• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2012.tde-25022013-105446
Document
Author
Full name
Sergio Tadao Martins
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2012
Supervisor
Committee
Goncalves, Daciberg Lima (President)
Andrade, Maria Gorete Carreira
Borsari, Lucilia Daruiz
Guaschi, John
Santos, Edivaldo Lopes dos
Title in Portuguese
Aproximações da diagonal e anéis de cohomologia dos grupos fundamentais das superfícies, de fibrados do toro e de certos grupos virtualmente cíclicos
Keywords in Portuguese
aproximação da diagonal
cohomologia de grupos
fibrados do toro
grupos fundamentais das superfícies
grupos virtualmente cíclicos.
resoluções livres
Abstract in Portuguese
Dado um grupo G, a definição dos grupos de cohomologia com coeficientes em um ZG-módulo M podem ser dadas usando as técnicas usuais da Álgebra Homológica, que garantem a existência de resoluções projetivas P de Z como um ZG-módulo trivial, a equivalência entre resoluções distintas etc. Podemos também construir o produto cup em cohomologia, cuja definição depende de uma aproximação da diagonal para a resolução projetiva P. Entretanto, o cálculo explicito de tais resoluções e dos grupos de cohomologia pode ser bastante difícil na prática, e ainda mais difícil a obtenção de uma aproximação da diagonal. Nesta tese, obteremos resoluções livres e aproximações da diagonal para os grupos fundamentais das superfícies que são espaços K(G,1) e também para o grupo fundamental de fibrados do toro com base S^1, bem como a estrutura de anel de cohomologia de tais grupos. Ainda, para certos grupos virtualmente cíclicos G, obteremos o anel de cohomologia calculando diretamente uma resolução livre e uma aproximação da diagonal, ou então usando a sequência espectral de Lyndon-Hochschild-Serre. A motivação para o estudo da primeira família de grupos vem do fato de representarem variedades de dimensão 2 e 3, e da segunda família por ser constituída de grupos que atuam em esferas de homotopia.
Title in English
Diagonal approximations and cohomology rings for the fundamental groups of surfaces, torus bundles and some virtually cyclic groups
Keywords in English
cohomology of groups
diagonal approximationm
free resolutions
fundamental groups of surfaces
torus bundles
virtually cyclic groups.
Abstract in English
Given a group G, a definition for its cohomology groups with coefficients in a given ZG-module M can be given using the standard techniques of Homological Algebra, that ensure the existence of projective resolutions P of Z as a trivial ZG-module, the equivalence between two such resolutions etc . We can also construct the cup product, whose definition depends on a diagonal approximation for a given projective resolution P. However, the explicit computation of such resolutions and of the cohomology groups may be very hard in practice, and even worse may be the task of constructing a diagonal approximation. In this thesis, we obtain free resolutions and diagonal approximations for the fundamental groups of surfaces that are K(G,1) spaces and for the fundamental group of the torus bundle with the circle as the base space, as well as the structure of the cohomology ring of these groups. Also, for some virtually cyclic groups, we obtain the cohomology ring by an explicit computation of a free resolution and a diagonal approximation, or by the Lyndon-Hochschild-Serre spectral sequence. The motivation for the study of the first family of groups comes from the fact that such groups represent manifolds of dimension 2 and 3, and the groups of the second family act on homotopy spheres.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
main.pdf (693.49 Kbytes)
Publishing Date
2013-03-07
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.