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Resumo

Matheus Koveroff Bellini. Topologias de grupo enumeravelmente compactas em
grupos abelianos livres de torsao. Tese (Doutorado). Instituto de Matematica e Esta-

tistica, Universidade de Sio Paulo, Sdo Paulo, 2022.

Este trabalho apresenta avancos obtidos em resultados de consisténcia na area da algebra topolégica,
em particular sobre topologias de grupo enumeravelmente compactas e se é possivel que elas possuam
sequéncias convergentes ndo-triviais. Com melhorias e avan¢os nos métodos e técnicas ja consolidados
nessa linha de pesquisa, obtivemos os seguintes resultados, os dois primeiros ja publicados em periddicos
internacionais com arbitragem por pares: primeiro, obter topologias de grupo p-compactas sobre grupo
abelianos livres de torsdo sem sequéncias convergentes nio-triviais, em que p é um ultrafiltro seletivo;
segundo, obter topologias de grupo sobre grupos abelianos livres arbitrariamente grandes sem sequéncias
convergentes néo-triviais cujas poténcias finitas sdo todas enumeravelmente compactas, assumindo ¢
ultrafiltros seletivos incomparaveis; terceiro, um modelo de forcing em que um grupo abeliano livre de
torsdo cuja cardinalidade é enumeravelmente cofinal admite uma topologia de grupo p-compacta, em que
p é um ultrafiltro seletivo. Estes resultados sdo fortalecimentos da teoria ja estabelecida e apresentam os
primeiros exemplos consistentes no que diz respeito as propriedades de p-compacidade e grandeza arbitraria

em seus respectivos contextos.

Palavras-chave: Topologia geral. Teoria dos conjuntos. Algebra topolégica. Topologia conjuntista. Com-
pacidade enumeravel. Grupos enumeravelmente compactos. Grupos livres de torséo.

Sequéncias convergentes. Combinatéria infinitaria. Ultrafiltros seletivos. Forcing.






Abstract

Matheus Koveroff Bellini. Countably compact group topologies on torsion-free
Abelian groups. Thesis (Doctorate). Institute of Mathematics and Statistics, University
of Sao Paulo, Sao Paulo, 2022.

This work presents advancements obtained in consistency results on the field of topological algebra,
especially concerning countably compact group topologies and whether they may contain non-trivial
convergent sequences. Furthering the methods and techniques already established in this line of research, we
have obtained the following results, the first two of which already published in international journals with
peer arbitration: first, obtain p-compact group topologies on arbitrarily large torsion-free Abelian groups
without non-trivial convergent sequences, for p a selective ultrafilter; second, obtain group topologies on
arbitrarily large free Abelian groups without non-trivial convergent sequences all of whose finite powers
are countably compact, assuming ¢ incomparable selective ultrafilters; third, a forcing model in which a
torsion-free Abelian group whose cardinality is countably cofinal admits a p-compact group topology for
p a selective ultrafilter. These results improve upon previously established theory and showcase the first
consistent examples regarding the properties of p-compactness and arbitrarily largeness in their respective

settings.

Keywords: General topology. Set theory. Topological algebra. Set-theoretic topology. Countable com-
pactness. Countably compact groups. Torsion-free groups. Convergent sequences. Infinitary

combinatorics. Selective ultrafilters. Forcing.
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Chapter 1

Introduction

The study of group topologies on torsion-free Abelian groups, and whether they can
be countably compact or have nontrivial convergent sequences can be traced back to a
result by Halmos (HAaLMmoOs, 1944), stating that R can be endowed with a compact group
topology. This topology, in particular, is countably compact and has nontrivial convergent
sequences.

The study of countably compact groups without nontrivial convergent sequences has
three main questions:

1. What groups admit such topologies?
2. Do they exist in ZFC?
3. How large can the examples be? How productive can countable compactness be?

A lot of work has been done regarding the first question. Dikranjan and Tkachenko
DikraNjAN and TKACHENKO, 2003, using Martin’s Axiom, classified the Abelian groups of
cardinality up to ¢ that admit such topologies. This was later improved in M. K. BELLINI
et al., 2021 under the use of ¢ selective ultrafilters.

Dikranjan and Shakhmatov DikrRANJAN and SHAKHMATOV, 2005 used forcing to classify
all Abelian groups of cardinality at most 2° that admit a countably compact group topology
without non-trivial convergent sequences, and in M. BELLINI et al, 2021, we use forcing to
classify all the ones that admit such a topology with convergent sequences.

Question 2 was the most sought after question in the subject. It has finally been
answered by M. Hrusak, U. A. Ramos-Garcia, J. van Mill and S. Shelah in HRUSAK et al.,
2021, who use new techniques. These new ideas have two limitations: the construction
depends on the use of a group of finite order and the example has cardinality c. It is
not yet known whether the techniques can be adapted to produce such topologies on
torsion-free groups or on a larger torsion group. In this work it was also proved that if p is
a selective ultrafilter, then the Boolean group Ult,([w]*®) is p-compact, where Ult, stands
for “ultrapower by p”, and the operation of the boolean group [w]<“ is symmetric difference.
Their technique does not work for non-torsion groups, or for larger groups.

Still speaking of torsion groups, regarding Question 3, Castro-Pereira and Tomita
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CAsTRO-PEREIRA and A. H. ToMITa, 2010 classified, using some cardinal arithmetic and the
existence of a selective ultrafilter p, all the torsion groups that admit a p-compact group
topology (without non-trivial convergent sequences). This in particular generated large
countably compact groups without non-trivial convergent sequences in torsion groups.
Before the result in HRUSAK et al., 2021, it could still be hoped that every countably compact
group is p-compact for some ultrafilter. Now this possibility is gone, since the existence of
a countably compact group without non-trivial convergent sequences in ZFC implies the
existence of a countably compact group whose square is not countably compact in ZFC
A. TomrTa, 2005. (We recall that a topological space is p-compact for some ultrafilter p if
and only if all of its powers are countably compact.)

Moving on to torsion-free gorups, also in HRUSAK et al., 2021, the authors expected
to produce an example for an ultrafilter in ZFC, but for now, the quest has foremost
shifted to selective ultrafilters. The use of selective ultrafilters arises from improving on
seminal results that relied upon CH or Martin’s Axiom (which implies the existence of 2°
incomparable selective ultrafilters). These assumptions are useful in both settings which
are explored in this work: sums of Q and free Abelian groups. Related to this and the
techniques used throughout this work is the following question:

Problem: Assume p € o* is a selective ultrafilter. Does (Ult,(Z), 73,,;) contain non-
trivial convergent sequences? (Here we recall that 75 is the weak topology generated by
the family of all homomorphisms into the circle group R/Z.)

On the topic of free Abelian groups, it is well known that a nontrivial free Abelian
group does not admit a compact Hausdorff group topology. Tomita (A. H. TomiTa, 1998)
showed that it does not even admit a group topology whose countable power is countably
compact.

Tkachenko (TkacHENKO, 1990) showed in 1990 that the free Abelian group on ¢
generators can be endowed with a countably compact Hausdorff group topology under
CH. Tomita (A. H. TomiTa, 1998), Koszmider, Tomita and Watson (KoszMmIDER et al., 2000),
and Madariaga-Garcia and Tomita(MADARIAGA-GARCIA and A. H. TomITA, 2007) obtained
such examples using weaker assumptions. Boero, Castro-Pereira and Tomita obtained such
an example using a single selective ultrafilter (A. C. BoErO, CASTRO-PEREIRA, et al., 2019).
Using 2¢ selective ultrafilters, the example in MADARIAGA-GARcIA and A. H. TomiTa, 2007
showed the consistency of a countably compact topology on the free Abelian group of
cardinality 2°. All forcing examples so far have their cardinalities bounded by 2°. E. K. van
Douwen showed in DouwEN, 1980b that the cardinality of a countably compact group
cannot be a strong limit of countable cofinality.

Boero and Tomita (A. C. Boero and A. H. TomiTa, 2011) showed from the existence of
¢ selective ultrafilters that the free Abelian group of cardinality ¢ admits a group topology
whose square is countably compact. Tomita (A. H. Tomita, 2015) showed that there exists
a group topology on the free Abelian group of cardinality ¢ that makes all of its finite
powers countably compact.

With respect to infinitely divisible torsion-free Abelian groups, in particular direct
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algebraic sums of Q (one of which is R, since it is as a Q-vector space it has basis size ¢),
Tkachenko and Yashenko TkacuENKO and YASCHENKO, 2002 first showed from Martin’s
Axiom that R can be endowed with a countably compact group topology without non-
trivial convergent sequences. In A. C. Boero and A. H. TomiTa, 2010, such a topology was
constructed using ¢ selective ultrafilters. In A. Bogro et al., 2015, it is shown that there
is a group topology without non-trivial convergent sequences such that R? is countably
compact, a first step to make larger powers of R countably compact.

The proof that a free Abelian group F does not admit a group topology such that F® is
countably compact relies on the fact that the only element of F that is infinitely divisible
is 0. Since Q is a divisible group, it seemed to be a candidate for a torsion free group that
admits a p-compact group topology. Another good reason to look at direct sums of Q was
the argument that they are the test space for pseudocompactness of non-torsion groups
(W. ComroRT and REMUS, 1993).

This thesis is divided thus:

In Chapter 2, we show how Q) can be endowed with a p-compact group topology
without nontrivial convergent sequences, given p a selective ultrafilter and x an infinite
cardinal such that ¥ = k.

In Chapter 3, we assume the existence of ¢ incomparable selective ultrafilters to show
that, for every infinite cardinal x such that x“ = k, the free Abelian group on k generators
can be endowed with a group topology without nontrivial convergent sequences such that
all of its finite powers are countably compact.

In Chapter 4, we build a forcing poset in order to show that it is consistent that,
assuming a selective ultrafilter U, for a cardinal A of countable cofinality, Q(’D admits a
U’-compact group topology.






Chapter 2

On the p-compactness of
arbitrarily large sums of Q

2.1 Introduction

This chapter will lay out and detail the achievement of two goals obtained through the
use of a selective ultrafilter: construct a p-compact group topology without non-trivial
convergent sequences over a torsion-free Abelian group and construct arbitrarily large
countably compact group topologies over some torsion-free group.

On the direct sum of Q’s: some history, the setting and the aim

Halmos HaLmos, 1944 proved that R can be endowed with a compact group topology,
which in particular contains non-trivial convergent sequences. Recall that algebraically R
is the direct sum of ¢ copies of Q.

Tkachenko and Yashenko TkacHENKO and YASCHENKO, 2002 showed from Martin’s
Axiom that R can be endowed with a countably compact group topology without non-
trivial convergent sequences. In A. C. Boero and A. H. TomiTa, 2010, such a topology was
constructed using ¢ selective ultrafilters. In A. Bokro et al., 2015, it is shown that there
is a group topology without non-trivial convergent sequences such that R? is countably
compact, a first step to make larger powers of R countably compact.

The proof that a free Abelian group F does not admit a group topology such that F® is
countably compact relies on the fact that the only element of F that is infinitely divisible
is 0. Since Q is a divisible group, it seemed to be a candidate for a torsion free group that
admits a p-compact group topology. Another good reason to look at direct sums of Q was
the argument that they are the test space for pseudcompactness of non-torsion groups
W. ComrorT and REmus, 1993.

The first advantage we noticed is that an ultrapower of a direct sum of Q is a vector
space, a useful fact for the construction of large countably compact groups without non-
trivial convergent sequences in CASTRO-PEREIRA and A. H. TomiTa, 2010. As for Abelian
groups, their ultrapowers are never free Abelian groups.
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Our aim for this chapter is: given a free ultrafilter p and a cardinal k such that k = k,
to show that ), O has a p-compact Hausdorff group topology without non-trivial
convergent sequences.

2.2 Notation

Throughout this chapter we fix an infinite cardinal x such that k = k“.
Let T be the Abelian group R/Z.

Let G be the Abelian additive group Q® :={g € Q* : |supp g| < w} and let H be the
Abelian additive group Z® := {g € Z* : |suppg| < w}. IfC Ck,1et Q© :={g € G :
supp g € C}.

Definition 2.2.1. Given s € k, we denote by y, the element of G such that supp y, = {u}
and y,(p) = 1.

Given p € k, we define Ji as the constant sequence whose value is .
IfACwand{ : A— k, then we define y; € G* by y;(n) = yy(ny foreachne A. O

Definition 2.2.2. Given A C w and s = (s, : n € A) a sequence of rational numbers, we
denote by sf the function in G* given by (sf)(n) = s,f(n), for each n € A.

Given A C G4, we define sA := {sf : f € ALIfs : A - Q\{0}, we define
% = {%f : f € A}. [

Definition 2.2.3. Given an ultrafilter g, we define an equivalence relation on G by letting
f =g gifandonlyif{n € w : f(n) = g(n)} € g. We denote by [ f], the equivalence class
to which f belongs, and by G“/q the quotient G/ =,. Notice that this set has a natural
Q-vector space structure. This group is known as the g-ultrapower of G, and is denoted by
Ult,(G). ]

2.3 Homomorphisms, arc functions and arc
equations

Our approach to construct the group topology is to consider the weak topology gener-
ated by an appropriate family of homomorphisms from G into T. These homomorphisms
will be constructed by considering successive approximations by arcs. Thus, the following
definition is helpful.

Definition 2.3.1. Givena € R,leta+Z ={a+n : n€ Z}. Also,if | CR,letI + Z =
{a+ Z : a € I}, which is a subset of T.

If S€ Z and a € T, where a = b + Z for some b € R, let Sa := (Sb) + Z. Note that
given a and S, this definition does not depend on b. Moreover, given S € Z and I C T, let
SI={Sa : ael}

GivenI,J CT,letI+ ] ={a+b : a€l,b € J}. Note that this operation is associative
and commutative.
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Let B={I+Z : @ # I C R is an open interval} be the collection of all the nonempty
open arcs in T, including T itself.

An arc function is a function ¢ : k¥ — B such that supp¢ :={£ € k : $(&) = T}is
finite. This set is called the support of ¢. Given a positive € < 3, we say that an arc function
¢ is an e-arc fucntion if for every & € supp @, #(¢) has length e.

Given two arc functions  and ¢, we will say that / < ¢ if /(£) = ¢(&) or ¥(£) C §(&),
for each ¢ € k.

Given an arc function ¢ and a positive integer S, S¢ is the arc function such that
(SP)(1) = S¢p(p) for every u € k. O

We can interpret an arc function as an approximation of a homomorphism defined
from Z into T. Intuitively, ¢ tells us that the homomorphism we are approaching sends
Xe into a point in the closure of the arc (&) for every & < k. Thus, given an a € Z®, the
homomorphism we are guessing will send a in the closure of the arc }’scq,,,, @(§)P(E).
Therefore the following definition becomes useful:

Definition 2.3.2. Let ¢ be an arc function. Given a € Z®, we define ¢(a) :=

Z.fEsuppa a(§)¢(§) U]

The domain of an arc function was defined as x. No confusion arises from the previous
definition since x and Z® are disjoint.

Now we define the concept of an arc equation. We begin with an informal discus-
sion.

Imagine we are given an arc function ¢, some elements A C Z), a positive integer S
and arcs U, for each a € A. We search for an arc function ¢ such that S < ¢ and such
that /(a) C U, for each a € A.

By iterating this process and selecting an appropriate sequence os S’s, the first condition
helps us to extend the final homomorphism to Q™ instead of being defined only on Z®.
The second condition helps us to control whither some elements of Z*) are going to be
taken.

To study p-limits, it will be useful to consider sequences of elements of Z(x) instead of
simply elements. These sequences need not be defined in the whole of w, just in a member
of the ultrafilter p.

Definition 2.3.3. An arc equation is a quintuple (¢, A, A, S,U) where ¢ is an arc function,
ACw, AC(Z®)4 S is apositive integer and U = (Us : f € A) is a family of elements
of B.

Given n € A, an n-solution for the arc equation (¢, A, A, S,U) is an arc function ¢/ such
that Sy < ¢ and /(f(n)) C Uy, for each f € A. O

We will need results that tell us that n-solutions exist for many n’s. In order to achieve
such results, the notion of rational stack, which will be introduced later, shall be use-

ful.

The goal is to use this machinery to prove the following:
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Lemma 2.3.4. (Main Lemma). Fix a selective ultrafilter p. Let ¥ C G“ be a countable
collection of distinct elements mod p such that {[ f], : f € F}0{[x;], : p € k}is Q-linearly
independent in Ult,(G).

Letd, d,,d, € G\{0} with supp d, supp dy, supp d; pairwise disjoint, and C be a countably
infinite subset of x such that w U suppd U supp dy U supp d; U U ez ne,, Supp f(n) C C. For
each f € F, fixa ¢y € C.

Then: There exists a homomorphism ¢ : Q© — T such that
@ ¢(d) # 0, ¢(do) # ¢(d,), and
(b) p— hm(gﬁ(ﬁf)) = gb(%)(gf), for each f € F and N € w.
Now we use this Lemma to prove the result stated at the end of section 2.1.

For the remaining of this section, let {f, : v < a < k} be an enumeration of G” such
that | ., supp fy(n) C &, for each & € [w, k).

By applying the Main Lemma, we get the following result:

Lemma 2.3.5. Fix a selective ultrafilter p. Let I C [w,k) be such that {[f;], : & €
IYu{lxzlp : p € x}is a Q-basis for Ult,(G).

Let d € G\{0}, r € Q\{0} and B € p. Let C be a countably infinite subset of x such
that w U suppr U suppd C C and | J,,, supp fz(n) C C forevery £ e Cn L.

new

Then there exists a homomorphism ¢ : Q© — T such that

(@) ¢(d) #0,
(b) p—1lim(§( f)) = #(5 xe) for each € € Cn I and each N € w, and
(c) (gb(zﬂewpp, r(p) f,(n)) : n € B) does not converge.

Proof. Let D = suppr. Let B’ € p be a subset of B such that (3. o, (1) fu(n) : n€ B))isa
1-1 sequence, which is possible since the f,’s are linearly independent mod p with the
constant sequences and by the selectiveness of p.

Let A be an almost disjoint family on B’ of cardinality cand by, : @ — {} .ep (1) fu(n)
n € x} be a bijection for each x € A.

Claim: There exist xo,x; € A such that {[f;], : & € CnI}u{[yl, : p €
'} U{[hy1,, [hx 1} is a linearly independent subset.

Proof of the claim: Given x,, x; € A, notice that h, (n) # h,,(n) for all but a finite
amount of n’s, so [hy], # [hy],. Since Q is countable, it follows that ([h.], : x € A)
has cardinality ¢, so there is a ] C A such that [J| = ¢ and that ([A,], : x € J) is linearly
independent. Now notice that ([f;], : £ € CnI) @& {[x;], : p € C) is countable, so
there exist xo,x; € J such that {[f;], : € € CnI}u{[)zl, : p € CYu{[hy]lp [hy],} is
linearly independent. Since all the supports of these elements are contained in C, it is
straightforward to see that {[ f;], : £€ CnI}u{[yil, : p € Kk} U{[hy]p, [y ]p} is linearly
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independent.

Let F ={fy : £€CnI}Uihy, hy} Set& = pif f = f, forsome pe CnIand & =m;
if f = h,, for some i < 2 where m, # m; and mg,m; € w\ suppd. Let dy = Ym,, di = Y,
and ¢ be as in Lemma 2.3.4.

Clearly conditions a) and b) of Lemma 2.3.5 are satisfied.

Furthermore, (¢(h,,(k)) : k € @) has (¢(xm,) as an accumulation point, for i < 2. Since
these sequences are reorderings some subsequence of (¢(}. (1) f.(n)) = n € B) and
A (my) # P(xm, ), it follows that c) is satisfied. O

Finally, we may extend the above homomorphism to G:

Lemma 2.3.6. Fix a selective ultrafilter p. Let I C [w,k) be such that {[f;], : & €
IYu{lxalp : p € x}is a Q-basis for Ult,(G).

Let d € G\{0}, 7 € Q\{0}, and B € p.

Then there exists a homomorphism ¢ : G — T such that
(a) ¢#(d) =0,
(b) p—lim¢(5 fr) = $(3 xe), for each & € I and N € w, and
(©) (P2 csuppr T(1) fu(n)) : n € B) does not converge.

Proof. Let D = suppr. Let C be a countably infinite subset of k such that wUsuppd € C and
Uneo supp fz(n) C C for every &€ € C n1. Such a C exists by standard closing off arguments.
Let (&, : a < k) be a strictly increasing enumeration of k\C. Let ¢ be as in Lemma 2.3.5.

Foreacha < k,letC, :=CU{& : f < a}(soCy = C and C, = k). Note that for each
a and n € w, supp f; (n) C &, C C,.

Recursively we define homomorphisms ¢, : Q(Ca) — T for a < k satisfying:
1) ¢o =9,

(i) ¢p C ¢, whenever f < a < k, and

(it) p —lim@o(% fi) = ¢o(3 xe), foreach & € C,nIand N € w.

We let ¢y = ¢. For limit steps, just take unions. For a successor step a + 1 we proceed
as follows:

Notice that Q¢+ = Q%) @ {gq Xe. + 9 €0}

First, we define g{)Na :{qxe, + q € Q} = T by letting ¢~a ]1\\]—4)@“) = M(p - lim ¢, (5 f2,)).

Since multiplying a group element by an integer is a continuous function and since ¢,
is a homomorphism, it follows that ¢, is well-defined and a group homomorphism. Now

let ¢a+1 = ¢0{ D ¢a.

The required homomorphism is ¢,. [
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We apply this lemma to obtain the main result of this chapter:

Theorem 2.3.7. Assume that p is a selective ultrafilter and k = k“ is an infinite cardinal.
Then there exists a p-compact group topology on G = Q® without non-trivial convergent
sequences.

Proof. Let I be as in the previous lemma. For each d € G\{0}, r € QV\{0} and B € p, take
¢arp * G — T as in the previous lemma.

The group topology induced by these homomorphisms is such that the p — lim(; f) =
xXe foreach € e Iand N € w.

If h is any element of G®, there exist families (r; : £ € I) and (s, : y € k) of rational
numbers where all but a finite amount of them are 0 such that:

[h]p = 2561 r§[f§]p + Zyex Sp[)(ﬁ]p-

It follows that Y 7 e + e SpXy is the p-limit of h. Therefore, G is p-compact.

HEK

To check that there are no non-trivial convergent sequences, fix a one-to-one sequence
g. Let r € Q\{0} and s € Q® be such that:

[glp = Xeer Tel felp + 2 ex SulXilp- Let D = suppr. Then there is B € p such that: g(n) =

Y e fr(m)+ 2 e SuXys for alln € B. By Lemma 2.3.6(c), we have that (¢a,5(X¢ep 7 fr(n))
n € B) does not converge in T, and s0 (Y s 7 fe(n) : n € B) does not converge in G. Since

2 ex SuXy is constant, it follows that (g(n) : n € B) does not converge, and so g does not
converge. ]

Malykhin and Shapiro MALYKHIN and SHAPIRO, 1985 showed that under GCH there are
no pseudocompact groups without non-trivial convergent sequences whose weight has
countable cofinality. The second example in A. H. Tom1ta, 2003 showed that it is consistent
that there exists a countably compact group without non-trivial convergent sequences
whose weight is 8, < 2°. In CASTRO-PEREIRA and A. H. TomMITa, 2010, the authors obtained
consistent arbitrarily large examples of weight of countable cofinality, but the examples
are finite torsion groups.

By applying an argument similar to the one in the proof of Theorem 4.1 of A. H. Tomi1TA,
2003, it is possible to set the weight of the group to any cardinal between k and 2*.

2.4 A preliminar discussion on rational stacks

We will start this section with an informal discussion about rational stacks.

A rational stack wil be defined as a nonuple (B,v,{,K, A, ko, k1,1, T), where:
« A C w is infinite,
« T > 0 is an integer,

« K : A— w\2is such that for every n € A, (n'T) | K,
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o ko < k; are natural numbers with k; > 0,

el k - o,

eV :ky K,

« {1 kg > k”

« B=(B;; : i<k, j<lI)issuchthat each B;; C H is finite.

In order to be a rational stack, this nonuple must satisfy additional properties. The full
definition of rational stack will be given in Section 2.6. This definition was designed to
solve arc equations when constructing the homomorphisms of Lemma 2.3.4.

Before we even define the stack, we will list the main results that motivated its defini-
tion.

The Lemma below associates each finite subset of functions to a stack that will be used
to solve arc equations associated to this family.

Lemma 2.4.1. Let B € p and G be a finite subset of G” whose elements are distinct mod
p and none of them are constant mod p such that {[f], : f € Gtu{[x], : v € k}is
linearly independent. Then there exists a rational stack S = (B,v,K, A, k¢, k1,1, T) such
that, by defining A = GU{y; : i <ko}and C = M, there exist M : AxC — Z,
N : Cx A > Z satisfying:

(1) {[f], : f € A}and{[h], : h € C} generate the same subspace of Ult,(G),
(2) f(n) = X pec Myph(n), for eachn € Aand f € A,

(3) h(n) = 13 X fea Ny f(n), foreachn € Aand h € C,

(4) KA C H”,

(5) KC € H”, and

(6) Ae pand ACB.

Proof. The proof is quite technical and will be presented in a later section. [

Notice that if we interpret M and N and matrices, the M and ;N are inverse
matrices.

Roughly speaking, to prove Lemma 2.3.4, we write the countable set 7 as a countable
union of finite sets 7, and associate each of these finite sets of sequences to a stack. Then,
working inductively, in each step we need to solve some arc equations. We transform the
arc equations associated to these finite families to arc equations associated to a stack using
2.4.1, solve the arc equations using properties of the stack, then return to a solution of
the original arc equations. We want to solve infinitely many equations; thus, this process
is made back and forth. At each stage, the stack is different and there is no containment
relation between them, even though we use a larger finite subfamily of sequences.

11
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In each step of the recursive construction of the arcs used to define the homomorphism,
we have arc equations related to a certain arc size. The following two Lemmas are used to
solve these equations in a back and forth manner.

Lemma 2.4.2. Let S, A, C, M and N be as in Lemma 2.4.1. Let € be a positive real and D
be a finite subset of x. Then there exist B C A cofinite in A and a family of positive real
numbers (y, : n € B) such that:

For every n € B, for every family W = (W), : h € C) of open arcs of length ¢, and
for every arc function ¢ of length € such that suppyy € D\{v; : i < ko}, there exists and
n-solution of length y, for the arc equation (¢, B, KC, K,,, W).

Proof. The proof is quite technical and will be presented in a later section. [

Lemma 2.4.3. Let S, A, C, M and N be as in Lemma 2.4.1. Let § be a positive real such

_ 5 1
that e = 2 peanec Mgl <3

Let (Us : f € A) be a family of open arcs of length §. Let p be an arc function of length
d such that U,. = p(v;) for i < ko. Furthermore, assume that {v; : i < k,}subseteq supp p.

Then, there exist W = (W), : h € C) a family of open arcs of length € and ¢ and e-arc
function with support supp p\{v; : i < ko} such that for every n € A, every n-solution for
the arc equation (¢, A, KC, K,,, W) is an n-solution for (p, A, KA, K,,,U).

Proof. Given f € A, let ys € R be such that y; + Z is the center of the arc Uy.

Foreach h € C, let z;, = X4 N, f%. Since N is an integer matrix, it follows that
z,+7Z = ZfeA Nh,f(% + Z). Let W), be an arc centered on zj, + Z whose length is €.

Let /(1) be an arc with the same center as p(u) of length € for each u € supp p\{v; :
i < ko}and ¥(v;) = T for each i < k.

Suppose ¢ is an n-solution for (¢, A, KC, K,, W).
Then @¢(K,h(n)) C Wp, for each h € C. Also, we have that, for each p € k\{v; : i < ko}:

Kap() <y(u) < p(p).  (#)

Let f € A.
Notice that for each 1, 3’ MppKuh(n)()¢(p) = K, f(n)(1)$(p). Therefore,

DYMpn Y, KhmWe = Y, K fm)(we(w).
heC pesupp h(n) pesupp f(n)
It follows that:

K. f(M) = Y, K fme() € Y, MW

uesupp f(n) heC
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The arc Y ,cc MWy is centered on Y ec Myn(zn + Z) = Ypee My Xigen ./\fh,g(% +
Z) =Y en 2onee MpaNng(F+2Z) = yp+Z, and has length €- 3, | My, [< 8. Therefore,

Z Mf,hWh C Uf. (*)
heC

Thus, ¢ is an n-solution for (p, A,K.A, K,,U), as required, provided that we show
K.¢ < p.

From (), if f = y;, then K,¢(v;) = K, x5, (m)(v)p(v:) € Uy, = p(v), hence K,$(v;) <
p(v;) for each i < ky. This and (#) imply that K,¢ < p. ]

2.5 Proof of the Main Lemma using the properties of
the stacks

Our goal in this section is to prove Lemma 2.3.4 using the lemmas in the previous
section. First we state the following lemma:

Lemma 2.5.1. Fix a selective ultrafilter p. Let 7 C G® be a countable collection of distinct
elements mod p such that {[f], : f € F}U{[x;l, : ¢ € x}is Q-linearly independent in
Ult,(G).

Letd, dy,d; € G\{0} with supp d, supp dy, supp d; pairwise disjoint, and C be a countably
infinite subset of x such that w Usupp dUsuppdyUsuppd; € C and | ser e, supp f(n) C C.
For each f € F, choose & € C. Let (F" : n € w) be an increasing sequence of finite sets
whose union is F.

Then there exist:

. stacks S™ = (B™,v", (™, K™, A", kI, k™, 1", T™) and .A™, C™, M™, N'™ related to the
stacks as in Lemma 2.4.1,

« r: wU{-1} - w such that r[w] € p and r(—1) = 0,
- a sequence of arc functions (p"™ : m > —1) with C C |J,,5_, supp p"™, and
- a sequence of integers (N, : m € 0 U{-1})
satisfying, for every m, m’ such that —1 < m’ < m < w, the following:
(a) 0 ¢ p°(d) and p°(do) N p°(dy) = @,

(b) for every & € supp p"™*, we have A]QL; pmI(E) € pr () and %Lm*/l (&) has

length at most 5,

(c) for every f € F™, we have Kr((:n”ll)p’('”“)( flr(m+ 1)) C p"™(&)

r

(d) for every f € F'™, we have %Ln;lp’(’”“)(f(r(m +1))) C p’(’"l)(g*f),
(e) supp p™ C supp p"™*Y, and
(f) N,y = 1and N,,,; = [T, K’

r(i+1)°

13
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Proof. Let p, F,d, dy, di, C and (& : f € ) be given. Write C as an increasing sequence
of finite sets (C" : n € ) such that for each n € w, | {supp f(k) : f € F*andk < n} C C",
and suppd U suppd, U suppd; C C°.

Apply Lemma 2.4.1 to G = F° and B = o to obtain a rational stack S° =
(B°,v°, % KO, A° k3, K0, 1°,T°) and A°, C°, M° and N° satisfying (1)-(7) as in the Lemma.

Fix §° € R such that 0 < §° < 7 and p° a §°-arc function such that 0 ¢ p°(d) and
p°(dp) N p°(d;) = @. We will also assume that C° u {v? : i < k{} C supp p°.

Let € = 206—0()|A4°\' Notice that with this €’ we may apply Lemma 2.4.3.
feAY heB! f.h

Now we apply Lemma 2.4.2 with D = C° to obtain B° C A°\1andy° = (y? : n € B®) as
in the Lemma.

Suppose the following are defined: (B’ : t < m) a decreasing family of elements of p
andy! fort <mandn € B'.

Define ™! = ! ﬁ min({y! : t <n<m+2,n€B}ufl}).

om+2

Apply Lemma 2.4.1 with ¢ = F™'! and B = B™ to obtain a stack S™"! =
(Bm+1’Vm+1,é"m+1,Km+1,Am+1,k6n+1,k§n+1’lm+1’Tm+1) and Am+1’ Cm+1’ Mm+1 and J\/‘m+1 re-

lated to the stack as in the lemma. Then A™™ C B™. Let €™ = ™ Notice
ngA"Hlytherl ‘th |

that with this €"*! we may apply Lemma 2.4.3.

Now we apply Lemma 2.4.2 with D = C™*! to obtain B™"!' C A™"\m + 2 and y"*' =

(yr*! : n € B"™") as in the Lemma.

We will use the happiness of the selective ultrafilter p: the sets constructed previously
B D B! D ... are all elements of p, so there exists a function r € w® such that r[w] € p,
r(0) € B® and, for all n € w, r(n + 1) € B'™. (This follows from Proposition 11.6 of
HALBEISEN, 2012.)

Define U’ = (U} : f € A"), where U} = p°(&) if f € F* or Up = p(v}) if f = xp.
By Lemma 2.4.3 applied on stage 0, we obtain ¢y and W as in the conclusion of Lemma
2.4.3. Now, according to the conclusion of Lemma 2.4.2 applied to stage 0 of the con-

struction, since r(0) € B°, we obtain an r(0)-solution ¢° of length yro(o) to the arc equation
(1, B, K°C°, KY, W).

Now, using the conclusion of Lemma 2.4.3, we have that ¢° is an r(0)-solution to
(p°, B%, K A%, K}y, U°). In particular, we have, for each f € 7, ¢°(f(r(0))) S p°(&y).

Let r(—1) = 0 and (N,, : m > —1) as in (f). We can recursively construct: ¢’ pr™
a 8"™-arc function with C"™ C supp p"™, and U™ such that, for every m, m’ such that
-1<m<m<w:

(1) ¢r(’") is an r(m + 1)-solution of length yr(’")

r(ms+1) fOI the arc equation

(pr(m) Br(rn) Kr(m) Ar(m) Kr(m) Ur(m))

2 Mr(m+1)°

(2) pr(m+l) S ¢r(m)’
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(3) for every & € supp p'™*, we have }X,L; PO € pr (&) and %j: p"mD(E) has
length at most 355,

(4) for every f € F'™, we have Kr((r;”ll)pr(m“)(f(r(m +1))) C p™(&p),

r

(5) for every f € F'™, we have %L;pr(m“)(f(r(m +1))) C p' (&),
(6) supp p'™ C p"*D, and

(7) U = (U™ : f € A™), where U™ = p"™(&)if f € F™ or U™ = prm(vj™)

The base of the recursion is already done. Suppose the construction is done until step m
and let us define ¢+, pm+D and Uromy),

Let p"™*D be a §"™+-arc function such that supp p ™ uC ™Dy - < Dy ¢
supp pr(m+1) and pr(m+1) < ¢r(m)'

Now define U"m+D = (U;(m+1) . fe Ar(m+1))’ where U}(m+l) — pr(m+1)(§f) if f e Frim+1)
or U}("’“) = pr (I f £ = Xyom+n. By Lemma 2.4.3 applied on stage m + 1, we obtain
¥ and W as in the conclusion of Lemma 2.4.3. Now, according to the conclusion of Lemma

2.4.2 applied to stage m+1 of the construction, since r(m+2) € B, we obtain an r(m+2)-

solution @™ of length y:((rrsizl)) to the arc equation (i, B+, KD Crim+), K;((,;":ZI)) JW).

Now, using the conclusion of Lemma 2.4.3, we have that gbr(’”“) is an r(m + 2)-solution
to (pr(m+1) Br(m+1) Kr(m+1)Ar(m+1) Kr((m_:'zl)) Ur(m+1))
5 5 b r(m b .
Having p"™V and ¢"™*Y been thusly defined, items (1), (2), (6) and (7) of the recursion
are immediately satisfied.

In order to verify item (3): the second statement follows from the definition of &+,
As for the first statement, use items (1) and (2) and then use item (3) iteratively.

Item (4) follows from items (1) and (2) and the definition of U™,
Item (5) follows from multiplying the expression in (4) by f\\]]—"’/ and then applying item
(3) for m’ and m — 1.

Now that the recursion is complete, notice that items (a)-(e) of the statement of the
Lemma are clearly satisfied. ]

Now we are ready to prove Lemma 2.3.4.

Lemma (Main Lemma). Fix a selective ultrafilter p. Let 7 C G” be a countable collection
of distinct elements mod p such that {[f], : f € F}U{[yl, > p € «}is Q linearly
independent in Ult,(G).

Letd, d,,d, € G\{0} with supp d, supp dy, supp d; pairwise disjoint, and C be a countably
infinite subest of x such that suppd U suppd, U suppd; U fernew SUPP f(n) € C. For each
f € F,choose & € C.

Then there exists a homomorphism ¢ : Q© — T such that

15
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(@) #(d) # 0, (do) # $(dy), and
(@ p-— hm(¢(%f)) = ¢(%)(§f), for each f € F and P € w\{0}.

Proof. Let S™, A™, C™, M™, N™, F™, (N,, : m > —1),r, (p’(m) : m € w), and p° be as in
the previous lemma.

Given a positive integer m” and & € Cnsupp p'™", define (- )(g) as the unique element
of Mo = Sz p"(m(£). Furthermore, if P divides N, then define ¢( SXe) = P 2 $(5- xe)- Then,

since n! | K] for every n and m, ¢(5 x;) is well-defined and does not depend on N,, and
thus ¢ can be extended to a homomorphism.

Notice that since 0 ¢ p°(d) and p°(dy) N p°(d;) = @, it follows that ¢(d) # 0 and
$(do) = $(d).

Let f € F and P be a positive integer. Let M be a positive integer such that f € FM.
Claim: ((;S(%f(r(m))) : m € w) converges to ¢(}1,)(§f).

Proof. Let m > M be such that P divides N,,_; and &; € C n supp p"™V. Then
¢(5 f(r(m)) =

¢(% Zyesuppf(r(m)) f(r(m))(,u))(,u) =
! (r(m))(ﬂ)

P2 esupp £-m) Xu) =

Zﬂesupp f@r(m)) ¢(f(r(m))(y))(u) =

Zp(—:suppf(r(m)) f(r(m))(ﬁ) N, ¢( 1 Xu) —

ENm1 X esupn e Koy L rm) (iD= x) €
5Nt Dscsupp e Krmy S T primy (1) €

%Nm—l pr(m—l)(gf)'

This last set is a neighborhood of ¢(5 Xe;) and has length at most el

This proves the claim. ]

Since r[w] € p, it follows that the p-limit of (#(5 f(n)) : n € ©) is ¢ xe,)- O

2.6 Defining rational stacks

We define stacks as a tool to solve a system of arc equations. The definitions and the
ideas of the construction of rational stacks are motivated by A. H. TomrTa, 2015.

We need to solve arc equations related to representatives of a basis for Ult,(G). Thus,
we construct a stack, associate the original arc equations to arc equations for the stack,
solve the arc equations for the stack and convert these solutions to solutions to the original
system of arc equations.
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Now we give the full definition of rational stack.
Definition 2.6.1. A rational stack is a nonuple (B,v,{, K, A, ko, k1,1, T), where:
o A C w is infinite,
e ko < k; are natural numbers with k; > 0,
el k> w,
v : ky—K,
o (kg = K°,
« K : A— w\2is such that for every n € A, n!T | K,,
« B=(B;; : i<k, j<l)issuch that each B;; C H is finite, and
« T > 0 is an integer,
satisfying the following requirements:
(i) &(n) =v; foreveryi<kyandn € A,
(ii) vy, for i < ko, and {;(n), for ky < j < k; and n € A, are all pairwise distinct,
(iii) ¢i(n) € supp h(n), for eachi <k, j<l,he B;jandn € A,
(iv) &i(n) ¢ supp h(n), for each i < i, <k, j<I,,h€ B, jandn € A,

v) (W)YM converges, monotonically, to 400, —co or a real number, for each i < ki,
j < li and h € Bi,js

(vi) for every i < k; and j < [;, there exists a h, € B;; such that for every h € B},
h(n)(&(n))
h.(m)(&(m)

pendent (as a family of elements of R considered as a Q-vector space),

) converges to a real number 0! and (9} : h € B;;) is linearly inde-
neA * *

(vii) for each i < ky, j/ < j < I, b’ € B,y and h € B}, (;&'3;&’}{3) 3 converges,
n

monotonically, to 0,
(viii) for each i < ky, there exists j < ; such that % Xi, € Bij,
(ix) (| h(n)(&i(n)) Dnea is strictly increasing, for each i < ky, j <, and h € B;,
(x) foreachi <k, j <Il;and h, h, € B;;, either
o« [RGDGm) [] h.(n)(G)) |, for each n € A, or
« [REGM) [=| ho()(G@)) |, for each n € A, or
« [ h()(&G(m) <] h.(n)(&(n)) | for each n € A,
and

(xi) for all u € k, given g € |, By with kg < i < ky, if {n € w : p € supp g(n)} € p,
then ("’T("T):”))MA is constant.

The family B; ; is called the (i, j)-brick of the stack. ]
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Notice that (vi) implies that for any i < k;, j < [; and h. € B, ;, we have that for every

h(n)(&(m) h hoo. o 1
h € B, ( h*(”)@i(”))>neA converges to a real number 0, and (0; : h € B;)) is linearly

independent. This is why the notation 9,’; carries the h., even though in (vi) it seems we
are singling out an h, € B, ;.

The idea to use the stacks to solve arc equations back and forth is based in A. C. Bokro,
CASTRO-PEREIRA, et al., 2019.

2.7 Solving arc equations on a level of a rational
stack

The main tool to solve the arc equations of rational stacks is the same used for integer
stacks and we state the lemmas used in A. H. Tomrta, 2015. However, there is a crucial
difference in the way the stack was defined, so we separate when the denominator grows
compared to the numerator, when the numerator and denominator are pretty much at
even speed and when the numerator grows compared to the denominator.

In this section we prove Lemma 2.4.2, which tells us that there exist extensive families
of solutions for arc equations related to stacks.

An application of Kronecker’s theorem

Kronecker’s theorem says that if {1,0,,...,0x_} is a linearly independent family of
the Q-vector space R then {(Oyn + Z,...,0i_in + Z) : n € Z} is a dense subset of TF
(see BROCKER and DiEck, 1985). From this theorem it is possible to prove the following
lemma:

Lemma 2.7.1. (Lemma 4.3 of A. H. Tomrta, 2015) If (6,, ..., 0,_1) is a linearly independent
family of the Q-vector space R and € > 0, then there exists a positive integer L such that
{(Oox +Z,...,0,_1x + Z) : x € I} is e-dense in the usual Euclidian metric, for any interval
I of length at least L.

Given € > 0 and 0 = (0; : i € I) a finite linearly independent family of R as a Q-vector
space, fix an integer L(0, €) satisfying the conditions in Lemma 2.7.1.

Lemma 2.7.2. (Lemma 4.4 of A. H. TomriTa, 2015) Fix a positive real €* < é Let 6 =
(6o, ..., 0,_1) be a linearly independent family of R as a Q-vector space.

Set L = L(0,€*) and let (ay, ..., a,_1) be a sequence of integers such that
(i) |ao|>...>| a,-1 | and
(ii) | Ox — Z—i |< ﬁ for each k < r.

Then
L

(@) {(aox,...,a,_1x) : x € J}is 2¢*-dense for any arc J of length at least -~ and

|aol

or any arc J of length at least 3— an any open ball of radius 4¢* (in wit
b) for any arc J of length at 1 & and U any open ball of radius 4¢* (in T with

the Euclidean metric), there exists an arc K contained in J of length \/477;0| such that
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{(apx,...,a_1x) : x e K} C U

Solving arc equations on a level of a rational stack
Now we are ready to prove Lemma 2.4.2.

Lemma (2.4.2) Let S, A, C, M and N be as in Lemma 2.4.1. Let € be a positive real and D
be a finite subset of x. Then there exist B C A cofinite in A and a family of positive real
numbers (y, : n € B) such that:

For every n € B, for every family (W, : h € C) of open arcs of length €, and for every
arc function ¢ of length € such that suppyy € D\{v; : i < ko}, there exists an n-solution of
length y, for the arc equation (¥, B, KC, K, W).

Proof. For each (i, j) with i < k; and j < [, fix u; ;,v;; € B;; such that for every h € B;;

and n € A, | u; ;(n)(G(n)) [<] h(n)(&i(n)) I<] v; j(n)(G(n)) |. Fix an €* < min{g, ;e}. For each

i < ki, j<l andh € By, let 6, be the limit of (%) Let®,, = (6, : h e B,,)and
1/ W&GM) J e g

let L be a fixed integer greater than L(0; ;,€*) for any i < k; and j < ..

Let B C A be the set of n’s in A such that

_ _hm)(EGm) €* ; i . .
(@) | 6y, N OAO) |< NPT foreachi <k, j<land h € B,

< €*, foreachi < ki,

(b) Jog, -1 (&G (n)(§ (m)

4e* . .
(c) s l(n)(“n))‘ ST for each i < k; and j < [;, and

d) {Gn) : kg <i<k}nD=0.

Notice that B is cofinite in A, and therefore is in p. Let y, = 73 +1)ma;{*|\h(n)||: nem for each
n € B, where |h(n)| = Zyesupph(n) | h(n)(p) |- Now let (W}, : h € C) and ¢ be given. Fix
n € B.

For each h € C, fix V;, C W), an arc of length 4¢™.

Given an arbitrary e-arc function ¢ as required, fix * and e*-arc function such that

supp¢* C D, suppy* n{G(n) : i <k} =, y* <y and supp h(m)\{G(n) : ko <i <k} C
suppy/”, for eachi < ky, j <l and h € B;;.

For each i € supp §/* choose x,, € T such that K,x, is the center of 1/*(y).

For each i < ky, j < I;, and h € B;;, notice that {{y(n), ..., {,-1(n)} n supp h(n) <
{Gi(n), ... G- ()}

We will define, by downward recursion, for i < ki, an arc Q;o € T.

Let On = Vi = X yesupp hon iy (M), for each h € By j, i < ky and j <1,

For the first step i, = k; — 1, we will define Q;, ; for j <[, also by downward recursion.
So let j. =1I;, — 1 be the first step.
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Fix an arbitrary arc J of length at least m and U, ;, the ball of radius 4¢*
i, jx ix

contained in the Cartesian product [ [, 5., On (Which is a subset of TP5is+). By Lemma 2.7.2,

there exists an arc Q;, ;, containedin J of length de” such that {(h(n)({;, (n))x :

VA1, 5, )G, )]
heB,,): x€Q, }CU,,,.

Now suppose j* < [;, and we have defined Q;, ; for all j* < j <[, . If j/ = 0 then we are
done for step i, = k; — 1.

If not: by (c), it follows that de” and Q;, y has length

3L <
i, @GN = JJA+ 1y, ()G, ()
exactly the right side of the inequality above. Let U;, y_; be a ball of length 4€* contained in

O,,. Applying Lemma 2.7.2, there exists an arc O; »_; of length de”
HheBl},j’*l h pp y g Ql*,] 1 g \/‘A|+1‘U,’*J‘/—1(n)(§i* )|

contained in Q;,  such that {(h(n)(§;,(n))x : h€ By y_1) : x € Q;, y—1} C UV, y1.

We thus obtain, for i, = k; — 1, Q;,; an arc of length de” such that
’ VA1, o ()&, ()]

{(h(n)(G.(M)x : he B ;) : xe€Q,;} C HheB,-w- Oy, for each j < I;,. At the end, we will
have defined Q;, ,.

Let x; () be the center of Q; . By the definition of Oy, we have O, = V, —
Zyesupp O\ )} h(n)(p)x,, for each j <[, and h € B; ;.

It follows then that Y o0y POD(IX) € X cqupp iz, o FD()x, + O =V, for
each j<I, andh € B, ;.

The first step of the recursion has been carried out. Suppose now i’ < k; and Q; has
been defined for all i’ <i < k;.

If i/ = 0 then we are done. Otherwise if i’ > 0:

First it is important to notice that {{y(n), ..., {y_1(n)} N supp h(n) = {{r_1(n)}, for each
j < li'*l and h € Bl'/*l,j'

We are in conditions for i’ — 1, analogous to the first step i, that allow us to obtain

X, the center of Qy_,, the latter being an arc of length de” such that
b Qr-10 & B Tty o ()

Zp€supph(n) h(n)(//l)x/,l € Zpesupph(n)\{{i/_l(n)} h(n)(//l)x/,t + O =V, for eaChj < li'—l and h €

i—1,j-

This ends the construction of x, for each y € supp/* U {{i(n) : i < k; — 1}. Choose an
arbitrary x, for p € D\(suppy* U{i(n) : i <k; —1}).

Let ¢(p) be the arc of center x, and length y,. We show that ¢ is the solution for which
we are looking.

By the choice of x, and since /" < ¢/, it follows K,¢ < ¢.

Secondly, if h € B;; then ¥ onm H()(1)x, € V. It follows that the center of
2 pesupp h(wy B()P(p) is contained in V;, and this arc has length at most

*

S W =Y, W | ‘ :

<E€.
sesaonhn) sesaonhn) (I A +1) max{|h(n)| : h € B}
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Therefore, any point of the arc ¢(h(n)) is at a distance smaller than €* + 2¢* from

the center of Vj. Since W), and Vj have the same center and 3¢* < it follows that

¢(h(n)) € Wy. Thus, ¢ is an n-solution of length y, for the arc equation (¢, B, KC, K,,, W),
as was required. [

2.8 Constructing a sequence of rational stacks

All that remains to be done is to prove Lemma 2.4.1, which guarantees the existence of
stacks associated to a linearly independent finite set of sequences.

Given a finite sequence of functions we start by finding an element of the ultrafilter p
that makes the restricted functions closer to the properties we want for the stack.

Lemma 2.8.1. Suppose that G is a finite subset of G“, p is a selective ultrafilter and C € p.
Suppose {, {. € k® are such that there exist g, € Gsuchthat{n € C : {(n) € supp g.(n)} € p

and{n € C : {(n) = (n)} ¢ p.
Then there exist B’ € p with B C C and H C G such that:
(*1) ({(n))nep is either constant or one-to-one,

(x2) for each g € G, either {(n) € supp g(n) for all n € B’ or {(n) ¢ supp g(n) for all
nep,

(*3) H={geG:VnePB,{(n) e supp g(n)} is nonempty,

(*4) (g(n)({(n)))nep either converges strictly monotonically to +o0, —co or a real number,
or is constant and equal to a rational number, for each g € H,

(x5) given f, g € H, either | g(n)({(n)) [>| f(n)({(n)) |for alln € B',| g(n)({(n)) |=|
f(n)(Z(n)) | for alln € B, or | g(n)({(n)) |<| f(n)({(n)) | foralln € B,

gmm)

(x6) for each pair g,h € H, the sequence < )

) converges to 400, —oco or a real
nep’

number, and

(x7) {(n) # {.(m) for alln,m € B’.

Proof. Everything follows from the selectivity of p. For instance, to get B’ for which (x1)
holds, let ¢ : [C]*> — 2 be given by {({n,m}) = 0 iff {(n) = {(m) and let B’ € p be such
that B” C C and &|jp is constant (which exists by the selectivity of p). We refine B’ using
similar straightforward techniques to obtain conditions (x2) — (x7), leaving the details to
the reader. ]

Notice that if B € p is such that B C B’, then (x1) — (x7) also hold for B.

Lemma 2.8.2. Suppose that G, C, p, {, (., B" and H are as in Lemma 2.8.1.

sm(m)
&M ()

Suppose g: € H is such that for every g € H, ( ) converges to a real number
nep’

(or, equivalently, is bounded).

21
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Then there exist B C H, o : H\B — G and a family of real numbers (04, , : g € H)
such that, for every B € p with B C B":

(x8) g« € B,

§m)((m)
(*9) (m)nEB converges to 0,, ,, for every g € H,

(x10) (O, : g € B) is alinearly independent set that generates the same Q-vector space
as (0g.; © g € H),

(x11) for each g € H\B, B U {g} and B U {o(g)} generate the same Q-vector subspace of
G*,

(x12) for each g € H\Band h € B, o) (n) converges to 0,
W) ), e

(x13) if g € H\Band 0, , = 0, then o(g) = g,

(x14) if { is constantly equal to v, B = {};} and g* € H is such that (g*(n)(v)),ep is not
constant mod p, then {n € w : v € suppo(g*)(n)} € p.

Proof. Consider {0,,, : g € H} as a subset of the Q-vector space R and take B C H
containing g, such that (0, : h € B) is a basis for the subspace generated by {0,, , : g €
H}.

For the existence of o, define (ry, : § € H,h € B) by the expressions 0y, , =
Yohen Tenlg n- Now define o(g) = g — X5 Tonh for each g € H\B.

Observe now that any B € p with B C B’ satisfies (x8) — (x13).

In case the conditions in (*14) are met, first note that g; = y;, and thus 0y, g« = rg- ¢,04, .,
so that 0(g") = g" — ry 4. 8- Now, suppose Z :={n € w : v ¢ suppo(g”)(n)} € p; then,
letting Y = Bn Z, o(g*)(n)(v) = 0 for all n € Y, which implies g"(n)(v) = rg o, g:(n)(v) =
rgw g (since gy = x;) for all n € Y; that means (g*(n)(v)),ep is constant mod p, contrary to
the assumptions. Thus, item (x14) is also satisfied. O

Lemma 2.8.3. Let B € p. Suppose that { € k”, m € w, { € k“ for i < m, are such
that {n € B : Vi < m,{(n) = {(n)} € p. Suppose G is a finite subset of G* whose
elements are distinct mod p, none of them are constant mod p and such that {[ f], : f €
G u{lxily, : ¢ € k}is alinearly independent subset of Ult,(G) and there exists g € G such

that{n € w : {(n) € supp g(n)} € p.
If { is constant, let v be its value.

Then there exist finite G’ € G, [ € w\{0}, finite nonempty B; € G® for each j <[, and
A C B such that:

(1) foreveryge G, {n€w : {(n) e suppg(n)} ¢ pand{n € w : §i(n) € supp g(n)t ¢ p
for each i < m,

(2) BinBy=@forj+j,B;nG =@foreach j<land{[f], : feG ulJ,,Bj}isa
linearly independent subset of Ult,(G); also, if f,h € G’ uJ,, B; are distinct, then
[f]p * [h]p>
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(3) asvector subspaces of G*, (G'UlJ,; B;) = (GU{x;}) if { is constant and (G'UJ,; B;) =
(G) otherwise,

(4) {(n) € supph(n), foreach j <[, h € B;jandn € A,
(5) &i(n) ¢ supp h(n), for eachi <m, j<I,h € Bjandn € A,

(6) (h(n)({(n)))nea either converges strictly monotonically to +oco, —co or a real number,
or is constant and equal to a rational number, for each j <l and h € B;,

. . ' N EOEO)
(7) for every j < [, there exists h, € B; such that for every h € B, (h*(n)(gv(n))>n€A

converges to a real number 6] and (6} : h € B;) is linearly independent (as a
Q-vector space),

v ’ h(m)(¢(m) i
(8) foreach j’< j<Il, he Bjandh’' € By, (”'(")(5(”))>neA converges monotonically to 0,

(9) if { is constant, there exists j < [ such that y; € B,
(10) for each j <[ and distinct h, " € B;, either
* [h(m)({(n) [>| h'(n)({(n)) [ for all n € A, or
« [ h(m)({ () [=| h'(n)({(n)) | for alln € A, or
* [ h(m)(Z(n)) I<| K’ (n)({(n)) | for all n € A,

(11) no element of ¢’ is constant mod p and {[f], : f € G} U{[xzl, : p € x}is linearly
independent,

(12) ifi < mand n,n’ € A are distinct then {(n) = {;(n’), and

(13) |G I<IG .
Proof. Since p is selective, we may suppose by shrinking B if necessary that, for all i < m
and n,n’ € B distinct, {(n) # {;(n’). Clearly, this property will hold for any subset of B.

If { is constant, let Gy = G U {y;}. If not, let Gy = G. We will construct by recursion on
j € w:

. Aj € pwith A; CB,
« GG,
« H; C G,
« B; CH;, and
« 0;: H\B; = G*,
satisfying:
(i) A; €A, for every j € w,

(ii) for each j € w,{[f], : f € QjUUk<jBk} is a linearly independent subset of Ult,(G);
also, if f,h € QjUUk<jBk are distinct, then [f], # [h],,

(iii) for each j € w,h € H;,and n € A;, {(n) € supp h(n),
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(iv) for each j € w,h € G\H; and n € A, then {(n) ¢ supp h(n),
(v) foreach j € w,h € H;,i <mandn € Aj, then {i(n) ¢ supp h(n),

(vi) for each j € w and h € H;, (h(n)({(n)))nea, either converges strictly monotonically
to +00, —co or a real number, or is constant and equal to a rational number,

(vii) for every j € w, B; # @ iff there exists g € G; such that {n € w : {(n) € supp g(n)} €
b,

(viii) for every j € w, if B; # @, then there exists h. € B; such that for every h €
B, (%)nﬁj converges to a real number 6} and (6! : h € B)) is linearly
independent (as a Q-vector space),

(ix) foreach j < j/,h € Bjand h’ € By, then (:,((’:l))(é((':l))))) converges monotonically to
nEAj
0,

(x) if { is constant, there exists j € w such that y; € B;,
(xi) given j € w and h,h’ € Bj, either
* [h(m)(E (M) [>| ' (n)({(n)) | for all n € A;, or
* [ h(m)(¢(m) [=| ' (n)({(n)) | for alln € A;, or
* [ h(m)({(m) [<I ' (n)({(n)) | for alln € A;,
(xii) for each j € wand g € Hj, (| g(n)({(n)) ey, is either constant or strictly increasing,

(xiii) for each j € w and g € H;\B;, B; U{g} and B;{c(g)} generate the same Q-vector
subspace of G,

(xiv) foreach j € w, g€ Gjandi <m,{n € w : {i(n) € supp g(n) ¢ p,
(xv) for each j, j € w, G; U, Bx generates the same subspace of G* as Gy U |y Bk,
(xvi) if { is constant, then for all j € w, y; € B; UG,
(xvii) Gj11 = (G;\H;)Urano;,
(xviii) if { is constant, j € w and y; € H;\B;, then ¢,(};) = x;, and
(xix) if { is constant and By = {y;}, then there exists g € Hy,\B, such that{n € v : v €
supp 09(8)} € p-

Suppose we have carried on such a recursion. By (ii) and (xv), one of the BB;’s must
be empty. Let [ be the first j such that BB; = @. By (vii), forall g € G, {n € 0 : {(n) ¢
supp g(n)} € p. Since there exists g € G such that {n € w : {(n) € supp g(n)} € p, it follows
that I > 0. Let A = A;_; and G’ = G;. Notice that every BB, is nonempty for j < .

(1) holds by the previous observation, (i), (v) and by the fact that 3; C H;. (2) holds
by (ii). (3) follows from (xvii) using j = I, j* = 0. (4)=(11) follow easily from (i), (iii)-(ix),
(xi) and (xii). Suppose (9) doesn’t hold. Then by (xvi), y; € G;. But then, by (vii), B, # @, a
contradiction.



2.8 | CONSTRUCTING A SEQUENCE OF RATIONAL STACKS

(12) holds by (ii), because (G’) C (Gy) and because if { is constant then, by (xvi) and (9),
G’ U{y;} is linearly independent.

(13) holds: if ¢ is not constant, it follows from (2) e (3). If it is constant, first, notice
that, by (xix), (xvii) for j = 0, and (vii) for j = 1, it follows that [ > 1 or B, # {y;}. Either
way, B = .., Bi\{x3} is nonempty. By (2), (3) and (9), analayzing dimensions it follows
that 1+ | B| + | ¢’ |= 1+ | G|, and therefore | ¢’ |<| G |.

Construction: For step 0, G, is already defined. We apply Lemma 2.8.1 m times using
{(n) = {(n) and {.(n) = §(n) for every n. If m = 0 we apply it once using .(n) = {(n)’ for
every n for some {(n) # {(n). We now have H, and Aj C B.

If it is the case that (h(n)({(n)))nea; converges to a real number for every h € H, and
that { is constant, then we apply Lemma 2.8.2 with gy = y;, and obtain A, C A}, B, € H,
and o,. If not, then we take any g: € H, that satisfies the hypothesis of Lemma 2.8.2 - one

does exist because of (x5), which also implies that for such a g, ( converges

1
AOIEO) )ne "
to 0, and thus in case { is constant, oo(y;) = x;. Either way, we obtain oy, B, and A,. It is
straightforward to verify that (i)-(xix) hold for this step.

For the inductive step, we define G;,; as in (xvii). If there is no g € G;;; such that
{n € w : {(n) € supp g(n)} € p, then we define H;,; = @, A;4; C A; satistying (v) with j
swapped by j + 1 and Bj;; = 041 = @. Otherwise, we proceed as in step 0: we first apply
Lemma 2.8.1 to obtain H;;; and A’,, C A; and then similarly apply Lemma 2.8.2 to obtain
Bj.1, Ajs1 and 0 ,4. It is straightforward to verify that (i)-(xix) hold for this step. [

Lemma 2.8.4. Suppose G is a finite subset of G* such that ([f], : f € Q)u([xzl, : p € x)
is a linearly indepedent family of elements of Ult,(G). Then: either there exist y € k, g* € G
and A € p such that (g"(n)(1£))nea is one-to-one, or there exists A € p such that for every

g € G there exists {; € k“ satisfying {,(n) € supp g(n) for all n € A and {,|A is one-to-one.

Proof. Suppose that for all u € k, for all g € G and for all A € p, (g(n)(£))neca- Then, by the
selectivity of p, for all u € « there exists B, € p such that for all g € G, (g(n)(1))nes, is
constant.

Fix a g € G. By selectivity, there exists B € p such that either the sequence (| supp g(n) |
dnep is strictly increasing or it is constant. If it is strictly increasing, then we may pick
recursively {,(n) € supp g(n) for each n € B in a way such that {, is one-to-one. Define
A, =B.

Otherwise if it is constant, let k € w be that constant. Since g is not 0 mod p, k > 1.

For each i < k, let w; € k® be such that supp g(n) = {w;(n) : i < k} for each n € B. Then
there exists C C B, C € p such that for each i < k, (w;(n)),cc is one-to-one or constant.

We claim that there is a j < k such that (w;(n)),cc is one-to-one. Suppose all of them
are constant; take y; for each j < k such that wj(n) = y; for all n € C. Then, since
(g(n)(,uj))neBuj is constant for each j < k, let r; be those constants. Let D = Cn (), B,,. We

have that D € p and g(n) = (Zj<k rj)(lj’j) (n) for alln € D, and so [g], = 3, [ X3 1p- This

25
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contradicts the hypothesis that ([ f], : f € §) U([xil, : ¢ € ) is a linearly indepedent
family of elements of Ult,(G).

Therefore, there exists a j < k such that (w;(n))ec is one-to-one, and so we define
{; =wjand A, = C.

Thus if we define A = ("),c; Ay and {; € ¥ such that {|A = g:g|A, we have the desired
result. [

Now we restate Lemma 2.4.1, which we are going to prove.

Lemma. Let B € p and G be a finite subset of G such that ([f], : f € Q) u ([xil, :
€ k) is a linearly indepedent family of elements of Ult,(G). Then there exist a rational
stack S = (B,v,{,K, A ko, k,I,T) such that, by defining A = GU{y; : i < ko} and

C = Y B phere exist M : AxC > Z, N : C x A — Z satisfying:
(1) {[f], : f € A}and{[h], : h € C} generate the same subspace,
(2) f(n) = Ypec Mynh(n), foreachn € Aand f € A,

(3) h(n) = 73 X pea Ny f(n), foreachn € Aand h € C,
(4) KA CH®,
(5) KC C H®, and
(6) Ae pand ACB.
Proof. (of Lemma 2.4.1) We will start building a sequence that will almost be the stack S
which we will associate with G.
Claim: There exist:
« A’ € pwith A’ C B,
e ky € w,
o I 1 ky — wi{0},
eV : k, K,
o 't ky > K°,
« ¢ CG“ and
. (B; i+ 1<k, j<1I)atamily of nonempty subsets of G“,
satisfying:
(i) ' (n) =v;foreveryi<kyandne A/,
(ii) the elements v; for i < k, are pairwise distinct,
(iii) v; € supp h(n), for eachi < ko, j <[, h € B,-,j andn € A,

(iv) v; ¢ supp h(n), for each i < i, <k, j<I, and h € BA’ihj andn € A’

b
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(v) (h(n)(v;i))near converges, strictly monotonically, to 4+co, —co or a real number, or is
constantly equal to a rational number, for each i < k,, j <l;and h € B;},

(vi) for every i < ko and j < I;, there exists h, € Bi,j such that for every h € Ié’l-, i»

h(m)(v:) h ho. 3 Yicli :
(h*(n)(v,») )HEA/ converges to a real number 0; and (6, : h € B;) is linearly indepen-

dent (as a Q-vector space),

(vi) for eachi < ko, /' < j <1, h e B, and I € B, , (%) converges, monotoni-
V) neA’

cally, to 0,
(viii) (| A(n)(v;) [Dnear is constant or strictly increasing, for each i < ko, j < l;and h € Ié’,-, i»
(ix) for eachi < ko there exists a j < I; such that y;, € /;’,-’ s
(x) foreachi < kg, j<Il;and h,h, € BA’,-J, either
o | h(n)(vy) [>| h.(n)(v;) | for each n € A’, or
o | h(n)(vy) |=| h.(n)(v;) | for each n € A’, or
o | h(n)(vy) I<| hy(n)(v;) | for each n € A’,

(xi) forall p € k, forevery g € ¢, if {n € w : p € supp g(n)(p)} € p then (g(n)())near is
constant,

(xii) forall g € ¢ and alli < ko, {n € w : v; € supp g(n)} ¢ p,

(xidi) if i, < ko, j < I, J <1, and (i, j) = (', /), then B;; N Byy = @, B;; N ¢ = @ and
([f1, : f € G Ui, <1, Bij) is a linearly independent family of elements of Ult,(G),

(xiv) as vector subspaces of G, (G' U U, j«, 15’,-,]) =(GU{y; @ i<k}, and
xv) ([fl, : fedHu( )(g] » ¢+ £ €x)is alinearly independent family.

If (xi) already holds for Gand A = B, we let ¢ = G, A’ = B, ky = 0 and the other sequences
be @.

If not, then we may take a vy € k such that there exist g € Gand B’ C B, B’ € p such
that {n € w : v, € supp g(n)} € p and (g(n)(vy))nep is one-to-one.

We define G, = QAand apply Lemma 2.8.3 to B', m = 0, Gy, {(n) = v, for all n € B’ and
obtain Gj, A, I and B, ; for j < I, satisfying everything but (xi) (possibly) by using k, = 0.

Suppose the recursion has been done up to m € « and we have, for i < m, v;, G/,
A;, I; and Ié’,-, ;j for j < [; satisfying everything but (x) (possibly) by using ko = m. If (x)
holds for G/, _,, then we let A’ = A,,_;, ko = mand ¢’ = G/,_, and the recursion is over.
If not, we take v,, € k such that there exist g € G/, and B’ C A,,_;, B’ € p such that
{new : v, €suppgn)} e pand (g(n)(v,))nep is one-to-one. Notice that item (xi) implies
that v,, # v; for every i < m. We then apply Lemma 2.8.3 to B/, m, G/ _,, {(n) = v,, for

alln € B', {i(n) = v; for alln € B and i < m, and obtain G/,, A, [, and BA’mJ for j < I,
satisfying everything but (xi) (possibly) by using ky = m + 1.

27
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The recursion must eventually stop due to items (xii), (xiii) and the fact that the B,-, i’s
are nonempty. We now have A", ko, I’,v,{’,G" and (B;; : i < ko, j < ;) as in the Claim above.

Claim: There exist:

. A" € pwith A” C A/,

ki € w\{0},

« | : k; > ©\{0} extending /',

« { : ki = k“ extending {’,
. (f;’,-, i+ 1<k, j<lI)atfamily of nonempty subsets of G“,
satisfying:
(D) i(n) =v;foreveryi<k,andne A”,

(I) the elements v;, for i < ko, and {;(n), for ky < j < k; and n € A”, are all pairwise
distinct,

(I1) (n) € supp h(n), for eachi < ky, j <, he f;’,-,j andn e A”,
(IV) ¢i(n) ¢ supp h(n), for each i < i, <k;, j<I;, andh € Bi*,j andn e A”,

(V) (h(n)(&i(n)))nea~ either converges, strictly monotonically, to +co, —oo or a real number,
or is constantly equal to a rational number, for each i < ki, j <l; and h € B;,

(VI) for every i < k; and j < I;, there exists h, € BA’I-,J- such that for every h € 15’,-,]-,

h(n)(&(n))
h.(m)(&i(m)

independent (as a Q-vector space),

) converges to a real number 0/ and (67 : h € B, ;) is linearly
neA” * *

(VII) for each i < ki, j/ < j < I, h € Bi,j and b’ € Bl’)j/, ( ,ﬁ((r:l))((%((r;))))) o converges,
n

monotonically, to 0,
(VIID) (| h(n)(&(n)) near is strictly increasing, for each i < ky, j <l and h € 15’1-, i
(IX) for each i < k, there exists j < I; such that y;, € 15’1-, i
(X) for eachi < ki, j < I; and h, h, € By}, either
* [ h(m)(&(n) [> h.(n)(&i(n)) | for each n € A”, or
o | h(n)(&G(n)) |=| ho(n)(g(n)) | for each n € A”, or
« [ h(n)(&i(n) |<[ h.(n)(&i(n)) | for each n € A”,

(XT) for all p € k, for every i > ko, j <ljand g € BA’i,j, if{n € w : pesuppg)(w}ep
then (g(n)())near is constant,

(XII) as vector subspaces of G, (., j«, BA’i,]) =(GU{y i<k},

(XMI) if i, < ky, j <, j <l,and (i, j) = (i/,j), then f;’i,j N ];’l-/,j/ =@,and ([f], : f €
Ui<k,.j<i, Bij) is a linearly independent family of elements of Ult,(G).
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]

For the initial step k, of the recursion, we first notice that, by item (xi) of the previous
Claim and Lemma 2.8.4 there exists A}’ € p such that for every g € G’ there exists {, € k
such that {,(n) € supp g(n) for all n € Ay and {,|A; is one-to-one. Define Gy, = ¢’, and
apply Lemma 2.8.3to B = A}, m = k, Qko, { = {, for an arbitrary g € ¢/, and obtain Qk ,

foi1> lpr1 and Bk0+1] for j < lko+1 We then repeat this step until for some k; > ko, G, =
Such a k; exists since, by Lemma 2.8.3, | G, |<| G/ _, | for each m > k.

It follow from items (XII) and (XIII) that | J;, ;o B; jand GU {y;, : i < ko}, mod
p, are bases for the same subspace of Ult,(G). Let A = GU{y; : i < k}and B’ =

Uik, j<t, Bij-

Fix families of integers M = (Mf’h : feAgeB)and N = (N.h)f :heB,feA)
and a positive integer T such that:

(3) [f]y = £ Xhew Myalhl,, for each f € A and
@) [hlp = 7 Xsea J\fhf flp, foreach h € B

Let C = {,14 : h e B'yand M and N be such that M, = My, and Ny ; = N, for
each f € A and h € 3’. Then we have:

(3”) [flp = Ypec Mynlhl,, for each f € A and
4”) [h], ZfeANhf[f]pa for each h € C.

Let AC A”, A € pbesuchthatforeveryn € A, f € Aandh € C, f(n) = Y cc Myph(n)
and h(n) = %ZfeA Nisf(n).

Now let K be a strictly increasing sequence of positive integers such that K, > 1,
n!T | K, for all n € @, and KC C H”. We now have that by defining B3;; = KX Bl,], we have
the desired rational stack.

2.9 A note on free Abelian groups

With such results, we can now improve the example from A. C. BoEro, CASTRO-
PEREIRA, et al., 2019 and A. H. TomITa, 2015:

Example 2.9.1. Assume the existence of a selective ultrafilter. Then for each o < w
there exists a group topology on the free Abelian group F of cardinality ¢ such that F" is
countably compact for each n < o and F* is not countably compact.

Proof. Let p be a selective ultrafilter. Then the direct sum of ¢ copies of Q has a p-compact
group topology without nontrivial convergente sequences. In particular, all of its powers
are countably compact.

Now, Tomita (A. H. Tomita, 2019) showed that if a torsion-free group H without
nontrivial convergent sequences admits a topology such that H" is countably compact for
each n < a then the free Abelian group F of cardinality ¢ admits a group topology without
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nontrivial convergent sequences such that F” is countably compact for each n < a and F*
is not countably compact. O

2.10 Questions

Some natural questions that remain open are:

Question 2.10.1. Is it consistent that there are p-compact groups on Q¥ for some 1
of countable cofinality? In addition, with weight of countable cofinality and without
nontrivial convergent sequences?

We recall that van Douwen (DouweN, 1980b) showed that there is no pseudocompact
group whose cardinality has countable cofinality under GCH.

Boolean example have been obtained in A. H. TomiTa, 2005b: A consistent count-
ably compact group without nontrivial convergent sequences of weight and cardinality
X,,.

The following is still an open question related to van Douwen’s question:

Question 2.10.2. Is there a cardinal A > 2 of countable cofinality for which there exists a
countably compact group of cardinality A?

Some questions from HRUSAK et al., 2021 related to this chapter remain open:

Question 2.10.3. Is there in ZFC a Hausdorff (infinite) p-compact topological group
without nontrivial convergent sequences?

Question 2.10.4. Is it consistent with ZFC that for some ultrafilter p € ©* there is a
Hausdorff (infinite) p-compact topological group without nontrivial convergent sequences
of weight < ¢?



Chapter 3

On the consistency of arbitrarily
large, countably compact, free
Abelian groups

3.1 Introduction

3.1.1 Some history

As was discussed in the 1, Tomita (A. H. Tom1Ta, 1998) showed that a nontrivial free
Abelian group does not admit a group topology such that its countably infinite power is
coutanbly compact.

However, it was later shown (A. H. TomiTa, 2015) that there exists a group topology
on the free Abelian group of cardinality ¢ that makes all of its finite powers countably
compact, when assuming ¢ selective ultrafilters.

In this chapter, assuming the existence of ¢ incomparable selective ultrafilters, we prove
that there is a group topology of the free Abelian group of cardinality xk without nontrivial
convergent sequences and such that all finite powers are countably compact, for any x
cardinal such that ¥ = «.

With such a result, we obtain the following:

Theorem 3.1.1. Assume GCH. Then a free Abelian group of infinite cardinality x can
be endowed with a countably compact group topology (without nontrivial convergent
sequences) if and only if k = k.

The result above answers a question of Dikranjan and Shakhmatov that was posed in
the survey by Comfort, Hofmann and Remus (W. W. COMFORT et al., 1992).

Because of the way our examples are constructed we can raise their weights in the
same way as in the papers A. H. TomiTa, 2003 or CASTRO-PEREIRA and A. H. TomiTa, 2010
and obtain the following result — the examples in these references are Boolean but the
trick is similar.
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Theorem 3.1.2. It is consistent that there is a proper class of cardinals of countable
cofinality that can occur as the weight of a countably compact free Abelian group.

3.1.2 Basic results, notations and terminology

We recall that a topological space is countably compact if, and only if, every countable
open cover of it has a finite subcover.

Definition 3.1.3. Let U be a filter on w and (x, : n € w) be a sequencee in a topological
space X. We say that x € X is a U'-limit point of (x, : n € w) if, for every neighborhood U
of x,theset{n€ew : x, e U} e U

If X is Hausdorf, every sequence has at most one U’-limit and in that case we denote
x=U —lim(x, : n € w). H

The set of all free ultrafilters on w is denoted by w*. The following proposition is a
well known result on ultrafilter limits.

Proposition 3.1.4. A topological space is countably compact if and only if each sequece
in it has a U’-limit point for some U" € ™.

The concept of almost disjoint families will be useful in our construction.

Definition 3.1.5. An almost disjoint family is an infinite family .A of infinite subsets of w
such that if A, B € A are distinct, then | An B |< w. O]

It is well known that there exists an almost disjoint family of size continuum (see
KuNEN, 1983).

Definition 3.1.6. The unit circle group T will be the metric group (R/Z, §) where the
metric J is given by 6(x + Z,y + Z) = min{| x — y + a |: a € Z} for every x,y € R.

Given an open interval (a, b) of R with a < b, we let 6((a,b)) = b — a.

An arc of T is a set of the form [ + Z = {a+ Z : a € I}, where I is an open interval of
R. An arc is said to be proper if it is distinct from T.

IfUisaproperarcandU ={a+Z : a€l} ={b+Z : b € J}, where I and ] are open
intervals of R, then §(I) = §(J), and so we define the length of U as §(U) = §(I). We also
define 6(T) = 1. O

Given an arc U such that §(U) < %, it follows that diamsU = §(U).

Our free Abelian group will all be represented as direct sums of copies of the group of
integers Z; we fix some notation. The additive group of rationals will also be used, so in
the following definition one should read Z or Q for G.

Definition 3.1.7. If f is a map from a set X to a group G, then the support of f, denoted
by supp f, is the set {x € X : f(x) # 0}.

We define G = {f € GX :| supp f |< w}.

IfY is a subset of X, then, as an abuse of notation, we often write G¥) = {x € G :
suppx C Y}
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Given x € X, we denote by y, € G the characteristic function of {x}, whose support
is {x} and whose value is y,(x) = 1.

For a sequence { : w — X, we define y; : © = G%) by x(n) = yrw-
Finally, for x € X, we let X : @ — X be constantly equal to x. ]
Note that thus y; is also constant, with value y,.

Definition 3.1.8. Let U be afilter on w and X be a set. We say that the sequences f, g € X“
are U'-equivalent and write f = gifand only if{n € w : f(n) = g(n)} e U". H

It is easy to verify that =;- is an equivalence relation. We denote the equivalence class
of and f € X® by [ f]i and the quotient X“/U".

If Ris aring and X is an R-module, then X /U" has a natural R-module structure given
by addition, identity element, opposite and scalar multiplication "representativewise" (that

is, [flv + [glv = [f + v, Oxeyvr = [0, ~[flr = [~ flvr and 7 [l = [+ flu).
If p is a free ultrafilter, then the ultrapower of the R-module X by p, is the R-module
X°/p.

For the remainder of this chapter we will fix a cardinal number « that satisfies x =

K.

Throughout this chaper, we will work inside ultrapowers of Q®. These ultrapowers
contain copies of ultrapowers of Z®), which will be useful for the construction. So we lay
down some notation.

Definition 3.1.9. Let p be a free ultrafilter on . We define Ult,(Q) as the Q-vector space
(Q™)?/p and Ult,(Z) = {[g], : g € Z*} with the subgroup structure. ]

Notice that each [g], in Ult,(Z) is formally an element of (Q®)?/p, not of (Z*))* /p.
Nevertheless, it is clear that (Z*))®/p is isomorphic to Ult,(Z) via the obvious isomor-
phism that carries the equivalence class of a sequence g € (Z®)® in (Z®))*/p to its class

in (Q")°/p.

3.2 Selective ultrafilters

In this section we review some basic facts about selective ultrafilters, the Rudin-Keisler
order and some lemmas we will use in the next sections.

Definition 3.2.1. A selective ultrafilter (on w), also called Ramsey ultrafilter, is a free
ultrafilter p on w with the property that for every partition (A, : n € w) of w, either there
exists n such that A, € p, or there exists B € p such that | Bn A, |= 1foreveryn € 0. [

The following proposition is well known. We provide Jech, 2003 as a reference.
Proposition 3.2.2. Let p be a free ultrafilter on w. The the following are equivalent:
(a) pis a selective ultrafilter;

(b) for every f € w”, there exists A € p such that f is either constant or one-to-one on
A;
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(c) for every function f : [w]* — 2 there exists A € p such that f is constant on [A]*.
The Rudin-Keisler order is defined as follows:

Definition 3.2.3. Let U be a filter on w and f : @ — w. We define f.(U) ={AC w :
Al e U o

It is easy to verify that f.(U") is a filter; if U" is an ultrafilter, then so is f.(V"); if
f,g : @ —> w,then (f o g). = f. o g; and (id, ). is the identity over the set of all filters.
This implies that if f is bijective, then (f™). = (f.)™".

Definition 3.2.4. Let U" and V be filters. We say that " < V (or U" <gk V, if we need to
be clear) if and only if there exists f € w such that f.(U") = V.

The Rudin-Keisler order is the set of all free ultrafilters on w ordered by <gx. Notice that
this is technically a preorder, and thus naturally we say that two ultrafilters are equivalent
ifand only if p < gand g < p. [

It is easy to verify that < is a preorder and so the equivalence defined above is indeed
an equivalence relation. Moreover, the equivalence class of a fixed ultrafilter is the set
of all fixed ultrafilters, so the relation restricts to w* without modifying the equivalence
classes. We refer to JecH, 2003 for the following proposition:

Proposition 3.2.5. The following hold:

(1) If p and q are ultrafilters, then p < g and g < p if and only if there exists a bijection
f + @ —> wsuch that f.(p) =q.

(2) The selective ultrafilters are exactly the minimal elements of the Rudin-Keisler order.

This implies that if f : © — w and p is a selective ultrafilter, then f.(p) is either
a fixed ultrafilter or a selective ultrafilter. If f.(p) is the ultrafilter generated by n, then
f'[{n}] € p, so, in particular, if f is finite-to-one and p is selective, then f.(p) is a selective
ultrafilter equivalent to p.

The existence of selective ultrafilters is independent of ZFC. Martin’s Axiom for
countable orders implies the existence of 2° pairwise incomparable selective ultrafilters in
the Rudin-Keisler order.

The Lemma below appears in A. H. Tom1Ta, 2005a.

Lemma 3.2.6. Let (pr : k € w) be a family of pairwise incomparable selective ultrafilters.
For each k € w let (ax; : i € w) be a strictly increasing sequence in w such that {a;; : i €
w} € pr and i < ay; for all i € w. Then there exists {I; : k € w} such that:

(@) {ax; : i € I} € py, for each k € w,
(b) I;nI; = @ for distinct i, j € w, and
(c) {li,ar;] : k € wandi € I} is a pairwise disjoint family.

In the course of the construction we will often use families of ultrafilters indexed by w
and finite sequences of infinite subsets of w. It is thus convenient to establish the following
notation:
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Definition 3.2.7. A finite tower in w is a finite sequence (A, ..., A;) of infinite subsets
of w such that A;;; C A, for every t < k. The set of all finite towers in w is called 7. If
T = (A, ..., A;) then [(T) = Ay, the last term of the sequence T. For the empty sequence
we write [(®) = w. O

Lemma 3.2.8. Assume there are ¢ incomparable selective ultrafilters. Then there is a
family of incomparable ultrafilters (pr, : T € T,n € w) such that [(T) € pr, forallT € T
and n € w.

Proof. Index the ¢ incomparable ultrafilters faithfully as{gr, : T € 7,n € w}. Foeach T, let
fr + @ = I(T) be abijection and define pr, = fr,(gr.). Since f is one-to-one, it follows that
pra is a selective ultrafilters equivalent to gr,. Therefore, the family (pr, : T € T,n € w)
is as required. [

3.3 Main ideas

From now on we fix a family (pr, : T € T,n € w) of selective ultrafilters as provided
by 3.2.8.

The idea is to use these ultrafilters to assign p-limits to enough injective sequences in
Z™ to ensure countable compactness of the resulting topology. We take some inspiration
from A. C. BOERO, CASTRO-PEREIRA, et al., 2019 where a large independent family was
used such that, up to a permutation, every injective sequence in Z was part of this family.
Since this group has cardinality ¢, there were indeed enough permutations to accomplish
this. For an arbitrarily large group, we shall consider large linearly independent pieces to
make sure every sequence has an accumulation point.

The following definition will be used to construct a witness for linearly independence
in an ultraproduct that does not depende on the free ultrafilter.

Definition 3.3.1. Let 7 be a subset of (Z®))* and A € [w]°. We shall call F linearly
independent mod A” if and only if for every free ultrafilter p with A € p the family
([fl, : feR)u( XE]P : £ < k) is linearly independent in the Q-vector space Ult,(Q).

O

Notice that it is implicit in our definition that {[f], : f € F}and {[ XE] p ¢+ € <k}are
disjoint. We will abbreviate “linearly independent mod A*” to 1i. mod A*.

An application of Zorn’s Lemma will establish the following fact.

Lemma 3.3.2. Every set of sequences that is Li. mod A* can be extended to a maximal
linearly independent set mod A*.

It should be clear that if A € B C w and A and B are infinite, then a set that is l.i.
mod B” is also Li. mod A*. Through the use of recursion, this easily implies the following
Corollary:

Corollary 3.3.3. There exists a family (& : T € T) such that:

(1) forevery T € T the set & is maximal Li. mod I(T)*, and
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(2) forevery T € T,if n <| T | then &py, C &r.

We note explicitly that even though &r is only required to be maximal Li. mod I(T)*, it
will, by virtue of item (2), depend on all of T, not just on I(T).

Lemma 3.3.4. Let g be an element of (Z®)® and let £ C (Z®))® be maximal Li. mod B*.
Then there exist an infinite subset A of B, a finite subset E of £, a finite subset D of x, and sets
{ry : f € E}and{s, : v € D} of rational numbers such that glx = Y jcx 77 fla + Xyep S X5la-

Proof. It g € € of g = y; for some v < k, then we are done. Otherwise, by the maximality
of £, there exists a free ultrafilter p with B € p such that the set {[g],} U {[h], : h €
Erud| XE] » ¢+ & <} is not linearly independent.

This means that we can find finite subsets E and D of £ and « respectively and finite
sets {ry : f € E}and {s, : v € D} of rational numbers such that [g], = ¥ ;ep 7¢[f], +

Yoen SrLxs)p-
Now choose A € p with A C B that witnesses this equality. O

Corollary 3.3.5. If £ C (Z®) is maximal Li. mod B*, then | £ |= «.

Proof. First notice that | £ |<| (Z®)® |= k® = k. Assume | € |< k. Then the set C =
Ufsupp f(n) : n € w, f € £} has cardinality less than «.

Take some injective sequence (&, : n € ) in k\C and define g : ©w — Z® by
g(n) = y; for each n € w. Clearly then ({supp g(n) : n € w} is disjoint from C.

Apply Lemma 3.3.4 to obtain sets A, E, D, {r; : f € E}and {s, : v € D} such that
gla= ZfeE rfflA + Xven SvXila-
Since A is infinite and D is finite, there is a k € A such that & ¢ D. Now f(k)(&) =0

when f € E because & ¢ C, and y;(k)(&) = 0 when v € D because & ¢ D. Since
g(k)(&) = 1, we have a contradiction. O

Henceforth we fix a family (&7 : T € T) as in Corollary 3.3.3 and enumerate each &r
faithfully as & = {f : k <& <k +«}.

Definition 3.3.6. Foreach T € 7 and n € w, we denote by Gy, the intersection of Ult,, (Z)
and the free Abelian group generated by {;[f'1,;, : k <& <k +x}U {%[Xg]pf,n D E <kl
[l

For the next lemma, we are going to use the following proposition:

Proposition 3.3.7. If G is an Abelian group and H is a subgroup of G such that G/H is
an infinite cyclic group, then there exists a € G such that G = H & (a).

A proof may be found in Fucss, 1970, p. 14.4. This is not the statement of the theorem
but it is exactly what is proved by the author.

The main idea of the proof of the following lemma is to mimic the well known proof
of the fact that every subgroup of a free Abelian group is free.
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Lemma 3.3.8. The group Gr, has a basis of the form {[)(;;]p“ 2 E<KkYO{[flpr, ¢ f € Frat
for some Fr,(Z*)®.

Proof. Let H, be the group generated by { [ XE] orn ¢+ & < p}if p < x and by the union of
{ilxlpr, + € <x}and il o, + K SE<ppwhenk < p <k +xk.

Let G, = H,nUlt, (Z) forall p <« + k.

For every p < k + x we shall determine an h, such that G,,; = G, ® ({[h,],,,}) as
follows:

For y1 < k the group G, is generated by {[XE]PM t &< b s0 Gy = Gy @ {xalp, )
and we set h, = y;.

For 1 > x observe that ., N H, = G, so

Gp+1 _ Gy+1 ~ Gp+1 + Hp < Hy+1
G, G,.nH,  H, ~ H,

u+1 y+1

The group —; is infinite and cyclic, so either G, is also infinite and cyclic, or G 41 = G,.

By Proposition 3.3.7 there exists a, € G4 such that Gu+1 =G, @ ({a,}) (and a, = 0 in the
case G,41 = G,). Take h, such that [h,],,, = a,.

For every p < k +k, it follows that G,.; = G, @ ({[h,],,,.})- Since Grp = U4 Gy» it
follows that Gr,, = @/,KK A -

Thus, the set Fr, = {h, : k < p <k +k,[h,],,, # 0} is as required. ]

For the remainder of this chapter we fix such a set Fr, as above for each (T,n) €
T x .

The next lemma makes good on the promise from the beginning of this section as it
shows how to make our topology countably compact.

Lemma 3.3.9. Assume that for every (T,n) € T x w, every sequence f € Fr, has a
pra-limit in Z®). Then every finite power of Z® is countably compact.

Proof. A sequence in some finite power of Z®*) is represented by finitely many members
of (Z™)), say gy, ..., gn. We show that there is one ultrafilter p such that p — lim g; exists
for all i < m, namely pr, for a suitable T and n.

Recursively, we define a tower T = (A,, ..., Ay) and for i < m finite subsets E; and D;
of &rj; and k respectively together with finite sets (r} : f €E)and (s : v € D;) of rational

numbers such that
) gl =Y fla+ Y salan

fEEl' veD;

For i = 0, use Lemma 3.3.4 applied to &, to obtain A, E,, D,, (rfo : f € Ey) and
(s° : v € Dy) such that (*) holds with i = 0.

14
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To go from i to i + 1, apply Lemma 3.3.4 to £, 4,) to obtain Ay, Eiyq, Dy, (r]ifrl : fe
Ei.1) and (s'*! : v € D;;4) so that (*) holds for i + 1.

14

Let A := A, and let n be sufficiently large so that n!r} and n!s’ are integers, for all
i<m, f €E,andv € D;. Then gla = ¥ g, n!ri (5 fla + Xep nls, (G 1)l for all i < m.

Since I(T) = A € pr, and each E; C &, it follows that [g],,, € Gr,. Therefore, each
[gi],;, is an integer combination of {[f],,, : f € Fr,} u{[ XE]PM : ¢ < k}. Then, by
hypothesis, it follows that each g has a pr,-limit. This completes the proof. O]

3.4 Constructing homomorphisms

Through this section, we let G = Z® {h; : w < £ < k} be an enumeration of G® such
that supp hs(n) C & for every n € w and w < & < «k, and such that each element of G
appears at least ¢ many times.

Lemma 3.4.1. There exists a family (Jr,, : T € T,n € ) of pairwise disjoint subsets of x

such that {h; : & € Jr,} = FPra.

Proof. For each f € G” there is a one-to-one map ¢; : 7 xw — {£ € x : f = h}. Let
Jrn =1¢4(T,n) : f € Fr,} and we are done. O
For the rest of this section, we fix a family (J;, : T € T,n € w) as above.
The following lemma is the key to the main result.
Lemma 3.4.2. Assume we have d € G\{0}, r € G* one-to-one, and D € [k]” such that
(i) wusuppd U, suppr(n) C D,
(i) DN Jr, # @ for infinitely many (T, n))’s, and
(iii) supphs(n) € D foralln € wand ¢ € D\w.
Then there exists a homomorphism ¢ : Z® — T such that:
(1) ¢(d) # 0,
(2) prn — limge, P(he(k)) = ¢(xz), whenever T € T,n € w,and £ € D n Jr,, and
(3) ¢ or does not converge.

Before proving this lemma, we show how to use it to prove the main result. First, we
use it to prove another lemma:

Lemma 3.4.3. Assume d € G\{0} and r € G” is one-to-one. Then there exists a homomor-
phism ¢ : Z® — T such that

(1) ¢(d) =0,
(2) prn — limge, @(he(k)) = ¢(xz), whenever T € T,n € w and & € Jr,, and

(3) ¢ or does not converge.
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Proof. Using a closing-off argument, construct a D € [k]“ that intersects infinitely many
sets Jr.., and that contains o, supp d, | ¢, supp r(n) and Ugepy i, ne,, SUPP bz (n).

By the previous Lemma, there exists a homomorphism ¢, : Z® — T such that
$o(d) # 0, ¢ o r does not converge, and pr,, — limie, Po(he(k)) = Po(xz) whenever T € T,
newandé €Dn Jp,.

We let (@ : 6 < k) be the monotone enumeration of k\D. For y < k, let D, :=
Du{as : § <y} Thus, Dy = D and D, = k.

Recursively, we construct, for y < «k, an increasing sequence of homomorphisms
¢, : ZP) — T such that pr, — limge, ¢, (he(k)) = ¢,(xz) whenever T € T, n € w and
& € Dy N Jr,. The desired homomorphism ¢ will be ¢,.. The basis step 0 is already done,
and for limit steps, we simply take the union of all previous homomorphisms.

To define ¢, giveng,, it suffices to specify the value ¢, 11(xa, ).

If @, € Jr, for some T € T and n € w, then we ascribe ¢,1(xs,) =
Pry limge,, ¢, (hy(k)). This is well-defined because supp h,(n) Cy C D, for all n € w and
because T is compact. Otherwise, just let ¢, 1(x,,) = 0. O

We can now prove our main result.

Theorem 3.4.4. Assume the existence of ¢ pairwise incompatible selective ultrafilters and
that k is an infinite cardinal such that k = k. Then the free Abelian group of cardinality
k has a Hausdorff group topology without nontrivial convergent sequences such that all
of its finite powers are countably compact.

Proof. Following the notation ofn the rest of the chapter, given d € G\{0}, and a one-to-one
r € G”, Lemma 3.4.3 provides a homomorphism ¢, : G — T such that ¢,,(d) # 0, ¢y, o 1
does not converge, and pr, — lime, ¢a,(hs(k)) = da,(xz) whenever T € 7, n € w, and
& € Jr.. We give G the initial topology generated by the collection of homomorphisms
{ba, : d € G\{0},r € G” is one-to-one} thus obtained and the usual topology of T.

Since the initial topology generated by any collection of group homomorphisms is a
group topology we do indeed obtain a group topology. Since T is Hausdorff and for every
d # 0 there are many ¢,, with ¢;, # 0 it follows that our topology is Hausdorff.

To see that every finite power of G is countably compact, we now use Lemma 3.3.9.

GivenT € T,n € w and f € Fr,, there exists & € J, such that h; = f. For every d € G\{0}
and one-to-one r € G, we have pr, — limye, ¢4,(h:(k)) = ¢4,(x). So pr, —lim f(n) = x;
and we are done.

Since for a given one-to-one sequence r and any d # 0 the sequence ¢,, o r does not
converge and ¢, is continuous, it follows that r does not converge. So G has no nontrivial
convergent sequences. O

Towards the proof of Lemma 3.4.2 we formulate a definition and a very technical
lemma.
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Definition 3.4.5. Let € > 0. An e-arc function is a function ¢ : ¥ — B such that for all
a < k either (@) = T or the length of (@) is €, and the set {& € k : () # T} is finite.
We will call this finite set the support of ¥ and denote it by supp ¢

Given two arc functions ¢ and p we write ¥ < p if ¥ () C p(a) or ¥ (a) = p(a) for
each a € k. ]

We shall obtain our homomorphisms using limits of such arc functions. The following
lemmas are instrumental in its construction.

The following result follows from an argument implicit in the construction of A. C.
BotRro, CASTRO-PEREIRA, et al., 2019, but it may be difficult to extracit it from that paper.
We postpone its rather technical proof to the next section.

Lemma 3.4.6. Let p be a selective ultrafilter and 7 be a finite subset of G” such that the
family ([f], : fe€ F)u([xzl, : @ < k) is linearly independent.

Then given € > 0 and a finite E C «k, there exist A € p and a sequence (5, : n € A) of
positive real numbers such that

(x) whenever (Uy : f € F) is a family of arcs of length € and p is an arc function of
length at least € with supp p C E, there exist, for each n € A, a §,-arc function ¢, < p

such that supp ¢/, = ser supp f(n) UE and 3 ¢, ¢ f()(n(1) € Uy for each
feF.

Now we proceed to prove Lemma 3.4.2. We will use the following lemma:

Lemma 3.4.7. Let (F*¥ : k € w) be a sequence of countable subsets of G* and let (p; :
k € w) be a sequence of pairwise incompatible selective ultrafilters such that for each
k € w the family ([f],, : f € FFu ([Xf]pk : & € k) is linearly independent. Also let for

every k € w and f € F* an ordinal {7 < k be given. In addition let d,d’ € G\{0} such that
suppd N suppd’ = @. Finally, let D € [k ] that contains w, supp d, supp d’, and supp f(n)
forevery k € w, f € Fk and n € w.

Then: there exists a homomorphism ¢ : Z® — T such that ¢(d) # 0, ¢(d’) # 0 and
pr — limge, 3(f(n)) = ¢(xz,, ), forallk € w and f € F*.
Proof. Write D as the union of an increasing sequence (D, : n € w) of finite nonempty

susbets, and likewise take (7—’,1C : n € w) for each F*.

Take a sufficiently small positive number €, and an €,-arc function p, such that supp du
supp d C supp p- and 0 ¢ Zy€suppd d(.u)P*(ll) U Zpesuppd’ d’(.u)l)*(ﬂ)

Let Ey = supp p. U D, and Bf = o for each k € .

We will define, by recursion, for m € «: finite sequences (B’,j1 : m € w), finite sets
E,, C k, and real numbers €,, > 0 satistying:

(1) forall k,m € w, B~ € py,

(2) foreachm > 1and k < m, we have a sequence (6, : n € ) of positive real numbers
such that: if (U : f € F,’,‘l) is a family of arcs of length €,,_; and p is an €,,_,-arc
function with supp p C E,,_;, then for each n € w there exists a 8}, ,-arc function
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with ¢ < ps SuppEb = LJfE?L’,’§l supp f(l’l) U Ep-1, and Zyesuppf(n) f(”)(ﬂ)lﬁ(ll) < Uf for
each f € Fk,
(3) for all k,m € @ we have BX,, C B and

(4) €ms1 = %min({S,’fn ck<l<m+1landne€ (m+2)nBf}ufe,)).

Suppose we have defined Bf for all k € » as well as E; and ¢ for all I < m. As will be
clear from the step below the set BX is only nontrivial when k < m. Therefore we let

Bt ., =Bf = wfork > m+ 1and we concentrate on the case k < m + 1.
Let k < m + 1. By Lemma 3.4.6, there exist B,,; € p, and (8%, : n € o) that satisfy

(2) for m + 1. Without loss of generality we can assume Bf, C Bk,
Condition (4) now specifies €,,.;.

Setting Ep1 = En, U U{supp f(k) : k < m, f € Uremss Frsi} U Dpyt completes the
recursion.

For each k € w, apply the selectivity of py to choose an increasing sequence (ai; : i € ©)
with {ay; : i € w} € pr and such that g;; € Bf and a; > iforalli € w.

Next apply Lemma 3.2.6 and let (I; : k € w) be a sequence of pairwise disjoint subsets
of w such that {a;; : i € I} € py and the family of intervals {[i,a;;] : k € w,i € L} is
pairwise disjoint. Without loss of generality we can assume that k < min .

Enumerate | ., Ix in increasing order as (i; : t € w). For each t € w, let k; be such that
i; € I,. Notice that for each t € w we have i; € I, and hence i; > min Iy, > k; and ay,;, > i.

By recursion we define a sequence of arc functions, (p;, : t € w), such that p;, < p.
and Pira < Piy-

We start with ¢t = 0. In this case we have k, < iy < a,,, ki, € Bk

Ip

and €;,_; < €.

ko

ok i such

Since p, has length at least €;,_;, there exists an arc function p;, of length §

that 3 ccupp farg) P (1) € p(&ri,), for each f € T’i’SO. We have by the definition that
5k0 > € 1.
10,Gky g 1

Suppose t > 0 and that p;, , has been defined with length at least ¢;, ;.

Apply item (2) to the arc function p;,_,, the finite set ¥ = T’i]f‘, the number €;_, the finite
set E, ,, the arcs Uy = p,, (&) for f € FY, and n = ay,;, € BY* to obtain an arc function

pZ < pi, such that ¥ e o) f (@ i) (Wpi, (Erx) for all f € T‘i]f‘, and p;, | has length
itiakt,it'
ki

Lt @y iy

Since k; < iy < ay,;, < i1 — 1l and g, € Bﬁ’, we have that §

> €1

If £ € D, then ¢ € supp p;, and the length of p; (¢) is not greater than ¢;_;, and
€i-1 < i < 5

2i-1 = or-

It follows that for all £ € D the intersection (), p;, () consists of a unique element;
we define ¢(y;) to be that element and extend ¢ to a group homomorphism.
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By construction, ¢(f(ak,i)) is in X equpp f(ay,,,) S (@i )1 pi, (1) which is a subset of
pi(&sx,), forall f € T’i]f‘. Therefore, the sequence (¢(f(ax;)))ie;, converges to ¢( Xff,kt)’ for
eachk € w and f € F*.

Furthermore, ¢(d) € Zyesupp 14 p«(p), so it follows that ¢(d) # 0; and likewise
¢(d’) # 0.

It is clear that this implies the conclusion of Lemma 3.4.7. [

We now give the proof of Lemma 3.4.2.

Proof of Lemma 3.4.2:

Proof. There are only countably many pairs (T,n) € T x w such that J;, n D # 0. We
enumerate them faithfully as ((T,,, n,) : m > 2).

Form > 2let F" = {h; : £ € DNJ;, .} and p,, = pr, .. Let po and p; be two ultrafilters
such that (p,, : m > 0) is a family of pairwise incompatible selective ultrafilters, and
let 7 = F' = {r}. Foreachm > 2and ¢ € J; ,, N D, let &,,, = & Let &, = k and
&1 =k’ with k,k’ € o\ supp d. Then, by applying Lemma 3.4.7 with d’ = y. — yw, there
exist ¢ : Z?) — T satisfying (1) and (2). In order to see (3) is also satisfied, notice that
po—limpor#p —limepor. ]

3.5 Proof of Lemma 3.4.6

In this section we present a proof of Lemma 3.4.6. We will need the notion of integer
stack, which was defined in A. H. Tom1Ta, 2015.

The integer stacks are collections of sequences in Z( that are usually associated to
a selective ultrafilter. Given a finite set of sequences F it is possible to associate it to an
integer stack which generates the same Q-vector space as . The sequences in the stack
have some nice properties that help us construct well behaved arcs when constructing
homomrphisms, and the linear relations between F and the sequences of the stack help
us transform these arcs into arcs that work for the functions of 7. Below, we give the
definition of integer stack.

Definition 3.5.1. An integer stack S on A consists of
(i) A€ol

(ii) natural numbers s, t, and M, positive integers r; for 0 < i < s and positive integers
rjfor0<i<sand0<j<r,

(iii) functions f;;x € (Z¥)A for0<i<s,0< j<rand 0 <k <r, and g € (Z¥)* for
0 <<t

(iv) sequences ¢ € ¢ for0 <i<sand y € ¢* for0 <1<t and
(v) real numbers 6, ;, for0<i<s,0<j<rand0 <k <r;.

These are required to satisfy the following conditions:
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(1) w(n) € supp g(n) foreachn € Aand!l < t,

(2) w+(n) ¢ supp gi(n) foreachne Aand I* <I < t,

(3) the elements of {y(n) : 0 <I <t and n € A} are pairwise distinct,
(4) | g(n) [<K M foreachne Aandl <t,

(5) foreachi < sand j<r, (0;;x : k <r;)isalinearly independent family of elements
of R viewed as a Q-vector space,

; fuik@E@) . .
(6) limpea m =0, foreachi<s, j<riandk <r,

(7) the sequence (| fi;x(n)(&(n)) [)nea diverges monotonically to +oo, for each i < s,
j<riand k <r,

®) | fijx(m)(&(m)) [>| fijir(n)(&(n)) |foreachn € A,i <s, j<randk <k* <r,

9) (M%) converges monotonically to 0 for eachi <, j* < j <r k <r;; and
LI ! neA

k* <r -, and
(10) {fijx(m)(&+(n)) : ne A} C [-M,M] for eachi* <i<s, j<randk <r;.
L]

It follows from the definition the sequences that comprise the stack are linearly in-
dependent. Moreover, if p is a free ultrafilter, S is a stack over A, and A € p, then it also
follows that that ([gi], : [ <t) U ([fijkl, : i <s,j <r,k <r)is linearly independent in
the Q-vector space Q/p.

Definition 3.5.2. Given an integer stack S and a positive integer N, the Nth root of
S, written .S, is obtained by keeping all the structure in S with the exception of the
functions; these are divided by N. Thus a function f;;x in S is replaced by . f; ;x in S for
eachi <s, j <randk <r;;, and a function g in S is replaced by g in 1S for each [ < t.

A stack (unspecified) is then defined to be the Nth root of an integer stack for some
positive integer N. ]

The lemma below gives the relation between a finite set of sequences in Z( and a stack
S that is associated to it. The first part of this lemma is proved in A. H. Tomita, 2015. The
second part was stated in A. C. BOERO, CASTRO-PEREIRA, et al., 2019 with no proof presented
there, since it follows directly from statements of several lemmas and constructions from
A. H. Tomrta, 2015. Since the construction there is long and complex, we sketch here, for
the sake of completeness, a proof for the second part indicating which statements and
proofs from A. H. TomiTa, 2015 are used, without repeating the arguments.

Lemma 3.5.3. Let h; € (Z©)°, for i < m, and U" € w* be a selective ultrafilter. Then there
exists A € U and a stack ﬁS on A such that: if the elements of the stack have a U’-limit
in Z(¢) then h; has a U'-limit in Z© for each i < m.

We will say in this case that the finite set {h; : i < m} is associated to (%S LAV,

#) If ([l : i < m)is a Q-linearly independent family and the group generated by it
does not contain nonzero constant classes, then each restriction h;|4 is an integer
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combination of the stack S on A. Also each element of the integer stack S is an
integer combination of (k|4 : i < m).

Proof. We prove (#). All numbered references in this proof are from the paper A. H. TomrTa,
2015.

First, notice that if ([h;]y+ : i < m) is a Q-linearly independent family and the group
generated by it does not contain nonzero constant classes, the it satisfies the conclusion of
Lemma 4.1. Then, following the proof of Lemma 7.1, using the f’s as the h’s themselves,
we see that the functions h; for i < m are integer combinations of the stack 1S that was
constructed.

It remains to be seen that the functions of S are integer combinations of the functions
h; restricted to A. First, notice that in the statement of Lemma 5.4, by x), xi), xii) and xiv),
the functions f(;’j and gg are integer combinations of the h;. This Lemma is used in the
proof of Lemma 5.5, where the functions f;/ become the functions f; j«, so they are integer
commbinations of the h;’s.

Now notice that in Lemma 6.1, by g), ¢) and finite induction, the functions g]i. are integer
combinations of the h;, and some of these become the g;’s in the proof of Lemma 6.2. Since
in the proof of 7.1 the stack is constructed by applying Lemma 5.5, or Lemma 6.2, or Lemma
5.5 followed by Lemma 6.2 (depending on the case), it followd that the stack constructed
consists of functions that are linear combinations of the functions h; (when restricted to
A). ]

Now we define some integers related to Kronecker’s Theorem that will be useful in
our proof. The existence of these integers follows from Lemma 4.3 of A. H. TomiTa, 2015.
These integers were also defined and used in that paper.

Definition 3.5.4. If (6,,...,0,_,) is a linearly independent family of elements of the Q-
vector space R and € > 0, then L(0,,...,0,_1,€) denotes a positive integer L such that
{Oox +Z,...,0,_1x + Z) : x € I}is e-dense in T" in the usual Euclidean metric product
topology, for any interval I of length at least L. [

The last lemma we are going to need is Lemma 8.3 from A. H. TomITa, 2015, stated
below.

Lemma 3.5.5. Let €, y and « be positive reals, N be a positive integer and ¢ be an arc
function. Let S be an integer stack on an A € [w]® and s, t, 1, 11, M, f; ik, &, &, pj and 6;
be as in Definition 3.5.1.

Let L be an integer greater than or equal to max{L(0, jo, ..., 0;s,-1.3;) * i < s and
j<rn}andletr :=max{r; : i <sand j <n}

Suppose that n € A is such that
(@) {Vijk ri<s,j<rnandk <r;}U{W, : [ <t}is a collection of open arcs of length €,
(b) 8(Y(B)) = € for each f € supp ),
(©) € > 3Namax({lg(] : 1<t Ullful i <sj<rk<n},
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(d) 3MNsy <€,
€) |fir—10(m)(&(n))ly > 3L for each i < s,

() |ﬁj,10(n)(§l(n))|m > 3L foreachi<sand j<r,

(8) |0k — fﬁf’ggzgg‘gzg < gz foreachi <s, j<rand k <r;, and
L], 1

(h) suppy n{u(n) : 1<t} =0.
Then there exists an arc function ¢ such that
(A) N¢(B) C y/(B) for each 8 € supp ¢/,
B) X pesuon ue SMBI(B) W, for each I <1,
(©) X pesupp fm Sk (M(BIP(B) € Vi j for each i < s< j <, and k <r,
(D) 8((B) = a for each f € supp ¢, and

(E) supp ¢ can be chosen to be any finite set containing supp y, supp f; jx(n) fori <s,
j<randk <r;, and supp g(n) for [ < t.

]

Now we are ready to prove Lemma 3.4.6.

Proof of Lemma 3.4.6: Write F = {u,, ..., uq_l} without repetition. Let S be an integer
stack on and A" € p and let N be a positive integer such that (3 S, A’, p) is associated to
F.

As in Definition 3.5.1, the components of S will be denoted s, t, M, (r; : i < s),
(ryj ri<s,j<n),(fijxri<sj<mnk<n) (g:1<t),&:i<s),(y:1<t)and
(Gi,j,k i< S,j < r,-,k < ri,j).

We write {f,jx 1 i <s,j<r,k<r;}u{g : [ <t}as{vy,..., 041}

Let M be the g x ¢ matrix of integer numbers such that Nu;(n) = ),
allme Aandi<q.

M, jv;(n) for

j<q

By (#) in Lemma 3.5.3, each v; is an integer combination of the u;’s, therefore the inverse
matrix of ﬁM, which we denote by N, has integer entries.

Let ¢ := (X, IMiD and y < 31\;/1\13' Let L be greater than or equal to
max{L(@,-,j,o,...Hi,j,ri,j_l, 5—4) i< S,j < rl-}.

For eachn € A’,let §, < % be such that:

On
¢ > 3N max({|g()| : I <3 u{lfixM] s i<s,j<rk< ri’f)ﬁ'

We note that both N’s above cancel each other out, but we write the expression this
way as we will use % in the role of « in item (c) of Lemma 3.5.5.
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Letr :=max{r;; : i <s, j <rn}. Let Abe the set of n’s in A’ such that:

| fir—10(n)(&(n))ly > 3L for each i <s,

|ﬁ,j_1,0(n)(§,~(n))|m > 3L foreachi<sandj<r,

0 fijk(m)(Ei(n)

_ ¢ . . ] -
Wik = PR | < foreachi<s, j<r,andk <r;;, and

24 JrL

« En{y(n) : 1<t} =0.

Notice that A is cofinitr in A’, and so A € p.

We claim this A and this sequence (5, : n € A) work.
Fixn € A.

Let (Us : f € F) be a family of arcs of length € and let p be an arc function of length
at least € such that supp p C E. We reindex the family of arcs as (U; : i < q) by means of
U; := Uy, for each i < q. Given i < g, let y; be a real numbers such that y; + Z is the center
of U. Given j < q,let z; = 3, N3 and R; be the arc of center z; and length €. Since
N is an integer matrix, we have that z; + Z = ), N;i(% + Z). Then the arc },,_, M, ;R;
is a subset of U; for each i < gq.

i<q J<q

Now we aim to apply Lemma 3.5.5. Sety = p, a = % and €’ in the place of €. For i < s,
j<r,k<r;weputV;r =R, if f;x = v, for some x < g, and for [ <t we put W; = R;|
if g = v, for some x < gq.

Then there exists an arc function lﬁNn such that
(A) NT() € p(B) for each § € supp p.
B) X pesupp i SMBWa(B) C Wi for each I <t,
(C) X pesupp £, x(n) Fix()BWn(B) C Vi jx foreachi<s, j <rand k <rij,
(D) 5Wn(B)) = %" for each f8 € supp i, and

(E) supp ¥, is equal to

U supp fi jx(n) U U supp gi(n) UE = U supp f(n) UE.

i<s, j<r;,k<r; I<t feF

Lety, := Ng;n. By (A), ¥, < p. By (E) and (D), supp ¢/, = Uy supp f(n) U E and for
each f € supp ., we have 6(,(f)) = 5,. Let S := supp ¢/,,. Now notice that given u; € F,
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we have:

> umya(p) = Y. wm)ENG ()

JESUpD U; HES

=Y (Z M,-,ju,(n)(m> M

HES \ Jj<q

=) My, (Z vj<n><u>@<u)) .

J<q HES
Then, by (B), (C) and the definitions of the W’s and the V ;’s:

Y umya(p) = Y. wimGONG() € Y. MiR; C U

HESUPD U HES J<q

As intended.

3.6 Final comments

This method of obtaining countably compact free Abelian groups came from the
technique developed to construct countably compact groups without nontrivial convergent
sequences. It is not known whether there is an easier method to produce countably compact
group topologies on free Abelian groups if the resulting topology is allowed to have
nontrivial convergent sequences.

In fact, even in the construction of a countably compact group topology with nontrivial
convergent sequences in nontorsion groups, a modification of the technique to produce
countably compact groups without nontrivial convergent sequences; see Matheus Koveroff
BELLINI et al., 2019 and A. C. BOERO, CASTRO-PEREIRA, et al., 2019.

The first examples of countably compact groups without nontrivial convergent se-
quences were obtained by Hajnal and Juhasz (HAJNAL and JunAsz, 1976) under CH. E. van
Douwen (DoUwEN, 1980a) obtained an example from MA and asked for a ZFC example.
Other examples were obtained using MA .ountable (KOSZMIDER et al., 2000), a selective ul-
trafilter (GARCIA-FERREIRA et al., 2005) and in the random reals model (SzepTycKI and
A. H. TomiTa, 2009). Only recently, Hrusak, van Mill, Shelah and Ramos obtained an
example in ZFC (HRUSAK et al, 2021).

This motivates the following questions in ZFC:

Question 3.6.1. Are there large countably compact group without nontrivial convergent
sequences in ZFC? Is there an example of cardinality 2°?

The example of Hrusak et. al. has size ¢ and it is not clear whether their construction
could yield larger examples.

Question 3.6.2. Is there a countably compact free Abelian group in ZFC? A countably
compact free Abelian group without nontrivial convergent sequences in ZFC?
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It is still open whether there exists a torsion-free group in ZFC that admits a countably
compact group topology without nontrivial convergent sequences. If such example exists
then there is a countably compact group topology without nontrivial convergent sequences
in the free Abelian group of cardinality ¢ (see A. TomITa, 2005 or A. H. TomITa, 2019).

Question 3.6.3. Is there a both-sided cancellative semigroup that is not a group that
admits a countably compact semigroup topology (a Wallace semigroup) in ZFC?

The known examples were obtained in ROBBIE and SVETLICHNY, 1996 under CH, in
A. H. ToMITA, 1996 under MA ountable, iIn MADARIAGA-GARCIA and A. H. TomiTa, 2007 from
¢ incomparable selective ultrafilters and in A. C. BOERO, CASTRO-PEREIRA, et al., 2019 from
one selective ultrafilter. The last two use the known fact that a free Abelian group without
nontrivial convergent sequences contains a Wallace semigroup, which was used in ROBBIE
and SVETLICHNY, 1996. The example in A. H. Tom1TA, 1996 was a modification of HART
and MiLL, 1991.



Chapter 4

On a U'-compact topology for a
torsion-free group whose
cardinality has countable
cofinality

This chapter gives a partial answer to a question posed in Chapter 2, using forcing
to obtain a model where A is a cardinal whose cofinality is » and such that Q™ has a
U'-compact Hausdorff group topology without non-trivial convergent sequences, where
U is a given selective ultrafilter.

4.1 Notation

We shall fix throughout this article a cardinal A and a selective ultrafilter U".
As usual, given a € Q, its support is suppa = {£ € A : ag # 0}

Let G be the Abelian group Q" = {a € Q" : supp a is finite} (considering coordinate-
wise addition as its operation).

If E C A, we do a standard abuse of notation and consider Q¥ = {a € G : suppa C
E}.

Given p1 € A, we define y, € Gby y,(u) = 1 and y,(f) = 0forall f € A, f # pu. Now,
given{ : w — A, we define y; : @ — G by x;(n) = ;) for eachn € w. And givena ys € 4,
we define /I as the constant sequence of value y. Thus, y; is the constant sequence of value
Xy (this will appear often in our work).

Since U is an ultrafilter on o, the ultrapower of G by U, denoted Ulty-(G), is the
quotient of the set G by the following equivalence relation: g ~ h if and only if {n € w :
g(n) = h(n)} € U'. We will make frequent use of the fact that Ult;-(G) is a Q-vector space
with all operations defined naturally (that is via representatives). If g € G“, we will denote
its class in Ulty+(G) by [g]e.
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We now fix H C G such that ([g]r : g € H) U ([xzlvr : p < A) is a Q-basis for
Ult-(G).

4.2 Forcing poset

Definition 4.2.1. We define P as the set of the tuples of the form (E, a, G, &, ¢) such that:
« E is a countable subset of A containing w,
e a <,
« G is a countable subset of H,
« £ = (& : g €0)isafamily of elements of ¢ N E,
e ¢ : Q¥ — T%is a homomorphism,
« U —lim($ o g) = ¢(x;,) for each g € G,
We define (E,a, G, &,¢) < (E', o/, G, &, ¢') if:
1. EDE,
2. a>d,
3.62¢,
4. §; = ¢, foreach g € ¢, and
. for every £ < o’ and a € Q7 ¢(a)(&) = ¢’ (a)(&).

Given p € P, we may denote its components by E?, af, G?, £P and ¢P.

(8]

If H is a generic filter over P then the generic homomorphism defined by H is the
mapping @ of domain | J{dom(¢?) : p € H} into T defined by ®(-)(&) = (J{P?()(&) : p €
H,& < a?}. In other words, if p € H,a € Q*") and & < a,, then ®(a)(&) = ¢*(a)(é). [

Naturally, we must assure that such generic homomorphisms are well-defined and into
T*. We will do so by showing that, assuming CH in the ground model, this forcing notion
is w;-closed and has the w,-chain condition, and thus preserves cardinals and .

Proposition 4.2.2. Let e € G\{0}. Then the set C, = {p € P : e € Q¥") and ¢*(e) # 0} is
open and dense in P.

Proof. Openness: suppose p € C, and g < p. Then since ¢?(e) # 0, for some f < a?,
$#?(e)(B) # 0. By (2), B < a? < a9, and by (1) EP C E9. It follows that e € Q¥") and, by (6),
$1(e)(B) = ¢?(e)(B) # 0. Thus, q € C, as well.

Denseness: now let p € P be arbitrary. We shall produce a ¢ < p such that g € C,. First,
take any d,, d; € G\{0} such that supp e, supp d, and supp d, are pariwise disjoint. Now take
C a countable subset of A such that @ U supp e U supp do U supp d; U | pe,, SUPP g(n) € C.

Lemma 2.3.4 tells us that there exists a homomorphism p : Q© — T such that:

« p(e) = 0 and p(dp) # p(d,);
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« U —lim(po (ﬁg)) = p(ﬁ)(gg), for every g € Gand N € w.

Define now E? := E? U C and extend ¢? : Q" —» T* toa ¢ : Q¥ — T* using the
divisibility of the codomain. Also extend p to a ¢/ : Q¥ — T. Define then a? = af + 1,
Gl =G0 =28 and¢? = 97y

It follows that g € C, and g < p. O

Proposition 4.2.3. Let @ < ¢. Then the set A, = {p € P : a? > a} is open and dense in
P.

Proof. Openness: suppose p € A, and g < p. We have that o > a and a? > o, and so
q€ A,

Denseness: let p € P.If af > «, then p € A,. Suppose now that af < a. We define g as
follows: EY = EP, a9 = a + 1, G? = GP, &9 = &P, and ¢7 = ¢y, where ¢y : Q") — Tle"l
is the zero-homomorphism.

It follows that g € A, and g < p. [

Proposition 4.2.4. Let g € 1. Then the set S, :={p € P : g € G} is open and dense in
P.

Proof. Openness: suppose p € S; and g < p. Since g € G and G C ¢, it follows that
g €¢land thusq € S,.

Denseness: Let p € P be given. First, take E a countable subset of A such that wUE? C E
and |, supp g(k) C E. Take any p € c\E.

Define now: EY = EU {u}, a? = af, G = GP U {g}, and &7 = & U {(g, ;)}.

Extend ¢* : Q¥ - T* toay : Q¥ — T using divisibility. Now, since T is a
compact space, let z = U" — lim(i/ « g). Define then ¢? : Q¥” — T%' as an extension of ¢/,
declaring that ¢(y,) = z.

It follows that ¢ = (E%, a?,G9,&9,¢7) € Sy and g < p. O
Proposition 4.2.5. P is w;-closed.
Proof. Let (p; : t € w) be a decreasing sequence in P. We shall produce an r € P such that
r< pforallt € w.

Denote now p; = (E', &, G, &, ¢").

Define E" = |y, E', @" = sup,, @', ¢ = U, G and given g € ¢, & = & for any ¢
such that g € ¢ (this does not depend on such t’s).

Lastly, given a € Q¥ = (J,., Q%" and ¢ < o', define ¢ (a)(€) = ¢'(a)(¢) for any t such
that £ < o' (again, this assignment does not depend on such t’s). O]

We will now need a technical Lemma in order to guarantee the divergence of non-trivial
sequences.
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Lemma 4.2.6. Let G C H be countable and B € U". Let H’ be a finite subset of G and
(r, :+ g§ € H’) a family of rational numbers. Let E C A countably infinite such that
@ |J Ugegnew supp g(n) C E. Let (&, : g € G) be a family in ¢ N E.

Then there exists a homomorphism ¢ : Q¥ — T such that
a) U-lim(¢(5;8)) = ¢(5 xe,)» for each g € Gand N € w, and

b) (¢ e 7g&(M)) : n € B) does not converge.

Proof. Let B € U be a subset of B such that (deH’ reg(n) : n € B’) is a one-to-one
sequence, which is possible since the g’s are linearly independent mod U” with the constant
sequences and by the selectiveness of 1.

Let A be an almost disjoint family on B’ of cardinality cand h, : @ —> {33y 7,8(n) :
n € x} be a bijection for each x € A.

Claim: There exist xo,x; € A such that {[gl,r : g € G U{luly + p €
A} U {lhy, ], By ]2} s a linearly independent subset.

Proof of the claim: Given x,, x; € A, notice that h, (n) # h,,(n) for all but a finite
numbers of n’s, so [hy, |1 # [hy, ]1-- Since Q is countable, it follows that ([A,], : x € A)
has cardinality ¢, so there is J] C A such that |J| = ¢ and that ([h, ]y : x € J) is linearly
independent. Now notice that (G) & X; & € E) is countable, so there exist xo, x; € J such
that {[glys : g € GG uilxalv : p € E}u{[hy ] [hy )i} is linearly independent. Since
all the supports of these elements are contained in E, it is straightforward to see that
{lglv - geGullyily : peAu{lhyle, [hy ]} is linearly independent. O

We will now apply Lemma 2.3.4 withk =4, p=U",F ={g : g€ Gluthy,h.}, & =&
for g € G, §hx0 =0, §hx1 =1,dy = 0. d1 = x1,d = y» and C = E. Take the homomorphism
from Q® to T given by the conclusion of the Lemma and call it ¢/.

Clearly condition a) of this Lemma is satisfied.

Furthermore, (/(h,,(k)) : k € w) has ¥();) as an accumulation point for i < 2. Since
these sequences are reorderings of a subsequence of (l//(zgeH/ reg(n)) : n € B) and

d(x0) = ¢(x1), it follows that b) is satisfied. O

Proposition 4.2.7. Let h € G° be a one-to-one sequence. Then the set & :={p € P :
there is f < a such that (¢*(h(n))(f) : n € w) does not converge}

Proof. Openness: Suppose p € &, and q¢ < p. Then for some f < a?, ($?(h(n))(f) : n € w)
does not converge. By (2), 8 < a? < a, and by (1) E? C EX. It follows that h(n) € Q" for

all n € w and, by (6), p7(h(n))(B) = ¢?(h(n))(B) for all n € w. Since (Pp?(h(n))(B) : n € w)
does not converge, then (¢?(h(n))(f) : n € w) does not converge. Thus, q € &, as well.
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Denseness: Let p € P be given. Take H’ C H finite, yg,..., fiy—1 € Aand (r; = g €
H’) and (s,; : j < m) families of rational numbers such that [h]y = X relgle +

Zj<m Spj [X/TJ]U'
We will define a decreasing sequence of conditions (p; : i € w). First, we obtain py < p

by applying Proposition 4.2.4 |H’| times in order to guarantee that H’ C G.

Take an enumeration (yx : k > 1) of Ugesss new SUpp g(n) | Unew supp h(n) ULy : j <
m}.

Apply Proposition 4.2.2 using e = y,, and obtain p; < p, such that y,, € Q¥"), which
implies y; € E?.

Now recursively apply Proposition 4.2.2 for each i > 1 using e = y;, and obtain p; < p;_;
such that y,, € Q®", which implies y; € E*.

Applying Proposition 4.2.5, we obtain a p,, < p; for all i € w.

We will now use Lemma 4.2.6 with G = G, H" = H',r, = r,for g € H', E = EP°,
&g = &b for g € GP> and B € U such that h(n) = ¥ ,¢pp 158(1) + X Sy, Xy, for all n € B.
We thus obtain a i/ : Q¥*) — T such that

a) U-lim(y(58)) = ¥ (5 xe,), for each g € Gand N € w, and

b) (tﬁ(zgeH, reg(n)) : n € B) does not converge.
We define now a q < p,,. Define E? = EPo, q? = af* + 1, G1 = G, £ = ¢Po and

¢ = §r .

Since (Y(X ez 7g&(n)) : n € B) does not converge and ), s, Xy, is constant, it
follows that (/(h(n)) : n € B) does not converge, and so (/(h(n)) : n € w) does not
converge.

Let 8 = a?. The definition ¢? = ¢~ means that for all x € Q¥ ¢9(x)(B) = Y(x).
Thus, (¥ (h(n)) : n € w) does not converge means that (¢?(h(n))(f) : n € w) does not
converge, proving that q € &,.

]
Proposition 4.2.8. Assume CH. Then the partial order P has the w,-chain condition.

Proof. Since under CH, ¢* = w,, we will show that P has the ¢*-c.c.. Solet Q C P of
cardinality ¢*. We will show that Q has a subset consisting of ¢* pairwise compatible
elements.

First, take a Qg C Q of cardinality ¢* and an & < ¢ such that ¢, = a for each q € Q,.

Using the a-system Lemma, take a Q; C Q, of cardinalij[y ¢ such that {E? : q € Q,}1is
a a-system of root E. Now, using CH, we have that ("JF“)QUS) = ¢, and thus we may take a
Q, C Q, of cardinality ¢* such that ¢7|: = @[ forall g, p € Q,.
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Using the A-system Lemma again, take Q3 C Q, of cardinality ¢* suc}} that {Qfl 1 q € Qs}
is a a-system of root §. Now since for each q € Qs, (§g 1 g€EQ e ¢¢ and |¢9] = ¢, take
Q, C Qj; of cardinality ¢* such that for all ¢, p € Q, and each g € G, §g = rfgp.

A common extension to g, p € Q4 is an r defined as follows: E" = EIUE?; a" = o = af;
G =GIUGr & =¢E1UEr.

To define ¢", notice that QF) = Q(Eq\ﬁ? &) Q(E) @ Q(EP\E). Then, let 7, : Q¥ — Q(Eq\ﬁ),
2 QF) —» Q¥ and m, : Q¥ — QF"\P) be the projections. Define ¢" = ¢9 o 7y + ¢ o
7T+ @ oy = Pl o 7y + PP o 71y + PP o 7, and we are done. [

Theorem 4.2.9. Assume CH. Then the forcing notion P preserves cofinalities and cardi-
nals, preserves ¢ and does not add reals. Given H a P-generic filter, the associated ® (as in
4.2.1) is a well-defined monomorphism from G to T*. Also, given any g € H, there exists
a & € ¢ such that U — lim(® - g) = ®(;). Furthermore, given any one-to-one sequence
h € G®, ® - h does not converge.

Proof. By Propositions 4.2.5 and 4.2.8, P preserves cofinalities (and therefore cardinals),
does not add reals and preserves ¢. Note that since being a basis for Ult;-(G) is absolute
for transitive models of ZFC, H is still a basis for Ult;-(G) in the extension.

Let H be a P-generic filter and let ® be its associated homomorphism.

First, let us see that ® : G — T* is well-defined. Let ¢, p € H and suppose ¢ <
min{a?, a’} and e € Q"D We must see that ¢?(e)(¢) = ¢?(e)(¢). Take r € H such that
r < g, p.Then& < o" and e € Q7, and by item (5) of Definition 4.2.1, ¢¥(e)(&) = ¢"(e)(£) =
PP (e)(£).

Now let a < ¢ and e € QW such that e # 0. Since C, and A, are open and dense, let
p € H such that e € Q¥"), ¢P(e) # 0 and a” > a. Since ¢*(e) # 0, there is a & < a? such that
¢P(e)(&) # 0, and therefore ®(e)(¢) # 0, so that P(e) # 0. And since @ C a? C dom ®(e) C «,
and « was arbitrary, it follows that dom ®(e) = c.

We have thus seen that the domain of ® is Q(A), the codomain is T° and that ® is
injective.

Now we see that ® is a homomorphism. Let e, e’ € QW. Since C,, C» and C,,. are dense
and open, take p € H such thate,e’,e + ¢’ € Q(Ep). We know that ¢ is a homomorphism,
and so ®(e +¢’) = pP(e + €’) = pP(e) + pP(e) = D(e) + P(e).

Let now g € H. Since S, is open and dense, let p € H such that g € G*. We have then
that U — lim(¢? o g) = #?(&;). Let us see that U — lim(®P o g) = ®(&,). Let F be a finite
subset of ¢ and let & < ¢ such that F C «a. Since A, is open and dense, and p € H,letq € H
such that ¢ < p and a? > a. We have then that U — lim(7p o ¢7 o g) = (7p  $7)(&,). Since
g o 1 = 7p o @ (due to a? 2 F), it follows that U — lim(srp o @ o g) = (77 o P)(&,), as we
sought for.

Finally, let h € G” be a one-to-one sequence. Since &, is open and dense, let p € H n &,
Take then a f < a? such that (¢?(h(n))(f) : n € w) does not converge. Since ®(h(n))(f) =
¢P(h(n))(P) for each n € w, it follows that (®(h(n))(B) : n € w) does not converge, which
in turn implies that (®(h(n)) : n € w) = ® o h does not converge. ]
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Theorem 4.2.10. It is consistent with ZFC that given A a countably cofinal cardinal and
U a selective ultrafilter, G can be endowed with a U"-compact Hausdorft group topology
without non-trivial convergent sequences.

Proof. Consider the forcing model obtained via forcing with 7. We fix a generic monomor-
phism @ as in 4.2.9. Since we have that ® is a monomorphism from G to T¢, then ® induces
a Hausdorff group topology in G such that for any g € H, there exists a ¢ € ¢ such that
U —lim g = y;. Fix one such &, for each g € H.

Now let us see that such topology is indeed U'-compact. Let f € G. Since ([g]y :
g € ) U (lyalv : p < A)is a Q-basis for Ult;+(G), there exist families (r, : g € H)
and (s, : p < A) of rational numbers, all but finitely many of which are 0, such that
[flv = X1 - [glv + Xpcasu - [xale- Tt follows then that U —lim f = ¥ 5y 1, - (U —
limg) + X3 8, (U —lim y3) = X peps g Xe, + X pcn Sy Xu and f has a U'-limit.

Finally, there are no non-trivial convergent sequences since for each h € G“ one-to-

one, ® o h does not converge, which means that in the induced topology on G, h does not
converge. [l
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