• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Wilson Fernando Mutis Cantero
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2016
Orientador
Banca examinadora
Futorny, Vyacheslav (Presidente)
Bekkert, Viktor
Guzzo Junior, Henrique
Jardim, Marcos Benevenuto
Kochloukov, Plamen Emilov
Título em português
Subalgebras de Mishchenko-Fomenko em S(gl_n) e sequências regulares
Palavras-chave em português
Álgebra envolvente universal
Álgebra simétrica
Método de deslocamento de argumento
Módulo irredutivel
Sequência regular
Subálgebra de Mishchenko-Fomenko
Resumo em português
Seja S(gl_n) a álgebra simétrica da álgebra de Lie das matrizes de tamanho nxn sobre o corpo C dos números complexos. Para \xi em gl_n*=gl_n, seja F_{\xi}(gl_n) a asubálgebra de Mishchenko-Fomenko de S(gl_n) construída pelo método de deslocamento de argumento associada ao parâmetro \xi. É conhecido que se \xi é um elemento semisimples regular ou nilpotente regular então a subálgebra F_{\xi}(gl_n) é gerada por uma sequência regular em S(gl_n). Nesta tese é provado que em gl_3 o resultado estende para todo \xi em gl_3, isto é, as subálgebras de Mishchenco-Fomenko F_{\xi}(gl_3) são geradas por uma sequência regular em S(gl_3), uma consequência deste fato é que os módulo irredutíveis sobre certas subálgebras comutativas da álgebra envolvente universal U(gl_3) podem ser levantados a módulos irredutiveis sobre U(gl_3). Além disso, é provado que em gl_4 esse resultado é válido para todo elemento nilpotente \xi em gl_4. O caso geral, que é determinar quando as subálgebras de Mishchenko-Fomenko F_{\xi}(gl_n) , com \xi em gl_n, são geradas por uma sequência regular em S(gl_n), é ainda um problema aberto.
Título em inglês
Mishchenko-Fomenko Subalgebras in S(gl_n) and regular sequences
Palavras-chave em inglês
Argument shift method
Mishchenko-Fomenko subalgebra
Module irreducible
Regular sequence
Symmetric algebra
Universal enveloping algebra
Resumo em inglês
Let S(gl_n) be the symmetric algebra of the Lie algebra of the matrices of size nxn over the field C of complex numbers. For \xi in gl_n*=gl_n, let F_{\xi}(gl_n) be the Mishchenko-Fomenko subalgebra of S(gl_n) constructed by the argument shift method associated with the parameter \xi. It is known that if \xi is a semisimple regular element or nilpotent regular element then the subalgebra F_(g_ln) is generated by a regular sequence in S(gl_n). In this thesis we prove that in gl_3 the result is extended to all \xi in gl_3, this is, the Mishchenco-Fomenko subalgebras F_{\xi}(gl3) are generated by a regular sequence in S(gl_3), A consequence of this fact is that the irreducible modules over certain commutative subalgebras of the universal enveloping algebra U(gl_3) can it be lifted to irreducible modules over U(gl_3). Furthermore, is proved that this result is true for all elements nilpotente \xi in gl_4. The general case, which is determined when the Mishchenko-Fomenko subalgebras F_{\xi}(gl_n), with \xi in gl_n, are generated by a regular sequence in S(gl_n), it is still an open problem.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tesewilson.pdf (779.03 Kbytes)
Data de Publicação
2019-05-31
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.