• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2014.tde-24012015-094328
Documento
Autor
Nombre completo
Francisco Batista de Medeiros
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2015
Director
Tribunal
Marcos, Eduardo do Nascimento (Presidente)
Coelho, Flavio Ulhoa
Fernandes, Sônia Maria
Mernies, Marcelo Americo Lanzilotta
Salazar, Hernan Alonso Giraldo
Título en portugués
Dimensão global forte e complexidade na categoria derivada
Palabras clave en portugués
álgebra shod
categoria derivada
complexidade
dimensão global forte
Resumen en portugués
Apresentamos neste trabalho uma definição de complexidade na categoria derivada de complexos (limitados superiormente) de módulos sobre uma k-álgebra de dimensão finita. Um dos resultados que conseguimos foi uma relação entre a complexidade de objetos indecomponíveis e a noção de dimensão global forte. Mais especificamente, mostramos que a existência de um objeto indecomponível na categoria derivada limitada superiormente com complexidade não nula é condição suficiente para que a respectiva álgebra tenha dimensão global forte infinita. Também investigamos se existe uma relação entre as dimensões global e global forte da classe das álgebras shod (Coelho e Lanzilotta, 2009). Fomos motivados pela caracterização da classe das álgebras quase inclinadas (Happel, Reiten e Smalo, 1996) em termos da sua dimensão global forte, dada por D. Happel e D. Zacharia (2008), e pelo fato das álgebras shod serem uma generalização das álgebras quase inclinadas. Nossa conclusão foi que não existe, em geral, uma caracterização das álgebras shod em termos de sua dimensão global forte. Isto é, mostramos que para cada inteiro d > 2 existe uma álgebra shod estrita cuja dimensão global forte é igual a d.
Título en inglés
Strong global dimension and complexity in the derived category
Palabras clave en inglés
complexity
derived category
shod algebra
strong global dimension
Resumen en inglés
We introduce in this thesis a definition of complexity in the derived category of bounded above complexes of modules over a finite dimensional k-algebra. One of our result shows a relationship between the complexity of indecomposable objects and the notion of strong global dimension. More specifically, we prove that the existence of an indecomposable object in the category derived bounded above whose complexity is not zero is a sufficient condition for corresponding algebra being of infinite strong global dimension. We also investigate the existence of a relationship between the global dimension and the strong global dimension of shod algebras (Coelho and Lanzilotta, 1999). Our motivation came from characterization of quasitilted algebras (Happel, Reiten and Smalo, 1996) by its strong global dimension, given by D. Happel and D. Zacharia (2008), and from the fact that shod algebras are a generalization of quasitilted algebras. Our conclusion was that there is not in general a characterization of shod algebras in terms of its strong global dimension. This conclusion comes from the fact that we showed that for each integer d > 2 there exists a strictly shod algebra whose strong global dimension is d.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2015-01-26
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.