii) there is a sequence (In)n of successive intervals of ω and an ⊆ In, such that for any
u ∈ 2ω, if the set {n : supp(u) ∩ In = an} is infinite, then u ∈ B.

Proof. See [21], Lemma 7.

Proposition 3.1.4 is still true assuming that each (In)n is a sequence of finite subsets not
necessarily intervals with In < In+1. As a corollary of this proposition we have:

Corollary 3.1.5. Let B be a subset of 2ω such that

∀u ∈ B, ∀v ∈ 2ω, if supp(u) ⊆ supp(v) then v ∈ B.
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Then:

(i) B is meager if, and only if, there exist a sequence (Ii)i of successive intervals in N
such that

u ∈ B ⇒ {n ∈ ω : supp(u) ∩ In = ∅} is finite.

(ii) B is comeager if, and only if, there exist a sequence (Ii)i of successive intervals in N
such that

{n ∈ ω : In ⊆ supp(u)} is infinite ⇒ u ∈ B

Proof. See [18], Corollary 2.4.

In Chapter 7, Proposition 3.1.4 and Corollary 3.1.5 are generalized by taking a limit ordinal
α instead of ω. We finish this section by observing that there is a correspondence between
pruned trees on A and closed subsets of Aω.

Theorem 3.1.6. Let A be a nonempty set. We have:

(i) For every pruned tree T on A, [T ] is closed in Aω.

(ii) The map T 7→ [T ] is an isomorphism between pruned trees on A and closed subsets of
Aω. Its inverse is given by

F 7→ TF := {x ↾ n : x ∈ F, n ∈ N}.

Proof. See [33], Proposition 2.4.

3.2 Polish spaces and Borel sets

Let (X, τ) be a topological space. We say that (X, τ) is a completely metrizable space if
there is a metric d over X compatible with τ (i.e. the topology induced by d coincide with τ)
such that the metric space (X, d) is complete. A separable completely metrizable topological
space is called Polish. We say that A ⊆ X is Fσ in X if it is a countable union of closed
subsets in X and A is a Gδ in X if it is a countable intersection of open sets in X.

As we already mentioned before, the space (Aω, τ), where A ̸= ∅ and τ is the product
topology obtained after endowing A with the discrete topology, is a completely metrizable
space, so it is Polish if A is countable. In particular, the Cantor space 2ω is Polish.

Let X ̸= ∅ and A be a nonempty subset of X, we denote by σ(A) to the smallest σ-algebra
containing A. Let τ be a topology on X. The class of Borel sets B(X) of (X, τ) is the σ-
algebra generated by τ . It is clear that if S is a countable subbasis for the topology τ , then
σ(S) = B(X). In particular, if X is a Polish space, then B(X) is countably generated, that
is, since X is separable and metrizable, there is countable basisS for X and B(X) = σ(S).
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Obviously B(X) contains all open, closed, Gδ and Fσ sets in X. The measurable space
(X,B(X)) is called the Borel space of X.

We say that the function f between topological spaces X and Y is Borel if the inverse
image of a Borel set in Y is a Borel set in X. Two measurable spaces (X,S) and (Y,R) are
isomorphic if there is an invertible measurable function f : X → Y with measurable inverse.

Definition 3.2.1. A measurable space (X,S) is a standard Borel space if it is isomorphic
to (Y,B(Y )) for some Polish space Y , or equivalently, if there is a Polish topology τ on X

with S = B(τ).

Another result we shall use in the next Chapters is known as the first topological 0-1 law:

Theorem 3.2.2 (First topological 0-1 law). Let X be a Polish space, and G be a group
of homeomorphisms of X with the following property: for any U and V non-empty open
subsets of X, there is g ∈ G such that g(U) ∩ V ̸= ∅. If A ⊆ X has the Baire Property and
is G-invariant (i.e. g(A) = A, for every g ∈ G), then A is meager or comeager in X.

Proof. See Theorem 8.46 in [33].

Another theorem we shall use in the next chapter is the well known Galvin-Prikry Theorem.

Theorem 3.2.3 (Galvin-Prikry). Let [N]∞ = P0 ∪ ... ∪ Pk−1, where each Pi is Borel and
k ∈ N. Then there is H ∈ [N]∞ and i < k with [H]∞ ⊆ Pi.

Proof. See Theorem 19.11 in [33].

3.3 Infinite games

For this section, our main references are [33] and [6]. An infinite game with rules is a contest
between two players, I and II, where three sets are involved, A, X and Y , and where both
players can always move according to previously established rules and knowing what was
previously played (the game is of perfect information).

The nonempty sets X and Y contain the possible objects that players I and II can play,
respectively. In his first move, player I (to which we shall refer as masculine) chooses some
u0 ∈ X according to the rules of the game. Immediately player II (to which we will refer as
feminine) responds with her move v0 ∈ Y in compliance with the rules, and completing the
first round. I plays u1 ∈ X as his second move. II plays v1 ∈ Y completing second round,
and so on. A diagrammatical way of representing such games is the following:

I u0 ∈ X u1 ∈ X u2 ∈ X ...
II v0 ∈ Y v1 ∈ Y ...

A position of the game is any finite stage of the game, that is any finite sequence of the type:
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• (u0, v0, ..., un, vn) such that u0, ..., un have been played by I, v0, ..., vn have been played
by II, and it corresponds to I to make his move, or

• (u0, v0, ..., un) such that u0, ..., un have been played by I, v0, ..., vn−1 have been played
by II, and it corresponds to II to make her move.

A run −→p = (u0, v0, u1, v1, ...) in the game is an infinite sequence of rounds where I and II

took turns, i.e. −→p is an element of (X × Y )ω such that for each n ∈ N, the projection of −→p
over the first n+ 1 pairs of coordinates pn = (u0, v0, ..., un, vn) is a position of the game.

The outcome of the game is an infinite sequence (wi)i obtained from the plays of I and II

after a run. In some cases, the outcome can be a specific subsequence of the run, for example
the single sequence (vi)i of plays of II. The nonempty set A is called the payoff set of the
game and it determines the winning condition for one specific player. A player (player I, for
example) wins the game if the outcome (wn)n ∈ A (equivalently, this condition determines
a winning condition for the other player: II wins the game if (wn)n /∈ A). Obviously, only
one player can win the game.

A move of the players is legal if each moves according to the rules of the game. So, each
player has a set of legal moves to make in each round. Those legal moves correspond to the
nodes of a pruned tree. Knowing the rules of the game, we shall construct the tree of possible
legal positions of the game as follows: formally, let X, Y,A ̸= ∅ and T ⊆ (X × Y )<∞ be a
nonempty tree which is defined recursively in the length of the legal position:

1. ∅ ∈ T .

2. Suppose (u0, v0, ..., un, vn) a legal position in the game. So, it is the turn for player I
to make a legal move. For every legal move un+1 ∈ X for player I in his n+2-th round
and for every legal move vn+1 ∈ Y for player II in her n + 2-th round, we ask that
(∅, u0, v0, ..., un, vn, un+1, vn+1) ∈ T .

Such tree will be pruned because we asked the game to be infinite (if I and II have played
legally n rounds, then the set of legal moves for the (n + 1)-th round is nonempty). Of
course, a nonempty pruned tree can be interpreted as the rules of a game or the tree of legal
moves. For that reason, the tree T is called the tree of rules or the tree of legal moves of
the game. A run −→p = (u0, v0, u1, v1, ...) in the game is legal if I and II played legal moves
along the complete run. We denote a game on sets X and Y with rules T and payoff set A

by G(X, Y ;A) (in the literature, the notation G(T,X) is usual when X = Y and A ⊆ X).

A strategy for I in the game G(X, Y ;A) is a function σ : (X×Y )<∞ → X such that σ(∅) = u0

is a legal first move for I, and for every n, given the legal position (u0, v0, ..., un, vn) of the
game, σ((u0, v0, ..., un, vn)) = un+1 is a legal move in the round n+ 2 for I. In a similar way
we define a strategy for II. Notice that a strategy for I can be seen also as a tree such that:

1. σ is nonempty and pruned.
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2. If (∅, u0, v0, ..., un) ∈ σ then for all legal move vn for II, we have (∅, u0, v0, ..., un, vn) ∈ σ

(every legal move that II can make is considered for the next move of I).

3. If (∅, u0, v0, ..., un, vn) ∈ σ then for a unique legal move un+1 for I, we have
(∅, u0, v0, ..., un, vn, un+1) ∈ σ (after n + 1 complete rounds of the game, the strategy
shows only one move for I to do).

We say that I follows a strategy σ in the game G(X, Y ;A) if in his first move he plays σ(∅),
and in the (n+ 1)-th round I plays σ((u0, v0, ..., un−1, vn−1)). In an analogous way we define
that II plays according to a strategy ρ : (X×Y )<∞ → Y . A strategy σ for I (respectively for
II) is a winning strategy for G(X, Y ;A) if whenever I (respectively II) follows the strategy
σ, then I (respectively II) wins the game. Both I and II cannot have winning strategies in
the same run of the game G(X, Y ;A).

We say that the game G(X, Y ;A) is determined if one of the two players has a winning
strategy. Two games G(X1, Y1;A1) and H(X2, Y2;A2) are equivalent if player I (respectively
II) has a winning strategy for the game G(X1, Y1;A1) if, and only if, player I (respectively
II) has a winning strategy for the game H(X2, Y2;A2).

3.4 Determinacy of open games

The next well known theorem allows us to find a winning strategy for player I in the game
G(X,X;A), described below.

For this theorem, known as the determinacy theorem for closed or open games, consider
X = Y ̸= ∅ endowed with the discrete topology, and over Xω consider the natural product
topology. For T a pruned tree over X take the set of infinite branches [T ] ⊆ Xω endowed
with the relative topology. Set A ⊆ [T ]. Then a game G(X,X;A) is called a Gale-Stewart
game.

Theorem 3.4.1 (Gale-Stewart). Let T be a nonempty pruned tree on X. Let A ⊆ [T ] be
closed or open in [T ]. Then G(X,X;A) is determined.

Proof. See [33], Theorem (20.1).

Such a game G(X,X;A) where the payoff set A ⊆ [T ] establishes the winning condition for
player I (respectively II) is open (respectively closed) in [T ] is called an open (respectively
closed) game for player I (respectively for player II). For the uses of Theorem 3.4.1, we shall
refer to such games as open games (since if the game is closed for one of the players, it is
open for the other).



Chapter 4

Minimality and Tightness
In this chapter we shall present some properties and examples of minimal spaces. We also
present the central notion of this work: tightness. We shall explain in details some basic
properties of tight Banach spaces given in [22] and [18].

4.1 Minimal Banach spaces

According to P. Casazza and E. Odell, the notion of minimality was first introduced by H.
Rosenthal. In this section we will present some known results involving this notion.

Definition 4.1.1. An infinite dimensional Banach space X is minimal if, and only if, it
isomorphically embeds in any closed infinite dimensional subspace of X.

Notice that minimal spaces have to be separable and that any subspace of a minimal space
is also minimal. Banach already knew that c0 is a minimal Banach space, and it was proved
in 1960 by A. Pełczynski that the spaces ℓp are minimal for 1 ≤ p < ∞. Indeed, for those
cases we have the following result.

Proposition 4.1.2. Let X = c0 or X = ℓp (1 ≤ p < ∞), and (en)n be the canonical basis
for X. Then (en)n is equivalent to any of its seminormalized block bases.

Proof. See [1], Lemma 2.1.1.

Theorem 2.2.10 and Proposition 4.1.2 imply the minimality of c0 and ℓp with 1 ≤ p < ∞.

The spaces c0 and ℓp were the only examples of minimal spaces until P. Casazza, W. Johnson
and L. Tzafriri proved in 1984 that T∗, the dual of Tsirelson’s space, is minimal (see Theorem
14 of [9]).

Tsirelson’s space is not minimal. In fact, as proved by P. Casazza and E. Odell in [10], it
satisfies a stronger condition:

Theorem 4.1.3. Tsirelson’s space does not contain any minimal subspace.

Proof. See [11], Corollary VI.b.6.
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On the other hand, the space S is minimal, as it was noticed by Schlumprecht right after
he presented S in 1991 and published in [2], see Theorem 2.1.

Theorem 4.1.4. Let 1 < p < ∞. The p-convexification of Tsirelson’s space T(p) has no
minimal subspaces.

Proof. In next section of this chapter a stronger result is proved, that T(p) is a tight space
and therefore that it has no minimal subspaces.

Theorem 4.1.5. The space S(T(p)) has no minimal subspaces.

Proof. The space S(T(p)) is saturated with isomorphic copies of subspaces of T(p), i.e. every
subspace of S(T(p)) contains a subspace that is isomorphic to a subspace of T(p), see X.E.,
Remark 7-a) in [11]. Since all subspaces of a minimal subspace are minimal, by Theorem
4.1.4, S(T(p)) has no minimal subspaces.

4.2 Tight Banach spaces

The objective of this section is to review in detail some well known results involving the
notion of tightness.

V. Ferenczi and Ch. Rosendal in [22] defined tight spaces as follows:

Definition 4.2.1. Let X be a Banach space with Schauder basis (xn)n. We say that a Banach
space Y is tight in X if there is a sequence (In)n of successive finite subsets of N, such that
for all A ∈ [N]∞,

Y ̸↪→ [xn, n /∈ ∪i∈AIi].

We say that (xn)n is a tight basis for X if any Banach space Y is tight in X. Finally, X is
tight if it has a tight basis.

It is important to notice that if Y is tight in X and (Ji)i is the sequence of successive finite
subsets of N witnessing the definition, then

Y ̸↪→ [xn, n /∈ ∪i∈AIi],

where Ii = [min Ji,max Ji] for every i, and all A ∈ [N]∞. Thus, without loss of generality,
we can suppose that (Ii)i is a sequence of successive intervals in Definition 4.2.1.

Also, suppose Y is tight in X and (Ii)i is a sequence that witnesses the definition. If there
is B ∈ [N]∞ such that Y embeds into [xn, n ∈ B], then B intersects all but finitely many
intervals Ii; indeed if A := {n ∈ N : B ∩ In = ∅} were infinite, then Y ↪→ [xn : n /∈ ∪j∈AIj],
contradicting tightness.
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Proposition 4.2.2. Let X be a Banach space with normalized basis (xn)n. If for every (yn)n

normalized block basis of (xn)n we have that [yn]n is tight in X. Then every Banach space is
tight in X.

Proof. Suppose Z is a Banach space not tight in X and Z ↪→ X. Then a copy of Z in X

contains a basic sequence equivalent to a block basis of X (see Theorem 2.2.10). So, there is
a block subspace Y = [yn]n of X with (yn)n normalized such that Y ↪→ Z. Since Y is tight
in X, there is (Ii)i such that for every A ∈ [N]<∞

Y ̸↪→ [xn : n /∈ ∪i∈AIi]. (4.1)

Also, there is B ∈ [N]<∞ such that

Z ↪→ [xn : n /∈ ∪i∈BIi].

Since Y ↪→ Z, this last equation contradicts Equation (4.1).

Remark 4.2.3. To prove that a basis (xn)n of X is tight it is sufficient to show that any
block subspace is tight in X.

In [18], V. Ferenczi and G. Godefroy gave a beautiful characterization of tightness using
Baire category:

Theorem 4.2.4. Let X be a Banach space with normalized basis (xn)n and let Y be a
Banach space. Then the following statements are equivalent:

(i) Y is tight in X.

(ii) EY := {u ∈ 2ω : Y ↪→ [xn : n ∈ supp(u)]} is meager in 2ω.

Proof:

(i)⇒(ii) Without loss of generality, we can suppose that Y is a block subspace of X. If Y is
tight in X, there are intervals I0 < I1 < ... such that, for any A ∈ [N]∞,

Y ̸↪→ [xn : n /∈ ∪i∈AIi]. (4.2)

Let u ∈ EY (clearly supp(u) ∈ [N]∞) and suppose by contradiction that

Au := {i ∈ N : Ii ∩ supp(u) = ∅}

is infinite. Then
supp(u) ⊆ N \

⋃
i∈Au

Ii,
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contradicting Equation (4.2). Thus, Au is finite and, by Corollary 3.1.5, EY is meager
in 2ω.

(ii)⇒ (i) Again by using Corollary 3.1.5, there are subsets I0 < I1 < ... such that if u ∈ EY ,
then {i ∈ N : Ii ∩ supp(u) = ∅} is finite. If there is A ∈ [N]∞ such that Y ↪→ [xn :

n /∈ ∪i∈AIi], then take v := N \ ∪i∈AIi. Clearly χv ∈ EY and {i ∈ N : Ii ∩ v = ∅} is
infinite, which contradicts that EY is a meager subset of 2ω.

□

Lemma 4.2.5. If X is a Banach space with normalized basis (xn)n and Y is a Banach
space, then EY is meager or comeager in 2ω.

Proof. See the proof of Theorem 3.2 in [18].

In Chapter 5 we shall generalize this result (see Proposition 5.6.6) using the scheme of
the proof of Theorem 3.2 in [18] for different kinds of embbedings, including isomorphic
embeddings.

As we already noticed, the notion of tightness depends not only on the space but also on
the basis chosen for such space. Therefore it is expected to be hereditary by taking block
subsequences of the considered tight basis, as it is established in the following proposition.
To prove this proposition we have used the techniques given by Ferenczi and Godefroy in
[18] instead of the arguments in [22].

Proposition 4.2.6. Let X be a Banach space with normalized basis (xn)n e Y = [yn]n a
block subspace of X. Let Z be a Banach space. If Z is tight in X, then Z is tight in Y .

Proof. Let X = [xn]n, Y = [yn]n and Z be as in the hypothesis. Let us denote as

EX
Z := {u ∈ 2ω : Z ↪→ [xn : n ∈ supp(u)]}

and
EY

Z := {u ∈ 2ω : Z ↪→ [yn : n ∈ supp(u)]}.

By hypothesis, we know that EX
Z is meager in 2ω. Using Lemma 4.2.5, EY

Z is meager or
comeager in 2ω. If it is meager, Z is tight in Y and the demonstration ends. Suppose that
EY

Z is comeager. By Corollary 3.1.5, there are sequences of successive intervals (Ii)i and (Ji)i

such that
u ∈ EX

Z ⇒ {n ∈ ω : supp(u) ∩ In = ∅} is finite, (4.3)

and if v ∈ 2ω satisfies

{n ∈ ω : Jn ⊆ supp(v)} is infinite, then v ∈ EY
Z . (4.4)



4.2. TIGHT BANACH SPACES 35

Let A ∈ [N]∞ be such that

{
k ∈ N :

⋃
n∈A

⋃
i∈Jn

supp
X
(yi) ∩ Ik = ∅

}
is infinite. Such A exists because each Ii and Ji are finite and each yi is finitely supported.
Let v = ∪n∈AJn. By Equation (4.4), χv ∈ EY

Z .

If u = ∪k∈vsuppX
(yk), then

Z ↪→ [yn : n ∈ v] ⇒ Z ↪→ [xn : n ∈ u].

Therefore, χu would be in EX
Z but it is disjoint of infinitely many intervals Ik, contradicting

Equation (4.3).

Corollary 4.2.7. Let X be a tight Banach space and (xn)n a tight basis for X. Then any
block basis (yn)n of (xn)n is tight.

Proof. If Z is a block subspace of Y = [yn]n, then Z is a block subspace of X. As Z is tight
in X, by Proposition 4.2.6, Z is tight in Y .

Proposition 4.2.8. If (xn)n is a spreading basic sequence in a Banach space E, then (xn)n

is not a tight basis.

Proof. Let (Ii)i be a sequence of successive intervals and for each k ∈ N set nk ∈ I2k. Let
A = {nk : k ∈ N}. It is clear that {n : A ∩ In = ∅} is infinite (the set of even numbers is
contained in it) but

[xn]n ↪→ [xn : n ∈ A].

Then, (xn)n is not a tight basis for [xn]n.

In particular, subsymmetric basic sequences fails to be tight. Furthermore, a space with a
tight basis fails to have spreading basic sequences, since it can be proved that a space with
basis containing a spreading basic sequence has a spreading block sequence, see [42].

As we already mentioned, the notion of tightness is incompatible with minimality. The
following proposition was proved in [22]. The proof we present is different from the original
since it uses arguments of Baire Category introduced in [18].

Proposition 4.2.9. A tight Banach space contains no minimal subspaces.

Proof. Suppose (en)n is a tight basis for the space E and X is a minimal subspace of
E. We can assume without loss of generality that X = [xn]n is a block subspace. Let
Y ≤ X. We know that Y is tight in E. By Proposition 4.2.6, Y is tight in X but
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EX
Y = {u ∈ 2ω : Y ↪→ [xn : n ∈ supp(u)]} is not meager in 2ω. In fact, EX

Y is the subset of
all the characteristic functions over infinite subsets of N (which is not meager): indeed, let
v ∈ 2ω be a characteristic function of an infinite subset of N, then by the minimality of X

X ↪→ [xn : n ∈ supp(v)],

and then Y ↪→ [xn : n ∈ supp(v)]. Thus, v ∈ EX
Y .

Remark 4.2.10. Notice that the last theorem also implies that minimal spaces fail to have
tight subspaces since every subspace of a minimal space is also minimal. The classical spaces
c0 and ℓp (1 ≤ p < ∞), the dual of Tsirelson’s space T∗ and Schlumprecht space S are
minimal, therefore they are not tight and have no tight subspaces.

4.2.1 Shrinking bases and tightness

The results in this section are presented and proved in [22]. We study the proofs in detail.

Lemma 4.2.11. Let Y and X be Banach spaces, X with normalized basis (xn)n, and (In)n

a sequence of finite intervals such that min In −−−→
n→∞

∞ and for every A ∈ [N]∞,

Y ̸↪→ [xn : n /∈ ∪k∈AIk]

Then, for any embedding T : Y → X, we have lim infn→∞ ∥PInT∥ > 0.

Proof. Let us proceed by contradiction. Let Y , X = [xn]n and (In)n be as in the hypothesis.
Let T : Y → X be an embedding with lim infn→∞ ∥PIK∥ = 0, so there exists B ∈ [N]∞ such
that limn→∞,n∈B ∥PIK∥ = 0. Then there exists an infinite subset A of B such that

∑
k∈A

∥PIkT∥ <
1

2
∥T−1∥−1. (4.5)

We can suppose that the intervals in {Ik : k ∈ A} are disjoint. If they were not, as
min In −−−→

n→∞
∞, by passing to an infinite subset of A, we would obtain disjoint intervals.

Equation (4.5) says that the sequence of operators (PIkT )k∈A is absolutely summable, so
consider the operator

∑
k∈A PIkT : Y → X.

If y ∈ Y , we have

∥
∑
k∈A

PIkTy∥ ≤ ∥
∑
k∈A

PIkT∥∥y∥

≤ 1

2∥T−1∥
∥y∥

≤ ∥T (y)∥
2

.
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By this and the backwards triangular inequality, we obtain

∥T (y)∥
2

≤ ∥(T −
∑
k∈A

PIkT )y∥. (4.6)

As the difference of bounded operators is bounded, there is K1 > 0 such that

∥(T −
∑
k∈A

PIkT )y∥ ≤ K1∥y∥. (4.7)

As T is an embedding, there exists K2 > 0 such that

∥T (y)∥
2

≥ K2∥y∥.

Combining all this equations we obtain

K2∥y∥ ≤ ∥(T −
∑
k∈A

PIkT )y∥ ≤ K1∥y∥.

So, T −
∑

k∈A PIkT is an embedding of Y in [xn : n /∈ ∪i∈AIi], which contradicts the
hypothesis.

Theorem 4.2.12. Any shrinking basic sequence of a tight space is a tight basis.

Proof. Let X be a Banach space with a tight basis (xn)n, and (yn)n be a shrinking basic
sequence in X. Let Y be an arbitrary Banach space. Using that X is tight for Y there exists
a sequence (In)n of successive intervals that testifies Y tight in X.

Let m be a natural number and ε > 0 arbitrary. For each i ≤ m, there exists Ni ∈ N, such
that ∥yi − PNi

(yi)∥ < ε. Let N > max{Ni : i ≤ m} and K ∈ N be such that N < IK . Then
for any k > K and i ≤ m, we have that

∥PIk(yi)∥ ≤ ∥yi − PN(yi)∥ < ε.

Then,
∥PIk |[yi:i≤m]∥ −−−→

k→∞
0. (4.8)

Let k ∈ N and m ∈ N. Denote by Fm the closed subspace [yn : n > m]. Then we have for
any y ∈ SFm

∥PIK (y)∥ ≤
∑
i∈Ik

|x∗
i (y)|. (4.9)
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Then,

∥PIk |Fm∥ = sup {∥PIk(y)∥ : y ∈ SFm}

≤ sup

{∑
i∈Ik

|x∗
i (y)| : y ∈ SFm

}
≤

∑
i∈Ik

sup {|x∗
i (y)| : y ∈ SFm}

=
∑
i∈Ik

∥x∗
i |Fm∥.

As each x∗
i |Fm is a functional of Fm and the basis (yn)n is shrinking, then, by Proposition

2.2.13, for each i ∈ Ik we obtain
lim

m→∞
x∗
i |Fm = 0.

So, Equation (4.9) implies that
lim

m→∞
∥PIk |Fm∥ = 0.

Now we are going to construct inductively the sequence of sets (Jn)n which will testify that
Y is tight. By Equation (4.8), for ε = 1 there exists k0 ∈ N such that for all k ≥ k0

∥PIk |[yi:i≤m]∥ < 1

and, by Equation (4.2.1) there exists M0 > 0 such that for all m ≥ M0

∥PIk0
|Fm∥ < 1.

Let J0 = [0,M0]. Then
∥PIk0

|[yi:i ̸∈J0]∥ = ∥PIk0
|FM0

∥ < 1.

Suppose we had found k0 < k1 < ...kn−1 natural numbers and J0 < J1 < ... < Jn−1 intervals
such that for all j ∈ {0, ..., n− 1}

∥PIkj
|[yi:i ̸∈Jj ]∥ ≤ 2

j + 1
. (4.10)

Then, by Equation (4.8) there is kn > kn−1 such that

∥PIkn
|[yi:i≤max Jn−1]∥ <

1

n+ 1
.

Define Mn > Mn−1 such that for all m ≥ Mn

∥PIkn
|Fm∥ ≤ 1

n+ 1
.
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Let Jn = {Mn−1 + 1,Mn}. By using the last equations obtained

∥PIkn
|[yi:i ̸∈Jn]∥ ≤ ∥PIkn

|[yi:i≤Mn−1]∥+ ∥PIkn
|FMn

∥

≤ 1

n+ 1
+

1

n+ 1
=

2

n+ 1
.

Let us suppose that there is A ∈ [N]∞ such that Y ↪→ [yn : n ̸∈ ∪i∈AJi]. Then Y ↪→ [xn]n

and let T be such embedding. As Y is tight in (xn)n, the hypotheses of the lemma 4.2.11
are satisfied for the intervals (In)n, obtaining on one hand

lim inf
k

∥PIkT∥ > 0, (4.11)

and, on the other, that
lim
n∈A

∥PIkn
T∥ = 0,

which contradicts Equation (4.11).

Corollary 4.2.13. If X is tight and reflexive, then every basic sequence in X is tight.

Proof. Let (yn)n be a basic sequence in X. Then, [yn]n is reflexive. By Theorem 2.2.15, (yn)n
is a shrinking basic sequence of a tight space. Theorem 4.2.12 implies that [yn]n is tight.

Corollary 4.2.14. If X is tight and has an unconditional basis, then every basic sequence
in X is tight.

Proof. Let us suppose X satisfies the hypothesis. Then, by Proposition 4.2.9, X cannot
contain copies of minimal spaces c0 and ℓ1. Consequently, by Theorem 2.2.21, X is reflexive.
It follows from Corollary 4.2.13 that all basic sequences of X are tight.

The following example shows that a Banach space may not have minimal subspaces and not
be tight. It can be found in [22], Example 3.6.

Example 4.2.15. The symmetrization S(T(p)) of the p-convexification T (p) of Tsirelson’s
space, with p ∈ (1,∞), does not contain a minimal subspace, yet it is not tight.

Proof. As we remarked in Theorem 4.1.5, S(T(p)) has no minimal subspaces. The canonical
basis (en)n of S(T(p)) is symmetric (thus, subsymmetric), then it is not a tight basis (see
Proposition 4.2.8). Since S(T(p)) is reflexive, if it were tight then by Corollary 4.2.13 all
basic sequences, including (en)n, would be tight, which is false.

4.2.2 Strongly asymptotic ℓp spaces and tightness

An example of a tight Banach space is Tsirelson’s space. Following [22], it will be shown
in this section that strongly asymptotic ℓp spaces without copies of ℓp are, in fact, tight if
1 ≤ p < +∞. Definitions of asymptotic and strongly asymptotic ℓp spaces can be found
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in [13]. It is important to mention that other slightly different definitions of asymptotic ℓp

spaces exist in the literature, see [37].

Definition 4.2.16. Let E be a Banach space with normalized basis (en)n and 1 ≤ p ≤ ∞. We
say that (en)n is an asymptotic ℓp basis, if there are a finite constant C and an increasing
function f : N → N such that, for all natural n, every normalized block basis (xi)

n
i=0 of

(ei)
∞
i=f(n) is C-equivalent to the unit basis of ℓnp . E is an asymptotic-ℓp space if it has an

asymptotic-ℓp basis.

Definition 4.2.17. Let E be a Banach space with normalized basis (en)n and 1 ≤ p ≤ ∞.
We say that (en)n is a strongly asymptotic ℓp basis if there are a finite constant C and an
increasing function f : N → N such that, for all n, every normalized sequence (yi)

n
i=0 of

disjointly supported vectors from [xi : i ≥ f(n)] is C-equivalent to the unit basis of ℓnp . E is
a strongly asymptotic-ℓp space if it has a strongly asymptotic-ℓp basis.

Remark 4.2.18. Every strongly asymptotic ℓp basis is also asymptotic ℓp.

Proposition 4.2.19. Tsirelson’s space T is strongly asymptotic ℓ1 and for 1 < p < ∞, the
p-convexification T(p) of Tsirelson’s space is strongly asymptotic ℓp .

Proof.

T: The so called modified Tsirelson’s space TM is proved to be strongly asymptotic ℓ1

(see Proposition V.8 in [11]). Also, the unit bases of T and TM are equivalent (see
Theorem V.3 in [11]). Then Tsirelson’s space is strongly asymptotic ℓ1.

T(p): For proving this for the modified version T
(p)
M of T(p) it is done in the same way as in

the case of T, see Proposition 7.3 in [7].

The next definition was given in [22].

Definition 4.2.20. Let X be a Banach space with normalized basis (xn)n. We say that a
Banach space Y is tight in X with constants if, and only if, there is a sequence (Ii)i of
successive intervals such that for all integers K,

Y ̸↪→K [xn : n /∈ IK ].

We say that (xn)n is a tight with constant basis for X if Y tight in X with constants, for
every Banach space Y . Finally, X is tight with constants if it has a tight with constant basis.

In the same way that V. Ferenczi and G. Godefroy characterized tightness using Baire
category, they showed a natural characterization of tightness with constant:
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Proposition 4.2.21. A Banach space Y is tight with constants in a Banach space X with
normalized basis (xn)n, if, and only if, for all K

EY (K) = {u ∈ 2ω : Y ↪→K [xn : n ∈ supp(u)]}

is nowhere dense in 2ω.

Proof. See Proposition 3.5 in [18].

Tightness with constants is a stronger form of tightness, where extra information about
how a space does not embed into the other is given. It is easy to see that if Y is tight in
X with constants, then Y does not embed uniformly into the tail subspaces of X, in fact
this characterize tightness with constants, as was shown in [22]. We present the following
proposition which we prove in a different way than in [22], using Proposition 4.2.21. First,
recall that a basic open subset of 2ω determined by s ∈ 2ω and J ∈ [N]<∞ is given by

Ns,J := {u = (un)n ∈ 2ω : ∀n ∈ J(un = sn)}.

Proposition 4.2.22. The basis (xn)n of the space X is tight with constants if, and only if,
for every Y Banach space there is no K such that Y K-embeds in all the tail subspaces of
X.

Proof. For the direct implication, suppose by contradiction that there is a Banach space Y

which is uniformly embeddable in all the tail subspaces of X. Without loss of generality we
can suppose Y = [yn]n is a block subspace of X and let K be such that for every m,

Y ↪→K [xn : n ≥ m]. (4.12)

This means that for every m, χ[m,∞) ∈ EY (K), so ∅ ∈ EY (K). Since EY (K) is closed
under taking supersets, for every u ∈ FIN , we can find a sequence of elements of EY (K)

converging to χu, so χu ∈ EY (K). Since the copy of FIN in 2ω is dense in 2ω, we conclude
that EY (K) = 2ω which is a contradiction.

For the converse implication we shall proceed by contradiction again. Recall that a basic
open subset of 2ω determined by s ∈ 2ω and J ∈ [N]<∞ is given by

Ns,J = {u = (un)n ∈ 2ω : ∀n ∈ J(un = sn)}.

Suppose the basis (xn)n is not tight with constants, so there is a block subspace Y , some
K, s ∈ 2ω and I ∈ [N]<∞ such that Ns,I ⊆ EY (K). In particular, EY (K) “contains” finite
subsets of N. Let u ∈ Ns,I be such that supp(u) is finite and non-empty. Let (ui)i be a
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sequence of elements of EY (K) ∩ Ns,I converging to u. Let c be the constant that depends
on the basis constant of (xn)n and |supp(u)|, which exists via Proposition 2.2.29.

Let m ∈ N. Set k > max{m, supp(u),m+ |supp(u)|}. Then, there is N such that for every
i > N

[0, k] ∩ supp(ui) = supp(u).

We know that Y ↪→K [xn : n ∈ supp(ui)], for every i. Set j > N

v = (supp(uj) \ supp(u)) ∪ [k − |supp(u)|, k).

Since for i > N we have that supp(ui) and v differ only in |supp(u)| elements, it follows that

[xn : n ∈ supp(uj)] ↪→c2 [xn : n ∈ v] ⊆ [xn : n ≥ m].

Therefore, Y ↪→Kc2 [xn : n ≥ m].

Recall that a Banach space X is K-crudely finitely representable in another Banach space Y

if, and only if, for any finite-dimensional subspace F of X there is a K-embedding T : F → Y .
Other useful characterizations are known, as can be seen in the following proposition.

Proposition 4.2.23. Let X be a Banach space with normalized basis (xn)n. The following
are equivalent:

(i) For any block basis (yn)n there is a sequence (Ii)i of successive intervals such that for
all K,

[yn : n ∈ IK ] ̸↪→K [xn : n /∈ IK ].

(ii) For any space Y there is a sequence (Ii)i of successive intervals such that for all K,

Y ̸↪→K [xn : n /∈ IK ].

(iii) No space embeds uniformly into the tail subspaces of X.

(iv) There is no K and no subspace of X which is K-crudely finitely representable in any
tail subspace of X.

Proof. See [22], Proposition 4.1.

Finally, we remark the result proved in [22] which implies that Tsirelson’s space is tight.

Theorem 4.2.24. Let E be a Banach space with normalized basis (en)n strongly asymptotic
ℓp and not containing a copy of ℓp, for 1 < p < ∞. Then (en)n is tight with constants.

Proof. See [22], Proposition 4.2.
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Corollary 4.2.25. Tsirelson’s space T and its p-convexifications T(p) (1 < p < ∞), are
tight with constant.

Proof. It follows directly from Proposition 4.2.18 and Theorem 4.2.24.

Remark 4.2.26. The dual of Tsirelson’s space T∗ is strongly asymptotic ℓ∞ and it has no
copies of ℓ∞ but it is minimal.
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Chapter 5

New forms of tightness
Let E be a Banach space with normalized basis (en)n. We want to code different types of
embeddings to define the corresponding notion of minimality and tightness associated with
such embeddings. Suppose that X and Y are two block subspaces of E, generated by the
block bases (xn)n and (yn)n, respectively. We are interested in studying the following types
of embeddings:

• The subspace X embeds in Y as a block basis, that is, there is (zn)n block basis of
(yn)n such that (xn)n ∼ (zn)n.

• The subspace X embeds in Y as a sequence of disjointly supported vectors of (yn)n,
that is, there is a sequence (zn)n of finitely supported vectors with respect to (yn)n

such that i ̸= j ⇒ supp
Y
(zi) ∩ supp

Y
(zj) = ∅ and (xn)n ∼ (zn)n.

• The subspace X embeds in Y as a subsequence of (yn)n, that is, there is (ykn)n

subsequence of (yn)n such that (xn)n ∼ (ykn)n.

In order to code such embeddings, we shall define a set of blocks DE for E and an admissible
set AE contained in (DE)

ω. The set DE will be a subset of a countable subset DE of finitely
supported vectors of E with some additional property we shall define in this Chapter. Block
sequences which elements belongs to (DE shall represent the basis of the subspaces we are
interested in. The set AE is an infinite set which contains infinite sequences of vectors in DE

and it shall be thought of as the images of the embeddings we are allowing to occur.

The objective of this chapter is to study the properties of admissible sets, and to use this
notions to define AE-minimality and AE-tightness for a space E.

5.1 Admissible system of blocks

Along this section let us fix a Banach space E with normalized Schauder basis (en)n.

Proposition 5.1.1. There is FE a countable subfield of R containing the rationals such
that for all

∑n
i=0 λiei, with n ∈ N and (λi)

n
i=0 ∈ (FE)

n+1, the norm ∥
∑n

i=0 λiei∥ ∈ FE.
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Proof. Given A a non-empty subset of R define the following sets:

spanA(en) := {
∑
i∈I

: λiei : λi ∈ A, ∀i ∈ I, I ∈ [N]<∞}

and
FA := {∥x∥ : x ∈ spanA(en)}.

Now, take the set of rational numbers Q and the set FQ. Clearly A0 := Q ∪ FQ is
countable. Take the countable subfield A1 of R generated by A0. Now, suppose we have
found A1 ⊆ A2 ⊆ ... ⊆ An countable subfields of R, satisfying:

Ai ∪ FAi
⊆ Ai+1, for every i ∈ {0, ..., n− 1}.

Take An+1 the subfield of R generated by An ∪ FAn .

Let
FE :=

⋃
i∈N

Ai.

FE is a countable subfield of R because is the union of nested countable subfields of R. Also,
if n ∈ N and (λi)

n
i=0 ∈ (FE)

n+1, there is some k such that (λi)
n
i=0 ∈ (Ak)

n+1, so the norm
∥
∑n

i=0 λiei∥ ∈ Ak+1 ⊆ FE.

Notation 5.1.2. We denote by DE the set of nonzero not necessarily normalized finite
FE-linear combinations of (en)n.

Remark 5.1.3. DE is countable.

Definition 5.1.4. Let (xn)n be a sequence of successive finitely supported vectors of E. For
X = [xn]n, let us define the operation ∗X : (DE ∩ X)ω × (DE)

ω → (DE)
ω as follows: if

v = (vn)n belongs to (DE)
ω and u = (un)n ∈ (DE ∩X)ω such that for each n ∈ N

un =
∑

i∈supp
X
(un)

λn
i xi,

then u ∗X v is the sequence (wn)n, such that for each n ∈ N

wn =
∑

i∈supp
X
(un)

λn
i vi.

Remark 5.1.5. Notice that the set DE ∩ X could be empty. In our work we shall take
subspaces generated by vectors on DE, so this will not occur.

Remark 5.1.6. Under the hypothesis of Definition 5.1.4 we have that each element of u∗X v

is a finite linear combination of the vectors of the sequence v, and for each n ∈ N
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supp
E
(wn) =

⋃
i∈supp

X
(un)

supp
E
(vi). (5.1)

Also, if (vi)i is a basic sequence and V = [vi]i we have for each n

supp
V
(wn) = supp

X
(un). (5.2)

Definition 5.1.7. We define a set of blocks for the space E to be a set DE satisfying the
following conditions

a) DE is a subset of DE.

b) The set {en : n ∈ N} is contained in DE.

c) If u ∈ DE, then u
∥u∥ ∈ DE.

d) For every (un)n ∈ (DE)
ω and (vn)n ∈ (DE)

ω, we have (un)n ∗E (vn)n ∈ (DE)
ω.

e) Let (xi)
n
i=0 ∈ (DE)

n+1 with xi < xi+1 for every 0 ≤ i ≤ n. If u ∈ DE is such that

u =
n∑

i=0

λixi,

then

v =
n∑

i=0

λiei ∈ DE.

We say that a vector u is a DE-block if u is an element of the set DE.

Remark 5.1.8. Actually, the item d) in Definition 5.1.7 establishes a condition of closeness
for the elements of DE that we shall explain in the following lines. Define ⋆ : DE × (DE)

ω →
DE as follows: If (vn)n ∈ (DE)

ω is a block sequence and u ∈ DE with

u =
∑

i∈supp
E
(u)

λiei,

then, define
u ⋆ (vn)n =

∑
i∈supp

E
(u)

λivi.

Notice that in the construction of the vector u ⋆ (vn)n only a finite amount of coordinates of
sequence (vn)n are involved, specifically those vn with n ∈ supp

E
(v).

Thus, condition d) in Definition 5.1.7 is equivalent to: For every u ∈ DE and (vn)n ∈ (DE)
ω,

we have
u ⋆ (vn)n ∈ DE.
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Item e) in Definition 5.1.7, establishes another condition of “closeness”: If some vector u

belongs to the set of blocks and it has some coordinates in terms of a block basis (xn)n of
(en)n, then the vector with coordinates in the basis (en)n is also a block.

Notation 5.1.9. Let us denote by BE the set whose elements are the vector of the normalized
basis {en : n ∈ N} considered for E .

Example 5.1.10. The smallest set of blocks for E is BE.

Proof. Clearly, condition a), b) and c) in Definition 5.1.7 are satisfied. Take (un)n and (vn)n

in (BE)
ω. So, for each n ∈ N, un = ekn and vn = eln for some (kn)n ∈ Nω and (ln)n ∈ Nω. If

(wn)n := (un)n ∗E (vn)n, then for each n

wn =
∑

i∈{kn}

vi = elkn ∈ BE.

Thus, condition d) is satisfied. For condition e): Let (xi)
n
i=0 ∈ (BE)

n+1 with xi < xi+1 for
every 0 ≤ i ≤ n. Then, there is (ki)

n
i=0 increasing sequence such that xi = eki . If u ∈ BE is

such that

u =
n∑

i=0

λieki = el,

for some l ∈ N. Then, due to the linear independence of ei’s, we have that for some
j ∈ {0, ..., n} such that λj = 1 and λi = 0, for all i ∈ {0, ..., n} \ {j}.

then,

v =
n∑

i=0

λiei = ekj ∈ BE.

Notation 5.1.11. Let us denote by B±
E the set {en : n ∈ N} ∪ {−en : n ∈ N}.

Example 5.1.12. The set B±
E is a set of blocks for E.

Proof. This follows in the same way as the proof of Example 5.1.10. Notice that in this case
we use that the product of signs is again a sign.

Example 5.1.13. The set DE is obviously a set of blocks for E.

Remark 5.1.14. Clearly, a set of blocks DE for E is countable. Endow (DE)
ω with the

product topology obtained by considering DE with the discrete topology. As noticed in Section
3.2 of Chapter 3, (DE)

ω is a Polish space. Also, the set (N×N×DE)
ω with its natural product

topology is Polish.

Definition 5.1.15. Let D ⊆ DE be an infinite subset such that Dω contains a block basis
of (en)n.
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(i) We say that (yn)n ∈ Eω is a D-block sequence if, and only if, (yn)n is a block basis of
(en)n and for each n ∈ N we have yn ∈ D.

(ii) A normalized D-block sequence is a D-block sequence such that each element of the
sequence is a normalized vector.

(iii) A D-block subspace is the closed subspace spanned by a D-block sequence.

Remark 5.1.16. Suppose X is a DE-block subspace with DE-block basis. Without loss of
generality, by condition c) in Definition 5.1.7, we can suppose that (xn)n is a normalized
DE-block sequence.

Notation 5.1.17. Let D ⊆ D be as in the hypothesis of Definition 5.1.15. In order to
simplify the notation, we write that X = [xn]n is a D-block subspace to say that the sequence
(xn)n is a D-block sequence and X = [xn]n. In the case that D = DE we write X = [xn]n is
a DE-block subspace to say that the sequence (xn)n is a normalized DE-block sequence and
X = [xn]n.

Remark 5.1.18. Every DE-block subspace is a DE-block subspace.

Notation 5.1.19. If X = [xn]n is a DE-block subspace, we denote by DX the set DE ∩X.

Remark 5.1.20. The basis (en)n we have fixed for E is a DE-block sequence, so E is a
DE-block subspace.

Notation 5.1.21. Let DE be a set of blocks for E. Let X be a DE-block subspace.

(i) We denote by DX the set formed by the blocks which belong to X, that is

DX := DE ∩X.

(ii) We denote by bbD(E) the set of normalized DE-block sequences of E, i.e.

bbD(E) := {(xn)n ∈ (DE)
ω : (xn)n is a DE-block sequence of E and ∀n ∈ N(∥xn∥ = 1)}.

(iii) Let X be an DE-block subspace of E, we denote by bbD(X) the set of normalized

DX-block sequences of E, i.e.

bbD(X) := {(yn)n ∈ (DX)
ω : (yn)n is a DX-block sequence of E and ∀n ∈ N(∥xn∥ = 1)}.

Remark 5.1.22. The set bbD(E) is a non-empty closed topological subspace of (DE)
ω,

therefore, it is Polish.
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Remark 5.1.23. If DE is a set of blocks for E and X is a DE-block subspace, then we
sometimes identify an element (yn)n of bbD(X) with the DE-block subspace that it generates.

Definition 5.1.24. Let DE be a set of blocks for E. We say that a set AE is an admissible
set for E if, and only if, it satisfies the following conditions:

a) AE is a closed subset of (DE)
ω.

b) AE is a subset of (DE)
ω which contains all the DE-block sequences.

c) For every (yn)n ∈ AE and every DE-block subspace X = [xn]n we have that if
(un)n ∈ (DX)

ω, then

(un)n ∈ AE ⇐⇒ (un)n ∗X (yn)n ∈ AE.

d) Let (yn)n be a DE-block sequence and Y = [yn]n. For every (un)n ∈ AE and k ∈ N,
there is (vn)n ∈ Y ω such that (u0, ..., uk, v0, v1, ...) ∈ AE.

Remark 5.1.25. Notice that an admissible set depends on the set of blocks that has been
settled for E.

Notation 5.1.26. Let DE be a set of blocks for E, AE an admissible set for E and X be a
DE-block subspace.

(i) We denote by AX the intersection AE ∩Xω.

(ii) We denote by [AX ] the set of initial parts of AX , that is:

[AX ] :=
⋃
n∈N

{(u0, u1, ..., un) ∈ (DX)
n+1 : ∃(wi)i ∈ AX s.t. wi = ui, for 0 ≤ i ≤ n}.

Remark 5.1.27. Since (DE)
i is a discrete topological space, the set [AE]∩ (DE)

i is a clopen
subset of (DE)

i, for every i ≥ 1.

Remark 5.1.28. If X and Y are DE-block subspaces such that Y ⊆ X, then AY ⊆ AX .

Before we show examples of admissible sets and to finish giving the new definitions, we
shall introduce a technical condition that relates the admissible set and the set of blocks.
This condition is used only in Chapter 6, it is not necessary for the results obtained in this
Chapter.

Definition 5.1.29. Let DE be a set of blocks for E and AE be an admissible set for E. We
say that the pair (DE,AE) is an admissible system of blocks for E if, and only if, DE and
AE satisfy the following relation: For all DE-block subspace X of E, for all sequence (δn)n

with 0 < δn < 1, and K ≥ 1, there is a collection (An)n of non-empty subsets of DX such
that
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a) For each n and for each d ∈ [N]<∞ such that there is w ∈ DX with supp
X
(w) = d, we

have that there are finitely many vectors u ∈ An such that supp
X
(u) = d.

b) For each sequence (wi)i ∈ AX satisfying 1/K ≤ ∥wi∥ ≤ K, for every i, there is
(ui)i ∈ AX such that for each n we have

b.1) un ∈ An,

b.2) supp
X
(un) ⊆ supp

X
(wn),

b.3) ∥wn − un∥ < δn.

Remark 5.1.30. We know that closed balls of finite dimensional subspaces of a Banach space
E are totally bounded using balls centered on vectors of E. Roughly speaking, this condition
allows us to choose the centers of such balls as DE-vectors.

5.2 Properties of admissible sets

In this section we shall describe how to pass from an admissible set for a Banach space E to
an admissible set for a DE-block subspace. Also, we present and detail some basic properties
that a set of blocks and an admissible set satisfy.

Proposition 5.2.1. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks and AE be an admissible set for E, then the following are equivalent:

(i) For every (yn)n ∈ AE and every DE-block subspace X = [xn]n we have that if
(un)n ∈ (DX)

ω, then

(un)n ∈ AE ⇐⇒ (un)n ∗X (yn)n ∈ AE.

(ii) For every (yn)n and (zn)n in AE we have that if (wn)n ∈ (DE)
ω then

(wn)n ∗E (yn)n ∈ AE ⇐⇒ (wn)n ∗E (zn)n ∈ AE.

(iii) For every (yn)n and (zn)n in AE and every DE-block subspace X = [xn]n we have that
if (un)n ∈ (DX)

ω then

(un)n ∗X (yn)n ∈ AE ⇐⇒ (un)n ∗X (zn)n ∈ AE.

Proof. Suppose E, DE and AE as in the hypothesis. Notice that iii) implies ii).
ii) ⇒ i) Let (yn)n be in AE and X = [xn]n be a DE-block subspace. Take (un)n ∈ (DX)

ω.
Suppose that for each n ∈ N

un =
∑

i∈supp
X
(un)

λn
i xi.



52 CHAPTER 5. NEW FORMS OF TIGHTNESS

For each n ∈ N set
vn =

∑
i∈supp

X
(un)

λn
i ei.

By condition e) of Definition 5.1.7, each vn ∈ DE. Notice that (un)n = (vn)n ∗E (xn)n. Also,
by the definition of the operation ∗X we have that (un)n ∗X (yn)n = (vn)n ∗E (yn)n, and by
condition d) in Definition 5.1.7 the sequence (un)n ∗X (yn)n ∈ (DE)

ω. So,

(un)n ∗X (yn)n ∈ AE ⇐⇒ (vn)n ∗E (yn)n ∈ AE

⇐⇒ (vn)n ∗E (xn)n ∈ AE

⇐⇒ (un)n ∈ AE.

i) ⇒ iii) Let (yn)n and (zn)n be in AE and X = [xn]n be a DE-block subspace. Take
(un)n ∈ (DX)

ω, then

(un)n ∗X (yn)n ∈ AE ⇐⇒ (un)n ∈ AE

⇐⇒ (un)n ∗X (zn)n ∈ AE.

Remark 5.2.2. Items ii) or iii) in Proposition 5.2.1 are both equivalent to the Condition
c) in Definition 5.1.24.

Proposition 5.2.3. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks and AE be an admissible set for E. If X = [xn]n is a DE-block subspace, then we have

(i) DX ⊆ DX .

(ii) {xn : n ∈ N} ⊆ DX .

(iii) If u ∈ DX , then u
∥u∥ ∈ DX .

(iv) For every (un)n ∈ (DX)
ω and (vn)n ∈ (DE)

ω, we have (un)n ∗X (vn)n ∈ (DE)
ω. In

particular, if (vn)n ∈ (DX)
ω, then (un)n ∗X (vn)n ∈ (DX)

ω.

(v) Let (yi)ni=0 ∈ (DX)
n+1 with yi < yi+1 for every 0 ≤ i ≤ n. If u ∈ DX is such that

u =
n∑

i=0

λiyi,

then

v =
n∑

i=0

λixi ∈ DX .

Proof. Let X = [xn]n as in the hypothesis. For items (i), (ii) and (iii) we only use that
DX = DE ∩X. Let us prove item (iv). Let (un)n ∈ (DX)

ω and (vn)n ∈ (DE)
ω. If for each n
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we have
un =

∑
i∈supp

X
(un)

λn
i xi,

then from condition e) in Definition 5.1.7, for each n ∈ N the vector

wn =
∑

i∈supp
X
(un)

λn
i ei

belongs to DE. By condition d) in Definition 5.1.7, (wn)n ∗E (vn)n ∈ (DE)
ω. Since

(un)n ∗X (vn)n = (wn)n ∗E (vn)n, we have (un)n ∗X (vn)n ∈ (DE)
ω. If (vn)n ∈ Xω, then

we also have (un)n ∗X (vn)n ∈ (DX)
ω

Now, let us prove (v). Let (yi)
n
i=0 ∈ (DX)

n+1 with yi < yi+1 for every 0 ≤ i ≤ n, and
Y = [yi]i≤n. Let

u =
n∑

i=0

λiyi ∈ DX = DE ∩X.

We want to prove that v =
∑n

i=0 λixi ∈ DX .

Take w =
∑n

i=0 λiei. For condition (e) in Definition 5.1.7, w ∈ DE. Consider the constant
sequence (wi)i ∈ (DE)

ω where each wi = w.

Using d) in Definition 5.1.7, we obtain

(vi)i := (wi)i ∗E (xi)i ∈ (DE)
ω.

Notice that for each i we have

vi =
n∑

j=0

λjxj = v ∈ DE ∩X = DX .

Proposition 5.2.4. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks and AE be an admissible set for E. Let X = [xn]n be a DE-block subspace. The set
AX satisfies the following properties:

(i) AX is a closed subset of (DX)
ω.

(ii) Any block basis (yn)n in (DX)
ω belongs to AX .

(iii) For every (vn)n ∈ AX and every DX-block subspace Y = [yn]n we have that if
(un)n ∈ (DY )

ω, then

(un)n ∈ AX ⇐⇒ (un)n ∗Y (vn)n ∈ AX .
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(iv) Let Y = [yn]n be a DX-block subspace. For every (un)n ∈ AX and k ∈ N, there is
(vn)n ∈ Y ω such that (u0, ..., uk, v0, v1, ...) ∈ AX .

Proof. Let E, DE and AE be as in the hypothesis. Let X = [xn]n be a DE-block subspace
of E.

(i) Recall that AX = AE ∩Xω and (DX)
ω = (DE)

ω ∩Xω. Since A is admissible for E, we
have that AE is closed in (DE)

ω, then AX = AE ∩Xω is closed in DX
ω.

(ii) Clearly, any block basis in (DX)
ω is also a block basis in (DE)

ω, so it belongs to AE

and also to Xω, therefore it belongs to AX .

(iii) Let (vn)n ∈ AX and Y = [yn]n be a DX-block subspace (so, it is also a DE-block
subspace). Let (un)n ∈ (DY )

ω, then using that AE is an admissible set for E we obtain

(un)n ∈ AX ⇐⇒ (un)n ∈ AE ∩Xω

⇐⇒ (un)n ∗Y (vn)n ∈ AE

⇐⇒ (un)n ∗Y (vn)n ∈ AX .

(iv) Let Y = [yn]n be a DX-block subspace. Let (un)n ∈ AX and k ∈ N. Since Y is also
a DE-block subspace, there is (vn)n ∈ Y ω such that (u0, ..., uk, v0, v1, ...) ∈ AE. Since
Y ⊆ X, we have that (u0, ..., uk, v0, v1, ...) ∈ AX .

Remark 5.2.5. Notice that if X is a DE-block subspace, then using ii) in Proposition 5.2.4
we conclude that [AX ] is infinite.

Remark 5.2.6. If (DE,AE) is an admissible system of blocks for E and X is a DE-block
subspace, then as a consequence of propositions 5.2.3 and 5.2.4, the pair (DX ,AX) can be
thought as an “admissible subsystem of blocks” relative to X. The “relativization” of the
condition given in Definition 5.1.29 to X is clearly true: For all DX-block subspace Y of X,
for all sequence (δn)n with 0 < δn < 1, and K ≥ 1, there is a collection (An)n of non-empty
subsets of DY such that

a) For each n and for each d ∈ [N]<∞ such that there is w ∈ DY with supp
Y
(w) = d, we

have that there are finitely many vectors u ∈ An such that supp
Y
(u) = d.

b) For all sequence (wi)i ∈ AY satisfying 1/K ≤ mini ∥wi∥ ≤ supi ∥wi∥ ≤ K, there is
(ui)i ∈ AY such that for each n:

b.1) un ∈ An,

b.2) supp
Y
(un) ⊆ supp

Y
(wn),

b.3) ∥wn − un∥ < δn.
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Proposition 5.2.7. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks for E and AE be an admissible set for E. The following statements are true:

(i) Let X be a DE-block subspace. If (ui)i ∈ (DX)
ω satisfies that for every n ∈ N the finite

sequence (ui)
n
i=0 ∈ [AE], then (ui)i ∈ AX .

(ii) If X = [xn]n and Y = [yn]n are DE-block subspaces such that (xn)n ∼ (yn)n, and T is
the map such that ∀n ∈ N (T (xn) = yn), then

T (AX) = AY .

(iii) If X is a DE-block subspace, then

[AX ] = [AE]
⋂ ⋃

i≥1

X i.

Proof. (i) Let X and u = (ui)i ∈ (DX)
ω be as in the hypothesis. For each n ∈ N let

vn = (vni )i ∈ AE such that ui = vni for every 0 ≤ i ≤ n. Without loss of generality,
we can suppose each vn ∈ AX (using d) in Definition 5.1.24 we can find a sequence in
AX which coincide with vn in the first n coordinates). Thus, vnj = uj, for every n ≥ j.
Which means that for each j ∈ N we have (vnj ) −−−→

n→∞
uj in DX . Therefore, vn −−−→

n→∞
u

in (DX)
ω. Using (i) of the Proposition 5.2.4, u ∈ AX .

(ii) Let X = [xn]n and Y = [yn]n be DE-block subspaces of E, and let T : X → Y be as
in the hypothesis. Notice that by b) in Definition 5.1.24, (xn)n, (yn)n, (en)n ∈ AE.

Let (un)n ∈ AX with
un =

∑
i∈supp

X
(un)

λn
i xi,

for each n ∈ N. We want to show that (T (un))n ∈ AY . Notice that (T (un))n =

(un)n ∗X (yn)n, so by c) in Definition 5.1.24, (T (un))n ∈ AE ∩ Y ω = AY .

On the other hand, let (vn)n ∈ AY with

vn =
∑

i∈supp
Y
(vn)

αn
i yi,

for every n ∈ N. Set for each n ∈ N

un =
∑

i∈supp
Y
(vn)

αn
i xi.

Clearly, T (un) = vn for every n and (un)n = (vn)n ∗Y (xn)n. By c) of Definition 5.1.24
(un)n ∈ AE ∩Xω = AX .
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(iii) Let X = [xn]n be a DE-block subspace. Since AE ∩Xω = AX , it follows that

[AX ] ⊆ [AE]
⋂ ⋃

i≥1

X i.

Suppose that (ui)
n
i=0 ∈ [AE] ∩ Xn+1, for some n ∈ N. Using d) in Definition 5.1.24,

there is (ui)
∞
i=n+1 ∈ Xω, such that u = (u0, ..., un, un+1, ...) ∈ AX . Then, (ui)

n
i=0 ∈ [AX ].

5.3 Admissible families

In this section we shall study admissible sets which are determined by families of sequences
of sets in FIN, which we have called admissible families, and give some examples.

Notation 5.3.1. (i) Let us denote the set of nonempty finite sets of N by FIN, that is
FIN := [N]<∞ \ {∅}.

(ii) We denote by FINω the set of infinite sequences of non-empty finite subsets of N.

Remark 5.3.2. We shall consider FINω as a topological subspace of (2ω)ω, where (2ω)ω is
endowed with the product topology which results from considering 2ω as the Cantor space
with its topology (see Section 3.1 of Chapter 3).

Notation 5.3.3. (i) We denote by bb(N) the set of sequences of successive non-empty
finite subsets of N, that is

bb(N) = {(Ui)i ∈ FINω : ∀i ∈ N (Ui < Ui+1)}.

(ii) We denote by db(N) the set of sequences of non-empty finite subsets of N whose
elements are mutually disjoint:

db(N) = {(Ui)i ∈ FINω : ∀i ̸= j (Ui ∩ Uj = ∅)}.

Definition 5.3.4. We define the operation ⊛ : P(ω)ω × P(ω)ω → P(ω)ω, as follows: given
U = (Ui)i and V = (Vi)i in P(ω)ω, we define U ⊛ V = (Wi)i as Wi = ∪j∈Ui

Vj, for every
i ∈ N.

Remark 5.3.5. Observe that:

(i) FINω is closed under the operation ⊛, that is, if U, V ∈ FINω, then U ⊛ V ∈ FINω.

(ii) If U = (Ui)i and V = (Vi)i in P(ω)ω and U ⊛ V = (Wi)i, then⋃
i∈N

Wi ⊆
⋃
i∈N

Vi.



5.3. ADMISSIBLE FAMILIES 57

(iii) The sets bb(N) and db(N) are closed under the operation ⊛.

(iv) Note that e := ({i})i is a neutral element for operation ⊛, that is, if U ∈ P(ω)ω, then
U ⊛ e = e⊛ U = U .

Proposition 5.3.6. Let E be a Banach space with normalized basis (en)n and DE be a set of
blocks for E. Let X be a DE-block subspace of E. Suppose (un)n ∈ (DX)

ω and (vn)n ∈ (DE)
ω.

If
(wn)n = (un)n ∗X (vn)n

then
(supp

E
(wn))n = (supp

X
(un))n ⊛ (supp

E
(vn))n. (5.3)

Also, if (vn)n is a basic sequence, then for each n

supp
[vi]i

(wn) = supp
X
(un). (5.4)

Proof. This follows directly from the definition of operations ∗X and ⊛.

Definition 5.3.7. We say that a non-empty subset B ⊆ FINω is an admissible family if,
and only if, the following conditions are satisfied:

a) B is a closed subset of FINω.

b) bb(N) ⊆ B.

c) For every (Ui)i, (Vi)i ∈ B and every (Wi)i ∈ FINω, we have

(Wi)i ⊛ (Ui)i ∈ B ⇐⇒ (Wi)i ⊛ (Vi)i ∈ B. (5.5)

d) For every (Ui)i, (Vi)i ∈ B and n ∈ N, there is ({ti})i subsequence of e such that

(U0, U1, ..., Un,W0,W1, ...) ∈ B,

where (Wi)i = (ti)i ⊛ (Vi)i.

Remark 5.3.8. If B is an admissible set, condition b) implies that the neutral element e

belongs to B.

Remark 5.3.9. It is easy to see that the condition c) in Definition 5.3.7 is equivalent to the
following statement: For every (Vi)i ∈ B and every (Wi)i ∈ FINω, we have

(Wi)i ∈ B ⇐⇒ (Wi)i ⊛ (Vi)i ∈ B. (5.6)

Proposition 5.3.10. The sets FINω, bb(N) and db(N) are admissible families.
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Proof. (i) It is clear that FINω is an admissible set.

(ii) Let V = (Vj)j ∈ FINω be in the closure of bb(N), and Ui = (U i
j)j ∈ bb(N) such that

Ui −−−→
i→∞

V . Then U i
j −−−→

i→∞
Vj, for every j ∈ N. We have to verify that for any j,

Vj < Vj+1.

Suppose, on the contrary, that for some j there exist k ∈ Vj+1 and m ∈ Vj such
that k < m. Then, there are N > 0 and M > 0 such that ∀i ≥ N (k ∈ U i

j+1) and
∀i ≥ M (m ∈ U i

j). Therefore, Ui is not in bb(N), for i > max(N,M). Thus, bb(N)

satisfies condition a) of Definition 5.3.7.

Condition b) in Definition 5.3.7 is immediate. Now, suppose that (Ui)i, (Vi)i ∈ bb(N)

and consider (Wi)i ∈ FINω. We have

(Wi)i ⊛ (Ui)i ∈ bb(N) ⇐⇒
(⋃
i∈Wn

Ui

)
n
∈ bb(N)

⇐⇒ (Wi)i ∈ bb(N)

⇐⇒ (Wi)i ⊛ (Vi)i ∈ bb(N).

So, condition c) in Definition 5.3.7 is satisfied.

Let us verify condition d). Let (Ui)i and (Vi)i be elements of bb(N), and n ∈ N. Then,
there is m ∈ N such that

∀i ≥ m

(
n⋃

j=0

Uj < Vi

)
. (5.7)

Let (ti)i = ({m+ i})i ∈ bb(N) and (Wi)i := (ti))i⊛ (Vi)i = (Vm+i)i. By Equation (5.7),
it is clear that

(U0, U1, ..., Un,W0,W1, ...) ∈ bb(N).

(iii) Let V = (Vj)j ∈ FINω be in the closure of db(N), and Ui = (U i
j)j ∈ db(N) such that

Ui −−−→
i→∞

V . Then U i
j −−−→

i→∞
Vj, for every j ∈ N. We have to verify that Vi ∩ Vj, for any

i ̸= j.

Suppose k ∈ Vm∩Vl, for some m ̸= l. Then, there are N,M > 0 such that k ∈ U i
m∩U i

l ,
for every i > max(N,M). Thus, Ui /∈ db(N), for any i > N,M , which is a contradiction.
Therefore, db(N) satisfies condition a) of Definition 5.3.7.

For the case db(N) condition b) is immediate. Conditions c) and d) can be proven in
exactly the same way that in the bb(N) case.

Proposition 5.3.11. The set

per(N) := {(Ui)i ∈ FINω : ∃π a permutation of N s.t. ∀i ∈ N(Uπ(i) < Uπ(i+1))}
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is not an admissible family.

Proof. Consider the sequences

U = ({0, 1}, {2}, {3}, {4}, ...) ∈ per(N)

V = ({0}, {2}, {1}, {3}, {4}, ...) ∈ per(N).

Notice that U = U ⊛ e and V belong to per(N), but U ⊛ V = ({0, 2}, {1}, {3}, {4}, ...) does
not. Then, per(N) fails to satisfy condition c) in Definition 5.3.7.

Proposition 5.3.12. Let B be an admissible family. Let E be a Banach space with
normalized basis (en)n and DE be a set of blocks for E. Define the set A as follows:
(ui)i ∈ (DE)

ω belongs to A if, and only if, (supp
E
(ui))i ∈ B. Then, A is an admissible

set for E.

Proof. Suppose B, E, (en)n and DE as in the hypothesis. Define

A = {(ui)i ∈ (DE)
ω : (supp

E
(ui))i ∈ B}. (5.8)

Let us check each condition of Definition 5.1.24.

a) Suppose v := (vi)i ∈ A ⊆ (DE)
ω and let (ui)i be a sequence in (A)ω which converges to

v. Then, if for each i, ui = (ui
j)j, then ui

j −−−→
i→∞

vj in (DE)
ω, for every j ∈ N. Thus, for

each j ∈ N there is Nj > 0 such that ui
j = vj (in particular supp

E
(ui

j) = supp
E
(vj)),

for every i > Nj. This means that for each j ∈ N,

supp
E
(ui

j) −−−→
i→∞

supp
E
(vj) in FIN. (5.9)

For each i ∈ N, ui ∈ A ⇒ Ui := (supp
E
(ui

j))j ∈ B. Equation (5.9) shows that (Ui)i

converges to (supp
E
(vj))j ∈ FINω. Since B is closed in FINω, (supp

E
(vj))j ∈ B. By

the definition of A, this means that v ∈ A.

b) Let (yn)n be a sequence of successive blocks, that is ∀n ∈ N (yn ∈ D & yn < yn+1).
Then, (supp

E
(yi))i ∈ bb(N). By item b) in Definition 5.3.7, bb(N) ⊆ B, so (yn)n ∈ A.

c) Let (yn)n ∈ A and X = [xn]n be a DE-block subspace. Suppose (un)n ∈ (DX)
ω, where

for each n ∈ N,

un =
∑

i∈supp
X
(un)

λn
i xi.
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We want to see that

(un)n ∈ A ⇐⇒ (vn)n := (un)n ∗X (yn)n ∈ A (5.10)

Observe that (un)n ∈ (DX)
ω and, due to (iv) in Proposition 5.2.3, we know that

(un)n ∗X (yn)n ∈ (DE)
ω.

By Proposition 5.3.6, we know that

(supp
E
(vn))n = (supp

X
(un))n ⊛ (supp

E
(yn))n. (5.11)

As a consequence of the last equation, the definition of A and condition c) of Definition
5.3.7, we obtain

(un)n ∈ A ⇐⇒ (supp
E
(un))n ∈ B

⇐⇒ (supp
X
(un))n ⊛ (supp

E
(xn))n ∈ B

⇐⇒ (supp
X
(un))n ⊛ (supp

E
(yn))n ∈ B

⇐⇒ (supp
E
(vn))n ∈ B

⇐⇒ (vn)n ∈ A

d) Let (yn)n a DE-block sequence and Y = [yn]n. By using item b) we have (supp
E
(yn))n ∈

B. Let (ui)i ∈ A, so (supp
E
(ui))i ∈ B. By condition d) in Definition 5.3.7 there is

({ai})i ∈ bb(N) such that

(supp
E
(u0), suppE

(u1), ..., suppE
(un), B0, B1, ...) ∈ B, (5.12)

where (Bi)i = ({ai})i ⊛ (supp
E
(yi))i. For each i ∈ N, let zi = yai . It is clear that

(zi)i ∈ DY
ω and supp

E
(zi) = Bi, for every i ∈ N. Then, by Equation (5.12) we have

(u0, ..., un, z0, z1, ...) ∈ A.

Definition 5.3.13. Under the hypothesis of Proposition 5.3.12, we shall refer to the obtained
set A as the admissible set for E determined by the admissible family B.

Proposition 5.3.14. Let B be an admissible family. Let E be a Banach space with
normalized basis (en)n and DE be a set of blocks for E. Let X be a DE-block subspace
of E. If AE is the admissible set for E determined by the admissible family B, then

AX = {(ui)i ∈ (DX)
ω : (supp

X
(ui))i ∈ B}. (5.13)
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Proof. It is sufficient to prove that for every (un)n ∈ (DX)
ω,

(supp
E
(un))n ∈ B ⇐⇒ (supp

X
(un))n ∈ B. (5.14)

Recall that (xn)n ∈ AE. By Remark 5.3.9 we know that

(supp
X
(un))n ∈ B ⇐⇒ (supp

X
(un))n ⊛ (supp

E
(xn))n ∈ B.

And by Proposition 5.3.6 we have

(supp
E
(un))n = (supp

X
(un))n ⊛ (supp

E
(xn))n.

So, Equation (5.14) is true.

Notation 5.3.15. Let E be a Banach space with normalized basis (en)n and DE a set of
blocks for E. We denote by:

(i) BSD(E) the set of not necessarily normalized DE-block sequences of E.

(ii) DSD(E) the set of infinite sequences of pairwise disjointly supported DE-blocks.

Proposition 5.3.16. Let E be a Banach space with normalized basis (en)n and DE a set of
blocks for E. The following sets are admissible for E:

(i) The set (DE)
ω of infinite sequences of DE-blocks.

(ii) The set BSD(E).

(iii) The set DSD(E).

Proof. Let E be a Banach space with normalized basis (en)n. Consider DE a set of blocks for
E. The idea of this proof is to show that each of the three sets is admissible using Proposition
5.3.12, and they are determined by each of the admissible families given in Proposition 5.3.10.

(i) A sequence (xn)n in Eω is a sequence of DE-blocks if, and only if, (xn)n ∈ (DE)
ω. So,

for this case
AE = (DE)

ω. (5.15)

Also, notice that

{(ui)i ∈ (DE)
ω : (supp

E
(ui))i ∈ FINω} = (DE)

ω = AE.

So, by Proposition 5.3.12, A is an admissible set for E.
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(ii) For this case

AE = {(xn)n ∈ (DE)
ω : ∀n(xn < xn+1)}

= {(xn)n ∈ (DE)
ω : (supp

E
(xn))n ∈ bb(N)}

= BSD(E).

So, by Proposition 5.3.12, AE is an admissible set for E determined by the admissible
family bb(N).

(iii) For this case we have

AE = {(xn)n ∈ (DE)
ω : supp

E
(xi) ∩ supp

E
(xj) = ∅, whenever i ̸= j}

= {(xn)n ∈ (DE)
ω : (supp

E
(xn))n ∈ db(N)}

= DSD(E).

By Proposition 5.3.12, A is an admissible set for E determined by the admissible family
db(N).

5.3.1 Interpretations for the set of blocks

Depending on the set of blocks DE ⊆ DE we have chosen for the Banach space E, it is
possible to give different interpretations for the admissible set considered. In this section we
shall explore various sets of blocks and analyze the admissible sets obtained in Proposition
5.3.16 in each context. In this section, let us fix E being a Banach space with normalized
basis (en)n.

Blocks as the non-zero F-linear combinations

We shall start this exposition with the biggest set of blocks possible. Consider the set of
blocks DE, that is, the set which elements are all non-zero finitely supported FE-linear
combinations of the basis (en)n. This was the set considered by Pelczar in [42] and also by
Ferenczi and Rosendal in [22].

In this context, a DE-block sequence is a block basis which elements are non-zero finitely
supported FE-linear combinations and

bbD(E) = {(xn)n ∈ (DE)
ω : ∀n ∈ N(xn < xn+1 & ∥xn∥ = 1)}.

Remark 5.3.17. Without loss of generality we can suppose that any normalized finitely
supported basic sequence (yn)n in E = [en]n, is equivalent to (zn)n ∈ (DE)

ω with supp
E
(zn) =

supp
E
(yn), for every n. This is a consequence of the density of DE in E and the principle

of small perturbations (presented as Theorem 2.2.11).
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Proposition 5.3.18. Suppose that we are considering the set of blocks for E as DE and that
AE is an admissible set for E determined by an admissible family. Then, the pair (DE,AE)

is an admissible system of blocks for E.

Proof. Let X = [xn]n be a DE-block subspace, (δn)n with 0 < δn < 1 and K ≥ 1. We are
going to construct for each n ∈ N sets Dn of not necessarily normalized DX-blocks with the
following properties:

1. For each d ∈ [N]<∞, there are a finite number of vectors u ∈ Dn such that
supp

X
(u) = d.

2. If w is a DX-block vector with norm in [ 1
K
, K], then there is some u ∈ Dn, with the

same support in X of w such that ∥w − u∥ < δn.

Before the proof of the existence of such sets Dn, let us show why this is sufficient: Let
(vi)i ∈ AX satisfying 1

K
≤ ∥vi∥ ≤ K, for every i ∈ N. Since (vi)i ∈ AX and AE is the

admissible set for E determined by an admissible family B, it follows that

(supp
X
(vi))i ∈ B. (5.16)

Using 2), for each i there is wi ∈ Di with ∥wi − vi∥ < δi and supp
X
(wi) = supp

X
(vi), so by

Equation (5.16) (supp
X
(wi))i ∈ B, what means that (wi)i ∈ AX . Therefore, (DE,AE) is an

admissible system of blocks for E.

Let us prove that such sets Dn exist: Set n ∈ N. We proceed by induction: If d ∈ [N]1, then,
since the closed K-ball of [xi]i∈d is totally bounded and DE is dense in E, it is possible to find
a finite Ud = {ud

1, ...u
d
m(d)} ⊂ BK([xi]i∈d) ∩DE such that if w ∈ [xi]i∈d and 1

K
≤ ∥w∥ ≤ K,

then there is some j ≤ m(d) with ∥w − ud
j∥ < δn.

Suppose we have found for every d ∈ [N]<m such vectors Ud = {ud
1, ...u

d
m(d)} ⊂ BK([xi]i∈d)∩

DE with the desired property. Let d ∈ [N]m, then as the closed K-ball of

[xi]i∈d \
⋃
d′⊂d

[xi]i∈d′

is again totally bounded and DE is dense in E, there is Ud = {ud
1, ...u

d
m(d)} ⊂ B([xi]i∈d)∩DE

such that if w ∈ [xi]i∈d, 1
K

≤ ∥w∥ ≤ K and supp(w) = d, then there is some j ≤ m(d) such
that ∥w − ud

j∥ < δn. Finally, set
Dn =

⋃
d∈[N]<∞

Ud.

Corollary 5.3.19. The pairs (DE, (DE)
ω), (DE, BSD(E)) and (DE, DSD(E)) are

admissible systems of blocks for E.
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Proof. The result follows directly from Proposition 5.3.16 and Proposition 5.3.18.

As it was proved in Proposition 5.3.11, the family per(N) is not admissible for FINω. So,
Proposition 5.3.12 can not be used to determined whether is an admissible set for the Banach
space E. In the next proposition we prove that the set of infinite sequences of blocks that
are a permutation of a block basis of sequences is not admissible for E.

Proposition 5.3.20. The set

PE := {(xn)n ∈ (DE)
ω : (supp

E
(xn))n ∈ per(N)}

is not admissible for E.

Proof. Let
z0 = e0, z1 = e2, z2 = e1, and zi = ei, for all i ≥ 3.

The sequences (en)n and (zn)n belong to PE. Set now

w0 = e0 + e1, and wi = ei+1, for all i ≥ 1.

Notice that (wn)n ∗E (en)n = (wn)n so it is a permutation of a DE-block sequence (it is itself
a DE-block sequence), but (wn)n ∗E (zn)n = (e0 + e2, e1, e3, ...) is not. So, condition c) in
Definition 5.1.24 is not satisfied.

Blocks as the set of vectors of the basis

The smallest set of blocks we can consider is that where the blocks are exclusively the vectors
of the basis:

BE = {en : n ∈ N}.

Notice that in this case all blocks are normalized. An element of (BE)
ω can be represented

as (ef(i))i, where f : N→ N is a function.

In this context a BE-block sequence is a subsequence of the basis, and a sequence of disjointly
supported blocks is a sequence of different elements of the the basis (not necessarily in
increasing order). So, we can fix the following notation:

Notation 5.3.21. Let us denote by bbB(E) the set of BE-block sequences

bbB(E) := {(eni
)i : (ni)i is increasing}

= {(ef(n))i : f ∈ NN is increasing}.

We denote
dbB(E) := {(ef(n))i : f ∈ NN is injective}.
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Proposition 5.3.22. Let B be an admissible family. Let AE be the admissible set for E

determined by B. We have that (BE,AE) is an admissible system of blocks for E.

Proof. It follows directly from the fact that for each n ∈ N only one BE-block has support
{n}. In this case, the conditions asked in Definition 5.1.29 are trivial. What we are saying
is that for the case of embedding, minimality or tightness by sequences, it is not necessary
to perturb the vectors along the proofs.

Remark 5.3.23. Let DE be a set of blocks for the Banach space E and AE be an admissible
set determined by an admissible family. Notice that the Proposition 5.3.22 is true in the case
where for each d ∈ [N]<∞ such that there is w ∈ DE with supp

E
(w) = d, we have that the set

{u ∈ DE : d = supp
E
(u)} is finite. Under this hypothesis a pair (DE,AE) is an admissible

system of blocks for E.

Proposition 5.3.24. The following sets are admissible for E:

(i) The set bbB(E) of subsequences of (en)n.

(ii) The set dbB(E) of sequences of pairwise distinct elements of the basis (en)n.

Proof. In each case, the considered sets are determined by an admissible family.

(i) The set of subsequences of (en)n is given by

bbB(E) = {(eni
)i : (ni)i is increasing}

= {(xn)n ∈ (BE)
ω : (supp

E
(xn))n ∈ bb(N)}.

By ii) in Proposition 5.3.16, bbB(E) is an admissible set for E.

(ii) The set of sequences of pairwise distinct elements of the basis (en)n is given by

dbB(E) = {(ef(n))n : f ∈ NN is injective}

= {(xn)n ∈ (BE)
ω : (supp

E
(xn))n ∈ db(N)}.

By iii) in Proposition 5.3.16, dbB(E) is an admissible set for E.

Remark 5.3.25. Notice that the set of sequences of elements of the basis (en)n is
immediately an admissible set. In this case, the set of sequences of elements of the basis
(en)n is given by

AE := {(ef(n))n : f ∈ NN}

= {(xn)n ∈ (BE)
ω : (supp

E
(xn))n ∈ FINω}
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By i) in Proposition 5.3.16, AE is an admissible set for E.

Remark 5.3.26. Notice that a sequence (xn)n ∈ Dω
E with xm ̸= xn whenever n ̸= m is a

permutation of a DE-block sequence and vice-versa. Thus, despite the set per(N) not being
admissible, it “determines” an admissible set for this set of blocks. This is in contrast to the
result we have obtained in Proposition 5.3.20 for DE = DE.

Corollary 5.3.27. The pair (BE,AE) is an admissible system of blocks for E for AE in
any of the three cases given in Proposition 5.3.24.

Proof. This corollary is a consequence of propositions 5.3.24 and 5.3.22.

Blocks as signed elements of the basis

We already saw that B±
E is a set of blocks for E. An element x ∈ B±

E is a vector x = εek,
for some k ∈ N and ε ∈ {−1, 1} (ε is a sign). In this context a B±

E -block sequence is a “sign
subsequence of the basis” (as we define in the following lines), i.e.

bbB±(E) := {(εieni
)i : (ni)i ∈ Nω is increasing and (εi)i ∈ {−1, 1}ω}.

Definition 5.3.28. We say that (xn)n is a signed subsequence of (en)n if and only if,
(xn)n ∈ bbB±(E).

We can also define the set of permutations of signed subsequences of the basis (en)n as
follows

dbB±(E) := {(εnef(n))n : f ∈ NN is injective and (εi)i ∈ {−1, 1}ω}.

Proposition 5.3.29. Let B be an admissible family. Let AE be the admissible set for E

determined by B. We have that (B±
E ,AE) is an admissible system of blocks for E.

Proof. It follows directly from the fact that for each n ∈ N only two vectors en and −en in
BE have as support {n}. In this case, the conditions asked in Definition 5.1.29 are trivial.
See also Remark 5.3.23.

Corollary 5.3.30. Consider the set of blocks B±
E for E. We have that the following sets are

admissible for E:

(i) The set bbB±(E) of signed subsequences of (en)n.

(ii) The set dbB±(E) of permutations of signed subsequences of (en)n.

So, the pairs (B±
E , bbB±(E)) and (B±

E , dbB±(E)) are admissible systems of blocks for E.
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Proof. (i) The set of signed subsequences of (en)n is given by bbB±(E) and

bbB±(E) = {(εnef(n))n : f ∈ NN is increasing and (εi)i ∈ {−1, 1}ω}

= {(xn)n ∈ (B±
E)

ω : (supp
E
(xn))n ∈ bb(N)}.

By Proposition 5.3.12, bbB±(E) is an admissible set for E determined by the admissible
family bb(N). By Proposition 5.3.29, (B±

E , bbB±(E)) is and admissible system of blocks
for E.

(ii) The set of sequences of pairwise distinct elements of the basis (en)n is given by

dbB±(E) = {(εnef(n))n : f ∈ NN is injective &(εi)i ∈ {−1, 1}ω}

= {(xn)n ∈ (B±
E)

ω : (supp
E
(xn))n ∈ db(N)}.

By Proposition 5.3.12, dbB±(E) is an admissible set for E determined by the admissible
family db(N). By Proposition 5.3.29, (B±

E , dbB±(E)) is and admissible system of blocks
for E.

Summary of the possible sets of blocks

The interpretations for the elements of each admissible set determined by admissible families
in the cases of the three sets of the blocks we have mentioned above can be summarized in
the following table.
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B
DE BE B±

E DE

FINω Sequences of en’s Sequences of ±en’s
Sequences of finitely sup-
ported FE-linear combina-
tions

bb(N) Subsequences of (en)n
Signed subsequences
of (en)n

Block sequences of finitely
supported FE-linear combi-
nations

db(N)

Sequences of distinct
elements of

{en : n ∈ N}

Permutations of
signed subsequences
(en)n

Sequences of disjointly
finitely supported FE-linear
combinations

Table 5.1: Elements of the admissible sets determined by the respective admissible family and for
the three sets of blocks we have considered.

5.4 A-embeddings

In this section we shall introduce some notation we use in the following chapters and give
some interpretation for the A-embeddings depending on the set of blocks we defined in the
previous sections.

Definition 5.4.1. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X is a DE-block subspace. Let Y
be a Banach space with normalized basis (yn)n and suppose K ≥ 1.

(i) We shall say that Y AX-embeds in X with constant K (in symbols Y
A
↪→K X) if, and

only if, there is some sequence (un)n ∈ AX of blocks such that (un)n ∼K (yn)n.

(ii) We say that Y AX-embeds by DX-blocks in X (in symbols Y
A
↪→ X), if Y

A
↪→K X for

some constant K ≥ 1.

Proposition 5.4.2. Let E and Z be Banach spaces with normalized bases (en)n and (zn)n,
respectively. Let DE be a set of blocks for E and AE an admissible set for E. Suppose that
X is a DE-block subspace.

(i) If K ′ ≥ K, then
Z

A
↪→K X ⇒ Z

A
↪→K′ X.

(ii) If Y is a DX-block subspace of X and Z
A
↪→ Y , then Z

A
↪→ X.

Proof. (i) It follows directly from the fact that if K ′ ≥ K and (zn)n ∼K (wn)n, then
(zn)n ∼K′ (wn)n.

(ii) If Y is a DX-block subspace of X and Z
A
↪→ Y , then there is (wn)n ∈ AY such that

(wn)n ∼ (zn)n. Since AY = AE ∩ Y ω ⊆ AX , (wn)n ∈ AX , so Z
A
↪→ X.
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For the specific case when we consider (DE, (DE)
ω) as the set of blocks we have the following:

Proposition 5.4.3. Let E and Y be Banach spaces with normalized bases (en)n and (yn)n,
respectively. Consider DE as the set of blocks and AE = (DE)

ω. Suppose that X = [xn]n is
a DE-block subspace. Then,

Y
A
↪→ X ⇐⇒ Y ↪→ X.

Furthermore, if Y ↪→K X for some K ≥ 1, then for any ε > 0 we have Y
A
↪→K+ε X.

Proof. We can suppose (yn)n normalized with basis constant C. If Y AX-embeds in X, then
Y embeds in X. Conversely, suppose that Y ↪→ X, then there is a basic sequence (vn)n ∈ Xω

such that (yn)n ∼K (vn)n, for some K ≥ 1. Since (yn)n is normalized, 1/K ≤ ∥vn∥ ≤ K, for
all n.

Let 0 < ε < 1. We will show that is possible to perturb (vn)n and obtain (wn)n ∈ AX such
that (vn)n ∼1+ε (wn)n. Let θ ≤ ε

K
(2 + ε

K
)−1 be a nonzero real number. Notice that θ < 1

and
(1 + θ)(1− θ)−1 < 1 +

ε

K
. (5.17)

For each n, let wn be a nonzero block in DE such that ∥wn − vn∥ < εn (recall that DE is
dense in E, see the Subsection 5.3.1) and

2K2C
∞∑
n=0

εn < θ.

Then,

2(KC)
∞∑
n=0

∥wn − vn∥
∥vn∥

≤ 2K2C
∞∑
n=0

εn < θ < 1.

By Theorem 2.2.11, (vn)n ∼(1+θ)(1−θ)−1 (wn)n and by Equation (5.17), (vn)n ∼1+ε/K (wn)n.

Therefore, (yn)n ∼K+ε (wn)n and (wn)n ∈ AX , so Y
A
↪→ X.

Notation 5.4.4. Let E = [en]n and Y = [yn]n be two Banach spaces with their respective
normalized bases. We write Y

s
↪→ E to denote that (yn)n is equivalent to a subsequence of

(en)n.

Remark 5.4.5. Suppose that E = [en]n and Y = [yn]n are two Banach spaces with their
respective normalized bases. Then Y

s
↪→ E if, and only if, Y

A
↪→ E where BE is the set of

blocks and AE = bbB(E) is the admissible set for E.

Notation 5.4.6. Let E = [en]n and Y = [yn]n be two Banach spaces with their respective
normalized bases. We write Y

±s
↪→ E to denote that (yn)n is equivalent to a signed subsequence

of (en)n.

Remark 5.4.7. Suppose that E = [en]n and Y = [yn]n are two Banach spaces with their
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respective normalized bases. We have that Y
±s
↪→ E if, and only if, Y

A
↪→ E where B±

E is the
set of blocks and AE = bbB±

E
(E) is the admissible set for E.

As we did in the previous section, we can summarize the interpretation of each embedding
as follows: Set E = [en]n and Y = [yn]n two Banach spaces with their respective normalized
bases. Suppose that we are considering the set of blocks DE being BE, B±

E or DE (depending
of the case) and AE the admissible set determined for any of the admissible families FINω,
bb(N) or db(N). To say that Y

A
↪→ E means in each case that there is (xn)n in Eω such that

it satisfies the respective condition we have represented in the following table.

B
DE BE B±

E DE

FINω AE = (BE)
ω AE = (B±

E)
ω AE = (DE)

ω

(xn)n = (ef(n))n for
some f ∈ NN injective

(xn)n = (εnef(n))n for some
f ∈ NN injective and
(εn)n ∈ {−1, 1}ω

(xn)n is a sequence of
finitely supported vec-
tors

bb(N)
AE = bbB(E) AE = bbB±(E) AE = BSD(E)

(xn)n is a subsequence
of (en)n

(xn)n is a signed subse-
quence of (en)n

(xn)n is a DE-block se-
quence

db(N)
AE = dbB(E) AE = dbB±(E) AE = DSD(E)

(xn)n = (ef(n))n for
some f ∈ NN injective

(xn)n = (εnef(n))n for some
f ∈ NN injective and
(εn)n ∈ {−1, 1}ω

(xn)n is a sequence of dis-
jointly finitely supported
vectors of DE

Table 5.2: A-embeddings for A an admissible set determined by an admissible family

Notice that since (yn)n is a basic sequence, in the trivial cases when the admissible family
is FINω, then, necessarily, (xn)n must be also basic, so at least xn ̸= xm for n ̸= m. For that
reason, the first and third rows of the BE and B±

E columns are the same.

5.5 Results on A-minimality

Definition 5.5.1. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X is a DE-block subspace. We
say that X is AE-minimal if, and only if, for all DX-block subspace Y we have that X

A
↪→ Y .

The following proposition establishes that the property of being AE-minimal is hereditary
by taking DE-subspaces.

Proposition 5.5.2. Let E be a Banach space with normalized basis (en)n. Let DE be a set
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of blocks for E and AE be an admissible set for E. Suppose that X is a DE-block subspace
which is AE-minimal. If Y is a DX-block subspace of X, then Y is AE-minimal.

Proof. Let E, DE, AE and X be as in the hypothesis. Let Y = [yn]n be a DX-block subspace
of X. Let Z = [zn]n be a DY -block subspace of Y (so it is also a DX-block subspace of
(xn)n). We want to see that Y

A
↪→ Z.

By the AE-minimality of X, we have X
A
↪→ Z, thus there is (un)n ∈ AZ ⊆ AX such that

(xn)n ∼ (un)n. By (iii) in Proposition 5.2.4 we have

(yn)n ∈ AX ⇒ (wn)n := (yn)n ∗X (un)n ∈ AX ∩ Z = AZ .

Then, (wn)n is a block basis of the basic sequence (un)n of DZ-blocks (it is not necessarily
a block sequence of X because (un)n need not be a block sequence). Since (un)n ∼ (xn)n

and each wn has the same scalars in its expansion than yn, we have that (yn)n ∼ (wn)n. So,
Y

A
↪→ Z.

It is clear that for every entry in Table 5.2 we can associate a different type of minimality.
In the following we shall explore some of these notions. Let us begin with the classic case:
when the set of blocks is DE.

The following definition was introduced in [20]:

Definition 5.5.3. Let E be a Banach space with normalized basis (en)n. The basis (en)n is
said to be equivalence block-minimal if, and only if, any block sequence has a further block
sequence equivalent to (en)n.

As a direct consequence of the results of Subsection 5.3.1 we obtain the following proposition.

Proposition 5.5.4. Let E be a Banach space with normalized basis (en)n. Consider the set
of blocks DE for E. Let X = [xn]n be a DE-block subspace. We have:

(i) X is minimal if, and only if, it is AE-minimal, for AE = (DE)
ω.

(ii) (xn)n is a equivalence block-minimal basis if, and only if, X is AE-minimal, for
AE = BSD(E).

(iii) For every DX-block sequence (yn)n of (xn)n we have that (xn)n is equivalent to a
sequence of disjointly supported blocks of Y = [yn]n if, and only if, X is AE-minimal,
for AE = DSD(E).

Let us discuss a little about the three types of minimality characterized in (i), (ii) and (iii)

of Proposition 5.5.4.

It is clear that if X = [xn]n is a DE-block subspace with (xn)n a equivalence block-minimal
basis (case (ii) in Proposition 5.5.4), then X is AE-minimal, for AE = DSD(E) (case (iii)
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in Proposition 5.5.4). In addition, if X satisfies the minimality condition given in (iii) of
Proposition 5.5.4, then X is minimal ((i) in Proposition 5.5.4).

The canonical basis of c0 and ℓp, with 1 ≤ p < ∞, is, in each case, equivalence block-minimal.
In [2] was proved that the canonical basis of the Schlumprecht space S is equivalence block-
minimal. So, these are examples of the three cases (i), (ii) and (iii). In [17] it was observed
that T∗ has no block minimal block subspaces. In [20] it was defined a block minimal
space Z = [zn]n as a space such that for every block subspace there is a further block
subspace isomorphic to Z. Clearly, being a equivalence block- minimal space implies being
a block minimal space. In particular, T∗ is not an equivalence block-minimal space and it
has no equivalence block-minimal block subspaces. Therefore, it satisfies (i) and does not
satisfy the minimality conditions of (iii) (nor (ii)) in Proposition 5.5.4. We do not know of
spaces satisfying condition (iii) of minimality but not being equivalence block-minimal (not
satisfying condition (ii)).

Now, we shall consider the set of blocks for E as BE. In [19] was observed that if a basis
(xn)n satisfies that for every (yn)n ⪯ (xn)n, (xn)n is equivalent to a subsequence of (yn)n,
then (xn)n is spreading. Let us prove this in the next proposition.

Lemma 5.5.5. Let E be a Banach space with normalized basis (en)n. If (en)n satisfies that
every subsequence has a further subsequence equivalent to the basis, then (en)n is spreading.

Proof. Let C ⊆ [N]∞ be such that

{nk : k ∈ N} ∈ C ⇐⇒ (enk
)k ∼ (ek)k.

Notice that we are identifying an infinite subset M = {mk : k ∈ N} with the increasing
sequence determined by its elements. C can be written as follows:

C =
∞⋃
c=1

∞⋂
k=0

{
{nm : m ∈ N} ∈ [N]∞ : (eni

)ki ∼c (ei)
k
i

}

Since {{nm : m ∈ N} ∈ [N]∞ : (eni
)ki ∼c (ei)

k
i } is open in [N]∞, for k and c fixed, the set C

is a Borel subset of [N]∞ and so it is its complement. By the Galvin-Prikry Theorem (see
Theorem 3.2.3) there is some H ∈ [N]∞ such that either [H]∞ ⊆ C or [H]∞ ⊆ [N]∞ \ C.

If [H]∞ ⊆ [N]∞ \ C then the sequence (en)n∈H satisfies that all its subsequences are not
equivalent to (en)n, which is a contradiction. On the contrary, if [H]∞ ⊆ C, then (en)n∈H is
spreading, and so it is (en)n because it is equivalent to (en)n∈H .

So, for the case when AE = bbB(E), results that E is AE-minimal if and only if, for all
subsequence (xn)n of (en)n, there is a further subsequence (yn)n of (xn)n equivalent to (en)n.
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Therefore, by Lemma 5.5.5, (en)n is spreading. Clearly an spreading sequence is bbB(E)-
minimal. We can summarize this in the following proposition.

Proposition 5.5.6. Consider the admissible set bbB(E) for E. We have that E is bbB(E)-
minimal if and only if, (en)n is spreading.

Let us summarize in the following proposition the notions of AE-minimality which follows
from each non-trivial AE-embedding notion given in the Table 5.2. That is, the entries
corresponding (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) and (3, 3) of the Table 5.2.

Proposition 5.5.7. Let E be a Banach space with normalized basis (en)n. We have,

• Consider the set of blocks BE for E, and X = [xn]n a BE-block subspace of E. We have

(i) X is bbB(E)-minimal if, and only if, (xn)n is spreading.

(ii) X is dbB(E)-minimal if, and only if, for every (yn)n subsequence of (xn)n there
is a function f ∈ NN injective such that (yf(n))n ∼ (xn)n.

• Consider the set of blocks B±
E for E, and X = [xn]n a B±

E-block subspace of E, that is
(xn)n is a signed subsequence of (en)n. We have

(iii) X is bb±B (E)-minimal if, and only if, for every (yn)n subsequence of (xn)n there
is a further signed subsequence (zn)n of (yn)n such that (zn)n ∼ (xn)n.

(iv) X is db±B (E)-minimal if, and only if, for every (yn)n signed subsequence of (xn)n

there is a function f ∈ NN injective and some sequence of signs (εn)n such that
(εnyf(n))n ∼ (xn)n.

• Consider the set of blocks DE for E, and X = [xn]n a DE-block subspace of E. We
have

(v) X is (DE)
ω-minimal if, and only if, X is minimal.

(vi) X is BSD(E)-minimal if, and only if, (xn)n is an equivalence block- minimal
basis.

(vii) X is DSD(E)-minimal if, and only if, for every DX-block sequence (yn)n of (xn)n

there is a sequence of disjointly supported blocks (zn)n of Y = [yn]n such that
(zn)n ∼ (xn)n.

Proof. Item (i) follows from Proposition 5.5.6. Items (ii) and (iv) follow directly from the
definition. Item (iii) follows from the definition and the following easily proved fact.

For every (yn)n signed subsequence of (xn)n there is a further signed subsequence (zn)n of
(yn)n such that (zn)n ∼ (xn)n, if and only if, for every (yn)n subsequence of (xn)n there is
signed subsequence (zn)n of (yn)n such that (zn)n ∼ (xn)n.

Items (v), (vi) and (vii) follow from Proposition 5.5.4.
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5.6 Results on A-tightness

Definition 5.6.1. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block subspace.
We say that a Banach space Y with Schauder basis is AE-tight in the basis (xn)n if, and
only if, there is a sequence of successive intervals (Ii)i such that for every A ∈ [N]∞

Y ̸ A↪→ [xn : n /∈ ∪i∈AIi]. (5.18)

Definition 5.6.2. Let E be a Banach space with a normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block subspace.
The basis (xn)n is AE-tight if, and only if, every DX-block subspace Y of X is AE-tight in
the basis (xn)n. The DE-block subspace X is AE-tight if, and only if, (xn)n is an AE-tight
basis.

Remark 5.6.3. Let E be a Banach space with a normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. From Definition 5.6.2, E is AE-tight if, and
only if, every DE-block subspace X is AE-tight in (en)n.

Remark 5.6.4. It follows from the definition of an AE-tight space that X = [xn]n is AE-
tight if, and only if, for every DX-block subspace Y of X there are intervals I0 < I1 < ...,
such that if Y AE-embeds into [xn : n ∈ B], then B intersects all but finitely many intervals
I ′is.

Proposition 5.6.5. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block subspace
and Y is a DX-block subspace of X. Then, Y is AX-tight in (xn)n if, and only if, the set

EA
Y,X := {u ∈ 2ω : Y

A
↪→ [xn : n ∈ supp(u)]} (5.19)

is meager in 2ω.

Proof. Let E, DE and AE be as in the hypothesis. Suppose that X = [xn]n is a DE-block
subspace and let Y be a DX-block subspace of X. If Y is AE-tight in (xn)n, then there are
intervals I0 < I1 < ... such that for any A ∈ [N]∞,

Y ̸ A↪→ [xn : n /∈ ∪i∈AIi]. (5.20)

Let u ∈ EA
Y,X (clearly supp(u) ∈ [N]∞) and suppose by contradiction that Au = {i ∈ N :

Ii ∩ supp(u) = ∅} is infinite. We have

supp(u) ⊆ N \
⋃
i∈Au

Ii.
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By the Remark 5.1.28, we obtain

Y
A
↪→ [xn : n ∈ supp(u)] ⇒ Y

A
↪→ [xn : n /∈ ∪i∈AuIi],

contradicting Equation (5.20). Therefore Au is finite and, by Corollary 3.1.5, EA
Y is meager

in 2ω.

For the opposite implication, suppose that EA
Y is meager in 2ω. Then, by using Corollary

3.1.5, there are subsets I0 < I1 < ... such that if u ∈ EA
Y , then {i ∈ N : Ii ∩ supp(u) = ∅}

is finite. If there is A ∈ [N]∞ such that Y
A
↪→ [xn : n /∈ ∪i∈AIi], then take v = N \ ∪i∈AIi.

Clearly χv ∈ EA
Y and {i ∈ N : Ii ∩ v = ∅} is infinite, which contradicts that EA

Y is a meager
subset of 2ω.

Lemma 5.6.6. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block subspace
and Y is a DX-block subspace of X. Then EA

Y,X defined in Equation (5.19) is either meager
or comeager in 2ω.

Proof. The proof follows the same scheme used by V. Ferenczi and G. Godefroy in [18] to
prove that the set EY = {u ⊆ ω : Y ↪→ [xn : n ∈ u]} is meager or comeager. As it is affirmed
in Example 2.2 in [18], the relation E ′

0 defined on P(ω) as follows

uE ′
0v ⇐⇒ ∃n ≥ 0((u ∩ [n,∞) = v ∩ [n,∞)) & (|u ∩ [0, n− 1]| = |v ∩ [0, n− 1]|))

is an equivalence relation and its equivalence classes are the orbits of the group G′
0 of

permutation of N with finite support. Once we see P(ω) as the Cantor space, it is Polish
and clearly G′

0 satisfies that for any U and V non-empty open subsets of P(ω), there is
g ∈ G such that g(U)∩ V ̸= ∅. We want to use the first topological 0-1 law (Theorem 3.2.2)
to conclude that EA

Y,X is meager or comeager in 2ω, or more specifically we have to prove:

(i) EA
Y,X has the Baire Property.

(ii) EA
Y,X is G′

0-invariant.

To prove (i) we shall see that EA
Y,X is an analytic subset of 2ω (See Theorem 21.6 in [33]).

Notice that we can write the set EA
Y,X as the projection on the first coordinate of the set

B := ∪k∈ωBk, where for each k ∈ ω

Bk := {(u, (wn)n) ∈ 2ω × (DX)
ω : (yn)n ∼k (wn)n & (wn)n ∈ [xi : i ∈ u] & (wn)n ∈ AX}.

Each Bk is Borel in 2ω× (DX)
ω since the relation of two sequences being equivalent is closed

and AX is a closed subset of (DX)
ω.

In order to prove (ii) we show that EA
Y,X is E ′

0-saturated (this is sufficient because the orbits
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of the group G′
0 coincide with the equivalence classes of the relation E ′

0), that is:

EA
Y,X = EA

Y,X

E′
0 := {v ⊆ ω : ∃u ∈ EA

Y,X(uE
′
0v)}.

Clearly, EA
Y,X ⊆ EA

Y,X
E′

0 . Take v ∈ EA
Y,X

E′
0 and let u ∈ EA

Y,X be such that uE ′
0v. Notice that

there is M such that u and v only differ on M elements and (xn)n∈u and (xn)n∈v are DX-
block sequences. So, by the Proposition 2.2.29, there is K ≥ 1 such that (xn)n∈u ∼K (xn)n∈v.
Let T be such K-isomorphism from Xu := [xn]n∈u to Xv := [xn]n∈v. By Proposition 5.2.7,
part (ii) we have T [AXu ] = AXv . Therefore,

u ∈ EA
Y,X ⇒ ∃(zn)n ∈ AXu((yn)n ∼ (zn)n)

⇒ (yn)n ∼ (T (zn))n and (T (zn))n ∈ AXv

⇒ v ∈ EA
Y,X .

Proposition 5.6.7. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block subspace,
Y is a DX-block subspace of X and Z is a DY -block subspace. If Z is AE-tight in X, then
Z is AE-tight in Y .

Proof. Let E, DE and AE be as in the hypothesis. Suppose that X = [xn]n is a DE-block
subspace, Y is a DX-block subspace of X and Z is a DY -block subspace. Let us denote as

EA
Z,X := {u ⊆ ω : Z

A
↪→ [xn : n ∈ u]}

and
EA

Z,Y := {u ⊆ ω : Z
A
↪→ [yn : n ∈ u]}.

By hypothesis, we know that EA
Z,X is meager in P(ω) after the identification of P(ω) with

2ω. Using Lemma 5.6.6, EA
Z,Y is meager or comeager. If it were meager, by the Proposition

5.6.5 the demonstration ends. Suppose that EA
Z,Y is comeager in P(ω). By Corollary 3.1.5,

there are sequences of successive intervals (Ii)i and (Ji)i such that

u ∈ EA
Z,X ⇒ {n ∈ ω : u ∩ In = ∅} is finite (5.21)

and
{n ∈ ω : Jn ⊆ v} is infinite ⇒ v ∈ EA

Z,Y . (5.22)

Let A ∈ [N]∞ be such that{
k ∈ N : (

⋃
n∈A

⋃
i∈Jn

supp
X
(yi)) ∩ Ik = ∅

}
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is infinite. Such A exists because each Ii and Ji are finite and each yi is finitely supported.
Let v =

⋃
n∈A Jn, then by Equation (5.22), we have v ∈ EA

Z,Y . If u =
⋃

k∈v suppX
(yk), then

Z
A
↪→ [yn : n ∈ v] ⇒ Z

A
↪→ [xn : n ∈ u].

The last implication follows from the Proposition 5.4.2. Therefore, u ∈ EA
Z,X but it is disjoint

of infinitely many intervals Ik’s, contradicting Equation (5.21).

Corollary 5.6.8. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a AE-tight DE-block
subspace. Then, any DE-block sequence (yn)n of (xn)n is an A-tight basis.

Proof. Let Z be a DY -block subspace of Y . Since Z is a DX-block subspace of X and Z is
AE-tight in X, by Proposition 5.6.7, Z is AE-tight in Y .

Theorem 5.6.9. Let E be a Banach space with normalized basis (en)n. Let DE be a set
of blocks for E and AE an admissible set for E. Suppose that X = [xn]n is an AE-tight
DE-block subspace. If X is AE-tight then it contains no AE-minimal DX-block subspaces.

Proof. Let E, DE, AE and X be as in the hypothesis. By contradiction, suppose Y = [yn]n

is an AE-minimal DX-block subspace of X. Let Z = [zn]n be a DY -block subspace of Y , so
Z is AE-tight in X. By Proposition 5.6.7, Z is AE-tight in Y , then

EA
Z,Y = {u ⊆ ω : Z

A
↪→ [yn : n ∈ u]}

must be meager in P(ω).

Notice that the set EA
Z,Y coincide with the subset of all the characteristic functions over

infinite subsets of N, which is comeager (for a more general proof of this fact, see Example
7.1.8) what leads us to a contradiction. Let us prove this: suppose v ⊆ ω infinite, then by
the AE-minimality of Y

Y
A
↪→ [yn : n ∈ v],

so, there is (un)n ∈ AE ∩ [yn : n ∈ v] such that (yn)n ∼ (un)n.

We know that (yn)n, (un)n, (zn)n ∈ AY and by iii) in Proposition 5.2.1 we have

(zn)n ∗Y (yn)n = (zn)n ∈ AY ⇒ (wn)n := (zn)n ∗Y (un)n ∈ AY .

Then, (wn)n is a DY -block sequence of the basic sequence (un)n (not necessarily is a block
sequence of X because (un)n need not to be a block sequence). Also, each wn has the same
scalars in its expansion than zn. Since (un)n ∼ (yn)n, we have that (zn)n ∼ (wn)n and also
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we already know that (wn)n ∈ AE ∩ [yn : n ∈ v]. So, Z
A
↪→ [yn : n ∈ v], which means that

v ∈ EA
Z,Y . We just proved that [N]∞ is contained in EA

Z,Y , thus they are the same set.

Proposition 5.6.10. Let E be a Banach space with normalized basis (en)n. Consider DE

as the set of blocks for E and set AE = (DE)
ω. A DE-block sequence (xn)n is a AX-tight

basis if, and only if, (xn)n is a tight basis.

Proof. This follows directly from Proposition 5.4.3 and Definition 5.6.1.

The following Corollary is the Proposition 3.3. in [22]

Corollary 5.6.11. If E is a Banach space with normalized tight basis (en)n, then E has no
minimal subspaces.

Proof. Take DE as the set of blocks for E and set AE = (DE)
ω. This result is obtained as

a consequence of the Proposition 5.6.9 and the Proposition 5.6.10.

5.6.1 Tightness by sequences

Let E be a Banach space with normalized basis (en)n. In this section we shall define a specific
case of tightness called “tight by sequences”. This is a specific case when in Definition 5.6.2
we consider DE = BE, AE is the set of subsequences of the basis, and the embedding as a
subsequence

s
↪→.

Definition 5.6.12 (Tight by sequences). Let E be a Banach space with normalized basis
(en)n and (yn)n a basic sequence in a Banach space. We say that (yn)n is tight by sequences
in E, if the set

Eyn := {u ∈ 2ω : [yn]n
s
↪→ [en : n ∈ u]}

is meager in 2ω. If any basic sequence (yn)n is tight by sequences in E, we say that (en)n is
a tight-by-sequences basis of E.

Remark 5.6.13. The basic sequence (en)n is tight by sequences if, and only if, every (enk
)k

subsequence of (en)n is tight by sequences in E.

Corollary 5.6.14. Let E be a Banach space with normalized basis (en)n tight by sequences,
then for every (xn)n subsequence of (en)n, there exists a subsequence (yn)n of (xn)n, such
that (zn)n ̸∼ (xn)n, for every subsequence (zn)n of (yn)n.

Proof. It follows directly from Theorem 5.6.5.
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5.6.2 Summary of types of tightness

Let us summarize in the following proposition the notions of AE-tightness which follows
from each non-trivial AE-embedding notion given in the Table 5.2. That is, the entries
corresponding to (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) and (3, 3) of the Table 5.2.

Proposition 5.6.15. Let E be a Banach space with normalized basis (en)n.

• Consider the set of blocks BE for E, and X = [xn]n a BE-block subspace of E. We have

(i) (xn)n is a bbB(E)-tight basis if, and only if, (xn)n is tight by sequences.

(ii) (xn)n is a dbB(E)-tight basis if, and only if, for every (yn)n subsequence of (xn)n

there is a sequence of successive intervals (In)n such that for every A ∈ [N]∞ and
for every injection f : N→ N \ ∪i∈AIi, we have (yn)n ̸∼ (xf(n))n.

• Consider the set of blocks B±
E for E, and X = [xn]n a B±

E-block subspace of E, that is
(xn)n is a signed subsequence of (en)n. We have

(iii) (xn)n is a bb±B (E)-tight basis if, and only if, for every (yn)n subsequence of (xn)n

there is a sequence of successive intervals (In)n such that for every A ∈ [N]∞ we
have that (yn)n is not equivalent to any signed subsequence of (xn : n ∈ N\∪i∈AIi).

(iv) (xn)n is a db±B (E)-tight basis if, and only if, for every (yn)n signed subsequence
of (xn)n there is a sequence of successive intervals (In)n such that for every
A ∈ [N]∞, we have that (yn)n is not equivalent to any sequence of the form
(δnxf(n))n, where (δn)n is a sequence of signs and f : N → N \ ∪i∈AIi is an
injective function.

• Consider the set of blocks DE for E, and X = [xn]n a DE-block subspace of E. We
have

(v) (xn)n is a (DE)
ω-tight if, and only if, (xn)n is tight.

(vi) (xn)n is a BSD(E)-tight basis if, and only if, every DX-block sequence (yn)n of
(xn)n, there is a sequence (In)n of successive intervals in N such that for any
A ∈ [N]∞, [yn]n does not embed into [xn, n /∈ ∪i∈AIi] as a block sequence.

(vii) (xn)n is a DSD(E)-tight basis if, and only if, for every DX-block sequence (yn)n

of (xn)n there is a sequence (In)n of successive intervals in N such that for any
A ∈ [N]∞, [yn]n does not embed into [xn, n /∈ ∪i∈AIi], as a sequence of disjointly
supported vectors.

Proof. Item (i) follows from Corollary 5.6.14. Items (ii), (iv), (vi) and (vii) follow directly
from the definition. Item (iii) follows from the definition and the fact that if (wn)n ∼ (zn)n,
then (εnwn)n ∼ (εnzn)n, for any sequence of signs (εn)n.

Item (v) is a consequence of Proposition 5.6.10.
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Remark 5.6.16. Notice that (xn)n is a db±B (E)-tight basis if, and only if, for every (yn)n

signed subsequence of (xn)n there is a sequence of successive intervals (In)n such that for
every A ∈ [N]∞ we have that (yn)n is not equivalent to any sequence of the form (εnzn)n,
where (εn)n is a sequence of signs and (zn)n is an infinite sequence of distinct elements of
the set {xn : n ∈ N \ ∪i∈AIi}.

5.7 Final considerations about support and range

We have seen so far extensions of the tightness and minimality notions for different kinds of
embeddings. It is natural, also, to extend the notions of tightness by range and by support
in this context. We shall present the definitions without entering into the study of their
properties.

Definition 5.7.1. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block subspace.
We say that a Banach space Y with Schauder basis is AE-tight by support in the basis (xn)n

if, and only if, for every A ∈ [N]∞

Y ̸ A↪→ [xn : n /∈ ∪i∈AsuppX
(yi)]. (5.23)

Definition 5.7.2. Let E be a Banach space with normalized basis (en)n. Let DE be a set of
blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block subspace.
We say that a Banach space Y with Schauder basis is AE-tight by range in the basis (xn)n

if, and only if, for every A ∈ [N]∞

Y ̸ A↪→ [xn : n /∈ ∪i∈AranX(yi)]. (5.24)

Definition 5.7.3. Let E be a Banach space with a normalized basis (en)n. Let DE be a
set of blocks for E and AE an admissible set for E. Suppose that X = [xn]n is a DE-block
subspace. The basis (xn)n is AE-tight by support (respectively AE-tight by range) if, and only
if, every DX-block subspace Y of X is AE-tight by support (respectively AE- tight by range)
in the basis (xn)n. The DE-block subspace X is AE-tight by support (respectively AE-tight by
range) if, and only if, (xn)n is an AE-tight by support (respectively AE-tight by range) basis.

Notice that it is natural to consider the extension of tightness by range and support using
the embedding “as a subsequence”.



Chapter 6

Tight - minimal dichotomy
In [22] it is defined that a space E = [en]n is continuously tight if, and only if, there is a
continuous function f : bbD(en) → [N]<∞ such that for all normalized block bases X, if
Ij = [f(X)2j, f(X)2j+1], then

X ̸↪→ (E, Ij).

Clearly, every continuously tight space is also tight. The third dichotomy, as it is stated and
proved in [22] is the following:

Theorem (Third dichotomy, [22]). Let E be a Banach space with a basis (en)n. Then either
E contains a minimal block subspace or a continuously tight block subspace.

The main theorem of this chapter (Theorem 6.5.1) is an A-tight - A-minimal dichotomy, for
an admissible set A. The result is the following:

Theorem (Theorem 6.5.1). Let E be a Banach space with normalized basis (en)n and
(DE,AE) be an admissible system of blocks for E. Then E contains a DE-block subspace
X which is either AE-tight or AE-minimal.

It is possible to obtain the third dichotomy as a particular case of Theorem 6.5.1 by taking
the admissible system of blocks being (DE, (DE)

ω), as is proved in Corollary 6.5.2.

We also show a proof of the next theorem which was stated by Ferenczi and Rosendal:

Theorem (Theorem 3.16, [22]). Every Banach space with a basis contains a block subspace
E = [en]n satisfying one of the following properties:

(1) For any [yn]n ≤ E, there is a sequence (In)n of successive intervals in N such that for
any A ∈ [N]∞, [yn]n does not embed into [en, n /∈ ∪i∈AIi], as a sequence of disjointly
supported vectors, respectively as a block sequence.

(2) For any [yn]n ≤ E, (en)n is equivalent to a sequence of disjointly supported vectors of
[yn]n, respectively (en)n is equivalent to a block sequence of [yn]n.

This theorem is proved at the end of this chapter in Corollary 6.5.3 (for the embedding as a
sequence of disjointly supported vectors) and Corollary 6.5.4 (for the embedding as a block
sequence).
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The authors of [22] stated that modifying the notion of embedding in the definition of tight
basis, and consequently modifying the games involved in the proof of the Third Dichotomy,
the following statement is true:

Every Banach space with a basis contains a block subspace E = [en]n satisfying that either
for any [yn]n ≤ E, there is a sequence (In)n of successive intervals in N such that for any
A ∈ [N]∞, [yn]n does not embed into [en, n /∈ ∪i∈AIi] as a permutation of a block sequence;

or for any [yn]n ≤ E, (en)n is permutatively equivalent to a block sequence of [yn]n.

But, as we saw in Proposition 5.3.20 a basic sequence (yn)n being embedded in [en]n = E

as a permutation of (en)n, is not an AE-embbedding obtained from an admissible set for E,
and this is fundamental for the proofs in this chapter to work. We have no evidence that in
this case the statement is true, but it can not be obtained just by modifying the embedding
notion in the proof of the third dichotomy.

We also obtain as a Corollary of Theorem 6.5.1 a dichotomy involving tight-by-sequences
and spreading bases:

Theorem (Corollary 6.5.5). For any normalized basic sequence (en)n in a Banach space,
there is (xn)n ⪯ (en)n such that either (xn)n is a tight-by-sequences basis, or spreading.

In order to prove Theorem 6.5.1, we follow the demonstration of the third dichotomy adapting
the arguments for the context of A-minimality and A-tightness, using the results obtained
in Chapter 5 for admissible systems of blocks. In the first place, we shall adapt for DE-block
subspaces two technical Lemmas, whose original versions for block subspaces were proved in
[22] and in [41], respectively.

Then, we shall define the asymptotic game HA
Y,X for A-tightness depending on a an admissible

set for a Banach space E. HA
Y,X differs from HY,X in [22] in two natural aspects: the types

of blocks that player II can choose and the winning condition. In the same way that was
observed in [22] for the game HY,X with constant C, the game HA

Y,X with constant C is open
for player I and then, by the determinacy of open Gale-Stewart games, it is determined.
This is proved in subsection 6.2.1.

In Section 6.3 we shall prove various lemmas following the ideas of Ferenczi and Rosendal,
adapted for the concepts of A-minimality and A-tightness. We show that if E is in some way
saturated by DE-block subspaces X and Y such that player I has a winning strategy for the
game HA

Y,X with constant C, then E has an AE-tight subspace. This result is fundamental
to prove Theorem 6.5.1.

Before the proof of our main theorem it is necessary to introduce two games for A-minimality:
the game GA

Y,X with constant C and a version of that game assuming that finitely many moves
have been made in GA

Y,X . This shall be done in Section 6.4. The main result in that section
relates the existence of a winning strategy for player II in the game HA

Y,X with the existence



6.1. PRELIMINARY LEMMAS 83

of a winning strategy for player II in the game GA
Y,X . Finally, after the proof of Theorem

6.5.1 which will be showed in Section 6.5, some corollaries are shown.

6.1 Preliminary lemmas

Notation 6.1.1. Let (xn)n and (yn)n be two sequences of successive and finitely supported
vectors of E. Let Y = [yn]n and X = [xn]n. We write Y ≤∗ X if there is some N ≥ 1 such
that yn ∈ X, for every n ≥ N .

The following proposition was proved by Ferenczi and Rosendal (see Lemma 2.2 in [22])
in the context of block subspaces of a Banach space with basis. We follow the ideas of the
demonstration given by them, adapting the arguments for DE-block subspaces.

Proposition 6.1.2. Let E be a Banach space and DE be a set of blocks for E. Suppose that
X = [x0

n]n is a DE-block subspace and [x1
n]n ≥ [x2

n]n ≥ ... is a decreasing sequence of DX-block
subspaces. Then, there exists a DX-block sequence (yn)n such that (yn)n is

√
K-equivalent

with a DX-block sequence of [xK
n ]n, for every K ≥ 1.

Proof. Let X = [x0
n]n ≥ [x1

n]n ≥ ... be a decreasing sequence of DX-block subspaces as in
the hypothesis and C be the basis constant of (x0

n)n. Recall that for each k, (xk
n)n ∈ (DX)

ω.
For M > 0, consider c(M,C) the constant that exists by Proposition 2.2.29 applied to X.

For each K ≥ 1, let MK be the greatest non-negative integer such that

c(MK , C) ≤
√
K. (6.1)

Notice that MK ≤ MK+1. Let (li)i≥1 be the strictly increasing sequence of natural numbers
that shows the subscripts in which (MK)K≥1 increases its value, so Mli < Mli+1, for every
i ≥ 1. For convenience, set l0 = 0. Since (li)i is strictly increasing, we have that i ≤ li. Also,
since (li)i registers the changes in MK , we obtain that i ≤ Mli , for all i ≥ 1. This means
that if i and K are such that li < K, then

i ≤ Mli ≤ MK (6.2)

Now, let us inductively construct the DX-block sequence (yn)n we are seeking for. Set n0 = 0

and let
y0 ∈ [xl1

n : n0 ≤ n ≤ l1] ∩ D.

Let n1 > l1 be such that xl2
n ∈ [xl1

i : i > l1], for all n ≥ n1, and

y1 ∈ [xl2
n : n1 ≤ n ≤ n1 + l2] ∩ DX .

Notice that [xl2
n : n1 ≤ n ≤ n1 + l2] ≤ [xl1

n : n > l1].
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Suppose now that we have already defined finite sequences (n0, ..., nm) and (y0, ..., ym) such
that ni > ni−1 + li with

[xli+1
n : ni ≤ n ≤ ni + li+1] ≤ [xli

n : n > li+1],

and yi ∈ [x
li+1
n : ni ≤ n ≤ ni + li+1], for every i ∈ {0, ...,m}. Notice that ni > li ≥ i.

Let nm+1 > nm + lm+1 be such that xlm+2
n ∈ [x

lm+1

i : i > nm + lm+1], for all n ≥ nm+1. Let

ym+1 ∈ [xlm+2
n : nm+1 ≤ n ≤ nm+1 + lm+2] ∩ DX .

Consider the sequence (yn)n obtained with this process. First notice that by construction
(yn)n is in fact a DX-block sequence.

Let K ≥ 1, and set i such that li < K ≤ li+1, then we have yi ∈ [x
li+1
n : ni ≤ n ≤ ni + li+1]

and

[xli+1
n : ni ≤ n ≤ ni + li+1] ⊆ [xli+1

n : n ≥ ni]

≤ [xK
n : n ≥ ni] since (K ≤ li+1)

≤ [xK
n : n ≥ i] since (i ≤ ni)

So, xK
i−1 < yi and (ym)m≥i is a DX-block sequence of [xK

n : n ≥ i]. Therefore, (yn)n differs
in i − 1 terms from the block sequence (xK

0 , x
K
1 , ..., x

K
i−1, yi, yi+1, ...). By Equation (6.2) we

have i− 1 < MK , then such sequences are c(MK , C)-equivalent, by Equation (6.1) they are√
K-equivalent.

The following lemma is obtained after a small modification of Lemma 2.1 in [41]. For our
purposes, we need to work with DE-block subspaces instead of classical block subspaces.
Recall that we can identify an element (yn)n of bbD(X) with the DE-block subspace that it
generates, as was mentioned in Remark 5.1.23.

Lemma 6.1.3. Let E be a Banach space and DE a set of blocks for E. Suppose that X is
a DE-block subspace. Let N be a countable set and let µ : bbD(X) → P(N) satisfying either
of the following monotonic conditions:

V ≤∗ W ⇒ µ(V ) ⊆ µ(W )

or
V ≤∗ W ⇒ µ(V ) ⊇ µ(W ).

Then, there exists a “stabilizing” DX-block subspace V0 ≤ E, i.e. a DX-block subspace such
that µ(V ) = µ(V0), for all V ≤∗ V0.
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Proof. Suppose E, DE, X, N and µ as in the hypothesis with µ satisfying

V ≤∗ W ⇒ µ(V ) ⊆ µ(W ).

By contradiction, suppose that for all W DX-block subspace there is V ≤∗ W such that
µ(V ) ⫋ µ(W ).

Let us construct a transfinite sequence (Wγ)γ<ω1 of DX-block subspaces such that if
γ < η < ω1, then Wη ≤∗ Wγ and µ(Wη) ⫋ µ(Wγ).

First, set W0 := X. Suppose that for some β < ω1, we have defined a sequence (Wγ)γ<β such
that for γ < η < β:

• Wη ≤∗ Wγ,

• µ(Wη) ⫋ µ(Wγ).

If β is a successor ordinal η + 1, by hypothesis there is V ≤∗ Wη such that µ(V ) ⫋ µ(Wη),
then set Wβ := V .

If β is a limit ordinal, since β < ω1, there is (γn)n an increasing sequence of ordinals
converging to β. Notice that for each n ∈ N:

• Wγn+1 ≤∗ Wγn ,

• µ(Wγn+1) ⫋ µ(Wγn),

•
⋂

i≤n Wγi is infinite dimensional.

For each n ∈ N, consider (wn
k )k a normalized DX-block basis of Wγn . Take v0 = w0

0. Since
Wγn+1 ≤∗ Wγn , for each n ∈ N we can pick vn such that:

• vn ∈ {wn
k : k ∈ N}, so vn is a DX-block vector;

• vn ∈
⋂

i≤n Wγi ,

• vk < vk+1. for 0 ≤ k < n.

Thus, (vn)n is a DX-block sequence. Let Wη := [vn]n. For all n ∈ N we have that
Wη ≤∗ Wγn and µ(Wη) ⫋ µ(Wγn), what ends the construction. The sequence (µ(Wη))η<ω1

is an uncountable strongly decreasing chain (with respect to the inclusion) of subsets of N ,
which contradicts that N is a countable set.

The case when µ satisfies the condition:

V ≤∗ W ⇒ µ(V ) ⊇ µ(W ),

is analogous.
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6.2 Games for tightness

In this section we shall define and study the game HA
Y,X with constant C ≥ 1. This asymptotic

game is a modification of the game HY,X given in [22]: In HA
Y,X player II choses a DE-block

instead of a block vector and we ask in the winning condition not only that the outcome
sequence is equivalent to the previously fixed basis of Y , but also that the outcome belongs to
the admissible set AE. The proofs are strongly based on the fact that the winning condition
remains closed in this case.

After defining such game HA
Y,X with constant C, we shall prove that its is determined by

formulating it as an open Gale-Stewart game. Then, we shall use Theorem 3.4.1 to conclude.

Notation 6.2.1. Let E be a Banach space with normalized basis (en)n and DE be a set of
blocks for E. Let X = [xn]n be a DE-block subspace. For k ≤ m natural numbers, we denote
the set [xn : k ≤ n ≤ m] ∩ DX by X[k,m].

Definition 6.2.2. Let E be a Banach space with normalized basis (en)n, DE be a set of blocks
for E and AE be an admissible set for E. Let X = [xn]n be a DE-block subspace, and let Y be
a Banach space with normalized basis (yn)n. Suppose C ≥ 1. We define the asymptotic game
HA

Y,X with constant C between players I and II taking turns as follows: I plays a natural
number ni, and II plays a natural number mi and a not necessarily normalized DX-block
vector ui ∈ X[n0,m0] + ...+X[ni,mi]. Diagramatically,

I n0 n1 ...
II m0, u0 m1, u1 ...

The sequence (un)n is the outcome of the game and we say that II wins the game HA
Y,X with

constant C, if (un)n ∼C (yn)n and (un)n ∈ AX .

The next subsection is dedicated to prove that the game HA
Y,X is determined.

6.2.1 Determinacy of the games for tightness

To simplify the notation along this subsection, let E be a Banach space with normalized
basis (en)n, DE be a set of blocks for E and AE an admissible set for E. Also, take X = [xn]n

a DE-block subspace and Y a Banach space with normalized basis (yn)n. Let C ≥ 1 be a
constant. In this section we will show that the game HA

Y,X with constant C is open for player
I and, therefore, it is determined.

Since we have fixed an arbitrary DE- block subspace X on which we shall play, let D := DX

and X := N×N×D (to simplify the notation). Endow N and D with their discrete topology.
So, X is endowed with its discrete topology.

Remark 6.2.3. For each k ∈ N, the set

EQk := {(zi)ki=0 ∈ Dk+1 : (zi)
k
i=0 ∼C (yi)

k
i=0},
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is a clopen subset of Dk+1.

Theorem 6.2.4. The following sets are open in Xω:

(i) The set NE of sequences ((ni,mi, ui))i in Xω such that the sequence of vectors (ui)i

are not C-equivalent to (yi)i.

(ii) The set NA of sequences ((ni,mi, ui))i in Xω such that the sequence of vectors (ui)i

are not in AX .

(iii) The set NL of non legal runs in the game HA
Y,X with constant C.

Proof. Consider the following continuous projections for i ∈ N

Xω Πi−→ X

(pi)i 7→ (ni,mi, ui),

and the natural projections
(n,m, u) ∈ X π07−→ n ∈ N,

(n,m, u) ∈ X π17−→ m ∈ N,

(n,m, u) ∈ X π27−→ u ∈ D.

Consider for each k ∈ N, the continuous functions fi : Xω → Dk+1 (which are finite products
of projections πj ◦ Πi), given by

(pi)i
fk7−→ (u0, u1, ..., uk).

(i) Since two sequences are C-equivalent if, and only if, each initial sequence of them are
C-equivalent, we can conclude that the set NE is open in Xω. This is true because
NE may be written as follows:

NE :=
⋃
k∈N

f−1
k [Dk+1 \ EQk].

Recall that EQk is clopen (see Remark 6.2.3).

(ii) Recall that an infinite sequence of blocks belongs to AX if, and only if, its respective
finite initial sequences are in [AX ] (AX is closed in (DX)

ω, see the Proposition 5.2.4),
So, the set NA is open in Xω. Actually, NA can be written as follows:

NA :=
⋃
k∈N

f−1
k [Dk+1 \ [AX ]].

Recall that Dk+1 \ ([AX ] ∩ Dk+1) is clopen (see Remark 5.1.27).

(iii) A run is not legal if there is some k where player II, in her k + 1-th round, chooses
mk < nk or the block uk does no belong to X[n0,m0]+X[n1,m1]+ ...+X[nk,mk]. We
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shall show that NL is open by writing it as the union of two open sets: the set NL1

of runs for which some mk < nk, and the set NL2 of runs such that some uk (chosen
by II) does no belong to X[n0,m0] +X[n1,m1] + ...+X[nk,mk].

Notice that the natural embedding i : N → R, where R is endowed with the
usual topology, is continuous. So, the functions gk : Xω → R such that (pi)i

gk7−→
(i ◦ π1 ◦ Πk − i ◦ π0 ◦ Πk)((pi)i) = nk −mk are continuous for all k ∈ N. So, the set

NL1 =
⋃
k∈N

{(pi)i = ((ni,mi, ui))i ∈ Xω : mk < nk}

=
⋃
k∈N

g−1
k [(0,+∞)].

Therefore, NL1 is open.

Fix k ∈ N. Notice that uk ∈ X[n0,m0] + X[n1,m1] + ... + X[nk,mk] if, and only if,
P[0,n0)(uk) = 0X , ∀j ∈ {0, ..., k − 1} (P(mj ,nj+1)(uk) = 0X) and P(mk,+∞)(uk) = 0X .
Notice that the inclusion l : D ↪→ X is continuous (after endowing X with its norm
topology), so the functions hj : X

ω → X defined as

(pi)i = ((ni,mi, ui))i
h07−→ P[0,n0) ◦ l(uk)

(pi)i = ((ni,mi, ui))i
hj+17−−→ P(mj ,nj+1) ◦ l(uk) for 0 ≤ j ≤ k − 1

(pi)i = ((ni,mi, ui))i
hk7−→ P(mk,+∞) ◦ l(uk)

are continuous and

NL2 =
⋃
k∈N

{(pi)i = ((ni,mi, ui))i ∈ Xω : P[0,n0)(uk) ̸= 0X or

∃j ∈ {0, ..., k − 1} (P(mj ,nj+1)(uk) ̸= 0X) or P(mk,+∞)(uk) ̸= 0X}

=
⋃
k∈N

k⋃
j=0

h−1
j [X \ {0X}].

Therefore NL2 is open and the set of non-legal runs NL is open.

Theorem 6.2.5. The game HA
Y,X with constant C is determined.

To prove this proposition, we shall define an equivalent auxiliary Gale-Stewart game which
will be open for player I, and then, use the determinacy theorem for open games (Theorem
3.4.1) to conclude that it is determined. Let us define such an auxiliary game.

An auxiliary game

Let x′ ∈ D be an arbitrary vector. We define the asymptotic game AA
Y,X(X;A′) with constant

C between players I and II taking turns as follows: I plays a triplet (ni, 0, x
′) ∈ X, and II
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plays (0,mi, ui) ∈ X, with ui ∈ X[n0,m0] + ...+X[ni,mi]. Diagramatically,

I (n0, 0, x
′) (n1, 0, x

′) ...
II (0,m0, u0) (0,m1, u1) ...

Before giving the criterion of victory, we introduce some notation. Let T ⊂ [X]<∞ be the
pruned tree of legal moves of the game AA

Y,X(X;A′) with constant C. We denote a legal run
in such game as −→p = (pn)n ∈ [T ] where

• if n = 2k: pn = (nk, 0, x
′), which corresponds with the play of player I in the (k+1)-th

round,

• if n = 2k + 1: pn = (0,mk, uk), which corresponds with the play of player II in the
(k + 1)-th - round,

for k ∈ N.

With this notation in mind, consider the following subset of Xω:

A′ := {(pn)n ∈ [T ] : ∃i ∈ N s.t. (uk)
i
k=0 ∈ Di+1 \ [AX ] or

∃i ∈ N s.t. (uk)
i
k=0 ̸∼C (yk)

i
k=0}.

We say that player I wins the game AA
Y,X(X;A′) with constant C if the run (pn)n belongs

to A′.

The game AA
Y,X(X;A′) is a version of the game HA

Y,X where players I and II make their
movements in the same set X. This is necessary to use the Gale-Stewart theorem.

Proposition 6.2.6. The game AA
Y,X(X;A′) with constant C is determined.

Proof. We shall prove that the pay-off set A′ of the game AA
Y,X(X;A′) with constant C is

open as subset of [T ], then the conclusion follows from the determinacy theorem for open
games, Theorem 3.4.1 of Chapter 3.

First notice that the pay-off set can be rewritten as A′ = A1 ∪ A2, where

A1 :=
⋃
i∈N

{(qn)n ∈ [T ] : (uk)
i
k=0 ∈ Di+1 \ [AX ]}, (6.3)

A2 :=
⋃
i∈N

{(qn)n ∈ [T ] : (uk)
i
k=0 ̸∼C (yk)

i
k=0}. (6.4)

Notice that the sets A1 and A2 are homeomorphic to the sets NA ∩ (Xω \ NL) and
NE∩ (Xω \NL), where NA, NE and NL are open sets of Xω (see Theorem 6.2.4). So, they
are open as subsets of the set of legal runs Xω \ NL in the game HA

Y,X (endowed with the
relative topology), which is homeomorphic to [T ]. Then, A1, A2 and, therefore, A′ are open
subsets of [T ] and the game AA

Y,X with constant C is determined. .
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Proposition 6.2.7. The games AA
Y,X(X;A′) with constant C and HA

Y,X with constant C are
equivalent.

Proof. Suppose that player I has a winning strategy σ : X<∞ → X for the game AA
Y,X(X;A′)

with constant C. Let us define inductively the strategy ρ for I to play in the game HA
Y,X

with constant C.

Let σ(∅) = (n0, 0, x
′), then define ρ(∅) = n0. Suppose (n0,m0, u0, ..., nk,mk, uk) is a

legal position in the game HA
Y,X with constant C where I has played following ρ. then

(n0, 0, x
′), (0,m0, u0), ..., (nk, 0, x

′), (0,mk, uk) is a legal position in the game AA
Y,X with

constant C. Let σ((n0, 0, x
′), (0,m0, u0), ..., (nk, 0, x

′), (0,mk, uk)) = (nk+1, 0, x
′) and set

ρ(n0,m0, u0, ..., nk,mk, uk) = nk+1.

Since σ is a winning strategy, the sequence (ui)i is not C-equivalent to (yi)i or (ui)i does not
belong to AX . Then, ρ is a winning strategy for I in the game HA

Y,X with constant C.

Analogously, we can obtain from a winning strategy for I in the game HA
Y,X with constant

C a winning strategy for I in the game AA
Y,X with constant C. The proof follows with the

same arguments if we consider strategies for player II.

Proof of Theorem 6.2.5. consider the game AA
Y,X(X;A′) with constant C, which is

determined for Proposition 6.2.6. If player I (respectively player II) has a winning strategy
for the game AA

Y,X(X;A′), then by Proposition 6.2.7, player I (respectively player II) has a
winning strategy for the game HA

Y,X with constant C. Thus, the game HA
Y,X with constant

C is determined.

Remark 6.2.8. We proved that the game AA
Y,X(X;A′) with constant C is open for the player

I and that it is equivalent to the game HA
Y,X with constant C. For those reasons we shall say

that the game HA
Y,X with constant C is open for player I.

6.3 Relation of games and existence of an A-tight subspace

In this section we follow the ideas of Ferenczi and Rosendal to prove three lemmas. As we
already mentioned, the main result of this section, Lemma 6.3.8, says that if E is in some
way saturated of DE-block subspaces X and Y such that player I has a winning strategy
for the game HA

Y,X with constant C, then E has an AE-tight subspace. Intuitively, player
I in HA

Y,X having a winning strategy for HA
Y,X , under certain hypothesis, is related to the

existence of an A-tight subspace.
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Notation 6.3.1. Let E be a Banach space with normalized basis (en)n, DE be a set of blocks
and AE an admissible set for E. Let X = [xn]n be a DE-block subspace, Y be a Banach space
and (Ii)i be a sequence of successive non-empty intervals of natural numbers.

(i) Let K be a positive constant. Denote

Y
A
↪→K (X, Ii)

if there is A ∈ [N]∞ containing 0, such that Y
A
↪→K [xn, n /∈ ∪i∈AIi].

(ii) Denote
Y

A
↪→ (X, Ii)

if there is A ∈ [N]∞ such that Y
A
↪→ [xn, n /∈ ∪i∈AIi].

Remark 6.3.2. Notice that under the hypothesis of the Notation 6.3.1, if there is some
A ∈ [N]∞ such that Y

A
↪→ [xn, n /∈ ∪i∈AIi] and 0 /∈ A, then there is some B ∈ [N]∞

containing 0 such that Y
A
↪→ [xn, n /∈ ∪i∈BIi].

Proof. Without loss of generality we can assume that 0 ∈ I0. Suppose that there is some
A ∈ [N]∞ such that Y

A
↪→ [xn, n /∈ ∪i∈AIi] and 0 /∈ A. Since Y is infinite dimensional,

N \ ∪i∈AIi must be infinite. Let k ∈ A be the least integer such that

|
⋃
i∈A
i≤k

Ii| ≥ |I0|.

Let l = max Ik. Consider M := [0, l] \
⋃

i∈A
i≤k

Ii and m its cardinal. Notice that I0 ⊆ M and

I0 < l −m. Let M ′ := [l + 1,∞) \
⋃

i∈A
i>k

Ii and

σ : N \ ∪i∈AIi = M ∪M ′ → (l −m, l] ∪M ′

being the order preserving bijection between those two sets. By the Proposition 2.2.29,
there is an isomorphism T between [xn : n ∈ N \ ∪i∈AIi] and [xf(n) : n ∈ N \ ∪i∈AIi]

such that T (xn) = xf(n). Thus, by the Proposition 5.2.7, if Y
A
↪→ [xn, n /∈ ∪i∈AIi] then

Y
A
↪→ [xf(n) : n ∈ N \ ∪i∈AIi]. Set B := {0} ∪ {n ∈ A : n > k}. Since

[xf(n) : n ∈ N \ ∪i∈AIi] ⊆ [xn : n ∈ N \ ∪i∈BIi],

we can conclude that
Y

A
↪→ [xn : n ∈ N \ ∪i∈BIi].

Proposition 6.3.3. Let E be a Banach space with normalized basis (en)n, DE be a set of
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blocks and AE an admissible set for E. Let X = [xn]n be a DE-block subspace, Y be Banach
space with normalized basis (yn)n and suppose K ≥ 1. If II has a winning strategy for the
game HA

Y,X with constant K, then for any sequence (Ii)i of successive intervals we have

Y
A
↪→K (X, Ii).

Proof. Suppose X = [xn]n and Y = [yn]n as in the hypothesis. Suppose that II has a winning
strategy for the game HA

Y,X with constant K. Set (Ii)i a sequence of successive intervals of
natural numbers.

Consider the following plays in the game HA
Y,X . In his first run, I plays n0 ∈ N such

that n0 > I0. Player II move the pair (m0, u0) following her winning strategy. Notice that
u0 ∈ [xn : n /∈ I0] and set a0 = 0. In the (i+1)-th round, player I chooses an integer ni such
that there is some ai ∈ N with Iai ⊂]mi−1, ni[, and II plays the pair (mi, ui) according to
her winning strategy. Notice that ui ∈ X[n0,m0]+ ...+X[ni,mi] ⊆ [xn : n /∈ ∪j∈Ai

Ij], where
Ai = {aj : j ≤ i}.

If we continue with this playing, II will produce a sequence (un)n ∈ AX which is K-
equivalent to (yn)n and, by construction, for each i ∈ N, ui ∈ [xn : n /∈ ∪j∈AIj], where
A = ∪i∈NAi ∈ [N]∞ and 0 ∈ A. Thus,

Y
A
↪→ [xn : n /∈

⋃
j∈A

Ij],

which ends the proof.

Remark 6.3.4. Proposition 6.3.3 tells us that if II has a winning strategy for the game
HA

Y,X with constant K then Y is not AE-tight in X.

In addition to what is said in Proposition 6.3.3, the next proposition shows that if player I

has a winning strategy for the game HA
Y,X with constant K+ε, for every DX-block subspace

Y of X, then for every such Y there are some successive intervals I0 < ... < In < ... such
that Y ̸ A↪→K (X, Ij).

Lemma 6.3.5. Let E be a Banach space with normalized basis (en)n and (DE,AE) be an
admissible system of blocks for E. Suppose that X = [xn]n is a DE-block subspace and that K
and ε are positive constants such that for all DX-block subspace Y of X there is a winning
strategy for player I in the game HA

Y,X with constant K + ε. Then, there is a function
f : bbD(X) → [N]∞ such that for all DX-block subspace Y , if Ij = [f(Y )2j, f(Y )2j+1], then
Y ̸ A↪→K (X, Ij).

Proof. Suppose X = [xn]n is a DE-block subspace, K and ε as in the hypothesis. We will
divide this proof in six steps:
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1. By hypothesis, for each DX-block subspace Y of X there is a winning strategy for
player I in the game HA

Y,X with constant K + ε. Let σ be the function that maps each
Y to such winning strategy σY .

2. Let C ≥ 1 be the basis constant of (xn)n. Let ρ = 1 + ε
K

. Now, let 0 < θ < 1 be such
that (1 + θ)(1 − θ)−1 = ρ. Take ∆ = (δn)n a sequence of positive numbers such that
2CK2

∑
n∈N δn = θ.

Let (wn)n be a KC-basic sequence of not necessarily normalized blocks with 1
K

≤
∥wi∥ ≤ K, for any i ∈ N. If (un)n is such that ∀i ∈ N (∥wi − ui∥ < δi), then

2KC
∑
n∈N

∥wn − un∥
∥wn∥

= 2CK2
∑
n∈N

δn = θ < 1.

Thus, by Theorem 2.2.11, (un)n ∼ρ (wn)n.

3. We shall obtain some collection of sets of vectors {Dn : n ∈ N} which will be used
in step 4 to assist in the construction of a strategy for player I. Since (DE,AE) is an
admissible system of blocks for E, we have that for X, the sequence (δn)n and K, there
is a collection (Dn)n of non-empty sets of vectors of DX such that

C-1 For each n and for each d ∈ [N]<∞ such that there is w ∈ AX with supp
X
(w) = d,

we have that there are a finite number of vectors u ∈ Dn such that supp
X
(u) = d.

C-2 For all sequence (wi)i ∈ AX satisfying 1/K ≤ mini ∥wi∥ ≤ supi ∥wi∥ ≤ K, for all
n there is un ∈ Dn, such that

C-2.1 supp
X
(un) ⊆ supp

X
(wn).

C-2.2 ∥wn − un∥ < δn.

C-2.3 (ui)i ∈ AX .

4. Suppose now that Y is a DX-block subspace with normalized DX-block basis (yn)n.
Suppose that p = (n0, u0,m0, ..., ni, ui,mi), with uj ∈ Dj for j ≤ i is a legal position
in the game HA

Y,X in which I has played according to σY .

I n0 n1 ... ni

II u0, m0 u1, m1 ... mi, ui

We write p < k if nj, uj,mj < k for all j ≤ i. Since II is playing in
∏

j≤i Dj, using the
condition C-1, for every k there is only a finite number of such legal positions p which
satisfies p < k. So, for every k ∈ N the following maximum exists:

α(k) := max{k,max{σY (p) : p < k}}. (6.5)

We set Ik = [k, α(k)]. The intervals in (Ik)k are not necessarily disjoint, but it is
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possible to extract a subsequence of successive intervals of it, with I0 as first element.

5. To prove that Y ̸ A↪→K (X, Ij) we shall show that for every A ∈ [N]∞, containing 0,
Y ̸ A↪→K [xn : n /∈ ∪k∈AIk].

By contradiction, suppose there is A ∈ [N]∞ containing 0 and a sequence of blocks
(wn)n ∈ AX ∩ [xn : n /∈ ∪k∈AIk] such that

(yn)n ∼K (wn)n. (6.6)

Recall that, since (yn)n is normalized (recall the Remark 5.1.16), 1
K

≤ ∥wn∥ ≤ K, for
all n ∈ N.

By the step 3, condition C-2, we can find for each i a block ui ∈ Di such that
∥wi − ui∥ < δi, suppX

(ui) ⊆ supp
X
(wi), (un)n ∈ AX , and

(un)n ∼ρ (wn)n. (6.7)

By Equation (6.7), (un)n ∼Kρ (yn)n. Considering that ρ = 1+ ε
K

, we can conclude that
(un)n ∼K+ε (yn)n.

6. Finally, we will construct a playing −→p in the game HA
Y,X with constant K + ε, where

player I will follow his winning strategy and the outcome will be the sequence (un)n.
Which means that I wins the game, leading us to a contradiction. In order to do that
define ni, mi natural numbers and ai ∈ A as follows:

Let a0 = 0 and n0 = σY (∅) = α(0), then, by definition of Ik, I0 = [0, α(0)] = [0, n0].
Find a1 ∈ A, such that n0, u0, a0 < a1 and set m0 = a1 − 1. Then p0 = (n0,m0, u0) is
a legal position in HA

Y,X in which I has played according to his winning strategy σY .
Since w0 ∈ X[n0,m0] and supp

X
(u0) ⊆ supp

X
(w0), we have u0 ∈ X[n0,m0].

Now, as p0 < a1, by the definition of the function α, if n1 = σY (n0,m0, u0), we obtain
n1 ≤ α(a1). Therefore, ]m0, n1[= [m0 + 1, n1 − 1] = [a1, n1 − 1] ⊆ [a1, α(a1)] = Ia1 .

Suppose by induction that n0, ..., ni, m0, ...,mi and a0, ..., ai ∈ A have been defined.
Since [0, n0[⊆ I0 and ]mj, nj + 1[⊆ Iaj+1

, for all j < i, we have

ui ∈ X[n0,m0] +X[n1,m1] + ...+X[ni,∞[.

Find some ai+1 ∈ A greater than n0, ..., ni, u0, ..., ui and a0, ..., ai and let mi = ai+1−1,
then

ui ∈ X[n0,m0] +X[n1,m1] + ...+X[ni,mi].

Therefore pi = (n0,m0, u0, ..., ni,mi, ui) is a legal position of the game HA
Y,X with



6.3. RELATION OF GAMES AND EXISTENCE OF AN A-TIGHT SUBSPACE 95

constant K + ε in which I has played according to σY . Since pi < ai+1, we have

ni+1 = σY (n0,m0, u0, ..., ni,mi, ui) ≤ α(ai+1)

and

]mi, ni+1[= [mi + 1, ni+1 − 1] = [ai+1, ni+1 − 1] ⊆ [ai+1, α(ai+1)] = Iai+1
.

Set −→p the legal run such that each pi is a legal position for the game. Such −→p is the
run we were looking for to produce a contradiction.

Remark 6.3.6. Notice that we are not dealing with “continuously A-tight” spaces, so we do
not need to use the strategic uniformization theorem (see Theorem (35.32), [33]) in the first
step to ensure that such intervals are obtained in a Borel way, as was done in [22].

The following lemma gives us a criterion for passing from the existence of intervals dependent
on K for which Y is not A-embedded in (I

(K)
j ), to the existence of intervals (Jj)j for which

Y is not embedded for any constant K.

Lemma 6.3.7. Let E be a Banach space with normalized basis (en)n and (DE,AE) be an
admissible system of blocks for E. Suppose that X = [xn]n is a DE-block subspace and Y

is a Banach space with normalized basis (yn)n. If for every constant K there are successive
intervals of natural numbers (I

(K)
n ) such that Y ̸ A↪→K (X, I

(K)
j ), then there is a sequence of

successive intervals (Jj)j such that Y ̸ A↪→ (X, Jj).

Proof. Let E, the pair (DE,AE), X = [xn]n and Y = [yn]n be as in the hypothesis. We will
construct the intervals (Jj)j inductively. The idea is to find such a sequence satisfying:

(i) For each n ≥ 1, Jn contains one interval of each (I
(n)
i )i.

(ii) If M = min Jn − 1 and K = ⌈n · c(M)⌉ (where c(M) is the constant which existence
is guaranteed by Proposition 2.2.29 for (xn)n), then max Jn > max I

(K)
0 +M .

This can be done as follows: Take J0 = I
(1)
0 (it could be taken to be another interval or some

bigger interval, what we want to prove does not depend on the initial intervals). Now, let
a = min I

(1)
1 , M = a − 1 and K = ⌈c(M)⌉. Let b = max{max I

(K)
0 +M,max I

(1)
1 } + 1 and

define J1 = [a, b]. Then, J0 < J1, I
(1)
0 ⊆ J1 and max J1 > max I

(K)
0 +M .

Now suppose that we have defined J0, ..., Jn satisfying (i) and (ii). Let a be a natural number
greater than max Jn, put M = a − 1 and K = ⌈(n+ 1) · c(M)⌉. Take b > max I

(K)
0 + M

and such that there exists ji ∈ N with I
(i)
j(i) ⊆ [a, b], for all i ∈ {1, ..., n + 1} (this can be

done because the intervals are finite and we are looking at just the first n + 1 sequences).
Let Jn+1 := [a, b]. By construction, such Jn+1 satisfies the conditions (i) and (ii).



96 CHAPTER 6. TIGHT - MINIMAL DICHOTOMY

By contradiction, suppose that A ∈ [N]∞ and that for some integer N , we have

Y
A
↪→N [xn : n /∈ ∪i∈AJi].

This implies that there is a sequence (wn)n of DX-blocks in AX ∩ [xn : n /∈ ∪i∈AJi] such that
(yn)n ∼N (wn)n.

Pick a ∈ A such that a ≥ N and set M = min Ja − 1 and K = ⌈a · c(M)⌉. Let us define an
isomorphic embedding T from

[xn : n /∈ ∪i∈AJi]

into
[xn : max I

(K)
0 < n ≤ max Ja] + [xn : n /∈ ∪i∈AJi & n > max Ja]

by setting

T (xn) =

xn, if n > max Ja

x
max I

(K)
0 +n+1

, if n ≤ M.
(6.8)

Notice that T is an isomorphism between those two DX-block subspaces. So, by ii) in
Proposition 5.2.7, we have (T (wn))n ∈ AX .

Since T only changes at most M vectors from (xn)n, it is a C(M)-embedding, then,

(yn)n ∼N (wn)n ∼C(M) (T (wn))n,

and because N · c(M) ≤ a · c(M) ≤ K, we obtain

Y
A
↪→K [xn : n /∈ ∪i∈AJi & n > max Ja] + [xn : max I

(K)
0 < n ≤ max Ja] (6.9)

Now, since for each n ≥ 1, Jn contains one interval of each (I
(n)
i )i, for any l ∈ A such that

l ≥ K there is b(l) ∈ N such that I
(K)
b(l) ⊆ Jl. Let B = {0} ∪ {b(l) : l ∈ A, l ≥ K}. Then,

id : [xn : n /∈ ∪i∈AJi & n > max Ja] + [xn : max I
(K)
0 < n ≤ max Ja] −→ [xn : n /∈ ∪i∈BI

(K)
i ]

is an isomorphism onto its image and by ii) in Proposition 5.2.7 and Equation (6.9) we have:

Y
A
↪→K [xn : n /∈ ∪i∈BI

(K)
i ],

which contradicts our initial hypothesis.

The next lemma uses a “diagonalization” argument to prove that if a space E is saturated
with DE-block subspaces X such that for all Y ≤ X, I has a winning strategy for the game
HA

Y,X for any constant K, then there is a AE-tight DE-block subspace X.
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Lemma 6.3.8. Let E be a Banach space with normalized basis (en)n and (DE,AE) be an
admissible system of blocks for E. Suppose that for every DE-block subspace Z and constant
K there is a DZ-block subspace X such that for all DX-block subspace Y , I has a winning
strategy for the game HA

Y,X with constant K. Then, there is a DE-block subspace X which is
AE-tight.

Proof. Let E and (DE,AE) be as in the hypothesis. The idea of the proof is to construct
inductively a sequence X0 ≥ X1 ≥ X2 ≥ ... of DE-block subspaces and corresponding
functions fK : bbD(XK) → [N]∞ such that for all V ≤ XK , if Ij = [fK(V )2j, fK(V )2j+1],
then V ̸ A↪→K2 (XK , Ij). Once constructed, we will use the Proposition 6.1.2 to obtain the
desired DE-block subspace.

Consider X0 = E and let ε > 0. Using the hypothesis for K = 1 + ε, there is a DX0-
block subspace X1 ≤ X0 such that for all DX1-block subspace Y ≤ X1, I has a winning
strategy for the game HA

Y,X1
with constant 1 + ε. By Lemma 6.3.5 there is a function f1 :

bbD(X1) → [N]∞ such that for all DX1-block subspace V ≤ X1, if Ij = [f1(V )2j, f1(V )2j+1],
then V ̸ A↪→1 (X1, Ij).

Suppose we have defined a finite sequence X0 ≥ X1 ≥ ... ≥ Xn of DE-block subspaces
and functions fK : bbD(XK) → [N]∞ such that for all DXK

-block subspace V ≤ XK , if
Ij = [fK(V )2j, fK(V )2j+1], then V ̸ A↪→K2 (X, Ij), for all K ≤ n.

Applying the hypothesis to Xn, there is a DXn-block subspace Xn+1 ≤ Xn such that for all
D-block subspace Y ≤ Xn+1 and for all ε > 0, I has a winning strategy for the game HA

Y,Xn+1

with constant (n + 1)2 + ε. By Lemma 6.3.5, there is a function fn+1 : bbD(Xn+1) → [N]∞

such that for all DXn+1-block subspace V ≤ Xn+1, if Ij = [fn+1(V )2j, fn+1(V )2j+1], then

V ̸ A↪→(n+1)2 (Xn+1, Ij).

Suppose that we continue this procedure and we obtain a sequence of subspaces

X0 ≥ ... ≥ XK ≥ ...

of DE-block subspaces and functions fK : bbD(XK) → [N]∞ such that for all DXK
-block

subspaces V , if IKj = [fK(V )2j, fK(V )2j+1], then V ̸ A↪→K2 (XK , I
K
j ), for all K ≥ 1.

Applying Lemma 6.1.2 to that sequence, we find a DE-block subspace X∞ = [x∞
n ]n ≤ X0 =

E, such that for each K ≥ 1 there is a DXK
-block sequence (zKn )n with ZK = [zKn ]n ≤ XK

such that
(x∞

n )n ∼√
K (zKn )n (6.10)

Let Y = [yn]n ≤ X∞ be a DE-block subspace of X∞. For each K ≥ 1 there exists a DZK
-

block subspace VK = [vKn ]n (using the form of the isomorphism given in Equation (6.10) and
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(ii) in Proposition 5.2.3) such that

(yn)n ∼√
K (vKn )n, (6.11)

and for such VK we have that if IKj = [fK(VK)2j, fK(VK)2j+1], then

VK ̸ A↪→K2 (XK , I
K
j ). (6.12)

Claim: There are successive intervals (JK
j )j such that

VK ̸ A↪→K2 (ZK , J
K
j ). (6.13)

Proof. (of the claim) Let (nj)j and (mj)j be increasing sequences from N, such that for each
j ∈ N we have

• nj < mj < nj+1,

• there is kj > 0 with
supp

XK
(zKnj

) < IKkj < supp
XK

(zKmj
).

Let JK
j = [nj,mj], for each j ∈ N. Such sequences (nj)j and (mj)j exist because each IKj

and supp
XK

(zKj ) are finite subsets. Notice that for each A ∈ [N]∞ we have

[zKn : n /∈
⋃
j∈A

JK
j ] ⊆ [xK

n : n /∈
⋃
j∈A

IKkj ]. (6.14)

Now, suppose that there is B ∈ [N]∞ such that

VK
A
↪→K2 [zKn : n /∈

⋃
i∈B

JK
i ].

Then, there is (wn)n ∈ AE ∩ [zKn : n /∈
⋃

i∈B JK
i ] such that (vKn )n ∼K2 (wn)n. By Equation

(6.14), (wn)n ∈ AE ∩ [xK
n : n /∈

⋃
j∈B IKkj ], then

VK
A
↪→K2 [xK

n : n /∈ ∪j∈AI
K
j ],

where A = {kj : j ∈ B}, which contradicts Equation (6.12).

Now, we will show that Y ̸ A↪→K (X∞, JK
j ): Suppose, on the contrary, that Y

A
↪→K (X∞, JK

j ),
then, there is A ∈ [N]∞ with 0 ∈ A and a sequence (wn)n ∈ AE ∩ [x∞

n : n /∈ ∪i∈AJ
K
j ] such

that
(yn)n ∼K (wn)n. (6.15)
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Recall that Y and each ZK are DE-block subspaces. By the isomorphism given in Equation
(6.10) and using ii) in Proposition 5.2.7, we can find (uK

n )n ∈ Zω
K (image of (wn)n by such

isomorphism), such that (uK
n )n ∈ AE ∩ [zKn : n /∈ ∪i∈AJ

K
j ] and

(uK
n )n ∼√

K (wn)n. (6.16)

Then, using the Equations (6.11), (6.15) and (6.16), we obtain

(vKn )n ∼√
K (yn)n ∼K (wn)n ∼√

K (uK
n )n. (6.17)

Thus, (vKn )n ∼K2 (uK
n )n, which means that

[vKn ]n = VK
A
↪→K2 [zKn : n /∈

⋃
i∈A

JK
j ].

This contradicts Equation (6.13).

We have proved that, for every Y ≤ X∞ and for every K ≥ 1, there is a sequence of
successive intervals (JK

j )j, such that Y ̸ A↪→K (X∞, JK
j ). Using Lemma 6.3.7 there exists a

sequence of successive intervals (LY
i )i such that

Y ̸ A↪→ (X∞, LY
j ),

which finishes our proof.

6.4 Games for minimality

In the following we shall define a game GA
Y,X associated with an A-minimality notion. The

games GA
Y,X and GX,Y both with constant C, are slightly different. In GA

Y,X , players I and
II must choose AE-block subspaces and vectors in [AE], instead of block subspaces and
any block vectors as in GX,Y from [22]. The main result in this section relates the existence
of a winning strategy for the player II in the game HA

Y,X with the existence of a winning
strategy for player II in the game GA

Y,X . We can think that in a way the existence of a
winning strategy for player II in HA

Y,X “implies” the existence of an A-minimal subspace.
Let us define such a game.

Definition 6.4.1. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks and AE an admissible set for E. Suppose L and M are DE-block subspaces of a
Banach space E and C ≥ 1 a constant. We define the asymptotic game GA

L,M with constant
C between players I and II taking turns as follows. In the (i + 1)-th round, I chooses a
subspace Ei ⊆ L, spanned by a finite DL-block sequence, a not necessarily normalized DL-
block ui ∈ E0 + ... + Ei, and a natural number mi. On the other hand, II plays in the first
time an integer n0, and in all successive rounds II plays a subspace Fi spanned by a finite



100 CHAPTER 6. TIGHT - MINIMAL DICHOTOMY

DM -block sequence, a not necessarily normalized DM -block vector vi ∈ F0 + ... + Fi and an
integer ni+1.

For a move to be legal we demand that ni ≤ Ei, mi ≤ Fi and that for each play in the game,
the chosen vectors ui and vi satisfy (u0, ..., ui) ∈ [AE] and (v0, ..., vi) ∈ [AE]. We present the
following diagram:

I n0 ≤ E0 ⊆ L n1 ≤ E1 ⊆ L ...
u0 ∈ E0, m0 u1 ∈ E0 + E1, m1

(u0, u1) ∈ [AE]

II n0 m0 ≤ F0 ⊆ M m1 ≤ F1 ⊆ M ...
v0 ∈ F0, n1 v1 ∈ F0 + F1, n2

(v0, v1) ∈ [AE]

The sequences (ui)i and (vi)i are the outcome of the games and we say that II wins the game
GA

L,M with constant C, if (ui)i ∼C (vi)i.

Notice that in the game GA
L,M stated in Definition 6.4.1 the outcome (ui)i and (vi)i belong

to AE, since for each n ∈ N, we have (ui)i≤n, (vi)i≤n ∈ [AE] and AE is closed in (DE)
ω.

Proposition 6.4.2. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks and AE an admissible set for E. Suppose X and Y are DE-block subspaces of a Banach
space E with basis and C ≥ 1 is a constant. Suppose that −→p is a legal run in the game such
that every finite stage of −→p is a finite stage of a run where II wins the game GA

Y,X with
constant C. Then −→p is a run where II wins the game GA

Y,X with constant C.

Proof. Let −→p be a legal run in the game GA
Y,X with constant C, where each legal position after

(i + 1) complete rounds is given by pi = (n0, E0, u0,m0, F0, v0, n1, ..., Ei, ui,mi, Fi, vi, ni+1).
By hypothesis, for each i ∈ N, pi is a legal position of a legal run where II wins, so
(uj)

i
j=0 ∼C (vj)

i
j=0. Therefore −→p is a legal run where II wins the game.

The next lemma relates the games HA
Y,X and GA

Y,X with same constant.

Lemma 6.4.3. Let E be a Banach space with normalized basis (en)n, DE be a set of blocks
and AE an admissible set for E. If X and Y are DE-block subspaces of E such that player
II has a winning strategy for the game HA

Y,X with constant C, then II has a winning strategy
for the game GA

Y,X with constant C.

Proof. Let E, DE, AE and C ≥ 1 be as in the hypothesis. Suppose that X = [xn]n and
Y = [yn]n are DE-block subspaces. We shall exhibit the move that player II has to do after
i rounds in the game GA

Y,X with constant C, and we will prove that such moves determine a
winning strategy for II in the game GA

Y,X with constant C. For each i (even i = 0), suppose
player I has played i times, and we have the following stage in the game GA

Y,X :
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I 0 ≤ E0 ⊆ Y ... 0 ≤ Ei ⊆ Y

u0 ∈ E0, m0 ui ∈ E0 + ...+ Ei, mi

(u0, ..., ui) ∈ [AE]

II 0 m0 ≤ F0 ⊆ X ... mi−1 ≤ Fi−1 ⊆ X

v0 ∈ F0, 0 vi−1 ∈ F0 + ...+ Fi−1, 0
(v0, ..., vi−1) ∈ [AE]

Notice that we are asking to player II to play nj = 0 for all j, so player I has more
possibilities to play and makes the game more difficult for II. Let us write each block vector
uj as

∑kj
k=0 λ

j
kyk, for all j ≤ i. We can assume that kj−1 < kj, for all j ≤ i.

Consider the following run in the game HA
Y,X :

I m0 ... m0 ... mi ... mi mi mi ...
II p0, w0 ... pk0 , wk0 ... pki−1+1, wki−1+1 ... pki , wki q0, w

′
0 q1, w

′
1 ...

where I consecutively plays m0 the first (k0 + 1)-times, then consecutively plays mj for
(kj − kj−1)-times, for any j ∈ {1, ..., i}, and then he plays mi constantly. Meanwhile, II
moves according to her winning strategy for the game HA

Y,X with constant C, which means
that

w′ := (w0, ..., wki , w
′
0, w

′
1, ...) ∈ AX = AE ∩Xω.

Since (u0, ..., ui) ∈ [AE], by condition d) in Definition 5.1.24, we have that there is (tn)n ∈ Y ω

such that u′ = (u0, ..., ui, t0, t1, ...) ∈ AY = AE ∩ Y ω. Notice that u′ ∗Y (yn)n = u′ ∈ AE and
(yn)n ∈ bbD(E) ⊆ AE, thus, using condition c) of Definition 5.1.24, we have

v′ := u′ ∗Y w′ ∈ AE ∩Xω = AX .

If v′ = (v′j)j, then it follows from the inductive construction that:

• v′j = vj, for j < i,

• v′i =
∑ki

k=0 λ
i
kwk,

• (v′0, ..., v
′
i) ∈ [AX ].

Set vi := v′i and
Fi = X[mi,max{pki−1+1, ..., pki}].

Therefore, (v0, ..., vi) ∈ [AX ], vi ∈ F0+ ...+Fi, with mi ≤ Fi ⊆ X. This means that (Fi, vi, 0)

is a legal position for II to play in the game GA
Y,X with constant C in its (i+ 1)-th round.

Suppose that we have continued with the game, where II have played by using the previously
procedure in every round, and we have obtained the outcome: (ui)i (which I played) and
(vi)i (which II played).
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Using i) of the Proposition 5.2.7, (ui)i and (vi)i are in AE (each initial part is in [AE]). Since
(ui)i and (vi)i are defined with the same coefficients over (yi)i and (wi)i, respectively, we
have that (ui)i ∼C (vi)i. Hence, we have showed the moves that II can do in each round
to win the game. Consequently, II has a winning strategy for the game GA

Y,X with constant
C.

Now, we give some definitions which shall be used in the proof of the main theorem of this
chapter.

Notation 6.4.4. Let E be a Banach space with normalized basis (en)n and DE be a set of
blocks for E. We denote by FE to the set of subspaces of E generated by finite DE-block
sequences.

Definition 6.4.5. Let E be a Banach space with normalized basis (en)n and DE be a
set of blocks for E. A state s is a pair (a, b) with a, b ∈ (DE × FE)

<ω, such that if
a = (a0, A0, ..., ai, Ai) and b = (b0, B0, ..., bj, Bj), then j = i or j = i − 1. Let us denote
by SE the set of states.

Remark 6.4.6. In the hypothesis of Definition 6.4.5, SE is countable because DE and FE

are countable (see Remark 5.1.14).

Remark 6.4.7. Let E be a Banach space with normalized basis (en)n, DE be a set of blocks
and AE an admissible set for E. Take M and L two DE-block subspaces and C ≥ 1. Consider
the game GA

L,M with constant C. If we forget the integers m′
i’s played by I and ni’s played by

II in such game, then the set SE contains the set of possible positions after a finite number
of runs were played.

Definition 6.4.8. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks and AE an admissible set for E. Let M and L be two DE-block subspaces and C ≥ 1.
We say that the state s = ((a0, A0, ..., ai, Ai), (b0, B0, ...bj, Bj)) ∈ SE is valid for the game
GA

L,M with constant C if, and only if, the finite sequences (a0, ..., ai), (b0, ..., bj) ∈ [AE].

Definition 6.4.9. Let E be a Banach space with normalized basis (en)n, DE be a set of
blocks and AE an admissible set for E. Let M and L be two DE-block subspaces and C ≥ 1.
Consider s ∈ SE a valid state for the game GA

L,M with constant C. We define the game
GA

L,M(s) as the game GA
L,M with constant C in which the vectors and finite subspaces in the

state s have been played in the initial rounds. That is: if s = (a, b) with a = (a0, A0, ..., ai, Ai)

and b = (b0, B0, ..., bi, Bi) then the game GA
L,M(s) goes like as follows:
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I ni+1 ≤ Ei+1 ⊆ L ...
ui+1 ∈ A0 + ...+ Ai + Ei+1, mi+1

((a0, ..., ai, ui+1) ∈ [AE])

II ni+1 mi+1 ≤ Fi+1 ⊆ M ...
vi+1 ∈ B0 + ...+Bi + Fi+1, ni+1

((b0, ..., bi, vi+1) ∈ [AE])

The outcome of the game will be the pair of infinite sequences (a0, ..., ai, ui+1, ...) and
(b0, ..., bi, vi+1, ...).

If s = (a, b) with a = (a0, A0, ..., ai, Ai) and b = (b0, B0, ..., bi−1, Bi−1) then the game GA
L,M(s)

goes like as follows:

I mi ni ≤ Ei+1 ⊆ L ...
ui+1 ∈ A0 + ...+ Ai + Ei+1, mi+1

((a0, ..., ai, ui+1) ∈ [AE] )

II mi ≤ Fi ⊆ M ...
vi ∈ B0 + ...+Bi + Fi, ni

((b0, ..., bi−1, vi) ∈ [AE])

The outcome of the game will be the pair of infinite sequences (a0, ..., ai, ui+1, ...) and
(b0, ..., bi, vi+1, ...). We say that player II wins the game GA

L,M(s) with constant C if
(a0, ..., ai, ui+1, ...) ∼C (b0, ..., bi, vi+1, ...).

6.5 Tight-minimal dichotomies

In this subsection, we shall proceed with the proof of our dichotomy theorem.

Theorem 6.5.1. Let E be a Banach space with normalized basis (en)n and (DE,AE) be an
admissible system of blocks for E. Then E contains a DE-block subspace X which is either
AE-tight or AE-minimal.

Proof. Let E, (en)n and (DE,AE) be as in the hypothesis. We shall prove that if no DE-block
subspace is AE-tight, then there is a DE-block subspace which is AE-minimal.

If E fails to have an AE-tight subspace then by Lemma 6.3.8 there are a DE-block subspace
Z of E and a constant C ≥ 1 such that for every DZ-block subspace X of Z there is a
further DX-block subspace Y of X such that I has no winning strategy for the game HA

Y,X

with constant C. If we prove that Z has a AE-minimal DE-block subspace the proof will be
completed. So, without loss of generality we can suppose that Z = E.

Summing up, we are supposing that for every DE-block subspace X there is a further DX-
block subspace Y ≤ X such that I has no winning strategy for the game HA

Y,X with constant
C. Since the game HA

Y,X with constant C is determined (see Proposition 6.2.5), we can
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conclude that for any DE-block subspace X, there is a DX-block subspace Y such that II

has a winning strategy for the game HA
Y,X with constant C.

Let τ : bbD(E) → P(S) be defined by

s ∈ τ(M) ⇔ ∃L DM -block subspace such that player II has a winning strategy for

GA
L,M(s) with constant C.

First observe that the elements of τ(M) are valid states for the game GA
L,M and that τ(M)

is non-empty for each M ≤ E a DE-block subspace: we already saw that there is L ≤ M a
DM -block subspace such that II has a winning strategy for the game HA

L,M with constant C,
and by Lemma 6.4.3, II has a winning strategy for the game GA

L,M with constant C. Then,
it is possible to define a valid state s = (a, b), with b being chosen following the winning
strategy for II, such that player II has a winning strategy for GA

L,M(s) and s ∈ τ(M).

Consider now M ′ ≤∗ M a DE-block subspace and s ∈ τ(M ′). Therefore, there is L′ ≤ M ′

a DM ′-block subspace such that II has a winning strategy for the game GA
L′,M ′(s) with

constant C. Since player I can always choose finite subspaces Ei’s in L′ inside of M and
choose integers ni’s large enough to force player II to play in M ′ and inside of M (the
game GA

L′,M ′ is asymptotic, in the sense that it does not depend on the first coordinates), it
follows that it is possible to find a DM -block subspace L ≤ M such that II has a winning
strategy for the game GA

L,M(s) with constant C. Therefore, s ∈ τ(M), and we conclude that
τ(M ′) ⊆ τ(M).

By Lemma 6.1.3 there is a DE-block subspace M0 ≤ E which is stabilizing for τ , i.e.
τ(M0) = τ(M ′), for all M ′ ≤∗ M DM -block subspace.

Define ρ : bbD(M0) → P(S) by setting

s ∈ ρ(L) ⇔ player II has a winning strategy for GA
L,M0

(s) with constant C.

Notice that there is a DM0-block subspace L ≤ M0 such that ρ(L) ̸= ∅ (the same justification
was used to show that τ(M) ̸= ∅, for all DE-block subspace M ≤ E), so ρ is a non-trivial
function. As we did before, set L′ ≤∗ L a DM0-block subspace and s ∈ ρ(L). If player II

has a winning strategy for GA
L,M0

(s) then, by the asymptoticity of the game (same previous
argument for τ), II has a winning strategy for GA

L′,M0
(s), so s ∈ ρ(L′

0). Thus ρ is decreasing.
We can apply Lemma 6.1.3 to ρ, to find a stabilizing DM0-block subspace L0 of M0 for ρ.
Additionally, we obtain that

ρ(L0) = τ(L0) = τ(M0). (6.18)

Let us prove Equation (6.18): Since L0 ≤ M0 and M0 stabilizes τ , τ(M0) = τ(L0). If
s ∈ ρ(L0), then player II has a winning strategy for GA

L0,M0
(s), which means that s ∈ τ(M0),
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so ρ(L0) ⊆ τ(M0). If s ∈ τ(M0) = τ(L0), then there is some L′ ≤ L0 a DL0-block subspace
such that II has a winning strategy for GA

L′,L0
(s). Since L0 ≤ M0, in particular II has a

winning strategy for the game GA
L′,M0

(s) with constant C. Thus, s ∈ ρ(L′) = ρ(L0) because
L0 is stabilizing for ρ.

Claim. For every DL0-block subspace M , II has a winning strategy for the game GA
L0,M

with
constant C.

Proof of the claim. Fix M a DL0-block subspace. The idea of the proof of this claim is to
show inductively that for each valid state s from which player II has a winning strategy for
the game GA

L0,M
(s) with constant C, there is another state s′ which “extends” it in such a

way that player II has a winning strategy for the game GA
L0,M

(s′). Then, we use the fact
that the winning condition is closed for player II (see Proposition 6.4.2) to justify that II

has a winning strategy for the game. This method was used by A. Pelczar in [42] and we are
using it in the same way that V. Ferenczi and Ch. Rosendal did in [22].

First, let us prove that (∅, ∅) ∈ τ(L0). We know that there is a DL0-block subspace Y such
that II has a winning strategy for the game HA

Y,L0
with constant C. From Lemma 6.4.3 it

follows that II has a winning strategy for the game GA
Y,L0

with constant C, and, by definition
of τ , this means that (∅, ∅) ∈ τ(L0). Now, we will show that:

(i) For all valid states for the game GA
L0,M

(s)

s = ((u0, E0, ..., ui, Ei), (v0.F0, ..., vi, Fi)) ∈ τ(L0),

there is an n (which player II can play), such that for any subspace E spanned by a
finite DL0-block sequence of L0 with support greater than n, and any u ∈ E0+...+Ei+E

such that (u0, ..., ui, u) ∈ [AE] (that is, any move that player I could do in his (i+1)-th
round in the game GA

L0,M
(s), disregarding the integer mi+1), we have

((u0, E0, ..., ui, Ei, u, E), (v0.F0, ..., vi, Fi)) ∈ τ(L0).

(ii) For any ((u0, E0, ..., ui+1, Ei+1), (v0.F0, ..., vi, Fi)) ∈ τ(L0), and for all m, there are
m ≤ F a subspace spanned by a finite DM -block sequence and v ∈ F0 + ... + Fi + F

with (v0, ..., vi, v) ∈ [AE] (which is a legal move that II can play), such that

((u0, E0, ..., ui+1, Ei+1), (v0.F0, ..., vi, Fi, v, F )) ∈ τ(L0).

This will be the case in which both players has played (i+1)-rounds and player I has
played in his (i+1)th-move (Ei+1, ui+1,m), and it corresponds to player II making a
legal move.
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Let us prove statement i). Suppose that

s = ((u0, E0, ..., ui, Ei), (v0.F0, ..., vi, Fi)) ∈ τ(L0)

By Equation (6.18), II has a winning strategy for GA
L0,M0

(s), which means that there is
n such that for all subspace n ≤ E ⊆ L0 spanned by a finite DL0-block sequence and
u ∈ E0 + ...+ Ei + E, II has a winning strategy for the game GA

L0,M0
(s′), where

s′ = ((u0, E0, ..., ui, Ei, u, E), (v0.F0, ..., vi, Fi)).

So, s′ ∈ ρ(L0) = τ(L0).

To prove ii), suppose

((u0, E0, ..., ui+1, Ei+1), (v0.F0, ..., vi, Fi)) ∈ τ(L0)

and m is given. Then, as M ≤ L0 ≤ M0 and τ(M) = τ(L0), II has a winning strategy for
GA

L,M(s), for some DM -block subspace L ≤ M . Thus, there are F ≤ M with m ≤ F and
v ∈ F0 + ...+ Fi + F such that II has a winning strategy for GA

L,M(s′), where

s′ = ((u0, E0, ..., ui+1, Ei+1), (v0.F0, ..., vi, Fi, v, F ))

So, s′ ∈ τ(M) = τ(L0).

Starting at state (∅, ∅) ∈ τ(L0) and following inductively those two steps, we can obtain
a sequence of states (si)i such that each si ∈ τ(L0) is the initial part of the following one
si+1 ∈ τ(L0). We can define a strategy for the player II as follows:

Since (∅, ∅) ∈ τ(L0), using i) there is n0 such that whenever m0, E0 ≤ L0 and u0 ∈ E0 such
that n0 ≤ E0, played by I , we have

((u0, E0), ∅) ∈ τ(L0).

Let σ((∅, ∅)) = (n0). Using ii), there is F0 ≤ M and v0 ∈ F0 such that

((u0, E0), (v0, F0)) ∈ τ(L0).

Again using i), there is n1 such that whenever m1, E1 ≤ L0 and u1 ∈ E0 + E1 such that
n1 ≤ E1, played by I, we have

((u0, E0, u1, E1), (v0, F0)) ∈ τ(L0).

Let σ((E0, u0,m0)) = (F0, v0, n1). Following this process inductively, supposing that player I
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in the (k+1)-th round has played (Ek, uk,mk), using ii) there is Fk ≤ M and vk ∈ F0+...+Fk

such that mk ≤ Fn and

((u0, E0, ..., uk, Ek), (v0.F0, ..., vk, Fk)) ∈ τ(L0).

Using i) there is nk+1 such that whatever mk+1, Ek+1 ≤ L0 and uk+1 ∈ E0 + ...+Ek+1 such
that nk+1 ≤ Ek+1, played by I, we have

((u0, E0, ..., uk+1, Ek+1), (v0.F0, ..., vk, Fk)) ∈ τ(L0).

Let σ((E0, u0,m0, ..., Ek, uk,mk)) = (Fk, vk, nk+1). σ is a strategy for II to play in the game
GA

L0,M
with constant C.

Let −→p = (n0, E0, u0,m0, F0, v0, n1, ...) be a legal run of the game GA
L0,M

where II follows
the strategy σ. So, every finite stage (n0, E0, u0,m0, F0, v0, n1, ..., Ei, ui,mi, Fi, vi, ni+1) of
−→p determines the state si = ((u0, E0, ..., ui, Ei), (v0.F0, ..., vi, Fi)) ∈ τ(L0) = ρ(L0), which
satisfy that player II has a winning strategy for the game GA

L0,M0
(si). By construction of σ,

II actually plays in M ≤ L0 ≤ M0, so for every i ∈ N II has a winning strategy for the
game GA

L0,M
(si).

Therefore, for every i ∈ N, pi is a finite stage of a legal run in the game GA
L0,M

with constant
C where II wins. By Proposition 6.4.2, −→p is a run in the game GA

L0,M
with constant C where

II wins. Thus, σ is a winning strategy for II.

Returning to the proof of the theorem: For L0 there is a DL0-block subspace Y = [yn]n such
that II has a winning strategy for the game HA

Y,L0
with constant C. We shall show that for

every DL0-block subspace M ≤ L0, Y
A
↪→C2 M .

Since II has a winning strategy for HA
Y,L0

with constant C, player I can produce in the
game GA

L0,M
a sequence (ui)i ∈ AL0 such that (ui)i ∼C (xi)i. That is, in each round of the

game GA
L0,M

, player I can choose the pair (0, ui), where each ui is obtained by the moves
of II in HA

Y,L0
. By the Claim, II has a winning strategy for the game GA

L0,M
for producing

(vi)i ∈ AM , such that (ui)i ∼C (vi)i. By transitivity (xi)i ∼C2 (vi)i, therefore Y
A
↪→C2 M ,

which ends the proof.

6.5.1 Corollaries from the A - tight-minimal dichotomy

As a corollary of Theorem 6.5.1 we obtain the third dichotomy:

Corollary 6.5.2 (Third Dichotomy, [22]). Let E be a Banach space with normalized basis
(en)n, then E contains a tight block subspace or a minimal block subspace.



108 CHAPTER 6. TIGHT - MINIMAL DICHOTOMY

Proof. In Theorem 6.5.1 consider the admissible system of blocks (DE, (DE)
ω). As we already

observed in Remark 5.6.4 and the Proposition 5.5.4 for this admissible set we obtain exactly
our thesis.

Corollary 6.5.3. Let E be a Banach space with normalized basis (en)n, then E contains a
block subspace X = [xn]n satisfying one of the following properties:

(1) For any [yn]n ≤ X, there is a sequence (In)n of successive intervals in N such that for
any A ∈ [N]∞, [yn]n does not embed into [xn, n /∈ ∪i∈AIi] as a block sequence.

(2) (xn)n is a equivalence block-minimal basis.

Proof. In Theorem 6.5.1 consider the admissible system of blocks (DE, BSD(E)) and item
(vi) of Propositions 5.5.7 and 5.6.15.

V. Ferenczi and Ch. Rosendal also remarked in [22] that the case of block sequences in this
theorem implies the theorem of A. Pelczar in [42] and an extension of it due to Ferenczi [17].

Corollary 6.5.4. Let E be a Banach space with normalized basis (en)n, then E contains a
block subspace X = [xn]n satisfying one of the following properties:

(1) For any [yn]n block basis of X, there is a sequence (In)n of successive intervals in N
such that for any A ∈ [N]∞, [yn]n does not embed into [xn, n /∈ ∪i∈AIi], as a sequence
of disjointly supported vectors.

(2) For any [yn]n block basis of X, (xn)n is equivalent to a sequence of disjointly supported
vectors of [yn]n.

Proof. In Theorem 6.5.1 consider the admissible system of blocks (DE, DSD(E)) and item
(vii) of Propositions 5.5.7 and 5.6.15.

Notice that both properties (1) and (2) in Corollary 6.5.3 and in Corollary 6.5.4 are
incompatible (see Theorem 5.6.9). Corollaries 6.5.3 and 6.5.4 are stated as Theorem 3.16
in [22]. In its statement it is also considered the embedding as a permutation of a block
sequence, specifically:

Every Banach space with a basis contains a block subspace E = [en]n satisfying that either
for any [yn]n ≤ E, there is a sequence (In)n of successive intervals in N such that for any
A ∈ [N]∞, [yn]n does not embed into [en, n /∈ ∪i∈AIi] as a permutation of a block sequence;

or for any [yn]n ≤ E, (en)n is permutatively equivalent to a block sequence of [yn]n.

Nevertheless, as we have already seen in the proofs of this chapter, such kind of embedding
corresponds to a non-admissible set (see Proposition 5.3.20). So, the proofs we have presented
do not work for the case of the embedding as permutation of a block sequence, and we see
no reason to think that last statement is true.
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Corollary 6.5.5. For any normalized basic sequence (en)n in a Banach space, there is
(xn)n ⪯ (en)n which is either a tight-by-sequences basis or spreading.

Proof. In Theorem 6.5.1 consider the admissible system of blocks (BE, bbB(E)). The result
follows from item (i) in Propositions 5.5.7 and 5.6.15.

Corollary 6.5.6. For any basic sequence (en)n in a Banach space, there is (xn)n ⪯ (en)n

satisfying one of the following properties:

(i) For any (yn)n ⪯ (xn)n there is a sequence of successive intervals (In)n such that for
every A ∈ [N]∞ and for every injection f : N→ N \ ∪i∈AIi, we have (yn)n ̸∼ (xf(n))n.

(ii) For any (yn)n ⪯ (xn)n we have (xn)n ∼ (yf(n))n, for some f ∈ NN injective.

Proof. In Theorem 6.5.1 consider the admissible system of blocks (BE, dbB(E)). The result
follows from item (ii) in Propositions 5.5.7 and 5.6.15.

Corollary 6.5.7. For any basic sequence (en)n in a Banach space, there is a signed
subsequence (xn)n = (ϵnekn)n, which satisfies one of the following properties:

(i) For any (yn)n ⪯ (xn)n there is a sequence of successive intervals (In)n such that for
every A ∈ [N]∞ we have that (yn)n is not equivalent to any signed subsequence of
(xn : n ∈ N \ ∪i∈AIi).

(ii) For any (yn)n ⪯ (xn)n there is (zn)n a signed subsequence of (yn)n equivalent to (xn)n.

Proof. In Theorem 6.5.1 consider the admissible system of blocks (B±
E , bb

±
B (E)). The result

follows from item (iii) in Propositions 5.5.7 and 5.6.15.

Corollary 6.5.8. For any basic sequence (en)n in a Banach space, there is a signed
subsequence (xn)n = (ϵnekn)n of (en)n, which satisfies one of the following properties:

(i) For any signed subsequence (yn)n of (xn)n there is a sequence of successive intervals
(In)n such that for every A ∈ [N]∞, we have that (yn)n is not equivalent to any sequence
of the form (δnxf(n))n, where (δn)n is a sequence of signs and f : N → N \ ∪i∈AIi is
an injective function.

(ii) For any signed subsequence (yn)n of (xn)n, there is an injective function f ∈ NN and
a sequence of signs (δn)n such that (xn)n ∼ (δnyf(n))n.

Proof. In Theorem 6.5.1 consider the admissible system of blocks (B±
E , db

±
B (E)). The result

follows from item (iv) in Propositions 5.5.7 and 5.6.15.
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Chapter 7

Tightness in general Banach spaces
One of the objectives of this research was to find a new definition of tightness which could
be used for general separable and non-separable Banach spaces, and which would coincide
with the original definition for Banach spaces with Schauder basis. The extended definition
should satisfy the following items:

a) It must be hereditary. For example, if it is defined for spaces with transfinite basis it
is desirable that it should be hereditary for subsequences or transfinite subsequences
of the basis.

b) If a non-separable Banach space is tight in the new definition, then it should not
contain certain “types” of minimal subspaces. One possible non-minimality condition
could be that a tight space (in the new sense) does not contain minimal subspaces.

c) In the case of transfinite basis, a relation between the space being tight and a certain
subset of 2α being meager is expected.

In order to accomplish such objective, three possible definitions were considered: I-tight,
II-tight and tight, which will be studied in the following section.

Let us begin the exposition with the definition of a I-tight space.

Definition 7.0.1. Let X be a separable or non-separable Banach space. X is said to be
I-tight if, and only if, for any closed subspace Y of X with Schauder basis, Y has a tight
basis (in the original sense).

The following proposition sums up some properties of I-tight spaces that follow immediately
from the definition

Proposition 7.0.2. Suppose X is a I-tight Banach space, then

(i) If X has a Schauder basis, then X is tight.

(ii) Any subspace of X with Schauder basis is tight in the original sense.

(iii) If Y ⊆ X is a subspace of X (not necessarily with Schauder basis), then Y is I-tight.
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Proposition 7.0.3. If X is a reflexive Banach space with Schauder basis, then X is tight
if, and only if, X is I-tight.

Proof. It follows from Proposition 4.2.13 and item (i) of Proposition 7.0.2.

Proposition 7.0.4. Let X be I-tight; then, X has no minimal subspaces.

Proof. Suppose that there exists a minimal subspace Y of X. Let Z be a closed subspace
of Y with Schauder basis. By hypothesis, Z has a tight basis, so Z is tight. Due to the
minimality of Y , Y ↪→ Z, which result in Z having a minimal subspace, contradicting the
third dichotomy.

Recall that a minimal space has to be separable. In contrast to the original notion of
tightness, the definition of a I-tight space does not depend on any of the bases of the space.
Also, being I-tight does not extend the notion of tightness for the case when the space
has a Schauder basis. As can be observed in Proposition 7.0.3, both notions coincide when
the space is reflexive. This indicates that the definition of I-tight might not be adequate to
our conditions. In the following we shall restrict the work considering Banach spaces with
transfinite basis.

7.1 Banach spaces with transfinite basis

The next definitions are conceived for Banach spaces with a transfinite basis of any density.
Let α be a limit ordinal. We shall follow the considerations and notations established in
Section 2.3 of Chapter 2.

The correspondence between P(α) and 2α, allows us to identify families of subsets of α with
topological subspaces of 2α, where 2α is endowed with the natural product topology.

Definition 7.1.1. We say that a transfinite basic sequence (xβ)β<α is a II-tight basis for
its closed linear span if, and only if, for all A ⊆ α with order-type ω, (xγ)γ∈A is a tight basic
sequence (in the original sense). A Banach space is II-tight if it admits a transfinite II-tight
basis.

So, if (xn)n is a Schauder basis, then (xn)n is a II-tight basis if, and only if, all its
subsequences are tight. Notice that a basic sequence (yn)n is tight if, and only if, for all
k the sequence (yn)n≥k is tight. So, (xn)n is a tight Schauder basis if, and only if, (xn)n is a
II-tight basis.

We have found no results relating a space Y being II-tight in a space with a transfinite
basic sequence and a certain subset of 2α depending on Y being meager, comeager, or having
another Baire category type property, without passing to a subsequence. A positive result
(which we will prove later) is that a II-tight Banach space fails to have minimal subspaces.
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Clearly, if X is a I-tight space then it is a II-tight space. We do not know whether the
reserve implication is true.

Considering the above definitions and the properties that a tight space should satisfy in this
context, we consider that the following definition of tightness is the correct in the context
of Banach spaces with transfinite bases.

Definition 7.1.2. Let X be a Banach space with transfinite basis (xγ)γ<α . We say that a
Banach space Y is tight in X if, and only if,

EY := {u ∈ 2α : Y ↪→ Xsupp (u)}

is meager in 2α. The basis (xγ)γ<α is a tight transfinite basis for X if, and only if, any
Banach space Y is tight in X. X is tight if it admits a tight transfinite basis.

As we may see in detail later, the definition of tight space given in Definition 7.1.2, satisfies
the properties we were looking for. It is hereditary not only by considering the subsequences
of the basis, but also by taking transfinite block subsequences of the basis. For α = ω, both
notions coincide: the classical definition of tightness and the one given in Definition 7.1.2.
Obviously we have a relation between being tight and a Baire Category notion. Also, since
we shall show an extension of the Proposition 3.1.4 for the case of 2α, we will present a
characterization of this notion of tightness in terms of the non-existence of an isomorphic
embedding avoiding infinitely many block subspaces of the basis, as in the original definition.

We shall prove that if a transfinite basis (xγ)γ<α is tight (in this new version), then it is
II-tight, so it has no minimal subspaces.

7.1.1 Characterizations of meager and comeager sets

In this section, we shall give some characterizations of a subset of 2α being meager or
comeager and some examples of such sets. Consequently, we will show the properties
mentioned above about tightness in this context.

Notation 7.1.3. Let s = (sγ)γ<α ∈ 2α and J ⊂ α finite, then we write (si)i∈J to say that
si = 0 for all j /∈ J .

Generalizing the case α = ω, if s = (sγ)γ<α ∈ 2α and t = (tγ)γ<α ∈ 2α, we define
s ∪· t = (uγ)γ<α ∈ 2α as the sequence which elements are uγ = max{sγ, tγ}, for every
γ < α. That is, s ∪· t is the characteristic function of χsupp (s)∪supp (t),

We obtain the following generalization of the Proposition 3.1.4.

Proposition 7.1.4. Let A ⊆ 2α. The following assertions are equivalent:

(i) A is comeager in 2α,

(ii) there are a sequence (In)n<ω of non-empty finite pairwise disjoint subsets of α, and
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subsets an ⊆ In, such that for any u ∈ 2α, if |{n : In ∩ supp(u) = an}| = ℵ0, then
u ∈ A.

Proof. To prove (ii) ⇒ (i), let us define for each n ∈ ω the following sets

On = {u ∈ 2α : ∃k ≥ n(supp(u) ∩ Ik = ak)}.

Claim: For each n, On is a dense open set in 2α.

Set n ∈ ω. To prove the density, let s = (sγ)γ<α ∈ 2α and let J ⊂ α be a finite non-empty
set. Let Ns,J be the basic open set determined by s and J , that is

Ns,J := {u = (uγ)γ<α ∈ 2α : ∀γ ∈ J(uγ = sγ)}.

Let D =
⋃

m∈ω Im ∩ J . Then, for each k ∈ D, there exists a unique nk natural number
such that k ∈ Ink

(because (In)n is a pairwise disjoint sequence). Since J is finite,
n′ := max{n,max{nk : k ∈ D}}+1 is finite. Then, for each m ≥ n′ we have that Im∩J = ∅.
It is clear that there exists u = (uγ)γ<α, such that

• uγ = sγ if γ ∈ J ;

• uγ = 1 if γ ∈ an′ ;

• uγ = 0 if γ ∈ In′ \ an′ .

In consequence, u ∈ Ns,J ∩On ̸= ∅.

To see that On is an open set, let u ∈ On; then, there is k ≥ n, such that supp(u)∩ Ik = ak.
Let s = (sγ)γ<α satisfying

• sγ = 1, if γ ∈ ak;

• sγ = 0, if γ ∈ 2α \ ak.

Then. we obtain that u ∈ Ns,Ik ⊂ On.

Now that the claim is proved, and since 2α is a Hausdorff and compact topological space,
it is Baire. For that reason,

⋂
n∈ω On is dense in 2α. Finally, if u ∈

⋂
n∈ω On, then

|{n : In ∩ supp(u) = an}| = ℵ0, and by hypothesis, u ∈ A. This means that
⋂

n∈ω On ⊆ A,
and 2α \ A ⊆

⋃
n∈ω(2

α \On) which is meager, because 2α \On is nowhere dense.

(i) ⇒ (ii):

Suppose that A is comeager, then for each n ∈ ω there is a closed set Fn ⊂ 2α with
int(Fn) = ∅, such that

2α \ A ⊆
⋃
n∈ω

Fn. (7.1)
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In the following, we are going to construct by induction the sets (In)n and (an)n as we need.
Let u ∈ 2α \ F0. Because 2α \ F0 is a dense open set, it is possible to find t0 = (t0γ)γ<α and
I0 ⊂ α finite subset, such that u ∈ Nt0,I0 ⊂ 2α \ F0. Define

a0 = {γ ∈ I0 : t
0
γ = 1}. (7.2)

By inductive hypothesis, suppose that we found a finite sequence (Ii)m−1
i=0 of non-empty finite

pairwise disjoint subsets of α and ai ⊆ Ii, such that, for every i ∈ {1, ...,m− 1} we have

u ∈ 2α and supp(u) ∩ Ii = ai ⇒ u /∈ ∪i
j=0Fj.

Let us consider L = ∪m−1
i=0 Ii, l = 2|L| − 1, and {b0, b1, ..., bl} a enumeration of all the subsets

of L.

Since 2α \ (
⋃m

i=0 Fi) is a dense open set, (2α \ (
⋃m

i=0 Fi)) ∩ Nb0,L is a non-empty open set.
Consequently, there are J0 ⊂ α finite and disjoint from L, and s0 = (s0i )i∈J0 , such that

Nb0∪· s0,L∪J0 ⊂ Nb0,L

⋂
(2α \ (

m⋃
i=0

Fi)) ⊆ 2α \ (
m⋃
i=0

Fi).

Using the density of 2α \ (
⋃m

i=0 Fi), we have Nb1∪· s0,L∪J0 ∩ (2α \ (
⋃m

i=0 Fi)) is a non-empty
open set. So, we can find J1 ⊂ α finite disjoint from J0 ∪ L, a sequence s1 = (s1i )i∈J1 e such
that

Nb1∪· s0∪· s1,L∪J0∪J1 ⊂ Nb1∪· s0,L∪J0

⋂
(2α \ (

m⋃
i=0

Fi)) ⊆ 2α \ (
m⋃
i=0

Fi).

If we continue with this construction, we can find Jl ⊂ α finite set disjoint from with
∪l−1

i=0Ji ∪ L, and sl = (sli)i∈Jl , such that if tm := s0 ∪· ... ∪· sl, and Im :=
⋃

j≤l Jj, then

Nbl∪· tm,L∪Im ⊂ Nb′,J ′

⋂
(2α \ (

m⋃
i=0

Fi)) ⊆ 2α \ (
m⋃
i=0

Fi), (7.3)

where b′ = ∪· l−1
i=0si ∪· bl and J ′ = ∪l−1

i=0Ji ∪ L.

Let

am =
l⋃

i=0

supp(si). (7.4)

Let us note that if u ∈ 2α and supp(u) ∩ Im = am, then u ∈ Ntm,Im ; therefore, there is
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i ∈ {0, ..., l} such that u ∈ Nbi,L, thus using Equation (7.3)

u ∈ Nbi∪· tm,L∪Im ⊆ 2α \ (
m⋃
i=0

Fi). (7.5)

Consequently, u /∈
⋃m

i=0 Fi.

Finally, let u ∈ 2α and B = {n : In ∩ supp(u) = an}. If |B| = ℵ0, then

∀m ∈ B (u ∈ Ntm,Im).

It follows from Equation (7.5) that for each m ∈ B, u /∈
⋃m

i=0 Fi; then u /∈
⋃

i∈ω Fi. Due to
Equation (7.1), we have u ∈ A, which ends the proof.

Remark 7.1.5. For the 2ω case the sequence (Ii)i can be chosen as a sequence of successive
finite intervals, and even a partition of ω (see Proposition 3.1.4). But in the general case
this can not be done preserving the finiteness of the sets.

We obtain the following corollary to the Proposition 7.1.4.

Corollary 7.1.6. Let A be a subset of 2α, such that for all u ∈ A and v ∈ 2α if
supp(u) ⊆ supp(v), then v ∈ A. Then we have:

(i) A is comeager in 2α if, and only if, there is a sequence (In)n<ω of finite pairwise disjoint
subsets of α, such that if the support of u ∈ 2α contains infinitely many subsets In,
then u ∈ A.

(ii) A is meager in 2α if, and only if, there is a sequence (In)n<ω of finite pairwise disjoint
subsets of α, such that if u ∈ A, then {n : supp(u) ∩ In = ∅} is finite.

Proof. (i) Suppose that A is comeager in 2α, then by Proposition 7.1.4, there are sequences
(Ii)i and (ai)i of finite pairwise disjoint subsets of α with an ⊆ In, such that for any
u ∈ 2α with {n : In ∩ supp(u) = an} infinite, we have u ∈ A.

Now, let u ∈ 2α such that B := {n : In ⊂ supp(u)} is infinite and consider v = ∪n∈Ban.
It is clear that v ∩ In = an for all n ∈ B, and v is contained in u. So, by Proposition
7.1.4, χv ∈ A, and by hypothesis, u ∈ A.

Now, suppose that there exist a sequence (Ii)i of finite subsets of α satisfying the
hypothesis. Set ai := Ii, for every i ∈ N. By Proposition 7.1.4 we obtain the result.

(ii) If A is meager, then applying Proposition 7.1.4 to 2α \A, there are sequences (Ii)i and
(ai)i of finite pairwise disjoint subsets of α with an ⊆ In, such that for any u ∈ 2α with
{n : In ∩ supp(u) = an} infinite, we have u ∈ 2α \ A.

Let u ∈ A and suppose that B = {n : supp(u) ∩ In = ∅} is infinite. Let
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v = supp(u) ∪ (∪n∈Ban). Since supp(u) ⊆ v, χv ∈ A, but B ⊆ {n : v ∩ In = an}, so
χv ∈ 2α \ A, which is a contradiction.

For the reverse implication, let (Ii)i as the hypothesis and for each n ∈ ω, consider the
set

Fn = {u ∈ 2α : ∀k ≥ n(supp(u) ∩ Ik ̸= ∅)}

Claim: For each n < ω, Fn is nowhere dense.

Let n < ω be fixed. Let u = (uγ)γ<α ∈ 2α \ Fn and k ≥ n such that supp(u) ∩ Ik = ∅.
Consider Nu,Ik the open set in 2α given by

Nu,Ik = {t = (tγ)γ<α ∈ 2α : ∀γ ∈ Ik(uγ = tγ)}.

Then, Nu,Ik ⊆ 2α \ Fn, which implies that each Fn is closed.

Now, let J ⊂ α finite, s = (sγ)γ<α ∈ 2α and consider the open set Ns,J determined by
them. Let t = (tγ)γ<α ∈ Ns,J such that tγ = 0, for all γ /∈ J . Since J is finite, there
are infinitely many k ≥ n, such that supp(t) ∩ Ik = ∅. Then t /∈ Fn. Since s and J are
arbitrary, the interior of Fn is empty and we had proved the claim.

Let u ∈ A. By hypothesis {n : supp(u)∩ In = ∅} is finite, then we can consider m any
natural number greater than its maximum. So, u ∈ Fm. Therefore, A ⊆ ∪n∈ωFn.

The Corollary 7.1.6 provide an easy way to construct meager and comeager subsets of 2α.

Example 7.1.7. Let (Ii)i a sequence of finite pairwise disjoint subsets of α. Then, the set

U := {u ∈ 2α : In ⊆ supp(u) for infinitely many n}

is closed under taking supersets and by Corollary 7.1.6 is comeager in 2α.

Example 7.1.8. The set [α]∞ of infinite subsets of α is comeager in 2α.

Proof. Notice that [α]∞ is closed by taking supersets. Let (γn)n be a sequence of pairwise
different ordinals in α. For each n ∈ N, let In = {γn}. Clearly, if u ∈ 2α contains infinite
Ii’s, then u itself is infinite. So, by Corollary 7.1.6, [α]∞ is comeager.

Example 7.1.9. The set 2α \ [α]∞ of finite subsets of an infinite ordinal α is meager in 2α.

Now, we are going to consider the set of countable subsets of an uncountable ordinal. Notice
that [α]ℵ0 is not closed under taking supersets, so we can not use Corollary 7.1.6 to prove
such set is meager or comeager.
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Example 7.1.10. Suppose α is an uncountable ordinal, then, [α]ℵ0 is neither meager or
comeager in 2α.

Proof. Suppose that α is an uncountable ordinal. We are identifying [α]ℵ0 with the subset
of 2α of sequences with countable support. Suppose that there are sequences (Ii)i and (ai)i

of finite pairwise disjoint subsets of α with ai ⊆ Ii, for every i, such that

If u ∈ 2α and |{n : In ∩ supp(u) = an}| = ℵ0, then u ∈ [α]ℵ0 .

Let t ⊆ α uncountable. Let
v := (t \ ∪i∈NIi) ∪ ∪i∈Nai.

Clearly, v is uncountable and |{n : In∩v = an}| = ℵ0, so χv ∈ [α]ℵ0 , which is a contradiction.
Therefore, [α]ℵ0 is not comeager in 2α.

By contradiction, suppose that [α]ℵ0 is meager in 2α, and (Ii)i and (ai)i are the sequences of
finite subsets of α which testify that 2α \ [α]ℵ0 is comeager in 2α. If {n : an ̸= ∅} is infinite
then the set u′ := ∪i∈Nai has cardinality ℵ0, so |{n : In∩u′ = an}| = ℵ0 but χu′ /∈ 2α \ [α]ℵ0 ,
which is a contradiction.

If {n : an ̸= ∅} is finite, let u′ ⊆ α\∪n∈NIn such that u′ is countable. u′ exists since α\∪n∈NIn

is uncountable. Then, In ∩ u′ = ∅ = an for ℵ0-many n’s, but χu′ /∈ 2α \ [α]ℵ0 , which is a
contradiction. Thus, [α]ℵ0 is not meager in 2α.

Remark 7.1.11. For α an uncountable ordinal, the set [α]ℵ0 is dense in 2α with dense
complement in 2α and do not have the Baire property.

Proof. Suppose that α is an uncountable ordinal. It is easy to see that [α]ℵ0 is dense with
a dense complement in 2α. Let us suppose that [α]ℵ0 has the Baire property, so there are O

open set of 2α and G meager in 2α such that

[α]ℵ0∆O = G. (7.6)

After some calculations we obtain that

2α \G = ((2α \ [α]ℵ0) ∩ 2α \O) ∪ ([α]ℵ0 ∩O) (7.7)

Since G is meager, by the Proposition 7.1.4, there are (In)n and (an)n such that

• Ii ∩ Ij = ∅, if i ̸= j.

• an ⊆ In, for every n.

• A := {u ∈ 2α : |{n : In ∩ supp(u) = an}| = ℵ0} ⊆ 2α \G.
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Notice that Equation (7.7) implies that:

(i) if u ∈ A is infinite and countable, then u ∈ O;

(ii) if u ∈ A is finite or uncountable, then u ∈ 2α \O.

Take v := ∪n∈ωan and notice that χv ∈ A ⊆ 2α \G.

If v is infinite then, by (i), χv ∈ O. Let s ∈ 2α and J ∈ [α]<∞ such that v ∈ Ns,J ⊆ O. Let

J1 := supp(s) ∩ J and J0 := J \ supp(s).

Since χv ∈ Ns,J , J1 ⊆ ∪n∈ωan. Take I ⊆ α \ (J ∪ ∪n∈ωIn) uncountable. Consider the
uncountable set w := v ∪ I. χw ∈ A because

|{n : In ∩ w = an}| = |{n : In ∩ v = an}| = ℵ0.

So, by (ii), we have χw /∈ O, but

• if γ ∈ J1, then χw(γ) = χv(γ) = s(γ) = 1;

• if γ ∈ J0, then χw(γ) = 0 = s(γ).

Then, χw ∈ Ns,J ⊆ O which is a contradiction.

If v is finite, then we have that [α]<∞ ⊆ 2α \ G, thus, using (ii), we have [α]<∞ ⊆ 2α \ O.
But this means that O = ∅, since every non-empty open set in 2α contains infinitely many
functions s such that s is finite. Therefore, [α]ℵ0 is meager in 2α which contradicts the
Example 7.1.10.

Example 7.1.12. For α a countable ordinal, [α]∞ = [α]ℵ0, therefore [α]ℵ0 is comeager in
2α.

7.1.2 Definition of tight transfinite bases

Let us recall Definition 7.1.2: Let X and Y be Banach spaces, X with transfinite basis
(xγ)γ<α. We say that Y is tight in X if

EY = {u ∈ 2α : Y ↪→ Xsupp (u)}

is meager in 2α.

If (xγ)γ<α is a transfinite basis for X such that any Y Banach space, Y is tight in X, then
we say that (xγ)γ<α is a tight transfinite basis for X and X is tight.

Consider X a Banach space with tight Schauder basis (xn)n, then we know that if Y is an
arbitrary Banach space, the set EY = {u ∈ 2ω : Y ↪→ [xn : n ∈ supp(u)]} is either meager
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or comeager in 2ω (see Lemma 4.2.5). This is consequence of the first topological 0-1 law
applied to the set EY which has the Baire Property (for being analytic in the Polish space
2ω). For the case of a tight transfinite basis, 2α is not separable and therefore is not Polish.
We do not know if EY is always meager or comeager in 2α.

Proposition 7.1.13. Let X be a Banach space with transfinite basis (xγ)γ<α. Then (xγ)γ<α

is a tight transfinite basis for X if, and only if, Y is tight in (xγ)γ<α, for every separable
Banach space Y .

Proof. The proof follows easily from the following fact: if (xγ)γ<α is not tight and Z is a non-
separable Banach space which is not tight in X, then there is Y ⊆ Z a separable subspace
of Z such that Y is not tight in X.

Proposition 7.1.14. Let X be a Banach space with transfinite basis (xγ)γ<α. Then (xγ)γ<α

is a tight transfinite basis for X if, and only if, [yn]n is tight in (xγ)γ<α, for every block
subsequence (yn)n of (xγ)γ<α.

Proof. Since we can always find a block subspace in every closed subspace of X (see Theorem
2.3.8), the proof follows from Proposition 7.1.13.

Using Corollary 7.1.6 we obtain the following result.

Proposition 7.1.15. Let X be a Banach space with transfinite basis (xγ)γ<α. Let Y a
Banach space. Then the following statements are equivalent:

(i) Y is tight in X;

(ii) there exists a sequence (Ii)i of finite pairwise disjoint subsets of α, such that for any
A ⊂ ω infinite,

Y ̸↪→ [xγ : γ /∈ ∪i∈AIi].

Proof. By definition, Y is tight in X if, and only if, EY is meager in 2α. Also, the set EY

is always closed under taking supersets. By Corollary 7.1.6, EY meager is equivalent to the
existence of a sequence (Ii)i of finite pairwise disjoint subsets of α, such that if u ∈ EY , then
supp(u) intersects all but finitely many subsets Ii. That means that Y cannot be embedded
in [xγ : γ ∈ supp(u)], with supp(u) avoiding infinitely many Ii. Therefore, EY is meager in
2α if, and only if, there is a sequence (Ii)i of finite pairwise disjoint subsets of α, such that
for all A ∈ [N]∞,

Y ̸↪→ [xγ : γ /∈ ∪i∈AIi].
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Proposition 7.1.16. Let X and Z be Banach spaces, X with a transfinite basis (xγ)γ<α,
and (yξ)ξ<β be a transfinite block subsequence of (xγ)γ<α. If Z is tight in (xγ)γ<α, then Z is
tight in (yξ)ξ<β.

Proof. Let (yξ)ξ<β be a transfinite block subsequence of (xγ)γ<α. Let Y = [yξ]ξ<β and Z

be an arbitrary space such that Z ↪→ Y . Since Z is tight in X, find (In)n the sequence of
pairwise disjoint finite subsets of α associated to Z, i.e.

if u ⊆ α is such that Z ↪→ Xu then {n : u ∩ In = ∅} is finite. (7.8)

Define for each n ∈ N the set

Kn := {ξ < β : supp(yξ) ∩ In ̸= ∅}.

The set {n : Kn = ∅} is finite: for contradiction suppose that B := {n : Kn = ∅} is infinite
and notice that B = {n : ∪ξ<βsupp(yξ) ∩ In = ∅}. Since Z ↪→ [xγ : γ ∈ ∪ξ<βsupp(yξ)]

and by Equation (7.8), ∪ξ<βsupp(yξ) intersects all but finitely many In which contradicts B
infinite.

Each Kn is finite because each In is finite and the collection {supp(yξ) : ξ < β} is pairwise
disjoint.

The sequence (Kn)n is not necessarily pairwise disjoint but it is possible to extract a
subsequence (Jn)n of (Kn)n which is. Indeed, let J0 = Km0 , where Km0 ̸= ∅. Suppose
we find an increasing finite sequence (mn)n<k of natural numbers and (Jn)n<k such that
Ji = Kmi

̸= ∅, for 0 ≤ i < k and Ji ∩ Jn = ∅ if n ̸= i. If for every i > mk−1

we have that ∪n<kJn ∩ Ki is non-empty, there is ξ ∈ ∪n<kJn and A ∈ [N]∞ such that
∀n ∈ A (supp(yξ) ∩ In ̸= ∅). Since supp(yξ) is finite, there is γ ∈ supp(yξ) which belongs to
infinitely many In’s, contradicting (In)n is pairwise disjoint. So, there must exist mk > mk−1

such that Kmk
∩ ∪n<kJn = ∅. Let Jk = Kmk

. The sequence (Jn)n is the one we sought for.

Let
EY

Z = {u ∈ 2β : Z ↪→ Ysupp (u)}.

We will show that if u ∈ EY
Z , then the set B := {n : supp(u) ∩ Jn = ∅} is finite to conclude

by Corollary 7.1.6 that EY
Z is meager. Let u := supp(u). By contradiction, suppose B is

infinite, then ∀n ∈ B (∪ξ∈usupp(yξ) ∩ Imn = ∅).

Then ∪ξ∈usupp(yξ) avoids infinitely many In’s but

Z ↪→ Yu ↪→ [xγ : γ ∈ ∪ξ∈usupp(yξ)],

which contradicts Equation (7.8).
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Proposition 7.1.17. Let X be a Banach space with a tight transfinite basis (xγ)γ<α and
(yξ)ξ<β a transfinite block subsequence of (xγ)γ<α, then (yξ)ξ<β is a tight transfinite basis.

Proof. Let Z a separable Banach space and (yξ)ξ<β a transfinite block subsequence of
(xγ)γ<α. Since X is tight, Z is tight in X. By Proposition 7.1.16 Z is tight in [yξ]ξ<β.
Since Z is arbitrary, (yξ)ξ<β is a tight transfinite basis.

Corollary 7.1.18. Let X be a Banach space with a tight transfinite basis (xγ)γ<α.

(i) If (yn)n is a block subsequence of (xγ)γ<α, then (yn)n is a tight basis.

(ii) If β < α, then (xγ)γ<β is a tight transfinite basis.

Proof. It follows directly from Proposition 7.1.18.

Corollary 7.1.19. If X is a Banach space with a tight transfinite basis (xγ)γ<α, then (xγ)γ<α

is a II-tight basis for X.

Proof. It follows directly from (i) of Corollary 7.1.18.

Proposition 7.1.20. If (xγ)γ<α is a tight shrinking transfinite basic sequence, and (γn)n is
an increasing sequence of ordinals in α, then every basic sequence in [xγn ]n is tight.

Proof. It follows directly from the definition of transfinite shrinking basis, Corollary 7.1.18
and Theorem 4.2.12.

Proposition 7.1.21. If X is a reflexive Banach space with tight transfinite basis (xγ)γ<α

and (γn)n is an increasing sequence of ordinals in α, then every basic sequence in [xγn ]n is
tight.

Proof. The proof follows as a direct consequence of Theorem 2.3.10 and 7.1.20.

Proposition 7.1.22. Let X be a Banach space with an II-tight transfinite basis (xγ)γ<α,
then X does not contain minimal subspaces.

Proof. Suppose that there is Y ′ aa minimal subspace. Let Y = [yn]n be a subspace of Y ′

with Schauder basis. As consequence of Theorem 2.3.8, there are (zn)n ≤ (yn)n and (wn)n a
block subsequence of (xγ)γ<α such that [zn]n ↪→ [wn]n. Notice that [zn]n is minimal.

Using the Proposition 2.3.6, there is (γn)n an increasing sequence with elements in α, such
that (wn)n ≤ (xγn)n. By hypothesis, (xγn)n is a tight Schauder basis but [zn]n ↪→ [xγn ]n and
[zn]n is minimal, which contradicts the Proposition 4.2.9.



7.2. TIGHT-WITH-CONSTANTS TRANSFINITE BASES 123

Theorem 7.1.23. Let X be a Banach space with a tight transfinite basis, then X does not
have any minimal subspace.

Proof. If X = [xγ]γ<α is tight. By Proposition 7.1.18, X is also II-tight. Then, X has no
minimal subspaces.

7.2 Tight-with-constants transfinite bases

Based on Definition 7.1.2 and its implications, a generalization of Proposition 4.2.23 in the
context of transfinite basis is expected. Also, there is a natural definition of a tight-by-
support transfinite basis. On the other hand, the extension of the notion of tightness by
range is not natural, since given a block subsequence (yn)n of a transfinite basis (xγ)γ<α, it
could be the case that ran(yi) = [min supp(yi),max supp(yi)] is not finite, for some i ∈ N.

Notation 7.2.1. Let X be a Banach space with transfinite basis (xγ)γ<α. Let Y be a Banach
space. For each j ∈ N we denote

EY (j) := {u ∈ 2α : Y ↪→j Xsupp (u)}. (7.9)

Definition 7.2.2. Let X be a Banach space with transfinite basis (xγ)γ<α. Let Y be a
Banach space. We say that Y is tight in (xγ)γ<α with constants if, and only if, the set EY (j)

is nowhere dense in 2α for all j ≥ 1.

Proposition 7.2.3. Let X be a Banach space with transfinite basis (xγ)γ<α. Let Y be a
Banach space. If Y is tight in (xγ)γ<α with constants, then Y is tight in (xγ)γ<α.

Proof. It follows directly from Definition 7.2.2 and from the fact that EY = ∪j≥1EY (j).

Lemma 7.2.4. Let O be an open set of 2α and let B be a closed nowhere dense set of 2α.
Then, there are s ∈ 2α, I ̸= ∅ a finite subset of α such that I ∩ supp(s) ̸= ∅

Ns,I ∩O ∩B = ∅.

Proof. Let O and B be as in the hypothesis. Set

A := O ∩ (2α \B).

Notice that A is an nonempty open set. Take s′ ∈ 2α and I ′ ∈ [α]<∞ such that Ns′,I′ ⊆ A.
We can refine Ns′,I′ and obtain Ns,I ⊆ Ns′,I′ such that I ∩ supp(s) ̸= ∅.

Notation 7.2.5. Denote by 1 to the element of 2α such that 1(γ) = 1 for all γ ∈ α.

Proposition 7.2.6. Let X be a Banach space with transfinite basis (xγ)γ<α. Let Y be a
Banach space. Then, the following statements are equivalent:
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(i) Y is tight in X with constants;

(ii) there exists a sequence (Ii)i≥1 of finite pairwise disjoint subsets of α, such that for each
n ≥ 1

Y ̸↪→n [xγ : γ /∈ In].

Proof. (i) ⇒ (ii) Let us construct inductively such finite subsets (Ii)i≥1. From Lemma 7.2.4,
there are s1 ∈ 2α and I1 ∈ [α]<∞ such that K1 := supp(s1) ∩ I1 is not empty and

Ns1,I1 ∩ EY (1) = ∅. (7.10)

Suppose that we have found s1, ..., sn−1 in 2α and I1, ..., In−1 mutually disjoint sets in [α]<∞,
such that for each i = 1, ..., n− 1 we have

• Ki := supp(si) ∩ Ii ̸= ∅,

•
⋂i−1

j=1 N1,Ij

⋂
Nsi,Ii

⋂
EY (i) = ∅.

Using Lemma 7.2.4, there are sn ∈ 2α, In ∈ [α]<∞ disjoint from ∪n−1
j=1 Ij such that

Kn := supp(sn) ∩ In ̸= ∅ and

∩n−1
j=1 N1,Ij ∩Nsn,In ∩ EY (n) = ∅. (7.11)

Suppose n ≥ 1 and Y ↪→n [xγ : γ /∈ In], that is, for u := α\In, χu ∈ EY (n). Take v = u∪Kn,
then χv ∈ EY (n) and χv ∈ ∩n−1

j=1N1,Ij ∩Nsn,In , contradicting Equation (7.11).

(ii) ⇒ (i) Suppose (Ii)i≥1 a sequence of finite mutually disjoint subsets of α such that for
each n ≥ 1

Y ̸↪→n [xγ : γ /∈ In].

So, if u ∈ EY (j) for some j ≥ 1, then supp(u) ∩ Ij ̸= ∅. Since for j ≤ k we have that
EY (j) ⊆ EY (k), we obtain

EY (j) ⊆
⋂
k≥j

EY (k) ⊆
⋂
k≥j

{u ∈ 2α : supp(u) ∩ Ik ̸= ∅}. (7.12)

Let us prove that the set on the right in Equation (7.12), is closed with empty interior on
2α. Since for each k ≥ j is true that

{u ∈ 2α : supp(u) ∩ Ik ̸= ∅} =
⋃
γ∈Ik

{u ∈ 2α : u(γ) = 1},

and Ik is finite, it follows that each {u ∈ 2α : supp(u) ∩ Ik ̸= ∅} is closed, then so it is⋂
k≥j

{u ∈ 2α : supp(u) ∩ Ik ̸= ∅}.
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Now suppose v ∈
⋂

k≥j{u ∈ 2α : supp(u) ∩ Ik ̸= ∅} and let s ∈ 2α and J ⊆ α finite, such
that v ∈ Ns,J . Let us find w ∈ Ns,J , but not in

⋂
k≥j{u ∈ 2α : supp(u) ∩ Ik ̸= ∅}.

Consider J ′ := J ∩ (∪k≥jIk). If J ′ = ∅, then take s′ ∈ 2α such that s′(γ) = v(γ) = s(γ) for
γ ∈ J and s′(γ) = 0 if γ ∈ Ij. So, s′ ∈ Ns,J and s′ /∈ {u ∈ 2α : supp(u) ∩ Ij ̸= ∅}.

If J ′ ̸= ∅, there is l ≥ j such that J∩(∪k≥lIk) = ∅. Take s′(γ) = v(γ) for γ ∈ J and s′(γ) = 0,
for γ ∈ Il. Thus, s′ ∈ Ns,J but s′ /∈ {u ∈ 2α : supp(u) ∩ Il ̸= ∅}.

Now we shall define a tight with constants space in the natural way.

Definition 7.2.7. Let X be a Banach space with transfinite basis (xγ)γ<α. We say that
(xγ)γ<α is a tight with constants basis if, and only if, every Banach space Y is tight in
(xγ)γ<α with constants. If (xγ)γ<α is a tight with constants basis, then X is a tight with
constants Banach space.

Finding examples of spaces with tight transfinite bases is not an easy task. Recall that for
the ω case, a tight space fail to have spreading basic sequences. Thus, a candidate for a
tight space with transfinite basis should not contain spreading basic sequences. The only
examples of spaces satisfying such property are presented by Ch. Brech, J. López-Abad and
S. Todorcevic in [8]. During this research we proved the spaces in [8] fails to have minimal
subspaces. The following question is open.

Question. The spaces defined in [8] are tight (or tight with constant)?
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