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Introduction

The objective of this thesis is to develop a language to study differential
geometric properties in singular spaces. The singular spaces we are in-
terested in are effective orbifolds. They appear in many fields of mathe-
matics such as algebraic geometry, algebraic topology, groupoid theory,
differential geometric problems in manifolds, among others ([ALR07],
[MP97], [CR01], [LU04], [Thu79]). The language we are developing is
the theory of G-structures. It relates the presence of a (linear) geometric
structure on an orbifold with an action of a Lie subgroup G < GLn(R)
on a subbundle of the frame orbibundle. The effectiveness hypothesis
gives a manifold structure on the frame orbibundle. Hence, we will study
differential geometric problems on singular spaces through non-singular
ones.

This thesis has three chapters. In the first chapter, we establish the
background needed to understand effective orbifolds: the fundamental
definitions, maps between them, some examples, and properties that
will help us develop the theory of G-structures. In particular, we are
interested in orbifolds arising as quotients of manifolds by locally free
and proper Lie group actions.
In the second chapter, we study the primary objects used to develop
the theory of G-structures: orbibundles. We will show there is a 1-1
correspondence between cone and principal orbibundles. In particular,
the tangent and the frame orbibundles are related. Besides, we will
study connections on the tangent and frame orbibundles and show a
1-1 correspondence between them. Consequently, the geometric proper-
ties due to the presence of a connection have corresponding frameworks
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on both the tangent and the frame orbibundles. Also, we will introduce
two concepts of capital importance: the tautological form (characterizes
G-structures) and reductions (the essence of what a G-structure is).
The third chapter introduces the theory of G-structures on effective orb-
ifolds. We establish the basic concepts and relate them to the classical
geometric structures. We will show that the tautological form charac-
terizes when a principal G-bundle is a G-structure and when an isomor-
phism between principal G-bundles is an equivalence of G-structures.
This gives a characterization of the category of G-structures on effec-
tive orbifolds. Later, we will use the theory constructed to talk about
connections compatible with a geometric structure. We will compute the
compatibility conditions for some classical geometries. Finally, we intro-
duce a fundamental problem to be studied in the theory of G-structures:
integrability. We will characterize when a G-structure is integrable only
in terms of the frame bundle. Besides, we will talk about the torsion
and intrinsic torsion, show that its vanishing is an obstruction for inte-
grability, and compute these obstructions for some classical geometric
structures.



Chapter 1

Orbifolds

Manifolds provide a proper framework which allows the use of tools
from calculus in the study of geometric properties of a space. This is
the scope of what is usually referred to as differential geometry. Many of
the properties of a geometric structure on a manifold are captured by its
group of symmetries. It is then natural to consider the quotient space
of the manifold by the action of the symmetry group. Depending on the
behavior of the group action, this quotient space might not be a smooth
manifold. This leads us to consider more general spaces than manifolds.
Orbifolds, first called V-manifolds, were introduced by Satake [Sat57]
as a generalization of manifolds. While on manifolds there are local
charts φ̃ : Ũ ⊂ Rn → U which are homeomorphisms, on orbifolds there
is an extra information: a finite group Γ acting by diffeomorphisms on
Ũ . Then φ̃ : Ũ → U is not a homeomorphism but is Γ-invariant and
φ̃ : Ũ/Γ → U is a homeomorphism. Consequently the compatibility
conditions between the charts must take into account this extra infor-
mation. Intuitively, orbifolds are spaces with good singularities which
are codified by the points with non-trivial isotropy.

This thesis deals with geometric structures, known as G-structures, on
orbifolds. In the first section we will give some basic definitions, exam-
ples and results about orbifolds (we refer to see [Sat57], [CJ19], [ALR07]
for more details). In the second section we make a crucial remark for
the development of the theory of G-structures on orbifolds: the frame
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orbibundle of an effective orbifold is always a smooth manifold. This
can be thought of as a desingularization process where we associate to
a singular object, an orbifold, a non-singular one: a manifold. For this
reason we will focus on effective orbifolds in this thesis. In the third
section we will study maps between orbifolds. Be aware that there are
different notions of maps between orbifolds. We will not cover this as
deeply as we would like to, but instead we will focus on a particular
notion that will be needed in the theory of G-structures. More informa-
tions about maps could be found in [BB13].
In this thesis we will use the more classical ”charts” perspective on
orbifolds. However, orbifolds can be treated in more ways: using pseu-
dogroups, as in [CJ19]; and as proper, étale groupoids up to Morita
equivalence, [MP97]. Information about maps between orbifolds, in the
groupoid perspective, can be found in [Che06],[ALR07], [MP97].

1.1 Orbifold fundamentals

Let Γ be a group acting on a space X. The action is called effective if
the only group element that acts as the identity is the identity. In other
words

γ · x̃ = x̃ , for all x̃⇒ γ = id.

Definition 1.1. Let O be a topological Hausdorff space. A local model
is a triple (Ũ ,Γ, φ̃) where 0 ∈ Ũ ⊂ Rn is a connected open subset such
that:

1. Γ a finite subgroup of the automorphism group of Ũ , which fixes
the origin and acts effectively on Ũ .

2. φ̃ : Ũ → U is a continuous map onto an open set x ∈ U ⊂ O such
that φ̃(0) = x.

3. φ̃ is Γ-invariant and induces a homeomorphism φ : Ũ/Γ→ U .

Remark: All open sets of Rn will be written with a tilde as Ũ . Their
corresponding images by φ̃ will not have such a tilde. They will be
denoted by U , and are open subsets of O.



Example 1.2. Let a ∈ R+, define φ̃a : (−a, a)→ [0, a) by

φ̃a(x) =


x if x ≥ 0

−x if x < 0.

Define the action 〈γ〉 = Z2 y R by γ · x = −x and

pa : (−a, a)→ (−a, a) /Z2,

be the projection map. Because φ̃a is constant on each fiber p−1
a (c), i.e.,

φ̃a is invariant under the Z2 action, it induces the continuous function

(−a, a)

pa

��

φ̃a

&&
(−a, a) /Z2

φa // [0, a) .

The induced function φa : (−a, a) /Z2 → [0, a) is a homeomorphism. It

follows that
(

(−a, a),Z2, φ̃a

)
is a local model for [0, a).

Example 1.3. Take n ∈ N and let R : R2 → R2 be the rotation by the
angle 2π/n defined by

R(x, y) =

(
cos

(
2π

n

)
x− sin

(
2π

n

)
y, sin

(
2π

n

)
x+ cos

(
2π

n

)
y

)
.

For

W =

{
(x, y) ∈ R2 : 0 ≤ y ≤ tan

(
2π

n

)
x

}
,

define Wk =

k︷ ︸︸ ︷
(R ◦ . . . ◦R)(W ), where k = 0, . . . , n− 1. Then

R2 =

n−1⋃
i=0

Wi.

Take the cone

C =

{
(x, y, z) ∈ R3 : y2 + z2 =

(
cot
(π
n

)
x
)2
}
,



and define φ̃0 : W − {0} → C by

φ̃0(x, y) =
(√

x2 + y2, cot
(π
n

)√
x2 + y2 cos

(
n · arctan

(y
x

))
,

cot
(π
n

)√
x2 + y2 sin

(
n · arctan

(y
x

)))
.

We can extend φ̃0(0, 0) = (0, 0, 0) and obtain that φ̃0 |W is a continuous
map. Define φ̃k : Wk → C by φ̃k = φ̃0 ◦ Rn−k. It is continuous being
the composition of continuous functions. These functions coincide in
the intersection and, by the pasting lemma, φ̃ : R2 → C defined by
φ̃(x) = φ̃k(x), where x ∈Wk, is a continuous function.
The map R induces an action 〈R〉 = Zn y R2 with p : R2 → R2/Zn
the projection map. Because φ̃ is constant on each fiber p−1(c), i.e., φ̃
is invariant under the Zn action, it induces a continuous function

R2

p
��

φ̃

""
R2/Zn

φ // C.

The induced function φ : R2/Zn → C is a homeomorphism. Therefore
(R2,Zn, φ̃) is a local model for the cone C.

Remark : Note that even though R2/Zn and R2/Zm are homeomor-
phic when n 6= m, they have different local models. We will see that
they are not isomorphic as orbifolds.

Let (Ũα,Γα, φ̃α) and (Ũβ,Γβ, φ̃β) be local models. To compare them
we require that φ̃α(Ũα) = Uα ⊂ Uβ = φ̃β(Ũβ).

Definition 1.4. A topological embedding ψ̃αβ : Ũα → Ũβ such that
φ̃α = φ̃β ◦ ψ̃αβ is called an injection.

An injection gives rise to the following diagram

Ũα

φ̃α
��

ψ̃αβ // Ũβ

φ̃β
��

Uα
⊂ // Uβ.



Note that, by definition, every element γα ∈ Γα induces an injection
γα : (Ũα,Γα, φ̃α)→ (Ũα,Γα, φ̃α).

Lemma 1.5. Let ψ̃1, ψ̃2 : (Ũα,Γα, φ̃α)→ (Ũβ,Γβ, φ̃β) be two injections.
Then there exist an unique γβ ∈ Γβ such that ψ̃1 = γβ ◦ ψ̃2

This lemma appears firstly in [Sat57] but its proof requires a di-
mensional hypothesis on the group. However, there is a proof of the
statement without the dimensional hypothesis in [MP97].
Because the composition of injections is again an injection we have that
ψ̃αβ ◦ γα and ψ̃αβ are both injections. It follows that there exists a
unique γβ ∈ Γβ such that ψ̃αβ ◦ γα = γβ ◦ ψ̃αβ. This can be restated as
the existence of a monomorphism θαβ : Γα → Γβ, with θαβ(γα) = γβ,
such that

Ũα

��

ψ̃αβ // Ũβ

��
Ũα/Γα

φα

��

ψ̃αβ/θαβ// Ũβ/Γβ

φβ

��
Uα

⊂ // Uβ

is a commutative diagram.

Example 1.6. Let a, b ∈ R+, with a < b. Take two local models(
(−a, a),Z2, φ̃a

)
and

(
(−b, b),Z2, φ̃b

)
as in example 1.2. Then

(−a, a)
ι̃ //

pa

��

(−b, b)
pb
��

(−a, a)/Z2
ι̃/I //

φ̃a
��

(−b, b)/Z2

φ̃b
��

[0, a)
ι // [0, b)

is an injection, where ι̃ is the natural inclusion, I : Z2 → Z2 is the
identity morphism and ι is the induced inclusion on the quotient spaces.



Example 1.7. Let
(
R2,Zn, φ̃1

)
be as in example 1.3.

Define φ̃2 : R2 → C by

φ̃2(x, y) =
(√

x2 + y2, cot
(π
n

)
x, cot

(π
n

)
y
)
.

It is a homeomorphism and then
(
R2, {e}, φ̃2

)
is a local model for the

cone C. However, there can not exists an injection between the two local

models
(
R2,Zn, φ̃1

)
and

(
R2, {e}, φ̃2

)
. If true, then there will exist a

Zn-invariant map ψ̃ : R2 → R2, which means ψ̃ can not be injective.

The previous example shows we could have different local models for
the same topological space that can not be linked by an injection.
As long as we are dealing with smooth structures, a smooth local model
is a local model such that the group Γ acts by C∞-diffeomorphisms. A
smooth injection is an injection ψ̃αβ : Ũα → Ũβ between two local models
(Ũα,Γα, φ̃α), (Ũβ,Γβ, φ̃β) such that ψ̃αβ is an embedding of manifolds.

Definition 1.8. Let O be a topological Hausdorff paracompact space.
An orbifold atlas associated with an open cover {Uα}α∈I of O is given
by the following conditions:

1. The existence of a smooth local model (Ũα,Γα, φ̃α) for every α,
such that φ̃α(Ũα) = Uα.

2. For every two smooth local models (Ũα,Γα, φ̃α) and (Ũβ,Γβ, φ̃β),
with Uα ⊂ Uβ, there exists a smooth injection ψ̃αβ : Ũα → Ũβ.

3. For every p ∈ Uα ∩ Uβ there exists ν ∈ I such that p ∈ Uν and
Uν ⊂ Uα ∩ Uβ.

Orbifold atlases can be divided into equivalence classes. Two orbifold
atlases belong to the same class if their union admits a refinement that
is an orbifold atlas. These equivalence classes are represented maximal
atlas.

Definition 1.9. A n-dimensional orbifold is a topological space which
is Hausdorff and paracompact, along with an n-dimensional maximal
orbifold atlas on it.



Example 1.10. [0,∞) has an orbifold structure induced by the local

models
(

(−a, a) ,Z2, φ̃a

)
for all a ∈ Z+.

Example 1.11. The local models (R2,Zn, φ̃1) and (R2, {e}, φ̃2) define
orbifold structures for the cone C. However, they are not the same orb-
ifold structure because there does not exist a smooth injection between
them.

Let x ∈ O and let (Ũ ,Γ, φ̃) be an orbifold chart such that φ̃ (x̃) = x.
The isotropy subgroup Γx̃ < Γ is given by

Γx̃ = {γ ∈ Γ | γ · x̃ = x̃} .

For every γ ∈ Γ the groups Γx̃ ∼= Γγ·x̃, which implies Γx̃1
∼= Γx̃2 for all

x̃1, x̃2 ∈ φ̃−1(x).

Lemma 1.12. For every x ∈ O, there exists an orbifold chart (Ũ ,Γ, φ̃)
such that φ̃(x̃) = x and Γx̃ = Γ.

Proof. Since the group elements γi ∈ Γ−Γx̃ do not fix x̃ they will define
a set {γ1 ·x̃, . . . , γr ·x̃}. Take a metric on Ũ such that Γ acts by isometries
and an open neighborhood Bε(x̃) such that

Bε(x̃) ∩ γiBε(x̃) = ∅.

An injection between the orbifold chart (Bε(x̃),Γx̃, φ̃) and Ũ is given by
the inclusion ι̃ : Bε(x̃) ↪→ Ũ . It follows that (Bε(x̃),Γx̃, φ̃) belongs to
the same orbifold atlas.

Hereafter we will work with these orbifold charts. The isotropy rela-
tive to the orbifold chart (Ũβ,Γβ, φ̃β), with φ̃β(ỹ) = x, can be compared
with the isotropy of the orbifold chart (Ũα,Γα, φ̃α) passing through an
orbifold chart (Ũν ,Γν , φ̃ν), with Uν ⊂ Uα ∩ Uβ and φ̃ν(0) = x. Take
smooth injections ψ̃νβ : Ũν ↪→ Ũβ and ψ̃να : Ũν ↪→ Ũα, with monomor-
phisms θνβ : Γν → Γβ and θνα : Γν → Γα. As long as ψ̃νβ(0) = ỹ and
ψ̃να(0) = x̃, then, θνβ : Γν → (Γβ)ỹ and θνα : Γν → (Γα)x̃.

The proof for the following lemma can be found in [Sat57].



Lemma 1.13. Let ψ̃ be an injection {Ũ1,Γ1, φ̃1} → {Ũ2,Γ2, φ̃2} . If
γ2(ψ̃(Ũ1)) ∩ ψ̃(Ũ1) 6= ∅ with γ2 ∈ Γ2 , then γ2(ψ̃(Ũ1)) = ψ̃(Ũ1) and γ2

belongs to the image of the monomorphism Γ1 → Γ2.

Consequently θνβ : Γν → (Γβ)ỹ and θνα : Γν → (Γα)x̃ are isomor-

phisms which implies (Γβ)ỹ
∼= (Γα)x̃. For this reason, the isotropy does

not depend on the choice of orbifold charts, i.e., it is well-defined up to
isomorphisms.

Definition 1.14. Let x ∈ O, the isotropy group Γx is by definition Γν ,
where (Ũν ,Γν , φ̃ν) is an orbifold chart such that φ̃ν(0) = x.

Take the orbifold charts (ψ̃νβ(Ũν), (Γβ)ỹ, φ̃β) and (ψ̃να(Ũν), (Γα)x̃, φ̃α).
The diffeomorphism ψ̃να ◦ ψ̃−1

νβ : ψ̃νβ(Ũν)→ ψ̃να(Ũν), together with the

isomorphism θβα := θνα ◦θ−1
νβ : (Γβ)ỹ → (Γα)x̃, defines a θβα-equivariant

smooth diffeomorphism.

Definition 1.15. Two orbifold charts (Ũ1,Γ1, φ̃1) and (Ũ2,Γ2, φ̃2) are
isomorphic if there exists a diffeomorphism ψ̃ : Ũ1 → Ũ2 and an iso-
morphism θ : Γ1 → Γ2 such that ψ̃ is θ-equivariant.

For every triple Uν ⊂ Uα ∩ Uβ, the orbifold charts(
ψ̃νβ(Ũν), (Γβ)ψ̃νβ(0) , φ̃β

)
∼=
(
Ũν ,Γν , φ̃ν

)
∼=
(
ψ̃να(Ũν), (Γα)ψ̃να(0) , φ̃α

)
,

(1.1.1)
are isomorphic.

Example 1.16. Let
(
R2,Zn, φ̃1

)
and

(
R2 − {0}, {e}, φ̃2

)
be as in ex-

ample 1.7. For every x ∈ C its isotropy group is

Γx =


Zn if x = 0

e if x 6= 0.

Every orbifold chart around 0 ∈ C must have a group isomorphic to Zn.
That is why the second orbifold chart can not be extended to all R2.

If Γx = {e} for all x ∈ O, then every orbifold chart have the
form (Ũ , {e}, φ̃). The compatibility between the orbifold charts is given



by embeddings, without any group monomorphism, and O is a mani-
fold. The orbifold structures which are not manifolds appear when the
isotropy groups are not trivial.

Example 1.17. A manifold M is an orbifold such that Γx = {e}, for
all x ∈M .

Since the theory of G-structures over an orbifold O relates the pres-
ence of a geometric structure with a group action on the frame orbibun-
dle, it is fair to require that the local groups on the orbifold charts Γα
acts by representation on some subgroup of GLn(R).

Lemma 1.18. Every orbifold structure
(
Ũα,Γα, φ̃α

)
admits a compati-

ble orbifold structure
(
Ũ/α,Γ

/
α, φ̃

/
α

)
such that Γ/α acts by a representation

of the orthogonal group.

Proof. Let
(
Ũ ,Γ, φ̃

)
be an orbifold chart and 〈·, ·〉 a riemannian metric

on Ũ . For X,Y ∈ TŨ define the Riemannian metric

〈X,Y 〉/ =
∑
γ∈Γ

〈dγ(X), dγ(Y )〉.

For all γ ∈ Γ there is an induced action Γ y TŨ given by dγ :
TŨ → TŨ , an isometric action with respect to 〈·, ·〉/. Take the path
η(t) = expx̃ (tX), with X ∈ Tx̃Ũ fixed. Because isometries carry
geodesics to geodesics, (γ ·η)(t) is also a geodesic passing through x̃ with
velocity dx̃γ(X) so (γ · η)(t) = expx̃ (tdx̃γ(X)). The exponential map
expx̃ : Tx̃Ũ → Ũ becomes Γ-equivariant. Furthermore, there exist ε > 0
such that expx̃|Bε is a diffeomorphism. Consequently, Γx̃ y Tx̃Ũ acts
by a representation of the orthogonal group and letting Ũ/ = Bε(0),
Γ/ = Γ and φ̃/ = φ̃ ◦ expx̃, we get an orbifold chart (Ũ/,Γ/, φ̃/) on
U/ ⊂ U . The exponential map provides an injection expx̃ : Ũ/ ↪→ Ũ ,
which implies that this orbifold chart also belongs to the same orbifold
structure. Having constructed these new charts we can glue them to-
gether using as injections ψ̃/αβ : Ũ/α ↪→ Ũ/β the maps ψ̃/αβ := dψ̃αβ, with

ψ̃αβ : Ũα ↪→ Ũβ the injections of the original orbifold atlas.



This charts are called linear charts. From now on our orbifold atlases
will be given by linear orbifold charts.

1.2 Orbifolds as quotients

Let µ : P ×G→ G be an action of a Lie group.

• P x G denotes a (right) action of G on P .

• µp := µ(p, ·) : G→ P denotes the map g 7→ µ(p, g).

• µg := µ(·, g) : P → P denotes the map p 7→ µ(p, g).

The action is called proper when the map

ϕ : P ×G→ P × P
(g, p) 7→ (p, µ(p, g))

is a proper map. Moreover, the action is free when the isotropy group

Gx = {g ∈ G | µ(x, g) = x},

is trivial for every p ∈ P .

Proposition 1.19. Let P x G be a free and proper action of a Lie
group on a manifold P . Then P/G has a manifold structure.

For every p ∈ P , the properness hypothesis guarantees the existence
of submanifolds Sp ⊂ P , called slices. The manifold structure in P/G is
determined by the slices together with the embeddings pr◦ϕ : Sp×G→
P . More details about this proof can be found in section 3, theorem
3.34, [AB15].

Definition 1.20. Take p ∈ P . A slice passing through p, denoted by
Sp, is a Gp-invariant submanifold such that

1. TpP = deµp (g)⊕ TpSp and TqP = deµq (g) + TqSp for all q ∈ Sp.

2. If q ∈ Sp and g ∈ G are such that µ(q, g) ∈ Sp then g ∈ Gp.



There are in general many slices through a point p. However, the
manifold structure will be the same no matter which slice we have cho-
sen. Slices will generate the topology on the quotient space P/G. They
are related with opens in P by the tubular neighborhood associated
with each slice.

Definition 1.21. A tubular neighborhood for a slice is Tub(S) = µ(S,G).

Define the action Sp ×Gx Gp by

(s, g) · gp = (µ(s, gp), g
−1
p · g).

If we denote Sp ×Gp G := (Sp × G)/Gp then Sp ×Gp G ∼= Tub(Sp) are
diffeomorphic. As long as the action is free, we get

Tub(Sp)/G ∼= Sp.

As we wil see bellow, if we allow locally free and proper actions, we will
naturally obtain orbifolds instead of manifolds as quotients.

Take ξ ∈ g and let Ψ : P × g → TP denote the infinitesimal action
associated to the G-action defined by

Ψ(p, ξ) = deµp(ξ).

Definition 1.22. A G-action on P is called locally free if Ψ is injective.

Since for all h ∈ G ker (dhµp) = Th (hGp), a locally free action satis-
fies gp = ker (deµp) = 0. Thus, the isotropy group Gp is a 0-dimensional
manifold, a discrete group. The properness hypothesis implies Gp is
compact. Then Gp is finite whenever the action is locally free and
proper.

Proposition 1.23. Let P x G be a locally free and proper action of a
Lie group on a manifold P . Then P/G has an orbifold structure.

Proof. Let p ∈ P and π : P → P/G be the projection map. Given that
the topology on P/G is the quotient topology and

π−1(π(U)) =
⊔
g∈G

gU,



π is a continuous, open map. Take a slice Sp at p and

ϕp = µ|Sp : Sp ×G→ Tub(Sp),

the restriction of the action map. Then

d(q,e)ϕp(Y, ξ) = Yq + Ψ(q, ξ).

Because Sp is a slice and the action is locally free, d(q,e)ϕp is an iso-
morphism. Furthermore, ϕp(q, g) = µg ◦ ϕp(q, e), and then follows that
d(q,g)ϕp is an isomorphism for every q ∈ Sp and g ∈ G. By the inverse
function theorem ϕp becomes a local diffeomorphism. Note that even
though ϕp is not injective, it induces a diffeomorphism

ϕp : Sp ×Gp G
∼=→ Tub(Sp).

Define Up = π(Tub(Sp)). The diffeomorphism ϕp is G-invariant. Then
Sp/Gp ∼= Up are homeomorphic, which implies (Sp, Gp, φ̃p) is a smooth
local model for Up, with φ̃p := π|Sp .
The existence of smooth injections between the local models will guaran-
tee an orbifold structure for P/G. For, let (Sp, Gp, φ̃p) and (Sq, Gq, φ̃q)
be two local models with Up ⊂ Uq. Since

Sq ×Gx Gq

��
Sq ×Gq G

defines a principal bundle structure, there exist local sections

δq : Sq ×Gq G→ Sq ×G.

Consider the embeddings ιp : Sp ↪→ Sp×GpG and ψpq : Sp ↪→ Sq defined
by ιp(x) = [x, e] and

ψpq(r) =
(
pr1 ◦ δq ◦ ϕ−1

q ◦ ι ◦ ϕp ◦ ιp
)

(r).

In addition, let ϑ : Sp → G be defined by

ϑ(r) =
(
pr2 ◦ δq ◦ ϕ−1

q ◦ ι ◦ ϕp ◦ ιp
)

(r).



Given that µ(p, ϑ(p)−1) = ψpq(p) = q, if gp ∈ Gp then

ϑ(p) · gp · ϑ(p)−1 ∈ Gq.

Fix gp, the map θ̂ : Sp → Sq ×Gq defined by

θ̂(r) = (ψpq(r), ϑ(r) · gp · ϑ(r)−1),

induces a monomorphism θ : Gp → Gq, as long as Sp is connected, θ̂
continue and Gq discrete. Furthermore, ψpq is a θ-equivariant map, i.e.,
ψpq : Sp ↪→ Sq is a smooth injection.

Example 1.24. Let S2n+1 = {(z0, z1, . . . , zn) ∈ Cn+1 | |z0|2 + |z1|2 +
. . . + |zn|2 = 1} and let a0, a1, . . . , an ∈ Z+ be co-primes. Define the
action µ : S2n+1 × S1 → S2n+1 by

µ
(

(z0, z1, . . . , zn) , eiθ
)

=
(
eia0θz0, e

ia1θz1, . . . , e
ianθzn

)
.

For z = (z0, z1, . . . , zn) fixed we get an injective map

d1µz =


ia0z0

ia1z1
...

ianzn

 ,

for every z ∈ S2n+1. Thus, this action is locally free. Moreover, it is
proper because S1 is compact. By the previous proposition, the quo-
tient space S2n+1/S1 has an orbifold structure. Denote this orbifold
structure by WP (a0, . . . , an). It is called the weighted projective space
with weights a0, . . . , an.
Let z ∈ S2n+1 be a point with non-trivial isotropy. That means

µ(z, eiθ) = z,

with eiθ 6= 1. Then
eiajθzj = zj ,

for all j. If zj 6= 0 and zk 6= 0 for j 6= k then

ak =
ajck
cj

,



for two integers cj , ck ∈ Z, with 0 < cj < aj and 0 < ck < ak. Because
the numbers aj , ak are co-primes, this equality can not hold. Then
z = (z1, . . . , zn) have non-trivial isotropy when all but one zj equals to
zero.
Take w = (0, 0, . . . , 0, wj , 0, . . . , 0) ∈ S2n+1. The isotropy group S1

w is
given by the elements eiθ ∈ S1 such that eiajθ = 1, the roots of the unity.
Thus S1

w
∼=
〈
ei2π/aj

〉
= Zaj .

Let Ej = {(z0, . . . , zn) ∈ S2n+1 | |zj | = 1}, with 0 ≤ j ≤ n. Its isotropies
are

Γx =


Zaj if x ∈ Ej

e if x /∈ Ej .

A slice passing through wj ∈ Ej is given by

Swj = {(z0, . . . , zn) ∈ S2n+1 | |zj | 6= 0, Arg(zj) = Arg(wj)}.

The tubular neighborhoods associated to this slices are

Tub(Swj ) = {(z0, . . . , zn) ∈ S2n+1 | |zj | 6= 0}.

Take π : S2n+1 →WP(a0, . . . , an) the projection map and let

Uwj = π(Tub(Swj )).

Hence, (Swj ,Zaj , π|Swj ) is a local model for Uwj . Choosing wj ∈ Ej for
each equator, we get

n⋃
j=0

Tub(Swj ) = S2n+1.

This means the local models (Swj ,Zaj , π|Swj ) generate the orbifold struc-

ture for the weighted projective space. In fact, (Tub(Swj ),Zaj , π|Swj )
generate the same orbifold structure, i.e., the orbifold charts look like
the manifold charts for the projective space, plus isotropies due to the
weights.
In particular, take WP(1, a) ∼= S3/S1. The points with non-trivial
isotropy are the ones on the equator E1 = {(w0, w1) ∈ S3 : |w1| = 1},



with isotropy Za. For all w = (w0, w1) ∈ S3 − E1 there exist a unique
eiθ such that µ(w, eiθ) ∈ S2

+, where C×R ⊃ S2
+ = {(z, x) ∈ S2 : x ≥ 0}.

All the equator E1 maps onto the equator of S2
+. Topologically, the

quotient space will be S2
+/ ∼, with (z1, x1) ∼ (z2, x2) if and only if

x1 = x2 = 0. That means S2
+/ ∼∼= S2 are homeomorphic. However,

every chart of S2 that contains the south pole is of the form (Ũ ,Za, φa),
the local model for a cone. Therefore WP(1, a) is a 2-sphere with a cone
point on the south pole or equivalently on the north pole. WP(1, a)
looks like a teardrop.

1.3 Maps between orbifolds

Satake’s works on orbifolds (V-manifolds!) suggested a close relation-
ship with manifolds. Maps between orbifolds were defined locally. For
any injection on the source orbifold, there is another on the target orb-
ifold that commutes with the local lifts, [Sat57] section 2 (this is just
the definition of manifold maps but on the orbifold context). However,
maps are given up to an equivalence relation (this differs from the def-
inition of maps on manifolds because many liftings exist over a chart,
unlike the manifold case where only one exists). The way injections are
related do not imply the existence of group homomorphisms between
the orbifold charts. Furthermore, they do not allow us to define the
pullback of an orbibundle uniquely.

A notion of orbifold map that considers these two situations is that of
good orbifold map, see [CR01] definition 4.4.1. Remember orbifolds can
be thought of as groupoids up to Morita invariance. Maps are smooth
homomorphisms between the groupoids, up to Morita equivalence. In
the groupoid context, this is the notion of a strong map, [MP97] sec-
tion 5. It turns out that good maps and strong maps are equivalent,
see [LU04] proposition 5.1.7. Because G-structure theory is based on
the relation between the tangent orbibundle and frame orbibundle, we
are interested in maps between principal orbibundles that come from
an orbifold diffeomorphism between the basis orbifolds. To preserve the
structures constructed, we will need our maps to be good maps.
There are more types of orbifold maps; one of the most natural is Sa-



take’s definition but with extra information: group homomorphisms
between the local charts. These different types of orbifold maps can be
found on [BB13]. In particular, the notion of complete orbifold maps,
where the equivalence between orbifold maps is given by the germs plus
the equality of the group homomorphisms, coincides with the good orb-
ifold maps. Reduced orbifold maps are equivalent to the notion of orb-
ifold map given in [ALR07].

Let O1 be an n-dimensional orbifold and O2 be an m-dimensional orb-
ifold with atlases {(Ũα,Γα, φ̃1

α)}α∈J and {(Ṽυ,Υυ, φ̃
2
υ)}υ∈K , respectively.

Definition 1.25. A smooth local lift for a continuous map f : O1 → O2,
around x ∈ O1, is given by:

1. Orbifold charts
(
Ũ ,Γ, φ̃1

)
and

(
Ṽ ,Υ, φ̃2

)
with x ∈ U , f(x) ∈ V

and f(U) ⊂ V .

2. A smooth map f̃ : Ũ → Ṽ such that f ◦ φ̃1 = φ̃2 ◦ f̃ .

3. For all γ ∈ Γ there exists a γ̂ ∈ Υ with γ̂f̃ = f̃γ.

The last condition does not imply the existence of a homomorphism-
from Γ to Υ.

Example 1.26. Take the orbifolds C = R2/Zk and [0,∞) = R/Z2.
Define h̃ : R2 → R as

h̃(x, y) =
√
x2 + y2.

Given that h̃ is Zk-invariant, it defines the lifts for a smooth orbifold
map h : C → [0,∞).

Take a ∈ Z+ and let B1(0) ⊂ R2 be the open ball centered at the
origin of radius 1. The rotation by any angle is a well-defined action on
B1(0). Consequently C1,a = B1(0)/Za is an orbifold.

Example 1.27. Consider C1,a and WP(1, a). Recall that (0, 1) ∈
WP(1, a) have non-trivial isotropy equal to Za. Also, let S(0,1) be a

slice passing through (0, 1) as in example 1.24. Let f̃ : B1(0) → S(0,1)

be
f̃(x, y) = (x+ iy,

√
1− x2 − y2 + 0i).



The Za-equivariant function f̃ induces a map f : C1,a →WP(1, a). This
map stresses that the open sets containing the points with non-trivial
isotropy looks like a cone.

Let f̃β : Ũβ → Ṽβ be a smooth local lift. If Uα ⊂ Uβ, there exists
an orbifold chart (Ũα,Γα, φ̃α) and an injection ψ̃1

αβ : Ũα ↪→ Ũβ. Define

f̃αβ : Ũα → Ṽβ by f̃αβ := f̃β ◦ ψ̃1
αβ. Let (φ̃2

β ◦ f̃αβ)(Ũα) := Vα; it is a
connected open subset Vα ⊂ Vβ. Thus, there exists an orbifold chart
(Ṽα,Υα, φ̃

2
α) and an injection ψ̃2

αβ : Ṽα ↪→ Ṽβ. Take the lift f̃α : Ũα → Ṽα

defined by f̃α :=
(
ψ̃2
αβ

)−1
◦ f̃αβ. We obtain the following commutative

diagram

Ũβ f̃β // Ṽβ

Ũα

ψ̃1
αβ

??

f̃α //

φ̃1β
��

Ṽα

ψ̃2
αβ

@@

φ̃2
β

��
φ̃1
α

��

Uβ φ̃2
α

��

f // Vβ

Uα

⊂
>>

f // Vα

⊂
??

We could have chosen a different orbifold chart over Vα. Its injection
will be of the form ψ̃2

αβ · γ, for a fixed γ ∈ Υα, and γ−1 · f̃α will be the

smooth local lift induced by f̃β.

Definition 1.28. Take two smooth liftings of f , f̃α : Ũα → Ṽα and
f̃β : Ũβ → Ṽβ. They are isomorphic if there are isomorphisms between
the orbifold charts ψ̃1

αβ : Ũα → Ũβ and ψ̃2
αβ : Ṽα → Ṽβ such that ψ̃2

αβ ◦
f̃α = f̃β ◦ ψ̃1

αβ.

Hence a smooth lift for fβ : Uβ → Vβ induces smooth lifts for every
open Uα ⊂ Uβ. All the possible lifts f̃α are isomorphic.

Definition 1.29. Two lifts f̃α, f̃β are equivalent at x ∈ Uα ∩ Uβ as
germs, denoted f̃α ∼x f̃β, if there exists an orbifold chart x ∈ Uσ ⊂



Uα ∩ Uβ such that the induced lifts f̃σα : Ũσ → Ṽσ, from f̃α, and f̃σβ :
Ũσ → Ṽσ, from f̃β, are isomorphic lifts.

Having defined local liftings for orbifold maps we can define a lift
for an orbifold map.

Definition 1.30. Let f : O1 → O2 be a continuous function. A smooth
lift f̃ is given by a system of smooth local liftings f̃x : Ũx → Ṽx for every
x ∈ O1 such that f̃x ∼z f̃y, for every z ∈ Ux ∩ Uy.

Definition 1.31. An orbifold map is a continuous map f : O1 → O2

together with a germ of liftings f̃ . If the liftings are of class Ck then the
orbifold map is said to be of class Ck.

Because all the injections between orbifold charts and group actions
are taken to be C∞, then a lift f̃α is of class Ck if and only if any other
lift f̃β is of class Ck.

Example 1.32. Define η̃1, η̃2 : (−1, 1) → R2 by η̃1(t) = (t, |t|) and
η̃2(t) = (t, t). Both η̃1, η̃2 project onto the same path on R2/Z4. They
are lifts of the same map η : (−1, 1) → R2/Z4 but are not on the
same equivalence class because they are not equal as germs of functions
around 0 ∈ R2. The regularity of η, as a map between orbifolds, depends
on the choice of the lift.

On orbifold category, a map will have certain property if this prop-
erty holds for every lifting. For example, if one lift of an orbifold map
has constant rank, then all lifts will have the same property. It fol-
lows that having constant rank is a well-defined property of an orbifold
map. In particular, that the lifts are immersions is a well-defined prop-
erty of an orbifold map. Take a lift f̃ : Ũ → Ṽ , and the smooth map
df̃ : TŨ → T Ṽ . If the local lifts of the orbifold map f : O1 → O2 are
immersions, then for γ1, γ2 ∈ Γ and θ : Γ→ Υ the equation

θ(γ1) · df̃(X̃) = θ(γ2) · df̃(X̃),

implies
df̃(γ1 · X̃) = df̃(γ2 · X̃),



where the Γ action means γ · X̃ := dγ(X̃). Given that the differential is
injective γ1γ

−1
2 · X̃ = X̃. If we have chosen a point with trivial isotropy

then γ1 = γ2. If not, this will be true for almost every point, which
implies (see the proof in lemma 1 [Sat57]) γ1 = γ2; that means θ is
injective. However, if the lifts of f are submersions, it is not true that
the homomorphism θ is surjective. For example, take R2/Z4 and R2/Z8

with the identity map ι : R2 → R2 as injection and the homomorphism
θ : Z4 ↪→ Z8 defined by 1 mod 4 7→ 2 mod 8. Clearly ι is a submersion,
but θ is not surjective.

Definition 1.33. A smooth orbifold map f : O1 → O2 is a submersion
(immersion) if the local lifts are submersions (immersions) and the lo-
cal homomorphisms are surjective (injective). It is a diffeomorphism
if the local lifts are diffeomorphisms and the local homomorphisms are
isomorphisms.

The conditions imposed for submersions (immersions) on the homo-
morphisms guarantees that the maps satisfies classical theorems satis-
fied on manifold category: the local form submersion (immersion) the-
orem ([CJ19] section 3.2), the regular value theorem ([BB12] section 4)
among other classical results. This is due to the close relationship be-
tween manifolds and analysis on Rn, and orbifolds and manifolds. The
techniques are similar, i.e., using analysis locally and proving that the
property does not depend on the choise of a local chart. Furthermore,
locally, some geometric constructions can induce globally defined geo-
metric structures by gluing together the local informations. The gluing
process requires the existence of partitions of unity. Take an orbifold
atlas (Ũα,Γα, φ̃α) and a partition of the unity ρα : Ũα → R subordi-
nate to this atlas (whose existence is guaranteed by the Hausdorff and
paracompactness hypothesis). Now define λα : Ũα → R by

λα(x̃) =
1

|Γα|
∑
γ∈Γα

ρα(γ · x̃).

They are continuous functions that define a Γα-invariant partition of
the unity.



Because the orbifold structures that appears on G-structure theory
are quotients of manifolds by locally free and proper actions P/G, the
orbifold maps we are interested enjoys particular properties. For, let
O1 = P1/G, O2 = P2/G be two orbifolds and θ : G → G a group iso-
morphism. If f̃ : P1 → P2 is a θ-equivariant map, then it send slices in
slices and for an arbitrary g ∈ Gp

θ(g) · f̃(p) = f̃(g · p) = f̃(p).

It follows that for every p ∈ P the restriction θp : Gp → Gf̃(p) is an

isomorphism. Thus, f̃ induces an orbifold map f : O1 → O2. The lifts
of f : O1 → O2 are pairs {f̃ , θp}, with f̃ a θp-equivariant map. This last
condition is a consequence of a more general fact. Take two injections
ψpq : Sp ↪→ Sq and ψqr : Sq ↪→ Sr between slices of P1. If we write
θ(g) = g, the homomorphism condition becomes

g1 · g2 = g1 · g2. (1.3.1)

Let f̃(Sp) = Sf̃(p) (the same for the subindices q and r). An injection
ψpq : Sp ↪→ Sq induces an injection

ψpq : Sf̃(p) ↪→ Sf̃(q).

The induced injections satisfy

ψqr ◦ ψpq = ψqr ◦ ψpq. (1.3.2)

Every isotropy element g ∈ Gp can be though of as an injection. Then
condition (1.3.1) is a consequence of condition (1.3.2). That means that
for every lift f̃ : Sp → Sf̃(p), the existence of a group homomorphism

θp : Gp → Hf̃(p) such that f̃ is θp-equivariant is a consequence of the

compatibility condition (1.3.2) between the injections on the orbifolds.

Returning to the general setting of orbifolds, without thinking them



as quotients, let f : O1 → O2 be an orbifold map. Locally

Ũβ f̃β // Ṽβ

Ũα

ψ̃1
αβ

??

f̃α //

φ̃1β
��

Ṽα

ψ̃2
αβ

@@

φ̃2
β

��
φ̃1
α

��

Uβ φ̃2
α

��

f // Vβ

Uα

⊂
>>

f // Vα

⊂
??

The injection ψ̃1
αβ induces the injection ψ̃2

αβ whenever the lifts f̃α and

f̃β are chosen. We can though of as condition (1.3.2) as associating the
injections induced by a system of lifts (f̃α : Ũα → Ṽα)α∈I by the rule

ψ̃1
βσ ◦ ψ̃1

αβ 7→ ψ̃2
βσ ◦ ψ̃2

αβ. (1.3.3)

Definition 1.34. A system of lifts (f̃α : Ũα → Ṽα)α∈I for an orbifold
map f : O1 → O2 is called a compatible system if the induced injections
satisfy (1.3.3).

Then, for γ1, γ2 ∈ Γα one gets

γ1 7→ γ̂1 , γ2 7→ γ̂2 , γ1 · γ2 7→ γ̂1 · γ̂2,

which implies that θα : Γα → Υα, defined θα(γi) = γ̂i, is a homo-
morphism of groups. Moreover, f̃α is a θα-equivariant map. Hence, a
compatible system associates for every orbifold chart (Ũα,Γα, φ̃α) a pair
{f̃α, θα} : Ũα → Ṽα, with f̃α a θα-equivariant map.

Definition 1.35. A map f : O1 → O2 is called a good map if it admits
a compatible system of liftings that belongs to the same germ.

Remark: Not all the continuous functions between orbifolds are
good maps. For a counterexample, see [CR01] example 4.4.2a.



We will see that by construction, every orbibundle will be defined in
terms of good orbifold maps. In addition, constructions associated with
orbibundles, such as tensor products or pullbacks, are given in terms of
good orbifold maps.

Proposition 1.36. Let P1 x G, P2 x G be two manifolds with a locally
free and proper action of a Lie group. Take the Lie group isomorphism
θ : G → G. There is a 1-1 correspondence between θ-equivariant maps
f̃ : P1 → P2 and good orbifold maps f : P1/G → P2/G with respect to
θ.

Proof. (⇒) Done.
(⇐) Take a lift f̃p : Sp → Sf̃(p) that belongs to the compatible system.

Recall that Tub(Sp) ∼= Sp ×Gp G. Then we can extend f̃ to all P1 using

the tubular neighborhoods and leting f̃ : Sp ×Gp G→ Sf̃(p) ×Gf̃(p) G be

defined by

f̃([s, g]) =
[
f̃p(s), θ(g)

]
.



Chapter 2

Orbibundles

The theory of G-structures happens on orbibundles. It relates the pres-
ence of (some) geometric structures on O with a principal subbundle
Q ⊂ Fr(O) of the frame orbibundle. Due to the effectiveness hypothe-
sis on the orbifold charts, the frame orbibundle is a manifold ([ALR07]
theorem 1.23). In addition to geometric structures on O, also compati-
ble connections on TO are related to connections on the frame bundle
Fr(O). Consequently, many objects we can address to our geometric
structures, such as torsion or curvature, will also have their correspond-
ing object on Fr(O).

In the first section we study cone orbibundles, morphisms, and present
some cone orbibundles constructions whose sections are of particular in-
terest (they allow us to define geometric structures). The second section
describes cone connections, gives an equivalent approach by connection
matrices and studies parallel translation in the orbibundle setting. On
the other hand, in the third section, we define principal orbibundles and
morphisms. Since we are interested in subbundles of the frame orbibun-
dle (a manifold) we will develop the theory of principal orbibundles in
a specific context: a manifold with a proper and locally free action of a
Lie group. Later we show how to construct from a principal orbibundle
a fiber orbibundle, through associated bundles. This construction gives
a 1-1 correspondence between cone orbibundles and principal orbibun-
dles. One important object that appears is the tautological form, which

28



comes from the identity morphisms Id : TO → TO, represented by a
section of T ∗O⊗TO. Finally, we will discuss reductions of the structural
group, a critical concept that connects the existence of geometric struc-
tures with a subbundle Q x G → O of the frame orbibundle Fr(O).
The fourth section defines principal orbibundle connections from the
perspective of horizontal distribution and principal connection. Then
we show the 1-1 correspondence between cone and principal orbibundle
connections.

This chapter’s organization is inspired by the lecture notes [Cra15]. The
material presented in this chapter develops the theory of orbibundles as
close as possible to the theory of fibre bundles over manifolds. The
orbibundle definition given by Satake were not enough to construct a
well-defined orbibundle theory since morphisms are not well-behaved.
Nevertheless, it turns out that the category of orbibundles with mor-
phisms provided by good orbifold maps is well-defined. We encourage
the reader to see the appendix of [CR01]. Besides, when orbifolds are
treated as groupoids, there is a natural notion of orbibundles and mor-
phisms; for example, see chapter 2 of [ALR07].

2.1 Cone orbibundles

Let O be an n-dimensional orbifold with atlas (Ũα,Γα, φ̃α)α∈I . The
tangent orbibundle will be our guiding example to talk about the theory
of cone orbibundles.

2.1.1 The tangent orbibundle

The Γα-action on Ũα lifts to T Ũα by γ · X̃ = dx̃γ(X̃). The natural
projection π̃α : TŨα → Ũα becomes Γα-equivariant, inducing a map on
the quotients such that

T Ũα

��

π̃α // Ũα

��
TŨα/Γα πα

// Ũα/Γα



is a commutative diagram. Take an orbifold chart (Ũβ,Γβ, φ̃β) such that
Uα ⊂ Uβ. Thus, there exists a smooth injection ψ̃αβ : Ũα ↪→ Ũβ which
induces the smooth map dψ̃αβ : T Ũα → TŨβ. Because every injection
has an associated monomorphism θαβ : Γα → Γβ, for every γ ∈ Γα, we
get

dψ̃αβ(γ · X̃) = dψ̃αβ(dγ(X̃))

= d(ψ̃αβ ◦ γ)(X̃)

= d(θαβ(γ) ◦ ψ̃αβ)(X̃)

= θαβ(γ) · dψ̃αβ(X̃).

Therefore (dψ̃αβ, θαβ) defines a smooth injection. For every α, the quo-
tient TŨα/Γα inherits the quotient topology. Define the topological
space

Y :=
⊔
α∈I

α×
(
TŨα/Γα

)
,

where every α × TŨα/Γα is an open. The relations between the opens
of Y allow the construction of a new topological space as follows. Let
(α, [X̃α]), (β, [X̃β]) ∈ Y and define the equivalence relation generated
by (α, [X̃α]) ∼ (β, [X̃β]) if there exists an injection ψ̃αβ : Ũα ↪→ Ũβ such
that dψ̃αβ(X̃α) = X̃β. Take the quotient

TO := Y/ ∼,

and the projection map p : Y → TO. Every open on Y is given by
arbitrary unions of elements of the form α ×W ⊂ Y , where W ⊂ TŨα
is open. Moreover

p−1(p(α×W )) =
⊔
β∈I

β ×
(
dψ̃αβ(W )/Γβ

)
,

and therefore p : Y → TO is an open continuous map. Take the re-
striction pα := p|α×(T Ũα/Γα), if pα([X̃1]) = pα([X̃2]) then there exists

γ ∈ Γα such that γ · X̃1 = X̃2 which means [X̃1] = [X̃2]. Hence, we get
a homeomorphism p : α× (TŨα/Γα)→ TO onto its image. Given that

the opens pα

(
α × (TŨα/Γα)

)
:= TUα forms a basis for the quotient



topology on TO, we get a 2n-dimensional orbifold structure on TO.
The Γα-equivariant projections π̃α : TŨα → Ũα induces an orbifold
map π : TO → O because, locally, we have the following commutative
diagram

T Ũα

��

π̃α // Ũα

��
T Ũα/Γα

��

πα
// Ũα/Γα

��
TUα π

// Uα.

If x̃ ∈ Ũα projects onto x ∈ O, each tangent space Tγ·x̃Ũα projects onto
x too. Consequently, each fiber is given by the quotient

π−1(x) = Tx̃Ũα/(Γα)x̃.

Remark: If (Γα)x̃ 6= {e} then this is not a vector space but what is
called a cone.

2.1.2 Cone orbibundles and morphisms

The key concepts that allow the construction of the orbifold structure
on the tangent orbibundle are, firstly, the bundle structure

Γα y TŨα

π̃α
��

Γα y Ũα

on an orbifold atlas such that the projection is Γα-equivariant. Secondly,
for each injection ψ̃αβ : Ũα ↪→ Ũβ there exists an associated injection
dψ̃αβ : T Ũα ↪→ TŨβ such that

TŨα
dψ̃αβ //

πα
��

TŨβ

πβ
��

Ũα
ψ̃αβ

// Ũβ



commutes. The action by an element γ ∈ Γα is an injection which means
that the induced action on TŨα is a consequence of this compatibility
between injections.

Definition 2.1. An orbifold E defines an orbibundle over O if

1. For each orbifold chart (Ũα,Γα, φ̃α) there exists an orbifold chart
(Ẽα,Γα, ϕ̃α) on E and a map π̃α : Ẽα → Ũα defining a bundle
structure.

2. Each injection ψ̃αβ : Ũα ↪→ Ũβ defines an injection ψ̃Eαβ : Ẽα ↪→ Ẽβ
such that

Ẽα
ψ̃Eαβ //

π̃α
��

Ẽβ
π̃β
��

Ũα
ψ̃αβ

// Ũβ

commutes.

A cone orbibundle of rank k is an orbibundle E such that, locally,
Ẽα ∼= Ũα×Rk are diffeomorphic and each induced injection ψ̃Eαβ is linear
over the fibers. A trivialization, called a local frame, for a cone orbi-
bundle is a system of local sections s̃αi : Ũα → Ẽα such that (s̃αi (x̃))ki=1

is a basis for (Ẽα)x̃. Explicitly the diffeomorphism ξα : Ũα×Rk → Ẽα is
given by

ξα(x̃, v1, . . . , vk) =
k∑
i=1

vis̃αi (x̃).

Take two local frames (ξα(x, ei))
k
i=1 and (ξβ(x, ei))

k
i=1 for Ũα and Ũβ.

An injection ψ̃Eαβ : Ẽ |Ũα ↪→ Ẽ|Ũβ induces the injection

ψ̃×αβ : Ũα × Rk ↪→ Ũβ × Rk,

defined by

ψ̃×αβ(x̃, v) =
(
ξ−1
β ◦ ψ̃

E
αβ ◦ ξα

)
(x̃, v).



There is an explicit description for Ũα × Rk
ψ̃×αβ→ Ũβ × Rk in terms of

a smooth map gαβ : Ũα → GLk(R), because of the linearity of the
injections, given by

ψ̃×αβ(x̃, v) = (ψ̃αβ(x̃), gαβ(x̃)v).

Hence every γ ∈ Γα induces an action on Ũα × Rk, encoded on the
smooth map gγ : Ũα → GLk(R). The maps gαβ are called transition
functions associated with the orbibundle structure E → O.
Take injections ψ̃αβ : Ũα → Ũβ, ψ̃βη : Ũβ → Ũη and ψ̃αη : Ũα → Ũη.
Given that the action is effective there exists a unique γ ∈ Γα such that
θαη(γ) ◦ ψ̃αη = ψ̃βη ◦ ψ̃αβ, which implies

gθαη(γ)(ψ̃αη(x̃)) · gαη(x̃) = gβη(ψ̃αβ(x̃)) · gαβ(x̃). (2.1.1)

This equation is the orbifold version of the classical cocycle condition
used to describe vector bundles over manifolds.

Definition 2.2. A cone orbibundle E of rank k over an orbifold O
consists of

1. A system of vector bundles πα : Ẽα → Ũα of rank k for an orbifold
atlas on O.

2. The existence of a smooth map gαβ : Ũα → GLk(R), for each
injection ψ̃αβ : Ũα ↪→ Ũβ, such that (2.1.1) is satisfied.

Example 2.3. The cotangent orbibundle.
Each orbifold chart defines a local trivialization for the tangent orbi-

bundle structure TŨα ∼= Ũα × Rn denoted ξα(x̃, ei) :=
∂

∂xi

∣∣∣∣
x̃

∈ Tx̃Ũα

and defined
∂

∂xi

∣∣∣∣
x̃

f =
d

dt

∣∣∣∣
t=0

f̃α(x̃+ tei),

where f : O → R is an orbifold map. The tangent orbibundle structure
is codified on the transition maps gαβ : Ũα → GLn(R)

gαβ(x̃) = dx̃ψ̃αβ,



where the matrix is the one that represents the linear transformation

dx̃ψ̃αβ on the basis
∂

∂xi

∣∣∣∣
x̃

. The duals dxi ∈ T ∗Ũα, characterized by

dxi

(
∂

∂xj

)
= δij ,

define a frame on T ∗Ũα. Define g∗αβ : Ũα → GLn(R) by

g∗αβ = (g−1
αβ )T .

They satisfy the cocycle condition (2.1.1) and define an injection ψ̃∗αβ
such that

T ∗Ũα

π̃α
��

ψ̃∗αβ // T ∗Ũβ

π̃β
��

Ũα
ψ̃αβ // Ũβ

commutes. This gives a cone orbibundle structure T ∗O π→ O.

A natural way to compare two vector bundles is by collecting linear
maps between the fibers that vary smoothly on the base. Because the
cone orbibundles could have some fibers that are not vector spaces, but
a cone, linear maps between the fibers have to consider this information.
Furthermore, the smooth variation on the base adapts onto the orbifold
case.

Definition 2.4. Take π1 : E1 → O1 and π2 : E2 → O2 two cone or-
bibundles of rank k1 and k2. A morphism is given by orbifold maps
f : O1 → O2 and h : E1 → E2 satisfying

1. For all x ∈ O1 and f(x) ∈ O2 there exist orbifold charts (Ũ ,Γ, φ̃)
and (Ṽ ,Υ, ϕ̃) such that

Ũ × Rk1 h̃ //

π̃1
��

Ṽ × Rk2

π̃2
��

Ũ
f̃

// Ṽ



commutes and h̃x̃ : {x̃} × Rk1 → {f̃(x̃)} × Rk2 is linear for all
x̃ ∈ Ũ .

2. Every injection ψ̃αβ : Ũα → Ũβ induces an injection τ̃αβ : Ṽα → Ṽβ
such that h̃β ◦ ψ̃×αβ = τ̃×αβ ◦ h̃α. This means that

Ũβ × Rk1 h̃β // Ṽβ × Rk2

Ũα × Rk1

ψ̃×αβ
88

h̃α //

π̃1
��

Ṽα × Rk2

τ̃×αβ
88

π̃2

��
π̃1

��

Ũβ π̃2

��

f̃β // Ṽβ

Ũα

ψ̃αβ

88

f̃α // Ṽα

τ̃αβ

88

commutes.

Because the maps h̃α are linear for each fiber then

h̃α(x̃, v) = (f̃α(x̃), kα(x̃)v), (2.1.2)

where kα : Ũα :→ Mk1,k2(R) is a smooth map representing the linear
transformations (h̃α)x̃. Take the transition maps on E1 and E2 given
by g1

αβ : Ũα → GLk1(R) and g2
αβ : Ṽα → GLk2(R). The definition of a

morphism implies that

kβ

(
ψ̃αβ(x̃)

)
= g2

αβ(f̃α(x̃)) · kα(x̃) ·
(
g1
αβ(x̃)

)−1
. (2.1.3)

Proposition 2.5. Take π1 : E1 → O1 and π2 : E2 → O2 two cone
orbibundles of rank k1 and k2. An orbifold map h : E1 → E2 is a
morphism if there exists a system of smooth maps kα : Ũα →Mk1,k2(R)
over an orbifold atlas such that h̃α satisfies (2.1.2) and (2.1.3).

Example 2.6. Let π1 : TO → O and π2 : T ∗O → O be the tangent and
cotangent orbibundles with the structures already given. If the charts
on O are such that gαβ(x̃) ∈ O(n), then

g∗αβ =
(
g−1
αβ

)T
= gαβ.



Choose kα = Id for all charts. Then, because equation (2.1.3) is sat-
isfied, we obtain an orbibundle morphism h : TO → T ∗O covering the
identity map Id : O → O.

We will see that reducing the Lie group GLn(R) to the Lie group
O(n) on the frame orbibundle is the same as requiring the condition
supposed in the previous example.

2.1.3 Operations with cone orbibundles

Let π : E → O be a cone orbibundle with transition functions gαβ asso-
ciated with the orbifold structure (Ũα,Γα, φ̃α)α∈J and the local frames
(s̃αi )ki=1. We want to construct new cone orbibundles out of E .

Example 2.7. Tensor product.
Take the (r, s)-type tensor product of E , that is

Er,s :=

r︷ ︸︸ ︷
E∗ ⊗ · · · ⊗ E∗⊗E ⊗ · · · ⊗ E︸ ︷︷ ︸

s

.

To make sense of this space, we want to construct an orbifold structure
that induces the orbibundle structure πr,s : Er,s → O. Let s̃iα ∈ Ẽ∗α be
characterized by

s̃iα(s̃αj ) = δij .

Define
s̃i1,...,ir+sα := s̃i1α ⊗ · · · ⊗ s̃irα ⊗ s̃αir+1

⊗ · · · ⊗ s̃αir+s ,

for 1 ≤ i1 ≤ i2 ≤ . . . ≤ ir+s ≤ k. All the possible values it takes defines
a local frame for Ẽr,sα , inducing the diffeomorphism Ũα×Rk(r+s) ∼= Ẽr,sα .
For every injection ψ̃αβ let gr,sαβ : Ũα → GLk(r+s)(R) be

gr,sαβ(x̃) =

r︷ ︸︸ ︷(
g−1
αβ (x̃)

)T
⊗ · · · ⊗

(
g−1
αβ (x̃)

)T
⊗ gαβ(x̃)⊗ · · · ⊗ gαβ(x̃)︸ ︷︷ ︸

s

,

where ⊗ stands for the Kronecker product of matrices. Since gαβ sat-
isfies (2.1.1), it follows that gr,sαβ also satisfies (2.1.1). This gives a cone
orbibundle structure Er,s → O of rank k(r + s).



Remark: The action of an element γ ∈ Γ on s̃ ∈ Ẽ∗ is characterized
by

(γ · s̃)(X̃) = s̃(γ−1 · X̃),

where X̃ ∈ Ẽ .

Example 2.8. Symmetric and alternating tensor products.
Let Sr be the permutations on r-letters. Define the symmetric tensor
product by

Σr(E∗) = {v1⊗· · ·⊗vr ∈ Er,0 | v1⊗· · ·⊗vr = vσ(1)⊗· · ·⊗vσ(r), σ ∈ Sr},

and the alternating tensor product by

Λr(E∗) = {v1 ⊗ · · · ⊗ vr ∈ Er,0 |
v1 ⊗ · · · ⊗ vr = (−1)sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(r), σ ∈ Sr}.

Locally, any s ∈ Σr(E∗) is given by

s̃ =
∑

1≤i1≤···≤ir≤k
s̃i1,...,ir s̃

i1 ⊗ · · · ⊗ s̃ir .

s̃ can be though of as a multilinear map s̃ : Ẽ × · · · × Ẽ → R defined by

s̃(X̃1, . . . , X̃r) =
∑

1≤i1≤···≤ir≤k
s̃i1,...,ir s̃

i1(X̃1) · · · s̃ir(X̃r).

If γ · X̃i = X̃i for all i and γ ∈ Γ then

(γ · s̃)(X̃1, . . . , X̃r) = s̃(X̃1, . . . , X̃r).

It follows that s(X1, . . . , Xr) is well-defined. Furthermore, because s is
invariant under permutations the induced map s : E inv× · · · × E inv → R
is a multilinear symmetric map. Similarly, every ω ∈ Λr(E∗) can be
tough of as a multilinear antisymmetric map ω : E inv × · · · × E inv → R.

Let F → O be a cone orbibundle with orbifold atlas
(
F̃α,Γα, ϕ̃α

)
.



Example 2.9. Direct sum.
The direct sum, denoted by E ⊕F , has Ẽα⊕ F̃α as orbifold charts , and
g⊕αβ as transition maps, defined by

g⊕αβ(x̃) :=

(
gEαβ(x̃) 0

0 gFαβ(x̃)

)
In particular, the Γ-action is given by

γ · v ⊕ w = (γ · v)⊕ (γ · w).

Example 2.10. Symmetric and alternating tensor products with
coefficients on a cone orbibundle.
Locally an element s⊗ f ∈ Σr(E∗)⊗F is given by

s̃⊗ f̃ =
∑

1≤i1≤···≤ir≤k
s̃i1,...,ir s̃

i1 ⊗ · · · ⊗ s̃ir ⊗ f̃i1,...,ir .

It defines the symmetric multilinear map s̃ : Ẽ × · · · × Ẽ → F̃ by

s̃(X̃1, . . . , X̃r) =
∑

1≤i1≤···≤ir≤k
s̃i1,...,ir s̃

i1(X̃1) · · · s̃ir(X̃r)f̃i1,...,ir .

Then s ⊗ f : E inv × · · · E inv → F inv is a multilinear symmetric map.
Similarly, Λr(E∗) ⊗ F 3 ω ⊗ f : E inv × · · · E inv → F inv is a multilinear
antisymmetric map.

Remark: The orbibundle Hom(E ,F) is E∗ ⊗F .

Example 2.11. Pullbacks.
Let O2 be an orbifold with orbifold atlas (Ũ2

α,Γ
2
α, φ̃

2
α) and f : O2 → O

be a good orbifold map with a compatible system {f̃α, θf,α}. Every
injection ψ̃2

αβ : Ũ2
α ↪→ Ũ2

β induces a unique injection ψ̃αβ : Ũα ↪→ Ũβ
because of the definition of a good map. Take the pullback vector bundle
over Ũ2

α

f̃∗α

(
Ẽα
)

//

��

Ẽα

pr1

��
Ũ2
α

f̃α

// Ũα



Define g2
αβ : Ũ2

α → GLk(R) by

g2
αβ(ỹ) = gαβ(f̃α(ỹ)).

This system of maps satisfies condition (2.1.1), as long as the orbifold
map is a good one, and then defines a cone orbibundle structure f∗(E)
over O2.

2.1.4 Orbisections.

An orbisection for the orbibundle π : E → O is a (good) orbifold map
s : O → E such that π ◦ s = id. The space of all orbisections is denoted
by Sec(E).

Example 2.12. Cone fields.
Cone fields are orbisections of a cone orbibundle. Take (Ũ ,Γ, φ̃) an
orbifold chart, π̃ : Ẽ → Ũ , s̃ : Ũ → Ẽ local lifts with θπ : Γ→ Γ, θs : Γ→
Γ their associated isomorphisms. The local lifts for the identity are given
by x̃ 7→ γ0 · x̃, with γ0 ∈ Γ fixed, which implies s̃(x̃) ∈ Ẽγ0·x̃. Because
of θπ(γ) = γ we get θs(γ) = γ0γγ

−1
0 . It follows that s̃(x̃) = [s̃(x̃)] is a

well-defined element on the cone space Ẽγ0·x̃/Γγ0·x̃, i.e., s(x) ∈ E invx . The
space of cone fields will be denoted by Sec(E); it is a C∞(O)-module.

Remark: It is always possible to take as lifts for the identity map
x̃ 7→ x̃ because we can compose the lift x̃ 7→ γ0 · x̃ with the injection
γ−1

0 : Ũ → Ũ . With this lift of the identity map, the monomorphism
θs becomes the identity too. In addition, if one takes the orbibundle
TO → O then Sec(TO) := X(O).

Example 2.13. Differential forms.
A differential form of degree k is an orbisection of Λk (E∗). Locally
we have a section ω̃ : Ũ → Λk(Ẽ∗), or equivalently, an alternating

multilinear smooth function ω̃(x̃) : Ẽx̃ ×
k· · · × Ẽx̃ → R. The Γ-action is

given by

ω̃γ(x̃) (X1, . . . , Xk) = ω̃(x̃)
(
γ−1 ·X1, . . . , γ

−1 ·Xk

)
.

Then, if γ ∈ Γx̃

ω̃(x̃) (γ ·X1, . . . , γ ·Xk) = ω̃(x̃) (X1, . . . , Xk) .



Hence, ω(X1, . . . , Xk) ∈ C∞(O), with X1, . . . , Xk ∈ Sec(E).

Example 2.14. Riemannian metrics.
An orbisection s ∈ Σ2(T ∗O) is a symmetric bilinear form. Locally is
given by s̃ : TŨ ⊕ T Ũ → R and for every γ ∈ (Γ)x̃

s̃(x̃) (γ ·X1, γ ·X2) = s̃(x̃) (X1, X2) .

If s̃(x̃) is positive definite, then we have a Riemannian metric on the
bundle TŨ → Ũ . Denotes s̃(·, ·) := 〈·, ·〉 and take X,Y ∈ X(O). Its
inner product is given by 〈X,Y 〉 ∈ C∞(O). Then a Riemannian metric
can be though as a smooth orbibundle map 〈·, ·〉 : TO ⊕ TO → R
satisfying the same properties Riemannian tensor satisfies.

Example 2.15. Differential forms with coefficients.
An orbisection of Λk (T ∗O) ⊗ E is a differential form with coefficients
on the cone orbibundle E . Locally ω̃ : Ũ → Λk(T ∗Ũ) ⊗ Ẽ , which is the
same as a multilinear alternating map ω̃(x̃) : Tx̃Ũ × · · · × Tx̃Ũ → Ẽx̃.
The Γ-action is given by

ω̃γ(x̃) (X1, . . . , Xk) = γ · ω̃(x̃)
(
γ−1 ·X1, . . . , γ

−1 ·Xk

)
.

Hence, for every γ ∈ (Γ)x̃

ω̃(x̃) (γ ·X1, . . . , γ ·Xk) = γ · ω̃(x̃) (X1, . . . , Xk) ,

where the action on the right is the one on Ẽ . If X1, . . . , Xk ∈ X(O)
then ω(X1, . . . , Xk) ∈ Sec(E) is a section for the orbibundle structure
E → O.

Proposition 2.16. There is a 1-1 correspondence between

Sec(Σr(E∗)⊗F)
1−1←→ HomC∞(O) (Sec(Σr(E∗)),Sec(F))

Sec(Λr(E∗)⊗F)
1−1←→ HomC∞(O) (Ωr(E),Sec(F))

Proof. We will do the symmetric part. The skew-symmetric one is ana-
logue.
(⇒) We already saw that an element s⊗ f ∈ Σr(E∗)⊗F can be though



of as a multilinear symmetric map s ⊗ f : E inv × · · · E inv → F inv. Fur-
thermore, if Xi ∈ Sec(E), for i ∈ {1, . . . , r}, then Xi ∈ E inv. It follows
that s⊗f(X1, . . . , Xr) ∈ F inv, i.e., it belongs to Sec(F). Given that the
multilinear map was given in terms of tensor products, the homomor-
phisms is C∞(O)-multilinear.

(⇐) Let h ∈ HomC∞(O) (Sec(Σr(E∗)),Sec(F)). It induces the multi-
linear map h : E inv × · · · × E inv → F inv. It is symmetric by defini-
tion. Because it was C∞(O)-multilinear, it defines a tensor. Then
h ∈ Sec(Σr(E∗)⊗F).

Example 2.17. The identity 1-form.
Take the local section ω̃ : Ũ → T ∗Ũ ⊗ TŨ , defined by

ω̃(x̃)(X) = X.

It defines a local orbisection; gluing together these orbisections, we get a
1-form with values on TO, i.e., ω : O → T ∗O⊗TO, the identity 1-form.

Remark: If, for a fixed γ1 ∈ Γ, the local section is defined

ω̃(x̃)(X) = γ1 ·X,

then it is an orbisection only if γ1Γ = Γγ1.

Example 2.18. Orbiframes.
A local trivialization for the local orbibundle structure Ẽ |Ũ ∼= Ũ ×Rk is
the same as a system of sections that form a basis for each fiber. Notice
that we have not made any assumption about the compatibility between
the action on the base and the bundle for each section. Some sections
are not Γ-equivariant. For example, let R2/Zn be the cone; it’s tangent
orbibundle structure is isomorphic to the cone itself. However, at the
origins, no vector is Zn-equivariant except from the zero vector itself.
Consequently, R2/Zn admits no local orbiframe around the zero. Thus,
the existence of a local orbiframe is not the same as having a trivial-
ization for the cone orbibundle structure. However, a trivialization in
the usual (manifold) sense induces a Γ-action on the trivialized chart
Ũ × Rk. A local orbiframe is a collection of orbisections s̃i : Ũ → Ẽ|Ũ



such that for every x̃ ∈ Ũ the set {s̃1(x̃), . . . , s̃k(x̃)} is a basis for Ẽx̃.
Locally, every section s ∈ Sec(E|U ) can be written as

s(x) =

k∑
i=1

ai(x)si(x),

for ai ∈ C∞(O), as long as the local orbiframe exists.

2.2 Cone connections

Take the trivial cone orbibundle pr1 : O × Rk → O and an orbisection
s : O → O × Rk. It is characterized by the orbifold map fs : O → Rk.
There is a natural way of differentiating this orbisection along a cone
field. Consider dfs : TO → Rk and take a cone field X ∈ X(O). We get
the orbisection

∇Xs = dfs(X).

Given that the space of orbisections of a cone orbibundle have a C∞(O)-
module structure, for h ∈ C∞(O), ∇ satisfies

∇(hs) = h∇s+ dh⊗ s,

and
∇hXs = h∇Xs.

However, there is no canonical way of differentiating a section of a non-
trivial cone orbibundle . A cone connection allow us to differentiate
sections of cone orbibundles along cone fields.

Let π : E → O be a cone orbibundle structure.

Definition 2.19. Take a system of local connections (∇α)α∈I for every
trivializing orbifold chart. If ∇α : X(Ũα)× Sec(Ẽα)→ Sec(Ẽα) are such
that for every injection ψ̃αβ

∇α = ψ̃∗αβ∇β,

then they define a lift for the connection ∇ : X(O)× Sec(E)→ Sec(E).



Condition γ∗∇ = ∇ means

∇γ·X̃γ · s̃ = γ ·
(
∇X̃ s̃

)
.

Just as orbifold maps, connections are defined up to an equivalence
relation.

Definition 2.20. Let x ∈ O and take two lifts ∇1, ∇2 of a cone connec-
tion. They are equivalent at x as germs, denoted by ∇1 ∼x ∇2, if there
exists an orbifold chart x ∈ U ⊂ Uα ∩ Uβ such that ∇1

α = λ∗∇2
β, where

λ : ψ̃α(Ũ) → ψ̃β(Ũ) is the diffeomorphism induced by the injections
ψ̃α : Ũ ↪→ Ũα and ψ̃β : Ũ ↪→ Ũβ.

Two connections are equivalent, denoted by ∇1 ∼ ∇2, if ∇1 ∼x ∇2

for every x ∈ O.

Definition 2.21. A cone connection is the class [∇] of an orbifold lift
∇α for a cone connection ∇.

We will omit the equivalence relation notation [∇] by lifting a con-
nection ∇ representing the class.

2.2.1 Connection matrices

Take a connection ∇ on a cone orbibundle structure π : E → O. The
trivialization (s̃αi )ni=1 of Ẽα induces smooth functions ηiα ∈ C∞(Ũα) such
that σ̃α ∈ Γ(Ẽα) is given by

σ̃α(x̃) =
∑
i

ãiα(x̃)s̃αi (x̃).

Take a local vector field X̃ ∈ X(Ũα). By the Leibniz rule

∇X̃ σ̃α =
n∑
j=1

[
dãjα(X̃) +

k∑
i=1

ãjαω
α
ij(X̃)

]
s̃j , (2.2.1)

with ωαij ∈ Ω1(Ũα). It follows that the 1-form matrix ωα = (ωαij)
i
j

determines a connection over the frame (s̃αi (x̃))ni=1. The compatibility
condition

∇γ·X̃γ · σ̃α = γ · ∇X̃ σ̃α,



is given in terms of the connection matrices by

ωα(γ ·X) = γ−1ωα(X)γ − γ−1dγ(X).

The smooth map gγ : Ũα → GLn(R) gives the Γα-action, induced from
the trivialization (s̃αi )ni=1.

Take two local frames (s̃αi )ni=1 and (s̃βi )ni=1 over two orbifold charts Ũα
and Ũβ with non-trivial intersection Ũ = Ũα∩Ũβ. There exists a smooth
function A : Ũ → GLn(R) such that

s̃βi (x̃) =
n∑
k=1

s̃αk (x̃)Aki (x̃).

The connection matrices ωα and ωβ associated to the frames sα and sβ

are related by

ωβ(X) = A−1ωα(X)A+A−1dA(X). (2.2.2)

Proposition 2.22. There is a 1-1 correspondence between cone connec-
tions ∇ on E and a system of connection matrices ωα over an orbifold
atlas (Ũα,Γα, φ̃α) such that (2.2.2) is true for every non-trivial inter-
section.

Proof. Equation (2.2.1) and the Leibniz hypothesis gives a 1-1 corre-
spondence between connection matrices ωα and connections ∇α over an
orbifold chart Ũα. Condition (2.2.2) guarantees that the system of local
connections ∇α belongs to the same germ at every point x ∈ O.

2.2.2 Parallel transport

Take an orbifold path η : I ⊂ R → O, with lifts ηα : Iα → Ũα. The
isomorphism γ : Ũα → Ũα induces the commutative diagram

Iα
id //

ηα
��

Iα

γ·ηα
��

Ũα γ
// Ũα



Consequently, γ · ηα belongs to the same germ as ηα for all γ ∈ Γα
(in fact, they are all the possible lifts over Ũα). Let E → O be a cone
orbibundle with the connection∇. The vector bundle structure η∗E → I
is given locally by

η∗αẼα //

pα

��

Ẽα
πα
��

Iα
ηα // Ũα

Be aware that the pullback vector bundle η∗αẼα is taken without any
group action Γα since Iαis a manifold. The pullback connections η∗α∇α
on η∗αẼα → Iα defines a connection η∗∇ on the vector bundle η∗E → I.
Take a section η∗s ∈ Γ(η∗E). It defines the section

∇
dt
η∗s := (η∗∇)d/dt (η∗s),

locally characterized by

(∇α)η′α(t) sα(ηα(t)).

Notice that taking another local lift γ · ηα yields the local expression

(∇α)γ·η′α(t) sα(γ · ηα(t)) = γ ·
(

(∇α)η′α(t) sα(ηα(t))
)
.

Definition 2.23. A section η∗s ∈ Γ(η∗E) is called parallel along the
path η : I → O if

∇
dt
η∗s = 0.

for all t ∈ I.

A section η∗s is parallel if and only if

(∇α)η′α(t) sα(ηα(t)) = 0,

for all α ∈ I. In terms of a local frame (eαi )ni=1 over Ũα we can write

sα(ηα(t)) =

n∑
i=1

ãiα(t)eαi (ηα(t)),



with ãkα : Iα → R smooth functions. Then the parallel condition equa-
tion yields the ODE system

dãiα
dt

= −
n∑
k=1

ωαik
(
η′α(t)

)
ãkα(t) , i = 1, . . . n,

where ωα is the 1-form matrix connection associated to the frame eαi .
Take ṽ ∈ Eηα(t0), it can be decomposed in terms of the local frame

ṽ =
n∑
k=1

ṽkeαk (ηα(t0)).

This give us the initial conditions ãkα(t0) = ṽk to the ODE system whose
local solution give rise to the local section

uṽ(t) =
n∑
k=1

ãkα(t)eαk (ηα(t)).

Define T̃ t0,t1η : (Ẽα)ηα(t0) → (Ẽα)ηα(t1) by

T̃ t0,t1η (ṽ) = uṽ(t1).

Since the fibers have equal dimension and by the uniqueness of the
solutions for the ODE, T̃ t0,t1η is an isomorphism. However, for every
γ ∈ Γα

T̃ t0,t1η (γ · ṽ) = γ · T̃ t0,t1
γ−1·η(ṽ), (2.2.3)

which implies T̃ t0,t1η is not Γα-equivariant unless Γα · ηα = ηα.

Proposition 2.24. Let η : I → O be an orbifold path that defines a
cone field over O. Then T t0,t1η : Et0 → Et1 is a homeomorphism.

Proof. Since η defines a cone field, its lifts are Γα-invariant. It follows
that

γ · η = η,

for all γ ∈ Γα, α ∈ I. Equation (2.2.3) implies that the isomorphism
T̃ t0,t1η : (Ẽα)ηα(t0) → (Ẽα)ηα(t1) is Γα-equivariant. Hence, it induces the

homeomorphism T t0,t1η : Et0 → Et1 between the fibers.



2.3 Principal orbibundles

Among the fiber orbibundles, we have already studied some properties
of cone orbibundles. The word cone means that locally the fibers are
vector spaces. The word principal means that locally the fibers are a
Lie group G. The G-structure theory is based on the relation between
the tangent orbibundle, a cone orbibundle, and the frame orbibundle, a
principal orbibundle. Therefore, our guiding example will be the frame
orbibundle structure. However, because our orbifolds are effective, the
frame orbibundle enjoys an exceptional property that not all principal
orbibundles enjoy: being a manifold. From now on, the frame orbibun-
dle will be called frame bundle because of its non-singular structure. Its
orbifold behavior is encoded on the isotropies of the Lie group action G
together with its transversal geometry, which means the existence and
relations between the slices (see chapter 2, section 2.2).

2.3.1 The frame orbibundle

Let (Ũ ,Γ, φ̃) be an orbifold chart. Sections s̃i : Ũ → TŨ such that
(s̃i(x̃))ni=1 is a basis for Tx̃Ũ gives a trivialization for TŨ . This trivi-
alization, called a frame, induces an action Γ y Ũ × Rn given by the
smooth maps gγ : Ũ → GLn(R). Each frame could be thought of as a
system of linear isomorphisms px̃ : Rn → TŨ defined by

ps̃(v
1, . . . , vn) =

∑
i

vis̃i.

Take another frame (ẽi)
n
i=1 for TŨ . They are related by the smooth

coefficients aij : Ũ → R

ẽi(x̃) =
∑
j

aij(x̃)sj(x̃).

Let A : Ũ → GLn(R) be A(x̃) = (aij(x̃))ji . If pẽ is the frame induced by
(ẽi)

n
i=1, then

pẽ ◦A = ps̃.

Define the frame bundle over x̃ as

Frx̃(Ũ) = {p : Rn → Tx̃Ũ | p is an isomorphism.}.



Every matrix A ∈ GLn(R) defines an element in Frx̃(Ũα) by pẽ ◦ A.
They are all the possible isomorphisms between Rn and Tx̃Ũ . Then the
GLn(R)-action on Frx̃(Ũ) is transitive. Let

Fr(Ũ) :=
⊔
x̃∈Ũ

Frx̃(Ũ).

The diffeomorphism ξ : Ũ ×GLn(R)→ Fr(Ũ) gives a smooth structure
on Fr(Ũ) by

ξ(x̃, A) = (pẽ ◦A)(x̃).

The Γ-action Γ y Fr(Ũ) is

γ · pẽ = dγ ◦ pẽ ∈ Fr(Ũ).

Lemma 2.25. The action Γ y Fr(Ũ) is free.

Proof. Take e 6= γ ∈ Γ, p ∈ Fr(Ũ) such that γ · p = p and the Rie-
mannian metric taken in Lemma 1.18. The exponential map defines
the Γ-equivariant diffeomorphism expx̃ : Bε(0) ⊂ Tx̃Ũ → Ũ . For all
ỹ ∈ expx̃(Bε(0)) there exists a Xx̃ ∈ Bε(0) such that expx̃(X(x̃)) = ỹ.
Furthermore, there exists v ∈ Rn such that ps̃(v)(x̃) = Xx̃. Conse-
quently

γ · ỹ = γ · expx̃ (ps̃(v)(x̃)) = exp (dx̃γ ◦ ps̃(v)(x̃)) = exp(ps̃(v)(x̃)) = ỹ.

It follows that there is an open subset W ⊂ Ũ such that γ|W = e. As
long as the action is effective γ = e.

Then Fr(Ũ)/Γ is a manifold! An injection ψ̃αβ : Ũα ↪→ Ũβ between
two orbifold charts induces an injection ψ̃∗αβ : Fr(Ũα) ↪→ Fr(Ũβ) given
by

ψ̃∗αβ(pα) = dψ̃αβ ◦ pα.

Take the same constructions as for the tangent orbibundle. Then

Fr(O) =
⊔
α∈I

α× (Fr(Ũα)/Γα)/ ∼

has the structure of manifold. It is called the frame bundle of O.



The right action Fr(Ũα) x GLn(R) and the left action Γα y Fr(Ũα)
commute. This implies the existence of a well-defined right action
Fr(O) x GLn(R).

Proposition 2.26. The (right) action Fr(O) x GLn(R) is locally free
and proper.

Proof. Let p ∈ Fr(O), A ∈ GLn(R)p, i.e., p ◦ A = p. Given that
p ∈ Fr(Ũ)/Γ, there exist γ ∈ Γ such that γ · p = p ◦A. It follows that

Aγ =

 | | |
dγ(p(e1)) dγ(p(e2)) · · · dγ(p(en))
| | |

 .

Consequently, p ◦A = p if and only if A ∈ {Aγ1 , . . . , Aγr} ∼= Γ. As long
as the isotropy group GLn(R)p is discrete, its Lie algebra will be zero
dimensional. The infinitesimal action Ψ : Fr(O) × gln(R) → TFr(O)
satisfies

dim(ker Ψp) = dim(gln(R)p) = 0.

Then Fr(O) x GLn(R) is locally free.

Take sequences pk ∈ Fr(O), gk ∈ GLn(R) such that pk → p and
pk · gk → q. The action is transitive on the fibers, so there exists
A ∈ GLn(R) such that p◦A = q. Given that the action is smooth, there
exists a subsequence of gki such that gki → A. Then Fr(O) x GLn(R)
is proper.

By proposition 1.23, Fr(O)/GLn(R) has an orbifold structure. As
long as the GLn(R) and Γ actions commute, we get the homeomorphism(

Fr(Ũ)/Γ
)
/GLn(R) ∼=

(
Fr(Ũ)/GLn(R)

)
/Γ.

But Fr(Ũ)/GLn(R) = Ũ . It follows that Fr(O)/GLn(R) = O.

Let π : Fr(O)
/GLn(R)−→ O be the quotient map. Locally, it is given



by the following commutative diagram

Fr(Ũ)
π̃ //

ϕ̃
��

Ũ

φ̃
��

Fr(Ũ)/Γ

��

// Ũ/Γ

��
Fr(U) π

// U

Theorem 2.27. Every effective orbifold is the quotient of a manifold
by a smooth, locally free and proper action of a Lie group.

2.3.2 Principal orbibundles and morphisms.

We will define principal orbibundles in the same spirit as cone orbi-
bundles. However, one crucial fact about the theory of G-structures on
effective orbifolds is that its frame bundle is a manifold. We are es-
pecially interested in this structure, so we will focus on this particular
setting as we advance through the theory.

Definition 2.28. A principal orbibundle P over O, with structure group
G, is given by

1. For each orbifold chart (Ũα,Γα, φ̃α) a G-principal bundle structure
πα : P̃α → Ũα.

2. Every injection ψ̃αβ : Ũα ↪→ Ũβ induces a G-equivariant injection
ψ̃×αβ : P̃α ↪→ P̃β such that

P̃|α
ψ̃×αβ //

πα
��

P̃|β
πβ
��

Ũα
ψ̃αβ

// Ũβ

commutes.



A local section s̃ : Ũ → P̃ induces a trivialization. Explicitly we
have the diffeomorphisms Ũ ×G ∼= P̃ defined by

(x̃, a) 7→ s̃(x̃) · a.

This diffeomorphism induces two actions on Ũ × G. The G action, on
the right, given by

(x̃, a) · b = (x̃, a · b),

and the left Γ-action defined by

γ · (x̃, a) = (γ · x̃, gγ(x̃, a)),

with gγ : Ũ × G → G. Given that the actions commute, for every
a, b ∈ G it is true that

gγ(x̃, a · b) = gγ(x̃, a) · b.

Then, if gγ(x̃) := gγ(x̃, e) : Ũ → G the Γ-action is given by

γ · (x̃, a) = (γ · x̃, gγ(x̃) · a).

Proposition 2.29. A principal orbibundle P, with structure group G,
over an orbifold O is given by the following two conditions:

1. For every injection ψ̃αβ : Ũα ↪→ Ũβ there exists a smooth map
gαβ : Ũα ∩ Ũβ → G.

2. These maps satisfy

gθαη(γ)gαη = gβηgαβ,

with a unique γ ∈ Γα, determined by the two injections ψ̃αβ and
ψ̃βη.

Proof. Take a principal orbibundle structure (Pα,Γα, φ̃α). An injection
ψ̃αβ : Ũα ↪→ Ũβ induces a map gαβ : Ũα ∩ Ũβ → G such that

ψ̃×αβ(x̃, g) = (ψ̃αβ(x̃), gαβ(x̃) · g). (2.3.1)



Given that
θαη(γ)ψαη = ψβηgαβ,

with γ ∈ Γα uniquely determined, then

gθαη(γ)gαη = gβηgαβ.

Equation (2.3.1) gives the equivalence between principal orbibundle def-
inition and the proposition conditions.

Example 2.30. Take the local frames (s̃iα)ni=1 and (s̃iβ)ni=1 trivializing

the local cone orbibundle structures TŨα → Ũα and TŨβ → Ũβ. The
injections ψ∗αβ : TŨα → TŨβ induce the transition maps gαβ defined by

Ũα × Rn → Ũβ × Rn

(x̃, v) 7→ (ψαβ(x̃), gαβ(x̃)(v).

They satisfy condition 2 of the proposition. Let s̃α : Ũα → Fr(Ũα) be
defined by

s̃α(x̃)(v1, . . . , vn) =
n∑
i=1

vis̃
i
α(x̃).

It defines the trivialization Fr(Ũα) ∼= Ũα ×GLn(R). Let

ψ×αβ : Ũα ×GLn(R)→ Ũβ ×GLn(R)

(x̃, A) 7→ (ψαβ(x̃), gαβ(x̃) ·A).

They define injections ψ×αβ : Fr(Ũα) ↪→ Fr(Ũβ) such that the conditions
of the proposition are satisfied. It follows that the TO structure induces
the Fr(TO) structure. We will denote Fr(O) := Fr(TO).

Example 2.31. The orbifold structure of the cotangent bundle T ∗O
is related to the tangent bundle by g∗αβ = (gTαβ)−1. Because the maps
g∗αβ also satisfy the conditions of the previous proposition, they define
a principal orbibundle structure on Fr(T ∗O).

Proposition 2.32. Every cone orbibundle structure E → O induces a
principal orbibundle structure Fr(E) x GLn(R)→ O.



Proof. Locally, the cone orbibundle structure is given by systems of
vector bundles Ẽ → Ũ together with the transition maps gαβ. Take
the principal bundle structure Fr(Ẽ) x GLn(R) → Ũ with the same
transition maps gαβ. They satisfy the same relationships we need to
construct a principal orbibundle structure. This defines the principal
orbibundle structure we were looking for.

Because the Γ-action and G-action commute, we have an orbifold
map µ : P × G → P satisfying the axioms of an action. An element
b ∈ G fixes a point p ∈ P if p̃ · b = γ · p̃ over an orbifold chart. In a
trivialization

(x̃, a) · b = (x̃, a · b) = (γ · x̃, gγ(x̃) · b).

This means that γ ∈ Γx̃ and b = a−1 · gγ(x̃) · a. If P̃ was trivialized by
the section s̃ : Ũ → P̃ then b ∈ Gp if and only if

b = δ
(
s̃ (π̃(p̃)) , p̃

)−1
· gγ
(
π̃(p̃)

)
· δ
(
s̃ (π̃(p̃)) , p̃

)
,

where δ : P̃ ×π̃ P̃ → G is the smooth map δ := pr2 ◦ (id × µ)−1 and
characterized by

p̃ · δ(p̃, q̃) = q̃. (2.3.2)

It follows that Gp ∼= Γx, so the G-action on P is locally free. Locally,
the quotient P/G is given by (P̃/Γ)/G. Because the actions commute,
this quotient is homeomorphic to (P̃/G)/Γ. Nevertheless, P̃/G ∼= Ũ are
diffeomorphic. Then the orbifold structure we get onto the quotient is
locally given by (Ũ ,Γ, φ̃). Gluing together these charts, one has that
P/G ∼= O are diffeomorphic as orbifolds.

Proposition 2.33. Let P ×π P := {(p, q) ∈ P ×P | π(p) = π(q)}. The
map id× µ : P ×G→ P ×π P , defined by (id× µ)(p, g) = (p, p · g) is a
local diffeomorphism.

Proof. Take (p, g) ∈ P ×G, X ∈ TpP and ξ ∈ g. Then

d(p,g)(id× µ)(X, deRg(ξ)) =

(
Id 0
dpµg dgµ

p

)(
X

deRg(ξ)

)



where µg(p) := (id× µ)(p, g) and µp(g) = (id× µ)(p, g). Furthermore,

dgµ
p(deRg(ξ)) = dpµg ◦Ψ(p, ξ),

where Ψ(p, ξ) is the infinitesimal action of g on P . Because the action is
locally free, it follows that d(p,g)(id×µ) is an isomorphism. Then id×µ
is a local diffeomorphism.

Let us come back to the setup of the frame bundle structure of
an effective orbifold O. It was given by a manifold Fr(O), a (right)
locally free and proper action GLn(R) such that Fr(O)/GLn(R) ∼= O
are diffeomorphic as orbifolds.

Definition 2.34. A principal bundle P over O, with structural group
G, is a manifold P with a locally free, proper action P x G such that
P/G ∼= O are diffeomorphic as orbifolds.

The base orbifold structure could be omitted because it is codified
on the quotient P/G. In addition, the map π : P → O is the quotient
map.

Definition 2.35. A morphism between two principal bundles P x G,
Q x H is given by a homomorphism θ : G → H and a smooth map
F : P → Q that is θ-equivariant.

In proposition 1.36 we proved that such a map induces the following
commutative diagram

P
F //

/G
��

Q

/H
��

P/G
f // Q/H

In G-structure theory, we deal with different bundle structures over the
same orbifold on the base. Furthermore, we want to compare all possible
orbifold structures compatible with a specific geometric structure, which
means the structural group is the same on each principal bundle. Then,



in the G-structure framework, F : P → Q is a G-equivariant map such
that

P
F //

/G
��

Q

/G
��

O f // O
commutes.

2.3.3 Associated bundles.

By proposition 2.32, from a cone orbibundle E → O of rank k we can
construct a principal bundle Fr(E) x GLk(R) → O. The associated
bundle allows us to construct from a principal bundle and a manifold
with an action G y F , an orbibundle with fibers F/Gx over O. For
F = Rn, this gives us a 1-1 correspondence between cone orbibundles
and principal orbibundles. In particular, TO and Fr(O) are in 1-1 cor-
respondence.

Let π : P x G → O be a principal orbibundle. Define the (right)
action P × F x G by

(p, f) · g = (p · g, g−1 · f).

Since (p, f) · g = (p, f) if and only if p · g = p and g−1 · f = f , then
the action is locally free. Moreover, take sequences (pk, fk) → (p, f) in
P ×F and gk in G such that (pk ·gk, g−1

k ·fk)→ (p̂, f̂). Then pk ·gk → p̂.
Provided that the action P x G is proper, there exists a subsequence
gkl → g that converges. Consequently, the action P × F x G is locally
free and proper so the quotient is an orbifold.

Definition 2.36. Let P x G be a principal bundle and G y F a
manifold with a G-action. The associated bundle of the principal bundle
with fiber F , denoted by E(P, F,G), is the orbifold given by the quotient
(P × F )/G.

When the structure group is understood from the context, we will
denote the associated bundle by E(P, F ) := E(P, F,G).



The smooth map pr : P × F → P is G-equivariant inducing an orbifold
map

E(P, F,G)

��
P/G

Example 2.37. Let O be an orbifold with atlas (Ũ ,Γ, φ̃) and take a
cone orbibundle of rank k with orbifold charts (Ẽ ,Γ, φ̃). Its frame bundle
has an orbifold structure codified on the orbifold atlas (Fr(Ẽ),Γ, φ̃).
Take the smooth map ϕ̃ : Fr(Ẽ)× Rk → Ẽ given by

ϕ̃(p̃, v) = p̃(v).

It induces the Γ-equivariant diffeomorphism

ϕ̃ : Fr(Ẽ)×GLk(R) Rk
∼=→ Ẽ .

Then the orbifold structure of the associated bundle is generated by the
orbifold charts (Ẽ ,Γ, φ̃), which means, E(Fr(E),Rk) ∼= E are isomor-
phic. In particular E(Fr(O),Rn) ∼= TO.

Proposition 2.38. There is a 1-1 correspondence between isomorphism
classes of cone bundles of rank k and isomorphism classes of principal
GLk(R)-orbibundles over a fixed orbifold O.

Proof. In proposition 2.32, we showed how to obtain a principal orbi-
bundle Fr(E) x GLk(R) from a cone orbibundle E of rank k. A prin-
cipal orbibundle P x GLk(R), generates the cone orbibundle of rank
k defined by the associated bundle E(P,Rk, GLk(R)). In the previous
example we prove that

E(Fr(E),Rk) ∼= E .

On the other hand, take P̃α → Ũα the local principal orbibundle struc-
ture of P, with transition matrices gαβ. The associated bundle has the
local structure Ũα × Rk, with ψ∗αβ : Ũα × Rk ↪→ Ũβ × Rk given by

ψ∗αβ(x̃, v) = (ψαβ(x̃), gαβ(x̃)(v)).



If we construct its frame orbibundle Fr(E(P,Rk)), we get the local
structure Ũα×GLk(R), with ψ×αβ : Ũα×GLk(R) ↪→ Ũβ ×GLk(R) given
by

ψ×αβ(x̃, A) = (ψαβ(x̃), gαβ(x̃) ·A).

Then Fr(E(P,Rk)) ∼= P. That gives us the 1-1 correspondence between
cone orbibundles and principal orbibundles.

2.3.4 Sections and forms on the associated bundle.

Many of the main objects in G-structure theory are given in terms of
differential forms on O with values in some orbibundle. For example,
we will see that the torsion of a connection on TO is an element of
Ω2(O, TO) and its curvature of Ω2(O, Hom(TO, TO)). The idea is to
study these objects on the frame bundle, given that it is a manifold.
Moreover, their properties show up in different perspectives that allow
the use of linear algebra and calculus to find obstructions and invariants
of certain geometric structures. Some differential forms on O will lift to
differential forms on Fr(O) because

Ω•(O, E(Fr(O), V ))
∼=←→ Ω•bas(Fr(O), V )

are isomorphic, where Ω•bas(Fr(O), V ) ⊂ Ω•(Fr(O), V ) is a special type
of differential form and V a vector space.

Take a principal bundle π : P x G → O and its associated orbibundle
πE : E(P, V )→ O.

Proposition 2.39. The orbifold structures E(P, V )π(p)
∼= V/Gp are

diffeomorphic.

Proof. Take an orbifold chart (P̃ , Gp, φ̃), an element P̃ 3 gp · p̃ 7→ p ∈ P
and define ϕ̃gp·p̃ : E(P̃ , V )gp·π̃(p̃) → V by

ϕ̃gp·p̃([q̃, v]) = δq̃(gp · p̃)−1 · v = gp · δq̃(p̃)−1 · v,

with δ defined by equation (2.3.2). Then ϕ̃p̃ is a Gp-equivariant diffeo-
morphism. All the group elements gp ∈ Gp induce isomorphic lifts and
then the orbifold diffeomorphism ϕp : E(P, V )π(p) → V/Gp induced by
ϕ̃p̃ is well-defined.



In addition, let ϕp : π∗(E(P, V ))π(p) → {p} × V/Gp be defined by

ϕp(p, [q, v]) = (p, ϕp([q, v])).

Locally, for all gp ∈ Gp, the diffeomorphism

ϕ̃p̃ : π̃∗(E(P̃ , V ))→ P̃ × V

satisfies

ϕ̃p̃(gp · (p̃, [q̃, v])) = (gp · p̃, δgp·q̃(gp · p̃)−1 · v) = (gp · p̃, δq̃(p̃)−1 · v).

That means the induced action on P̃ × V is given by

gp · (p̃, v) = (gp · p̃, v).

Hence, ϕ : π∗(E(P, V ))→ P × V is a vector bundle diffeomorphism (of
manifolds!). Consequently, we have the following commutative diagram

P × V
/G //

pr

��

E(P, V )

πE
��

P π

/G // O

Take a k-form ω ∈ Ωk(O, E(P, V )). Its pullback belongs to

π∗ω ∈ Ωk (P, π∗(E(P, V ))) .

But π∗(E(P, V ))
ϕ∼= P × V . Denote π?ω := ϕ(π∗ω) (note there are two

different symbols here: ? and ∗). Then

π?ω ∈ Ωk(P, V ).

The k-form π?ω satisfy two properties that define it: being horizontal
and G-equivariant. Horizontal means it vanishes on the vertical bundle.
The vertical bundle is defined by Ψ(P × g) = T V P , where Ψ is the
infinitesimal action field. In fact, since π(p · g) = π(p) for every g ∈ G
it follows that

dpπ(Ψ(p, ξ)) = 0.



Then T V P ⊂ ker(dπ) is a subbundle. In addition,

dim(ker dpπ) = dim(P )− dim(O) = dim(G).

Because the action is locally free we have that T V P = ker(dπ) so it is a
trivial vector bundle.

Definition 2.40. A k-form ω ∈ Ωk(P, V ) is horizontal if

ιΨ(∗,ξ)ω = ω(Ψ(∗, ξ), ∗, . . . , ∗) = 0,

for all ξ ∈ g.

Because for all p ∈ P and ξ ∈ g it is true that dpπ(Ψ(p, ξ)) = 0, then
the k-form π?ω is horizontal. Furthermore, for all g ∈ G

R∗g(π
?ω)p(X1, . . . , Xk) = (π?ω)p·g

(
R∗g(X1), . . . , R∗g(Xk)

)
= ϕp·g

(
ωπ(p)

(
dpπ(X1), . . . , dpπ(Xk)

))
.

Locally
ϕ̃p̃·g([q̃, f ]) = δq̃(p̃ · g)−1 · f = g−1 · ϕ̃p̃([q̃, f ]),

which implies ϕp·g = g−1 · ϕp. Then

R∗g(π
?ω)p(X1, . . . , Xk) = g−1 · (π?ω)p(X1, . . . , Xk).

Definition 2.41. A k-form η ∈ Ωk(P, F ) is:

1. G-equivariant if R∗gω = g−1 · ω.

2. Basic if it is horizontal and G-equivariant.

The space of basic k-forms is denoted by Ωk
bas(P, F ).

Proposition 2.42. π? : Ωk(O, E(P, F )) → Ωk
bas(P, F ) is an isomor-

phism.

Proof. The pullback π∗ : Ωk(O, E(P, F )) → Ωk(P, π∗(E(P, F ))) and
ϕ : π∗(E(P, F )) → P × F are bundle morphisms. Then π? := ϕ ◦ π∗ is
a morphism.



We already showed that the image of π? is contained in the space of
basic k-forms. For the injectivity take ω1, ω2 ∈ Ωk(O, E(P, F )). If
π?(ω1) = π?(ω2), then for every q ∈ P , Xi ∈ TqP we have that

ϕ−1
q

(
(ω1)π(q)

(
dqπ(X1), . . . , dqπ(Xk)

))
= ϕ−1

q

(
(ω2)π(q)

(
dqπ(X1), . . . , dqπ(Xk)

))
.

Thus (ω1)π(q)(X1, . . . , Xk) = (ω2)π(q)(X1, . . . , Xk). That means π? is
injective.
For the surjectivity, take ω ∈ Ωk

bas(P, F ). Let Xi ∈ X(O) and x ∈ O.
Because π : P → O is a submersion there exists q ∈ P and Yi ∈ X(P)
such that π(q) = x and dπ(Yi) = Xi. Define ω ∈ Ωk(O, E(P, F )) by

ωx(X1, . . . , Xk) = [q, ωq(Y1, . . . , Yk)] .

Let us prove this definition is independent on the coices of q and Yi.
Take other lifts Ŷi ∈ X(P ) of Xi. Given that

dπ(Yi) = Xi = dπ(Ŷi),

then Yi − Ŷi ∈ T V P . Because ω is basic

ιYi−Ŷiω = 0.

We can write

ω(Y1, . . . , Yk)− ω(Ŷ1, . . . , Ŷk) = ω(Y1 − Ŷ1, Y2, . . . , Yk)

+ ω(Ŷ1, Y2 − Ŷ2, Y3, . . . , Yk) + · · ·+ ω(Ŷ1, . . . , Ŷk−2, Yk−1 − Ŷk−1, Yk)

+ ω(Ŷ1, . . . , Ŷk−1, Yk − Ŷk) = 0.

Hence, ω(Y1, . . . , Yk) = ω(Ŷ1, . . . , Ŷk). On the other hand, the elements
q that projects onto x ∈ O are of the form q · g. If we take q · g instead
of q, and reminding that ω is G-equivariant, we obtain

ωx(X1, . . . , Xk) =
[
q · g, ωq·g(R∗g(Y1), . . . , R∗g(Yk))

]
=
[
q · g,R∗gωq(Y1, . . . , Yk)

]
=
[
q · g, g−1 · ωq(Y1, . . . , Yk)

]
= [q, ωq(Y1, . . . , Yk)] .



Then ω is well-defined and belongs to ω ∈ Ωk(O, E(P, F )). By con-
struction, π?ω = ω. Consequently, π? is a bijection and then an isomor-
phism.

2.3.5 The tautological form.

Take the identity 1-form θ ∈ Ω1(O, TO) and a local frame (s̃i)
n
i=1 for

the local orbibundle structure TŨ → Ũ . It induces the section p̃s̃ : Ũ →
Fr(Ũ), defined by

p̃s̃(·)(v1, . . . , vn) =
∑
i

s̃i(·)vi.

The cone orbibundle diffeomorphism TO ∼= E(Fr(O),Rn) is locally
given by

(x̃, X̃) 7→ [p̃s̃(x̃), p̃s̃(x̃)−1(X̃)].

It allows us to consider θ as an element of Ω1(O, E(Fr(O),Rn)). Given
that

Ωk(O, E(Fr(O),Rn))
π?,∼=←→ Ωk

bas(Fr(O),Rn),

then θ := π?(θ) is a well defined basic 1-form. Locally, θ is defined by

θ̃(p̃, Ỹ ) = p̃−1
(
dp̃π̃(Ỹ )

)
.

Definition 2.43. Let p ∈ Fr(O) and Y ∈ TpFr(O). The tautological
form is the 1-form θ ∈ Ω1

bas(Fr(O),Rn) defined by

θp(Y ) = p−1(dpπ(Y )).

The tautological form is strongly horizontal, which means, it only
vanishes on the vertical vectors

θ(X) = 0⇐⇒ X ∈ T V P.

A differential form is called tensorial if it is strongly horizontal and G-
equivariant. Then θ ∈ Ω1

ten(P,Rn). Let P x G be a manifold with a
locally free and proper action such that n = dimP/G and G < GLn(R).
We will show that it is a G-structure if and only if it has a tensorial
form θ ∈ Ω1

ten(P,Rn). Furthermore, morphisms between G-structures
are diffeomorphisms that pullback one tautological form to the other.



2.3.6 Reductions

Take a closed Lie subgroup H < G, ι : H → G the inclusion and
an H-principal bundle πQ : Q x H → O. The associated bundle
ι∗(Q) := E(Q,G,H) has a manifold structure. Moreover, it has an
action ι∗(Q) x G defined by

[q, g] · g̃ = [q, gg̃] .

It follows that
ι∗(Q) x G

πQ

��
O

defines a principal bundle structure.

Definition 2.44. A reduction of the principal bundle πP : P x G→ O
to a closed subgroup H < G is an H-principal bundle πQ : Qx H → O
such that ι∗(Q) ∼= P .

Remark: The map φ : Q → ι∗(Q) defined by φ(q) = [q, e] is an
embedding. Then Q can be thought of as a submanifold of Q ⊂ P .
It follows that a reduction H < G of P x G is equivalent to have an
H-invariant subbundle Q ⊂ P .

Proposition 2.45. There is a 1-1 relation between reductions Q x H
of P x G and orbisections s : O → P/H.

Proof. Take a reduction Q x H of P x G and ϕ : ι∗(Q) → P an
isomorphism. The local sections s̃α : Ũα → Q̃α of πQ : Q → O induces
local maps s̃α : Ũα → ι∗(Q̃α) defined by

s̃α(x̃) = [s̃α(x̃), e].

However, over a non-trivial intersection of two charts Ũα ∩ Ũβ, it could
happen that

s̃α(x̃) = [s̃α(x̃), e] = [s̃β(x̃) · h, e] = [s̃β(x̃), h] 6= s̃β(x̃).



s̃α and s̃β belong to the same fiber and the element that takes s̃α to s̃β

δ(s̃α(x̃), s̃β(x̃)) ∈ H.

Consequently, the local maps s̃α : Ũα → ι∗(Q̃α) defines a global orbisec-
tion

s : O → ι∗(Q)/H.

Nevertheless, ϕ is a G-equivariant isomorphism. Then ι∗(Q)/H ∼= P/H
and s induces the orbisection s : O → P/H.
Conversely, take the orbisection s : O → P/H and define Q ⊂ P by

Q := {p ∈ P | s(πP (p)) ∈ [p]H}.

It is a non-empty H-invariant set. Take a local section σ̃ : P̃H → P̃ of
the principal bundle P → P/H and a lift s̃H : Ũ → P̃H of the orbisection
s : O → P/H. The smooth map s̃ := σ̃ ◦ s̃H is a local section s̃ : Ũ → P̃
of the principal bundle structure P x G → O. Moreover, the induced
map s : U → P satisfies s(U) ⊂ Q. Then Q has a manifold structure
such that Qx H → O is a principal bundle.

Example 2.46. An {e}-reduction for π : P x G→ O is an orbisection
s : O → P . A local lift s̃ : Ũ → P̃ of s is a local orbisection. Then the
diffeomorphism ϕ : Ũ ×G→ P̃ induces the Γ-action Γ y Ũ ×G given
by

γ · (x̃, g) = (γ · x̃, g).

Then (Ũ/Γ) × G ∼= P̃/Γ. However, P̃/Γ is a manifold which implies
that O has a manifold structure.

Therefore, it is not always possible to take reductions. We will prove
that reductions are in 1-1 correspondence with geometric structures.

2.4 Principal connections.

The G-action on P induces the trivial vector bundle T V P ⊂ TP . A
connection is a choice of a G-invariant distribution H ⊂ TP such that



H⊕ T V P is isomorphic to TP . Given that T V P ∼= P × g, the presence
of a horizontal distribution induces the projection

TP −→ T V P −→ P × g −→ g.

It defines a 1-form ω ∈ Ω1(P, g) called principal connection. We will
show that principal connections ω ∈ Ω(Fr(E), glk(R)) are in 1-1 corre-
spondence with cone connections ∇ on E → O.

2.4.1 The Atiyah sequence.

Take the short exact sequence of vector bundles over P given by

0→ P × g
Ψ→ TP

dπ→ π∗(TO)→ 0,

with Ψ the infinitesimal action and π : P → O. The G-action on P
induces the locally free and proper G-actions P × g x G, TP x G and
π∗(TO) x G given by

(p, ξ) · g = (p · g,Ad(g−1)ξ),

X · g = R∗gX,

(q, Y ) · g = (q · g, Y ).

Given that Ψ : P×g→ T V P and dπ : TP → π∗(TO) are G-equivariant,
then we can take the quotient by G and obtain

0→ (P × g)/G
Ψ→ TP/G

dπ→ π∗(TO)/G→ 0.

Given that the action is locally free and proper, they are not vector
bundles but orbibundles over O. Denote by Ad(P ) := (P × g)/G and
notice that π∗(TO)/G ∼= TO.

Definition 2.47. A short exact sequence of cone orbibundles A → O,
B → O and C → O is given by two morphisms j : A→ B and k : B →
C covering the identity id : O → O, such that locally

0→ Ã
j̃→ B̃

k̃→ C̃ → 0

is a short exact sequence of vector bundles.



Given that the G-action and the Γ-action commutes over P̃ then

0→ Ad(P )
Ψ→ TP/G

dπ→ TO → 0 (2.4.1)

is locally given by

0→ P̃ ×G g→ T P̃/G→ TŨ → 0,

and called the Atiyah sequence.

2.4.2 Splittings and connections.

The short exact sequence of vector bundles

0 // P × g
ρ // TP

dπ // π∗(TO) //

h

kk 0

splits if there exists a vector bundle morphism h : π∗(TO) → TP ,
covering the identity id : P → P , such that dπ ◦ h = id. There is
a 1-1 correspondence between splittings and horizontal distributions of
H ⊂ TP , with H = h(π∗(TO)). Every short exact sequence of vector
bundles splits. Then there always exists a horizontal distribution of
TP . However, the G-invariant hypothesis requires that not only this
sequence but the Atiyah sequence 2.4.1 splits.

Definition 2.48. A short exact sequence of cone orbibundles splits if
for every x ∈ O there are orbifold charts such that

0→ Ã
j̃→ B̃

k̃→ C̃ → 0

splits.

As long as every short exact sequence of vector bundle splits, every
short exact sequence of cone orbibundles splits.

Definition 2.49. A connection on a principal bundle π : P → O is a
choice of a horizontal distribution H ⊂ TP (H⊕T V P ∼= TP) such that

dpRg(Hp) = Hp·g,

for all g ∈ G.



Remark: Take p ∈ P . Its isotropy Gp ⊂ G defines an action
Gp y Hp such that the continuous function dpπ : Hp → Tπ(p)O be-

comes the homeomorphism dpπ : Hp/Gp
∼=→ Tπ(p)O.

Proposition 2.50. There is a 1-1 correspondence between splittings

0 // Ad(P )
Ψ // TP/G

dπ // TO //

h
mm 0

of the Atiyah sequence and connections H ⊂ TP on the principal bundle
π : P → O.

Proof. Locally, take the splitting h̃ of the short exact sequence

0 // Ad(P̃ )
Ψ // T P̃/G

dπ̃ // TŨ //

h̃

mm 0.

Let
H̃p̃ := {X̃ ∈ Tp̃P̃ | [X̃]G = h̃(dp̃π̃(X̃))}. (2.4.2)

Given that T P̃ ∼= Ad(P̃ )⊕ TŨ , the vector bundle structures on Ad(P̃ )
and TŨ induces a vector bundle structure on T P̃/G such that h̃ is a
monomorphism. Hence, H̃p has a vector space structure of rank equal
to the rank of TŨ . If X̃ ∈ H̃p is such that dpπ̃(X̃) = 0, then

[X̃]G = h̃(dp̃π̃(X̃)) = h̃p̃(0) = 0.

Thus, H̃p is a horizontal distribution. Furthermore, for every g ∈ G

h̃(dπ̃(R∗gX̃)) = h̃(dπ̃(X̃)) =
[
X̃
]
G

=
[
R∗gX̃

]
G
.

It follows that R∗g(H̃p) ⊂ H̃p̃·g. In addition, the inverse R∗g−1 satisfies

R∗g−1(H̃p) ⊂ H̃p̃·g−1 and then dpRg(Hp) = Hp·g. Define

H̃ :=
⊔
p̃∈P̃

H̃p̃.



It has a smooth structure given by the bijections dp̃π : H̃p̃ → Tπ̃(p̃)Ũ

and the smooth structure on TŨ . The natural projection π̃ : H̃ → P̃ is
a well defined Γ-equivariant map. That gives us the local bundle struc-
ture of the horizontal G-equivariant distribution H ⊂ TP → P.
On the other hand, if H ⊂ TP is a connection then dπ|H : H → π∗(TO)
is an isomorphism of vector bundles. Its inverse provides aG-equivariant
splitting h = dπ−1|H. The definition (2.4.2) gives the 1-1 correspon-
dence between these two constructions.

Corollary 2.51. Every principal bundle π : P → O admits a connec-
tion.

2.4.3 Connection form.

Take a connection H ⊕ T V P ∼= TP . It defines the vertical projection
υ : TP → T V P . A principal connection associates to a vector Y ∈ TP
the Lie algebra element ξ ∈ g such that

Ψ(·, ξ) = υ(Y (·)),

with Ψ the infinitesimal action. The existence of a connection is in
1-1 correspondence with the splitting h : TO → TP/G of the Atiyah
sequence

0 // Ad(P )
Ψ // TP/G

dπ // TO //

h
mm 0.

Given that
dπ ([Y ]G − (h ◦ dπ)([Y ]G)) = 0,

then Ψ−1([Y ]G − h(dπ([Y ]G))) is well-defined. Let ω : TP/G→ Ad(P )
be

ω([Y ]G) = Ψ−1 ([Y ]G − (h ◦ dπ)([Y ]G)) . (2.4.3)

It satisfies ω ◦Ψ = id|Ad(P ).

Definition 2.52. Let

0 // A
j // B

k // C // 0

be a short exact sequence of cone orbibundles over O. A morphism
ω : B → A is a splitting of j if ω ◦ j = idA.



Lemma 2.53. Take a short exact sequence of cone orbibundles

0 // A
j // B

k //
ω
ii C //

h

ii 0.

There exists a 1-1 correspondence between splittings ω : B → A and
h : C → B.

Proof. Equation (2.4.3) gives the 1-1 correspondence.

Hence, a connection H ⊂ TP is in 1-1 correspondence with an orbi-
bundle morphism ω : TP/G→ Ad(P ). Take the diffeomorphism

Ad(P )π(p)

ϕp∼= g/Gp,

between the orbifold structures as in proposition 2.39. Identify ωp(Y )
with the composition

TpP
/G→ TpP/Gp

ωp→ Ad(P )π(p)
ϕp→ g/Gp.

It is locally given by

ω̃p̃(Ỹ ) = (ϕ̃p̃ ◦ ωp̃)([Ỹ ]G).

It follows that

ω̃γ·p̃(γ · Ỹ ) = (ϕ̃γ·p̃ ◦ ωγ·p̃)(γ · [Ỹ ]G)

= γ−1 · ϕ̃p̃(γ · ωp̃([Ỹ ]G))

= γ−1 · γ · ϕ̃p̃(ωp̃([Ỹ ]G))

= ω̃p̃(Ỹ ).

Then ω̃ : T P̃ → g is Γ-invariant, which implies ω ∈ Ω1(P, g). It satisfies
two properties that characterize the fact that comes from a connection:

1. R∗gω = Adg−1ω for all g ∈ G.

R∗gω(X) = ϕp·g

(
ωp·g(

[
R∗gX

]
G

)
)

= g−1 · ϕp (ωp([X]G))

= Adg−1(ω(X)).



2. ω(Ψ(p, ξ)) = ξ for all ξ ∈ g.

ω(Ψ(p, ξ)) = ϕp (ω ([Ψ(p, ξ)]G))

= ϕp([p, ξ])

= ξ.

Definition 2.54. A 1-form ω ∈ Ω1(P, g) such that :

1. R∗gω = Adg−1ω for all g ∈ G,

2. ω(Ψ(p, ξ)) = ξ for all ξ ∈ g,

is known as connection form.

Proposition 2.55. There is a 1-1 correspondence between connections
H ⊂ TP on a principal bundle P x G → O and connection forms
ω ∈ Ω1(P, g).

Proof. (⇒) Already done.
(⇐) Take a connection form ω ∈ Ω1(P, g). Let X ∈ TpP and define
ω̌ : TP/G→ Ad(P ) by

ω̌([X]G) = [p, ω(X)]

It is well-defined because

ω̌([dpRgX]G) = [p · g, ω(dpRg(X))]

=
[
p · g,Adg−1ω(X)

]
= [p, ω(X)]

= ω̌([X]G).

In addition

(ω̌ ◦Ψ)([p, ξ]) = ω̌(Ψ(p, ξ))

= [p, ω(Ψ(p, ξ))]

= [p, ξ] ,

which means that ω̌ : TP/G → Ad(P ) is a splitting for the Atiyah
sequence. Hence, it induces a connection on P .



2.4.4 Fr(E) connections → E cone connections

A principal connection ω ∈ Ω1(Fr(E), gln(R)) on the frame bundle
Fr(E) induces a connection ∇ on the cone orbibundle E . That hap-
pens because, firstly, a connection on a cone orbibundle could be given
in terms of connection matrices (see proposition 2.22). Secondly, a prin-
cipal connection ω ∈ Ω1(Fr(E), gln(R)) assigns to each vector TFr(E) a
matrix! Then, going from TO to TFr(E) will give us a way to construct
the connection matrices.
Take a local frame (s̃αi )ni=1 over an orbifold chart Ũα. Define the smooth
map s̃α : Ũα → Fr(Ẽα) by

s̃α(x̃)
(
v1, . . . , vn

)
=

n∑
i=1

vis̃αi (x̃).

Its differential induces a map ds̃α : TŨα → TFr(Ẽα). Define the con-
nection matrix ω̃s̃α ∈ Ω1(TŨα, gln(R)) associated to the local frame s̃α
by

ω̃αs̃ (Ỹ ) = ω̃

([
ds̃α(Ỹ )

]
Γα

)T
.

Let (s̃βi )ni=1 be a local frame over Ũβ, with Ũ = Ũα∩Ũβ 6= ∅. There exists
a smooth function g : Ũ → GLn(R) such that sα · g = sβ. Consequently

ωβs̃ (Ỹ ) = ω

([
ds̃β(Ỹ )

]
Γβ

)
= ω

(
R∗g

[
(ds̃α(Ỹ ))

]
Γα

+
[
Ψ(sβ, g

−1dg(Ỹ ))
]

Γα

)
= Adg−1ωαs̃ (Ỹ ) + g−1dg(Ỹ )

= g−1ωαs̃ (Ỹ )g + g−1dg(Ỹ ).

Given that the system of local matrices (ωαs̃ )α∈J satisfies proposition
2.22, then we get a connection ∇ on E .

Proposition 2.56. A principal connection ω ∈ Ω1(Fr(E), gln(R)) in-
duces a cone connection ∇ on E.

Corollary 2.57. Every cone orbibundle E admits a connection.



2.4.5 E cone connections � Fr(E) connections

Despite the manifold case, a connection on a cone orbibundle E does
not lift a path η : I → O to a unique path u : I → Fr(E). Neverthe-
less, it lifts cone fields X ∈ X(O) to vector fields Y ∈ X(Fr(E)). In
addition, the cone vectors not represented by cone fields do not lift to a
unique vector but a finite collection of vectors. They define a connection
H ⊂ TFr(E). This gives a 1-1 correspondence between cone connections
∇ on E → O and principal bundle connections H ⊂ TFr(E).

Take a local cone orbibundle connection ∇ on Ẽ → Ũ , a lift η̃ : I → Ũ
for the path η : I → O, η̃(0) = x̃ and a trivialization (s̃i)

k
i=1 for Ẽ . The

trivialization induces the frame s̃ : Ũ → Fr(Ẽ). The parallel transport
along η̃, with initial conditions s̃(x̃)(ei), gives paths p̃i : I → Ẽ defined
by

p̃i(t) := T̃ 0,t
η̃ (s̃(x̃)(ei)).

They induce the frame p̃s̃ : I → Fr(Ẽ) given by

p̃s̃(t)(v
1, v2, . . . , vn) =

r∑
i=1

vip̃i(t),

and called parallel frame along η̃ starting at s̃(x̃). We have chosen η̃
instead of γ · η̃ and p̃s̃ depends on this choice. Let p̃iγ(t) = T̃ 0,t

γ·η(s̃i(x̃))

and p̃γs̃ : I → Fr(Ẽ) be defined by

p̃γs̃(t)(v
1, v2, . . . , vn) :=

n∑
i=1

vip̃iγ(t).

Given that T̃ 0,t
γ·η̃ = γ · T̃ 0,t

η̃ · γ−1 then

p̃γs̃ = γ · p̃s̃ · gγ−1(x̃).

Let pγs(t) = [p̃γs̃(t)]Γ be the lifts for γ ·η on Fr(E). They are related by

pγs(t) = ps(t) · gγ−1(x̃).



Hence, a connection on the cone orbibundle E → O allows lifting a path
I → O to a finite set of paths I → Fr(E)

η 7→


ps
ps · gγ−1

1
(x̃)

...
ps · gγ−1

l
(x̃)

Define h̃ : π̃∗(TŨ)→ TFr(Ẽ) by

h̃
(
s̃, η̃′(0)

)
= h̃s̃(η̃

′(0)) = p̃′s̃(0).

Because the connection is linear and the uniqueness of solutions to ODE
implies that

h̃s̃
(
η̃′1(0) + η̃′2(0)

)
= h̃s̃

(
η̃′1(0)

)
+ h̃s̃

(
η̃′2(0)

)
.

Given that ∇η̃′(t)p̃is̃(t) = 0 and γ · 0 = 0 then

∇γ·η̃′(t)γ · p̃is̃(t) = 0,

which means
h̃(γ · s̃, γ · η̃′(0)) = γ · h̃(s̃, η̃′(0)).

In addition, it is true that

ds̃(x̃)π̃
(
h̃s̃
(
η̃′(0)

))
= η̃′(0).

Then the short exact sequence

0 // T V Fr(Ẽ)
ι // TFr(Ẽ)

dπ̃ // π̃∗(TŨ) //

h̃

mm 0

splits. Define the horizontal vector subspace by H̃s̃(x̃) := h̃s̃(Tx̃Ũ). Take

g ∈ GLn(R), the frame p̃s̃ · g : I → Fr(Ẽ) is given by

(p̃s̃ · g)(t)(v1, . . . , vn) =
n∑
i=1

vip̃is̃·g(t),



with p̃is̃·g(t) =

n∑
j=1

gij p̃
i
s̃(t). It is a frame along η̃ which allow us to

calculate
∇
dt
p̃is̃·g(t) =

n∑
j=1

gij
∇
dt
p̃is̃(t) = 0.

Then p̃s̃·g is a parallel frame along η̃ with s̃(x̃) · g as the initial point,
which implies

h̃(s̃ · g, X̃) = R∗gh̃(s̃, X̃).

If we prove h̃ is smooth, by proposition 2.50, we get a principal con-
nection H ⊂ TFr(E). For, firstly notice that the composition s̃ ◦ η̃ is a
frame along η̃. Given that the parallel frame p̃s̃ is also a frame along η̃,
there exists a smooth map A : I → GLn(R) such that

(s̃ ◦ η̃)(t) = p̃s̃(t) ·A(t).

By construction A(0) = Id; furthermore

p̃′s̃(0) = dx̃s̃(η̃
′(0))−Ψ(s̃(x̃), A′(0)).

Even though this equation tells us the smooth behavior of the horizon-
tal vectors, it uses the infinitesimal action associated to A′(0), which
depends on the horizontal lift p̃s̃. To avoid cyclic arguments, notice
that

∇η̃′(t)s̃i(η̃(t)) =

n∑
j=1

(ωs̃)ij (η̃′(t))s̃j(η̃(t)),

with ωs̃ the connection matrix associated to the frame s̃ and

∇η̃′(t)s̃i(η̃(t)) =

n∑
j=1

∇η̃′(t)p̃
j
s̃(t)A(t)ji

=

n∑
j=1

(
A′ji(t)p̃

j
s̃(t) +A(t)ji∇η̃′(t)p̃

j
s̃(t)
)

=
n∑
j=1

A′ji(t)p̃
j
s̃(t).



Evaluating at zero and comparing both equations we obtain

A′ji(0) = (ωs̃)ij (η̃′(0)),

or equivalently, A′(0) = ωs̃(η̃
′(0))T . Hence

p̃′s̃(0) = dx̃s̃α(η̃′(0))−Ψ(s̃(x̃), ωs̃(η̃
′(0))T ).

We conclude that for X̃ ∈ X(Ũ), its horizontal lift is given by

h̃(s̃, X̃) = s̃∗(X̃)−Ψ(s̃, ωs̃(X̃)T ). (2.4.4)

The previous equations proves h̃ : π̃∗(T Ũ)→ TFr(Ẽ) is smooth.

Proposition 2.58. A cone orbibundle connection ∇ on E → O induces
a principal connection H ⊂ TFr(E) on Fr(E)→ O.

Proof. Take orbifold charts (Ũα,Γα, φ̃α), (Ũβ,Γβ, φ̃β) such that Uα ⊂ Uβ
and an injection ψ̃αβ : Ũα ↪→ Ũβ. Let Ẽα → Ũα be a cone orbibundle
structure trivialized by (s̃αi )ni=1. It induces the frame s̃α : Ũα → Fr(Ẽα).

Take the path η̃α : Iα → Ũα and h̃α : π̃∗α(TŨα) → TFr(Ẽα) the
horizontal lift. The injection ψ̃×αβ : Ẽα → Ẽβ induces a trivialization

s̃βi = ψ̃×αβ (s̃αi ). The frame it defines s̃β : ψ̃αβ(Ũα) → Fr(Ẽβ) is given

by s̃β = dψ̃αβ ◦ s̃α. The path η̃α goes to η̃β(t) = ψ̃αβ(η̃α(t)) and the
injection ψ̃∗αβ : π̃∗α(TŨα)→ π̃∗β(TŨβ) is characterized by

ψ̃∗αβ
(
s̃α(x̃), η̃′α(0)

)
=
(
dx̃ψ̃αβ ◦ s̃α(x̃), dx̃ψ̃αβ(η̃′α(0))

)
.

Take p̃i,α(t) := T̃ 0,t
η̃ (s̃α(x̃)(ei)) and p̃s̃,α the parallel frame along η̃α with

initial conditions s̃α(x̃). As long as ∇β =
(
ψ̃−1
αβ

)∗
∇α we get

(∇β)η̃′β(t) ψ̃
×
αβ (p̃i,α(t)) = (∇α)η̃′α(t) p̃i,α(t) = 0.

Let p̃s̃,β(t) := ψ̃×αβ (p̃s̃,α(t)). If ψ̃×αβ : Fr(Ẽα) → Fr(Ẽβ) is the induced
injection on the principal orbibundle structure, then

h̃β

(
dx̃ψ̃αβ ◦ s̃α(x̃), dx̃ψ̃αβ(η̃′α(0))

)
= p̃′s̃,β(0).



Consequently

TFr(Ẽα)
dψ̃×αβ // TFr(Ẽβ)

π̃∗α(TŨα)

h̃α

OO

ψ̃∗αβ // π̃∗β(TŨβ)

h̃β

OO

is a commutative diagram. It follows that the horizontal distributions
H̃α and H̃β belong to the same diffeomorphism class. The Γα-action on
TFr(Ẽα) is free and then

H =
⊔
α

H̃α/Γα

is a well-defined principal connection.

Applying the principal connection ω ∈ Ω1(Fr(E), gln(R)) to both
sides of (2.4.4) yields

ω(s̃∗(X̃)) = ωs̃(X̃)T ,

with ωs̃ the connection matrix associated to the frame s̃ : Ũ → Fr(Ẽ).
Then

s̃∗ω = ωTs̃ . (2.4.5)

Proposition 2.59. There is a 1-1 correspondence between cone con-
nections ∇ on E → O and principal connections ω ∈ Ω1(Fr(E), gln(R))
on Fr(E)→ O.

Proof. (⇒) Take a cone connection ∇. Let ω∇ be the principal con-
nection that comes from ∇ and ∇ be the connection induced by the
principal connection ω∇. Define by ωs̃ the connection matrices associ-
ated to ∇. By construction

ωs̃ = (s̃∗ω∇)T .

Moreover, because of (2.4.5), if ωs̃ is the connection matrix associated
to ∇ then

ωs̃ = (s̃∗ω∇)T .



It follows that the connections matrices of ∇ and ∇ are equal and then
∇ = ∇.
(⇐) Take a principal connection ω ∈ Ω(Fr(E), gln(R)). Let ∇ω be
the induced connection by ω. Its connection matrix ωs̃ over the frame
s̃ : Ũ → Fr(Ẽ) is

ωs̃(X̃)T = ω(s̃∗(X̃)).

If ω denotes the principal connection obtained from the connection ∇ω,
by (2.4.5), it follows

s̃∗ω = ωTs̃ .

Then s̃∗ω = s̃∗ω. For every Ỹ ∈ Fr(Ẽ)

dπ̃
(
Ỹ − (s̃ ◦ π̃)∗(Ỹ )

)
= 0,

which guarantees the existence of ξ ∈ gln(R) such that

Ỹ = (s̃ ◦ π̃)∗(Ỹ ) + Ψ(s̃, ξ).

Consequently

ω(Ỹ ) = ω
(

(s̃∗ ◦ π̃∗)(Ỹ )
)

+ ξ = ω
(

(s̃∗ ◦ π̃∗)(Ỹ )
)

+ ω(Ψ(s̃, ξ)) = ω(Ỹ ),

which implies ω = ω.



Chapter 3

G-structures

The 1-1 relation
(Fr(O), ω)↔ (TO,∇ω)

between the frame bundle Fr(O) with connection ω ∈ Ω(Fr(O), gln(R))
and the tangent orbibundle TO with connection ∇ω transforms differ-
ential geometric problems in TO into differential geometric problems
in Fr(O). One of the main advantages is that, on the one hand, the
differential geometric problems on TO involves orbifold theory, but, on
the other hand, Fr(O) is a manifold! Some geometric structures on
TO are in 1-1 correspondence with reductions of the structural group
on Fr(O) x GLn(R). For example, Riemannian structures over O are
the same as O(n)-reductions P x O(n)→ O. If we vary the structural
group, we obtain other geometric structures. For example, distributions
(GLk,n−k(R)), orientations (GL+

n (R)), volume forms (SLn(R)), almost
symplectic structures (Spk(R)), almost complex structures (GLk(C)),
hermitian and almost Kähler structures (U(k)), frames and coframes
({Id}).

In the first section, we will define G-structures, give some examples
involving different structural groups and characterize when a principal
bundle is a G-structure. In the second, we will define equivalences of G-
structures, give some examples and characterize when an isomorphism
of principal bundles is an equivalence of G-structures. That allows us
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to characterize the category of G-structures over a fixed orbifold. In the
third section, we will define connections compatible with a G-structure
and find an explicit description of it means that they are compatible
with the geometric structure. Finally, we will introduce a central prob-
lem on G-structure theory: integrability. We are going to characterize
this condition only in terms of the manifold defining the G-structure.
Besides, we will discuss the first obstruction for integrability: the intrin-
sic torsion; we will calculate the intrinsic torsion to find their first-order
obstructions for integrability.

A good reference for G-structures theory on manifolds is the lecture
notes [Cra15], our principal guide. For further reading, classical texts
about G-structure theory are [Ste99] and [Kob12].

3.1 G-structures

Let G be a closed Lie subgroup of the general linear Lie group GLn(R).

Definition 3.1. A G-structure is a reduction of Fr(O) x GLn(R) to
the group G.

A reduction to the structural group G is in 1-1 correspondence with
an orbisection s : O → Fr(O)/G (see 2.45). By definition a G-structure
is a principal G-subbundle P ⊂ Fr(O).
The idea is to take a linear geometric structure on O. It comes from
a canonical geometric structure on Rn. There are canonically defined
adapted frames on Rn, and they differ by elements A ∈ G (the symme-
tries of the geometric structure). A system of local sections s̃• : Ũ• →
Fr(Ũ)• induces adapted frames on TO. Over non-trivial intersections,
the local sections will differ by elements A ∈ G too. Consequently, we
have a principal subbundle P x G (the space of adapted frames) of the
frame bundle Fr(O) x GLn(R) over O.

We will use the following arguments constantly. Let P x G be a
G-structure. Given that P/G ∼= O, then the local Γ-action over an
arbitrary orbifold chart (Ũ ,Γ, φ̃) is given by a representation on the
group G. Besides, the G-structure induces a system of local sections



s̃α : Ũα → Fr(Ũα) over an orbifold atlas (Ũα,Γα, φ̃α)α∈J such that
δ(s̃α, s̃β) ∈ G over every non-trivial intersection Ũα ∩ Ũβ 6= ∅, where

s̃α · δ(s̃α, s̃β) = s̃β.

The section s̃α : Ũα → Fr(Ũ)α induces the trivialization (s̃iα)ni=1 of TŨα
defined by

s̃iα(x̃) = s̃α(x̃)(ei).

It satisfies
s̃α(γ · x̃) = γ · s̃α(x̃) · g−1

γ (x̃).

An injection ψ̃αβ : Ũα ↪→ Ũβ induces the commutative diagram

Fr(Ũα)
ψ̃×αβ //

π̃α
��

Fr(Ũβ)

π̃β
��

Ũα
ψ̃αβ // Ũβ

Take the transition matrices g×αβ defining the injections ψ̃×αβ. If g∗αβ are

the transition matrices associated to the injections ψ̃∗αβ : TŨα → TŨβ,
then

g∗αβ = g×αβ.

3.1.1 {e}-structures

As we already mentioned in section 2.3.6 reductions subsection, an {e}-
structure induces a manifold structure on O. In fact, in this case

O ∼= P/{e} ∼= P.

Definition 3.2. A trivialization of the principal bundle P x G→ O is
a manifold structure on O together with an isomorphism O ×G ∼= P .

Then, an e-reduction induces a trivialization of Fr(O) x GLn(R).
Conversely, the trivialization ϕ : O × GLn(R) → Fr(O) induces the
section s : O → Fr(O) defined by

s(x) = ϕ(x, e).

Proposition 3.3. There is a 1-1 correspondence between trivializations
of Fr(O) and {e}-structures over O.



3.1.2 GL+
n (R)-structures

Take a GL+
n (R)-structure P x GL+

n (R). Given that Γ acts by a repre-
sentation of GL+

n (R), then it preserves the orientation on Ũ . We have
a system of trivializations (s̃αi )α∈J of TO → O such that the transition
maps gαβ ∈ GL+

n (R) over every non-trivial intersection.

Definition 3.4. An orientation for O is a choice of trivializations
(s̃αi )α∈J for the orbibundle structure TO → O such that the transition
maps gαβ associated to the injections ψ̃αβ has positive determinant.

Then the GL+
n (R)-structure P x GL+

n (R) induces an orientation on
O. Conversely, take an orientation on O. The local sections

s̃α : Ũα → Fr(Ũ)α,

induced by the trivializations (s̃iα)ni=1, induces the principal bundle struc-
tures

Fr(Ũα)

��
Ũα

The transition matrices gαβ associated with the injections ψ̃×αβ belong

to GL+
n (R). Hence, we have a principal bundle structure

Fr(O) ⊂ P x GL+
n (R)

��
O

Proposition 3.5. There is a 1-1 correspondence between orientations
on O and GL+

n (R)-structures over O.

3.1.3 SLn(R)-structures

Let P x SLn(R) be a SLn(R)-structure. The canonical volume element
on Rn is defined by

µcan = dx1 ∧ . . . ∧ dxn.



Take a section s̃ : Ũ → Fr(Ũ) and define µ ∈ Ωn(Ũ) by

µ(X̃1, . . . , X̃n)(x̃) = µcan

(
s̃(x̃)−1(X̃1), . . . , s̃(x̃)−1(X̃n)

)
.

Let γ ∈ Γ, we have that

µ(γ · X̃1, . . . ,γ · X̃n)(γ · x̃)

= µcan

(
s̃(γ · x̃)−1(γ · X̃1), . . . , s̃(γ · x̃)−1(γ · X̃n)

)
= µcan

(
s̃(x̃)−1(X̃1), . . . , s̃(x̃)−1(X̃n)

)
= µ(X̃1, . . . , X̃n)(x̃).

Besides, over a non-trivial intersection Ũα ∩ Ũβ 6= ∅

µβ(X̃1, . . . , X̃n) = µcan

(
s̃β(x̃)−1(X̃1), . . . , s̃β(x̃)−1(X̃n)

)
= µcan

(
g−1
αβ · s̃

α(x̃)−1(X̃1), . . . , g−1
αβ · s̃

α(x̃)−1(X̃n)
)

= det(g−1
αβ ) · µcan

(
s̃α(x̃)−1(X̃1), . . . , s̃α(x̃)−1(X̃n)

)
= µα(X̃1, . . . , X̃n).

It follows that the system of n-forms (µα)α∈J gives a well-defined global
n-form µ ∈ Ωn(O).

Definition 3.6. A volume form over an orbifold O is a no where van-
ishing top degree differential form µ ∈ Ωn(O).

Then, an SLn(R)-structure P x SLn(R) → O induces a volume
form µ ∈ Ωn(O). Conversely, take a volume form µ ∈ Ωn(O) and a
trivialization (s̃i)ni=1 of TŨ . Every lift µ of µ satisfies

µ(s̃1, . . . , s̃n) 6= 0.

Without loss of generality, let us assume c̃(x̃) := µ(s̃1, . . . , s̃n)(x̃) > 0
(if not interchange two elements of the basis). Define σ̃i : Ũ → TŨ by

σ̃i(x̃) = n
√
c̃(x̃)s̃i(x̃).



The trivialization (σ̃i)ni=1 is such that

µ(σ̃1, . . . , σ̃n) = 1.

Over a non-trivial intersection Ũα ∩ Ũβ 6= ∅ we have that

µβ(σ̃1
β, . . . , σ̃

n
β ) = µα(σ̃1

α, . . . , σ̃
n
α)

= µα(gαβ · σ̃1
β, . . . , gαβ · σ̃nβ )

= det(gαβ) · µα(σ̃1
β, . . . , σ̃

n
β )

= det(gαβ).

Then the transition matrices gαβ associated to the principal bundle
injections ψ̃×αβ : Fr(Ũα) ↪→ Fr(Ũβ) belong to SLn(R). Hence, we have
a principal bundle structure

Fr(O) ⊂ P x SLn(R)

��
O

Proposition 3.7. There is a 1-1 correspondence between volume forms
on O and SLn(R)-structures over O.

3.1.4 GLk,n−k(R)-structures

Let P x GLk,n−k(R) → O be a GLk,n−k(R)-structure. The canonical
k-distribution of Rn is Rk × {0}. Take a section s̃• : Ũ → Fr(Ũ) and
define the distribution D̃ ⊂ TŨ by

D̃x̃ = s̃(x̃)
(
Rk × {0}

)
.

A matrix A ∈ GLk,n−k(R) has the form

A =

(
A1 A2

0 A3

)
,

with A1 ∈ GLk(R), A2 ∈Mk,n(R) and A3 ∈ GLn−k(R). Let i vary over
{1, . . . , k}. On a non-trivial intersection we have that

s̃β(x̃)(ei) = s̃α(x̃)(A · ei) = s̃α(x̃)

 k∑
j=1

Ajiej

 =
k∑
j=1

Ajis̃
α(x̃)(ej).



It follows that

D̃α,x̃ = s̃α(x̃)(Rk × {0}) = s̃β(x̃)(Rk × {0}) = D̃β,x̃.

Furthermore, given that Γ acts by representations on GLk,n−k(R), then
the Γ-action on Ũ ×Rn induces an action Γ y Ũ ×Rk. Thus, Γ acts on
D̃. The topological space

D =
⊔
α

D̃α/Γα,

has an orbifold structure given by the trivializations (s̃iα)ki=1.

Definition 3.8. A distribution of rank k over O is a cone orbibundle
D ⊂ TO of rank k such that the inclusion map ι : D → TO is an
embedding.

Then, the GLk,n−k(R)-structure P x GLk,n−k(R) → O induces a
distribution D ⊂ TO on O. Conversely, take a distribution D ⊂ TO of
rank k with trivializations (s̃i)ki=1 over D̃ → Ũ . We can embed D̃ ↪→ TŨ
so we get k linearly independent sections s̃i : Ũ → T Ũ . Complete them
and form a trivialization (s̃i)ni=1 over TŨ . Let i vary over {1, . . . , k}. D
is a distribution, and then

s̃iβ(x̃) =

k∑
j=1

Aij(x̃)s̃jα(x̃). (3.1.1)

Complete the change of basis matrix A = (Aij)
i
j , which means

s̃β = s̃α ·A.

Because of (3.1.1), it follows that A ∈ GLk,n−k(R). But A = gαβ is the
transition matrix associated with the orbibundle structure TO → O.
We get a principal bundle structure

Fr(O) ⊂ P x GLk,n−k(R)

��
O

Proposition 3.9. There is a 1-1 correspondence between distributions
on O and GLk,n−k(R)-structures over O.



3.1.5 O(n)-structures

Let P x O(n) → O be an O(n)-structure. The canonical O(n)-
structure on Rn is given by

〈(v1, . . . , vn), (w1, . . . , wn)〉can =
n∑
i=1

viwi.

Define 〈·, ·〉 ∈ Σ2(TŨ∗) by

〈X̃, Ỹ 〉(x̃) = 〈s̃(x̃)−1(X̃), s̃(x̃)−1(Ỹ )〉can.

Take γ ∈ Γ; it follows that

〈γ · X̃, γ · Ỹ 〉(γ · x̃) = 〈s̃(γ · x̃)−1(γ · X̃), s̃(γ · x̃)−1(γ · Ỹ )〉can
= 〈gγ · s̃(x̃)−1(X̃), gγ · s̃(x̃)−1(Ỹ )〉can
= 〈X̃, Ỹ 〉(x̃).

Hence, 〈·, ·〉 defines a Riemannian metric on TŨ → Ũ . Furthermore

〈X̃, Ỹ 〉β(x̃) = 〈s̃β(x̃)−1(X̃), s̃β(x̃)−1(Ỹ )〉can
= 〈g−1

αβ · s̃
α(x̃)−1(X̃), g−1

αβ · s̃
α(x̃)−1(Ỹ )〉can

= 〈X̃, Ỹ 〉α(x̃).

It follows that the system of positive definite 2-symmetric tensors

(〈·, ·〉α)α∈J ,

induces a well-defined global positive definite 2-symmetric tensor

〈·, ·〉 ∈ Σ2(T ∗O).

Definition 3.10. A Riemannian structure on O is a positive definite
2-symmetric tensor 〈·, ·〉 ∈ Σ2(T ∗O).

Then, a O(n)-structure P x O(n)→ O induces a Riemannian met-
ric 〈·, ·〉 ∈ Σ2(T ∗O). Conversely, let 〈·, ·〉 ∈ Σ2(T ∗O) be a Riemannian



metric over O and take a local lift 〈·, ·〉 ∈ Σ2(T ∗Ũ). By the Gram-
Schmidt process there exist a trivialization (σ̃i)ni=1 such that

〈σ̃i, σ̃j〉 = δij .

It follows that

〈σ̃α(ei), σ̃
α(ej)〉α = 〈σ̃β(ei), σ̃

β(ej)〉β
= 〈gαβ · σ̃α(ei), gαβ · σ̃α(ej)〉α,

and then gαβ ∈ O(n). Hence, we have a principal bundle structure

Fr(O) ⊂ P x O(n)

��
O

Proposition 3.11. There is a 1-1 correspondence between Riemannian
metrics on O and O(n)-structures over O.

3.1.6 Sp2k(R)-structures

Let P x Sp2k(R) → O be an Sp2k(R)-structure. Take the canonical
basis (x1, y1, . . . , xk, yk) of R2k and dxi, dyi its duals. The canonical
Sp2k(R)-structure on R2k is given by

ωcan =
k∑
i=1

dxi ∧ dyi.

Define ω ∈ Ω2(TŨ∗) by

ω(X̃, Ỹ )(x̃) = ωcan(s̃(x̃)−1(X̃), s̃(x̃)−1(Ỹ )).

Take γ ∈ Γ; it follows that

ω(γ · X̃, γ · Ỹ )(γ · x̃) = ωcan(s̃(γ · x̃)−1(γ · X̃), s̃(γ · x̃)−1(γ · Ỹ ))

= ωcan(g−1
γ · s̃(x̃)−1(X̃), g−1

γ · s̃(x̃)−1(Ỹ ))

= ω(X̃, Ỹ )(x̃).



Hence, ω defines an almost symplectic form on TŨ → Ũ . Furthermore

ωβ(X̃, Ỹ )(x̃) = ωcan(s̃β(x̃)−1(X̃), s̃β(x̃)−1(Ỹ ))

= ωcan(g−1
αβ · s̃

α(x̃)−1(X̃), g−1
αβ · s̃

α(x̃)−1(Ỹ ))

= ωα(X̃, Ỹ )(x̃).

It follows that the system of non-degenerate 2-forms

(ωα)α∈J ,

induces a well-defined global non-degenerate 2-form

ω ∈ Ω2(T ∗O).

Definition 3.12. An almost symplectic structure on O is a non-degenerate
2-form ω ∈ Ω2(T ∗O).

Then, an Sp2k(R)-structure P x Sp2k(R) → O induces an almost
symplectic structure ω ∈ Ω2(T ∗O). Conversely, let ω ∈ Ω2(T ∗O) be an
almost symplectic structure over O and take a local lift ω ∈ Ω2(T ∗Ũ).
We can always find a symplectic basis, which means a trivialization
(σ̃i, ρ̃i)ki=1 such that

ω(σ̃i, σ̃j) = 0

ω(ρ̃i, ρ̃j) = 0

ω(σ̃i, ρ̃j) = δij .

It follows that

ωcan(xi, yj) = ωβ(σ̃iβ, ρ̃
j
β)(x̃)

= ωα(σ̃iα, ρ̃
j
α)(x̃)

= ωcan(g−1
αβ · xi, g

−1
αβ · yj).

Similarly

ωcan(xi, xj) = ωcan(g−1
αβ · xi, g

−1
αβ · xj),

ωcan(yi, yj) = ωcan(g−1
αβ · yi, g

−1
αβ · yj),



and then gαβ ∈ Sp2k(R). Hence, we have a principal bundle structure

Fr(O) ⊂ P x Sp2k(R)

��
O

Proposition 3.13. There is a 1-1 correspondence between almost sym-
plectic structures on O and Sp2k(R)-structures over O.

3.1.7 GLk(C)-structures

Let P x GLk(C) → O be a GLk(C)-structure. Every z ∈ C can be
thought of as a real 2× 2 matrix

z 7→Mz =

(
<(z) −=(z)
=(z) <(z)

)
,

where <(z) and =(z) are the real and imaginary parts of z. This as-
signment carries complex multiplication into matrix multiplication. In
particular

i 7→ Jcan =

(
0 −1
1 0

)
.

In general, GLk(C) ∼= GL2k(R) are isomorphic, the isomorphism given
by

Z 7→ ZR
z11 . . . z1k

z21 . . . z2k
...

. . .
...

zk1 . . . zkk

 7→

Mz11 . . . Mz1k

Mz21 . . . Mz2k
...

. . .
...

Mzk1 . . . Mzkk

 .

Identify

Jcan :=


Jcan 0 0 . . . 0

0 Jcan 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Jcan

 ,



and define the bundle isomorphism J̃ : TŨ → TŨ by

J̃(X̃)(x̃) = s̃(x̃)
(
s̃(x̃)−1(X̃) · Jcan

)
.

It satisfies J̃2 = −Id. In addition, let γ ∈ Γ, then

J̃(γ · X̃)(γ · x̃) = s̃(γ · x̃)
(
s̃(γ · x̃)−1(γ · X̃) · Jcan

)
= γ · s̃(x̃) · g−1

γ (x̃)
(
gγ(x̃) · s̃(x̃)−1 · γ−1(γ · X̃) · Jcan

)
= γ · J̃(X̃)(x̃).

Then J̃ ∈ Ω1(Ũ , T Ũ) is a Γ-equivariant form. It follows that J̃ induces a
map J ∈ Ω1(U, TU) such that J2 = −Id. Over a non-trivial intersection
Ũα ∩ Ũβ 6= ∅

J̃β(X̃)(x̃) = s̃β(x̃)
(
s̃β(x̃)−1(X̃) · Jcan

)
= s̃α(x̃) · gαβ

(
g−1
αβ · s̃

α(x̃)−1(X̃) · Jcan
)

= J̃α(X̃)(x̃).

Hence, we have a well-defined global 1-form J ∈ Ω1(O, TO) such that

J2 = −Id.

Definition 3.14. An almost complex structure on O is a 1-form

J ∈ Ω1(O, TO),

such that J2 = −Id.

Then, a GLk(C)-structure P x GLk(C) induces an almost complex
structure J ∈ Ω1(O, TO). Conversely, let J ∈ Ω1(O, TO) be an almost
complex structure and J̃ : TŨ → TŨ a local lift. We can always find a
TŨ trivialization of the form (s̃i, J̃(s̃i))ki=1. The frame it generates will
be denoted by s̃J . Define the GLk(C)-action of Z ∈ GLk(C) by

s̃J · Z := s̃J · ZR.



Over a non-trivial intersection Ũα ∩ Ũβ 6= ∅

s̃iβ =
k∑
j=1

aij s̃
j
α + bij J̃α(s̃jα).

Applying J̃β on both sides yields

J̃β(s̃iβ) =

k∑
j=1

aij J̃α(s̃jα)− bij s̃jα.

Hence, the transition matrix is

gαβ =


a11 b11 · · · a1k b1k
−b11 a11 · · · −b1k a1k

...
...

. . .
...

...
ak1 bk1 · · · akk bkk
−bk1 ak1 · · · −bkk akk

 .

The isomorphism

gαβ ∼=

a11 + ib11 · · · a1k + ib1k
...

. . .
...

ak1 + ibk1 · · · akk + ibkk

 ,

implies that gαβ ∈ GLk(C). It follows that we have a principal bundle
structure

Fr(O) ⊂ P x GLk(C)

��
O

Proposition 3.15. There is a 1-1 correspondence between almost com-
plex structures on O and GLk(C)-structures over O.

3.1.8 U(k)-structures

Let P x U(n) be a U(n)-structure. Because of U(k) < GLk(C), we
obtain an almost complex structure J ∈ Ω1(O, TO). Take a trivializa-
tion (s̃i, J̃(s̃i))ki=1. It gives the C-linear diffeomorphism Ũ × Ck → TŨ



defined by

(x̃, z1, . . . , zk) 7→
k∑
i=1

<(z1)s̃i + =(z1)J̃(s̃i),

which induces the complex local frame s̃ : Ũ → Fr(Ũ). That means

s̃J(x̃) : Ck
∼=→ Tx̃Ũ is a C-linear isomorphism of complex vector spaces.

The canonical hermitian structure over Ck is the map hcan : Ck⊕Ck → C
defined by

hcan ((z1, . . . , zk), (w1, . . . , wk)) =
k∑
i=1

ziwi.

It is C-linear on the first argument and hcan(z, w) = hcan(w, z). Hence,
hcan(z, z) ∈ R for all z ∈ Ck and then it make sense to say that hcan is
positive definite. Let h̃ : TŨ ⊕ TŨ → C be

h̃(X̃, Ỹ )(x̃) = hcan(s̃J(x̃)−1(X̃), s̃J(x̃)−1(Ỹ )),

and γ ∈ Γ. Given that gγ , gαβ ∈ U(n), then

h̃(γ · X̃, γ · Ỹ )(x̃) = hcan(s̃J(γ · x̃)−1(γ · X̃), s̃J(γ · x̃)−1(γ · Ỹ ))

= hcan(gγ(x̃) · s̃J(x̃)−1(X̃), gγ(x̃) · s̃J(x̃)−1(Ỹ ))

= h̃(X̃, Ỹ )(x̃),

and

h̃β(X̃, Ỹ )(x̃) = hcan(s̃βJ(x̃)−1(X̃), s̃βJ(x̃)−1(Ỹ ))

= hcan(gαβ(x̃)−1 · s̃αJ (x̃)−1(X̃), gαβ(x̃)−1 · s̃αJ (x̃)−1(Ỹ ))

= hcan(s̃αJ (x̃)−1(X̃), s̃αJ (x̃)−1(Ỹ ))

= h̃α(X̃, Ỹ )(x̃).

Thus, we have a well-defined smooth orbifold map h : TO ⊕ TO → C.

Definition 3.16. An almost hermitian structure on O is a pair (J, h),
with J ∈ Ω1(O, TO) an almost complex structure and h : TO⊕TO → C
a smooth map such that:



1. Is C-linear on the first argument.

2. h(X,Y ) = h(Y,X).

3. h is positive definite.

It follows that a U(n)-structure P x U(n) → O induces an almost
hermitian structure (J, h) on O. Conversely, take an almost hermitian
structure (J, h). As long as we have an almost complex structure J ∈
Ω1(O, TO), then we have a GLk(C)-principal bundle structure P x
GLk(C)→ O. Similarly, as with Riemannian metrics, there is a Gram-
Schmidt procedure that guarantees the existence of a complex local
frame (σ̃i)ki=1 such that

h̃(σ̃i, σ̃j) = δij .

It follows that

h̃α(σ̃iα, σ̃
j
α) = h̃β(σ̃iβ, σ̃

j
β)

= h̃α(gαβ · σ̃iα, gαβ · σ̃jα),

and then gαβ ∈ U(k). Hence, we have a principal bundle structure

Fr(O) ⊂ P x U(k)

��
O

Proposition 3.17. There is a 1-1 correspondence between almost her-
mitian structures on O and U(k)-structures over O.

Remark: The group equalities

1. U(k) = O(2k) ∩GLk(C),

2. U(k) = Sp2k(R) ∩GLk(C),

3. U(k) = O(2k) ∩ Sp2k(R) ∩GLk(C),



implies relations between the geometric structures induced by their cor-
responding G-structures. The almost hermitian structure (J, h) induces
the J-invariant Riemannian structure

〈X,Y 〉 := <(h(X,Y )),

and the J-invariant almost symplectic structure

ω(X,Y ) := −=(h(X,Y )).

The J-invariant hypothesis stands because

h(J(X), J(Y )) = ii · h(X,Y ) = h(X,Y ).

Hence, an U(k)-structure induces:

1. An almost complex structure J ∈ Ω1(O, TO).

2. A Riemannian structure 〈·, ·〉 ∈ Σ2(T ∗O).

3. An almost symplectic structure ω ∈ Ω2(O).

The equation
ω(X,Y ) = 〈J(X), Y 〉,

gives the relations between them.

3.1.9 Principal G-bundles vs. G-structures

Remember that a 1-form τ ∈ Ω1
ten(Fr(O),Rn) is tensorial if it is G-

equivariant and ker τ = T V P . The frame bundle Fr(O) has the tauto-
logical form θ ∈ Ω1

ten(Fr(O),Rn). The G-structure P ⊂ Fr(O) inherits
the tensorial form by

θP := θ|P ∈ Ω1
ten(P,Rn).

Then, every G-structure P possesses a tensorial form θP . The existence
of that tensorial form allows us to distinguish between principal bundles
P x G→ O and G-structures P ⊂ Fr(O) x G→ O.



Theorem 3.18. Let P x G→ O be a principal bundle. If there exists
a tensorial form τ ∈ Ω1

ten(P,Rn) then there exists a unique principal
bundle embedding Φ : P ↪→ Fr(O) such that Φ∗θ = τ .

Proof. 1. Existence.
Fix a connection H ⊂ TP . Take the principal bundle structure
P̃ → Ũ . We can define the tensorial form τ̃ ∈ Ω1

ten(P̃,Rn) by

τ̃(Ỹ ) = τ([Ỹ ]).

Given that τ̃p̃ : Rn → H̃p̃ is an isomorphism, then the tensorial
form defines the trivialization P̃ × Rn ∼= H̃ given by

ϕ̃1(p̃, v) = (p̃, τ̃−1
p̃ (v)).

Furthermore, dπ : H̃ → π̃∗(TŨ) is an isomorphism. It follows that
ϕ̃ : P̃ × Rn → π̃∗(TŨ), defined by

ϕ̃(p̃, v) = (dπ̃ ◦ ϕ̃1)(p̃, v),

is an isomorphism of vector bundles. Hence, a fixed p̃ ∈ P̃ defines
the isomorphism ϕ̃(p̃, ·) : Rn → Tπ̃(p̃)Ũ , which means it is a frame.

A section s̃ : Ũ → P̃ induces the section σ̃ : Ũ → Fr(Ũ) given by

σ̃(x̃)(v1, . . . , vn) =

n∑
i=1

viϕ̃(s̃(x̃), ei).

Define the embedding Φ̃ : P̃ ↪→ Fr(Ũ) by

Φ̃(p̃) = σ̃(π̃(p̃)) · δ(s̃(π̃(p̃)), p̃).

It satisfies

Φ̃(p̃ · g) = σ̃(π̃(p̃ · g)) · δ(s̃(π̃(p̃ · g)), p̃ · g)

= σ̃(π̃(p̃)) · δ(s̃(π̃(p̃)), p̃) · g
= Φ̃(p̃) · g,



and

Φ̃(γ · p̃) = σ̃(γ · π̃(p̃)) · δ(s̃(γ · π̃(p̃)), γ · p̃)
= γ · σ̃(π̃(p̃)) · g−1

γ · δ(γ · s̃(π̃(p̃)) · g−1
γ , γ · p̃)

= γ · σ̃(π̃(p̃)) · g−1
γ · δ(s̃(π̃(p̃)) · g−1

γ , p̃)

= γ · σ̃(π̃(p̃)) · g−1
γ · gγ · δ(s̃(π̃(p̃)), p̃)

= γ · Φ̃(p̃).

Consequently, Φ : P ↪→ Fr(O) is a G-equivariant embedding.

2. Φ∗θ = τ .
Let Y ∈ TpP . Then

Φ∗θp(Y ) = θΦ(p)(dpΦ(Y ))

= Φ(p)−1 (dp(π ◦ Φ)(Y ))

= Φ(p)−1(dpπ(Y )).

If h : π∗(TO)→ TP is the horizontal lift, then

Φ(p)−1(X) = τp(hp(X)).

Hence
Φ∗θp(Y ) = τp (hp(dpπ(Y ))) .

Given that Y − hp(dpπ(Y )) ∈ T Vp P , then

τp(Y − hp(dpπ(Y ))) = 0.

We conclude that

Φ∗θp(Y ) = τp (hp(dpπ(Y ))) + τp(Y − hp(dpπ(Y )))

= τp(Y ),

which implies Φ∗θ = τ .

3. Uniqueness.
Let Φ1,Φ2 : P ↪→ Fr(O) be two embeddings between principal



bundles such that Φ∗i θ = τ . Then, for all p ∈ P and Y ∈ TpP we
have

Φ∗1θp(Y ) = Φ∗2θp(Y )

Φ1(p)−1(dpπ(Y )) = Φ2(p)−1(dpπ(Y )).

As long as π : P → O is a submersion, then, for all X ∈ TxO, we
have that

Φ1(p)−1(X) = Φ2(p)−1(X).

Consequently, Φ1(p) = Φ2(p) and then Φ1 = Φ2.

Corollary 3.19. Let P x G→ O be a principal bundle. Then, P is a
G-structure if and only if there exists a tensorial form θP ∈ Ω1(P,Rn).

It follows that the category of G-structures over O has as objects the
pairs (P, τ) with P a manifold, together with a locally free and proper
action P x G such that P/G ∼= O, and a tensorial form θ ∈ Ω1(P,Rn).

3.2 Morphisms

The theory of G-structures allows us to study geometric structures
through principal subbundles of the frame bundle. In order to pre-
serve the induced geometric structures, we need more than principal
bundle morphisms. For, let f : O1 → O2 be an orbifold diffeomorphism
between the orbifold structures (Ũα,Γα, φ̃α)α∈J and (Ṽα,Γα, φ̃α)α∈J (we
assume both possesses the same local groups as long as the diffeo-
morphism f induces isomorphic groups). We can lift f̃ : Ũ → Ṽ to
f̃∗ : Fr(Ũ)→ Fr(Ṽ ) by

f̃∗(p̃)(v) := (dπ̃1(p̃)f̃ ◦ p̃)(v).

As long as f̃ is Γ-equivariant, so is f̃∗. Then, we obtain a well-defined
GLn(R)-equivariant diffeomorphism

f∗ : Fr(O1)→ Fr(O2),



such that

Fr(O1)
f∗ //

π1
��

Fr(O2)

π2
��

O1
f // O2

commutes. Given that the geometric structures induced by the G-
structures are defined in terms of the adapted frames (frames that be-
longs to the G-structure), in order to carry one geometric structure to
the other, we need to carry the adapted frames of one G-structure to
adapted frames of the other.

3.2.1 Equivalence of G-structures

Definition 3.20. Let P1 ⊂ Fr(O1) and P2 ⊂ Fr(O2) be two G-
structures. The diffeomorphism f : O1 → O2 is an equivalence of
G-structures if f∗(P1) = P2.

Example 3.21. GL+
n (R)-morphisms

A system of local frames

s̃α : Ũα → Fr(Ũα),

such that g1
αβ ∈ GL+

n (R), induces an orientation on O1 is induced by .
Because f∗ : P1 → P2 is a diffeomorphism the system of frames induced
by f̃α∗ : Fr(Ũα)→ Fr(Ṽα) satisfies

δ2(f̃α∗(s̃α), f̃β∗(s̃β)) ∈ GLkn(R).

That means the orbifold structure induced by f∗ on O2 has the same
orientation as O1.

Example 3.22. SLn(R)-morphisms
Take µ2

α ∈ Ωn(Ṽα), a local lift of the volume form on O2 and an adapted
frame s̃α ∈ P̃1α. The local frames f̃α∗(s̃α) belongs to P̃2α. It follows
that

µ2
α(X̃1, . . . , X̃n) = µcan(fα∗(s̃α)−1(X̃1), . . . , s̃−1

α (X̃n)).

Consequently

µ2
α(f̃α∗(s̃α)(e1), . . . , f̃α∗(s̃α)(en)) = 1,



and then f : O1 → O2 is volume-preserving.

Example 3.23. GLk,n−k(R)-morphisms
Take the two distributions D1 ⊂ TO1 and D2 ⊂ TO2 induced by P1

and P2. Let s̃α ∈ P̃1α be an adapted frame. Then (s̃α(ei))
k
i=1 is a

trivialization for D1. Because f̃α∗(s̃α) ∈ P̃2α, it induces a trivialization
(f̃α∗(s̃α))ki=1 for D2. It follows that df(D1) = D2.

Example 3.24. O(n)-morphisms
The Riemannian metric 〈·, ·〉i : TOi⊕TOi → R induced by Pi ⊂ Fr(Oi)
is given by

〈Xi, Yi〉i = 〈p−1
i (Xi), p

−1
i (Yi)〉can,

with pi ∈ Pi. Then, for p ∈ P1 we have that

〈X2, Y2〉2 = 〈f∗(p)−1(X2), f∗(p)
−1(Y2)〉can

= 〈p−1(df−1(X2)), p−1(df−1(Y2))〉can.

It follows that for every X1, Y1 ∈ TO1

〈df(X1), df(Y1)〉2 = 〈p−1(X1), p−1(Y1)〉can
= 〈X1, Y1〉1.

Hence, f : O1 → O2 is an isometry.

Example 3.25. Sp2k(R)-morphisms
The symplectic structure ωi ∈ Ω2(Oi) induced by Pi ⊂ Fr(Oi) is given
by

ωi(Xi, Yi) = ωcan(p−1
i (Xi), p

−1
i (Yi)),

with pi ∈ Pi. Then, for p ∈ P1 we have that

ω2(X2, Y2) = ωcan(f∗(p)
−1(X2), f∗(p)

−1(Y2))

= ωcan(p−1(df−1(X2)), p−1(df−1(Y2))).

It follows that for every X1, Y1 ∈ TO1

ω2(df(X1), df(Y1)) = ωcan(p−1(X1), p−1(Y1))

= ω1(X1, Y1).

Hence, f : O1 → O2 is a symplectomorphism.



Example 3.26. GLk(C)-morphisms
Take an adapted frame s̃α ∈ P̃1α, which means

s̃α(e2i) = J̃1(s̃α(e2i−1)) i ∈ {1, . . . , k}.

Given that f̃α∗(s̃α) ∈ P̃2α, then

f̃α∗ (s̃α(e2i)) = J̃2

(
f̃α∗ (s̃α(e2i−1))

)
i ∈ {1, . . . , k}.

Consequently

J̃2(df̃α(X̃)) = f̃α∗(s̃α)
(

(f̃α∗(s̃α))−1(dfα(X̃)) · Jcan
)

= df̃α

(
s̃α

(
(s̃−1
α ◦ df−1

α ◦ dfα)(X̃) · Jcan
))

= df̃α(J̃1(X̃)).

If Ji ∈ Ω1(Oi, TOi) are the almost complex structures over Oi, then

df ◦ J1 = J2 ◦ df.

Example 3.27. U(k)-morphisms
First of all, by the previous example, an U(k)-morphism is a diffeomor-
phism f : O1 → O2 such that

df ◦ J1 = J2 ◦ df.

Furthermore, if we have taken adapted frames to the almost complex
structure as above then

h̃2(df̃α(X̃), df̃α(Ỹ )) = hcan((f̃α∗(s̃α))−1(df̃α(X̃)), (f̃α∗(s̃α))−1(df̃α(Ỹ )))

= hcan(s̃−1
α (X̃), s̃−1

α (Ỹ ))

= h̃1(X̃, Ỹ ).

Consequently, the diffeomorphism f satisfies

h2(df(X), df(Y )) = h1(X,Y ),

with h1 and h2 the almost hermitian structures on O1 and O2.



Remark: Given that U(k) = GLk(C) ∩ Sp2k(R) ∩ O(2k), then a
U(n)-morphism also satisfies

〈df(X), df(Y )〉2 = 〈X,Y 〉1,
ω2(df(X), df(Y )) = ω1(X,Y ),

with 〈·, ·〉i ∈ Σ2(T ∗Oi) and ωi ∈ Ω2(Oi) the induced Riemannian and
almost symplectic structures (is an isometry and a symplectomorphism
too).

Given that a geometric structure over Oi is codified on the pair (Pi, τi),
that a diffeomorphism f : O1 → O2 preserves the geometric structures
induced, which means f∗ : P1 → P2 is a G-structure equivalence, could
be expressed in terms of the pairs (Pi, τi).

Proposition 3.28. If f : O1 → O2 is a G-structure equivalence then
(f∗)

∗τ2 = τ1.

Proof. Let Y ∈ TpP1. Then

(f∗)
∗(τ2)p(Y ) = (τ2)f∗(p)(dpf∗(Y ))

= (f∗(p))
−1 (dp(π2 ◦ f∗)(Y )))

= (dpf ◦ p)−1 (dp(f ◦ π1)(Y ))

= p−1 (dpπ1(Y ))

= (τ1)p(Y ).

It follows that (f∗)
∗τ2 = τ1.

3.2.2 Isomorphisms of Principal G-bundles vs. Equiva-
lence of G-structures

The main difference between equivalences ofG-structures andG-principal
bundle morphisms is that the differential of a map must induce our mor-
phisms. More precisely, φ : P1 → P2 is an equivalence of G-structures if
there exists a diffeomorphism f : O1 → O2 such that f∗ = φ. This con-
dition is crucial because it is the one that guarantees that the diffeomor-
phism respects the geometric structures induced by the G-structures. If



f is an equivalence of G-structures, then (f∗)
∗τ2 = τ1. Let

P1
φ //

π1
��

P2

π2
��

O1
f // O2

be a principal bundle isomorphism. The tautological forms associated
to both G-structures characterize when φ = f∗.

Theorem 3.29. An isomorphism φ of principal G-bundles is an equiv-
alence of G-structures if and only if φ∗τ2 = τ1.

Proof. (⇒) Already proved.
(⇐) Locally, let τ̃1, τ̃2, φ̃, f̃ and Ỹ ∈ Tp̃P̃1 be local lifts. Then

p̃−1(dp̃π̃1(Ỹ )) = (τ̃1)p̃(Ỹ )

= (τ̃2)φ̃(p̃)(dp̃φ(Ỹ ))

= φ̃(p̃)−1(dp̃(π̃2 ◦ φ)(Ỹ ))

= φ̃(p̃)−1
(
dπ̃1(p̃)f̃

(
(dp̃π̃1)(Ỹ )

))
.

Given that π̃1 is a submersion, for all X̃ ∈ T Ũ1 it is true that

p̃−1(X̃) = φ̃(p̃)−1
(
dπ̃1(p̃)f̃

(
X̃
))

.

In addition, p̃ : Rn → Tπ1(p̃)Ũ1 is an isomorphism and then there exists

a unique v ∈ Rn such that p̃(v) = X̃. Consequently

φ̃p̃(v) = (df̃ ◦ p̃)(v),

which means φ̃(p̃) = f̃∗(p̃). It follows that φ = f∗.

3.2.3 Characterization of the category of G-structures

EveryG-structure overO is characterized by (P, τ), with τ ∈ Ω1
ten(P,Rn)

a tensorial form . Thus, if we take two G-structures Pi over O, we
have two objects defining the geometric structures induced: (P1, τ1)
and (P2, τ2). Furthermore, a G-equivariant diffeomorphism φ : P1 → P2

is a G-structure equivalence if and only if φ̃∗τ2 = τ1.



Theorem 3.30. The category of G-structures over O with G-structure
equivalences as morphisms is isomorphic to the category:

• Objects: (P, τ) with

1. P a manifold with a locally free and proper action P x G.

2. τ ∈ Ω1
ten(P,Rn) a tensorial form.

• Morphisms: G-equivariant diffeomorphisms φ : P1 → P2 such
that φ∗τ2 = τ1.

There are no orbifolds involved in this picture. This characteriza-
tion is fascinating because, even when working with effective orbifolds,
G-structure theory happens in the setting of manifolds. The orbifold
structure on the base can be recovered from the quotient P/G.

3.3 Compatible connections

Take a connection form ωP ∈ Ω1(P, g). We can extend it to a connection
form ω ∈ Ω1(Fr(O), gln(R)) as follows. Let Y ∈ TqFr(O); there exists
g ∈ G such that p · g = q. Then

ωP (Yq) = ωP

(
R∗g ◦R∗g−1(Yq)

)
= Adg−1

(
ωP

(
R∗g−1(Yq)

))
.

Take the connection H = kerωP . It follows that

ωP

(
R∗g−1(Y V

q + Y Hq )
)

= ωP

(
R∗g−1(Y V

q )
)
.

Given that R∗g−1(Y V
q ) ∈ TpP , we can define ω ∈ Ω1(Fr(O), gln(R)) by

ω(Yq) := Adg−1

(
ωP

(
R∗g−1(Y V

q )
))

.

Because the extension of ωP does not depend on the isotropies, its
smoothness follows from the local diffeomorphism

δ : Fr(O)×π Fr(O)→ GLn(R).



The induced connection form satisfies

ω|P ∈ Ω1(P, g).

On the other hand, if ω ∈ Ω1(Fr(O), gln(R)) satisfies ω|P ∈ Ω1(P, g),
then

ωP := ω|P ∈ Ω1(P, g),

is a connection form on P . Then, we have the 1-1 correspondence be-
tween the connection forms{

ω ∈ Ω1(Fr(O), gln(R)) + ω|P ∈ g
} 1−1←→ {ωP ∈ Ω(P, g)} .

The 1-1 relation
(TO,∇)←→ (Fr(O), ω∇),

allow us to induce a connection ∇P on TO from a connection form ωP
on P .

Definition 3.31. A connection form ω ∈ Ω1(Fr(O), gln(R)) is compat-
ible with the G-structure P ⊂ Fr(O) if

ω|P ∈ Ω1(P, g).

Proposition 3.32. Take a connection form ω∇ ∈ Ω1(Fr(O), gln(R))
and ∇ its induced connection on TO. The following statements are
equivalent:

1. ω∇ is compatible with P .

2. Every connection matrix induced by the local section s̃• : Ũ• → P̃•
and ∇ satisfies ωs̃• ∈ Ω1(Ũ•, g).

3. Take a path η : I → O. Locally, the parallel transport along
η̃ : I → Ũ sends adapted frames to adapted frames. That means
for all p̃t0 ∈ P̃η̃(t0), there exists p̃t1 ∈ P̃η̃(t1) such that

T̃ t1,t0η̃ (p̃t0(ei)) = p̃t1(ei).



Proof. (1)⇒ (2) Given that

ωs̃• = s̃∗•ω∇,

it follows that ωs̃• ∈ Ω1(Ũ•, g).
(2)⇒ (1) Take Ỹ ∈ Tp̃P̃•. We can write it as

Ỹ = ds̃•(dπ̃•(Ỹ )) + Ỹ − ds̃•(dπ̃•(Ỹ )).

Because Ỹ − ds̃•(dπ̃•(Ỹ )) ∈ ker(dπ̃) then it is a vertical vector and

ω∇(Ỹ − ds̃•(dπ̃•(Ỹ ))) ∈ g.

Given that s̃∗•ω∇(dπ̃(Ỹ )) = ωs̃(dπ̃(Ỹ )) ∈ g, we conclude

ω∇(Ỹ ) = s̃∗•ω∇(dπ̃(Ỹ )) + ω∇(Ỹ − ds̃•(dπ̃•(Ỹ ))) ∈ g,

which implies ω∇|P ∈ Ω1(P, g) and then is a connection form on P .
(1)⇒ (3) Take p̃t0 ∈ P̃η̃(t0). Define

p̃i(t) := T̃ t,t0η̃ (p̃t0(ei)).

It induces the frame p̃ : I → Fr(Ũ) defined

p̃(t)(v1, . . . , vn) =
n∑
i=1

vip̃i(t).

By construction, its differential p̃′(t0) ∈ H̃p̃t0 ⊂ Tη̃(t0)Fr(Ũ) is a horizon-

tal vector. Given that Tq̃P̃ = H̃q̃ ⊕ T Vq̃ P̃, it follows that p̃ : I → Fr(Ũ)

must belong to P̃ in order to have a differential defined on T P̃. Conse-
quently

T̃ t1,t0η̃ (p̃t0(ei)) = p̃(t1)(ei).

(3) ⇒ (1) For all p̃t0 ∈ P̃η̃(t0), the parallel translation defines a unique

p̃(t1) ∈ P̃η̃(t1) as before. This map defines a G-equivariant diffeomor-

phism P̃ t1,t0η̃ : P̃η̃(t0) → P̃η̃(t1). Let ũ : I → P̃ be a smooth path with

ũ(0) = p̃ and ũ′(0) = Ỹ . There exists A : I → GLn(R) such that

P̃ 0,t
η̃ (ũ(t)) = p̃ ·A(t).



Thus

ũ′(0) = Ψ(p̃, A′(0)) +
d

dt

∣∣∣∣
t=0

P̃ t,0η̃ (p̃).

Because, by definition
d

dt

∣∣∣∣
t=0

P̃ t,0η̃ (p̃)

is horizontal, then the vertical component is Ỹ V = Ψ(p̃, A′(0)). In
addition

d

dt

∣∣∣∣
t=0

P̃ 0,t
η̃ (ũ(t)) = Ψ(p̃, A′(0)) = Ỹ V .

Then

ω∇(Ỹ ) =
d

dt

∣∣∣∣
t=0

P̃ 0,t
η̃ (ũ(t)).

Given that P̃η̃ sends adapted frames to adapted frames, the path

P̃ 0,t
η̃ (ũ(t)) ∈ P̃η̃(0).

Hence,
d

dt

∣∣∣∣
t=0

P̃ 0,t
η̃ (ũ(t)) ∈ T Vp̃ P̃ ∼= g which implies

ω∇|P ∈ Ω1(P, g).

If η : I → O is an orbifold path representing a cone field, then the
parallel transport T t1,t0η : Tη(t0)O → Tη(t1)O is a homeomorphism. In

this setting, statement (3) of the previous proposition says that T t1,t0η

is a homeomorphism that preserves the geometric structure induced by
the G-structure P .

3.3.1 Compatibility tensor

Denote by gln := gln(R). The connection form ω ∈ Ω1(Fr(O), gln) is
compatible with P if and only if ω|P ∈ Ω1(P, g). Let Cω ∈ Ω1 (P, gln/g)
be defined by

Cω(Y ) = [ω(Y )]g.



ω is compatible with P if and only if Cω = 0. The group G y gln/g
acts by

g · [ξ]g = [Adg(ξ)]g,

which implies

Cω(R∗g(Y )) = [Adg−1(ω(Y ))]g = g−1 · Cω(Y ),

is G-equivariant. Moreover, as long as T V P ∼= P × g, then

Cω(Y V ) = [ω(Y V )]g = 0.

It follows that Cω ∈ Ω1
bas(P, gln/g) is a basic form. By proposition 2.42

Ω1
bas(P, gln/g) ∼= Ω1 (O, E(P, gln/g)) ,

so the failure of ∇ being compatible with the G-structure is measured
by the 1-form ∇P ∈ Ω1 (O, E(P, gln/g)) defined by

∇P (X) = [p, [ω(Y )]g],

with dπ(Y ) = X and π(p) = x. We want to find an explicit description
of the compatibility tensor. For that, we will prove that the fiber bundle
E(P, gln/g) is the quotient of E(P, gln) and E(P, g). Then, we want to
find an orbibundle EG such that

0→ E(P, g)→ E(P, gln)→ EG → 0

is a short exact sequence, which implies E(P, gln/g) ∼= EG. The connec-
tion ∇ allow us to write explicitly ω(Y ) ∈ gln as derivatives of paths
on the vertical components. The path derivatives induce elements on
E(P, gln), and then we can view them as elements on EG. The vanishing
of the resulting expression is the condition that characterizes connec-
tions compatible with P .

Take a local section s̃ : Ũ → P̃, it induces the local structures

Γ y Ũ × gln Γ x Ũ × g
↓ and ↓

Γ y Ũ Γ x Ũ



of E(P, gln) and E(P, g). With the action G y gln/g already defined,
we have the local orbibundle structure

Γ y Ũ × gln/g

��
Γ y Ũ

of E(P, gln/g). Then

E(P, gln/g) ∼= E(P, gln)/E(P, g).

Let Φ : E(P, gln)→ Hom(TO, TO) be locally defined by

E(P̃, gln)→ Hom(TŨ, T Ũ)

[p̃, A] 7→ Φ̃[p̃,A] : TŨ → TŨ

X̃ 7→ p̃ ◦A ◦ p̃−1(X̃).

Take γ ∈ Γ; we have that

Φ̃[γ·p̃,A](X̃) = γ · p̃ ◦A ◦ (γ · p̃)−1(X̃)

= γ · p̃ ◦A ◦ p̃−1 ◦ dγ−1(X̃)

= γ · Φ̃[p̃,A](γ
−1 · X̃)

= Φ̃γ
[p̃,A](X̃).

Then, Φ̃ is a Γ-equivariant map. Every homomorphism arises from
a n × n matrix (the columns are the action coefficients on each basis
element). Besides, if Φ̃[p̃,A] = Φ̃[q̃,B] then

Φ̃[p̃,A] = Φ̃[p̃,δ(p̃,q̃)·B]

p̃ ◦A ◦ p̃−1 = p̃ ◦ δ(p̃, q̃) ◦B ◦ δ(p̃, q̃)−1 ◦ p̃−1

A = δ(p̃, q̃) ◦B ◦ δ(p̃, q̃)−1.

It follows that [p̃, A] = [p̃, δ(p̃, q̃)◦B ◦ δ(p̃, q̃)−1] = [p̃ · δ(p̃, q̃), B] = [q̃, B].
Thus Φ̃ is a bijective map. Its inverse is given by

Hom(TŨ, T Ũ)→ E(P̃, gln)

Φ̃ 7→ [p̃, p̃−1 ◦ Φ̃ ◦ p̃],



and

[p̃, p̃−1 ◦ Φ̃γ ◦ p̃] = [p̃, p̃−1 ◦ dγ ◦ Φ̃ ◦ dγ−1 ◦ p̃]
= [p̃, gγ ◦ p̃−1 ◦ Φ̃ ◦ p̃ ◦ gγ−1 ]

= [γ · p̃, p̃−1 ◦ Φ̃ ◦ p̃].

Then Φ : E(P, gln) → Hom(TO, TO) is an isomorphism of cone orbi-
bundles. The embedding ι : E(P, g) ↪→ E(P, gln) induces an embedded
orbibundle structure E(P, g) ∼= HomG(TO, TO) ⊂ Hom(TO, TO).

Definition 3.33. The orbibundle HomG(TO, TO) is called the infinites-
imal automorphism bundle associated with P .

Example 3.34. HomGLk,n−k(R)(TO, TO)
Take P x GLk,n−k(R). The Lie algebra glk,n−k(R) is given by the
matrices of the form

A =

(
B C
0 D

)
,

with B ∈ glk, C ∈Mk,n−k(R), and D ∈ gln−k. Hence

glk,n−k(R) = {φ̃ : Rn → Rn | φ̃(Rk) ⊂ Rk}.

If we take a section s̃ : Ũ → P̃, it defines the distribution D̃ by

s̃(x̃)(Rk) = D̃x̃.

The homomorphism induced by [s̃(x̃), A] is

Φ̃[s̃(x̃),A](X̃) = s̃(x̃) ◦A ◦ s̃(x̃)−1(X̃).

If X̃ ∈ D̃, then s̃(x̃)−1(X̃) ∈ Rk. Because A ∈ glk,n−k, we have that

A · s̃(x̃)−1(X̃) ∈ Rk. Consequently s̃(x̃) ◦A ◦ s̃(x̃)−1(X̃) ∈ D̃. It follows
that Φ̃[s̃,A] : D̃ → D̃. On the other hand, if Φ̃[s̃,A] : TŨ → TŨ is such

that Φ̃[s̃,A] : D̃ → D̃, then, for all X̃ ∈ D̃

A ◦ s̃(x̃)−1(X̃) ∈ Rk,

which implies A(Rk) ⊂ Rk. We conclude

HomGLk,n−k(R)(TO, TO) ∼= {Φ ∈ Hom(TO, TO) | Φ(D) ⊂ D}.



Example 3.35. HomO(n)(TO, TO)
Take P x O(n). The Lie algebra o(n) is given by

o(n) = {A ∈ GLn(R) | 〈A · v, w〉can + 〈v,A · w〉can = 0}.

Take s̃ : Ũ → P, the metric induced by P is

〈X̃, Ỹ 〉 = 〈s̃−1(X̃), s̃−1(Ỹ )〉can.

If [s̃, A] ∈ E(P̃, o(n)), we have that

〈Φ̃[s̃,A](X̃), Ỹ 〉+ 〈X̃, Φ̃[s̃,A](Ỹ )〉
=〈s̃−1(Φ̃[s̃,A](X̃)), s̃−1(Ỹ )〉can + 〈s̃−1(X̃), s̃−1(Φ̃[s̃,A](Ỹ ))〉can
=〈A · s̃−1(X̃), s̃−1(Ỹ )〉can + 〈s̃−1(X̃), A · s̃−1(Ỹ )〉can
=0.

Then

HomO(n)(TO, TO) ∼= {Φ ∈ Hom(TO, TO) | 〈Φ(X), Y 〉+〈X,Φ(Y )〉 = 0}.

Example 3.36. HomSp2k(R)(TO, TO)
Take P x Sp2k(R). The Lie algebra sp2k is given by

sp2k = {A ∈ GL2k(R) | ωcan(A · v, w) + ωcan(v,A · w) = 0}.

Take s̃ : Ũ → P, the almost symplectic structure induced by P is

ω(X̃, Ỹ ) = ωcan(s̃−1(X̃), s̃−1(Ỹ )).

If [s̃, A] ∈ E(P̃, sp2k), we have that

ω(Φ̃[s̃,A](X̃), Ỹ ) + ω(X̃, Φ̃[s̃,A](Ỹ ))

=ωcan(s̃−1(Φ̃[s̃,A](X̃)), s̃−1(Ỹ )) + ωcan(s̃−1(X̃), s̃−1(Φ̃[s̃,A](Ỹ )))

=ωcan(A · s̃−1(X̃), s̃−1(Ỹ )) + ωcan(s̃−1(X̃), A · s̃−1(Ỹ ))

=0.

Then

HomSp2k(R)(TO, TO)

∼= {Φ ∈ Hom(TO, TO) | ω(Φ(X), Y ) + ω(X,Φ(Y )) = 0}.



Example 3.37. HomGLk(C)(TO, TO)
Take P x GLk(C). The Lie algebra glk(C) is Mk×k(C). A real matrix
A ∈M2k×2k(R) represents a complex matrix if and only if

JcanA = AJcan.

It follows that

glk(C) = {A ∈M2k×2k(R) | JcanA = AJcan}.

Take a local section s̃ : Ũ → P. The almost complex structure induced
by P is given by

J̃(X̃) = s̃
(
s̃−1(X̃) · Jcan

)
.

If [s̃, A] ∈ E(P̃, glk(C)), we have that

Φ̃[s̃,A](J̃(X̃)) = Φ̃[s̃,A]

(
s̃
(
s̃−1(X̃) · Jcan

))
= s̃

(
A · s̃−1(X̃) · Jcan

)
= s̃

(
Jcan ·A · s̃−1(X̃)

)
= s̃

(
Jcan · s̃−1

(
Φ̃[s̃,A](X̃)

))
= J̃(Φ̃[s̃,A](X̃)).

Then

HomGLk(C)(TO, TO) ∼= {Φ ∈ Hom(TO, TO) | Φ ◦ J = J ◦ Φ}.

Example 3.38. HomU(k)(TO, TO)
Take P x U(k). The Lie algebra u(k) is given by

u(k) = {A ∈ glk(C) | hcan(Az,w) + hcan(z,Aw) = 0}.

Let s̃ : Ũ → P be a local section and view it as a complex local
frame. The almost hermitian structure induced bu P is given by

h̃(X̃, Ỹ ) = hcan(s̃−1(X̃), s̃−1(Ỹ )).



If [s̃, A] ∈ E(P̃, u(k)), we have that

h̃(Φ̃[s̃,A](X̃), Ỹ ) + h̃(X̃, Φ̃[s̃,A](Ỹ ))

=hcan(s̃−1(Φ̃[s̃,A](X̃)), s̃−1(Ỹ )) + hcan(s̃−1(X̃), s̃−1(Φ̃[s̃,A](Ỹ )))

=hcan(A · s̃−1(X̃), s̃−1(Ỹ )) + hcan(s̃−1(X̃), A · s̃−1(Ỹ ))

=0.

Then

HomU(k)(TO, TO)

∼= {Φ ∈ Hom(TO, TO) | h(Φ(X), Y ) + h(X,Φ(Y )) = 0}.

We want an orbibundle EG such that

0→ HomG(TO, TO)→ Hom(TO, TO)→ EG → 0

is a short exact sequence. Besides, the infinitesimal automorphism bun-
dles are described in terms of the vanishing of something (tensorial).
Then, we can find out the orbibundle structure of EG. For example,
for O(n)-structures a morphism Φ ∈ Hom(TO, TO) is an infinitesimal
automorphism if and only if

〈Φ(X), Y 〉+ 〈X,Φ(Y )〉 = 0.

Define F (Φ) ∈ Σ2(T ∗O) by

F (Φ)(X,Y ) := 〈Φ(X), Y 〉+ 〈X,Φ(Y )〉.

That means we have a bundle map F : Hom(TO, TO) → Σ2(T ∗O)
such that kerF = HomP (TO, TO). To prove the surjectivity of F , take
a symmetric 2-tensor ζ ∈ Σ2(T ∗O) and an adapted frame σ̃i. Define
ζii := ζ(σ̃i, σ̃i) ∈ C∞(Ũ); we want that

〈Φ̃(σ̃i), σ̃i〉 =
1

2
ζii.

That happens precisely if we define

Φ̃(σ̃i) =
1

2

∑
j

ζjj σ̃j .



Then F (Φ) = σ and

0→ HomO(n)(TO, TO)→ Hom(TO, TO)→ Σ2(T ∗O)→ 0,

is the short exact sequence we were looking for. Similar arguments show
that

0→ HomSp2k(R)(TO, TO)→ Hom(TO, TO)→ Λ2(O)→ 0.

For almost complex structures, the map F is

F (Φ)(X) = Φ(J(X))− JΦ(X).

It satisfies

F (Φ)(J(X)) = −Φ(X)− JΦ(J(X))

= −J(Φ(J(X))− JΦ(X))

= −JF (Φ)(X).

Let HomA
J (TO, TO) be the antiholomorphic homomorphisms defined

by

HomA
J (TO, TO) = {Φ ∈ Hom(TO, TO) | Φ ◦ J = −J ◦ Φ}.

Take ΦA ∈ HomA
J (TO, TO), to prove the surjectivity of F , we want

Φ ∈ Hom(TO, TO) such that

ΦA(X) = Φ(J(X))− JΦ(X).

Take an adapted frame (σ̃i, J̃(σ̃i))
k
i=1. Assign an arbitrary value for

Φ̃(σ̃i) and define

Φ̃(J̃(σ̃i)) := J̃Φ̃(σ̃i)− Φ̃A(σ̃i).

Hence, F (Φ) = ΦA and follows that the short exact sequence associated
to almost complex structures is

0→ HomGLk(C)(TO, TO)→ Hom(TO, TO)→ HomA
J (TO, TO)→ 0.



It is not necessary to do this for distributions because we already have
the condition the homomorphism Φ must satisfy: Φ(D) ⊂ D. For al-
most hermitian structures, as long as U(k) = Sp2k(R)∩O(2k)∩GLk(C),
the compatibility conditions obtained from the other geometric struc-
tures characterize its compatibility.

Take a cone field X ∈ X(O). We want to know the homomorphism
induced by [p, ω(Y )]. As long as Y and p must satisfy dπ(Y ) = X and
π(p) = x, we can take a local section s̃ : Ũ → P̃, a lift X̃ of X and
obtain ds̃(X̃) ∈ T P̃. Because X̃ is Γ-invariant, so is ds̃(X̃) ∈ T P̃. Then
[p, ω(Y )] = [s(x), ω(ds(X))]. But s∗ω(X) = ωs(X) is the connection
matrix over the frame s : U → P . Take the local frame σ̃i := s̃(ei), then

Φ̃[p,ω(Y )](σ̃i) =
∑
k

ωs(X)ikσ̃k.

But
∇X σ̃i =

∑
k

ωs(X)ikσ̃k,

and then
Φ̃[p,ω(Y )](σ̃i) = ∇X σ̃i.

However, it is a homomorphism, and then it is not true that

Φ̃[p,ω(Y )](Ỹ ) 6= ∇X Ỹ ,

for all Ỹ . If Ỹ =
∑
aiσ̃i, we have that

Φ̃[p,ω(Y )](Ỹ ) =
∑
i

ai∇X σ̃i.

Given that ai∇X σ̃i = ∇Xaiσ̃i − dai(X)σ̃i, we obtain

(∇XP )(Ỹ ) = ∇X Ỹ −
∑
i

dai(X)σ̃i.

Theorem 3.39. Let G < GLn(R) be one of the following groups

GLk,n−k(R), O(n), Sp2k(R), GLk(C), U(k).

A connection ∇ is compatible with a G-structure if and only if



1. ∇X(D) ⊂ D when G = GLk,n−k(R).

2. LX(〈Y,Z〉) = 〈∇XY,Z〉+ 〈Y,∇XZ〉 when G = O(n).

3. LX(ω(Y,Z)) = ω(∇XY, Z) + ω(Y,∇XZ) when G = Sp2k(R).

4. ∇X(JY ) = J∇XY when G = GLk(C).

5. LX(h(Y, Z)) = h(∇XY, Z) + h(Y,∇XZ) when G = U(k).

Proof. Take an adapted frame σ̃i. Let Ỹ =
∑

i a
iσ̃i and Z̃ =

∑
i b
iσ̃i.

The connection is compatible with a G-structure if and only if∇XP = 0.
The short exact sequence

0→ HomG(TO, TO)
ι→ Hom(TO, TO)

F→ EG → 0,

characterizes the compatibility of the connection because ∇XP = 0 if
and only if F (∇XP ) = 0.

1. In GLk,n−k(R) structures, the compatibility condition means the
homomorphism ∇XP satisfies

∇XP (D) ⊂ (D).

In addition, ∇XPσ̃i = ∇X σ̃i and, as long as (σ̃i)
k
i=1 generates the

distribution D̃, we get

∇X(D) ⊂ D.

2. Take an O(n)-structure P . We have

F (∇XP )(Ỹ , Z̃) = 〈∇XP (Ỹ ), Z̃〉+ 〈Ỹ ,∇XP (Z̃)〉

= 〈∇X Ỹ −
∑
i

dai(X)σ̃i, Z̃〉

+ 〈Ỹ ,∇X Z̃ −
∑
i

dbi(X)σ̃i〉.

Moreover

〈
∑
i

dai(X)σ̃i, Z̃〉 = 〈
∑
i

dai(X)σ̃i,
∑
j

bj σ̃j〉

=
∑
k

dak(X)bk,



and
〈Ỹ ,

∑
i

dbi(X)σ̃i〉 =
∑
k

dbk(X)ak.

Hence

F (∇XP )(Ỹ , Z̃) = 〈∇X Ỹ , Z̃〉+〈Ỹ ,∇X Z̃〉−
∑
k

dak(X)bk+dbk(X)ak.

Finally, because

LX(〈Ỹ , Z̃〉) = LX(〈
∑
i

aiσ̃i,
∑
j

bj σ̃j〉)

= LX(
∑
k

akbk)

=
∑
k

dak(X)bk + akdbk(X),

we get that

F (∇XP )(Ỹ , Z̃) = 〈∇X Ỹ , Z̃〉+ 〈Ỹ ,∇X Z̃〉 − LX(〈Ỹ , Z̃〉).

3. Take an Sp2k(R)-structure P . The adapted frame is given by
(σ̃1
i , σ̃

2
i )
k
i=1 and

F (∇XP )(Ỹ , Z̃) = ω(∇XP (Ỹ ), Z̃) + ω(Ỹ ,∇XP (Z̃))

= ω(∇X Ỹ −
∑
i

dai1(X)σ̃1
i + dai2(X)σ̃2

i , Z̃)

+ ω(Ỹ ,∇X Z̃ −
∑
i

dbi1(X)σ̃1
i + dbi2(X)σ̃2

i ).

Moreover

ω(
∑
i

dai1(X)σ̃1
i + dai2(X)σ̃2

i , Z̃)

= ω(
∑
i

dai1(X)σ̃1
i + dai2(X)σ̃2

i ,
∑
i

bi1σ̃
1
i + bi2σ̃

2
i )

=
∑
k

dak1(X)bk2 − dak2(X)bk1,



and
ω(Ỹ ,

∑
i

dbi(X)σ̃i) =
∑
k

ak2db
k
1(X)− ak1dbk2(X).

Hence

F (∇XP )(Ỹ , Z̃) = ω(∇X Ỹ , Z̃) + ω(Ỹ ,∇X Z̃)

−
∑
k

dak1(X)bk2 + ak2db
k
1(X)− dak2(X)bk1 − ak1dbk2(X).

Finally, because

LX(ω(Ỹ , Z̃)) = LX(
∑
k

ak1b
k
2 − ak2bk1)

=
∑
k

dak1(X)bk2 + ak1db
k
2(X)− dak2(X)bk1 − ak1dbk2(X),

we get that

F (∇XP )(Ỹ , Z̃) = ω(∇X Ỹ , Z̃) + ω(Ỹ ,∇X Z̃)− LX(ω(Ỹ , Z̃)).

4. Take a GLk(C)-structure P . The adapted (real) frame is given by
(σ̃i, J̃(σ̃i))

k
i=1 and Ỹ =

∑
j a

j σ̃j + bj J̃(σ̃j). We have that

F (∇XP )(Ỹ ) = ∇XP (J̃(Ỹ ))− J̃(∇XP (Ỹ )).

The vanishing of F (∇XP ) for the adapted frames means

∇X(J̃(σ̃i)) = J̃(∇X(σ̃i)).

Because J̃ is an isomorphism, we have that

∇X(J̃(Ỹ )) = J̃(∇X(Ỹ )).

5. Take a U(k)-structure P , the almost complex structure J induced
by U(k) and the hermitian structure

h(X,Y ) = 〈X,Y 〉 − iω(X,Y ),

with 〈··〉 and ω(·, ·) the induced Riemannian and almost symplectic
structures. By the previous items we have that



• ∇XJ(Y ) = J(∇XY ).

• LX(〈Y,Z〉) = 〈∇XY,Z〉+ 〈Y,∇XZ〉.
• LX(ω(Y,Z)) = ω(∇XY, Z) + ω(Y,∇XZ).

Because the Lie derivative, on the almost complex setting, splits
by

L(u+ iv) = L(u) + iL(v),

then

L(h(X,Y )) = L(〈X,Y 〉 − iω(X,Y ))

= L(〈X,Y 〉)− iL(ω(X,Y ))

= 〈∇XY,Z〉+ 〈Y,∇XZ〉 − i(ω(∇XY,Z) + ω(Y,∇XZ))

= h(∇XY,Z) + h(Y,∇XZ).

3.3.2 The space of compatible connections

Fix a connection form ω ∈ Ω1(P, g). If ω2 ∈ Ω1(P, g) is another connec-
tion form, then η := ω2 − ω ∈ Ω1

bas(P, g) is a basic form. In addition,
if η ∈ Ω1

bas(P, g), it follows that ω2 := η + ω ∈ Ω1(P, g) is a connection
form.

Definition 3.40. The space of compatible connections with a fixed G-
structure P is given by

Con(P ) = {ω ∈ Ω1(P, g) | ω(Ψ(·, ξ)) = ξ and R∗gω = Adg−1ω}.

Proposition 3.41. A connection form ω ∈ Ω1(P, g) induces a bijection
between

Ω1
bas(P, g)

1−1←→ Con(P ).

That means the space of compatible connections is an affine space
modeled on Ω1

bas(P, g). On the other hand, basic forms are isomorphic
to

Ω1
bas(P, g) ∼= Ω1(O, HomP (TO, TO)).



Fix ∇ω, the 1-1 correspondence between connection forms ω and con-
nections ∇ω in TO, together with the previous proposition, gives us the
bijection

Ω1(O, HomP (TO, TO))
1−1←→ {Connections ∇P compatible with P}.

Explicitly, if η ∈ Ω1(O, HomP (TO, TO)), the bijection is given by

∇ηXY := ∇ωXY + η(X,Y ).

Hence, the space of connections ∇ compatible with P is an affine space
modeled on Ω1(O, HomP (TO, TO)).

3.4 Integrability

Take a G-structure P x G → O and (Ũα,Γα, φ̃α) an orbifold atlas
that belongs to the same orbifold structure as P/G. Fix an orbifold
chart around π(p) = x ∈ O and denote it by (Ũx,Γx, φ̃x). Because they
belong to the same orbifold structure, there exists a slice Sp ⊂ P , a
diffeomorphism f̃xp : Ũx → Sp and an isomorphism θxp : Γx → Gp such
that f̃xp is θxp-equivariant. It follows that

Fr(Ũx)

π̃x
��

f̃xp∗ // Fr(Sp)

π̃p

��
Ũx

f̃xp // Sp

commutes and induces the orbifold commutative diagram

Fr(Ux)

πx

��

fxp∗// Fr(Sp)/Gp

πp

��
Ux

fxp // Sp/Gp

where the horizontal arrows are diffeomorphisms. But Gp < GLn(R)
and follows that the Gp-action is by linear transformations. Take the



chart ϕ̃p : Sp → Rn given by the manifold structure of Sp. It defines the
commutative diagram

Fr(Sp)

π̃p

��

ϕ̃p∗ // Fr(Rn)

pr

��
Sp

ϕ̃p // Rn

where all maps are Gp-equivariant. Define fx := ϕp ◦ fxp, then

Fr(Ux)

π̃x
��

fx∗ // Fr(Rn)/Gp

pr

��
Ux

fx // Rn/Gp

is a commutative diagram such that the horizontal lines are embeddings.
Besides, we have a canonical structure Rncan such that fx∗(q) ∈ Fr(Rncan)
if and only if q ∈ P . In addition, a local section s̃ : Ũx → Fr(Ũx)
generates the local G-principal bundle structure Fr(Ũx)G defined by

Fr(Ũx)G := s̃(Ũx) ·G.

Then, Fr(Ũx)G = P̃ if and only if s̃ : Ũx → P̃x is an adapted local
section.

Proposition 3.42. A local section s̃ : Ũx → Fr(Ũx) is an adapted
frame if and only if

Fr(Ux)G

π̃x
��

fxp∗// Fr(Rncan)/Gp

π̃p
��

Ux
fxp // Rncan/Gp

is an equivalence of G-structures.

Be aware that in the orbifold setting, there is no canonical local
model. Instead, it depends on Γπ(p). The canonical local model around
p ∈ P is the principal bundle structure Fr(Rncan) x Gp → Rn/Gp.



Definition 3.43. A G-structure P is called integrable if there exists an
orbifold atlas (Ũα,Γα, φ̃α) such that for all x ∈ O, π(p) = x and all
orbifold chart Ux around x

Fr(Ux)G

π̃x
��

fxp∗// Fr(Rncan)/Gp

π̃p
��

Ux
fxp // Rncan/Gp

is an equivalence of G-structures.

By the previous proposition, P is integrable if and only if we can find
an orbifold atlas such that every induced local frame s̃ : Ũ → Fr(Ũ)
is an adapted frame s̃ : Ũ → P̃. The change of coordinates between
the adapted frames is given by elements of G. Hence, the change of
coordinates of the orbifold structure O belongs to G. Whether a G-
structure is integrable or not is a central question in G-structure theory.
All GL+

n (R)-structures are integrable by definition. Furthermore, ev-
ery SLn(R)-structure is integrable too because the difference between
an adapted and non-adapted frame is given by the multiplication of a
smooth function f̃ : Ũ → R and then they belong to the same orbifold
structure.

Example 3.44. GLk,n−k(R)-structures
If P x GLk,n−k(R) is an integrable structure, then there exist orb-
ifold charts (Ũkα × Ũn−kα ,Γα, φ̃α) such that the local frames (s̃iα)ki=1 gen-
erates the distribution D̃α. Take the orbifold OD given by the atlas
(Ũkα,Γα, φ̃α). The Γα-equivariant embeddings ψ̃α : Ũkα ↪→ Ũkα × Ũn−kα

defines an embedding OD ↪→ O. By construction TOD = D and then
an integrable distribution is a foliation. On the other hand, if we have
a foliation, we have a GLk,n−k(R)-structure. If we complete the local
frames given by OD ↪→ O, we obtain an orbifold atlas adapted to D.
Hence, a GLk,n−k(R)-structure is integrable if and only if it is a foliation.

Example 3.45. O(n)-structures
Take the Riemannian structure 〈·, ·〉 induced by P and a local frame
s̃ : Ũ → P̃. Define

gij(x̃) := 〈s̃(x̃)(ei), s̃(x̃)(ej)〉,



we have that

〈s̃(x̃)(v), s̃(x̃)(w)〉 = (v1, . . . , vn)·

g11(x̃) · · · g1n(x̃)
...

. . .
...

gn1(x̃) · · · gnn(x̃)

·(w1, . . . , wn)T .

If s̃ is an adapted frame then gij(x̃) = δij for all x̃ ∈ Ũ . Hence, if P is
integrable, for all x ∈ O, there exists an orbifold chart Ux such that

〈·, ·〉 = dx̃2
1 + . . .+ dx̃2

n, (3.4.1)

with (x̃1, . . . , x̃n) the coordinate functions associated to Ũx. Conversely,
take a local frame s̃, if the Riemannian structure is given by (3.4.1),
then 〈s̃(x̃)(ei), s̃(x̃)(ej)〉 = δij and it follows that s̃ is an adapted frame.

Example 3.46. Sp2k(R)-structures
As in Riemannian structures, an almost symplectic structure is inte-
grable if and only if there exists an orbifold atlas such that the almost
symplectic form ω is locally given by

ω = dx̃1 ∧ dỹ1 + . . .+ dx̃k ∧ dỹk.

The coordinates such that ω has this form are called Darboux coordi-
nates.

Example 3.47. GLk(C)-structures
Take two adapted frames (σ̃iα, J̃(σ̃iα))ki=1 and (σ̃iβ, J̃(σ̃iβ))ki=1. Then, the
transition matrix

σ̃α · gαβ = σ̃β,

satisfies gαβ ∈ GLk(C). Hence, ψ̃αβ : Ũα → Ũβ is a holomorphic func-
tion (it comes from the (complex) linear map given by the multiplication
of a complex matrix varying smoothly on Ũα ∩ Ũβ). Consequently, if P
is integrable, then O has a complex structure, which means an almost
complex structure J such that the transition functions are holomorphic
functions with respect to J .

Integrability can be thought of as extending the local properties
induced by the standard geometric structure Rncan(Ckcan) to the whole



orbifold O. Then, we are interested in which properties characterizes
Fr(Rncan)/Gp. First of all, the vector and principal bundles TRncan and
Fr(Rncan) are canonically trivializable by

(v, w) ∈ Rn × Rn 7→ d

dt

∣∣∣∣
t=0

v + tw ∈ TvRn,

and
(v, g) ∈ Rn ×G 7→ g−1 ∈ Frv(Rn),

with

g−1 · d
dt

∣∣∣∣
t=0

v + tw = g−1 · w.

The canonical tautological form is defined by

θcan(v,g)(Y ) = g−1 · u,

with

d(v,g)π(Y ) =
d

dt

∣∣∣∣
t=0

v + tu.

Define the distribution ζi ∈ TFr(Rn) by

ζi(v, g) :=
d

dt

∣∣∣∣
t=0

(v + tg · ei, g).

It satisfies
θcan(ζi) = ei,

which implies (ζi)
n
i=1 is a (canonical) horizontal subbundle of TFr(Rn).

Furthermore, because every canonical vector field on TRn commutes,
then

[ζi, ζj ] = 0 and [ζi,Ψ(ξ)] = 0,

for all ξ ∈ g. Because Gp y Rn acts by fixed linear transformations,
all constructions above are Gp-equivariant. Hence, if a G-structure is
integrable, for every x ∈ O the equivalence

P

π̃x
��

// Fr(Rncan)/Gp

π̃p
��

Ux
fxp // Rncan/Gp



induces vector fields ζi ∈ TP |Ux such that

θ(ζi) = ei , [ζi, ζj ] = 0 and [ζi,Ψ(ξ)] = 0,

for all ξ ∈ g.

Proposition 3.48. A G-structure (P, θ) is integrable if and only if for
every p ∈ P there exist an open set P |U together with local vector fields
ζi ∈ X(P |U ) such that

θ(ζi) = ei , [ζi, ζj ] = 0 and [ζi,Ψ(ξ)] = 0,

for all ξ ∈ g.

Proof. (⇒) Already done.
(⇐) Take the distribution ζi ∈ TP |Ux . By Frobenius theorem, the vector
fields ζi defines a foliation Z ⊂ P , which means, TZ = span(ζ1, . . . , ζn).
It follows that there exists an orbifold chart Ṽx around x, and a local
section σ̃ : Ṽx → Z̃ ⊂ P̃ such that

∂σ̃

∂xi
= ζ̃i.

Define ϕ̃ : Ṽx × G → P̃ by ϕ̃(x̃, g) = σ̃(x̃) · g. It is a principal bundle

isomorphism. Take a basis (
∂

∂xi
)ni=1 for the horizontal distribution, we

have that

d(x̃,g)ϕ̃

(
∂

∂xi
, 0

)
= R∗g

(
∂σ̃

∂xi

)
= R∗g

(
ζ̃i

)
.

It follows that

(ϕ̃∗θ)(x̃,g)

(
∂

∂xi
, 0

)
= θϕ̃(x̃,g)

(
R∗g ζ̃i

)
= g−1 · ei = θcan(x̃,g)(

∂

∂xi
).

Hence, ϕ̃∗θ = θcan which implies ϕ̃ is a G-structure equivalence.

The proposition characterizes the integrability problem in terms of
the manifold P instead of the orbifold P/G because all the informations
relies on the existence of local vector field on P satisfying conditions
expressed only in terms of the geometry of P .



3.4.1 Affine structure of the compatible connections

Fix a connection H = kerω. Let θ ∈ Ω1(P,Rn) be the tautological
form, Ψ : P × g→ TP the infinitesimal action and Yv = θ−1

H (v), where
v ∈ Rn. They induce the isomorphism φH : P × (Rn⊕ g)→ TP defined
by

φH(p, v + ξ) = (Yv)p + Ψ(p, ξ).

If we have taken another connection H′ = kerω′, the isomorphism be-
comes

φH′(p, v + ξ) = (Y ′v)p + Ψ(p, ξ),

with Y ′v = θ−1
H′ (v). Given that dpπ(Y ′v) = p(v) = dpπ(Yv), we get

Y ′v − Yv ∈ T V P ∼= P × g,

and we will identify them. We can compare the two isomorphisms with

φ−1
H ◦ φH′ : P × (Rn ⊕ g)

∼=→ P × (Rn ⊕ g),

given by

(φ−1
H ◦ φH′)(p, v + ξ) =

(
p, v + (ξ + Y ′v − Yv)

)
.

Define SH′,H : P × Rn → P × g by

SH′,H(p, v) = (p, Y ′v − Yv). (3.4.2)

Denote SH′p,Hp(·) = SH′,H(p, ·). SH′,H is a homomorphism of vector
bundles such that

(φ−1
H ◦ φH′)(p, v + ξ) =

(
p, v + (ξ + SH′p,Hp(v))

)
.

The 1-1 correspondence

Ω1
bas(P, g)←→ Con(P ),

gives for every ω′ ∈ Con(P ) an element η ∈ Ω1
bas(P, g) such that

ω′ = η + ω.



Because η is horizontal, we have that

η|H : H → P × g,

is a well-defined homomorphism of vector bundles. Moreover, the tau-
tological form θ ∈ Ω1(P,Rn) induces the isomorphism

θH : H
∼=→ P × Rn.

It follows that every basic form η defines the homomorphism of vector
bundles

η ◦ θ−1
H : P × Rn → P × g.

The homomorphism SH′,H defined on (3.4.2) is related to the previous
homomorphism by

SH′,H = −η ◦ θ−1
H .

Thus, the difference between the two connections is identified with a
homomorphism SH′,H : P × Rn → P × g.

Define Gy Hom(Rn, g) by

(g · φ)(v) = Adgφ(g−1v),

and

C∞(P,Hom(Rn, g))G = {η ∈ C∞(P,Hom(Rn, g)) | η(p·g) = g−1·η(p)}.

Proposition 3.49. A connection H = kerω induces the bijection

C∞(P,Hom(Rn, g))G
Fω←→ Con(P ),

defined by
Fω(η)(Y ) = η(θ(Y )) + ω(Y ).

Proof. We want to recover the previous homomorphism, which means

F−1
ω (ω′) = −SH′,H.

Besides

ω′(θ−1
H (v)) = (ω + η)(θ−1

H (v)) = η(θ−1
H (v)) = −SH′,H(v),



and then
F−1
ω (ω′) = ω′ ◦ θ−1

H .

Proving that Fω is a bijection requires that F−1
ω is its inverse on both

sides. Firstly

(F−1
ω ◦ Fω)(η)(p)(v) = Fω(η)(θ−1

Hp(v))

= ηp(θ ◦ θ−1
Hp(v)) + ω(θ−1

Hp(v))

= ηp(v),

which implies F−1
ω ◦ Fω = Id. Secondly

(Fω ◦ F−1
ω )(ω′)(Y ) = F−1

ω (ω′)(θ(Y )) + ω(Y )

= ω′(θ−1
H ◦ θ(Y )) + ω(Y V )

= ω′(Y H) + ω′(Y V )

= ω′(Y ),

which implies Fω ◦ F−1
ω = Id. Then Fω is a bijection.

Take η ∈ C∞(P,Hom(Rn, g))G, then Fω(η) ∈ Con(P ) because

1. Fω(η)(Ψ(ξ)) = ξ.

Fω(η)(Ψ(ξ)) = η(θ(Ψ(ξ))) + ω(Ψ(ξ)) = ω(Ψ(ξ)) = ξ.

2. R∗gFω(η) = Adg−1Fω(η).

R∗g(Fω(η))p(Y ) = (Fω(η))p·g(R
∗
g(Y ))

= ηp·g(θp(R
∗
g(Y ))) + ωp(R

∗
g(Y ))

= ηp·g(g
−1 · θp(Y )) +Adg−1 · ωp(Y )

= Adg−1 · ηp(g · g−1 · θp(Y )) +Adg−1 · ωp(Y )

= Adg−1 · (ηp(θp(Y )) + ωp(Y ))

= Adg−1 · (Fω(η)p(Y )).



Conversely, if ω′ ∈ Con(P ), it follows that

F−1
ω (ω′)(p · g)(v) = ω′p·g(θ

−1
Hp·g(v))

= ω′p·g

(
R∗g

(
θ−1
Hp(g · v)

))
= Adg−1 · Fω(ω′)(p)(g · v),

which implies F−1
ω (ω′) ∈ C∞(P,Hom(Rn, g))G.

3.4.2 First order integrability obstruction: intrinsic tor-
sion

Two G-structures (P1, θ1) and (P2, θ2) are equivalent if and only if there
exists a G-equivariant diffeomorphism f : P1 → P2 such that

f∗θ2 = θ1.

An integrable G-structure (θ, P ) is locally equivalent to the canonical
G-structure

(θcan, F r(Rncan)/Gp x G)

��
Rncan/Gp

so f∗θcan = θ. Then, a necessary condition for the integrability of a
G-structure is

f∗dθcan = dθ. (3.4.3)

We want an explicit description of dθ. Take a connection H = kerω. It
induces the trivialization

ϕH : P × (Rn ⊕ g)→ TP

(p, v + ξ) 7→ θ−1
Hp(v) + Ψ(p, ξ).

Fix two basis (ξj)
dim g
j=1 of g and (ei)

n
i=1 of Rn. They induce the covectors

θi, ωj ∈ Ω1(P ) characterized by

θ =
∑
i

θiei and ω =
∑
j

ωjξj .



Given that ϕH is an isomorphism, the covectors (θi, ωj)i,j form a basis
of T ∗P . It follows that

dpθ
k =

∑
i,j,l,m

Akij(p)θ
i ∧ ωj +Bk

lj(p)ω
l ∧ ωj + Ckim(p)θi ∧ θm,

which implies

dθ = A (θ ∧ ω) +B (ω ∧ ω) + C (θ ∧ θ) ,

with

A : P → Hom(Rn ⊗ g,Rn),

B : P → Hom(Λ2g,Rn),

C : P → Hom(Λ2Rn,Rn).

Because θ is horizontal and ω vertical, we can find the coefficients A,B
and C values using vertical and horizontal vectors. Every horizontal
vector has the form Yv(p) = θ−1

Hp(v), and every vertical vector will be

identified by the equation Ψ(p, ξ) = ξ̃p.

1. A : P → Hom(Rn ⊗ g,Rn).
Given that θ(ξ̃) = 0, and by Cartan’s magic formula, we have that

Lξ̃θ = dιξ̃θ + ιξ̃dθ = ιξ̃dθ.

Then
dpθ(Yv, ξ̃) = −dpθ(ξ̃, Yv) = −Lξ̃θ(Yv).

Besides,

Lξ̃θ =
d

dt

∣∣∣∣
t=0

R∗exp(tξ)θ =
d

dt

∣∣∣∣
t=0

exp(−tξ) · θ = −ξ · θ.

Consequently
dpθ(Yv, ξ̃) = ξ · θ(Yv) = ξ · v.

It follows that
A(p)(v ⊗ ξ) = ξ(v).



2. B : P → Hom(Λ2g,Rn)

dpθ(ξ̃1, ξ̃2) = ξ̃1θ(ξ̃2)− ξ̃2θ(ξ̃1)− θ([ξ̃1, ξ̃2]) = 0,

which implies B(p) = 0.

Until now, we have that

dθ = C(θ ∧ θ)− ω ∧ θ,

with
(ω ∧ θ)(X,Y ) = ω(X)θ(Y )− ω(Y )θ(X).

In order to find C, we need to calculate dθ on two horizontal
vectors. The operator

Dω : Ωk
bas(P,Rn)→ Ωk+1

bas (P,Rn)

η 7→ Dωη(Y0, . . . , Yk) = dη(Y H0 , . . . , Y Hk ),

is an exterior derivative on the algebra of basic forms. Let∇ be the
connection induced by ω. Define d∇ : Ωk(O, TO)→ Ωk+1(O, TO)
by

(d∇ω)(Y0, . . . , Yk) =
∑
i

(−1)i∇Yiω(Y0, . . . , Ŷi, . . . , Yk)

+
∑
i<j

(−1)i+jω([Yi, Yj ], Y0, . . . , Ŷi, . . . , Ŷj , . . . , Yk).

Lemma 3.50. The following diagram commutes

Ωk
bas(P,Rn)

Dω //

��

Ωk+1
bas (P,Rn)

��
Ωk(O, TO)

d∇ // Ωk+1(O, TO)

Proof. Take k = 0, s : O → TO a cone field and fs : P → Rn
defined by

fs(p) = p−1(s(π(p))).



Given that fs(p · g) = g−1 · fs(p), then fs ∈ C∞(P,Rn)G. Let Y ∈
TP , X = dπ(Y ) ∈ X(O) and h : π∗(TO) → TP the horizontal
lift. It follows that

Dωfs(Y ) = dfs(Y
H) = dfs(h(X)) = ∇Xs.

On the other hand
(d∇s)X = ∇Xs.

Then, for k = 0, the diagram commutes. Both maps Dω and d∇
are R-linear and satisfy Leibniz. Furthermore, Ωk

bas(P,Rn) is a
Ω•(P )-module and Ωk(O, TO) a Ω•(O)-module. Hence, we can
extend this diagram for an arbitrary k > 0.

We have that

C(p)(u ∧ v) = Dωθ(Yu, Yv) = dθ(Yu, Yv).

The tautological form comes from the identity morphism

Id ∈ Ω1(O, TO).

Take p(u) = dπ(Yu) = Xu. The previous lemma tell us that taking
Dωθ corresponds to

d∇Id(p(u), p(v)) = ∇p(u)p(v)−∇p(u)p(v)− [p(u), p(v)].

Definition 3.51. The 2-form T∇ ∈ Ω2(O, TO) defined by

T∇(X,Y ) = ∇XY −∇YX − [X,Y ],

is called the torsion of the connection ∇.

3. C : P → Hom(Λ2Rn,Rn)

C(p)(u ∧ v) = p−1 (T∇ (p(u), p(v))) ,

and is called the torsion of ω.



The coefficient CH depends on the choice of H = kerω. Take another
connection H′ = kerω′ with torsion CH′ and let Y ′u = θ−1

H′ (u). Then

CH′(u, v)− CH(u, v) = dθ(Y ′u, Y
′
v)− dθ(Yu, Yv)

= dθ(Y ′u − Yu, Y ′v) + dθ(Yu, Y
′
v − Yv).

But Y ′u − Yu ∈ T V P and Y ′v − Yv ∈ T V P . Using the homomorphism
SH′,H, and the expression for coefficient A, we have that

CH′(u, v)− CH(u, v) = −SH′,H(u)(v) + SH′,H(v)(u).

Definition 3.52. The linear model for the torsion

∂ : Hom(Rn, g)→ Hom(Λ2Rn,Rn),

is defined by
∂S(u ∧ v) = S(u)(v)− S(v)(u).

It follows that the torsions are related by

CH′p + ∂SH′p,Hp = CHp . (3.4.4)

A fixed connection H = kerω induces the homomorphism SH′,H that
comes from the 1-1 correspondence

C∞(P,Hom(Rn, g))G ←→ Con(P )

η 7→ ω′(Y ) := η(θ−1
H (Y )) + ω(Y ).

The torsion corresponds to

C∞(P,Hom(Rn, g))G → P ×Hom(Λ2Rn,Rn)

η 7→ (p, ∂SH′p,Hp).

Hence, the image of ∂ gives the torsion of all the possible compatible
connections.

Definition 3.53. The intrinsic torsion of P is denoted by

CP : P → Hom(Λ2Rn,Rn)/Im ∂,

and defined by
CP (p) = [CHp ].



Theorem 3.54. If f : P → Q is an equivalence of G-structures then
CQ ◦ f = CP .

Proof. Let θP ∈ Ω1(P,Rn), θQ ∈ Ω1(Q,Rn) be the tautological forms
and take a connection HQ = kerωQ. Its pullback ωP := f∗ωQ is a con-
nectionHP = kerωP too. Take the coframes induced by the connections
ωP and ωQ. The differential of the tautological forms are

dθP = CP (θP ∧ θP )− ωP ∧ θP ,

and
dθQ = CQ(θQ ∧ θQ)− ωQ ∧ θQ.

Besides, f is an equivalence, and then f∗dθQ = dθP , which implies

CQ ◦ f = CP .

Take ηQ ∈ C∞(Q,Hom(Rn, g))G and define

ηP := ηQ ◦ f ∈ C∞(P,Hom(Rn, g)).

Given that

ηP (p · g) = (ηQ ◦ f)(p · g) = ηQ(f(p) · g) = g−1 · ηP (p),

we have that ηP ∈ C∞(P,Hom(Rn, g))G. Thus

SPH′p,Hp = SQH′
f(p)

,Hf(p)
.

Consequently

(CQ ◦ f)(p) = [(CQ ◦ f)(p)] = [CP (p)] = CP (p).

Let us see what happens on the canonicalG-structures Fr(Rncan)/Gp.
By proposition (3.32), the connection matrix ωcan ∈ Ω1(Rn, gln) defined
by

ωcan

(
d

dt

∣∣∣∣
t=0

v + tu

)
= 0,



induces a connection compatible with the canonical G-structure. Let
∇can be the connection that comes from ωcan. The torsion of ∇can is

T∇can = 0.

Hence, the torsion Ccan : Fr(Rncan)/Gp → Hom(Λ2Rn,Rn) of ωcan is

Ccan(p)(u ∧ v) = p−1(T∇can(p(u), p(v))) = 0.

Consequently, its intrinsic torsion

Ccan : Fr(Rncan)/Gp → Hom(Λ2Rn,Rn)/Im ∂

satisfies
Ccan = 0.

Corollary 3.55. If a G-structure P is integrable then CP = 0.

Take p ∈ P and fix a connection H = kerω. They give the bijection

Hom(Rn, g)←→ Conp(P )

SHp,H′p 7→ ω′p(·) := SHp,H′p(θHp(·)) + ωp(·)

By equation (3.4.4), if CHp is the torsion of ω and CH′p of ω′, we have
that

∂ : Hom(Rn, g)→ Hom(Λ2Rn,Rn)

SHp,H′p 7→ SHp,H′p(·)(∗)− SHp,H′p(∗)(·)
= CH′p − CHp .

Definition 3.56. The first prolongation of g is the Lie algebra

g(1) := ker ∂.

Definition 3.57. The torsion space of g is given by

T (g) = Hom(Λ2Rn,Rn)/Im ∂.

The torsion and intrinsic torsion information is codified on g(1) and
T (g).



Theorem 3.58. Take a G-structure P .

1. If T (g) = 0, then there exists a compatible connection ∇ with zero
torsion.

2. If g(1) = 0, then two compatible connections ∇1 and ∇2 with equal
torsion are equal.

Proof. 1. Condition T (g) = 0 means ∂ is surjective. Take a connec-
tion ω ∈ Ω1(P, g) with torsion CH. Given that ∂ is surjective,
there exists SHp,H′p ∈ Hom(Rn, g) such that

∂SHp,H′p = −CHp .

Take the connection ω′ induced by the homomorphisms SHp,H′p .
Its torsion satisfies

CH′p = ∂SHp,H′p + CHp = 0.

The connection ∇′ induced by ω′ is a compatible connection with
zero torsion.

2. Take two connections ω, ω′ ∈ Ω1(P, g) with

ω′ = SH,H′(θH(·)) + ω(·).

Let∇, ∇′ be the affine compatible connections induced by the con-
nection 1-forms. Condition g(1) = 0 means ker ∂ = 0. Moreover,
as long as CH = CH′ , we have that

0 = CH′p − CHp = ∂SHp,H′p .

Then SHp,H′p = 0 for all p ∈ P . It follows that ω = ω′, which
implies ∇ = ∇′.

3.4.3 O(n)-structures

Theorem 3.59. Fundamental theorem of Riemannian geometry
Every Riemannian structure over an effective orbifold admits a unique
compatible connection with zero torsion.



Proof. By theorem 3.58, if T (o(n)) = 0 and o(n)(1) = 0, then there
exists a unique compatible connection with zero torsion. Take

∂ : Hom(Rn, o(n))→ Hom(Λ2(Rn),Rn).

1. o(n)(1) = 0.
Take φ ∈ o(n)(1), i.e., φ ∈ ker ∂. Hence, for all u, v ∈ Rn

φ(u)(v) = φ(v)(u).

Besides, as long as φ(·) ∈ o(n), we have that

〈φ(u)v, w〉can = −〈v, φ(u)w〉can.

Consequently

〈φ(u)v, w〉can = −〈v, φ(u)w〉can
= −〈v, φ(w)u〉can
= 〈φ(w)u, v〉can
= 〈φ(u)w, v〉can
= −〈w, φ(u)v〉can,

and then 〈φ(u)v, w〉can = 0 for all u, v, w ∈ Rn. It follows that
φ = 0.

2. T (o(n)) = 0
The previous item shows that ∂ is injective. Given that

dim(Hom(Rn, o(n))) =
n2(n− 1)

2
= dimHom(Λ2Rn,Rn),

∂ : Hom(Rn, o(n))→ Hom(Λ2Rn,Rn) is an isomorphism.

3.4.4 Sp2k(R)-structures

For simplicity, take n = 2k.



Lemma 3.60. The sequence

Σ3((Rn)∗)
ιw→ Hom(Rn, sln)

∂→ Hom(Λ2(Rn),Rn)
∂ω→ Λ3((Rn)∗)

is an exact sequence. In particular

sl(1)
n
∼= Σ3((Rn)∗),

and
T (spn) ∼= Λ3((Rn)∗).

Proof. 1. ιw : Σ3((Rn)∗)→ Hom(Rn, sln).

Let φ ∈ sp
(1)
n . For all v, u ∈ Rn

φ(u)(v) = φ(v)(u).

Besides
ωcan(φ(u)v, w) = −ωcan(v, φ(u)w),

and then, if σ(u, v, w) = ωcan(φ(u)v, w), we have that σ ∈ Σ3(Rn).
Given that ωcan is non-degenerate, the relation

σ(u, v, w) = ωcan(φ(u)v, w),

is a bilateral relation between φ and σ. That gives us the isomor-
phism

ιw : Σ3(Rn)→ sp(1)
n

σ 7→ φ.

2. ∂ω : Hom(Λ2(Rn),Rn)→ Λ3((Rn)∗).

Take an homomorphism φ ∈ Hom(Rn, spn) and let Φ ∈ Hom(Λ2Rn,Rn)
be

∂φ = Φ.

We have that

ωcan(Φ(u, v), w) = ωcan(φ(u)v, w)− ωcan(φ(v)u,w),



which implies

ωcan(Φ(u, v), w) + ωcan(Φ(w, u), v)

=ωcan(φ(w)u, v)− ωcan(φ(v)u,w)

=ωcan(φ(w)v, u)− ωcan(φ(v)w, u)

=− ωcan(Φ(v, w), u).

Define ∂ω : Hom(Λ2Rn,Rn)→ Λ3((Rn)∗) by

∂ω(Φ) := ωcan(Φ(u, v), w) + ωcan(Φ(w, u), v) + ωcan(Φ(v, w), u).

It follows that ∂(Hom(Rn, spn)) ⊂ ker ∂ω. It is a surjective map
because, as long as ωcan is non-degenerate, for all η ∈ Λ3((Rn)∗)
there exists Tη ∈ Hom(Λ2Rn,Rn) such that

ωcan(Tη(u, v), w) =
1

3
η(u, v, w).

Consequently

∂ω(Tη)(u, v, w)

=ωcan(Tη(u, v), w) + ωcan(Tη(w, u), v) + ωcan(Tη(v, w), u)

=
1

3
(η(u, v, w) + η(w, u, v) + η(v, w, u))

=η(u, v, w).

We already show ∂(Hom(Rn, spn)) ⊂ ker ∂ω. Their equality fol-
lows because they have equal dimensions. For, firstly

dim ∂(Hom(Rn, spn)) = dimHom(Rn, spn)− dim ker ∂

= dimHom(Rn, spn)− dim Σ3((Rn)∗),

and

spn
∼=→ Σ2((Rn)∗)

ξ 7→ ωcan(ξ(u), v).



Then

dim ∂(Hom(Rn, spn)) = n · n(n+ 1)

2
− n(n+ 1)(n+ 2)

6

=
n(n2 − 1)

3
.

On the other hand

dim ker ∂ω = dimHom(Λ2(Rn),Rn)− dim Λ3((Rn)∗)

=
n(n− 1)

2
· n− n(n− 1)(n− 2)

6

=
n(n2 − 1)

3
.

It follows that ∂(Hom(Rn, spn)) = ker ∂ω.

Hence, if an Spn(R)-structure is integrable, then there exists a con-
nection H = kerω, with torsion CH, such that

∂ω(CH) = 0.

Besides

ϕ : E(P,Hom(Λ2Rn,Rn))→ Ω2(O, TO)

[p,Φ] 7→ p
(
Φ
(
p−1(X) ∧ p−1(Y )

))
,

is an isomorphism such that ϕ([p, CHp ]) = T∇, with ∇ the connection
induced by H. Also

E(P,Λ3((Rn)∗))
∼=→ Ω3(O)

[p, η] 7→ η
(
p−1(X) ∧ p−1(Y ) ∧ p−1(Z)

)
,

are isomorphic. The map ∂ω descends to

∂ω : E(P,Hom(Λ2Rn,Rn))→ E(P,Λ3((Rn)∗))

[p,Φ] 7→ [p, ∂ω(Φ)].



The induced map ∂ω : Ω2(O, TO)→ Ω3(O) is

∂ω(T∇)(X,Y, Z) = ω(T∇(X,Y ), Z) +ω(T∇(Z,X), Y ) +ω(T∇(Y,Z), X).

Thus, if the Spn(R)-structure is integrable, there exists a compatible
affine connection ∇ such that

∂ω(T∇) = 0.

We have

∂ω(T∇)(X,Y, Z) = ω(∇XY,Z) + ω(Y,∇XZ)− ω([X,Y ], Z)

+ ω(∇ZX,Y ) + ω(X,∇ZY )− ω([Z,X], Y )

+ ω(∇Y Z,X) + ω(Z,∇YX)− ω([Y,Z], X).

Given that ∇ is a compatible connection we get

∂ω(T∇)(X,Y, Z) = Xω(Y,Z)− ω([X,Y ], Z)

+ Zω(X,Y )− ω([Z,X], Y )

+ Y ω(Z,X)− ω([Y, Z], X).

On the other hand

dω(X,Y, Z) = Xω(Y,Z)− Y ω(X,Z) + Zω(X,Y )

− ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X),

and then
∂ω(T∇) = dω.

Theorem 3.61. If an almost symplectic structure ω ∈ Ω2(O) is inte-
grable then dω = 0.

3.4.5 GLk,n−k(R)-structures

Lemma 3.62. The sequence

0→ gl
(1)
k,n−k → Hom(Rn, glk,n−k)

∂→ Hom(Λ2Rn,Rn)

∂D→ Hom(Λ2Rk,Rn/Rk)→ 0,

is an exact sequence.



Proof. 1. ∂D : Hom(Λ2Rn,Rn)→ Hom(Λ2Rk,Rn/Rk).

Take φ ∈ Hom(Rn, glk,n−k). Then, for all u ∈ Rn, we have that

φ(u)(Rk) ⊂ Rk.

If Φ = ∂φ, then for all u, v ∈ Rk we get

Φ(u, v) = φ(u, v)− φ(v, u) ∈ Rk.

Define

∂D : Hom(Λ2Rn,Rn)→ Hom(Λ2Rk,Rn/Rk)
Φ 7→ Φ|Rk mod Rk,

it follows that ∂D ◦ ∂ = 0 and then Im ∂ ⊂ ker ∂D. For the other
inclusion, take Φ ∈ ker ∂D. Given that Φ(u, ·) : Rk → Rk, the
matrix induced by Φ(u, ·) : Rn → RnΦ(u, e1) Φ(u, e2) . . . Φ(u, en)


belongs to glk,n−k. Define φ ∈ Hom(Rn, glk,n−k by

φ(u) =
1

2
Φ(u, ·).

We have that

∂φ(u, v) = φ(u, v)− φ(v, u)

=
1

2
(Φ(u, v)− Φ(v, u))

= Φ(u, v),

which implies ker ∂D = Im ∂. Clearly ∂D is a surjective map.



It follows that

T (glk,n−k)
∼= Hom(Λ2Rk,Rn/Rk),

and if a GLk,n−k(R)-structure is integrable, then there exists a connec-
tion H = kerω such that

∂D(CH) = 0.

Let D ⊂ TO be the distribution induced by the GLk,n−k(R)-structure
P . By similar arguments as the ones used on almost symplectic struc-
tures, the map ∂D descends to

∂D : Ω2(O, TO)→ Ω2(D,TO/D)

T∇ 7→ T∇|D mod D.

If P is integrable, then there exists a compatible affine connection ∇
such that

∂D(T∇) = 0.

Explicitly, if X,Y ∈ D, then

T∇(X,Y ) = ∇XY −∇YX − [X,Y ] = 0 mod D,

if and only if
∇XY −∇YX − [X,Y ] ∈ D.

Given that ∇ is a compatible connection and X,Y ∈ D, we have that

∇XY ∈ D and ∇YX ∈ D.

Then, ∂D(T∇) = 0 if and only if every X,Y ∈ D satisfies

[X,Y ] ∈ D.

Definition 3.63. A distribution D ⊂ TO is called involutive if

[Sec(D),Sec(D)] ∈ Sec(D).

Theorem 3.64. If a distribution D ⊂ TO is integrable, then it is in-
volutive.



3.4.6 GLk(C)-structures

Let n = 2k.

Lemma 3.65. The sequence

Hom(Rn, glk(C))
∂→ Hom(Λ2Rn,Rn)

NJ→ Hom(Λ2Rn,Rn)
∂J→ Hom(Λ2Rn,Rn)

is an exact sequence.

Proof. 1. NJ : Hom(Λ2Rn,Rn)→ Hom(Λ2Rn,Rn).

Let φ ∈ Hom(Rn, glk(C)). It can be though of as an element
of R∗ ⊗ R∗ by

φ(u, v) := φ(u)(v).

Given that φ(·) ∈ glk(C), then

φ(u, Jv) = Jφ(u, v). (3.4.5)

Take Φ ∈ Hom(Λ2Rn,Rn) defined by Φ = ∂φ. We have that

Φ(u, v) = φ(u, v)− φ(v, u)

= −J(φ(u, Jv)− φ(v, Ju)),

and

φ(u, Jv)− φ(v, Ju) = Φ(u, Jv) + φ(Jv, u)− Φ(v, Ju)− φ(Ju, v).

Then

Φ(u, v) = −JΦ(u, Jv) + JΦ(v, Ju) + φ(Ju, Jv)− φ(Jv, Ju)

= −JΦ(Ju, v)− JΦ(u, Jv) + Φ(Ju, Jv).

Consequently, if we define

NJ : Hom(Λ2Rn,Rn)→ Hom(Λ2Rn,Rn)

Φ 7→ Φ(u, v) + JΦ(Ju, v) + JΦ(u, Jv)− Φ(Ju, Jv),



we have that NJ ◦ ∂ = 0. If kerNJ ⊂ Im ∂, it follows that the
sequence is exact on NJ . For that, take Φ ∈ kerNJ . We want an
element φ ∈ Hom(Rn, glk(C)) such that

Φ(u, v) = φ(u, v)− φ(v, u). (3.4.6)

The way we obtain NJ from φ uses the homomorphisms

{Φ(u, v), JΦ(Ju, v), JΦ(u, Jv),Φ(Ju, Jv)},

where Φ was ∂φ. Hence, it is fair to ask for φ to be a linear
combination of these homomorphisms, which means

φ(u, v) = aΦ(u, v) + bJΦ(Ju, v) + cJΦ(u, Jv), (3.4.7)

with a, b, c ∈ Rn (the element Φ(Ju, Jv) does not appear since
Φ ∈ kerNJ). Replacing the equation (3.4.7) on equation (3.4.6)
we get

(2a− 1)Φ(u, v) + (b+ c) (JΦ(Ju, v) + JΦ(u, Jv)) = 0.

Moreover, φ must satisfy equation (3.4.5), replacing (3.4.7) we
have

(a− b+ c)JΦ(u, v)− (a− b+ c)Φ(u, Jv) = 0.

Thus, a =
1

2
, b =

1

4
and c = −1

4
. It follows that Im ∂ = kerNJ .

2. ∂J : Hom(Λ2Rn,Rn)→ Hom(Λ2Rn,Rn).

Take η ∈ Hom(Λ2Rn,Rn) equals to η = NJ(Φ). It satisfies

η(Ju, v) = Φ(Ju, v)− JΦ(u, v) + JΦ(Ju, Jv) + Φ(u, Jv),

and

η(u, Jv) = Φ(u, Jv) + JΦ(Ju, Jv)− JΦ(u, v) + Φ(Ju, v).

Then
η(Ju, v) + η(u, Jv) + 2Jη(u, v) = 0.



Define

∂J : Hom(Λ2Rn,Rn)→ Hom(Λ2Rn,Rn)

η 7→ η(Ju, v) + η(u, Jv) + 2Jη(u, v),

we have that ∂J ◦ NJ = 0, and then Im NJ ⊂ ker ∂J . Let
HomJ(Λ2Rn,Rn) be defined by

HomJ(Λ2Rn,Rn) := {η | η(Ju, v) = η(u, Jv) = −Jη(u, v)}.

We will show that ker ∂J = HomJ(Λ2Rn,Rn).

• HomJ(Λ2Rn,Rn) ⊂ ker ∂J .

If η ∈ HomJ(Λ2Rn,Rn) then

∂J(η)(u, v) = η(Ju, v) + η(u, Jv) + 2Jη(u, v)

= −2Jη(u, v) + 2Jη(u, v) = 0.

• ker ∂J ⊂ HomJ(Λ2Rn,Rn).

If η ∈ ker ∂J then

η(Ju, v) + η(u, Jv) + 2Jη(u, v) = 0. (3.4.8)

Hence, replacing u by Ju we get

−η(u, v) + η(Ju, Jv) + 2Jη(Ju, v) = 0,

and replacing v by Jv

η(Ju, Jv)− η(u, v) + 2Jη(u, Jv) = 0.

Subtracting the two equations we get

η(Ju, v) = η(u, Jv).

Replacing this expression on equation (3.4.8) we obtain

η(Ju, v) = −Jη(u, v),

and then η ∈ HomJ(Λ2Rn,Rn).



The relation ker ∂J ⊂ Im NJ stands because if η ∈ HomJ(Λ2Rn,Rn),
then

NJ

(
1

2
η

)
(u, v) =

1

2
(η(u, v) + Jη(Ju, v) + Jη(u, Jv)− η(Ju, Jv))

= η(u, v).

By the lemma

Hom(Λ2Rn,Rn)/Im∂
∼=→ HomJ(Λ2Rn,Rn)

[Φ] 7→ NJ(Φ),

and then
T (glk(C)) ∼= HomJ(Λ2Rn,Rn).

It follows that if a GLk(C)-structure P is integrable, then there exists
a connection H = kerω such that

NJ(CH) = 0.

By the same arguments used on Spk(R) structures, we have an induced
map

NJ : Ω2(O, TO)→ Ω2(O, TO)

T∇ 7→ T∇(X,Y ) + JT∇(JX, Y ) + JT∇(X, JY )− T∇(JX, JY ).

Then, if P is integrable, there exists a compatible affine connection ∇
such that

NJ(T∇) = 0.

Explicitly, using the compatibility of ∇, we obtain

NJ(T∇)(X,Y ) = T∇(X,Y ) + JT∇(JX, Y ) + JT∇(X, JY )− T∇(JX, JY )

= −[X,Y ]− J([JX, Y ] + [X, JY ]) + [JX, JY ].

Definition 3.66. The Nijenhuis tensor is the 2-form NJ ∈ Ω2(O, TO)
defined by

NJ(X,Y ) = [X,Y ] + J([JX, Y ] + [X, JY ])− [JX, JY ].

Theorem 3.67. If an almost complex structure J ∈ Hom(TO, TO) is
integrable, its Nijenhuis tensor NJ = 0 vanishes.
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