• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.2019.tde-24072019-165047
Documento
Autor
Nome completo
Cristian Camilo Cárdenas Cárdenas
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Struchiner, Ivan (Presidente)
Bursztyn, Henrique
Fernandes, Rui Loja
Gonzalez, Cristian Andres Ortiz
Torres, David Francisco Martínez
 
Título em inglês
Deformation problems in Lie groupoids
Palavras-chave em inglês
Deformations
Lie groupoid morphisms
Lie subgroupoids
Symplectic groupoids
Resumo em inglês
In this thesis we present the deformation theory of Lie groupoid morphisms, Lie subgroupoids and symplectic groupoids. The corresponding deformation complexes governing such deformations are defined and used to investigate a Moser argument in each of these contexts. We also apply this theory to the case of Lie group morphisms and Lie subgroups, obtaining rigidity results of these structures. Moreover, in the case of symplectic groupoids, we define a map between the differentiable and deformation cohomology of the underlying groupoid, which is regarded as the global counterpart of a map $i$ defined by Crainic and Moerdijk (2004) which relates the (Poisson) cohomology of the Poisson structure on the base $M$ of the groupoid to the deformation cohomology of the Lie algebroid $T^{*}M$ associated to it.
 
Título em português
Problemas de deformação em grupoides de Lie
Palavras-chave em português
Deformações
Grupoides simpléticos
Morfismos de grupoides de Lie
Subgrupoides de Lie
Resumo em português
Nesta tese apresentamos a teoria de deformação de morfismos de grupoides de Lie, subgrupoides de Lie e grupoides simpléticos, definimos os correspondentes complexos de deformação que controlam as deformações destas estruturas, e usamos estes complexos para desenvolver o argumento de Moser em cada um destes contextos. Também aplicamos esta teoria ao caso de morfismos de grupos de Lie e subgrupos de Lie obtendo resultados de rigidez de tais estruturas. Ademais, no caso de grupoides simpléticos, definimos uma função entre a cohomologia diferenciável e a cohomologia de deformação do grupoide, que é interpretada como o análogo global da aplicação $i$ definida por Crainic e Moerdijk (2004) que relaciona a cohomologia de Poisson da estrutura de Poisson induzida na base $M$ do grupoide com a cohomologia de deformação do algebroide de Lie $T^{*}M$ associado à estrutura de Poisson.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Versaocorrigida.pdf (971.40 Kbytes)
Data de Publicação
2019-08-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.