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Resumo

Matheus Koveroff Bellini. Topologias de grupo enumeravelmente compactas em
grupos abelianos livres de torsão. Tese (Doutorado). Instituto de Matemática e Esta-

tística, Universidade de São Paulo, São Paulo, 2022.

Este trabalho apresenta avanços obtidos em resultados de consistência na área da álgebra topológica,

em particular sobre topologias de grupo enumeravelmente compactas e se é possível que elas possuam

sequências convergentes não-triviais. Com melhorias e avanços nos métodos e técnicas já consolidados

nessa linha de pesquisa, obtivemos os seguintes resultados, os dois primeiros já publicados em periódicos

internacionais com arbitragem por pares: primeiro, obter topologias de grupo 𝑝-compactas sobre grupo

abelianos livres de torsão sem sequências convergentes não-triviais, em que 𝑝 é um ultrafiltro seletivo;

segundo, obter topologias de grupo sobre grupos abelianos livres arbitrariamente grandes sem sequências

convergentes não-triviais cujas potências finitas são todas enumeravelmente compactas, assumindo c

ultrafiltros seletivos incomparáveis; terceiro, um modelo de forcing em que um grupo abeliano livre de

torsão cuja cardinalidade é enumeravelmente cofinal admite uma topologia de grupo 𝑝-compacta, em que

𝑝 é um ultrafiltro seletivo. Estes resultados são fortalecimentos da teoria já estabelecida e apresentam os

primeiros exemplos consistentes no que diz respeito às propriedades de 𝑝-compacidade e grandeza arbitrária

em seus respectivos contextos.

Palavras-chave: Topologia geral. Teoria dos conjuntos. Álgebra topológica. Topologia conjuntista. Com-

pacidade enumerável. Grupos enumeravelmente compactos. Grupos livres de torsão.

Sequências convergentes. Combinatória infinitária. Ultrafiltros seletivos. Forcing.





Abstract

Matheus Koveroff Bellini. Countably compact group topologies on torsion-free
Abelian groups. Thesis (Doctorate). Institute of Mathematics and Statistics, University

of São Paulo, São Paulo, 2022.

This work presents advancements obtained in consistency results on the field of topological algebra,

especially concerning countably compact group topologies and whether they may contain non-trivial

convergent sequences. Furthering the methods and techniques already established in this line of research, we

have obtained the following results, the first two of which already published in international journals with

peer arbitration: first, obtain 𝑝-compact group topologies on arbitrarily large torsion-free Abelian groups

without non-trivial convergent sequences, for 𝑝 a selective ultrafilter; second, obtain group topologies on

arbitrarily large free Abelian groups without non-trivial convergent sequences all of whose finite powers

are countably compact, assuming c incomparable selective ultrafilters; third, a forcing model in which a

torsion-free Abelian group whose cardinality is countably cofinal admits a 𝑝-compact group topology for

𝑝 a selective ultrafilter. These results improve upon previously established theory and showcase the first

consistent examples regarding the properties of 𝑝-compactness and arbitrarily largeness in their respective

settings.

Keywords: General topology. Set theory. Topological algebra. Set-theoretic topology. Countable com-

pactness. Countably compact groups. Torsion-free groups. Convergent sequences. Infinitary

combinatorics. Selective ultrafilters. Forcing.
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Chapter 1

Introduction

The study of group topologies on torsion-free Abelian groups, and whether they can
be countably compact or have nontrivial convergent sequences can be traced back to a
result by Halmos (Halmos, 1944), stating that ℝ can be endowed with a compact group
topology. This topology, in particular, is countably compact and has nontrivial convergent
sequences.

The study of countably compact groups without nontrivial convergent sequences has
three main questions:

1. What groups admit such topologies?

2. Do they exist in ZFC?

3. How large can the examples be? How productive can countable compactness be?

A lot of work has been done regarding the first question. Dikranjan and Tkachenko
Dikranjan and Tkachenko, 2003, using Martin’s Axiom, classified the Abelian groups of
cardinality up to c that admit such topologies. This was later improved in M. K. Bellini
et al., 2021 under the use of c selective ultrafilters.

Dikranjan and Shakhmatov Dikranjan and Shakhmatov, 2005 used forcing to classify
all Abelian groups of cardinality at most 2c that admit a countably compact group topology
without non-trivial convergent sequences, and in M. Bellini et al., 2021, we use forcing to
classify all the ones that admit such a topology with convergent sequences.

Question 2 was the most sought after question in the subject. It has finally been
answered by M. Hrušák, U. A. Ramos-García, J. van Mill and S. Shelah in Hrušák et al.,
2021, who use new techniques. These new ideas have two limitations: the construction
depends on the use of a group of finite order and the example has cardinality c. It is
not yet known whether the techniques can be adapted to produce such topologies on
torsion-free groups or on a larger torsion group. In this work it was also proved that if 𝑝 is
a selective ultrafilter, then the Boolean group Ult𝑝([𝜔]<𝜔) is 𝑝-compact, where Ult𝑝 stands
for “ultrapower by 𝑝”, and the operation of the boolean group [𝜔]<𝜔 is symmetric difference.
Their technique does not work for non-torsion groups, or for larger groups.

Still speaking of torsion groups, regarding Question 3, Castro-Pereira and Tomita
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Castro-Pereira and A. H. Tomita, 2010 classified, using some cardinal arithmetic and the
existence of a selective ultrafilter 𝑝, all the torsion groups that admit a 𝑝-compact group
topology (without non-trivial convergent sequences). This in particular generated large
countably compact groups without non-trivial convergent sequences in torsion groups.
Before the result in Hrušák et al., 2021, it could still be hoped that every countably compact
group is 𝑝-compact for some ultrafilter. Now this possibility is gone, since the existence of
a countably compact group without non-trivial convergent sequences in ZFC implies the
existence of a countably compact group whose square is not countably compact in ZFC
A. Tomita, 2005. (We recall that a topological space is 𝑝-compact for some ultrafilter 𝑝 if
and only if all of its powers are countably compact.)

Moving on to torsion-free gorups, also in Hrušák et al., 2021, the authors expected
to produce an example for an ultrafilter in ZFC, but for now, the quest has foremost
shifted to selective ultrafilters. The use of selective ultrafilters arises from improving on
seminal results that relied upon CH or Martin’s Axiom (which implies the existence of 2c

incomparable selective ultrafilters). These assumptions are useful in both settings which
are explored in this work: sums of ℚ and free Abelian groups. Related to this and the
techniques used throughout this work is the following question:

Problem: Assume 𝑝 ∈ 𝜔∗ is a selective ultrafilter. Does (Ult𝑝(ℤ), 𝜏𝐵𝑜ℎ𝑟) contain non-
trivial convergent sequences? (Here we recall that 𝜏𝐵𝑜ℎ𝑟 is the weak topology generated by
the family of all homomorphisms into the circle group ℝ/ℤ.)

On the topic of free Abelian groups, it is well known that a nontrivial free Abelian
group does not admit a compact Hausdorff group topology. Tomita (A. H. Tomita, 1998)
showed that it does not even admit a group topology whose countable power is countably
compact.

Tkachenko (Tkachenko, 1990) showed in 1990 that the free Abelian group on c
generators can be endowed with a countably compact Hausdorff group topology under
CH. Tomita (A. H. Tomita, 1998), Koszmider, Tomita and Watson (Koszmider et al., 2000),
and Madariaga-García and Tomita(Madariaga-Garcia and A. H. Tomita, 2007) obtained
such examples using weaker assumptions. Boero, Castro-Pereira and Tomita obtained such
an example using a single selective ultrafilter (A. C. Boero, Castro-Pereira, et al., 2019).
Using 2c selective ultrafilters, the example in Madariaga-Garcia and A. H. Tomita, 2007
showed the consistency of a countably compact topology on the free Abelian group of
cardinality 2c. All forcing examples so far have their cardinalities bounded by 2c. E. K. van
Douwen showed in Douwen, 1980b that the cardinality of a countably compact group
cannot be a strong limit of countable cofinality.

Boero and Tomita (A. C. Boero and A. H. Tomita, 2011) showed from the existence of
c selective ultrafilters that the free Abelian group of cardinality c admits a group topology
whose square is countably compact. Tomita (A. H. Tomita, 2015) showed that there exists
a group topology on the free Abelian group of cardinality c that makes all of its finite
powers countably compact.

With respect to infinitely divisible torsion-free Abelian groups, in particular direct
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algebraic sums of ℚ (one of which is ℝ, since it is as a ℚ-vector space it has basis size c),
Tkachenko and Yashenko Tkachenko and Yaschenko, 2002 first showed from Martin’s
Axiom that ℝ can be endowed with a countably compact group topology without non-
trivial convergent sequences. In A. C. Boero and A. H. Tomita, 2010, such a topology was
constructed using c selective ultrafilters. In A. Boero et al., 2015, it is shown that there
is a group topology without non-trivial convergent sequences such that ℝ2 is countably
compact, a first step to make larger powers of ℝ countably compact.

The proof that a free Abelian group 𝐹 does not admit a group topology such that 𝐹𝜔 is
countably compact relies on the fact that the only element of 𝐹 that is infinitely divisible
is 0. Since ℚ is a divisible group, it seemed to be a candidate for a torsion free group that
admits a 𝑝-compact group topology. Another good reason to look at direct sums of ℚ was
the argument that they are the test space for pseudocompactness of non-torsion groups
(W. Comfort and Remus, 1993).

This thesis is divided thus:

In Chapter 2, we show how ℚ(𝜅) can be endowed with a 𝑝-compact group topology
without nontrivial convergent sequences, given 𝑝 a selective ultrafilter and 𝜅 an infinite
cardinal such that 𝜅 = 𝜅𝜔.

In Chapter 3, we assume the existence of c incomparable selective ultrafilters to show
that, for every infinite cardinal 𝜅 such that 𝜅𝜔 = 𝜅, the free Abelian group on 𝜅 generators
can be endowed with a group topology without nontrivial convergent sequences such that
all of its finite powers are countably compact.

In Chapter 4, we build a forcing poset in order to show that it is consistent that,
assuming a selective ultrafilter  , for a cardinal 𝜆 of countable cofinality, ℚ(𝜆) admits a
 -compact group topology.
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Chapter 2

On the 𝑝-compactness of
arbitrarily large sums of ℚ

2.1 Introduction
This chapter will lay out and detail the achievement of two goals obtained through the

use of a selective ultrafilter: construct a 𝑝-compact group topology without non-trivial
convergent sequences over a torsion-free Abelian group and construct arbitrarily large
countably compact group topologies over some torsion-free group.

On the direct sum of ℚ’s: some history, the setting and the aim
Halmos Halmos, 1944 proved that ℝ can be endowed with a compact group topology,

which in particular contains non-trivial convergent sequences. Recall that algebraically ℝ

is the direct sum of c copies of ℚ.

Tkachenko and Yashenko Tkachenko and Yaschenko, 2002 showed from Martin’s
Axiom that ℝ can be endowed with a countably compact group topology without non-
trivial convergent sequences. In A. C. Boero and A. H. Tomita, 2010, such a topology was
constructed using c selective ultrafilters. In A. Boero et al., 2015, it is shown that there
is a group topology without non-trivial convergent sequences such that ℝ2 is countably
compact, a first step to make larger powers of ℝ countably compact.

The proof that a free Abelian group 𝐹 does not admit a group topology such that 𝐹𝜔 is
countably compact relies on the fact that the only element of 𝐹 that is infinitely divisible
is 0. Since ℚ is a divisible group, it seemed to be a candidate for a torsion free group that
admits a 𝑝-compact group topology. Another good reason to look at direct sums of ℚ was
the argument that they are the test space for pseudcompactness of non-torsion groups
W. Comfort and Remus, 1993.

The first advantage we noticed is that an ultrapower of a direct sum of ℚ is a vector
space, a useful fact for the construction of large countably compact groups without non-
trivial convergent sequences in Castro-Pereira and A. H. Tomita, 2010. As for Abelian
groups, their ultrapowers are never free Abelian groups.
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Our aim for this chapter is: given a free ultrafilter 𝑝 and a cardinal 𝜅 such that 𝜅 = 𝜅𝜔,
to show that ∑𝛼<𝜅 ℚ has a 𝑝-compact Hausdorff group topology without non-trivial
convergent sequences.

2.2 Notation
Throughout this chapter we fix an infinite cardinal 𝜅 such that 𝜅 = 𝜅𝜔.

Let 𝕋 be the Abelian group ℝ/ℤ.

Let 𝐺 be the Abelian additive group ℚ(𝜅) ∶= {𝑔 ∈ ℚ𝜅 ∶ | supp 𝑔 | < 𝜔} and let 𝐻 be the
Abelian additive group ℤ(𝜅) ∶= {𝑔 ∈ ℤ𝜅 ∶ | supp 𝑔 | < 𝜔}. If 𝐶 ⊆ 𝜅, let ℚ(𝐶) ∶= {𝑔 ∈ 𝐺 ∶

supp 𝑔 ⊆ 𝐶}.

Definition 2.2.1. Given 𝜇 ∈ 𝜅, we denote by 𝜒𝜇 the element of 𝐺 such that supp 𝜒𝜇 = {𝜇}

and 𝜒𝜇(𝜇) = 1.

Given 𝜇 ∈ 𝜅, we define 𝜇 as the constant sequence whose value is 𝜇.

If 𝐴 ⊆ 𝜔 and 𝜁 ∶ 𝐴 → 𝜅, then we define 𝜒𝜁 ∈ 𝐺𝐴 by 𝜒𝜁 (𝑛) = 𝜒𝜁 (𝑛) for each 𝑛 ∈ 𝐴.

Definition 2.2.2. Given 𝐴 ⊆ 𝜔 and 𝑠 = (𝑠𝑛 ∶ 𝑛 ∈ 𝐴) a sequence of rational numbers, we
denote by 𝑠𝑓 the function in 𝐺𝐴 given by (𝑠𝑓 )(𝑛) = 𝑠𝑛𝑓 (𝑛), for each 𝑛 ∈ 𝐴.

Given  ⊆ 𝐺𝐴, we define 𝑠 ∶= {𝑠𝑓 ∶ 𝑓 ∈ }. If 𝑠 ∶ 𝐴 → ℚ\{0}, we define

𝑠
= { 1

𝑠
𝑓 ∶ 𝑓 ∈ 𝐴}.

Definition 2.2.3. Given an ultrafilter 𝑞, we define an equivalence relation on 𝐺𝜔 by letting
𝑓 ≃𝑞 𝑔 if and only if {𝑛 ∈ 𝜔 ∶ 𝑓 (𝑛) = 𝑔(𝑛)} ∈ 𝑞. We denote by [𝑓 ]𝑞 the equivalence class
to which 𝑓 belongs, and by 𝐺𝜔/𝑞 the quotient 𝐺𝜔/ ≃𝑞 . Notice that this set has a natural
𝑄-vector space structure. This group is known as the 𝑞-ultrapower of 𝐺, and is denoted by
Ult𝑞(𝐺).

2.3 Homomorphisms, arc functions and arc
equations

Our approach to construct the group topology is to consider the weak topology gener-
ated by an appropriate family of homomorphisms from 𝐺 into 𝕋. These homomorphisms
will be constructed by considering successive approximations by arcs. Thus, the following
definition is helpful.

Definition 2.3.1. Given 𝑎 ∈ ℝ, let 𝑎 + ℤ = {𝑎 + 𝑛 ∶ 𝑛 ∈ ℤ}. Also, if 𝐼 ⊆ ℝ, let 𝐼 + ℤ =

{𝑎 + ℤ ∶ 𝑎 ∈ 𝐼 }, which is a subset of 𝕋.

If 𝑆 ∈ ℤ and 𝑎 ∈ 𝕋, where 𝑎 = 𝑏 + ℤ for some 𝑏 ∈ ℝ, let 𝑆𝑎 ∶= (𝑆𝑏) + ℤ. Note that
given 𝑎 and 𝑆, this definition does not depend on 𝑏. Moreover, given 𝑆 ∈ ℤ and 𝐼 ⊆ 𝕋, let
𝑆𝐼 = {𝑆𝑎 ∶ 𝑎 ∈ 𝐼 }.

Given 𝐼 , 𝐽 ⊆ 𝕋, let 𝐼 + 𝐽 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐼 , 𝑏 ∈ 𝐽 }. Note that this operation is associative
and commutative.
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Let 𝔹 = {𝐼 + ℤ ∶ ∅ ≠ 𝐼 ⊆ ℝ is an open interval} be the collection of all the nonempty
open arcs in 𝕋, including 𝕋 itself.

An arc function is a function 𝜙 ∶ 𝜅 → 𝔹 such that supp𝜙 ∶= {𝜉 ∈ 𝜅 ∶ 𝜙(𝜉) ≠ 𝕋} is
finite. This set is called the support of 𝜙. Given a positive 𝜖 < 1

2
, we say that an arc function

𝜙 is an 𝜖-arc fucntion if for every 𝜉 ∈ supp𝜙, 𝜙(𝜉) has length 𝜖.

Given two arc functions 𝜓 and 𝜙, we will say that 𝜓 ≤ 𝜙 if 𝜓(𝜉) = 𝜙(𝜉) or 𝜓(𝜉) ⊆ 𝜙(𝜉),
for each 𝜉 ∈ 𝜅.

Given an arc function 𝜙 and a positive integer 𝑆, 𝑆𝜙 is the arc function such that
(𝑆𝜙)(𝜇) = 𝑆𝜙(𝜇) for every 𝜇 ∈ 𝜅.

We can interpret an arc function as an approximation of a homomorphism defined
from ℤ(𝜅) into 𝕋. Intuitively, 𝜙 tells us that the homomorphism we are approaching sends
𝜒𝜉 into a point in the closure of the arc 𝜙(𝜉) for every 𝜉 < 𝜅. Thus, given an 𝑎 ∈ ℤ(𝜅), the
homomorphism we are guessing will send 𝑎 in the closure of the arc ∑𝜉∈supp 𝑎 𝑎(𝜉)𝜙(𝜉).
Therefore the following definition becomes useful:

Definition 2.3.2. Let 𝜙 be an arc function. Given 𝑎 ∈ ℤ(𝜅), we define 𝜙(𝑎) ∶=

∑𝜉∈supp 𝑎 𝑎(𝜉)𝜙(𝜉).

The domain of an arc function was defined as 𝜅. No confusion arises from the previous
definition since 𝜅 and ℤ(𝜅) are disjoint.

Now we define the concept of an arc equation. We begin with an informal discus-
sion.

Imagine we are given an arc function 𝜙, some elements  ⊆ ℤ(𝜅), a positive integer 𝑆
and arcs 𝑈𝑎 for each 𝑎 ∈ . We search for an arc function 𝜓 such that 𝑆𝜓 ≤ 𝜙 and such
that 𝜓(𝑎) ⊆ 𝑈𝑎 for each 𝑎 ∈ .

By iterating this process and selecting an appropriate sequence os 𝑆’s, the first condition
helps us to extend the final homomorphism to ℚ(𝜅) instead of being defined only on ℤ(𝜅).
The second condition helps us to control whither some elements of ℤ(𝜅) are going to be
taken.

To study 𝑝-limits, it will be useful to consider sequences of elements of ℤ(𝜅) instead of
simply elements. These sequences need not be defined in the whole of 𝜔, just in a member
of the ultrafilter 𝑝.

Definition 2.3.3. An arc equation is a quintuple (𝜙, 𝐴,, 𝑆, 𝑈 ) where 𝜙 is an arc function,
𝐴 ⊆ 𝜔,  ⊆ (ℤ(𝜅))𝐴, 𝑆 is a positive integer and 𝑈 = (𝑈𝑓 ∶ 𝑓 ∈ ) is a family of elements
of 𝔹.

Given 𝑛 ∈ 𝐴, an 𝑛-solution for the arc equation (𝜙, 𝐴,, 𝑆, 𝑈 ) is an arc function 𝜓 such
that 𝑆𝜓 ≤ 𝜙 and 𝜓(𝑓 (𝑛)) ⊆ 𝑈𝑓 , for each 𝑓 ∈ .

We will need results that tell us that 𝑛-solutions exist for many 𝑛’s. In order to achieve
such results, the notion of rational stack, which will be introduced later, shall be use-
ful.

The goal is to use this machinery to prove the following:
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Lemma 2.3.4. (Main Lemma). Fix a selective ultrafilter 𝑝. Let  ⊆ 𝐺𝜔 be a countable
collection of distinct elements mod 𝑝 such that {[𝑓 ]𝑝 ∶ 𝑓 ∈  }∪̇{[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅} is ℚ-linearly
independent in Ult𝑝(𝐺).

Let 𝑑, 𝑑0, 𝑑1 ∈ 𝐺\{0} with supp 𝑑, supp 𝑑0, supp 𝑑1 pairwise disjoint, and 𝐶 be a countably
infinite subset of 𝜅 such that 𝜔 ∪ supp 𝑑 ∪ supp 𝑑0 ∪ supp 𝑑1 ∪⋃𝑓 ∈ ,𝑛∈𝜔 supp 𝑓 (𝑛) ⊆ 𝐶. For
each 𝑓 ∈  , fix a 𝜉𝑓 ∈ 𝐶.

Then: There exists a homomorphism 𝜙 ∶ ℚ(𝐶) → 𝕋 such that

(a) 𝜙(𝑑) ≠ 0, 𝜙(𝑑0) ≠ 𝜙(𝑑1), and

(b) 𝑝 − lim(𝜙( 1

𝑁
𝑓 )) = 𝜙( 1

𝑁
𝜒𝜉𝑓 ), for each 𝑓 ∈  and 𝑁 ∈ 𝜔.

Now we use this Lemma to prove the result stated at the end of section 2.1.

For the remaining of this section, let {𝑓𝛼 ∶ 𝜔 ≤ 𝛼 < 𝜅} be an enumeration of 𝐺𝜔 such
that ⋃𝑛∈𝜔 supp 𝑓𝜉(𝑛) ⊆ 𝜉 , for each 𝜉 ∈ [𝜔, 𝜅).

By applying the Main Lemma, we get the following result:

Lemma 2.3.5. Fix a selective ultrafilter 𝑝. Let 𝐼 ⊆ [𝜔, 𝜅) be such that {[𝑓𝜉]𝑝 ∶ 𝜉 ∈

𝐼 } ∪ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅} is a ℚ-basis for Ult𝑝(𝐺).

Let 𝑑 ∈ 𝐺\{0}, 𝑟 ∈ ℚ(𝐼 )\{0} and 𝐵 ∈ 𝑝. Let 𝐶 be a countably infinite subset of 𝜅 such
that 𝜔 ∪ supp 𝑟 ∪ supp 𝑑 ⊆ 𝐶 and ⋃𝑛∈𝜔 supp 𝑓𝜉(𝑛) ⊆ 𝐶 for every 𝜉 ∈ 𝐶 ∩ 𝐼 .

Then there exists a homomorphism 𝜙 ∶ ℚ(𝐶) → 𝕋 such that

(a) 𝜙(𝑑) ≠ 0,

(b) 𝑝 − lim(𝜙( 1

𝑁
𝑓𝜉)) = 𝜙( 1

𝑁
𝜒𝜉), for each 𝜉 ∈ 𝐶 ∩ 𝐼 and each 𝑁 ∈ 𝜔, and

(c) (𝜙(∑𝜇∈supp 𝑟 𝑟(𝜇)𝑓𝜇(𝑛)) ∶ 𝑛 ∈ 𝐵) does not converge.

Proof. Let 𝐷 = supp 𝑟 . Let 𝐵′ ∈ 𝑝 be a subset of 𝐵 such that (∑𝜇∈𝐷 𝑟(𝜇)𝑓𝜇(𝑛) ∶ 𝑛 ∈ 𝐵
′) is a

1-1 sequence, which is possible since the 𝑓𝜇’s are linearly independent mod 𝑝 with the
constant sequences and by the selectiveness of 𝑝.

Let𝔸 be an almost disjoint family on 𝐵′ of cardinality c and ℎ𝑥 ∶ 𝜔 → {∑𝜇∈𝐷 𝑟(𝜇)𝑓𝜇(𝑛) ∶

𝑛 ∈ 𝑥} be a bijection for each 𝑥 ∈ 𝔸.

Claim: There exist 𝑥0, 𝑥1 ∈ 𝔸 such that {[𝑓𝜉]𝑝 ∶ 𝜉 ∈ 𝐶 ∩ 𝐼 } ∪ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈

𝜅} ∪ {[ℎ𝑥0]𝑝, [ℎ𝑥1]𝑝} is a linearly independent subset.

Proof of the claim: Given 𝑥0, 𝑥1 ∈ 𝔸, notice that ℎ𝑥0(𝑛) ≠ ℎ𝑥1(𝑛) for all but a finite
amount of 𝑛’s, so [ℎ𝑥0]𝑝 ≠ [ℎ𝑥1]𝑝. Since ℚ is countable, it follows that ⟨[ℎ𝑥]𝑝 ∶ 𝑥 ∈ 𝔸⟩

has cardinality c, so there is a 𝐽 ⊂ 𝔸 such that |𝐽 | = c and that ([ℎ𝑥]𝑝 ∶ 𝑥 ∈ 𝐽 ) is linearly
independent. Now notice that ⟨[𝑓𝜉]𝑝 ∶ 𝜉 ∈ 𝐶 ∩ 𝐼 ⟩ ⊕ ⟨[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝐶⟩ is countable, so
there exist 𝑥0, 𝑥1 ∈ 𝐽 such that {[𝑓𝜉]𝑝 ∶ 𝜉 ∈ 𝐶 ∩ 𝐼 } ∪ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝐶} ∪ {[ℎ𝑥0]𝑝, [ℎ𝑥1]𝑝} is
linearly independent. Since all the supports of these elements are contained in 𝐶, it is
straightforward to see that {[𝑓𝜉]𝑝 ∶ 𝜉 ∈ 𝐶 ∩ 𝐼 } ∪ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅} ∪ {[ℎ𝑥0]𝑝, [ℎ𝑥1]𝑝} is linearly
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independent.

Let  = {𝑓𝜉 ∶ 𝜉 ∈ 𝐶 ∩ 𝐼 } ∪ {ℎ𝑥0 , ℎ𝑥1}. Set 𝜉𝑓 = 𝜇 if 𝑓 = 𝑓𝜇 for some 𝜇 ∈ 𝐶 ∩ 𝐼 and 𝜉𝑓 = 𝑚𝑖

if 𝑓 = ℎ𝑥𝑖 for some 𝑖 < 2 where 𝑚0 ≠ 𝑚1 and 𝑚0, 𝑚1 ∈ 𝜔\ supp 𝑑. Let 𝑑0 = 𝜒𝑚0
, 𝑑1 = 𝜒𝑚1

and 𝜙 be as in Lemma 2.3.4.

Clearly conditions a) and b) of Lemma 2.3.5 are satisfied.

Furthermore, (𝜙(ℎ𝑥𝑖(𝑘)) ∶ 𝑘 ∈ 𝜔) has (𝜙(𝜒𝑚𝑖
) as an accumulation point, for 𝑖 < 2. Since

these sequences are reorderings some subsequence of (𝜙(∑𝜇∈𝐷 𝑟(𝜇)𝑓𝜇(𝑛)) ∶ 𝑛 ∈ 𝐵) and
𝜙(𝜒𝑚0

) ≠ 𝜙(𝜒𝑚1
), it follows that c) is satisfied.

Finally, we may extend the above homomorphism to 𝐺:

Lemma 2.3.6. Fix a selective ultrafilter 𝑝. Let 𝐼 ⊆ [𝜔, 𝜅) be such that {[𝑓𝜉]𝑝 ∶ 𝜉 ∈

𝐼 } ∪ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅} is a ℚ-basis for Ult𝑝(𝐺).

Let 𝑑 ∈ 𝐺\{0}, 𝑟 ∈ ℚ(𝐼 )\{0}, and 𝐵 ∈ 𝑝.

Then there exists a homomorphism 𝜙 ∶ 𝐺 → 𝕋 such that

(a) 𝜙(𝑑) ≠ 0,

(b) 𝑝 − lim𝜙( 1

𝑁
𝑓𝜉) = 𝜙( 1

𝑁
𝜒𝜉), for each 𝜉 ∈ 𝐼 and 𝑁 ∈ 𝜔, and

(c) (𝜙(∑𝜇∈supp 𝑟 𝑟(𝜇)𝑓𝜇(𝑛)) ∶ 𝑛 ∈ 𝐵) does not converge.

Proof. Let𝐷 = supp 𝑟 . Let 𝐶 be a countably infinite subset of 𝜅 such that𝜔∪supp 𝑑 ⊆ 𝐶 and
⋃𝑛∈𝜔 supp 𝑓𝜉(𝑛) ⊆ 𝐶 for every 𝜉 ∈ 𝐶 ∩ 𝐼 . Such a 𝐶 exists by standard closing off arguments.
Let (𝜉𝛼 ∶ 𝛼 < 𝜅) be a strictly increasing enumeration of 𝜅\𝐶. Let 𝜙 be as in Lemma 2.3.5.

For each 𝛼 ≤ 𝜅, let 𝐶𝛼 ∶= 𝐶 ∪ {𝜉𝛽 ∶ 𝛽 < 𝛼} (so 𝐶0 = 𝐶 and 𝐶𝜅 = 𝜅). Note that for each
𝛼 and 𝑛 ∈ 𝜔, supp 𝑓𝜉𝛼(𝑛) ⊆ 𝜉𝛼 ⊆ 𝐶𝛼 .

Recursively we define homomorphisms 𝜙𝛼 ∶ ℚ(𝐶𝛼) → 𝕋 for 𝛼 ≤ 𝜅 satisfying:

(i) 𝜙0 = 𝜙,

(ii) 𝜙𝛽 ⊆ 𝜙𝛼 whenever 𝛽 ≤ 𝛼 ≤ 𝜅, and

(iii) 𝑝 − lim𝜙𝛼(
1

𝑁
𝑓𝜉) = 𝜙𝛼(

1

𝑁
𝜒𝜉), for each 𝜉 ∈ 𝐶𝛼 ∩ 𝐼 and 𝑁 ∈ 𝜔.

We let 𝜙0 = 𝜙. For limit steps, just take unions. For a successor step 𝛼 + 1 we proceed
as follows:

Notice that ℚ(𝐶𝛼+1) = ℚ(𝐶𝛼) ⊕ {𝑞𝜒𝜉𝛼 ∶ 𝑞 ∈ ℚ}.

First, we define 𝜙𝛼 ∶ {𝑞𝜒𝜉𝛼 ∶ 𝑞 ∈ ℚ} → 𝕋 by letting 𝜙𝛼(𝑀𝑁 𝜒𝜉𝛼) = 𝑀(𝑝 − lim𝜙𝛼(
1

𝑁
𝑓𝜉𝛼)).

Since multiplying a group element by an integer is a continuous function and since 𝜙𝛼
is a homomorphism, it follows that 𝜙𝛼 is well-defined and a group homomorphism. Now
let 𝜙𝛼+1 = 𝜙𝛼 ⊕ 𝜙𝛼 .

The required homomorphism is 𝜙𝜅 .
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We apply this lemma to obtain the main result of this chapter:

Theorem 2.3.7. Assume that 𝑝 is a selective ultrafilter and 𝜅 = 𝜅𝜔 is an infinite cardinal.
Then there exists a 𝑝-compact group topology on 𝐺 = ℚ(𝜅) without non-trivial convergent
sequences.

Proof. Let 𝐼 be as in the previous lemma. For each 𝑑 ∈ 𝐺\{0}, 𝑟 ∈ ℚ(𝐼 )\{0} and 𝐵 ∈ 𝑝, take
𝜙𝑑,𝑟 ,𝐵 ∶ 𝐺 → 𝕋 as in the previous lemma.

The group topology induced by these homomorphisms is such that the 𝑝 − lim( 1

𝑁
𝑓𝜉) =

1

𝑁
𝜒𝜉 , for each 𝜉 ∈ 𝐼 and ℕ ∈ 𝜔.

If ℎ is any element of 𝐺𝜔, there exist families (𝑟𝜉 ∶ 𝜉 ∈ 𝐼 ) and (𝑠𝜇 ∶ 𝜇 ∈ 𝜅) of rational
numbers where all but a finite amount of them are 0 such that:

[ℎ]𝑝 = ∑𝜉∈𝐼 𝑟𝜉[𝑓𝜉]𝑝 +∑𝜇∈𝜅 𝑠𝜇[𝜒𝜇]𝑝.

It follows that ∑𝜉∈𝐼 𝑟𝜉𝜒𝜉 +∑𝜇∈𝜅 𝑠𝜇𝜒𝜇 is the 𝑝-limit of ℎ. Therefore, 𝐺 is 𝑝-compact.

To check that there are no non-trivial convergent sequences, fix a one-to-one sequence
𝑔 . Let 𝑟 ∈ ℚ(𝐼 )\{0} and 𝑠 ∈ ℚ(𝜅) be such that:

[𝑔]𝑝 = ∑𝜉∈𝐼 𝑟𝜉[𝑓𝜉]𝑝+∑𝜇∈𝜅 𝑠𝜇[𝜒𝜇]𝑝. Let 𝐷 = supp 𝑟 . Then there is 𝐵 ∈ 𝑝 such that: 𝑔(𝑛) =
∑𝜉∈𝐼 𝑟𝜉𝑓𝜉(𝑛)+∑𝜇∈𝜅 𝑠𝜇𝜒𝜇, for all 𝑛 ∈ 𝐵. By Lemma 2.3.6(c), we have that (𝜙𝑑,𝑟 ,𝐵(∑𝜉∈𝐷 𝑟𝜉𝑓𝜉(𝑛)) ∶

𝑛 ∈ 𝐵) does not converge in 𝕋, and so (∑𝜉∈𝐷 𝑟𝜉𝑓𝜉(𝑛) ∶ 𝑛 ∈ 𝐵) does not converge in 𝐺. Since
∑𝜇∈𝜅 𝑠𝜇𝜒𝜇 is constant, it follows that (𝑔(𝑛) ∶ 𝑛 ∈ 𝐵) does not converge, and so 𝑔 does not
converge.

Malykhin and Shapiro Malykhin and Shapiro, 1985 showed that under GCH there are
no pseudocompact groups without non-trivial convergent sequences whose weight has
countable cofinality. The second example in A. H. Tomita, 2003 showed that it is consistent
that there exists a countably compact group without non-trivial convergent sequences
whose weight is ℵ𝜔 < 2c. In Castro-Pereira and A. H. Tomita, 2010, the authors obtained
consistent arbitrarily large examples of weight of countable cofinality, but the examples
are finite torsion groups.

By applying an argument similar to the one in the proof of Theorem 4.1 of A. H. Tomita,
2003, it is possible to set the weight of the group to any cardinal between 𝜅 and 2𝜅 .

2.4 A preliminar discussion on rational stacks
We will start this section with an informal discussion about rational stacks.

A rational stack wil be defined as a nonuple (, 𝜈, 𝜁 , 𝐾 , 𝐴, 𝑘0, 𝑘1, 𝑙, 𝑇 ), where:

• 𝐴 ⊆ 𝜔 is infinite,

• 𝑇 > 0 is an integer,

• 𝐾 ∶ 𝐴 → 𝜔\2 is such that for every 𝑛 ∈ 𝐴, (𝑛!𝑇 ) ∣ 𝐾𝑛,
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• 𝑘0 ≤ 𝑘1 are natural numbers with 𝑘1 > 0,

• 𝑙 ∶ 𝑘1 → 𝜔,

• 𝜈 ∶ 𝑘0 → 𝜅,

• 𝜁 ∶ 𝑘1 → 𝜅𝜔

•  = (𝑖,𝑗 ∶ 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖) is such that each 𝑖,𝑗 ⊆ 𝐻
𝜔 is finite.

In order to be a rational stack, this nonuple must satisfy additional properties. The full
definition of rational stack will be given in Section 2.6. This definition was designed to
solve arc equations when constructing the homomorphisms of Lemma 2.3.4.

Before we even define the stack, we will list the main results that motivated its defini-
tion.

The Lemma below associates each finite subset of functions to a stack that will be used
to solve arc equations associated to this family.

Lemma 2.4.1. Let 𝐵 ∈ 𝑝 and  be a finite subset of 𝐺𝜔 whose elements are distinct mod
𝑝 and none of them are constant mod 𝑝 such that {[𝑓 ]𝑝 ∶ 𝑓 ∈ } ∪ {[𝜒𝜈]𝑝 ∶ 𝜈 ∈ 𝜅} is
linearly independent. Then there exists a rational stack  = (, 𝜈, 𝐾 , 𝐴, 𝑘0, 𝑘1, 𝑙, 𝑇 ) such
that, by defining  =  ∪ {𝜒𝜈𝑖 ∶ 𝑖 < 𝑘0} and  =

⋃𝑖<𝑘1 ,𝑗<𝑙𝑖
𝑖,𝑗

𝐾
, there exist  ∶  ×  → ℤ,

 ∶  × → ℤ satisfying:

(1) {[𝑓 ]𝑝 ∶ 𝑓 ∈ } and {[ℎ]𝑝 ∶ ℎ ∈ } generate the same subspace of Ult𝑝(𝐺),

(2) 𝑓 (𝑛) = ∑ℎ∈ 𝑓 ,ℎℎ(𝑛), for each 𝑛 ∈ 𝐴 and 𝑓 ∈ ,

(3) ℎ(𝑛) = 1

𝑇 2
∑𝑓 ∈ ℎ,𝑓 𝑓 (𝑛), for each 𝑛 ∈ 𝐴 and ℎ ∈ ,

(4) 𝐾 ⊆ 𝐻𝜔,

(5) 𝐾 ⊆ 𝐻𝜔, and

(6) 𝐴 ∈ 𝑝 and 𝐴 ⊆ 𝐵.

Proof. The proof is quite technical and will be presented in a later section.

Notice that if we interpret  and  and matrices, the  and 1

𝑇 2
 are inverse

matrices.

Roughly speaking, to prove Lemma 2.3.4, we write the countable set  as a countable
union of finite sets 𝑛 and associate each of these finite sets of sequences to a stack. Then,
working inductively, in each step we need to solve some arc equations. We transform the
arc equations associated to these finite families to arc equations associated to a stack using
2.4.1, solve the arc equations using properties of the stack, then return to a solution of
the original arc equations. We want to solve infinitely many equations; thus, this process
is made back and forth. At each stage, the stack is different and there is no containment
relation between them, even though we use a larger finite subfamily of sequences.
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In each step of the recursive construction of the arcs used to define the homomorphism,
we have arc equations related to a certain arc size. The following two Lemmas are used to
solve these equations in a back and forth manner.

Lemma 2.4.2. Let  , , ,  and  be as in Lemma 2.4.1. Let 𝜖 be a positive real and 𝐷
be a finite subset of 𝜅. Then there exist 𝐵 ⊆ 𝐴 cofinite in 𝐴 and a family of positive real
numbers (𝛾𝑛 ∶ 𝑛 ∈ 𝐵) such that:

For every 𝑛 ∈ 𝐵, for every family 𝑊 = (𝑊ℎ ∶ ℎ ∈ ) of open arcs of length 𝜖, and
for every arc function 𝜓 of length 𝜖 such that supp𝜓 ⊆ 𝐷\{𝜈𝑖 ∶ 𝑖 < 𝑘0}, there exists and
𝑛-solution of length 𝛾𝑛 for the arc equation (𝜓, 𝐵, 𝐾, 𝐾𝑛, 𝑊 ).

Proof. The proof is quite technical and will be presented in a later section.

Lemma 2.4.3. Let  , , ,  and  be as in Lemma 2.4.1. Let 𝛿 be a positive real such
that 𝜖 = 𝛿

∑𝑓 ∈,ℎ∈ ∣𝑓 ,ℎ ∣
< 1

2
.

Let (𝑈𝑓 ∶ 𝑓 ∈ ) be a family of open arcs of length 𝛿. Let 𝜌 be an arc function of length
𝛿 such that 𝑈𝜒𝜈𝑖 = 𝜌(𝜈𝑖) for 𝑖 < 𝑘0. Furthermore, assume that {𝜈𝑖 ∶ 𝑖 < 𝑘0}𝑠𝑢𝑏𝑠𝑒𝑡𝑒𝑞 supp 𝜌.

Then, there exist 𝑊 = (𝑊ℎ ∶ ℎ ∈ ) a family of open arcs of length 𝜖 and 𝜓 and 𝜖-arc
function with support supp 𝜌\{𝜈𝑖 ∶ 𝑖 < 𝑘0} such that for every 𝑛 ∈ 𝐴, every 𝑛-solution for
the arc equation (𝜓, 𝐴, 𝐾, 𝐾𝑛, 𝑊 ) is an 𝑛-solution for (𝜌, 𝐴, 𝐾, 𝐾𝑛, 𝑈 ).

Proof. Given 𝑓 ∈ , let 𝑦𝑓 ∈ ℝ be such that 𝑦𝑓 + ℤ is the center of the arc 𝑈𝑓 .

For each ℎ ∈ , let 𝑧ℎ = ∑𝑓 ∈ℎ,𝑓

𝑦𝑓

𝑇 2
. Since  is an integer matrix, it follows that

𝑧ℎ + ℤ = ∑𝑓 ∈ℎ,𝑓 (
𝑦𝑓

𝑇 2
+ ℤ). Let 𝑊ℎ be an arc centered on 𝑧ℎ + ℤ whose length is 𝜖.

Let 𝜓(𝜇) be an arc with the same center as 𝜌(𝜇) of length 𝜖 for each 𝜇 ∈ supp 𝜌\{𝜈𝑖 ∶
𝑖 < 𝑘0} and 𝜓(𝜈𝑖) = 𝕋 for each 𝑖 < 𝑘0.

Suppose 𝜙 is an 𝑛-solution for (𝜓, 𝐴, 𝐾, 𝐾𝑛, 𝑊 ).

Then 𝜙(𝐾𝑛ℎ(𝑛)) ⊆ 𝑊ℎ, for each ℎ ∈ . Also, we have that, for each 𝜇 ∈ 𝜅\{𝜈𝑖 ∶ 𝑖 < 𝑘0}:

𝐾𝑛𝜙(𝜇) ≤ 𝜓(𝜇) ≤ 𝜌(𝜇). (#)

Let 𝑓 ∈ .

Notice that for each 𝜇, ∑ℎ∈ 𝑓 ,ℎ𝐾𝑛ℎ(𝑛)(𝜇)𝜙(𝜇) = 𝐾𝑛𝑓 (𝑛)(𝜇)𝜙(𝜇). Therefore,

∑

ℎ∈
𝑓 ,ℎ ∑

𝜇∈supp ℎ(𝑛)

𝐾𝑛ℎ(𝑛)(𝜇)𝜙(𝜇) = ∑

𝜇∈supp 𝑓 (𝑛)

𝐾𝑛𝑓 (𝑛)(𝜇)𝜙(𝜇).

It follows that:

𝜙(𝐾𝑛𝑓 (𝑛)) = ∑

𝜇∈supp 𝑓 (𝑛)

𝐾𝑛𝑓 (𝑛)(𝜇)𝜙(𝜇) ⊆ ∑

ℎ∈
𝑓 ,ℎ𝑊ℎ.
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The arc ∑ℎ∈ 𝑓 ,ℎ𝑊ℎ is centered on ∑ℎ∈ 𝑓 ,ℎ(𝑧ℎ + ℤ) = ∑ℎ∈ 𝑓 ,ℎ∑𝑔∈ℎ,𝑔(
𝑦𝑔

𝑇 2
+

ℤ) = ∑𝑔∈∑ℎ∈ 𝑓 ,ℎℎ,𝑔(
𝑦𝑔

𝑇 2
+ℤ) = 𝑦𝑓 +ℤ, and has length 𝜖 ⋅∑ℎ∈ ∣ 𝑓 ,ℎ ∣≤ 𝛿. Therefore,

∑

ℎ∈
𝑓 ,ℎ𝑊ℎ ⊆ 𝑈𝑓 . (∗)

Thus, 𝜙 is an 𝑛-solution for (𝜌, 𝐴, 𝐾, 𝐾𝑛, 𝑈 ), as required, provided that we show
𝐾𝑛𝜙 ≤ 𝜌.

From (∗), if 𝑓 = 𝜒𝜈𝑖 , then 𝐾𝑛𝜙(𝜈𝑖) = 𝐾𝑛𝜒𝜈𝑖(𝑛)(𝜈𝑖)𝜙(𝜈𝑖) ⊆ 𝑈𝜒𝜈𝑖
= 𝜌(𝜈𝑖), hence 𝐾𝑛𝜙(𝜈𝑖) ≤

𝜌(𝜈𝑖) for each 𝑖 < 𝑘0. This and (#) imply that 𝐾𝑛𝜙 ≤ 𝜌.

2.5 Proof of the Main Lemma using the properties of
the stacks

Our goal in this section is to prove Lemma 2.3.4 using the lemmas in the previous
section. First we state the following lemma:

Lemma 2.5.1. Fix a selective ultrafilter 𝑝. Let  ⊆ 𝐺𝜔 be a countable collection of distinct
elements mod 𝑝 such that {[𝑓 ]𝑝 ∶ 𝑓 ∈  } ∪̇ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅} is ℚ-linearly independent in
Ult𝑝(𝐺).

Let 𝑑, 𝑑0, 𝑑1 ∈ 𝐺\{0} with supp 𝑑, supp 𝑑0, supp 𝑑1 pairwise disjoint, and 𝐶 be a countably
infinite subset of 𝜅 such that 𝜔∪ supp 𝑑 ∪ supp 𝑑0 ∪ supp 𝑑1 ⊆ 𝐶 and ⋃𝑓 ∈ ,𝑛∈𝜔 supp 𝑓 (𝑛) ⊆ 𝐶.
For each 𝑓 ∈  , choose 𝜉𝑓 ∈ 𝐶. Let ( 𝑛 ∶ 𝑛 ∈ 𝜔) be an increasing sequence of finite sets
whose union is  .

Then there exist:

• stacks 𝑚 = (𝑚, 𝜈𝑚, 𝜁𝑚, 𝐾𝑚, 𝐴𝑚, 𝑘𝑚0 , 𝑘
𝑚
1 , 𝑙

𝑚, 𝑇𝑚) and 𝑚,𝑚,𝑚, 𝑚 related to the
stacks as in Lemma 2.4.1,

• 𝑟 ∶ 𝜔 ∪ {−1} → 𝜔 such that 𝑟[𝜔] ∈ 𝑝 and 𝑟(−1) = 0,

• a sequence of arc functions (𝜌𝑟(𝑚) ∶ 𝑚 ≥ −1) with 𝐶 ⊆ ⋃𝑚≥−1 supp 𝜌𝑟(𝑚), and

• a sequence of integers (𝑁𝑚 ∶ 𝑚 ∈ 𝜔 ∪ {−1})

satisfying, for every 𝑚,𝑚′ such that −1 ≤ 𝑚′ ≤ 𝑚 < 𝜔, the following:

(a) 0 ∉ 𝜌0(𝑑) and 𝜌0(𝑑0) ∩ 𝜌0(𝑑1) = ∅,

(b) for every 𝜉 ∈ supp 𝜌𝑟(𝑚+1), we have 𝑁𝑚+1
𝑁𝑚′

𝜌𝑟(𝑚+1)(𝜉) ⊆ 𝜌𝑟(𝑚
′)(𝜉) and 𝑁𝑚+1

𝑁𝑚′
𝜌(𝑚+1)(𝜉) has

length at most 1

2𝑟(𝑚)+1
,

(c) for every 𝑓 ∈  𝑟(𝑚), we have 𝐾 𝑟(𝑚)

𝑟(𝑚+1)
𝜌𝑟(𝑚+1)(𝑓 (𝑟(𝑚 + 1))) ⊆ 𝜌𝑟(𝑚)(𝜉𝑓 )

(d) for every 𝑓 ∈  𝑟(𝑚), we have 𝑁𝑚+1
𝑁𝑚′

𝜌𝑟(𝑚+1)(𝑓 (𝑟(𝑚 + 1))) ⊆ 𝜌𝑟(𝑚
′)(𝜉𝑓 ),

(e) supp 𝜌𝑟(𝑚) ⊆ supp 𝜌𝑟(𝑚+1), and

(f) 𝑁−1 = 1 and 𝑁𝑚+1 = ∏
𝑚

𝑖=−1 𝐾
𝑟(𝑖)

𝑟(𝑖+1)
.
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Proof. Let 𝑝,  , 𝑑, 𝑑0, 𝑑1, 𝐶 and (𝜉𝑓 ∶ 𝑓 ∈ ) be given. Write 𝐶 as an increasing sequence
of finite sets (𝐶𝑛 ∶ 𝑛 ∈ 𝜔) such that for each 𝑛 ∈ 𝜔, ⋃{supp 𝑓 (𝑘) ∶ 𝑓 ∈  𝑛 and 𝑘 ≤ 𝑛} ⊆ 𝐶𝑛,
and supp 𝑑 ∪ supp 𝑑0 ∪ supp 𝑑1 ⊆ 𝐶0.

Apply Lemma 2.4.1 to  =  0 and 𝐵 = 𝜔 to obtain a rational stack 0 =

(0, 𝜈0, 𝜁 0, 𝐾 0, 𝐴0, 𝑘00 , 𝑘
0
1 , 𝑙

0, 𝑇 0) and 0, 0, 0 and  0 satisfying (1)-(7) as in the Lemma.

Fix 𝛿0 ∈ ℝ such that 0 < 𝛿0 < 1

2
and 𝜌0 a 𝛿0-arc function such that 0 ∉ 𝜌0(𝑑) and

𝜌0(𝑑0) ∩ 𝜌
0(𝑑1) = ∅. We will also assume that 𝐶0 ∪ {𝜈0𝑖 ∶ 𝑖 < 𝑘00} ⊆ supp 𝜌0.

Let 𝜖0 = 𝛿0

∑
𝑓 ∈0 ,ℎ∈0 ∣0

𝑓 ,ℎ
∣
. Notice that with this 𝜖0 we may apply Lemma 2.4.3.

Now we apply Lemma 2.4.2 with 𝐷 = 𝐶0 to obtain 𝐵0 ⊆ 𝐴0\1 and 𝛾0 = (𝛾0𝑛 ∶ 𝑛 ∈ 𝐵
0) as

in the Lemma.

Suppose the following are defined: (𝐵𝑡 ∶ 𝑡 ≤ 𝑚) a decreasing family of elements of 𝑝
and 𝛾 𝑡𝑛 for 𝑡 ≤ 𝑚 and 𝑛 ∈ 𝐵𝑡 .

Define 𝛿𝑚+1 = 1

2𝑚+2
1

∏𝑖,𝑛≤𝑚+1 𝐾
𝑖
𝑛
min({𝛾 𝑡𝑛 ∶ 𝑡 < 𝑛 ≤ 𝑚 + 2, 𝑛 ∈ 𝐵𝑡} ∪ {1}).

Apply Lemma 2.4.1 with  = 𝑚+1 and 𝐵 = 𝐵𝑚 to obtain a stack 𝑚+1 =

(𝑚+1, 𝜈𝑚+1, 𝜁𝑚+1, 𝐾𝑚+1, 𝐴𝑚+1, 𝑘𝑚+10 , 𝑘𝑚+11 , 𝑙𝑚+1, 𝑇𝑚+1) and 𝑚+1, 𝑚+1, 𝑚+1 and  𝑚+1 re-
lated to the stack as in the lemma. Then 𝐴𝑚+1 ⊆ 𝐵𝑚. Let 𝜖𝑚+1 = 𝛿𝑚+1

∑
𝑓 ∈𝑚+1 ,ℎ∈𝑚+1 ∣

𝑚+1
𝑓 ,ℎ

∣
. Notice

that with this 𝜖𝑚+1 we may apply Lemma 2.4.3.

Now we apply Lemma 2.4.2 with 𝐷 = 𝐶𝑚+1 to obtain 𝐵𝑚+1 ⊆ 𝐴𝑚+1\𝑚 + 2 and 𝛾𝑚+1 =
(𝛾𝑚+1𝑛 ∶ 𝑛 ∈ 𝐵𝑚+1) as in the Lemma.

We will use the happiness of the selective ultrafilter 𝑝: the sets constructed previously
𝐵0 ⊇ 𝐵1 ⊇ … are all elements of 𝑝, so there exists a function 𝑟 ∈ 𝜔𝜔 such that 𝑟[𝜔] ∈ 𝑝,
𝑟(0) ∈ 𝐵0 and, for all 𝑛 ∈ 𝜔, 𝑟(𝑛 + 1) ∈ 𝐵𝑟(𝑛). (This follows from Proposition 11.6 of
Halbeisen, 2012.)

Define 𝑈 0 = (𝑈 0
𝑓 ∶ 𝑓 ∈ 0), where 𝑈 0

𝑓 = 𝜌0(𝜉𝑓 ) if 𝑓 ∈  0 or 𝑈 0
𝑓 = 𝜌(𝜈0𝑖 ) if 𝑓 = 𝜒𝜈0𝑖 .

By Lemma 2.4.3 applied on stage 0, we obtain 𝜓 and 𝑊 as in the conclusion of Lemma
2.4.3. Now, according to the conclusion of Lemma 2.4.2 applied to stage 0 of the con-
struction, since 𝑟(0) ∈ 𝐵0, we obtain an 𝑟(0)-solution 𝜙0 of length 𝛾0

𝑟(0)
to the arc equation

(𝜓, 𝐵0, 𝐾 00, 𝐾 0
𝑟(0)
, 𝑊 ).

Now, using the conclusion of Lemma 2.4.3, we have that 𝜙0 is an 𝑟(0)-solution to
(𝜌0, 𝐵0, 𝐾 00, 𝐾 0

𝑟(0)
, 𝑈 0). In particular, we have, for each 𝑓 ∈  0, 𝜙0(𝑓 (𝑟(0))) ⊆ 𝜌0(𝜉𝑓 ).

Let 𝑟(−1) = 0 and (𝑁𝑚 ∶ 𝑚 ≥ −1) as in (f). We can recursively construct: 𝜙𝑟(𝑚), 𝜌𝑟(𝑚)

a 𝛿𝑟(𝑚)-arc function with 𝐶𝑟(𝑚) ⊆ supp 𝜌𝑟(𝑚), and 𝑈 𝑟(𝑚) such that, for every 𝑚,𝑚′ such that
−1 ≤ 𝑚′ ≤ 𝑚 < 𝜔:

(1) 𝜙𝑟(𝑚) is an 𝑟(𝑚 + 1)-solution of length 𝛾 𝑟(𝑚)
𝑟(𝑚+1)

for the arc equation

(𝜌
𝑟(𝑚)

, 𝐵
𝑟(𝑚)

, 𝐾
𝑟(𝑚)𝑟(𝑚)

, , 𝐾
𝑟(𝑚)

𝑟(𝑚+1)
, 𝑈

𝑟(𝑚)
),

(2) 𝜌𝑟(𝑚+1) ≤ 𝜙𝑟(𝑚),
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(3) for every 𝜉 ∈ supp 𝜌𝑟(𝑚+1), we have 𝑁𝑚+1
𝑁𝑚′

𝜌𝑟(𝑚+1)(𝜉) ⊆ 𝜌𝑟(𝑚
′)(𝜉) and 𝑁𝑚+1

𝑁𝑚′
𝜌𝑟(𝑚+1)(𝜉) has

length at most 1

2𝑟(𝑚)+1
,

(4) for every 𝑓 ∈  𝑟(𝑚), we have 𝐾 𝑟(𝑚)

𝑟(𝑚+1)
𝜌𝑟(𝑚+1)(𝑓 (𝑟(𝑚 + 1))) ⊆ 𝜌𝑟(𝑚)(𝜉𝑓 ),

(5) for every 𝑓 ∈  𝑟(𝑚), we have 𝑁𝑚+1
𝑁𝑚′

𝜌𝑟(𝑚+1)(𝑓 (𝑟(𝑚 + 1))) ⊆ 𝜌𝑟(𝑚
′)(𝜉𝑓 ),

(6) supp 𝜌𝑟(𝑚) ⊆ 𝜌𝑟(𝑚+1), and

(7) 𝑈 𝑟(𝑚) = (𝑈
𝑟(𝑚)

𝑓
∶ 𝑓 ∈ 𝑟(𝑚)), where 𝑈 𝑟(𝑚)

𝑓
= 𝜌𝑟(𝑚)(𝜉𝑓 ) if 𝑓 ∈  𝑟(𝑚) or 𝑈 𝑟(𝑚)

𝑓
= 𝜌𝑟(𝑚)(𝜈

𝑟(𝑚)
𝑖 )

if 𝑓 = 𝜒
𝜈
𝑟(𝑚)
𝑖

.

The base of the recursion is already done. Suppose the construction is done until step 𝑚
and let us define 𝜙𝑟(𝑚+1), 𝜌𝑟(𝑚+1) and 𝑈 𝑟(𝑚+1).

Let 𝜌𝑟(𝑚+1) be a 𝛿𝑟(𝑚+1)-arc function such that supp 𝜌𝑟(𝑚)∪𝐶𝑟(𝑚+1)∪{𝜈
𝑟(𝑚+1)
𝑖 ∶ 𝑖 < 𝑘

𝑟(𝑚+1)
0 } ⊆

supp 𝜌𝑟(𝑚+1) and 𝜌𝑟(𝑚+1) ≤ 𝜙𝑟(𝑚).

Now define 𝑈 𝑟(𝑚+1) = (𝑈
𝑟(𝑚+1)

𝑓
∶ 𝑓 ∈ 𝑟(𝑚+1)), where 𝑈 𝑟(𝑚+1)

𝑓
= 𝜌𝑟(𝑚+1)(𝜉𝑓 ) if 𝑓 ∈  𝑟(𝑚+1)

or 𝑈 𝑟(𝑚+1)

𝑓
= 𝜌𝑟(𝑚+1)(𝜈

𝑟(𝑚+1)
𝑖 ) if 𝑓 = 𝜒

𝜈
𝑟(𝑚+1)
𝑖

. By Lemma 2.4.3 applied on stage 𝑚+1, we obtain
𝜓 and 𝑊 as in the conclusion of Lemma 2.4.3. Now, according to the conclusion of Lemma
2.4.2 applied to stage𝑚+1 of the construction, since 𝑟(𝑚+2) ∈ 𝐵𝑟(𝑚+1), we obtain an 𝑟(𝑚+2)-
solution 𝜙𝑟(𝑚+1) of length 𝛾 𝑟(𝑚+1)

𝑟(𝑚+2)
to the arc equation (𝜓, 𝐵𝑟(𝑚+1), 𝐾 𝑟(𝑚+1)𝑟(𝑚+1), 𝐾

𝑟(𝑚+1)

𝑟(𝑚+2)
, 𝑊 ).

Now, using the conclusion of Lemma 2.4.3, we have that 𝜙𝑟(𝑚+1) is an 𝑟(𝑚 + 2)-solution
to (𝜌𝑟(𝑚+1), 𝐵𝑟(𝑚+1), 𝐾 𝑟(𝑚+1)𝑟(𝑚+1), 𝐾

𝑟(𝑚+1)

𝑟(𝑚+2)
, 𝑈 𝑟(𝑚+1)).

Having 𝜌𝑟(𝑚+1) and 𝜙𝑟(𝑚+1) been thusly defined, items (1), (2), (6) and (7) of the recursion
are immediately satisfied.

In order to verify item (3): the second statement follows from the definition of 𝛿𝑟(𝑚+1).
As for the first statement, use items (1) and (2) and then use item (3) iteratively.

Item (4) follows from items (1) and (2) and the definition of 𝑈 𝑟(𝑚).

Item (5) follows from multiplying the expression in (4) by 𝑁𝑚
𝑁𝑚′

and then applying item
(3) for 𝑚′ and 𝑚 − 1.

Now that the recursion is complete, notice that items (a)-(e) of the statement of the
Lemma are clearly satisfied.

Now we are ready to prove Lemma 2.3.4.

Lemma (Main Lemma). Fix a selective ultrafilter 𝑝. Let  ⊆ 𝐺𝜔 be a countable collection
of distinct elements mod 𝑝 such that {[𝑓 ]𝑝 ∶ 𝑓 ∈  } ∪̇ {[𝜒𝜇]𝑝 > 𝜇 ∈ 𝜅} is ℚ linearly
independent in Ult𝑝(𝐺).

Let 𝑑, 𝑑0, 𝑑1 ∈ 𝐺\{0} with supp 𝑑, supp 𝑑0, supp 𝑑1 pairwise disjoint, and 𝐶 be a countably
infinite subest of 𝜅 such that supp 𝑑 ∪ supp 𝑑0 ∪ supp 𝑑1 ∪⋃𝑓 ∈ ,𝑛∈𝜔 supp 𝑓 (𝑛) ⊆ 𝐶. For each
𝑓 ∈  , choose 𝜉𝑓 ∈ 𝐶.

Then there exists a homomorphism 𝜙 ∶ ℚ(𝐶) → 𝕋 such that
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(a) 𝜙(𝑑) ≠ 0, 𝜙(𝑑0) ≠ 𝜙(𝑑1), and

(a) 𝑝 − lim(𝜙( 1
𝑃
𝑓 )) = 𝜙( 1

𝑃
𝜒𝜉𝑓 ), for each 𝑓 ∈  and 𝑃 ∈ 𝜔\{0}.

Proof. Let 𝑚, 𝑚, 𝑚, 𝑚,  𝑚, 𝑚, (𝑁𝑚 ∶ 𝑚 ≥ −1), 𝑟 , (𝜌𝑟(𝑚) ∶ 𝑚 ∈ 𝜔), and 𝜌0 be as in
the previous lemma.

Given a positive integer𝑚′ and 𝜉 ∈ 𝐶∩supp 𝜌𝑟(𝑚
′), define 𝜙( 1

𝑁𝑚′
𝜒𝜉) as the unique element

of ⋂𝑚≥𝑚′
𝑁𝑚
𝑁𝑚′

𝜌𝑟(𝑚)(𝜉). Furthermore, if 𝑃 divides 𝑁𝑚′ then define 𝜙( 1
𝑃
𝜒𝜉) =

𝑁𝑚′

𝑃
𝜙( 1

𝑁𝑚′
𝜒𝜉). Then,

since 𝑛! ∣ 𝐾𝑚
𝑛 for every 𝑛 and 𝑚, 𝜙( 1

𝑃
𝜒𝜉) is well-defined and does not depend on 𝑁𝑚′ , and

thus 𝜙 can be extended to a homomorphism.

Notice that since 0 ∉ 𝜌0(𝑑) and 𝜌0(𝑑0) ∩ 𝜌
0(𝑑1) = ∅, it follows that 𝜙(𝑑) ≠ 0 and

𝜙(𝑑0) ≠ 𝜙(𝑑1).

Let 𝑓 ∈  and 𝑃 be a positive integer. Let 𝑀 be a positive integer such that 𝑓 ∈ 𝑀 .

Claim: (𝜙( 1
𝑃
𝑓 (𝑟(𝑚))) ∶ 𝑚 ∈ 𝜔) converges to 𝜙( 1

𝑃
𝜒𝜉𝑓 ).

Proof. Let 𝑚 ≥ 𝑀 be such that 𝑃 divides 𝑁𝑚−1 and 𝜉𝑓 ∈ 𝐶 ∩ supp 𝜌𝑟(𝑚−1). Then

𝜙( 1
𝑃
𝑓 (𝑟(𝑚))) =

𝜙( 1
𝑃
∑𝜇∈supp 𝑓 (𝑟(𝑚)) 𝑓 (𝑟(𝑚))(𝜇)𝜒𝜇) =

𝜙(∑𝜇∈supp 𝑓 (𝑟(𝑚))
𝑓 (𝑟(𝑚))(𝜇)

𝑃
𝜒𝜇) =

∑𝜇∈supp 𝑓 (𝑟(𝑚)) 𝜙(
𝑓 (𝑟(𝑚))(𝜇)

𝑃
𝜒𝜇) =

∑𝜇∈supp 𝑓 (𝑟(𝑚))
𝑓 (𝑟(𝑚))(𝜇)

𝑃
𝑁𝑚𝜙(

1

𝑁𝑚
𝜒𝜇) =

1

𝑃
𝑁𝑚−1∑𝜇∈supp 𝑓 (𝑟(𝑚)) 𝐾

𝑟(𝑚−1)

𝑟(𝑚)
𝑓 (𝑟(𝑚))(𝜇)𝜙( 1

𝑁𝑚
𝜒𝜇) ∈

1

𝑃
𝑁𝑚−1∑𝜇∈supp 𝑓 (𝑟(𝑚)) 𝐾

𝑟(𝑚−1)

𝑟(𝑚)
𝑓 (𝑟(𝑚))(𝜇)𝜌𝑟(𝑚)(𝜇) ⊆

1

𝑃
𝑁𝑚−1𝜌𝑟(𝑚−1)(𝜉𝑓 ).

This last set is a neighborhood of 𝜙( 1
𝑃
𝜒𝜉𝑓 ) and has length at most 1

2𝑟(𝑚−2)+1
.

This proves the claim.

Since 𝑟[𝜔] ∈ 𝑝, it follows that the 𝑝-limit of (𝜙( 1
𝑃
𝑓 (𝑛)) ∶ 𝑛 ∈ 𝜔) is 𝜙( 1

𝑃
𝜒𝜉𝑓 ).

2.6 Defining rational stacks
We define stacks as a tool to solve a system of arc equations. The definitions and the

ideas of the construction of rational stacks are motivated by A. H. Tomita, 2015.

We need to solve arc equations related to representatives of a basis for Ult𝑝(𝐺). Thus,
we construct a stack, associate the original arc equations to arc equations for the stack,
solve the arc equations for the stack and convert these solutions to solutions to the original
system of arc equations.
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Now we give the full definition of rational stack.

Definition 2.6.1. A rational stack is a nonuple (, 𝜈, 𝜁 , 𝐾 , 𝐴, 𝑘0, 𝑘1, 𝑙, 𝑇 ), where:

• 𝐴 ⊆ 𝜔 is infinite,

• 𝑘0 ≤ 𝑘1 are natural numbers with 𝑘1 > 0,

• 𝑙 ∶ 𝑘1 → 𝜔,

• 𝜈 ∶ 𝑘0 → 𝜅,

• 𝜁 ∶ 𝑘1 → 𝜅𝜔,

• 𝐾 ∶ 𝐴 → 𝜔\2 is such that for every 𝑛 ∈ 𝐴, 𝑛!𝑇 ∣ 𝐾𝑛,

•  = (𝑖,𝑗 ∶ 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖) is such that each 𝑖,𝑗 ⊆ 𝐻
𝜔 is finite, and

• 𝑇 > 0 is an integer,

satisfying the following requirements:

(i) 𝜁𝑖(𝑛) = 𝜈𝑖 for every 𝑖 < 𝑘0 and 𝑛 ∈ 𝐴,

(ii) 𝜈𝑖, for 𝑖 < 𝑘0, and 𝜁𝑗(𝑛), for 𝑘0 ≤ 𝑗 < 𝑘1 and 𝑛 ∈ 𝐴, are all pairwise distinct,

(iii) 𝜁𝑖(𝑛) ∈ supp ℎ(𝑛), for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖, ℎ ∈ 𝑖,𝑗 and 𝑛 ∈ 𝐴,

(iv) 𝜁𝑖(𝑛) ∉ supp ℎ(𝑛), for each 𝑖 < 𝑖∗ < 𝑘1, 𝑗 < 𝑙𝑖∗ , ℎ ∈ 𝑖∗,𝑗 and 𝑛 ∈ 𝐴,

(v) (
ℎ(𝑛)(𝜁𝑖(𝑛))

𝐾𝑛 )
𝑛∈𝐴

converges, monotonically, to +∞, −∞ or a real number, for each 𝑖 < 𝑘1,
𝑗 < 𝑙𝑖 and ℎ ∈ 𝑖,𝑗 ,

(vi) for every 𝑖 < 𝑘1 and 𝑗 < 𝑙𝑖, there exists a ℎ∗ ∈ 𝑖,𝑗 such that for every ℎ ∈ 𝑖,𝑗 ,

(
ℎ(𝑛)(𝜁𝑖(𝑛))

ℎ∗(𝑛)(𝜁𝑖(𝑛)))𝑛∈𝐴
converges to a real number 𝜃ℎℎ∗ and (𝜃ℎℎ∗ ∶ ℎ ∈ 𝑖,𝑗) is linearly inde-

pendent (as a family of elements of ℝ considered as a ℚ-vector space),

(vii) for each 𝑖 < 𝑘1, 𝑗 ′ < 𝑗 < 𝑙𝑖, ℎ′ ∈ 𝑖,𝑗 ′ and ℎ ∈ 𝑖,𝑗 , (
ℎ(𝑛)(𝜁𝑖(𝑛))

ℎ′(𝑛)(𝜁𝑖(𝑛)))𝑛∈𝐴
converges,

monotonically, to 0,

(viii) for each 𝑖 < 𝑘0, there exists 𝑗 < 𝑙𝑖 such that 𝐾

𝑇
𝜒𝜈𝑖 ∈ 𝑖,𝑗 ,

(ix) (∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣)𝑛∈𝐴 is strictly increasing, for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ ∈ 𝑖,𝑗 ,

(x) for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ, ℎ∗ ∈ 𝑖,𝑗 , either

• ∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣>∣ ℎ∗(𝑛)(𝜁𝑖(𝑛)) ∣, for each 𝑛 ∈ 𝐴, or

• ∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣=∣ ℎ∗(𝑛)(𝜁𝑖(𝑛)) ∣, for each 𝑛 ∈ 𝐴, or

• ∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣<∣ ℎ∗(𝑛)(𝜁𝑖(𝑛)) ∣, for each 𝑛 ∈ 𝐴,

and

(xi) for all 𝜇 ∈ 𝜅, given 𝑔 ∈ ⋃𝑗<𝑙𝑖
𝑖,𝑗 with 𝑘0 ≤ 𝑖 < 𝑘1, if {𝑛 ∈ 𝜔 ∶ 𝜇 ∈ supp 𝑔(𝑛)} ∈ 𝑝,

then (
𝑔(𝑛)(𝜇)

𝐾𝑛 )
𝑛∈𝐴

is constant.

The family 𝑖,𝑗 is called the (𝑖, 𝑗)-brick of the stack.
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Notice that (vi) implies that for any 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ∗ ∈ 𝑖,𝑗 , we have that for every

ℎ ∈ 𝑖,𝑗 , (
ℎ(𝑛)(𝜁𝑖(𝑛))

ℎ∗(𝑛)(𝜁𝑖(𝑛)))𝑛∈𝐴
converges to a real number 𝜃ℎℎ∗ and (𝜃ℎℎ∗ ∶ ℎ ∈ 𝑖,𝑗) is linearly

independent. This is why the notation 𝜃ℎℎ∗ carries the ℎ∗, even though in (vi) it seems we
are singling out an ℎ∗ ∈ 𝑖,𝑗 .

The idea to use the stacks to solve arc equations back and forth is based in A. C. Boero,
Castro-Pereira, et al., 2019.

2.7 Solving arc equations on a level of a rational
stack

The main tool to solve the arc equations of rational stacks is the same used for integer
stacks and we state the lemmas used in A. H. Tomita, 2015. However, there is a crucial
difference in the way the stack was defined, so we separate when the denominator grows
compared to the numerator, when the numerator and denominator are pretty much at
even speed and when the numerator grows compared to the denominator.

In this section we prove Lemma 2.4.2, which tells us that there exist extensive families
of solutions for arc equations related to stacks.

An application of Kronecker’s theorem
Kronecker’s theorem says that if {1, 𝜃0,… , 𝜃𝑘−1} is a linearly independent family of

the ℚ-vector space ℝ then {(𝜃0𝑛 + ℤ,… , 𝜃𝑘−1𝑛 + ℤ) ∶ 𝑛 ∈ ℤ} is a dense subset of 𝕋𝑘

(see Bröcker and Dieck, 1985). From this theorem it is possible to prove the following
lemma:

Lemma 2.7.1. (Lemma 4.3 of A. H. Tomita, 2015) If (𝜃0,… , 𝜃𝑟−1) is a linearly independent
family of the ℚ-vector space ℝ and 𝜖 > 0, then there exists a positive integer 𝐿 such that
{(𝜃0𝑥 + ℤ,… , 𝜃𝑟−1𝑥 + ℤ) ∶ 𝑥 ∈ 𝐼 } is 𝜖-dense in the usual Euclidian metric, for any interval
𝐼 of length at least 𝐿.

Given 𝜖 > 0 and 𝜃 = (𝜃𝑖 ∶ 𝑖 ∈ 𝐼 ) a finite linearly independent family of ℝ as a ℚ-vector
space, fix an integer 𝐿(𝜃, 𝜖) satisfying the conditions in Lemma 2.7.1.

Lemma 2.7.2. (Lemma 4.4 of A. H. Tomita, 2015) Fix a positive real 𝜖∗ < 1

8
. Let 𝜃 =

(𝜃0,… , 𝜃𝑟−1) be a linearly independent family of ℝ as a ℚ-vector space.

Set 𝐿 = 𝐿(𝜃, 𝜖∗) and let (𝑎0,… , 𝑎𝑟−1) be a sequence of integers such that

(i) ∣ 𝑎0 ∣> … >∣ 𝑎𝑟−1 ∣ and

(ii) ∣ 𝜃𝑘 −
𝑎𝑘
𝑎0
∣< 𝜖∗

√
𝑟𝐿

for each 𝑘 < 𝑟 .

Then

(a) {(𝑎0𝑥,… , 𝑎𝑟−1𝑥) ∶ 𝑥 ∈ 𝐽 } is 2𝜖∗-dense for any arc 𝐽 of length at least 𝐿

∣𝑎0 ∣
and

(b) for any arc 𝐽 of length at least 3 𝐿

∣𝑎0 ∣
and  any open ball of radius 4𝜖∗ (in 𝕋𝑟 with

the Euclidean metric), there exists an arc 𝐾 contained in 𝐽 of length 4𝜖∗
√
𝑟 ∣𝑎0 ∣

such that
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{(𝑎0𝑥,… , 𝑎𝑟−1𝑥) ∶ 𝑥 ∈ 𝐾 } ⊆  .

Solving arc equations on a level of a rational stack
Now we are ready to prove Lemma 2.4.2.

Lemma (2.4.2) Let  , , ,  and  be as in Lemma 2.4.1. Let 𝜖 be a positive real and 𝐷
be a finite subset of 𝜅. Then there exist 𝐵 ⊆ 𝐴 cofinite in 𝐴 and a family of positive real
numbers (𝛾𝑛 ∶ 𝑛 ∈ 𝐵) such that:

For every 𝑛 ∈ 𝐵, for every family (𝑊ℎ ∶ ℎ ∈ ) of open arcs of length 𝜖, and for every
arc function 𝜓 of length 𝜖 such that supp𝜓 ⊆ 𝐷\{𝜈𝑖 ∶ 𝑖 < 𝑘0}, there exists an 𝑛-solution of
length 𝛾𝑛 for the arc equation (𝜓, 𝐵, 𝐾, 𝐾𝑛, 𝑊 ).

Proof. For each (𝑖, 𝑗) with 𝑖 < 𝑘1 and 𝑗 < 𝑙𝑖, fix 𝑢𝑖,𝑗 , 𝑣𝑖,𝑗 ∈ 𝑖,𝑗 such that for every ℎ ∈ 𝑖,𝑗

and 𝑛 ∈ 𝐴, ∣ 𝑢𝑖,𝑗(𝑛)(𝜁𝑖(𝑛)) ∣≤∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣≤∣ 𝑣𝑖,𝑗(𝑛)(𝜁𝑖(𝑛)) ∣. Fix an 𝜖∗ < min{ 1
8
, 1
8
𝜖}. For each

𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ ∈ 𝑖,𝑗 , let 𝜃ℎ be the limit of
(

ℎ(𝑛)(𝜁𝑖(𝑛))

𝑣𝑖,𝑗 (𝑛)(𝜁𝑖(𝑛)))𝑛∈𝐴
. Let 𝜃𝑖,𝑗 = (𝜃ℎ ∶ ℎ ∈ 𝑖,𝑗) and

let 𝐿 be a fixed integer greater than 𝐿(𝜃𝑖,𝑗 , 𝜖∗) for any 𝑖 < 𝑘1 and 𝑗 < 𝑙𝑖.

Let 𝐵 ⊆ 𝐴 be the set of 𝑛’s in 𝐴 such that

(a) ∣ 𝜃ℎ −
ℎ(𝑛)(𝜁𝑖(𝑛))

𝑣𝑖,𝑗 (𝑛)(𝜁𝑖(𝑛))
∣< 𝜖∗√

∣∣+1𝐿
, for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ ∈ 𝑖,𝑗 ,

(b) 3𝐿

∣𝑣𝑖,𝑙𝑖−1(𝑛)(𝜁𝑖(𝑛))∣
< 𝜖∗, for each 𝑖 < 𝑘1,

(c) 3𝐿

∣𝑢𝑖,𝑗−1(𝑛)(𝜁𝑖(𝑛))∣
≤ 4𝜖∗√

∣∣+1𝐿
, for each 𝑖 < 𝑘1 and 𝑗 < 𝑙𝑖, and

(d) {𝜁𝑖(𝑛) ∶ 𝑘0 ≤ 𝑖 < 𝑘1} ∩ 𝐷 = ∅.

Notice that 𝐵 is cofinite in 𝐴, and therefore is in 𝑝. Let 𝛾𝑛 = 𝜖∗

(∣∣+1)max{‖ℎ(𝑛)‖∶ℎ∈} for each
𝑛 ∈ 𝐵, where ‖ℎ(𝑛)‖ = ∑𝜇∈supp ℎ(𝑛) ∣ ℎ(𝑛)(𝜇) ∣. Now let (𝑊ℎ ∶ ℎ ∈ ) and 𝜓 be given. Fix
𝑛 ∈ 𝐵.

For each ℎ ∈ , fix 𝑉ℎ ⊆ 𝑊ℎ an arc of length 4𝜖∗.

Given an arbitrary 𝜖-arc function 𝜓 as required, fix 𝜓∗ and 𝜖∗-arc function such that
supp𝜓∗ ⊆ 𝐷, supp𝜓∗ ∩ {𝜁𝑖(𝑛) ∶ 𝑖 < 𝑘1} = ∅, 𝜓∗ ≤ 𝜓 and supp ℎ(𝑛)\{𝜁𝑖(𝑛) ∶ 𝑘0 ≤ 𝑖 < 𝑘1} ⊆

supp𝜓∗, for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ ∈ 𝑖,𝑗 .

For each 𝜇 ∈ supp𝜓∗ choose 𝑥𝜇 ∈ 𝕋 such that 𝐾𝑛𝑥𝜇 is the center of 𝜓∗(𝜇).

For each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖, and ℎ ∈ 𝑖,𝑗 , notice that {𝜁0(𝑛),… , 𝜁𝑘1−1(𝑛)} ∩ supp ℎ(𝑛) ⊆

{𝜁𝑖(𝑛),… , 𝜁𝑘1−1(𝑛)}.

We will define, by downward recursion, for 𝑖 < 𝑘1, an arc 𝑄𝑖,0 ⊆ 𝕋.

Let 𝑂ℎ = 𝑉ℎ −∑𝜇∈supp ℎ(𝑛)\{𝜁𝑖(𝑛)} ℎ(𝑛)(𝜇)𝑥𝜇, for each ℎ ∈ 𝑖,𝑗 , 𝑖 < 𝑘1 and 𝑗 < 𝑙𝑖.

For the first step 𝑖⋆ = 𝑘1 − 1, we will define 𝑄𝑖⋆,𝑗 for 𝑗 < 𝑙𝑖⋆ , also by downward recursion.
So let 𝑗⋆ = 𝑙𝑖⋆ − 1 be the first step.
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Fix an arbitrary arc 𝐽 of length at least 3𝐿

∣𝑣𝑖⋆,𝑗⋆ (𝑛)(𝜁𝑖⋆ (𝑛))∣
and 𝑖⋆,𝑗⋆ the ball of radius 4𝜖∗

contained in the Cartesian product ∏ℎ∈𝑖⋆,𝑗⋆
𝑂ℎ (which is a subset of 𝕋𝑖⋆,𝑗⋆ ). By Lemma 2.7.2,

there exists an arc𝑄𝑖⋆,𝑗⋆ contained in 𝐽 of length 4𝜖∗√
∣∣+1∣𝑣𝑖⋆,𝑗⋆ (𝑛)(𝜁𝑖⋆ (𝑛))∣

such that {(ℎ(𝑛)(𝜁𝑖⋆(𝑛))𝑥 ∶

ℎ ∈ 𝑖⋆,𝑗⋆) ∶ 𝑥 ∈ 𝑄𝑖⋆,𝑗⋆} ⊆ 𝑖⋆,𝑗⋆ .

Now suppose 𝑗 ′ < 𝑙𝑖⋆ and we have defined 𝑄𝑖⋆,𝑗 for all 𝑗 ′ ≤ 𝑗 < 𝑙𝑖⋆ . If 𝑗 ′ = 0 then we are
done for step 𝑖⋆ = 𝑘1 − 1.

If not: by (c), it follows that 3𝐿

∣𝑢𝑖⋆,𝑗′−1(𝑛)(𝜁𝑖⋆ (𝑛))∣
≤ 4𝜖∗√

∣∣+1∣𝑣𝑖⋆,𝑗′ (𝑛)(𝜁𝑖⋆ (𝑛))∣
and 𝑄𝑖⋆,𝑗

′ has length

exactly the right side of the inequality above. Let 𝑖⋆,𝑗
′−1 be a ball of length 4𝜖∗ contained in

∏ℎ∈𝑖⋆,𝑗
′−1
𝑂ℎ. Applying Lemma 2.7.2, there exists an arc 𝑄𝑖⋆,𝑗

′−1 of length 4𝜖∗√
∣∣+1∣𝑣𝑖⋆,𝑗′−1(𝑛)(𝜁𝑖⋆ (𝑛))∣

contained in 𝑄𝑖⋆,𝑗
′ such that {(ℎ(𝑛)(𝜁𝑖⋆(𝑛))𝑥 ∶ ℎ ∈ 𝑖⋆,𝑗

′−1) ∶ 𝑥 ∈ 𝑄𝑖⋆,𝑗
′−1} ⊆ 𝑖⋆,𝑗

′−1.

We thus obtain, for 𝑖⋆ = 𝑘1 − 1, 𝑄𝑖⋆,𝑗 an arc of length 4𝜖∗√
∣∣+1∣𝑣𝑖⋆,0(𝑛)(𝜁𝑖⋆ (𝑛))∣

such that

{(ℎ(𝑛)(𝜁𝑖⋆(𝑛))𝑥 ∶ ℎ ∈ 𝑖⋆,𝑗) ∶ 𝑥 ∈ 𝑄𝑖⋆,𝑗 } ⊆ ∏ℎ∈𝑖⋆,𝑗
𝑂ℎ, for each 𝑗 < 𝑙𝑖⋆ . At the end, we will

have defined 𝑄𝑖⋆,0.

Let 𝑥𝜁𝑖⋆ (𝑛) be the center of 𝑄𝑖⋆,0. By the definition of 𝑂ℎ, we have 𝑂ℎ = 𝑉ℎ −

∑𝜇∈supp ℎ(𝑛)\{𝜁 (𝑛)} ℎ(𝑛)(𝜇)𝑥𝜇, for each 𝑗 < 𝑙𝑖⋆ and ℎ ∈ 𝑖⋆,𝑗 .

It follows then that ∑𝜇∈supp ℎ(𝑛) ℎ(𝑛)(𝜇)𝑥𝜇 ∈ ∑𝜇∈supp ℎ(𝑛)\{𝜁𝑖⋆ (𝑛)}
ℎ(𝑛)(𝜇)𝑥𝜇 + 𝑂ℎ = 𝑉ℎ, for

each 𝑗 < 𝑙𝑖⋆ and ℎ ∈ 𝑖⋆,𝑗 .

The first step of the recursion has been carried out. Suppose now 𝑖′ < 𝑘1 and 𝑄𝑖,0 has
been defined for all 𝑖′ ≤ 𝑖 < 𝑘1.

If 𝑖′ = 0 then we are done. Otherwise if 𝑖′ > 0:

First it is important to notice that {𝜁0(𝑛),… , 𝜁𝑖′−1(𝑛)} ∩ supp ℎ(𝑛) = {𝜁𝑖′−1(𝑛)}, for each
𝑗 < 𝑙𝑖′−1 and ℎ ∈ 𝑖′−1,𝑗 .

We are in conditions for 𝑖′ − 1, analogous to the first step 𝑖⋆, that allow us to obtain
𝑥𝜁𝑖′−1(𝑛) the center of 𝑄𝑖′−1,0, the latter being an arc of length 4𝜖∗√

∣∣+1∣𝑣𝑖′−1,0(𝑛)(𝜁𝑖′−1(𝑛))∣
such that

∑𝜇∈supp ℎ(𝑛) ℎ(𝑛)(𝜇)𝑥𝜇 ∈ ∑𝜇∈supp ℎ(𝑛)\{𝜁𝑖′−1(𝑛)}
ℎ(𝑛)(𝜇)𝑥𝜇 + 𝑂ℎ = 𝑉ℎ, for each 𝑗 < 𝑙𝑖′−1 and ℎ ∈

𝑖′−1,𝑗 .

This ends the construction of 𝑥𝜇 for each 𝜇 ∈ supp𝜓∗ ∪ {𝜁𝑖(𝑛) ∶ 𝑖 < 𝑘1 − 1}. Choose an
arbitrary 𝑥𝜇 for 𝜇 ∈ 𝐷\(supp𝜓∗ ∪ {𝜁𝑖(𝑛) ∶ 𝑖 < 𝑘1 − 1}).

Let 𝜙(𝜇) be the arc of center 𝑥𝜇 and length 𝛾𝑛. We show that 𝜙 is the solution for which
we are looking.

By the choice of 𝑥𝜇 and since 𝜓∗ ≤ 𝜓, it follows 𝐾𝑛𝜙 ≤ 𝜓.

Secondly, if ℎ ∈ 𝑖,𝑗 then ∑𝜇∈supp ℎ(𝑛) ℎ(𝑛)(𝜇)𝑥𝜇 ∈ 𝑉ℎ. It follows that the center of
∑𝜇∈supp ℎ(𝑛) ℎ(𝑛)(𝜇)𝜙(𝜇) is contained in 𝑉ℎ and this arc has length at most

∑

𝜇∈supp ℎ(𝑛)

∣ ℎ(𝑛)(𝜇) ∣ 𝛾𝑛 = ∑

𝜇∈supp ℎ(𝑛)

∣ ℎ(𝑛)(𝜇) ∣
𝜖∗

(∣  ∣ +1)max{‖ℎ(𝑛)‖ ∶ ℎ ∈ }
< 𝜖

∗
.
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Therefore, any point of the arc 𝜙(ℎ(𝑛)) is at a distance smaller than 𝜖∗ + 2𝜖∗ from
the center of 𝑉ℎ. Since 𝑊ℎ and 𝑉ℎ have the same center and 3𝜖∗ < 𝜖

2
it follows that

𝜙(ℎ(𝑛)) ⊆ 𝑊ℎ. Thus, 𝜙 is an 𝑛-solution of length 𝛾𝑛 for the arc equation (𝜓, 𝐵, 𝐾, 𝐾𝑛, 𝑊 ),
as was required.

2.8 Constructing a sequence of rational stacks
All that remains to be done is to prove Lemma 2.4.1, which guarantees the existence of

stacks associated to a linearly independent finite set of sequences.

Given a finite sequence of functions we start by finding an element of the ultrafilter 𝑝
that makes the restricted functions closer to the properties we want for the stack.

Lemma 2.8.1. Suppose that  is a finite subset of 𝐺𝜔, 𝑝 is a selective ultrafilter and 𝐶 ∈ 𝑝.
Suppose 𝜁 , 𝜁∗ ∈ 𝜅𝜔 are such that there exist 𝑔∗ ∈  such that {𝑛 ∈ 𝐶 ∶ 𝜁 (𝑛) ∈ supp 𝑔∗(𝑛)} ∈ 𝑝
and {𝑛 ∈ 𝐶 ∶ 𝜁 (𝑛) = 𝜁∗(𝑛)} ∉ 𝑝.

Then there exist 𝐵′ ∈ 𝑝 with 𝐵′ ⊆ 𝐶 and  ⊆  such that:

(⋆1) (𝜁 (𝑛))𝑛∈𝐵′ is either constant or one-to-one,

(⋆2) for each 𝑔 ∈ , either 𝜁 (𝑛) ∈ supp 𝑔(𝑛) for all 𝑛 ∈ 𝐵′ or 𝜁 (𝑛) ∉ supp 𝑔(𝑛) for all
𝑛 ∈ 𝐵′,

(⋆3)  = {𝑔 ∈  ∶ ∀ 𝑛 ∈ 𝐵′, 𝜁 (𝑛) ∈ supp 𝑔(𝑛)} is nonempty,

(⋆4) (𝑔(𝑛)(𝜁 (𝑛)))𝑛∈𝐵′ either converges strictly monotonically to +∞, −∞ or a real number,
or is constant and equal to a rational number, for each 𝑔 ∈ ,

(⋆5) given 𝑓 , 𝑔 ∈ , either ∣ 𝑔(𝑛)(𝜁 (𝑛)) ∣>∣ 𝑓 (𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐵′, ∣ 𝑔(𝑛)(𝜁 (𝑛)) ∣=∣

𝑓 (𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐵′, or ∣ 𝑔(𝑛)(𝜁 (𝑛)) ∣<∣ 𝑓 (𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐵′,

(⋆6) for each pair 𝑔, ℎ ∈ , the sequence
(
𝑔(𝑛)(𝜁 (𝑛))

ℎ(𝑛)(𝜁 (𝑛)))𝑛∈𝐵′
converges to +∞, −∞ or a real

number, and

(⋆7) 𝜁 (𝑛) ≠ 𝜁∗(𝑚) for all 𝑛, 𝑚 ∈ 𝐵′.

Proof. Everything follows from the selectivity of 𝑝. For instance, to get 𝐵′ for which (⋆1)

holds, let 𝜉 ∶ [𝐶]2 → 2 be given by 𝜁 ({𝑛, 𝑚}) = 0 iff 𝜁 (𝑛) = 𝜁 (𝑚) and let 𝐵′ ∈ 𝑝 be such
that 𝐵′ ⊆ 𝐶 and 𝜉 |[𝐵′]2 is constant (which exists by the selectivity of 𝑝). We refine 𝐵′ using
similar straightforward techniques to obtain conditions (⋆2) − (⋆7), leaving the details to
the reader.

Notice that if 𝐵 ∈ 𝑝 is such that 𝐵 ⊆ 𝐵′, then (⋆1) − (⋆7) also hold for 𝐵.

Lemma 2.8.2. Suppose that , 𝐶, 𝑝, 𝜁 , 𝜁∗, 𝐵′ and  are as in Lemma 2.8.1.

Suppose 𝑔# ∈  is such that for every 𝑔 ∈ ,
(

𝑔(𝑛)(𝜁 (𝑛))

𝑔#(𝑛)(𝜁 (𝑛)))𝑛∈𝐵′
converges to a real number

(or, equivalently, is bounded).
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Then there exist  ⊆ , 𝜎 ∶ \ → 𝐺𝜔 and a family of real numbers (𝜃𝑔#,𝑔 ∶ 𝑔 ∈ )

such that, for every 𝐵 ∈ 𝑝 with 𝐵 ⊆ 𝐵′:

(⋆8) 𝑔# ∈ ,

(⋆9)
(

𝑔(𝑛)(𝜁 (𝑛))

𝑔#(𝑛)(𝜁 (𝑛)))𝑛∈𝐵
converges to 𝜃𝑔#,𝑔 , for every 𝑔 ∈ ,

(⋆10) (𝜃𝑔#,𝑔 ∶ 𝑔 ∈ ) is a linearly independent set that generates the same ℚ-vector space
as (𝜃𝑔#,𝑔 ∶ 𝑔 ∈ ),

(⋆11) for each 𝑔 ∈ \,  ∪ {𝑔} and  ∪ {𝜎(𝑔)} generate the same ℚ-vector subspace of
𝐺𝜔,

(⋆12) for each 𝑔 ∈ \ and ℎ ∈ ,
(
𝜎(𝑔)(𝑛)(𝜁 (𝑛))

ℎ(𝑛)(𝜁 (𝑛)) )𝑛∈𝐵
converges to 0,

(⋆13) if 𝑔 ∈ \ and 𝜃𝑔#,𝑔 = 0, then 𝜎(𝑔) = 𝑔 ,

(⋆14) if 𝜁 is constantly equal to 𝜈,  = {𝜒𝜈} and 𝑔∗ ∈  is such that (𝑔∗(𝑛)(𝜈))𝑛∈𝐵 is not
constant mod 𝑝, then {𝑛 ∈ 𝜔 ∶ 𝜈 ∈ supp𝜎(𝑔∗)(𝑛)} ∈ 𝑝.

Proof. Consider {𝜃𝑔#,𝑔 ∶ 𝑔 ∈ } as a subset of the ℚ-vector space ℝ and take  ⊆ 
containing 𝑔# such that (𝜃𝑔#,ℎ ∶ ℎ ∈ ) is a basis for the subspace generated by {𝜃𝑔#,𝑔 ∶ 𝑔 ∈

}.

For the existence of 𝜎, define (𝑟𝑔,ℎ ∶ 𝑔 ∈ , ℎ ∈ ) by the expressions 𝜃𝑔#,𝑔 =

∑ℎ∈ 𝑟𝑔,ℎ𝜃𝑔#,ℎ. Now define 𝜎(𝑔) = 𝑔 −∑ℎ∈ 𝑟𝑔,ℎℎ for each 𝑔 ∈ \.

Observe now that any 𝐵 ∈ 𝑝 with 𝐵 ⊆ 𝐵′ satisfies (⋆8) − (⋆13).

In case the conditions in (⋆14) are met, first note that 𝑔# = 𝜒𝜈, and thus 𝜃𝑔#,𝑔∗ = 𝑟𝑔∗,𝑔#𝜃𝑔#,𝑔# ,
so that 𝜎(𝑔∗) = 𝑔∗ − 𝑟𝑔∗,𝑔#𝑔#. Now, suppose 𝑍 ∶= {𝑛 ∈ 𝜔 ∶ 𝜈 ∉ supp𝜎(𝑔∗)(𝑛)} ∈ 𝑝; then,
letting 𝑌 = 𝐵 ∩ 𝑍 , 𝜎(𝑔∗)(𝑛)(𝜈) = 0 for all 𝑛 ∈ 𝑌 , which implies 𝑔∗(𝑛)(𝜈) = 𝑟𝑔∗,𝑔#𝑔#(𝑛)(𝜈) =

𝑟𝑔∗,𝑔# (since 𝑔# = 𝜒𝜈) for all 𝑛 ∈ 𝑌 ; that means (𝑔∗(𝑛)(𝜈))𝑛∈𝐵 is constant mod 𝑝, contrary to
the assumptions. Thus, item (⋆14) is also satisfied.

Lemma 2.8.3. Let 𝐵 ∈ 𝑝. Suppose that 𝜁 ∈ 𝜅𝜔, 𝑚 ∈ 𝜔, 𝜁𝑖 ∈ 𝜅𝜔 for 𝑖 < 𝑚, are such
that {𝑛 ∈ 𝐵 ∶ ∀ 𝑖 < 𝑚, 𝜁 (𝑛) ≠ 𝜁𝑖(𝑛)} ∈ 𝑝. Suppose  is a finite subset of 𝐺𝜔 whose
elements are distinct mod 𝑝, none of them are constant mod 𝑝 and such that {[𝑓 ]𝑝 ∶ 𝑓 ∈

} ∪ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅} is a linearly independent subset of Ult𝑝(𝐺) and there exists 𝑔 ∈  such
that {𝑛 ∈ 𝜔 ∶ 𝜁 (𝑛) ∈ supp 𝑔(𝑛)} ∈ 𝑝.

If 𝜁 is constant, let 𝜈 be its value.

Then there exist finite ′ ⊆ 𝐺𝜔, 𝑙 ∈ 𝜔\{0}, finite nonempty 𝑗 ⊆ 𝐺
𝜔 for each 𝑗 < 𝑙, and

𝐴 ⊆ 𝐵 such that:

(1) for every 𝑔 ∈ ′, {𝑛 ∈ 𝜔 ∶ 𝜁 (𝑛) ∈ supp 𝑔(𝑛)} ∉ 𝑝 and {𝑛 ∈ 𝜔 ∶ 𝜁𝑖(𝑛) ∈ supp 𝑔(𝑛)} ∉ 𝑝
for each 𝑖 < 𝑚,

(2) 𝑗 ∩ 𝑗 ′ = ∅ for 𝑗 ≠ 𝑗 ′, 𝑗 ∩ ′ = ∅ for each 𝑗 < 𝑙 and {[𝑓 ]𝑝 ∶ 𝑓 ∈ ′ ∪⋃𝑗<𝑙 𝑗 } is a
linearly independent subset of Ult𝑝(𝐺); also, if 𝑓 , ℎ ∈ ′ ∪⋃𝑗<𝑙 𝑗 are distinct, then
[𝑓 ]𝑝 ≠ [ℎ]𝑝,
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(3) as vector subspaces of𝐺𝜔, ⟨′∪⋃𝑗<𝑙 𝑗⟩ = ⟨∪{𝜒𝜈}⟩ if 𝜁 is constant and ⟨′∪⋃𝑗<𝑙 𝑗⟩ =

⟨⟩ otherwise,

(4) 𝜁 (𝑛) ∈ supp ℎ(𝑛), for each 𝑗 < 𝑙, ℎ ∈ 𝑗 and 𝑛 ∈ 𝐴,

(5) 𝜁𝑖(𝑛) ∉ supp ℎ(𝑛), for each 𝑖 < 𝑚, 𝑗 < 𝑙, ℎ ∈ 𝑗 and 𝑛 ∈ 𝐴,

(6) (ℎ(𝑛)(𝜁 (𝑛)))𝑛∈𝐴 either converges strictly monotonically to +∞, −∞ or a real number,
or is constant and equal to a rational number, for each 𝑗 < 𝑙 and ℎ ∈ 𝑗 ,

(7) for every 𝑗 < 𝑙, there exists ℎ∗ ∈ 𝑗 such that for every ℎ ∈ 𝑗 , (
ℎ(𝑛)(𝜁 (𝑛))

ℎ∗(𝑛)(𝜁 (𝑛)))𝑛∈𝐴
converges to a real number 𝜃ℎℎ∗ and (𝜃ℎℎ∗ ∶ ℎ ∈ 𝑗) is linearly independent (as a
ℚ-vector space),

(8) for each 𝑗 ′ < 𝑗 < 𝑙, ℎ ∈ 𝑗 and ℎ′ ∈ 𝑗 ′ , (
ℎ(𝑛)(𝜁 (𝑛))

ℎ′(𝑛)(𝜁 (𝑛)))𝑛∈𝐴
converges monotonically to 0,

(9) if 𝜁 is constant, there exists 𝑗 < 𝑙 such that 𝜒𝜈 ∈ 𝑗 ,

(10) for each 𝑗 < 𝑙 and distinct ℎ, ℎ′ ∈ 𝑗 , either

• ∣ ℎ(𝑛)(𝜁 (𝑛)) ∣>∣ ℎ′(𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐴, or

• ∣ ℎ(𝑛)(𝜁 (𝑛)) ∣=∣ ℎ′(𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐴, or

• ∣ ℎ(𝑛)(𝜁 (𝑛)) ∣<∣ ℎ′(𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐴,

(11) no element of ′ is constant mod 𝑝 and {[𝑓 ]𝑝 ∶ 𝑓 ∈ ′} ∪ {[𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅} is linearly
independent,

(12) if 𝑖 < 𝑚 and 𝑛, 𝑛′ ∈ 𝐴 are distinct then 𝜁 (𝑛) ≠ 𝜁𝑖(𝑛
′), and

(13) ∣ ′ ∣<∣  ∣.

Proof. Since 𝑝 is selective, we may suppose by shrinking 𝐵 if necessary that, for all 𝑖 < 𝑚

and 𝑛, 𝑛′ ∈ 𝐵 distinct, 𝜁 (𝑛) ≠ 𝜁𝑖(𝑛
′). Clearly, this property will hold for any subset of 𝐵.

If 𝜁 is constant, let 0 =  ∪ {𝜒𝜈}. If not, let 0 = . We will construct by recursion on
𝑗 ∈ 𝜔:

• 𝐴𝑗 ∈ 𝑝 with 𝐴𝑗 ⊆ 𝐵,

• 𝑗 ⊆ 𝐺𝜔,

• 𝑗 ⊆ 𝑗 ,

• 𝑗 ⊆ 𝑗 , and

• 𝜎𝑗 ∶ 𝑗\𝑗 → 𝐺𝜔,

satisfying:

(i) 𝐴𝑗 ⊆ 𝐴𝑗−1 for every 𝑗 ∈ 𝜔,

(ii) for each 𝑗 ∈ 𝜔, {[𝑓 ]𝑝 ∶ 𝑓 ∈ 𝑗 ∪̇⋃̇𝑘<𝑗𝑘} is a linearly independent subset of Ult𝑝(𝐺);
also, if 𝑓 , ℎ ∈ 𝑗 ∪̇⋃̇𝑘<𝑗𝑘 are distinct, then [𝑓 ]𝑝 ≠ [ℎ]𝑝,

(iii) for each 𝑗 ∈ 𝜔, ℎ ∈ 𝑗 , and 𝑛 ∈ 𝐴𝑗 , 𝜁 (𝑛) ∈ supp ℎ(𝑛),
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(iv) for each 𝑗 ∈ 𝜔, ℎ ∈ 𝑗\𝑗 and 𝑛 ∈ 𝐴𝑗 , then 𝜁 (𝑛) ∉ supp ℎ(𝑛),

(v) for each 𝑗 ∈ 𝜔, ℎ ∈ 𝑗 , 𝑖 < 𝑚 and 𝑛 ∈ 𝐴𝑗 , then 𝜁𝑖(𝑛) ∉ supp ℎ(𝑛),

(vi) for each 𝑗 ∈ 𝜔 and ℎ ∈ 𝑗 , (ℎ(𝑛)(𝜁 (𝑛)))𝑛∈𝐴𝑗 either converges strictly monotonically
to +∞, −∞ or a real number, or is constant and equal to a rational number,

(vii) for every 𝑗 ∈ 𝜔, 𝑗 ≠ ∅ iff there exists 𝑔 ∈ 𝑗 such that {𝑛 ∈ 𝜔 ∶ 𝜁 (𝑛) ∈ supp 𝑔(𝑛)} ∈
𝑝,

(viii) for every 𝑗 ∈ 𝜔, if 𝑗 ≠ ∅, then there exists ℎ∗ ∈ 𝑗 such that for every ℎ ∈

𝑗 , (
ℎ(𝑛)(𝜁 (𝑛))

ℎ∗(𝑛)(𝜁 (𝑛)))𝑛∈𝐴𝑗
converges to a real number 𝜃ℎℎ∗ and (𝜃ℎℎ∗ ∶ ℎ ∈ 𝑗) is linearly

independent (as a ℚ-vector space),

(ix) for each 𝑗 < 𝑗 ′, ℎ ∈ 𝑗 and ℎ′ ∈ 𝑗 ′ , then
(

ℎ(𝑛)(𝜁 (𝑛))

ℎ′(𝑛)(𝜁 (𝑛)))𝑛∈𝐴𝑗
converges monotonically to

0,

(x) if 𝜁 is constant, there exists 𝑗 ∈ 𝜔 such that 𝜒𝜈 ∈ 𝑗 ,

(xi) given 𝑗 ∈ 𝜔 and ℎ, ℎ′ ∈ 𝑗 , either

• ∣ ℎ(𝑛)(𝜁 (𝑛)) ∣>∣ ℎ′(𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐴𝑗 , or

• ∣ ℎ(𝑛)(𝜁 (𝑛)) ∣=∣ ℎ′(𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐴𝑗 , or

• ∣ ℎ(𝑛)(𝜁 (𝑛)) ∣<∣ ℎ′(𝑛)(𝜁 (𝑛)) ∣ for all 𝑛 ∈ 𝐴𝑗 ,

(xii) for each 𝑗 ∈ 𝜔 and 𝑔 ∈ 𝑗 , (∣ 𝑔(𝑛)(𝜁 (𝑛)) ∣)𝑛∈𝐴𝑗 is either constant or strictly increasing,

(xiii) for each 𝑗 ∈ 𝜔 and 𝑔 ∈ 𝑗\𝑗 , 𝑗 ∪ {𝑔} and 𝑗 {𝜎(𝑔)} generate the same ℚ-vector
subspace of 𝐺𝜔,

(xiv) for each 𝑗 ∈ 𝜔, 𝑔 ∈ 𝑗 and 𝑖 < 𝑚, {𝑛 ∈ 𝜔 ∶ 𝜁𝑖(𝑛) ∈ supp 𝑔(𝑛) ∉ 𝑝,

(xv) for each 𝑗 , 𝑗 ′ ∈ 𝜔, 𝑗 ∪⋃𝑘<𝑗 𝑘 generates the same subspace of 𝐺𝜔 as 𝑗 ′ ∪⋃𝑘<𝑗 ′ 𝑘,

(xvi) if 𝜁 is constant, then for all 𝑗 ∈ 𝜔, 𝜒𝜈 ∈ 𝑗 ∪ 𝑗 ,

(xvii) 𝑗+1 = (𝑗\𝑗) ∪ ran𝜎𝑗 ,

(xviii) if 𝜁 is constant, 𝑗 ∈ 𝜔 and 𝜒𝜈 ∈ 𝑗\𝑗 , then 𝜎𝑗(𝜒𝜈) = 𝜒𝜈, and

(xix) if 𝜁 is constant and 0 = {𝜒𝜈}, then there exists 𝑔 ∈ 0\0 such that {𝑛 ∈ 𝜔 ∶ 𝜈 ∈

supp𝜎0(𝑔)} ∈ 𝑝.

Suppose we have carried on such a recursion. By (ii) and (xv), one of the 𝐵𝐵𝑗 ’s must
be empty. Let 𝑙 be the first 𝑗 such that 𝐵𝐵𝑗 = ∅. By (vii), for all 𝑔 ∈ 𝑙, {𝑛 ∈ 𝜔 ∶ 𝜁 (𝑛) ∉

supp 𝑔(𝑛)} ∈ 𝑝. Since there exists 𝑔 ∈  such that {𝑛 ∈ 𝜔 ∶ 𝜁 (𝑛) ∈ supp 𝑔(𝑛)} ∈ 𝑝, it follows
that 𝑙 > 0. Let 𝐴 = 𝐴𝑙−1 and ′ = 𝑙. Notice that every 𝐵𝐵𝑗 is nonempty for 𝑗 < 𝑙.

(1) holds by the previous observation, (i), (v) and by the fact that 𝑗 ⊆ 𝑗 . (2) holds
by (ii). (3) follows from (xvii) using 𝑗 = 𝑙, 𝑗 ′ = 0. (4)=(11) follow easily from (i), (iii)-(ix),
(xi) and (xii). Suppose (9) doesn’t hold. Then by (xvi), 𝜒𝜈 ∈ 𝑙. But then, by (vii), 𝑙 ≠ ∅, a
contradiction.
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(12) holds by (ii), because ⟨′⟩ ⊆ ⟨0⟩ and because if 𝜁 is constant then, by (xvi) and (9),
′ ∪ {𝜒𝜈} is linearly independent.

(13) holds: if 𝜁 is not constant, it follows from (2) e (3). If it is constant, first, notice
that, by (xix), (xvii) for 𝑗 = 0, and (vii) for 𝑗 = 1, it follows that 𝑙 > 1 or 0 ≠ {𝜒𝜈}. Either
way,  = ⋃𝑖<𝑙 𝑖\{𝜒𝜈} is nonempty. By (2), (3) and (9), analayzing dimensions it follows
that 1+ ∣  ∣ + ∣ ′ ∣= 1+ ∣  ∣, and therefore ∣ ′ ∣<∣  ∣.

Construction: For step 0, 0 is already defined. We apply Lemma 2.8.1 𝑚 times using
𝜁 (𝑛) = 𝜁 (𝑛) and 𝜁∗(𝑛) = 𝜁𝑖(𝑛) for every 𝑛. If 𝑚 = 0 we apply it once using 𝜁∗(𝑛) = 𝜁 (𝑛)′ for
every 𝑛 for some 𝜁 (𝑛)′ ≠ 𝜁 (𝑛). We now have 0 and 𝐴′

0 ⊆ 𝐵.

If it is the case that (ℎ(𝑛)(𝜁 (𝑛)))𝑛∈𝐴′
0

converges to a real number for every ℎ ∈ 0 and
that 𝜁 is constant, then we apply Lemma 2.8.2 with 𝑔# = 𝜒𝜈, and obtain 𝐴0 ⊆ 𝐴

′
0, 0 ⊆ 0

and 𝜎0. If not, then we take any 𝑔# ∈ 0 that satisfies the hypothesis of Lemma 2.8.2 - one
does exist because of (⋆5), which also implies that for such a 𝑔#, (

1

𝑔#(𝑛)(𝜁 (𝑛)))𝑛∈𝐴0

converges

to 0, and thus in case 𝜁 is constant, 𝜎0(𝜒𝜈) = 𝜒𝜈. Either way, we obtain 𝜎0, 0 and 𝐴0. It is
straightforward to verify that (i)-(xix) hold for this step.

For the inductive step, we define 𝑗+1 as in (xvii). If there is no 𝑔 ∈ 𝑗+1 such that
{𝑛 ∈ 𝜔 ∶ 𝜁 (𝑛) ∈ supp 𝑔(𝑛)} ∈ 𝑝, then we define 𝑗+1 = ∅, 𝐴𝑗+1 ⊆ 𝐴𝑗 satisfying (v) with 𝑗

swapped by 𝑗 + 1 and 𝑗+1 = 𝜎𝑗+1 = ∅. Otherwise, we proceed as in step 0: we first apply
Lemma 2.8.1 to obtain 𝑗+1 and 𝐴′

𝑗+1 ⊆ 𝐴𝑗 and then similarly apply Lemma 2.8.2 to obtain
𝑗+1, 𝐴𝑗+1 and 𝜎𝑗+1. It is straightforward to verify that (i)-(xix) hold for this step.

Lemma 2.8.4. Suppose  is a finite subset of 𝐺𝜔 such that ([𝑓 ]𝑝 ∶ 𝑓 ∈ ) ∪ ([𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅)

is a linearly indepedent family of elements of Ult𝑝(𝐺). Then: either there exist 𝜇 ∈ 𝜅, 𝑔∗ ∈ 
and 𝐴 ∈ 𝑝 such that (𝑔∗(𝑛)(𝜇))𝑛∈𝐴 is one-to-one, or there exists 𝐴 ∈ 𝑝 such that for every
𝑔 ∈  there exists 𝜁𝑔 ∈ 𝜅𝜔 satisfying 𝜁𝑔(𝑛) ∈ supp 𝑔(𝑛) for all 𝑛 ∈ 𝐴 and 𝜁𝑔 |𝐴 is one-to-one.

Proof. Suppose that for all 𝜇 ∈ 𝜅, for all 𝑔 ∈  and for all 𝐴 ∈ 𝑝, (𝑔(𝑛)(𝜇))𝑛∈𝐴. Then, by the
selectivity of 𝑝, for all 𝜇 ∈ 𝜅 there exists 𝐵𝜇 ∈ 𝑝 such that for all 𝑔 ∈ , (𝑔(𝑛)(𝜇))𝑛∈𝐵𝜇 is
constant.

Fix a 𝑔 ∈ . By selectivity, there exists 𝐵 ∈ 𝑝 such that either the sequence (∣ supp 𝑔(𝑛) ∣
)𝑛∈𝐵 is strictly increasing or it is constant. If it is strictly increasing, then we may pick
recursively 𝜁𝑔(𝑛) ∈ supp 𝑔(𝑛) for each 𝑛 ∈ 𝐵 in a way such that 𝜁𝑔 is one-to-one. Define
𝐴𝑔 = 𝐵.

Otherwise if it is constant, let 𝑘 ∈ 𝜔 be that constant. Since 𝑔 is not 0 mod 𝑝, 𝑘 ≥ 1.
For each 𝑖 < 𝑘, let 𝑤𝑖 ∈ 𝜅

𝜔 be such that supp 𝑔(𝑛) = {𝑤𝑖(𝑛) ∶ 𝑖 < 𝑘} for each 𝑛 ∈ 𝐵. Then
there exists 𝐶 ⊆ 𝐵, 𝐶 ∈ 𝑝 such that for each 𝑖 < 𝑘, (𝑤𝑖(𝑛))𝑛∈𝐶 is one-to-one or constant.

We claim that there is a 𝑗 < 𝑘 such that (𝑤𝑗(𝑛))𝑛∈𝐶 is one-to-one. Suppose all of them
are constant; take 𝜇𝑗 for each 𝑗 < 𝑘 such that 𝑤𝑗(𝑛) = 𝜇𝑗 for all 𝑛 ∈ 𝐶. Then, since
(𝑔(𝑛)(𝜇𝑗))𝑛∈𝐵𝜇𝑗 is constant for each 𝑗 < 𝑘, let 𝑟𝑗 be those constants. Let 𝐷 = 𝐶 ∩⋂𝑗<𝑘 𝐵𝜇𝑗 . We
have that 𝐷 ∈ 𝑝 and 𝑔(𝑛) = (∑𝑗<𝑘 𝑟𝑗𝜒𝜇𝑗) (𝑛) for all 𝑛 ∈ 𝐷, and so [𝑔]𝑝 = ∑𝑗<𝑘 𝑟𝑗[𝜒𝜇𝑗 ]𝑝. This
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contradicts the hypothesis that ([𝑓 ]𝑝 ∶ 𝑓 ∈ ) ∪ ([𝜒𝜇]𝑝 ∶ 𝜇 ∈ 𝜅) is a linearly indepedent
family of elements of Ult𝑝(𝐺).

Therefore, there exists a 𝑗 < 𝑘 such that (𝑤𝑗(𝑛))𝑛∈𝐶 is one-to-one, and so we define
𝜁𝑔 = 𝑤𝑗 and 𝐴𝑔 = 𝐶.

Thus if we define 𝐴 = ⋂𝑔∈ 𝐴𝑔 and 𝜁𝑔 ∈ 𝜅𝜔 such that 𝜁𝑔 |𝐴 = 𝜁𝑔 |𝐴, we have the desired
result.

Now we restate Lemma 2.4.1, which we are going to prove.

Lemma. Let 𝐵 ∈ 𝑝 and  be a finite subset of 𝐺𝜔 such that ([𝑓 ]𝑝 ∶ 𝑓 ∈ ) ∪ ([𝜒𝜇]𝑝 ∶

𝜇 ∈ 𝜅) is a linearly indepedent family of elements of Ult𝑝(𝐺). Then there exist a rational
stack  = ⟨, 𝜈, 𝜁 , 𝐾 , 𝐴, 𝑘0, 𝑘1, 𝑙, 𝑇 ⟩ such that, by defining  =  ∪ {𝜒𝜈𝑖 ∶ 𝑖 < 𝑘0} and
 =

⋃𝑖<𝑘1 ,𝑗<𝑙𝑖
𝑖,𝑗

𝐾
, there exist  ∶  ×  → ℤ,  ∶  × → ℤ satisfying:

(1) {[𝑓 ]𝑝 ∶ 𝑓 ∈ } and {[ℎ]𝑝 ∶ ℎ ∈ } generate the same subspace,

(2) 𝑓 (𝑛) = ∑ℎ∈ 𝑓 ,ℎℎ(𝑛), for each 𝑛 ∈ 𝐴 and 𝑓 ∈ ,

(3) ℎ(𝑛) = 1

𝑇 2
∑𝑓 ∈ℎ,𝑓 𝑓 (𝑛), for each 𝑛 ∈ 𝐴 and ℎ ∈ ,

(4) 𝐾 ⊆ 𝐻𝜔,

(5) 𝐾 ⊆ 𝐻𝜔, and

(6) 𝐴 ∈ 𝑝 and 𝐴 ⊆ 𝐵.

Proof. (of Lemma 2.4.1) We will start building a sequence that will almost be the stack 
which we will associate with .

Claim: There exist:

• 𝐴′ ∈ 𝑝 with 𝐴′ ⊆ 𝐵,

• 𝑘0 ∈ 𝜔,

• 𝑙′ ∶ 𝑘0 → 𝜔{0},

• 𝜈 ∶ 𝑘𝑜 → 𝜅,

• 𝜁 ′ ∶ 𝑘0 → 𝜅𝜔,

• ′ ⊆ 𝐺𝜔, and

• (̂𝑖,𝑗 ∶ 𝑖 < 𝑘0, 𝑗 < 𝑙𝑖) a family of nonempty subsets of 𝐺𝜔,

satisfying:

(i) 𝜁 ′𝑖 (𝑛) = 𝜈𝑖 for every 𝑖 < 𝑘0 and 𝑛 ∈ 𝐴′,

(ii) the elements 𝜈𝑖 for 𝑖 < 𝑘0 are pairwise distinct,

(iii) 𝜈𝑖 ∈ supp ℎ(𝑛), for each 𝑖 < 𝑘0, 𝑗 < 𝑙𝑖, ℎ ∈ ̂𝑖,𝑗 and 𝑛 ∈ 𝐴′,

(iv) 𝜈𝑖 ∉ supp ℎ(𝑛), for each 𝑖 < 𝑖∗ < 𝑘0, 𝑗 < 𝑙𝑖∗ and ℎ ∈ ̂𝑖∗,𝑗 and 𝑛 ∈ 𝐴′,
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(v) (ℎ(𝑛)(𝜈𝑖))𝑛∈𝐴′ converges, strictly monotonically, to +∞, −∞ or a real number, or is
constantly equal to a rational number, for each 𝑖 < 𝑘0, 𝑗 < 𝑙𝑖 and ℎ ∈ ̂𝑖,𝑗 ,

(vi) for every 𝑖 < 𝑘0 and 𝑗 < 𝑙𝑖, there exists ℎ∗ ∈ ̂𝑖,𝑗 such that for every ℎ ∈ ̂𝑖,𝑗 ,

(
ℎ(𝑛)(𝜈𝑖)

ℎ∗(𝑛)(𝜈𝑖))𝑛∈𝐴′
converges to a real number 𝜃ℎℎ∗ and (𝜃ℎℎ∗ ∶ ℎ ∈ ̂𝑖,𝑗) is linearly indepen-

dent (as a ℚ-vector space),

(vii) for each 𝑖 < 𝑘0, 𝑗 ′ < 𝑗 < 𝑙𝑖, ℎ ∈ ̂𝑖,𝑗 and ℎ′ ∈ 𝑖,𝑗 ′ , (
ℎ(𝑛)(𝜈𝑖)

ℎ′(𝑛)(𝜈𝑖))𝑛∈𝐴′
converges, monotoni-

cally, to 0,

(viii) (∣ ℎ(𝑛)(𝜈𝑖) ∣)𝑛∈𝐴′ is constant or strictly increasing, for each 𝑖 < 𝑘0, 𝑗 < 𝑙𝑖 and ℎ ∈ ̂𝑖,𝑗 ,

(ix) for each 𝑖 < 𝑘0 there exists a 𝑗 < 𝑙𝑖 such that 𝜒𝜈𝑖 ∈ ̂𝑖,𝑗 ,

(x) for each 𝑖 < 𝑘0, 𝑗 < 𝑙𝑖 and ℎ, ℎ∗ ∈ ̂𝑖,𝑗 , either

• ∣ ℎ(𝑛)(𝜈𝑖) ∣>∣ ℎ∗(𝑛)(𝜈𝑖) ∣ for each 𝑛 ∈ 𝐴′, or

• ∣ ℎ(𝑛)(𝜈𝑖) ∣=∣ ℎ∗(𝑛)(𝜈𝑖) ∣ for each 𝑛 ∈ 𝐴′, or

• ∣ ℎ(𝑛)(𝜈𝑖) ∣<∣ ℎ∗(𝑛)(𝜈𝑖) ∣ for each 𝑛 ∈ 𝐴′,

(xi) for all 𝜇 ∈ 𝜅, for every 𝑔 ∈ ′, if {𝑛 ∈ 𝜔 ∶ 𝜇 ∈ supp 𝑔(𝑛)(𝜇)} ∈ 𝑝 then (𝑔(𝑛)(𝜇))𝑛∈𝐴′ is
constant,

(xii) for all 𝑔 ∈ ′ and all 𝑖 < 𝑘0, {𝑛 ∈ 𝜔 ∶ 𝜈𝑖 ∈ supp 𝑔(𝑛)} ∉ 𝑝,

(xiii) if 𝑖, 𝑖′ < 𝑘0, 𝑗 < 𝑙′𝑖 , 𝑗
′ < 𝑙′𝑖′ and (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′), then ̂𝑖,𝑗 ∩ ̂𝑖′,𝑗 ′ = ∅, ̂𝑖,𝑗 ∩ ′ = ∅ and

([𝑓 ]𝑝 ∶ 𝑓 ∈ ′ ∪⋃𝑖<𝑘0,𝑗<𝑙𝑖
̂𝑖,𝑗) is a linearly independent family of elements of Ult𝑝(𝐺),

(xiv) as vector subspaces of 𝐺𝜔, ⟨′ ∪⋃𝑖<𝑘0,𝑗<𝑙𝑖
̂𝑖,𝑗⟩ = ⟨ ∪ {𝜒𝜈𝑖 ∶ 𝑖 < 𝑘0}⟩, and

(xv) ([𝑓 ]𝑝 ∶ 𝑓 ∈ ′) ∪ ([𝜒
𝜉
]𝑝 ∶ 𝜉 ∈ 𝜅) is a linearly independent family.

If (xi) already holds for  and 𝐴 = 𝐵, we let ′ = , 𝐴′ = 𝐵, 𝑘0 = 0 and the other sequences
be ∅.

If not, then we may take a 𝜈0 ∈ 𝜅 such that there exist 𝑔 ∈  and 𝐵′ ⊆ 𝐵, 𝐵′ ∈ 𝑝 such
that {𝑛 ∈ 𝜔 ∶ 𝜈0 ∈ supp 𝑔(𝑛)} ∈ 𝑝 and (𝑔(𝑛)(𝜈0))𝑛∈𝐵′ is one-to-one.

We define 0 =  and apply Lemma 2.8.3 to 𝐵′, 𝑚 = 0, 0, 𝜁 (𝑛) = 𝜈0 for all 𝑛 ∈ 𝐵′ and
obtain ′

0, 𝐴0, 𝑙0 and ̂0,𝑗 for 𝑗 < 𝑙0 satisfying everything but (xi) (possibly) by using 𝑘0 = 0.

Suppose the recursion has been done up to 𝑚 ∈ 𝜔 and we have, for 𝑖 < 𝑚, 𝜈𝑖, ′
𝑖 ,

𝐴𝑖, 𝑙𝑖 and ̂𝑖,𝑗 for 𝑗 < 𝑙𝑖 satisfying everything but (x) (possibly) by using 𝑘0 = 𝑚. If (x)
holds for ′

𝑚−1, then we let 𝐴′ = 𝐴𝑚−1, 𝑘0 = 𝑚 and ′ = ′
𝑚−1 and the recursion is over.

If not, we take 𝜈𝑚 ∈ 𝜅 such that there exist 𝑔 ∈ ′
𝑚−1 and 𝐵′ ⊆ 𝐴𝑚−1, 𝐵′ ∈ 𝑝 such that

{𝑛 ∈ 𝜔 ∶ 𝜈𝑚 ∈ supp 𝑔(𝑛)} ∈ 𝑝 and (𝑔(𝑛)(𝜈𝑚))𝑛∈𝐵′ is one-to-one. Notice that item (xi) implies
that 𝜈𝑚 ≠ 𝜈𝑖 for every 𝑖 < 𝑚. We then apply Lemma 2.8.3 to 𝐵′, 𝑚, ′

𝑚−1, 𝜁 (𝑛) = 𝜈𝑚 for
all 𝑛 ∈ 𝐵′, 𝜁𝑖(𝑛) = 𝜈𝑖 for all 𝑛 ∈ 𝐵′ and 𝑖 < 𝑚, and obtain ′

𝑚, 𝐴𝑚, 𝑙𝑚 and ̂𝑚,𝑗 for 𝑗 < 𝑙𝑚

satisfying everything but (xi) (possibly) by using 𝑘0 = 𝑚 + 1.
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The recursion must eventually stop due to items (xii), (xiii) and the fact that the ̂𝑖,𝑗 ’s
are nonempty. We now have𝐴′, 𝑘0, 𝑙′, 𝜈, 𝜁 ′,′ and (̂𝑖,𝑗 ∶ 𝑖 < 𝑘0, 𝑗 < 𝑙𝑖) as in the Claim above.

Claim: There exist:

• 𝐴′′ ∈ 𝑝 with 𝐴′′ ⊆ 𝐴′,

• 𝑘1 ∈ 𝜔\{0},

• 𝑙 ∶ 𝑘1 → 𝜔\{0} extending 𝑙′,

• 𝜁 ∶ 𝑘1 → 𝜅𝜔 extending 𝜁 ′,

• (̂𝑖,𝑗 ∶ 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖) a family of nonempty subsets of 𝐺𝜔,

satisfying:

(I) 𝜁𝑖(𝑛) = 𝜈𝑖 for every 𝑖 < 𝑘0 and 𝑛 ∈ 𝐴′′,

(II) the elements 𝜈𝑖, for 𝑖 < 𝑘0, and 𝜁𝑗(𝑛), for 𝑘0 ≤ 𝑗 < 𝑘1 and 𝑛 ∈ 𝐴′′, are all pairwise
distinct,

(III) 𝜁𝑖(𝑛) ∈ supp ℎ(𝑛), for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖, ℎ ∈ ̂𝑖,𝑗 and 𝑛 ∈ 𝐴′′,

(IV) 𝜁𝑖(𝑛) ∉ supp ℎ(𝑛), for each 𝑖 < 𝑖∗ < 𝑘1, 𝑗 < 𝑙𝑖∗ and ℎ ∈ ̂𝑖∗,𝑗 and 𝑛 ∈ 𝐴′′,

(V) (ℎ(𝑛)(𝜁𝑖(𝑛)))𝑛∈𝐴′′ either converges, strictly monotonically, to+∞,−∞ or a real number,
or is constantly equal to a rational number, for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ ∈ ̂𝑖,𝑗 ,

(VI) for every 𝑖 < 𝑘1 and 𝑗 < 𝑙𝑖, there exists ℎ∗ ∈ ̂𝑖,𝑗 such that for every ℎ ∈ ̂𝑖,𝑗 ,

(
ℎ(𝑛)(𝜁𝑖(𝑛))

ℎ∗(𝑛)(𝜁𝑖(𝑛)))𝑛∈𝐴′′
converges to a real number 𝜃ℎℎ∗ and (𝜃ℎℎ∗ ∶ ℎ ∈ ̂𝑖,𝑗) is linearly

independent (as a ℚ-vector space),

(VII) for each 𝑖 < 𝑘1, 𝑗 ′ < 𝑗 < 𝑙𝑖, ℎ ∈ ̂𝑖,𝑗 and ℎ′ ∈ ̂𝑖,𝑗 ′ , (
ℎ(𝑛)(𝜁𝑖(𝑛))

ℎ′(𝑛)(𝜁𝑖(𝑛)))𝑛∈𝐴′′
converges,

monotonically, to 0,

(VIII) (∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣)𝑛∈𝐴′′ is strictly increasing, for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ ∈ ̂𝑖,𝑗 ,

(IX) for each 𝑖 < 𝑘0 there exists 𝑗 < 𝑙𝑖 such that 𝜒𝜈𝑖 ∈ ̂𝑖,𝑗 ,

(X) for each 𝑖 < 𝑘1, 𝑗 < 𝑙𝑖 and ℎ, ℎ∗ ∈ ̂𝑖,𝑗 , either

• ∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣>∣ ℎ∗(𝑛)(𝜁𝑖(𝑛)) ∣ for each 𝑛 ∈ 𝐴′′, or

• ∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣=∣ ℎ∗(𝑛)(𝜁𝑖(𝑛)) ∣ for each 𝑛 ∈ 𝐴′′, or

• ∣ ℎ(𝑛)(𝜁𝑖(𝑛)) ∣<∣ ℎ∗(𝑛)(𝜁𝑖(𝑛)) ∣ for each 𝑛 ∈ 𝐴′′,

(XI) for all 𝜇 ∈ 𝜅, for every 𝑖 ≥ 𝑘0, 𝑗 < 𝑙𝑖 and 𝑔 ∈ ̂𝑖,𝑗 , if {𝑛 ∈ 𝜔 ∶ 𝜇 ∈ supp 𝑔(𝑛)(𝜇)} ∈ 𝑝
then (𝑔(𝑛)(𝜇))𝑛∈𝐴′′ is constant,

(XII) as vector subspaces of 𝐺𝜔, ⟨⋃𝑖<𝑘1,𝑗<𝑙𝑖
̂𝑖,𝑗⟩ = ⟨ ∪ {𝜒𝜈𝑖 ∶ 𝑖 < 𝑘0}⟩,

(XIII) if 𝑖, 𝑖′ < 𝑘1, 𝑗 < 𝑙′𝑖 , 𝑗
′ < 𝑙′𝑖 , and (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′), then ̂𝑖,𝑗 ∩ ̂𝑖′,𝑗 ′ = ∅, and ([𝑓 ]𝑝 ∶ 𝑓 ∈

⋃𝑖<𝑘1,𝑗<𝑙𝑖
̂𝑖,𝑗) is a linearly independent family of elements of Ult𝑝(𝐺).
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For the initial step 𝑘0 of the recursion, we first notice that, by item (xi) of the previous
Claim and Lemma 2.8.4 there exists 𝐴′′

𝑘0
∈ 𝑝 such that for every 𝑔 ∈ ′ there exists 𝜁𝑔 ∈ 𝜅𝜔

such that 𝜁𝑔(𝑛) ∈ supp 𝑔(𝑛) for all 𝑛 ∈ 𝐴′′
𝑘0

and 𝜁𝑔 |𝐴′′
𝑘0

is one-to-one. Define 𝑘0 = ′, and
apply Lemma 2.8.3 to 𝐵 = 𝐴′′

𝑘0
, 𝑚 = 𝑘0, 𝑘0 , 𝜁 = 𝜁𝑔 for an arbitrary 𝑔 ∈ ′, and obtain ′

𝑘0
,

𝐴′′
𝑘0+1

, 𝑙𝑘0+1 and ̂𝑘0+1,𝑗 for 𝑗 < 𝑙𝑘0+1. We then repeat this step until for some 𝑘1 ≥ 𝑘0, ′
𝑘1
= ∅.

Such a 𝑘1 exists since, by Lemma 2.8.3, ∣ ′
𝑚 ∣<∣ ′

𝑚−1 ∣ for each 𝑚 > 𝑘0.

It follow from items (XII) and (XIII) that ⋃𝑖<𝑘1,𝑗<𝑙𝑖
̂𝑖,𝑗 and  ∪ {𝜒𝜈𝑖 ∶ 𝑖 < 𝑘0}, mod

𝑝, are bases for the same subspace of Ult𝑝(𝐺). Let  =  ∪ {𝜒𝜈𝑖 ∶ 𝑖 < 𝑘0} and ′ =

⋃𝑖<𝑘1,𝑗<𝑙𝑖
̂𝑖,𝑗 .

Fix families of integers ̂ = (̂𝑓 ,ℎ ∶ 𝑓 ∈ , 𝑔 ∈ ′) and ̂ = (̂ℎ,𝑓 ∶ ℎ ∈ ′, 𝑓 ∈ )

and a positive integer 𝑇 such that:

(3′) [𝑓 ]𝑝 =
1

𝑇
∑ℎ∈′ ̂𝑓 ,ℎ[ℎ]𝑝, for each 𝑓 ∈  and

(4′) [ℎ]𝑝 =
1

𝑇
∑𝑓 ∈ ̂ℎ,𝑓 [𝑓 ]𝑝, for each ℎ ∈ ′.

Let  = { ℎ
𝑇
∶ ℎ ∈ ′} and  and  be such that 𝑓 , ℎ

𝑇
= ̂𝑓 ,ℎ and  ℎ

𝑇
,𝑓 = ̂ℎ,𝑓 , for

each 𝑓 ∈  and ℎ ∈ ′. Then we have:

(3′′) [𝑓 ]𝑝 = ∑ℎ∈ 𝑓 ,ℎ[ℎ]𝑝, for each 𝑓 ∈  and

(4′′) [ℎ]𝑝 =
1

𝑇 2
∑𝑓 ∈ℎ,𝑓 [𝑓 ]𝑝, for each ℎ ∈ .

Let𝐴 ⊆ 𝐴′′,𝐴 ∈ 𝑝 be such that for every 𝑛 ∈ 𝐴, 𝑓 ∈  and ℎ ∈ , 𝑓 (𝑛) = ∑ℎ∈ 𝑓 ,ℎℎ(𝑛)

and ℎ(𝑛) = 1

𝑇 2
∑𝑓 ∈ℎ,𝑓 𝑓 (𝑛).

Now let 𝐾 be a strictly increasing sequence of positive integers such that 𝐾0 > 1,
𝑛!𝑇 ∣ 𝐾𝑛 for all 𝑛 ∈ 𝜔, and 𝐾 ⊆ 𝐻𝜔. We now have that by defining 𝑖,𝑗 = 𝐾 𝐾

𝑇
̂𝑖,𝑗 , we have

the desired rational stack.

2.9 A note on free Abelian groups
With such results, we can now improve the example from A. C. Boero, Castro-

Pereira, et al., 2019 and A. H. Tomita, 2015:

Example 2.9.1. Assume the existence of a selective ultrafilter. Then for each 𝛼 ≤ 𝜔

there exists a group topology on the free Abelian group 𝐹 of cardinality c such that 𝐹 𝑛 is
countably compact for each 𝑛 < 𝛼 and 𝐹 𝛼 is not countably compact.

Proof. Let 𝑝 be a selective ultrafilter. Then the direct sum of c copies of ℚ has a 𝑝-compact
group topology without nontrivial convergente sequences. In particular, all of its powers
are countably compact.

Now, Tomita (A. H. Tomita, 2019) showed that if a torsion-free group 𝐻 without
nontrivial convergent sequences admits a topology such that 𝐻 𝑛 is countably compact for
each 𝑛 < 𝛼 then the free Abelian group 𝐹 of cardinality c admits a group topology without
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nontrivial convergent sequences such that 𝐹 𝑛 is countably compact for each 𝑛 < 𝛼 and 𝐹 𝛼

is not countably compact.

2.10 Questions
Some natural questions that remain open are:

Question 2.10.1. Is it consistent that there are 𝑝-compact groups on ℚ(𝜆) for some 𝜆
of countable cofinality? In addition, with weight of countable cofinality and without
nontrivial convergent sequences?

We recall that van Douwen (Douwen, 1980b) showed that there is no pseudocompact
group whose cardinality has countable cofinality under 𝐺𝐶𝐻 .

Boolean example have been obtained in A. H. Tomita, 2005b: A consistent count-
ably compact group without nontrivial convergent sequences of weight and cardinality
ℵ𝜔.

The following is still an open question related to van Douwen’s question:

Question 2.10.2. Is there a cardinal 𝜆 > 2c of countable cofinality for which there exists a
countably compact group of cardinality 𝜆?

Some questions from Hrušák et al., 2021 related to this chapter remain open:

Question 2.10.3. Is there in ZFC a Hausdorff (infinite) 𝑝-compact topological group
without nontrivial convergent sequences?

Question 2.10.4. Is it consistent with ZFC that for some ultrafilter 𝑝 ∈ 𝜔∗ there is a
Hausdorff (infinite) 𝑝-compact topological group without nontrivial convergent sequences
of weight < c?
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Chapter 3

On the consistency of arbitrarily
large, countably compact, free
Abelian groups

3.1 Introduction

3.1.1 Some history
As was discussed in the 1, Tomita (A. H. Tomita, 1998) showed that a nontrivial free

Abelian group does not admit a group topology such that its countably infinite power is
coutanbly compact.

However, it was later shown (A. H. Tomita, 2015) that there exists a group topology
on the free Abelian group of cardinality c that makes all of its finite powers countably
compact, when assuming c selective ultrafilters.

In this chapter, assuming the existence of c incomparable selective ultrafilters, we prove
that there is a group topology of the free Abelian group of cardinality 𝜅 without nontrivial
convergent sequences and such that all finite powers are countably compact, for any 𝜅
cardinal such that 𝜅𝜔 = 𝜅.

With such a result, we obtain the following:

Theorem 3.1.1. Assume GCH. Then a free Abelian group of infinite cardinality 𝜅 can
be endowed with a countably compact group topology (without nontrivial convergent
sequences) if and only if 𝜅 = 𝜅𝜔.

The result above answers a question of Dikranjan and Shakhmatov that was posed in
the survey by Comfort, Hofmann and Remus (W. W. Comfort et al., 1992).

Because of the way our examples are constructed we can raise their weights in the
same way as in the papers A. H. Tomita, 2003 or Castro-Pereira and A. H. Tomita, 2010
and obtain the following result – the examples in these references are Boolean but the
trick is similar.
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Theorem 3.1.2. It is consistent that there is a proper class of cardinals of countable
cofinality that can occur as the weight of a countably compact free Abelian group.

3.1.2 Basic results, notations and terminology
We recall that a topological space is countably compact if, and only if, every countable

open cover of it has a finite subcover.

Definition 3.1.3. Let  be a filter on 𝜔 and (𝑥𝑛 ∶ 𝑛 ∈ 𝜔) be a sequencee in a topological
space 𝑋 . We say that 𝑥 ∈ 𝑋 is a  -limit point of (𝑥𝑛 ∶ 𝑛 ∈ 𝜔) if, for every neighborhood 𝑈
of 𝑥 , the set {𝑛 ∈ 𝜔 ∶ 𝑥𝑛 ∈ 𝑈 } ∈  .

If 𝑋 is Hausdorff, every sequence has at most one  -limit and in that case we denote
𝑥 =  − lim(𝑥𝑛 ∶ 𝑛 ∈ 𝜔).

The set of all free ultrafilters on 𝜔 is denoted by 𝜔∗. The following proposition is a
well known result on ultrafilter limits.

Proposition 3.1.4. A topological space is countably compact if and only if each sequece
in it has a  -limit point for some  ∈ 𝜔∗.

The concept of almost disjoint families will be useful in our construction.

Definition 3.1.5. An almost disjoint family is an infinite family  of infinite subsets of 𝜔
such that if 𝐴, 𝐵 ∈  are distinct, then ∣ 𝐴 ∩ 𝐵 ∣< 𝜔.

It is well known that there exists an almost disjoint family of size continuum (see
Kunen, 1983).

Definition 3.1.6. The unit circle group 𝕋 will be the metric group (ℝ/ℤ, 𝛿) where the
metric 𝛿 is given by 𝛿(𝑥 + ℤ, 𝑦 + ℤ) = min{∣ 𝑥 − 𝑦 + 𝑎 ∣∶ 𝑎 ∈ ℤ} for every 𝑥, 𝑦 ∈ ℝ.

Given an open interval (𝑎, 𝑏) of ℝ with 𝑎 < 𝑏, we let 𝛿((𝑎, 𝑏)) = 𝑏 − 𝑎.

An arc of 𝕋 is a set of the form 𝐼 + ℤ = {𝑎 + ℤ ∶ 𝑎 ∈ 𝐼 }, where 𝐼 is an open interval of
ℝ. An arc is said to be proper if it is distinct from 𝕋.

If 𝑈 is a proper arc and 𝑈 = {𝑎 + ℤ ∶ 𝑎 ∈ 𝐼 } = {𝑏 + ℤ ∶ 𝑏 ∈ 𝐽 }, where 𝐼 and 𝐽 are open
intervals of ℝ, then 𝛿(𝐼 ) = 𝛿(𝐽 ), and so we define the length of 𝑈 as 𝛿(𝑈 ) = 𝛿(𝐼 ). We also
define 𝛿(𝕋) = 1.

Given an arc 𝑈 such that 𝛿(𝑈 ) ≤ 1

2
, it follows that diam𝛿𝑈 = 𝛿(𝑈 ).

Our free Abelian group will all be represented as direct sums of copies of the group of
integers ℤ; we fix some notation. The additive group of rationals will also be used, so in
the following definition one should read ℤ or ℚ for 𝐺.

Definition 3.1.7. If 𝑓 is a map from a set 𝑋 to a group 𝐺, then the support of 𝑓 , denoted
by supp 𝑓 , is the set {𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) ≠ 0}.

We define 𝐺(𝑋 ) = {𝑓 ∈ 𝐺𝑋 ∶∣ supp 𝑓 ∣< 𝜔}.

If 𝑌 is a subset of 𝑋 , then, as an abuse of notation, we often write 𝐺(𝑌 ) = {𝑥 ∈ 𝐺(𝑋 ) ∶

supp 𝑥 ⊆ 𝑌 }.
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Given 𝑥 ∈ 𝑋 , we denote by 𝜒𝑥 ∈ 𝐺(𝑋 ) the characteristic function of {𝑥}, whose support
is {𝑥} and whose value is 𝜒𝑥(𝑥) = 1.

For a sequence 𝜁 ∶ 𝜔 → 𝑋 , we define 𝜒𝜁 ∶ 𝜔 → 𝐺(𝑋 ) by 𝜒𝜁 (𝑛) = 𝜒𝜁 (𝑛).

Finally, for 𝑥 ∈ 𝑋 , we let 𝑥 ∶ 𝜔 → 𝑋 be constantly equal to 𝑥 .

Note that thus 𝜒𝑥 is also constant, with value 𝜒𝑥 .

Definition 3.1.8. Let be a filter on𝜔 and𝑋 be a set. We say that the sequences 𝑓 , 𝑔 ∈ 𝑋𝜔

are  -equivalent and write 𝑓 ≡ 𝑔 if and only if {𝑛 ∈ 𝜔 ∶ 𝑓 (𝑛) = 𝑔(𝑛)} ∈  .

It is easy to verify that ≡ is an equivalence relation. We denote the equivalence class
of and 𝑓 ∈ 𝑋𝜔 by [𝑓 ] and the quotient 𝑋𝜔/ .

If 𝑅 is a ring and 𝑋 is an 𝑅-module, then 𝑋𝜔/ has a natural 𝑅-module structure given
by addition, identity element, opposite and scalar multiplication "representativewise" (that
is, [𝑓 ] + [𝑔] = [𝑓 + 𝑔] , 0𝑋𝜔/ = [0⃗] , −[𝑓 ] = [−𝑓 ] and 𝑟 ⋅ [𝑓 ] = [𝑟 ⋅ 𝑓 ] ).

If 𝑝 is a free ultrafilter, then the ultrapower of the 𝑅-module 𝑋 by 𝑝, is the 𝑅-module
𝑋𝜔/𝑝.

For the remainder of this chapter we will fix a cardinal number 𝜅 that satisfies 𝜅 =

𝜅𝜔.

Throughout this chaper, we will work inside ultrapowers of ℚ(𝜅). These ultrapowers
contain copies of ultrapowers of ℤ(𝜅), which will be useful for the construction. So we lay
down some notation.

Definition 3.1.9. Let 𝑝 be a free ultrafilter on 𝜔. We define Ult𝑝(ℚ) as the ℚ-vector space
(ℚ(𝜅))𝜔/𝑝 and Ult𝑝(ℤ) = {[𝑔]𝑝 ∶ 𝑔 ∈ ℤ𝜔} with the subgroup structure.

Notice that each [𝑔]𝑝 in Ult𝑝(ℤ) is formally an element of (ℚ(𝜅))𝜔/𝑝, not of (ℤ(𝜅))𝜔/𝑝.
Nevertheless, it is clear that (ℤ(𝜅))𝜔/𝑝 is isomorphic to Ult𝑝(ℤ) via the obvious isomor-
phism that carries the equivalence class of a sequence 𝑔 ∈ (ℤ(𝜅))𝜔 in (ℤ(𝜅))𝜔/𝑝 to its class
in (ℚ(𝜅))𝜔/𝑝.

3.2 Selective ultrafilters
In this section we review some basic facts about selective ultrafilters, the Rudin-Keisler

order and some lemmas we will use in the next sections.

Definition 3.2.1. A selective ultrafilter (on 𝜔), also called Ramsey ultrafilter, is a free
ultrafilter 𝑝 on 𝜔 with the property that for every partition (𝐴𝑛 ∶ 𝑛 ∈ 𝜔) of 𝜔, either there
exists 𝑛 such that 𝐴𝑛 ∈ 𝑝, or there exists 𝐵 ∈ 𝑝 such that ∣ 𝐵 ∩𝐴𝑛 ∣= 1 for every 𝑛 ∈ 𝜔.

The following proposition is well known. We provide Jech, 2003 as a reference.

Proposition 3.2.2. Let 𝑝 be a free ultrafilter on 𝜔. The the following are equivalent:

(a) 𝑝 is a selective ultrafilter;

(b) for every 𝑓 ∈ 𝜔𝜔, there exists 𝐴 ∈ 𝑝 such that 𝑓 is either constant or one-to-one on
𝐴;
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(c) for every function 𝑓 ∶ [𝜔]2 → 2 there exists 𝐴 ∈ 𝑝 such that 𝑓 is constant on [𝐴]2.

The Rudin-Keisler order is defined as follows:

Definition 3.2.3. Let  be a filter on 𝜔 and 𝑓 ∶ 𝜔 → 𝜔. We define 𝑓∗( ) = {𝐴 ⊆ 𝜔 ∶

𝑓 −1[𝐴] ∈  }.

It is easy to verify that 𝑓∗( ) is a filter; if  is an ultrafilter, then so is 𝑓∗( ); if
𝑓 , 𝑔 ∶ 𝜔 → 𝜔, then (𝑓 ◦ 𝑔)∗ = 𝑓∗ ◦ 𝑔∗; and (id𝜔)∗ is the identity over the set of all filters.
This implies that if 𝑓 is bijective, then (𝑓 −1)∗ = (𝑓∗)

−1.

Definition 3.2.4. Let  and  be filters. We say that  ≤  (or  ≤RK  , if we need to
be clear) if and only if there exists 𝑓 ∈ 𝜔 such that 𝑓∗( ) =  .

The Rudin-Keisler order is the set of all free ultrafilters on 𝜔 ordered by ≤RK. Notice that
this is technically a preorder, and thus naturally we say that two ultrafilters are equivalent
if and only if 𝑝 ≤ 𝑞 and 𝑞 ≤ 𝑝.

It is easy to verify that ≤ is a preorder and so the equivalence defined above is indeed
an equivalence relation. Moreover, the equivalence class of a fixed ultrafilter is the set
of all fixed ultrafilters, so the relation restricts to 𝜔∗ without modifying the equivalence
classes. We refer to Jech, 2003 for the following proposition:

Proposition 3.2.5. The following hold:

(1) If 𝑝 and 𝑞 are ultrafilters, then 𝑝 ≤ 𝑞 and 𝑞 ≤ 𝑝 if and only if there exists a bijection
𝑓 ∶ 𝜔 → 𝜔 such that 𝑓∗(𝑝) = 𝑞.

(2) The selective ultrafilters are exactly the minimal elements of the Rudin-Keisler order.

This implies that if 𝑓 ∶ 𝜔 → 𝜔 and 𝑝 is a selective ultrafilter, then 𝑓∗(𝑝) is either
a fixed ultrafilter or a selective ultrafilter. If 𝑓∗(𝑝) is the ultrafilter generated by 𝑛, then
𝑓 −1[{𝑛}] ∈ 𝑝, so, in particular, if 𝑓 is finite-to-one and 𝑝 is selective, then 𝑓∗(𝑝) is a selective
ultrafilter equivalent to 𝑝.

The existence of selective ultrafilters is independent of ZFC. Martin’s Axiom for
countable orders implies the existence of 2c pairwise incomparable selective ultrafilters in
the Rudin-Keisler order.

The Lemma below appears in A. H. Tomita, 2005a.

Lemma 3.2.6. Let (𝑝𝑘 ∶ 𝑘 ∈ 𝜔) be a family of pairwise incomparable selective ultrafilters.
For each 𝑘 ∈ 𝜔 let (𝑎𝑘,𝑖 ∶ 𝑖 ∈ 𝜔) be a strictly increasing sequence in 𝜔 such that {𝑎𝑘,𝑖 ∶ 𝑖 ∈
𝜔} ∈ 𝑝𝑘 and 𝑖 < 𝑎𝑘,𝑖 for all 𝑖 ∈ 𝜔. Then there exists {𝐼𝑘 ∶ 𝑘 ∈ 𝜔} such that:

(a) {𝑎𝑘,𝑖 ∶ 𝑖 ∈ 𝐼𝑘} ∈ 𝑝𝑘, for each 𝑘 ∈ 𝜔,

(b) 𝐼𝑖 ∩ 𝐼𝑗 = ∅ for distinct 𝑖, 𝑗 ∈ 𝜔, and

(c) {[𝑖, 𝑎𝑘,𝑖] ∶ 𝑘 ∈ 𝜔 and 𝑖 ∈ 𝐼𝑘} is a pairwise disjoint family.

In the course of the construction we will often use families of ultrafilters indexed by 𝜔
and finite sequences of infinite subsets of 𝜔. It is thus convenient to establish the following
notation:
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Definition 3.2.7. A finite tower in 𝜔 is a finite sequence (𝐴0,… , 𝐴𝑘) of infinite subsets
of 𝜔 such that 𝐴𝑡+1 ⊆ 𝐴𝑡 for every 𝑡 < 𝑘. The set of all finite towers in 𝜔 is called  . If
𝑇 = (𝐴0,… , 𝐴𝑘) then 𝑙(𝑇 ) = 𝐴𝑘, the last term of the sequence 𝑇 . For the empty sequence
we write 𝑙(∅) = 𝜔.

Lemma 3.2.8. Assume there are c incomparable selective ultrafilters. Then there is a
family of incomparable ultrafilters (𝑝𝑇 ,𝑛 ∶ 𝑇 ∈  , 𝑛 ∈ 𝜔) such that 𝑙(𝑇 ) ∈ 𝑝𝑇 ,𝑛 for all 𝑇 ∈ 
and 𝑛 ∈ 𝜔.

Proof. Index the c incomparable ultrafilters faithfully as {𝑞𝑇 ,𝑛 ∶ 𝑇 ∈  , 𝑛 ∈ 𝜔}. Fo each 𝑇 , let
𝑓𝑇 ∶ 𝜔 → 𝑙(𝑇 ) be a bijection and define 𝑝𝑇 ,𝑛 = 𝑓𝑇 ∗(𝑞𝑇 ,𝑛). Since 𝑓 is one-to-one, it follows that
𝑝𝑇 ,𝑛 is a selective ultrafilters equivalent to 𝑞𝑇 ,𝑛. Therefore, the family (𝑝𝑇 ,𝑛 ∶ 𝑇 ∈  , 𝑛 ∈ 𝜔)

is as required.

3.3 Main ideas
From now on we fix a family (𝑝𝑇 ,𝑛 ∶ 𝑇 ∈  , 𝑛 ∈ 𝜔) of selective ultrafilters as provided

by 3.2.8.

The idea is to use these ultrafilters to assign 𝑝-limits to enough injective sequences in
ℤ(𝜅) to ensure countable compactness of the resulting topology. We take some inspiration
from A. C. Boero, Castro-Pereira, et al., 2019 where a large independent family was
used such that, up to a permutation, every injective sequence in ℤ(c) was part of this family.
Since this group has cardinality c, there were indeed enough permutations to accomplish
this. For an arbitrarily large group, we shall consider large linearly independent pieces to
make sure every sequence has an accumulation point.

The following definition will be used to construct a witness for linearly independence
in an ultraproduct that does not depende on the free ultrafilter.

Definition 3.3.1. Let  be a subset of (ℤ(𝜅))𝜔 and 𝐴 ∈ [𝜔]𝜔. We shall call  linearly
independent mod 𝐴∗ if and only if for every free ultrafilter 𝑝 with 𝐴 ∈ 𝑝 the family
([𝑓 ]𝑝 ∶ 𝑓 ∈ ) ∪̇ ([𝜒

𝜉
]𝑝 ∶ 𝜉 < 𝜅) is linearly independent in the ℚ-vector space Ult𝑝(ℚ).

Notice that it is implicit in our definition that {[𝑓 ]𝑝 ∶ 𝑓 ∈  } and {[𝜒
𝜉
]𝑝 ∶ 𝜉 < 𝜅} are

disjoint. We will abbreviate “linearly independent mod 𝐴∗” to l.i. mod 𝐴∗.

An application of Zorn’s Lemma will establish the following fact.

Lemma 3.3.2. Every set of sequences that is l.i. mod 𝐴∗ can be extended to a maximal
linearly independent set mod 𝐴∗.

It should be clear that if 𝐴 ⊆ 𝐵 ⊆ 𝜔 and 𝐴 and 𝐵 are infinite, then a set that is l.i.
mod 𝐵∗ is also l.i. mod 𝐴∗. Through the use of recursion, this easily implies the following
Corollary:

Corollary 3.3.3. There exists a family (𝑇 ∶ 𝑇 ∈  ) such that:

(1) for every 𝑇 ∈  the set 𝑇 is maximal l.i. mod 𝑙(𝑇 )∗, and
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(2) for every 𝑇 ∈  , if 𝑛 ≤∣ 𝑇 ∣ then 𝑇 |𝑛 ⊆ 𝑇 .

We note explicitly that even though 𝑇 is only required to be maximal l.i. mod 𝑙(𝑇 )∗, it
will, by virtue of item (2), depend on all of 𝑇 , not just on 𝑙(𝑇 ).

Lemma 3.3.4. Let 𝑔 be an element of (ℤ(𝜅))𝜔 and let  ⊆ (ℤ(𝜅))𝜔 be maximal l.i. mod 𝐵∗.
Then there exist an infinite subset𝐴 of𝐵, a finite subset 𝐸 of  , a finite subset𝐷 of 𝜅, and sets
{𝑟𝑓 ∶ 𝑓 ∈ 𝐸} and {𝑠𝜈 ∶ 𝜈 ∈ 𝐷} of rational numbers such that 𝑔 |𝐴 = ∑𝑓 ∈𝐸 𝑟𝑓 𝑓 |𝐴 +∑𝜈∈𝐷 𝑠𝜈𝜒𝜈|𝐴.

Proof. If 𝑔 ∈  of 𝑔 = 𝜒𝜈 for some 𝜈 < 𝜅, then we are done. Otherwise, by the maximality
of  , there exists a free ultrafilter 𝑝 with 𝐵 ∈ 𝑝 such that the set {[𝑔]𝑝} ∪ {[ℎ]𝑝 ∶ ℎ ∈

} ∪ {[𝜒
𝜉
]𝑝 ∶ 𝜉 < 𝜅} is not linearly independent.

This means that we can find finite subsets 𝐸 and 𝐷 of  and 𝜅 respectively and finite
sets {𝑟𝑓 ∶ 𝑓 ∈ 𝐸} and {𝑠𝜈 ∶ 𝜈 ∈ 𝐷} of rational numbers such that [𝑔]𝑝 = ∑𝑓 ∈𝐸 𝑟𝑓 [𝑓 ]𝑝 +

∑𝜈∈𝐷 𝑠𝜈[𝜒𝜈]𝑝.

Now choose 𝐴 ∈ 𝑝 with 𝐴 ⊆ 𝐵 that witnesses this equality.

Corollary 3.3.5. If  ⊆ (ℤ(𝜅))𝜔 is maximal l.i. mod 𝐵∗, then ∣  ∣= 𝜅.

Proof. First notice that ∣  ∣≤∣ (ℤ(𝜅))𝜔 ∣= 𝜅𝜔 = 𝜅. Assume ∣  ∣< 𝜅. Then the set 𝐶 =

⋃{supp 𝑓 (𝑛) ∶ 𝑛 ∈ 𝜔, 𝑓 ∈ } has cardinality less than 𝜅.

Take some injective sequence (𝜉𝑛 ∶ 𝑛 ∈ 𝜔) in 𝜅\𝐶 and define 𝑔 ∶ 𝜔 → ℤ(𝜅) by
𝑔(𝑛) = 𝜒

𝜉𝑛
for each 𝑛 ∈ 𝜔. Clearly then ⋃{supp 𝑔(𝑛) ∶ 𝑛 ∈ 𝜔} is disjoint from 𝐶.

Apply Lemma 3.3.4 to obtain sets 𝐴, 𝐸, 𝐷, {𝑟𝑓 ∶ 𝑓 ∈ 𝐸} and {𝑠𝜈 ∶ 𝜈 ∈ 𝐷} such that
𝑔 |𝐴 = ∑𝑓 ∈𝐸 𝑟𝑓 𝑓 |𝐴 +∑𝜈∈𝐷 𝑠𝜈𝜒𝜈|𝐴.

Since 𝐴 is infinite and 𝐷 is finite, there is a 𝑘 ∈ 𝐴 such that 𝜉𝑘 ∉ 𝐷. Now 𝑓 (𝑘)(𝜉𝑘) = 0

when 𝑓 ∈ 𝐸 because 𝜉𝑘 ∉ 𝐶, and 𝜒𝜈(𝑘)(𝜉𝑘) = 0 when 𝜈 ∈ 𝐷 because 𝜉𝑘 ∉ 𝐷. Since
𝑔(𝑘)(𝜉𝑘) = 1, we have a contradiction.

Henceforth we fix a family (𝑇 ∶ 𝑇 ∈  ) as in Corollary 3.3.3 and enumerate each 𝑇
faithfully as 𝑇 = {𝑓 𝑇𝜉 ∶ 𝜅 ≤ 𝜉 ≤ 𝜅 + 𝜅}.

Definition 3.3.6. For each 𝑇 ∈  and 𝑛 ∈ 𝜔, we denote by𝐺𝑇 ,𝑛 the intersection of Ult𝑝𝑇 ,𝑛(ℤ)
and the free Abelian group generated by { 1

𝑛!
[𝑓 𝑇𝜉 ]𝑝𝑇 ,𝑛 ∶ 𝜅 ≤ 𝜉 ≤ 𝜅 + 𝜅} ∪ { 1

𝑛!
[𝜒

𝜉
]𝑝𝑇 ,𝑛 ∶ 𝜉 < 𝜅}.

For the next lemma, we are going to use the following proposition:

Proposition 3.3.7. If 𝐺 is an Abelian group and 𝐻 is a subgroup of 𝐺 such that 𝐺/𝐻 is
an infinite cyclic group, then there exists 𝑎 ∈ 𝐺 such that 𝐺 = 𝐻 ⊕ ⟨𝑎⟩.

A proof may be found in Fuchs, 1970, p. 14.4. This is not the statement of the theorem
but it is exactly what is proved by the author.

The main idea of the proof of the following lemma is to mimic the well known proof
of the fact that every subgroup of a free Abelian group is free.
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Lemma 3.3.8. The group 𝐺𝑇 ,𝑛 has a basis of the form {[𝜒
𝜉
]𝑝𝑇 ,𝑛 ∶ 𝜉 < 𝜅} ∪̇ {[𝑓 ]𝑝𝑇 ,𝑛 ∶ 𝑓 ∈ 𝑇 ,𝑛}

for some 𝑇 ,𝑛(ℤ
(𝜅))𝜔.

Proof. Let 𝐻𝜇 be the group generated by { 1
𝑛!
[𝜒

𝜉
]𝑝𝑇 ,𝑛 ∶ 𝜉 < 𝜇} if 𝜇 ≤ 𝜅 and by the union of

{ 1
𝑛!
[𝜒

𝜉
]𝑝𝑇 ,𝑛 ∶ 𝜉 < 𝜅} and { 1

𝑛!
[𝑓 𝑇𝜉 ]𝑝𝑇 ,𝑛 ∶ 𝜅 ≤ 𝜉 < 𝜇} when 𝜅 < 𝜇 ≤ 𝜅 + 𝜅.

Let 𝐺𝜇 = 𝐻𝜇 ∩ Ult𝑝𝑇 ,𝑛(ℤ) for all 𝜇 ≤ 𝜅 + 𝜅.

For every 𝜇 < 𝜅 + 𝜅 we shall determine an ℎ𝜇 such that 𝐺𝜇+1 = 𝐺𝜇 ⊕ ⟨{[ℎ𝜇]𝑝𝑇 ,𝑛}⟩ as
follows:

For 𝜇 < 𝜅 the group 𝐺𝜇 is generated by {[𝜒
𝜉
]𝑝𝑇 ,𝑛 ∶ 𝜉 < 𝜇}, so 𝐺𝜇+1 = 𝐺𝜇 ⊕ ⟨{[𝜒𝜇]𝑝𝑇 ,𝑛}⟩

and we set ℎ𝜇 = 𝜒𝜇.

For 𝜇 ≥ 𝜅 observe that 𝜇+1 ∩ 𝐻𝜇 = 𝐺𝜇, so:

𝐺𝜇+1

𝐺𝜇

=
𝐺𝜇+1

𝐺𝜇+1 ∩ 𝐻𝜇

≅
𝐺𝜇+1 + 𝐻𝜇

𝐻𝜇

≤
𝐻𝜇+1

𝐻𝜇

.

The group 𝐻𝜇+1

𝐻𝜇
is infinite and cyclic, so either 𝐺𝜇+1

𝐺𝜇
is also infinite and cyclic, or𝐺𝜇+1 = 𝐺𝜇.

By Proposition 3.3.7 there exists 𝑎𝜇 ∈ 𝐺𝜇+1 such that 𝐺𝜇+1 = 𝐺𝜇 ⊕ ⟨{𝑎𝜇}⟩ (and 𝑎𝜇 = 0 in the
case 𝐺𝜇+1 = 𝐺𝜇). Take ℎ𝜇 such that [ℎ𝜇]𝑝𝑇 ,𝑛 = 𝑎𝜇.

For every 𝜇 < 𝜅 + 𝜅, it follows that 𝐺𝜇+1 = 𝐺𝜇 ⊕ ⟨{[ℎ𝜇]𝑝𝑇 ,𝑛}⟩. Since 𝐺𝑇 ,𝑛 = ⋃𝜇<𝜅+𝜅 𝐺𝜇, it
follows that 𝐺𝑇 ,𝑛 = ⨁𝜇<𝜅+𝜅⟨{[ℎ𝜇]𝑝𝑇 ,𝑛}⟩.

Thus, the set 𝑇 ,𝑛 = {ℎ𝜇 ∶ 𝜅 ≤ 𝜇 < 𝜅 + 𝜅, [ℎ𝜇]𝑝𝑇 ,𝑛 ≠ 0} is as required.

For the remainder of this chapter we fix such a set 𝑇 ,𝑛 as above for each (𝑇 , 𝑛) ∈

 × 𝜔.

The next lemma makes good on the promise from the beginning of this section as it
shows how to make our topology countably compact.

Lemma 3.3.9. Assume that for every (𝑇 , 𝑛) ∈  × 𝜔, every sequence 𝑓 ∈ 𝑇 ,𝑛 has a
𝑝𝑇 ,𝑛-limit in ℤ(𝜅). Then every finite power of ℤ(𝜅) is countably compact.

Proof. A sequence in some finite power of ℤ(𝜅) is represented by finitely many members
of (ℤ(𝜅))𝜔, say 𝑔0,… , 𝑔𝑚. We show that there is one ultrafilter 𝑝 such that 𝑝 − lim 𝑔𝑖 exists
for all 𝑖 ≤ 𝑚, namely 𝑝𝑇 ,𝑛 for a suitable 𝑇 and 𝑛.

Recursively, we define a tower 𝑇 = (𝐴0,… , 𝐴𝑚) and for 𝑖 ≤ 𝑚 finite subsets 𝐸𝑖 and 𝐷𝑖

of 𝑇 |𝑖 and 𝜅 respectively together with finite sets (𝑟 𝑖𝑓 ∶ 𝑓 ∈ 𝐸𝑖) and (𝑠𝑖𝜈 ∶ 𝜈 ∈ 𝐷𝑖) of rational
numbers such that

(∗) 𝑔𝑖|𝐴𝑖 = ∑

𝑓 ∈𝐸𝑖

𝑟
𝑖
𝑓 𝑓 |𝐴𝑖 +∑

𝜈∈𝐷𝑖

𝑠
𝑖
𝜈𝜒𝜈|𝐴𝑖 .

For 𝑖 = 0, use Lemma 3.3.4 applied to ∅ to obtain 𝐴0, 𝐸0, 𝐷0, (𝑟0𝑓 ∶ 𝑓 ∈ 𝐸0) and
(𝑠0𝜈 ∶ 𝜈 ∈ 𝐷0) such that (∗) holds with 𝑖 = 0.
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To go from 𝑖 to 𝑖+ 1, apply Lemma 3.3.4 to (𝐴0,…,𝐴𝑖) to obtain 𝐴𝑖+1, 𝐸𝑖+1, 𝐷𝑖+1, (𝑟 𝑖+1𝑓 ∶ 𝑓 ∈

𝐸𝑖+1) and (𝑠𝑖+1𝜈 ∶ 𝜈 ∈ 𝐷𝑖+1) so that (∗) holds for 𝑖 + 1.

Let 𝐴 ∶= 𝐴𝑚 and let 𝑛 be sufficiently large so that 𝑛!𝑟 𝑖𝑓 and 𝑛!𝑠𝑖𝜈 are integers, for all
𝑖 ≤ 𝑚, 𝑓 ∈ 𝐸𝑖, and 𝜈 ∈ 𝐷𝑖. Then 𝑔𝑖|𝐴 = ∑𝑓 ∈𝐸𝑖

𝑛!𝑟 𝑖𝑓 (
1

𝑛!
𝑓 )|𝐴 +∑𝜈∈𝐷 𝑛!𝑠

𝑖
𝜈(

1

𝑛!
𝜒𝜈)|𝐴 for all 𝑖 ≤ 𝑚.

Since 𝑙(𝑇 ) = 𝐴 ∈ 𝑝𝑇 ,𝑛 and each 𝐸𝑖 ⊆ 𝑇 , it follows that [𝑔𝑖]𝑝𝑇 ,𝑛 ∈ 𝐺𝑇 ,𝑛. Therefore, each
[𝑔𝑖]𝑝𝑇 ,𝑛 is an integer combination of {[𝑓 ]𝑝𝑇 ,𝑛 ∶ 𝑓 ∈ 𝑇 ,𝑛} ∪ {[𝜒

𝜉
]𝑝𝑇 ,𝑛 ∶ 𝜉 < 𝜅}. Then, by

hypothesis, it follows that each 𝑔𝑖 has a 𝑝𝑇 ,𝑛-limit. This completes the proof.

3.4 Constructing homomorphisms

Through this section, we let 𝐺 = ℤ(𝜅) {ℎ𝜉 ∶ 𝜔 ≤ 𝜉 < 𝜅} be an enumeration of 𝐺𝜔 such
that supp ℎ∋(𝑛) ⊆ 𝜉 for every 𝑛 ∈ 𝜔 and 𝜔 ≤ 𝜉 < 𝜅, and such that each element of 𝐺𝜔

appears at least c many times.

Lemma 3.4.1. There exists a family (𝐽𝑇 ,𝑛 ∶ 𝑇 ∈  , 𝑛 ∈ 𝜔) of pairwise disjoint subsets of 𝜅
such that {ℎ𝜉 ∶ 𝜉 ∈ 𝐽𝑇 ,𝑛} = 𝑇 ,𝑛.

Proof. For each 𝑓 ∈ 𝐺𝜔 there is a one-to-one map 𝜙𝑓 ∶  × 𝜔 → {𝜉 ∈ 𝜅 ∶ 𝑓 = ℎ𝜉 }. Let
𝐽𝑇 ,𝑛 = {𝜙𝑓 (𝑇 , 𝑛) ∶ 𝑓 ∈ 𝑇 ,𝑛} and we are done.

For the rest of this section, we fix a family (𝐽𝑇 ,𝑛 ∶ 𝑇 ∈  , 𝑛 ∈ 𝜔) as above.

The following lemma is the key to the main result.

Lemma 3.4.2. Assume we have 𝑑 ∈ 𝐺\{0}, 𝑟 ∈ 𝐺𝜔 one-to-one, and 𝐷 ∈ [𝜅]𝜔 such that

(i) 𝜔 ∪ supp 𝑑 ∪⋃𝑛∈𝜔 supp 𝑟(𝑛) ⊆ 𝐷,

(ii) 𝐷 ∩ 𝐽𝑇 ,𝑛 ≠ ∅ for infinitely many (𝑇 , 𝑛))’s, and

(iii) supp ℎ𝜉(𝑛) ⊆ 𝐷 for all 𝑛 ∈ 𝜔 and 𝜉 ∈ 𝐷\𝜔.

Then there exists a homomorphism 𝜙 ∶ ℤ(𝐷) → 𝕋 such that:

(1) 𝜙(𝑑) ≠ 0,

(2) 𝑝𝑇 ,𝑛 − lim𝑘∈𝜔 𝜙(ℎ𝜉(𝑘)) = 𝜙(𝜒𝜉), whenever 𝑇 ∈  , 𝑛 ∈ 𝜔, and 𝜉 ∈ 𝐷 ∩ 𝐽𝑇 ,𝑛, and

(3) 𝜙 ◦ 𝑟 does not converge.

Before proving this lemma, we show how to use it to prove the main result. First, we
use it to prove another lemma:

Lemma 3.4.3. Assume 𝑑 ∈ 𝐺\{0} and 𝑟 ∈ 𝐺𝜔 is one-to-one. Then there exists a homomor-
phism 𝜙 ∶ ℤ(𝜅) → 𝕋 such that

(1) 𝜙(𝑑) ≠ 0,

(2) 𝑝𝑇 ,𝑛 − lim𝑘∈𝜔 𝜙(ℎ𝜉(𝑘)) = 𝜙(𝜒𝜉), whenever 𝑇 ∈  , 𝑛 ∈ 𝜔 and 𝜉 ∈ 𝐽𝑇 ,𝑛, and

(3) 𝜙 ◦ 𝑟 does not converge.
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Proof. Using a closing-off argument, construct a 𝐷 ∈ [𝜅]𝜔 that intersects infinitely many
sets 𝐽𝑇 ,𝑛, and that contains 𝜔, supp 𝑑, ⋃𝑛∈𝜔 supp 𝑟(𝑛) and ⋃𝜉∈𝐷\𝜔,𝑛∈𝜔 supp ℎ𝜉(𝑛).

By the previous Lemma, there exists a homomorphism 𝜙0 ∶ ℤ(𝐷) → 𝕋 such that
𝜙0(𝑑) ≠ 0, 𝜙 ◦ 𝑟 does not converge, and 𝑝𝑇 ,𝑛 − lim𝑘∈𝜔 𝜙0(ℎ𝜉(𝑘)) = 𝜙0(𝜒𝜉) whenever 𝑇 ∈  ,
𝑛 ∈ 𝜔 and 𝜉 ∈ 𝐷 ∩ 𝐽𝑇 ,𝑛.

We let (𝛼𝛿 ∶ 𝛿 < 𝜅) be the monotone enumeration of 𝜅\𝐷. For 𝛾 ≤ 𝜅, let 𝐷𝛾 ∶=

𝐷 ∪ {𝛼𝛿 ∶ 𝛿 < 𝛾}. Thus, 𝐷0 = 𝐷 and 𝐷𝜅 = 𝜅.

Recursively, we construct, for 𝛾 ≤ 𝜅, an increasing sequence of homomorphisms
𝜙𝛾 ∶ ℤ(𝐷𝛾 ) → 𝕋 such that 𝑝𝑇 ,𝑛 − lim𝑘∈𝜔 𝜙𝛾(ℎ𝜉(𝑘)) = 𝜙𝛾(𝜒𝜉) whenever 𝑇 ∈  , 𝑛 ∈ 𝜔 and
𝜉 ∈ 𝐷𝛾 ∩ 𝐽𝑇 ,𝑛. The desired homomorphism 𝜙 will be 𝜙𝜅 . The basis step 0 is already done,
and for limit steps, we simply take the union of all previous homomorphisms.

To define 𝜙𝛾+1𝑔𝑖𝑣𝑒𝑛𝜙𝛾 , it suffices to specify the value 𝜙𝛾+1(𝜒𝛼𝛾 ).

If 𝛼𝛾 ∈ 𝐽𝑇 ,𝑛 for some 𝑇 ∈  and 𝑛 ∈ 𝜔, then we ascribe 𝜙𝛾+1(𝜒𝛼𝛾 ) =
𝑝𝑇 ,𝑛 lim𝑘∈𝜔 𝜙𝛾(ℎ𝛾(𝑘)). This is well-defined because supp ℎ𝛾(𝑛) ⊆ 𝛾 ⊆ 𝐷𝛾 for all 𝑛 ∈ 𝜔 and
because 𝕋 is compact. Otherwise, just let 𝜙𝛾+1(𝜒𝛼𝛾 ) = 0.

We can now prove our main result.

Theorem 3.4.4. Assume the existence of c pairwise incompatible selective ultrafilters and
that 𝜅 is an infinite cardinal such that 𝜅 = 𝜅𝜔. Then the free Abelian group of cardinality
𝜅 has a Hausdorff group topology without nontrivial convergent sequences such that all
of its finite powers are countably compact.

Proof. Following the notation ofn the rest of the chapter, given 𝑑 ∈ 𝐺\{0}, and a one-to-one
𝑟 ∈ 𝐺𝜔, Lemma 3.4.3 provides a homomorphism 𝜙𝑑,𝑟 ∶ 𝐺 → 𝕋 such that 𝜙𝑑,𝑟(𝑑) ≠ 0, 𝜙𝑑,𝑟 ◦ 𝑟
does not converge, and 𝑝𝑇 ,𝑛 − lim𝑘∈𝜔 𝜙𝑑,𝑟(ℎ𝜉(𝑘)) = 𝜙𝑑,𝑟(𝜒𝜉) whenever 𝑇 ∈  , 𝑛 ∈ 𝜔, and
𝜉 ∈ 𝐽𝑇 ,𝑛. We give 𝐺 the initial topology generated by the collection of homomorphisms
{𝜙𝑑,𝑟 ∶ 𝑑 ∈ 𝐺\{0}, 𝑟 ∈ 𝐺𝜔 is one-to-one} thus obtained and the usual topology of 𝕋.

Since the initial topology generated by any collection of group homomorphisms is a
group topology we do indeed obtain a group topology. Since 𝕋 is Hausdorff and for every
𝑑 ≠ 0 there are many 𝜙𝑑,𝑟 with 𝜙𝑑,𝑟 ≠ 0 it follows that our topology is Hausdorff.

To see that every finite power of 𝐺 is countably compact, we now use Lemma 3.3.9.
Given 𝑇 ∈  , 𝑛 ∈ 𝜔 and 𝑓 ∈ 𝑇 ,𝑛, there exists 𝜉 ∈ 𝐽𝑇 ,𝑛 such that ℎ𝜉 = 𝑓 . For every 𝑑 ∈ 𝐺\{0}

and one-to-one 𝑟 ∈ 𝐺𝜔, we have 𝑝𝑇 ,𝑛 − lim𝑘∈𝜔 𝜙𝑑,𝑟(ℎ𝜉(𝑘)) = 𝜙𝑑,𝑟(𝜒𝜉). So 𝑝𝑇 ,𝑛 − lim 𝑓 (𝑛) = 𝜒𝜉

and we are done.

Since for a given one-to-one sequence 𝑟 and any 𝑑 ≠ 0 the sequence 𝜙𝑑,𝑟 ◦ 𝑟 does not
converge and 𝜙𝑑,𝑟 is continuous, it follows that 𝑟 does not converge. So 𝐺 has no nontrivial
convergent sequences.

Towards the proof of Lemma 3.4.2 we formulate a definition and a very technical
lemma.
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Definition 3.4.5. Let 𝜖 > 0. An 𝜖-arc function is a function 𝜓 ∶ 𝜅 → 𝔹 such that for all
𝛼 < 𝜅 either 𝜓(𝛼) = 𝕋 or the length of 𝜓(𝛼) is 𝜖, and the set {𝛼 ∈ 𝜅 ∶ 𝜓(𝛼) ≠ 𝕋} is finite.
We will call this finite set the support of 𝜓 and denote it by supp𝜓.

Given two arc functions 𝜓 and 𝜌 we write 𝜓 ≤ 𝜌 if 𝜓(𝛼) ⊆ 𝜌(𝛼) or 𝜓(𝛼) = 𝜌(𝛼) for
each 𝛼 ∈ 𝜅.

We shall obtain our homomorphisms using limits of such arc functions. The following
lemmas are instrumental in its construction.

The following result follows from an argument implicit in the construction of A. C.
Boero, Castro-Pereira, et al., 2019, but it may be difficult to extracit it from that paper.
We postpone its rather technical proof to the next section.

Lemma 3.4.6. Let 𝑝 be a selective ultrafilter and  be a finite subset of 𝐺𝜔 such that the
family ([𝑓 ]𝑝 ∶ 𝑓 ∈ ) ∪ ([𝜒�⃗�]𝑝 ∶ 𝛼 < 𝜅) is linearly independent.

Then given 𝜖 > 0 and a finite 𝐸 ⊆ 𝜅, there exist 𝐴 ∈ 𝑝 and a sequence (𝛿𝑛 ∶ 𝑛 ∈ 𝐴) of
positive real numbers such that

(⋆) whenever (𝑈𝑓 ∶ 𝑓 ∈ ) is a family of arcs of length 𝜖 and 𝜌 is an arc function of
length at least 𝜖 with supp 𝜌 ⊆ 𝐸, there exist, for each 𝑛 ∈ 𝐴, a 𝛿𝑛-arc function 𝜓𝑛 ≤ 𝜌

such that supp𝜓𝑛 = ⋃𝑓 ∈ supp 𝑓 (𝑛) ∪ 𝐸 and ∑𝜇∈supp 𝑓 𝑓 (𝑛)(𝜇)𝜓𝑛(𝜇) ⊆ 𝑈𝑓 for each
𝑓 ∈  .

Now we proceed to prove Lemma 3.4.2. We will use the following lemma:

Lemma 3.4.7. Let ( 𝑘 ∶ 𝑘 ∈ 𝜔) be a sequence of countable subsets of 𝐺𝜔 and let (𝑝𝑘 ∶
𝑘 ∈ 𝜔) be a sequence of pairwise incompatible selective ultrafilters such that for each
𝑘 ∈ 𝜔 the family ([𝑓 ]𝑝𝑘 ∶ 𝑓 ∈  𝑘) ∪ ([𝜒

𝜉
]𝑝𝑘 ∶ 𝜉 ∈ 𝜅) is linearly independent. Also let for

every 𝑘 ∈ 𝜔 and 𝑓 ∈  𝑘 an ordinal 𝜉𝑓 ,𝑘 < 𝜅 be given. In addition let 𝑑, 𝑑′ ∈ 𝐺\{0} such that
supp 𝑑 ∩ supp 𝑑′ = ∅. Finally, let 𝐷 ∈ [𝜅]𝜔 that contains 𝜔, supp 𝑑, supp 𝑑′, and supp 𝑓 (𝑛)
for every 𝑘 ∈ 𝜔, 𝑓 ∈  𝑘, and 𝑛 ∈ 𝜔.

Then: there exists a homomorphism 𝜙 ∶ ℤ(𝐷) → 𝕋 such that 𝜙(𝑑) ≠ 0, 𝜙(𝑑′) ≠ 0 and
𝑝𝑘 − lim𝑛∈𝜔 𝜙(𝑓 (𝑛)) = 𝜙(𝜒𝜉𝑓 ,𝑘), for all 𝑘 ∈ 𝜔 and 𝑓 ∈  𝑘.

Proof. Write 𝐷 as the union of an increasing sequence (𝐷𝑛 ∶ 𝑛 ∈ 𝜔) of finite nonempty
susbets, and likewise take ( 𝑘

𝑛 ∶ 𝑛 ∈ 𝜔) for each  𝑘.

Take a sufficiently small positive number 𝜖0 and an 𝜖0-arc function 𝜌∗ such that supp 𝑑∪
supp 𝑑′ ⊆ supp 𝜌∗ and 0 ∉ ∑𝜇∈supp 𝑑 𝑑(𝜇)𝜌∗(𝜇) ∪∑𝜇∈supp 𝑑′ 𝑑

′(𝜇)𝜌∗(𝜇).

Let 𝐸0 = supp 𝜌∗ ∪ 𝐷0 and 𝐵𝑘0 = 𝜔 for each 𝑘 ∈ 𝜔.

We will define, by recursion, for 𝑚 ∈ 𝜔: finite sequences (𝐵𝑘𝑚 ∶ 𝑚 ∈ 𝜔), finite sets
𝐸𝑚 ⊆ 𝜅, and real numbers 𝜖𝑚 > 0 satisfying:

(1) for all 𝑘, 𝑚 ∈ 𝜔, 𝐵𝑘𝑚 ∈ 𝑝𝑘,

(2) for each𝑚 ≥ 1 and 𝑘 ≤ 𝑚, we have a sequence (𝛿𝑘𝑚,𝑛 ∶ 𝑛 ∈ 𝜔) of positive real numbers
such that: if (𝑈𝑓 ∶ 𝑓 ∈  𝑘

𝑚) is a family of arcs of length 𝜖𝑚−1 and 𝜌 is an 𝜖𝑚−1-arc
function with supp 𝜌 ⊆ 𝐸𝑚−1, then for each 𝑛 ∈ 𝜔 there exists a 𝛿𝑘𝑚,𝑛-arc function 𝜓
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with 𝜓 ≤ 𝜌, supp𝜓 = ⋃𝑓 ∈𝑘
𝑚

supp 𝑓 (𝑛) ∪ 𝐸𝑚−1, and ∑𝜇∈supp 𝑓 (𝑛) 𝑓 (𝑛)(𝜇)𝜓(𝜇) ⊆ 𝑈𝑓 for
each 𝑓 ∈  𝑘

𝑚,

(3) for all 𝑘, 𝑚 ∈ 𝜔 we have 𝐵𝑘𝑚+1 ⊆ 𝐵
𝑘
𝑚, and

(4) 𝜖𝑚+1 = 1

2
min({𝛿𝑘𝑙,𝑛 ∶ 𝑘 ≤ 𝑙 ≤ 𝑚 + 1 and 𝑛 ∈ (𝑚 + 2) ∩ 𝐵𝑘𝑙 } ∪ {𝜖𝑚}).

Suppose we have defined 𝐵𝑘𝑙 for all 𝑘 ∈ 𝜔 as well as 𝐸𝑙 and 𝜖𝑙 for all 𝑙 ≤ 𝑚. As will be
clear from the step below the set 𝐵𝑘𝑚 is only nontrivial when 𝑘 ≤ 𝑚. Therefore we let
𝐵𝑘𝑚+1 = 𝐵𝑘𝑚 = 𝜔 for 𝑘 > 𝑚 + 1 and we concentrate on the case 𝑘 ≤ 𝑚 + 1.

Let 𝑘 ≤ 𝑚 + 1. By Lemma 3.4.6, there exist 𝐵𝑘𝑚+1 ∈ 𝑝𝑘 and (𝛿𝑘𝑚+1,𝑛 ∶ 𝑛 ∈ 𝜔) that satisfy
(2) for 𝑚 + 1. Without loss of generality we can assume 𝐵𝑘𝑚+1 ⊆ 𝐵

𝑘
𝑚.

Condition (4) now specifies 𝜖𝑚+1.

Setting 𝐸𝑚+1 = 𝐸𝑚 ∪ ⋃{supp 𝑓 (𝑘) ∶ 𝑘 ≤ 𝑚, 𝑓 ∈ ⋃𝑘≤𝑚+1  𝑘
𝑚+1} ∪ 𝐷𝑚+1 completes the

recursion.

For each 𝑘 ∈ 𝜔, apply the selectivity of 𝑝𝑘 to choose an increasing sequence (𝑎𝑘,𝑖 ∶ 𝑖 ∈ 𝜔)
with {𝑎𝑘,𝑖 ∶ 𝑖 ∈ 𝜔} ∈ 𝑝𝑘 and such that 𝑎𝑘,𝑖 ∈ 𝐵𝑘𝑖 and 𝑎𝑘,𝑖 > 𝑖 for all 𝑖 ∈ 𝜔.

Next apply Lemma 3.2.6 and let (𝐼𝑘 ∶ 𝑘 ∈ 𝜔) be a sequence of pairwise disjoint subsets
of 𝜔 such that {𝑎𝑘,𝑖 ∶ 𝑖 ∈ 𝐼𝑘} ∈ 𝑝𝑘 and the family of intervals {[𝑖, 𝑎𝑘,𝑖] ∶ 𝑘 ∈ 𝜔, 𝑖 ∈ 𝐼𝑘} is
pairwise disjoint. Without loss of generality we can assume that 𝑘 < min 𝐼𝑘.

Enumerate ⋃𝑘∈𝜔 𝐼𝑘 in increasing order as (𝑖𝑡 ∶ 𝑡 ∈ 𝜔). For each 𝑡 ∈ 𝜔, let 𝑘𝑡 be such that
𝑖𝑡 ∈ 𝐼𝑘𝑡 . Notice that for each 𝑡 ∈ 𝜔 we have 𝑖𝑖 ∈ 𝐼𝑘𝑡 , and hence 𝑖𝑡 ≥ min 𝐼𝑘𝑡 > 𝑘𝑡 and 𝑎𝑘𝑡 ,𝑖𝑡 > 𝑖𝑡 .

By recursion we define a sequence of arc functions, (𝜌𝑖𝑡 ∶ 𝑡 ∈ 𝜔), such that 𝜌𝑖0 ≤ 𝜌∗

and 𝜌𝑖𝑡+1 ≤ 𝜌𝑖𝑡 .

We start with 𝑡 = 0. In this case we have 𝑘0 < 𝑖0 < 𝑎𝑘0,𝑖0 , 𝑎𝑘0,𝑖0 ∈ 𝐵
𝑘0
𝑖0

, and 𝜖𝑖0−1 ≤ 𝜖0.

Since 𝜌∗ has length at least 𝜖𝑖0−1, there exists an arc function 𝜌𝑖0 of length 𝛿𝑘0𝑖0,𝑎𝑘0 ,𝑖0 such
that ∑𝜇∈supp 𝑓 (𝑎𝑘0 ,𝑖0 )

(𝜇)𝜌𝑖0(𝜇) ⊆ 𝜌∗(𝜉𝑓 ,𝑘0), for each 𝑓 ∈  𝑘0
𝑖0

. We have by the definition that
𝛿
𝑘0
𝑖0,𝑎𝑘0 ,𝑖0

> 𝜖𝑖1−1.

Suppose 𝑡 > 0 and that 𝜌𝑖𝑡−1 has been defined with length at least 𝜖𝑖𝑡−1 .

Apply item (2) to the arc function 𝜌𝑖𝑡−1 , the finite set  =  𝑘𝑡
𝑖𝑡

, the number 𝜖𝑖𝑡−1 , the finite
set 𝐸𝑖𝑡−1 , the arcs 𝑈𝑓 = 𝜌𝑖𝑡−1(𝜉𝑓 ,𝑘𝑡 ) for 𝑓 ∈  𝑘𝑡

𝑖𝑡
, and 𝑛 = 𝑎𝑘𝑡 ,𝑖𝑡 ∈ 𝐵

𝑘𝑡
𝑖𝑡

to obtain an arc function
𝜌𝑖𝑡 ≤ 𝜌𝑖𝑡−1 such that ∑𝜇∈supp 𝑓 (𝑎𝑘𝑡 ,𝑖𝑡 )

𝑓 (𝑎𝑘𝑡 ,𝑖𝑡 )(𝜇)𝜌𝑖𝑡−1(𝜉𝑓 ,𝑘𝑡 ) for all 𝑓 ∈  𝑘𝑡
𝑖𝑡

, and 𝜌𝑖𝑡−1 has length
𝛿
𝑘𝑡
𝑖𝑡 ,𝑎𝑘𝑡 ,𝑖𝑡

.

Since 𝑘𝑡 < 𝑖𝑡 < 𝑎𝑘𝑡 ,𝑖𝑡 ≤ 𝑖𝑡+1 − 1 and 𝑎𝑘𝑡 ,𝑖𝑡 ∈ 𝐵
𝑘𝑡
𝑖𝑡

, we have that 𝛿𝑘𝑡𝑖𝑡 ,𝑎𝑘𝑡 ,𝑖𝑡 > 𝜖𝑖𝑡+1−1.

If 𝜉 ∈ 𝐷𝑖𝑡 „ then 𝜉 ∈ supp 𝜌𝑖𝑡 and the length of 𝜌𝑖𝑡 (𝜉) is not greater than 𝜖𝑖𝑡−1, and
𝜖𝑖𝑡−1 ≤

1

2𝑖𝑡−1
≤ 1

2𝑡
.

It follows that for all 𝜉 ∈ 𝐷 the intersection ⋂𝑡∈𝜔 𝜌𝑖𝑡 (𝜉) consists of a unique element;
we define 𝜙(𝜒𝜉) to be that element and extend 𝜙 to a group homomorphism.
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By construction, 𝜙(𝑓 (𝑎𝑘𝑡 ,𝑖𝑡 )) is in ∑𝜇∈supp 𝑓 (𝑎𝑘𝑡 ,𝑖𝑡 )
𝑓 (𝑎𝑘𝑡 ,𝑖𝑡 )(𝜇)𝜌𝑖𝑡 (𝜇) which is a subset of

𝜌𝑖𝑡−1(𝜉𝑓 ,𝑘𝑡 ), for all 𝑓 ∈  𝑘𝑡
𝑖𝑡

. Therefore, the sequence (𝜙(𝑓 (𝑎𝑘,𝑖)))𝑖∈𝐼𝑘 converges to 𝜙(𝜒𝜉𝑓 ,𝑘𝑡 ), for
each 𝑘 ∈ 𝜔 and 𝑓 ∈  𝑘.

Furthermore, 𝜙(𝑑) ∈ ∑𝜇∈supp 𝑑 𝑑(𝜇)𝜌∗(𝜇), so it follows that 𝜙(𝑑) ≠ 0; and likewise
𝜙(𝑑′) ≠ 0.

It is clear that this implies the conclusion of Lemma 3.4.7.

We now give the proof of Lemma 3.4.2.

Proof of Lemma 3.4.2:

Proof. There are only countably many pairs (𝑇 , 𝑛) ∈  × 𝜔 such that 𝐽𝑇 ,𝑛 ∩ 𝐷 ≠ 0. We
enumerate them faithfully as ((𝑇𝑚, 𝑛𝑚) ∶ 𝑚 ≥ 2).

For𝑚 ≥ 2 let 𝑚 = {ℎ𝜉 ∶ 𝜉 ∈ 𝐷∩𝐽𝑇𝑚,𝑛𝑚} and 𝑝𝑚 = 𝑝𝑇𝑚,𝑛𝑚 . Let 𝑝0 and 𝑝1 be two ultrafilters
such that (𝑝𝑚 ∶ 𝑚 ≥ 0) is a family of pairwise incompatible selective ultrafilters, and
let  0 =  1 = {𝑟}. For each 𝑚 ≥ 2 and 𝜉 ∈ 𝐽𝑇𝑚,𝑛𝑚 ∩ 𝐷, let 𝜉ℎ𝜉 ,𝑚 = 𝜉 . Let 𝜉𝑟 ,0 = 𝑘 and
𝜉𝑟 ,1 = 𝑘′ with 𝑘, 𝑘′ ∈ 𝜔\ supp 𝑑. Then, by applying Lemma 3.4.7 with 𝑑′ = 𝜒𝑘 − 𝜒𝑘′ , there
exist 𝜙 ∶ ℤ(𝐷) → 𝕋 satisfying (1) and (2). In order to see (3) is also satisfied, notice that
𝑝0 − lim𝜙 ◦ 𝑟 ≠ 𝑝1 − lim𝜙 ◦ 𝑟 .

3.5 Proof of Lemma 3.4.6
In this section we present a proof of Lemma 3.4.6. We will need the notion of integer

stack, which was defined in A. H. Tomita, 2015.

The integer stacks are collections of sequences in ℤ(c) that are usually associated to
a selective ultrafilter. Given a finite set of sequences  it is possible to associate it to an
integer stack which generates the same ℚ-vector space as  . The sequences in the stack
have some nice properties that help us construct well behaved arcs when constructing
homomrphisms, and the linear relations between  and the sequences of the stack help
us transform these arcs into arcs that work for the functions of  . Below, we give the
definition of integer stack.

Definition 3.5.1. An integer stack  on 𝐴 consists of

(i) 𝐴 ∈ [𝜔]𝜔,

(ii) natural numbers 𝑠, 𝑡, and 𝑀 , positive integers 𝑟𝑖 for 0 ≤ 𝑖 < 𝑠 and positive integers
𝑟𝑖,𝑗 for 0 ≤ 𝑖 < 𝑠 and 0 ≤ 𝑗 < 𝑟𝑖,

(iii) functions 𝑓𝑖,𝑗 ,𝑘 ∈ (ℤ(c))𝐴 for 0 ≤ 𝑖 < 𝑠, 0 ≤ 𝑗 < 𝑟𝑖 and 0 ≤ 𝑘 < 𝑟𝑖,𝑗 , and 𝑔𝑙 ∈ (ℤ(c))𝐴 for
0 ≤< 𝑡,

(iv) sequences 𝜉𝑖 ∈ c𝐴 for 0 ≤ 𝑖 < 𝑠 and 𝜇𝑙 ∈ c𝐴 for 0 ≤ 𝑙 < 𝑡, and

(v) real numbers 𝜃𝑖,𝑗 ,𝑘 for 0 ≤ 𝑖 < 𝑠, 0 ≤ 𝑗 < 𝑟𝑖 and 0 ≤ 𝑘 < 𝑟𝑖,𝑗 .

These are required to satisfy the following conditions:
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(1) 𝜇𝑙(𝑛) ∈ supp 𝑔𝑙(𝑛) for each 𝑛 ∈ 𝐴 and 𝑙 < 𝑡,

(2) 𝜇𝑙∗(𝑛) ∉ supp 𝑔𝑙(𝑛) for each 𝑛 ∈ 𝐴 and 𝑙∗ < 𝑙 < 𝑡,

(3) the elements of {𝜇𝑙(𝑛) ∶ 0 ≤ 𝑙 < 𝑡 and 𝑛 ∈ 𝐴} are pairwise distinct,

(4) ∣ 𝑔𝑙(𝑛) ∣≤ 𝑀 for each 𝑛 ∈ 𝐴 and 𝑙 < 𝑡,

(5) for each 𝑖 < 𝑠 and 𝑗 < 𝑟𝑖, (𝜃𝑖,𝑗 ,𝑘 ∶ 𝑘 < 𝑟𝑖,𝑗) is a linearly independent family of elements
of ℝ viewed as a ℚ-vector space,

(6) lim𝑛∈𝐴
𝑓𝑖,𝑗 ,𝑘(𝑛)(𝜉𝑖(𝑛))

𝑓𝑖,𝑗 ,0(𝑛)(𝜉𝑖(𝑛))
= 𝜃𝑖,𝑗 ,𝑘 for each 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 ,

(7) the sequence (∣ 𝑓𝑖,𝑗 ,𝑘(𝑛)(𝜉𝑖(𝑛)) ∣)𝑛∈𝐴 diverges monotonically to +∞, for each 𝑖 < 𝑠,
𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 ,

(8) ∣ 𝑓𝑖,𝑗 ,𝑘(𝑛)(𝜉𝑖(𝑛)) ∣>∣ 𝑓𝑖,𝑗 ,𝑘∗(𝑛)(𝜉𝑖(𝑛)) ∣ for each 𝑛 ∈ 𝐴, 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑘∗ < 𝑟𝑖,𝑗 ,

(9)
(

∣𝑓𝑖,𝑗 ,𝑘(𝑛)(𝜉𝑖(𝑛))∣

∣𝑓𝑖,𝑗∗ ,𝑘∗ (𝑛)(𝜉𝑖(𝑛)))𝑛∈𝐴
converges monotonically to 0 for each 𝑖 < 𝑠, 𝑗∗ < 𝑗 < 𝑟𝑖 𝑘 < 𝑟𝑖,𝑗 and

𝑘∗ < 𝑟𝑖,𝑗∗ , and

(10) {𝑓𝑖,𝑗 ,𝑘(𝑛)(𝜉𝑖∗(𝑛)) ∶ 𝑛 ∈ 𝐴} ⊆ [−𝑀,𝑀] for each 𝑖∗ < 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 .

It follows from the definition the sequences that comprise the stack are linearly in-
dependent. Moreover, if 𝑝 is a free ultrafilter,  is a stack over 𝐴, and 𝐴 ∈ 𝑝, then it also
follows that that ([𝑔𝑙]𝑝 ∶ 𝑙 < 𝑡) ∪ ([𝑓𝑖,𝑗 ,𝑘]𝑝 ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖, 𝑘 < 𝑟𝑖,𝑗) is linearly independent in
the ℚ-vector space ℚ(c)/𝑝.

Definition 3.5.2. Given an integer stack  and a positive integer 𝑁 , the 𝑁 th root of
 , written 1

𝑁
 , is obtained by keeping all the structure in  with the exception of the

functions; these are divided by 𝑁 . Thus a function 𝑓𝑖,𝑗 ,𝑘 in  is replaced by 1

𝑁
𝑓𝑖,𝑗 ,𝑘 in 1

𝑁
 for

each 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 , and a function 𝑔𝑙 in  is replaced by 1

𝑁
𝑔𝑙 in 1

𝑁
 for each 𝑙 < 𝑡.

A stack (unspecified) is then defined to be the 𝑁 th root of an integer stack for some
positive integer 𝑁 .

The lemma below gives the relation between a finite set of sequences in ℤ(c) and a stack
 that is associated to it. The first part of this lemma is proved in A. H. Tomita, 2015. The
second part was stated in A. C. Boero,Castro-Pereira, et al., 2019 with no proof presented
there, since it follows directly from statements of several lemmas and constructions from
A. H. Tomita, 2015. Since the construction there is long and complex, we sketch here, for
the sake of completeness, a proof for the second part indicating which statements and
proofs from A. H. Tomita, 2015 are used, without repeating the arguments.

Lemma 3.5.3. Let ℎ𝑖 ∈ (ℤ(c))𝜔, for 𝑖 < 𝑚, and  ∈ 𝜔∗ be a selective ultrafilter. Then there
exists 𝐴 ∈  and a stack 1

𝑁
 on 𝐴 such that: if the elements of the stack have a  -limit

in ℤ(c) then ℎ𝑖 has a  -limit in ℤ(c) for each 𝑖 < 𝑚.

We will say in this case that the finite set {ℎ𝑖 ∶ 𝑖 < 𝑚} is associated to ( 1

𝑁
 , 𝐴, ).

(#) If ([ℎ𝑖] ∶ 𝑖 < 𝑚) is a ℚ-linearly independent family and the group generated by it
does not contain nonzero constant classes, then each restriction ℎ𝑖|𝐴 is an integer
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combination of the stack 1

𝑁
 on 𝐴. Also each element of the integer stack  is an

integer combination of (ℎ𝑖|𝐴 ∶ 𝑖 < 𝑚).

Proof. We prove (#). All numbered references in this proof are from the paper A. H. Tomita,
2015.

First, notice that if ([ℎ𝑖] ∶ 𝑖 < 𝑚) is a ℚ-linearly independent family and the group
generated by it does not contain nonzero constant classes, the it satisfies the conclusion of
Lemma 4.1. Then, following the proof of Lemma 7.1, using the 𝑓 ’s as the ℎ’s themselves,
we see that the functions ℎ𝑖 for 𝑖 < 𝑚 are integer combinations of the stack 1

𝑁
 that was

constructed.

It remains to be seen that the functions of  are integer combinations of the functions
ℎ𝑖 restricted to 𝐴. First, notice that in the statement of Lemma 5.4, by x), xi), xii) and xiv),
the functions 𝑓 𝑖,𝑗𝑞 and 𝑔0𝑞 are integer combinations of the ℎ𝑖. This Lemma is used in the
proof of Lemma 5.5, where the functions 𝑓 𝑖,𝑗𝑞 become the functions 𝑓𝑖,𝑗 ,𝑘, so they are integer
commbinations of the ℎ𝑖’s.

Now notice that in Lemma 6.1, by g), c) and finite induction, the functions 𝑔 𝑖𝑗 are integer
combinations of the ℎ𝑖, and some of these become the 𝑔𝑖’s in the proof of Lemma 6.2. Since
in the proof of 7.1 the stack is constructed by applying Lemma 5.5, or Lemma 6.2, or Lemma
5.5 followed by Lemma 6.2 (depending on the case), it followd that the stack constructed
consists of functions that are linear combinations of the functions ℎ𝑖 (when restricted to
𝐴).

Now we define some integers related to Kronecker’s Theorem that will be useful in
our proof. The existence of these integers follows from Lemma 4.3 of A. H. Tomita, 2015.
These integers were also defined and used in that paper.

Definition 3.5.4. If (𝜃0,… , 𝜃𝑟−1) is a linearly independent family of elements of the ℚ-
vector space ℝ and 𝜖 > 0, then 𝐿(𝜃0,… , 𝜃𝑟−1, 𝜖) denotes a positive integer 𝐿 such that
{(𝜃0𝑥 + ℤ,… , 𝜃𝑟−1𝑥 + ℤ) ∶ 𝑥 ∈ 𝐼 } is 𝜖-dense in 𝕋𝑟 in the usual Euclidean metric product
topology, for any interval 𝐼 of length at least 𝐿.

The last lemma we are going to need is Lemma 8.3 from A. H. Tomita, 2015, stated
below.

Lemma 3.5.5. Let 𝜖, 𝛾 and 𝛼 be positive reals, 𝑁 be a positive integer and 𝜓 be an arc
function. Let  be an integer stack on an 𝐴 ∈ [𝜔]𝜔 and 𝑠, 𝑡, 𝑟𝑖, 𝑟𝑖,𝑗 , 𝑀 , 𝑓𝑖,𝑗 ,𝑘, 𝑔𝑙, 𝜉𝑖, 𝜇𝑗 and 𝜃𝑖,𝑗 ,𝑘
be as in Definition 3.5.1.

Let 𝐿 be an integer greater than or equal to max{𝐿(𝜃𝑖,𝑗 ,0,… , 𝜃𝑖,𝑗 ,𝑟𝑖,𝑗−1,
𝜖

24
) ∶ 𝑖 < 𝑠 and

𝑗 < 𝑟𝑖} and let 𝑟 ∶= max{𝑟𝑖,𝑗 ∶ 𝑖 < 𝑠 and 𝑗 < 𝑟𝑖}.

Suppose that 𝑛 ∈ 𝐴 is such that

(a) {𝑉𝑖,𝑗 ,𝑘 ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 } ∪ {𝑊𝑙 ∶ 𝑙 < 𝑡} is a collection of open arcs of length 𝜖,

(b) 𝛿(𝜓(𝛽)) ≥ 𝜖 for each 𝛽 ∈ supp𝜓,

(c) 𝜖 > 3𝑁𝛼max({‖𝑔𝑙(𝑛)‖ ∶ 𝑙 < 𝑡} ∪ {‖𝑓𝑖,𝑗 ,𝑘(𝑛)‖ ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖, 𝑘 < 𝑟𝑖,𝑗 }),
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(d) 3𝑀𝑁𝑠𝛾 < 𝜖,

(e) |𝑓𝑖,𝑟𝑖−1,0(𝑛)(𝜉𝑖(𝑛))|𝛾 > 3𝐿 for each 𝑖 < 𝑠,

(f) |𝑓𝑖,𝑗−1,0(𝑛)(𝜉𝑖(𝑛))|
𝜖

6
√
𝑟𝑖,𝑗 |𝑓𝑖,𝑗 ,0(𝑛)(𝜉𝑖(𝑛))|

> 3𝐿 for each 𝑖 < 𝑠 and 𝑗 < 𝑟𝑖,

(g) |
|
|
𝜃𝑖,𝑗 ,𝑘 −

𝑓𝑖,𝑗 ,𝑘(𝑛)(𝜉𝑖(𝑛))

𝑓𝑖,𝑗 ,0(𝑛)(𝜉𝑖(𝑛))

|
|
|
< 𝜖

24
√
𝑟𝐿

for each 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 , and

(h) supp𝜓 ∩ {𝜇𝑙(𝑛) ∶ 𝑙 < 𝑡} = ∅.

Then there exists an arc function 𝜙 such that

(A) 𝑁𝜙(𝛽) ⊆ 𝜓(𝛽) for each 𝛽 ∈ supp𝜓,

(B) ∑𝛽∈supp 𝑔𝑙(𝑛) 𝑔𝑙(𝑛)(𝛽)𝜙(𝛽) ⊆ 𝑊𝑡 for each 𝑙 < 𝑡,

(C) ∑𝛽∈supp 𝑓𝑖,𝑗 ,𝑘(𝑛) 𝑓𝑖,𝑗 ,𝑘(𝑛)(𝛽)𝜙(𝛽) ⊆ 𝑉𝑖,𝑗 ,𝑘 for each 𝑖 < 𝑠< 𝑗 <𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 ,

(D) 𝛿(𝜓(𝛽) = 𝛼 for each 𝛽 ∈ supp𝜙, and

(E) supp𝜙 can be chosen to be any finite set containing supp𝜓, supp 𝑓𝑖,𝑗 ,𝑘(𝑛) for 𝑖 < 𝑠,
𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 , and supp 𝑔𝑙(𝑛) for 𝑙 < 𝑡.

Now we are ready to prove Lemma 3.4.6.

Proof of Lemma 3.4.6: Write  = {𝑢0,… , 𝑢𝑞−1} without repetition. Let  be an integer
stack on and 𝐴′ ∈ 𝑝 and let 𝑁 be a positive integer such that ( 1

𝑁
 , 𝐴′, 𝑝) is associated to

 .

As in Definition 3.5.1, the components of  will be denoted 𝑠, 𝑡, 𝑀 , (𝑟𝑖 ∶ 𝑖 < 𝑠),
(𝑟𝑖,𝑗 ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖), (𝑓𝑖,𝑗 ,𝑘 ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖, 𝑘 < 𝑟𝑖,𝑗), (𝑔𝑙 ∶ 𝑙 < 𝑡), (𝜉𝑖 ∶ 𝑖 < 𝑠), (𝜇𝑙 ∶ 𝑙 < 𝑡) and
(𝜃𝑖,𝑗 ,𝑘 ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖, 𝑘 < 𝑟𝑖,𝑗).

We write {𝑓𝑖,𝑗 ,𝑘 ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖, 𝑘 < 𝑟𝑖,𝑗 } ∪ {𝑔𝑙 ∶ 𝑙 < 𝑡} as {𝑣0,… , 𝑣𝑞−1}.

Let  be the 𝑞 × 𝑞 matrix of integer numbers such that 𝑁𝑢𝑖(𝑛) = ∑𝑗<𝑞 𝑖,𝑗𝑣𝑗(𝑛) for
all 𝑛 ∈ 𝐴 and 𝑖 < 𝑞.

By (#) in Lemma 3.5.3, each 𝑣𝑗 is an integer combination of the 𝑢𝑖’s, therefore the inverse
matrix of 1

𝑁
, which we denote by  , has integer entries.

Let 𝜖′ ∶= 𝜖(∑𝑖,𝑗<𝑞 |𝑖,𝑗 |)
−1] and 𝛾 < 𝜖′

3𝑀𝑁𝑠
. Let 𝐿 be greater than or equal to

max{𝐿(𝜃𝑖,𝑗 ,0,… 𝜃𝑖,𝑗 ,𝑟𝑖,𝑗−1,
𝜖′

24
) ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖}.

For each 𝑛 ∈ 𝐴′, let 𝛿𝑛 < 1

2
be such that:

𝜖
′
> 3𝑁 max({‖𝑔𝑙(𝑛)‖ ∶ 𝑙 < 𝑡} ∪ {‖𝑓𝑖,𝑗 ,𝑘(𝑛)‖ ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖, 𝑘 < 𝑟𝑖,𝑗)

𝛿𝑛

𝑁
.

We note that both 𝑁 ’s above cancel each other out, but we write the expression this
way as we will use 𝛿𝑛

𝑁
in the role of 𝛼 in item (c) of Lemma 3.5.5.
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Let 𝑟 ∶= max{𝑟𝑖,𝑗 ∶ 𝑖 < 𝑠, 𝑗 < 𝑟𝑖}. Let 𝐴 be the set of 𝑛’s in 𝐴′ such that:

• |𝑓𝑖,𝑟𝑖−1,0(𝑛)(𝜉𝑖(𝑛))|𝛾 > 3𝐿 for each 𝑖 < 𝑠,

• |𝑓𝑖,𝑗−1,0(𝑛)(𝜉𝑖(𝑛))|
𝜖′

6
√
𝑟𝑖,𝑗 |𝑓𝑖,𝑗 ,0(𝑛)|

> 3𝐿 for each 𝑖 < 𝑠 and 𝑗 < 𝑟𝑖,

• |
|
|
𝜃𝑖,𝑗 ,𝑘 −

𝑓𝑖,𝑗 ,𝑘(𝑛)(𝜉𝑖(𝑛))

𝑓𝑖,𝑗 ,0(𝑛)(𝜉𝑖(𝑛))

|
|
|
< 𝜖′

24
√
𝑟𝐿

for each 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 , and

• 𝐸 ∩ {𝜇𝑙(𝑛) ∶ 𝑙 < 𝑡} = ∅.

Notice that 𝐴 is cofinitr in 𝐴′, and so 𝐴 ∈ 𝑝.

We claim this 𝐴 and this sequence (𝛿𝑛 ∶ 𝑛 ∈ 𝐴) work.

Fix 𝑛 ∈ 𝐴.

Let (𝑈𝑓 ∶ 𝑓 ∈ ) be a family of arcs of length 𝜖 and let 𝜌 be an arc function of length
at least 𝜖 such that supp 𝜌 ⊆ 𝐸. We reindex the family of arcs as (𝑈𝑖 ∶ 𝑖 < 𝑞) by means of
𝑈𝑖 ∶= 𝑈𝑓𝑖 for each 𝑖 < 𝑞. Given 𝑖 < 𝑞, let 𝑦𝑖 be a real numbers such that 𝑦𝑖 +ℤ is the center
of 𝑈𝑖. Given 𝑗 < 𝑞, let 𝑧𝑗 = ∑𝑖<𝑞 𝑗 ,𝑖

𝑦𝑖

𝑁
and 𝑅𝑗 be the arc of center 𝑧𝑗 and length 𝜖′. Since

 is an integer matrix, we have that 𝑧𝑗 +ℤ = ∑𝑖<𝑞 𝑗 ,𝑖(
𝑦𝑖

𝑁
+ℤ). Then the arc ∑𝑗<𝑞 𝑖,𝑗𝑅𝑗

is a subset of 𝑈𝑖 for each 𝑖 < 𝑞.

Now we aim to apply Lemma 3.5.5. Set 𝜓 = 𝜌, 𝛼 =
𝛿𝑛
𝑁

and 𝜖′ in the place of 𝜖. For 𝑖 < 𝑠,
𝑗 < 𝑟𝑖, 𝑘 < 𝑟𝑖,𝑗 , we put 𝑉𝑖,𝑗 ,𝑘 = 𝑅𝑥 if 𝑓𝑖,𝑗 ,𝑘 = 𝑣𝑥 for some 𝑥 < 𝑞, and for 𝑙 < 𝑡 we put 𝑊𝑗 = 𝑅𝑥 |
if 𝑔𝑙 = 𝑣𝑥 for some 𝑥 < 𝑞.

Then there exists an arc function 𝜓𝑛 such that

(A) 𝑁𝜓𝑛(𝛽) ⊆ 𝜌(𝛽) for each 𝛽 ∈ supp 𝜌,

(B) ∑𝛽∈supp 𝑔𝑙(𝑛) 𝑔𝑙(𝑛)(𝛽)𝜓𝑛(𝛽) ⊆ 𝑊𝑙 for each 𝑙 < 𝑡,

(C) ∑𝛽∈supp 𝑓𝑖,𝑗 ,𝑘(𝑛) 𝑓𝑖,𝑗 ,𝑘(𝑛)(𝛽)𝜓𝑛(𝛽) ⊆ 𝑉𝑖,𝑗 ,𝑘 for each 𝑖 < 𝑠, 𝑗 < 𝑟𝑖 and 𝑘 < 𝑟𝑖,𝑗 ,

(D) 𝛿(𝜓𝑛(𝛽)) = 𝛿𝑛
𝑁

for each 𝛽 ∈ supp𝜓𝑛, and

(E) supp𝜓𝑛 is equal to

⋃

𝑖<𝑠,𝑗<𝑟𝑖,𝑘<𝑟𝑖,𝑗

supp 𝑓𝑖,𝑗 ,𝑘(𝑛) ∪⋃

𝑙<𝑡

supp 𝑔𝑙(𝑛) ∪ 𝐸 = ⋃

𝑓 ∈
supp 𝑓 (𝑛) ∪ 𝐸.

Let 𝜓𝑛 ∶= 𝑁𝜓𝑛. By (A), 𝜓𝑛 ≤ 𝜌. By (E) and (D), supp𝜓𝑛 = ⋃𝑓 ∈ supp 𝑓 (𝑛) ∪ 𝐸 and for
each 𝛽 ∈ supp𝜓𝑛, we have 𝛿(𝜓𝑛(𝛽)) = 𝛿𝑛. Let 𝑆 ∶= supp𝜓𝑛. Now notice that given 𝑢𝑖 ∈  ,
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we have:

∑

𝜇∈supp 𝑢𝑖

𝑢𝑖(𝑛)(𝜇)𝜓𝑛(𝜇) = ∑

𝜇∈𝑆

𝑢𝑖(𝑛)(𝜇)𝑁𝜓𝑛(𝜇)

= ∑

𝜇∈𝑆
(
∑

𝑗<𝑞

𝑖,𝑗𝑣𝑗(𝑛)(𝜇)
)
𝜓𝑛(𝜇)

= ∑

𝑗<𝑞

𝑖,𝑗
(
∑

𝜇∈𝑆

𝑣𝑗(𝑛)(𝜇)𝜓𝑛(𝜇)
)
.

Then, by (B), (C) and the definitions of the 𝑊𝑙’s and the 𝑉𝑖,𝑗 ,𝑘’s:

∑

𝜇∈supp 𝑢𝑖

𝑢𝑖(𝑛)(𝜇)𝜓𝑛(𝜇) = ∑

𝜇∈𝑆

𝑢𝑖(𝑛)(𝜇)𝑁𝜓𝑛(𝜇) ⊆ ∑

𝑗<𝑞

𝑖,𝑗𝑅𝑗 ⊆ 𝑈𝑖.

As intended.

3.6 Final comments
This method of obtaining countably compact free Abelian groups came from the

technique developed to construct countably compact groups without nontrivial convergent
sequences. It is not known whether there is an easier method to produce countably compact
group topologies on free Abelian groups if the resulting topology is allowed to have
nontrivial convergent sequences.

In fact, even in the construction of a countably compact group topology with nontrivial
convergent sequences in nontorsion groups, a modification of the technique to produce
countably compact groups without nontrivial convergent sequences; see Matheus Koveroff
Bellini et al., 2019 and A. C. Boero, Castro-Pereira, et al., 2019.

The first examples of countably compact groups without nontrivial convergent se-
quences were obtained by Hajnal and Juhász (Hajnal and Juhász, 1976) under CH. E. van
Douwen (Douwen, 1980a) obtained an example from MA and asked for a ZFC example.
Other examples were obtained using MAcountable (Koszmider et al., 2000), a selective ul-
trafilter (Garcia-Ferreira et al., 2005) and in the random reals model (Szeptycki and
A. H. Tomita, 2009). Only recently, Hrušák, van Mill, Shelah and Ramos obtained an
example in ZFC (Hrušák et al., 2021).

This motivates the following questions in ZFC:

Question 3.6.1. Are there large countably compact group without nontrivial convergent
sequences in ZFC? Is there an example of cardinality 2c?

The example of Hrušák et. al. has size c and it is not clear whether their construction
could yield larger examples.

Question 3.6.2. Is there a countably compact free Abelian group in ZFC? A countably
compact free Abelian group without nontrivial convergent sequences in ZFC?
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It is still open whether there exists a torsion-free group in ZFC that admits a countably
compact group topology without nontrivial convergent sequences. If such example exists
then there is a countably compact group topology without nontrivial convergent sequences
in the free Abelian group of cardinality c (see A. Tomita, 2005 or A. H. Tomita, 2019).

Question 3.6.3. Is there a both-sided cancellative semigroup that is not a group that
admits a countably compact semigroup topology (a Wallace semigroup) in ZFC?

The known examples were obtained in Robbie and Svetlichny, 1996 under CH, in
A. H. Tomita, 1996 under MAcountable, in Madariaga-Garcia and A. H. Tomita, 2007 from
c incomparable selective ultrafilters and in A. C. Boero, Castro-Pereira, et al., 2019 from
one selective ultrafilter. The last two use the known fact that a free Abelian group without
nontrivial convergent sequences contains a Wallace semigroup, which was used in Robbie
and Svetlichny, 1996. The example in A. H. Tomita, 1996 was a modification of Hart
and Mill, 1991.
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Chapter 4

On a  -compact topology for a
torsion-free group whose
cardinality has countable
cofinality

This chapter gives a partial answer to a question posed in Chapter 2, using forcing
to obtain a model where 𝜆 is a cardinal whose cofinality is 𝜔 and such that ℚ(𝜆) has a
 -compact Hausdorff group topology without non-trivial convergent sequences, where
 is a given selective ultrafilter.

4.1 Notation
We shall fix throughout this article a cardinal 𝜆 and a selective ultrafilter  .

As usual, given 𝑎 ∈ ℚ𝜆, its support is supp 𝑎 = {𝜉 ∈ 𝜆 ∶ 𝑎𝜉 ≠ 0}.

Let 𝐺 be the Abelian group ℚ(𝜆) = {𝑎 ∈ ℚ𝜆 ∶ supp 𝑎 is finite} (considering coordinate-
wise addition as its operation).

If 𝐸 ⊆ 𝜆, we do a standard abuse of notation and consider ℚ(𝐸) = {𝑎 ∈ 𝐺 ∶ supp 𝑎 ⊆
𝐸}.

Given 𝜇 ∈ 𝜆, we define 𝜒𝜇 ∈ 𝐺 by 𝜒𝜇(𝜇) = 1 and 𝜒𝜇(𝛽) = 0 for all 𝛽 ∈ 𝜆, 𝛽 ≠ 𝜇. Now,
given 𝜁 ∶ 𝜔 → 𝜆, we define 𝜒𝜁 ∶ 𝜔 → 𝐺 by 𝜒𝜁 (𝑛) = 𝜒𝜁 (𝑛) for each 𝑛 ∈ 𝜔. And given a 𝜇 ∈ 𝜆,
we define 𝜇 as the constant sequence of value 𝜇. Thus, 𝜒𝜇 is the constant sequence of value
𝜒𝜇 (this will appear often in our work).

Since  is an ultrafilter on 𝜔, the ultrapower of 𝐺 by  , denoted Ult (𝐺), is the
quotient of the set 𝐺𝜔 by the following equivalence relation: 𝑔 ∼ ℎ if and only if {𝑛 ∈ 𝜔 ∶

𝑔(𝑛) = ℎ(𝑛)} ∈  . We will make frequent use of the fact that Ult (𝐺) is a ℚ-vector space
with all operations defined naturally (that is via representatives). If 𝑔 ∈ 𝐺𝜔, we will denote
its class in Ult (𝐺) by [𝑔] .
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We now fix  ⊆ 𝐺𝜔 such that ([𝑔] ∶ 𝑔 ∈ ) ∪ ([𝜒𝜇] ∶ 𝜇 < 𝜆) is a ℚ-basis for
Ult (𝐺).

4.2 Forcing poset
Definition 4.2.1. We define  as the set of the tuples of the form (𝐸, 𝛼,, 𝜉 , 𝜙) such that:

• 𝐸 is a countable subset of 𝜆 containing 𝜔,

• 𝛼 < c,

•  is a countable subset of ,

• 𝜉 = (𝜉𝑔 ∶ 𝑔 ∈ ) is a family of elements of c ∩ 𝐸,

• 𝜙 ∶ ℚ(𝐸) → 𝕋𝛼 is a homomorphism,

•  − lim(𝜙 ◦ 𝑔) = 𝜙(𝜒𝜉𝑔 ) for each 𝑔 ∈ ,

We define (𝐸, 𝛼,, 𝜉 , 𝜙) ≤ (𝐸′, 𝛼′,′, 𝜉 ′, 𝜙′) if:

1. 𝐸 ⊇ 𝐸′,

2. 𝛼 ≥ 𝛼′,

3.  ⊇ ′,

4. 𝜉𝑔 = 𝜉 ′𝑔 for each 𝑔 ∈ ′, and

5. for every 𝜉 < 𝛼′ and 𝑎 ∈ ℚ(𝐸′), 𝜙(𝑎)(𝜉) = 𝜙′(𝑎)(𝜉).

Given 𝑝 ∈  , we may denote its components by 𝐸𝑝, 𝛼𝑝, 𝑝, 𝜉𝑝 and 𝜙𝑝.

If 𝐻 is a generic filter over  then the generic homomorphism defined by 𝐻 is the
mapping Φ of domain ⋃{dom(𝜙𝑝) ∶ 𝑝 ∈ 𝐻 } into 𝕋c defined by Φ(⋅)(𝜉) = ⋃{𝜙𝑝(⋅)(𝜉) ∶ 𝑝 ∈

𝐻, 𝜉 < 𝛼𝑝}. In other words, if 𝑝 ∈ 𝐻 , 𝑎 ∈ ℚ(𝐸𝑝) and 𝜉 < 𝛼𝑝, then Φ(𝑎)(𝜉) = 𝜙𝑝(𝑎)(𝜉).

Naturally, we must assure that such generic homomorphisms are well-defined and into
𝕋c. We will do so by showing that, assuming CH in the ground model, this forcing notion
is 𝜔1-closed and has the 𝜔2-chain condition, and thus preserves cardinals and c.

Proposition 4.2.2. Let 𝑒 ∈ 𝐺\{0}. Then the set 𝑒 = {𝑝 ∈  ∶ 𝑒 ∈ ℚ(𝐸𝑝) and 𝜙𝑝(𝑒) ≠ 0} is
open and dense in  .

Proof. Openness: suppose 𝑝 ∈ 𝑒 and 𝑞 ≤ 𝑝. Then since 𝜙𝑝(𝑒) ≠ 0, for some 𝛽 < 𝛼𝑝,
𝜙𝑝(𝑒)(𝛽) ≠ 0. By (2), 𝛽 < 𝛼𝑝 ≤ 𝛼𝑞 , and by (1) 𝐸𝑝 ⊆ 𝐸𝑞 . It follows that 𝑒 ∈ ℚ(𝐸𝑞) and, by (6),
𝜙𝑞(𝑒)(𝛽) = 𝜙𝑝(𝑒)(𝛽) ≠ 0. Thus, 𝑞 ∈ 𝑒 as well.

Denseness: now let 𝑝 ∈  be arbitrary. We shall produce a 𝑞 ≤ 𝑝 such that 𝑞 ∈ 𝑒. First,
take any 𝑑0, 𝑑1 ∈ 𝐺\{0} such that supp 𝑒, supp 𝑑0 and supp 𝑑1 are pariwise disjoint. Now take
𝐶 a countable subset of 𝜆 such that 𝜔 ∪ supp 𝑒 ∪ supp 𝑑0 ∪ supp 𝑑1 ∪⋃𝑔∈,𝑛∈𝜔 supp 𝑔(𝑛) ⊆ 𝐶.

Lemma 2.3.4 tells us that there exists a homomorphism 𝜌 ∶ ℚ(𝐶) → 𝕋 such that:

• 𝜌(𝑒) ≠ 0 and 𝜌(𝑑0) ≠ 𝜌(𝑑1);



4.2 | FORCING POSET

51

•  − lim(𝜌 ◦ ( 1

𝑁
𝑔)) = 𝜌( 1

𝑁
𝜒𝜉𝑔 ), for every 𝑔 ∈  and 𝑁 ∈ 𝜔.

Define now 𝐸𝑞 ∶= 𝐸𝑝 ∪ 𝐶 and extend 𝜙𝑝 ∶ ℚ(𝐸𝑝) → 𝕋𝛼𝑝 to a 𝜑 ∶ ℚ(𝐸𝑞) → 𝕋𝛼𝑝 using the
divisibility of the codomain. Also extend 𝜌 to a 𝜓 ∶ ℚ(𝐸𝑞) → 𝕋. Define then 𝛼𝑞 = 𝛼𝑝 + 1,
𝑞 = 𝑝, 𝜉 𝑞 = 𝜉𝑝, and 𝜙𝑞 = 𝜑⌢𝜓.

It follows that 𝑞 ∈ 𝑒 and 𝑞 ≤ 𝑝.

Proposition 4.2.3. Let 𝛼 < c. Then the set 𝛼 = {𝑝 ∈  ∶ 𝛼𝑝 > 𝛼} is open and dense in
 .

Proof. Openness: suppose 𝑝 ∈ 𝛼 and 𝑞 ≤ 𝑝. We have that 𝛼𝑝 > 𝛼 and 𝛼𝑞 ≥ 𝛼𝑝, and so
𝑞 ∈ 𝛼 .

Denseness: let 𝑝 ∈  . If 𝛼𝑝 > 𝛼, then 𝑝 ∈ 𝛼 . Suppose now that 𝛼𝑝 ≤ 𝛼. We define 𝑞 as
follows: 𝐸𝑞 = 𝐸𝑝, 𝛼𝑞 = 𝛼 + 1, 𝑞 = 𝑝, 𝜉 𝑞 = 𝜉𝑝, and 𝜙𝑞 = 𝜙𝑝

⌢
𝜓, where 𝜓 ∶ ℚ(𝐸𝑞) → 𝕋[𝛼𝑝 ,𝛼]

is the zero-homomorphism.

It follows that 𝑞 ∈ 𝛼 and 𝑞 ≤ 𝑝.

Proposition 4.2.4. Let 𝑔 ∈ . Then the set 𝑔 ∶= {𝑝 ∈  ∶ 𝑔 ∈ 𝑝} is open and dense in
 .

Proof. Openness: suppose 𝑝 ∈ 𝑔 and 𝑞 ≤ 𝑝. Since 𝑔 ∈ 𝑝 and 𝑝 ⊆ 𝑞 , it follows that
𝑔 ∈ 𝑞 and thus 𝑞 ∈ 𝑔 .

Denseness: Let 𝑝 ∈  be given. First, take 𝐸 a countable subset of 𝜆 such that 𝜔∪𝐸𝑝 ⊆ 𝐸
and ⋃𝑘∈𝜔 supp 𝑔(𝑘) ⊆ 𝐸. Take any 𝜇 ∈ c\𝐸.

Define now: 𝐸𝑞 = 𝐸 ∪ {𝜇}, 𝛼𝑞 = 𝛼𝑝, 𝑞 = 𝑝 ∪ {𝑔}, and 𝜉 𝑞 = 𝜉𝑝 ∪ {(𝑔, 𝜇)}.

Extend 𝜙𝑝 ∶ ℚ(𝐸𝑝) → 𝕋𝛼𝑝 to a 𝜓 ∶ ℚ(𝐸) → 𝕋𝛼𝑝 using divisibility. Now, since 𝕋𝛼𝑝 is a
compact space, let 𝑧 =  − lim(𝜓 ◦ 𝑔). Define then 𝜙𝑞 ∶ ℚ(𝐸𝑞) → 𝕋𝛼𝑞 as an extension of 𝜓,
declaring that 𝜙𝑞(𝜒𝜇) = 𝑧.

It follows that 𝑞 = (𝐸𝑞 , 𝛼𝑞 ,𝑞 , 𝜉 𝑞 , 𝜙𝑞) ∈ 𝑔 and 𝑞 ≤ 𝑝.

Proposition 4.2.5.  is 𝜔1-closed.

Proof. Let (𝑝𝑡 ∶ 𝑡 ∈ 𝜔) be a decreasing sequence in  . We shall produce an 𝑟 ∈  such that
𝑟 ≤ 𝑝𝑡 for all 𝑡 ∈ 𝜔.

Denote now 𝑝𝑡 = (𝐸𝑡 , 𝛼𝑡 ,𝑡 , 𝜉 𝑡 , 𝜙𝑡).

Define 𝐸𝑟 = ⋃𝑡∈𝜔 𝐸
𝑡 , 𝛼𝑟 = sup𝑡∈𝜔 𝛼

𝑡 , 𝑟 = ⋃𝑡∈𝜔 𝑡 and given 𝑔 ∈ 𝑟 , 𝜉 𝑟𝑔 = 𝜉 𝑡𝑔 for any 𝑡

such that 𝑔 ∈ 𝑡 (this does not depend on such 𝑡’s).

Lastly, given 𝑎 ∈ ℚ(𝐸𝑟 ) = ⋃𝑡∈𝜔ℚ
(𝐸𝑡 ) and 𝜉 < 𝛼𝑟 , define 𝜙𝑟(𝑎)(𝜉) = 𝜙𝑡(𝑎)(𝜉) for any 𝑡 such

that 𝜉 < 𝛼𝑡 (again, this assignment does not depend on such 𝑡’s).

We will now need a technical Lemma in order to guarantee the divergence of non-trivial
sequences.
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Lemma 4.2.6. Let  ⊆  be countable and 𝐵 ∈  . Let ′ be a finite subset of  and
(𝑟𝑔 ∶ 𝑔 ∈ ′) a family of rational numbers. Let 𝐸 ⊆ 𝜆 countably infinite such that
𝜔⋃ ∪𝑔∈,𝑛∈𝜔 supp 𝑔(𝑛) ⊆ 𝐸. Let (𝜉𝑔 ∶ 𝑔 ∈ ) be a family in c ∩ 𝐸.

Then there exists a homomorphism 𝜙 ∶ ℚ(𝐸) ⟶ 𝕋 such that

a)  -lim(𝜙( 1

𝑁
𝑔)) = 𝜙( 1

𝑁
𝜒𝜉𝑔 ), for each 𝑔 ∈  and 𝑁 ∈ 𝜔, and

b) (𝜙(∑𝑔∈′ 𝑟𝑔𝑔(𝑛)) ∶ 𝑛 ∈ 𝐵) does not converge.

Proof. Let 𝐵′ ∈  be a subset of 𝐵 such that (∑𝑔∈′ 𝑟𝑔𝑔(𝑛) ∶ 𝑛 ∈ 𝐵′) is a one-to-one
sequence, which is possible since the 𝑔’s are linearly independent mod  with the constant
sequences and by the selectiveness of  .

Let 𝔸 be an almost disjoint family on 𝐵′ of cardinality c and ℎ𝑥 ∶ 𝜔 ⟶ {∑𝑔∈′ 𝑟𝑔𝑔(𝑛) ∶

𝑛 ∈ 𝑥} be a bijection for each 𝑥 ∈ 𝔸.

Claim: There exist 𝑥0, 𝑥1 ∈ 𝔸 such that {[𝑔] ∶ 𝑔 ∈ } ∪ {[𝜒𝜇] ∶ 𝜇 ∈

𝜆} ∪ {[ℎ𝑥0] , [ℎ𝑥1] } is a linearly independent subset.

Proof of the claim: Given 𝑥0, 𝑥1 ∈ 𝔸, notice that ℎ𝑥0(𝑛) ≠ ℎ𝑥1(𝑛) for all but a finite
numbers of 𝑛’s, so [ℎ𝑥0] ≠ [ℎ𝑥1] . Since ℚ is countable, it follows that ⟨[ℎ𝑥] ∶ 𝑥 ∈ 𝔸⟩

has cardinality c, so there is 𝐽 ⊆ 𝔸 such that |𝐽 | = c and that ([ℎ𝑥] ∶ 𝑥 ∈ 𝐽 ) is linearly
independent. Now notice that ⟨⟩⊕ ⟨𝜒

𝜉
∶ 𝜉 ∈ 𝐸⟩ is countable, so there exist 𝑥0, 𝑥1 ∈ 𝐽 such

that {[𝑔] ∶ 𝑔 ∈ } ∪ {[𝜒𝜇] ∶ 𝜇 ∈ 𝐸} ∪ {[ℎ𝑥0] , [ℎ𝑥1] } is linearly independent. Since
all the supports of these elements are contained in 𝐸, it is straightforward to see that
{[𝑔] ∶ 𝑔 ∈ } ∪ {[𝜒𝜇] ∶ 𝜇 ∈ 𝜆} ∪ {[ℎ𝑥0] , [ℎ𝑥1] } is linearly independent.

We will now apply Lemma 2.3.4 with 𝜅 = 𝜆, 𝑝 =  ,  = {𝑔 ∶ 𝑔 ∈ }∪{ℎ𝑥0 , ℎ𝑥1}, 𝜉𝑔 = 𝜉𝑔

for 𝑔 ∈ , 𝜉ℎ𝑥0 = 0, 𝜉ℎ𝑥1 = 1, 𝑑0 = 𝜒0, 𝑑1 = 𝜒1, 𝑑 = 𝜒2 and 𝐶 = 𝐸. Take the homomorphism
from ℚ(𝐸) to 𝕋 given by the conclusion of the Lemma and call it 𝜓.

Clearly condition a) of this Lemma is satisfied.

Furthermore, (𝜓(ℎ𝑥𝑖(𝑘)) ∶ 𝑘 ∈ 𝜔) has 𝜓(𝜒𝑖) as an accumulation point for 𝑖 < 2. Since
these sequences are reorderings of a subsequence of (𝜓(∑𝑔∈′ 𝑟𝑔𝑔(𝑛)) ∶ 𝑛 ∈ 𝐵) and
𝜙(𝜒0) ≠ 𝜙(𝜒1), it follows that b) is satisfied.

Proposition 4.2.7. Let ℎ ∈ 𝐺𝜔 be a one-to-one sequence. Then the set ℎ ∶= {𝑝 ∈  ∶

there is 𝛽 < 𝛼𝑝 such that (𝜙𝑝(ℎ(𝑛))(𝛽) ∶ 𝑛 ∈ 𝜔) does not converge}

Proof. Openness: Suppose 𝑝 ∈ ℎ and 𝑞 ≤ 𝑝. Then for some 𝛽 < 𝛼𝑝, (𝜙𝑝(ℎ(𝑛))(𝛽) ∶ 𝑛 ∈ 𝜔)
does not converge. By (2), 𝛽 < 𝛼𝑝 ≤ 𝛼𝑞 , and by (1) 𝐸𝑝 ⊆ 𝐸𝑞 . It follows that ℎ(𝑛) ∈ ℚ(𝐸𝑞) for
all 𝑛 ∈ 𝜔 and, by (6), 𝜙𝑞(ℎ(𝑛))(𝛽) = 𝜙𝑝(ℎ(𝑛))(𝛽) for all 𝑛 ∈ 𝜔. Since (𝜙𝑝(ℎ(𝑛))(𝛽) ∶ 𝑛 ∈ 𝜔)

does not converge, then (𝜙𝑞(ℎ(𝑛))(𝛽) ∶ 𝑛 ∈ 𝜔) does not converge. Thus, 𝑞 ∈ ℎ as well.
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Denseness: Let 𝑝 ∈  be given. Take ′ ⊆  finite, 𝜇0,… , 𝜇𝑚−1 ∈ 𝜆 and (𝑟𝑔 ∶ 𝑔 ∈

′) and (𝑠𝜇𝑗 ∶ 𝑗 < 𝑚) families of rational numbers such that [ℎ] = ∑𝑔∈′ 𝑟𝑔[𝑔] +

∑𝑗<𝑚 𝑠𝜇𝑗 [𝜒𝜇𝑗 ] .

We will define a decreasing sequence of conditions (𝑝𝑖 ∶ 𝑖 ∈ 𝜔). First, we obtain 𝑝0 ≤ 𝑝

by applying Proposition 4.2.4 |′| times in order to guarantee that ′ ⊆ 𝑝0 .

Take an enumeration (𝛾𝑘 ∶ 𝑘 ≥ 1) of ∪𝑔∈′,𝑛∈𝜔 supp 𝑔(𝑛)⋃ ∪𝑛∈𝜔 supp ℎ(𝑛)⋃{𝜇𝑗 ∶ 𝑗 <

𝑚}.

Apply Proposition 4.2.2 using 𝑒 = 𝜒𝛾1 and obtain 𝑝1 ≤ 𝑝0 such that 𝜒𝛾1 ∈ ℚ(𝐸𝑝1 ), which
implies 𝛾1 ∈ 𝐸𝑝1 .

Now recursively apply Proposition 4.2.2 for each 𝑖 > 1 using 𝑒 = 𝜒𝛾𝑖 and obtain 𝑝𝑖 ≤ 𝑝𝑖−1

such that 𝜒𝛾𝑖 ∈ ℚ(𝐸𝑝𝑖 ), which implies 𝛾𝑖 ∈ 𝐸𝑝𝑖 .

Applying Proposition 4.2.5, we obtain a 𝑝𝜔 ≤ 𝑝𝑖 for all 𝑖 ∈ 𝜔.

We will now use Lemma 4.2.6 with  = 𝑝𝜔 , ′ = ′, 𝑟𝑔 = 𝑟𝑔 for 𝑔 ∈ ′, 𝐸 = 𝐸𝑝𝜔 ,
𝜉𝑔 = 𝜉𝑝𝜔𝑔 for 𝑔 ∈ 𝑝𝜔 and 𝐵 ∈  such that ℎ(𝑛) = ∑𝑔∈′ 𝑟𝑔𝑔(𝑛) +∑𝑗<𝑚 𝑠𝜇𝑗𝜒𝜇𝑗 for all 𝑛 ∈ 𝐵.
We thus obtain a 𝜓 ∶ ℚ(𝐸𝑝𝜔 ) → 𝕋 such that

a)  -lim(𝜓( 1

𝑁
𝑔)) = 𝜓( 1

𝑁
𝜒𝜉𝑔 ), for each 𝑔 ∈  and 𝑁 ∈ 𝜔, and

b) (𝜓(∑𝑔∈′ 𝑟𝑔𝑔(𝑛)) ∶ 𝑛 ∈ 𝐵) does not converge.

We define now a 𝑞 ≤ 𝑝𝜔. Define 𝐸𝑞 = 𝐸𝑝𝜔 , 𝛼𝑞 = 𝛼𝑝𝜔 + 1, 𝑞 = 𝑝𝜔 , 𝜉 𝑞 = 𝜉𝑝𝜔 and
𝜙𝑞 = 𝜙𝑝𝜔

⌢
𝜓.

Since (𝜓(∑𝑔∈′ 𝑟𝑔𝑔(𝑛)) ∶ 𝑛 ∈ 𝐵) does not converge and ∑𝑗<𝑚 𝑠𝜇𝑗𝜒𝜇𝑗 is constant, it
follows that (𝜓(ℎ(𝑛)) ∶ 𝑛 ∈ 𝐵) does not converge, and so (𝜓(ℎ(𝑛)) ∶ 𝑛 ∈ 𝜔) does not
converge.

Let 𝛽 = 𝛼𝑝. The definition 𝜙𝑞 = 𝜙𝑝𝜔
⌢
𝜓 means that for all 𝑥 ∈ ℚ(𝐸𝑞), 𝜙𝑞(𝑥)(𝛽) = 𝜓(𝑥).

Thus, (𝜓(ℎ(𝑛)) ∶ 𝑛 ∈ 𝜔) does not converge means that (𝜙𝑞(ℎ(𝑛))(𝛽) ∶ 𝑛 ∈ 𝜔) does not
converge, proving that 𝑞 ∈ ℎ.

Proposition 4.2.8. Assume CH. Then the partial order  has the 𝜔2-chain condition.

Proof. Since under CH, c+ = 𝜔2, we will show that  has the c+-c.c.. So let  ⊆  of
cardinality c+. We will show that  has a subset consisting of c+ pairwise compatible
elements.

First, take a 0 ⊆  of cardinality c+ and an 𝛼 < c such that 𝛼𝑞 = 𝛼 for each 𝑞 ∈ 0.

Using the △-system Lemma, take a 1 ⊆ 0 of cardinality c+ such that {𝐸𝑞 ∶ 𝑞 ∈ 1} is
a △-system of root �̃�. Now, using CH, we have that ||

|
(𝕋𝛼)

ℚ(�̃�) |
|
|
= c, and thus we may take a

2 ⊆ 1 of cardinality c+ such that 𝜙𝑞 |
ℚ(�̃�) = 𝜙𝑝|

ℚ(�̃�) for all 𝑞, 𝑝 ∈ 2.
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Using the △-system Lemma again, take3 ⊆ 2 of cardinality c+ such that {𝑞 ∶ 𝑞 ∈ 3}

is a △-system of root ̃. Now since for each 𝑞 ∈ 3, (𝜉 𝑞𝑔 ∶ 𝑔 ∈ ̃) ∈ c̃ and |c̃| = c, take
4 ⊆ 3 of cardinality c+ such that for all 𝑞, 𝑝 ∈ 4 and each 𝑔 ∈ ̃, 𝜉 𝑞𝑔 = 𝜉𝑝𝑔 .

A common extension to 𝑞, 𝑝 ∈ 4 is an 𝑟 defined as follows: 𝐸𝑟 = 𝐸𝑞 ∪𝐸𝑝; 𝛼𝑟 = 𝛼𝑞 = 𝛼𝑝;
𝑟 = 𝑞 ∪ 𝑝; 𝜉 𝑟 = 𝜉 𝑞 ∪ 𝜉𝑝.

To define 𝜙𝑟 , notice that ℚ(𝐸𝑟 ) = ℚ(𝐸𝑞\�̃�) ⊕ ℚ(�̃�) ⊕ ℚ(𝐸𝑝\�̃�). Then, let 𝜋0 ∶ ℚ(𝐸𝑟 ) → ℚ(𝐸𝑞\�̃�),
𝜋1 ∶ ℚ(𝐸𝑟 ) → ℚ(�̃�) and 𝜋2 ∶ ℚ(𝐸𝑟 ) → ℚ(𝐸𝑝\�̃�) be the projections. Define 𝜙𝑟 = 𝜙𝑞 ◦ 𝜋0 + 𝜙𝑞 ◦

𝜋1 + 𝜙𝑝 ◦ 𝜋2 = 𝜙𝑞 ◦ 𝜋0 + 𝜙𝑝 ◦ 𝜋1 + 𝜙𝑝 ◦ 𝜋2 and we are done.

Theorem 4.2.9. Assume CH. Then the forcing notion  preserves cofinalities and cardi-
nals, preserves c and does not add reals. Given 𝐻 a -generic filter, the associated Φ (as in
4.2.1) is a well-defined monomorphism from 𝐺 to 𝕋c. Also, given any 𝑔 ∈ , there exists
a 𝜉 ∈ c such that  − lim(Φ ◦ 𝑔) = Φ(𝜒𝜉). Furthermore, given any one-to-one sequence
ℎ ∈ 𝐺𝜔, Φ ◦ ℎ does not converge.

Proof. By Propositions 4.2.5 and 4.2.8,  preserves cofinalities (and therefore cardinals),
does not add reals and preserves c. Note that since being a basis for Ult (𝐺) is absolute
for transitive models of ZFC,  is still a basis for Ult (𝐺) in the extension.

Let 𝐻 be a -generic filter and let Φ be its associated homomorphism.

First, let us see that Φ ∶ 𝐺 → 𝕋c is well-defined. Let 𝑞, 𝑝 ∈ 𝐻 and suppose 𝜉 <

min{𝛼𝑞 , 𝛼𝑝} and 𝑒 ∈ ℚ(𝐸𝑞∩𝐸𝑞). We must see that 𝜙𝑞(𝑒)(𝜉) = 𝜙𝑝(𝑒)(𝜉). Take 𝑟 ∈ 𝐻 such that
𝑟 ≤ 𝑞, 𝑝. Then 𝜉 < 𝛼𝑟 and 𝑒 ∈ ℚ(𝐸𝑟 ), and by item (5) of Definition 4.2.1, 𝜙𝑞(𝑒)(𝜉) = 𝜙𝑟(𝑒)(𝜉) =

𝜙𝑝(𝑒)(𝜉).

Now let 𝛼 < c and 𝑒 ∈ ℚ(𝜆) such that 𝑒 ≠ 0. Since 𝑒 and 𝛼 are open and dense, let
𝑝 ∈ 𝐻 such that 𝑒 ∈ ℚ(𝐸𝑝), 𝜙𝑝(𝑒) ≠ 0 and 𝛼𝑝 > 𝛼. Since 𝜙𝑝(𝑒) ≠ 0, there is a 𝜉 ≤ 𝛼𝑝 such that
𝜙𝑝(𝑒)(𝜉) ≠ 0, and therefore Φ(𝑒)(𝜉) ≠ 0, so that Φ(𝑒) ≠ 0. And since 𝛼 ⊆ 𝛼𝑝 ⊆ domΦ(𝑒) ⊆ c,
and 𝛼 was arbitrary, it follows that domΦ(𝑒) = c.

We have thus seen that the domain of Φ is ℚ(𝜆), the codomain is 𝕋c and that Φ is
injective.

Now we see that Φ is a homomorphism. Let 𝑒, 𝑒′ ∈ ℚ(𝜆). Since 𝑒, 𝑒′ and 𝑒+𝑒′ are dense
and open, take 𝑝 ∈ 𝐻 such that 𝑒, 𝑒′, 𝑒 + 𝑒′ ∈ ℚ(𝐸𝑝). We know that 𝜙𝑝 is a homomorphism,
and so Φ(𝑒 + 𝑒′) = 𝜙𝑝(𝑒 + 𝑒′) = 𝜙𝑝(𝑒) + 𝜙𝑝(𝑒′) = Φ(𝑒) + Φ(𝑒′).

Let now 𝑔 ∈ . Since 𝑔 is open and dense, let 𝑝 ∈ 𝐻 such that 𝑔 ∈ 𝑝. We have then
that  − lim(𝜙𝑝 ◦ 𝑔) = 𝜙𝑝(𝜉𝑔). Let us see that  − lim(Φ ◦ 𝑔) = Φ(𝜉𝑔). Let 𝐹 be a finite
subset of c and let 𝛼 < c such that 𝐹 ⊆ 𝛼. Since 𝛼 is open and dense, and 𝑝 ∈ 𝐻 , let 𝑞 ∈ 𝐻
such that 𝑞 ≤ 𝑝 and 𝛼𝑞 > 𝛼. We have then that  − lim(𝜋𝐹 ◦ 𝜙

𝑞 ◦ 𝑔) = (𝜋𝐹 ◦ 𝜙
𝑞)(𝜉𝑔). Since

𝜋𝐹 ◦ 𝜙
𝑞 = 𝜋𝐹 ◦ Φ (due to 𝛼𝑞 ⊇ 𝐹 ), it follows that  − lim(𝜋𝐹 ◦ Φ ◦ 𝑔) = (𝜋𝐹 ◦ Φ)(𝜉𝑔), as we

sought for.

Finally, let ℎ ∈ 𝐺𝜔 be a one-to-one sequence. Since ℎ is open and dense, let 𝑝 ∈ 𝐻 ∩ ℎ.
Take then a 𝛽 < 𝛼𝑝 such that (𝜙𝑝(ℎ(𝑛))(𝛽) ∶ 𝑛 ∈ 𝜔) does not converge. Since Φ(ℎ(𝑛))(𝛽) =
𝜙𝑝(ℎ(𝑛))(𝛽) for each 𝑛 ∈ 𝜔, it follows that (Φ(ℎ(𝑛))(𝛽) ∶ 𝑛 ∈ 𝜔) does not converge, which
in turn implies that (Φ(ℎ(𝑛)) ∶ 𝑛 ∈ 𝜔) = Φ ◦ ℎ does not converge.
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Theorem 4.2.10. It is consistent with ZFC that given 𝜆 a countably cofinal cardinal and
 a selective ultrafilter, 𝐺 can be endowed with a  -compact Hausdorff group topology
without non-trivial convergent sequences.

Proof. Consider the forcing model obtained via forcing with  . We fix a generic monomor-
phism Φ as in 4.2.9. Since we have that Φ is a monomorphism from 𝐺 to 𝕋c, then Φ induces
a Hausdorff group topology in 𝐺 such that for any 𝑔 ∈ , there exists a 𝜉 ∈ c such that
 − lim 𝑔 = 𝜒𝜉 . Fix one such 𝜉𝑔 for each 𝑔 ∈ .

Now let us see that such topology is indeed  -compact. Let 𝑓 ∈ 𝐺𝜔. Since ([𝑔] ∶

𝑔 ∈ ) ∪ ([𝜒𝜇] ∶ 𝜇 < 𝜆) is a ℚ-basis for Ult (𝐺), there exist families (𝑟𝑔 ∶ 𝑔 ∈ )

and (𝑠𝜇 ∶ 𝜇 < 𝜆) of rational numbers, all but finitely many of which are 0, such that
[𝑓 ] = ∑𝑔∈ 𝑟𝑔 ⋅ [𝑔] +∑𝜇<𝜆 𝑠𝜇 ⋅ [𝜒𝜇] . It follows then that  − lim 𝑓 = ∑𝑔∈ 𝑟𝑔 ⋅ ( −

lim 𝑔) +∑𝜇<𝜆 𝑠𝜇 ⋅ ( − lim 𝜒𝜇) = ∑𝑔∈ 𝑟𝑔 ⋅ 𝜒𝜉𝑔 +∑𝜇<𝜆 𝑠𝜇 ⋅ 𝜒𝜇 and 𝑓 has a  -limit.

Finally, there are no non-trivial convergent sequences since for each ℎ ∈ 𝐺𝜔 one-to-
one, Φ ◦ ℎ does not converge, which means that in the induced topology on 𝐺, ℎ does not
converge.
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