• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Ana Luiza da Conceição Tenorio
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Mariano, Hugo Luiz (Presidente)
Arndt, Peter
Pedra, Walter Alberto de Siqueira
Título en portugués
Álgebra homológica em topos
Palabras clave en portugués
Álgebra homológica
Categorias abelianas
Feixes
Topos de Grothendieck
Resumen en portugués
O objetivo dessa Dissertação é detalhar resultados conhecidos de Cohomologia em Topos de Grothendieck. Para isso, apresentamos a Álgebra Homológica em seu contexto mais geral, através de Categorias Abelianas, introduzindo as principais noções da área como funtores derivados e sequências espectrais. Desenvolvemos também o essencial da Teoria de Topos, explicando como um topos de Grothendieck surge como uma certa generalização dos feixes de conjuntos e fornecemos aspectos lógicos dos topos elementares. Focamos sobretudo nos Topos de Grothendieck pois a partir deles podemos construir categorias abelianas com suficientes injetivos, as quais são necessárias para expressar os grupos de cohomologia.
Título en inglés
Homological algebra in toposes
Palabras clave en inglés
Abelian categories
Grothendieck topos
Homological algebra
Sheaves
Resumen en inglés
The final objective of this Dissertation is to detail known results of Cohomology in Grothendieck Topos. For this, we present Homological Algebra in its more general context, through Abelian Categories, introducing the main notions of the area as derived functors and spectral sequences. We also develop the basics of the Topos Theory, explaining how a Grothendieck Topos arises as a certain generalization of sheafs and we provide logical aspects of the elementary topos. We focus mainly in the Grothendieck Topos because from them we can construct abelians categories.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-04-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.