• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2012.tde-25022013-105446
Documento
Autor
Nome completo
Sergio Tadao Martins
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2012
Orientador
Banca examinadora
Goncalves, Daciberg Lima (Presidente)
Andrade, Maria Gorete Carreira
Borsari, Lucilia Daruiz
Guaschi, John
Santos, Edivaldo Lopes dos
Título em português
Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos
Palavras-chave em português
aproximação da diagonal
cohomologia de grupos
fibrados do toro
grupos fundamentais das superfícies
grupos virtualmente cíclicos.
resoluções livres
Resumo em português
Dado um grupo G, a definição dos grupos de cohomologia com coeficientes em um ZG-módulo M podem ser dadas usando as técnicas usuais da Álgebra Homológica, que garantem a existência de resoluções projetivas P de Z como um ZG-módulo trivial, a equivalência entre resoluções distintas etc. Podemos também construir o produto cup em cohomologia, cuja definição depende de uma aproximação da diagonal para a resolução projetiva P. Entretanto, o cálculo explicito de tais resoluções e dos grupos de cohomologia pode ser bastante difícil na prática, e ainda mais difícil a obtenção de uma aproximação da diagonal. Nesta tese, obteremos resoluções livres e aproximações da diagonal para os grupos fundamentais das superfícies que são espaços K(G,1) e também para o grupo fundamental de fibrados do toro com base S^1, bem como a estrutura de anel de cohomologia de tais grupos. Ainda, para certos grupos virtualmente cíclicos G, obteremos o anel de cohomologia calculando diretamente uma resolução livre e uma aproximação da diagonal, ou então usando a sequência espectral de Lyndon-Hochschild-Serre. A motivação para o estudo da primeira família de grupos vem do fato de representarem variedades de dimensão 2 e 3, e da segunda família por ser constituída de grupos que atuam em esferas de homotopia.
Título em inglês
Diagonal approximations and cohomology rings for the fundamental groups of surfaces, torus bundles and some virtually cyclic groups
Palavras-chave em inglês
cohomology of groups
diagonal approximationm
free resolutions
fundamental groups of surfaces
torus bundles
virtually cyclic groups.
Resumo em inglês
Given a group G, a definition for its cohomology groups with coefficients in a given ZG-module M can be given using the standard techniques of Homological Algebra, that ensure the existence of projective resolutions P of Z as a trivial ZG-module, the equivalence between two such resolutions etc . We can also construct the cup product, whose definition depends on a diagonal approximation for a given projective resolution P. However, the explicit computation of such resolutions and of the cohomology groups may be very hard in practice, and even worse may be the task of constructing a diagonal approximation. In this thesis, we obtain free resolutions and diagonal approximations for the fundamental groups of surfaces that are K(G,1) spaces and for the fundamental group of the torus bundle with the circle as the base space, as well as the structure of the cohomology ring of these groups. Also, for some virtually cyclic groups, we obtain the cohomology ring by an explicit computation of a free resolution and a diagonal approximation, or by the Lyndon-Hochschild-Serre spectral sequence. The motivation for the study of the first family of groups comes from the fact that such groups represent manifolds of dimension 2 and 3, and the groups of the second family act on homotopy spheres.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
main.pdf (693.49 Kbytes)
Data de Publicação
2013-03-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.