• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2017.tde-23062017-160214
Document
Auteur
Nom complet
Glauce Barbosa Verão
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2016
Directeur
Jury
Oliveira, Luiz Augusto Fernandes de (Président)
Aragão, Gleiciane da Silva
Broche, Rita de Cassia Dornelas Sodré
Fu, Ma To
Pereira, Antonio Luiz
Titre en portugais
Aproximando ondas viajantes por equilíbrios de uma equação não local
Mots-clés en portugais
Equação não local.
FiztHugh-Nagumo
Soluções ondas viajantes
Resumé en portugais
O sistema de FitzHugh-Nagumo possui um tipo especial de solução chamadas ondas viajantes, que são da forma µ(x,t)=ø(x+ct) e w(x,t)=ѱ(x+ct) e além disso sabe-se que ela é estável. Tem-se o interesse de obter uma caracterização de seu perfil (ø,ѱ) e sua velocidade de propagação c. Fazendo uma mudança de variáveis, transformamos tal problema em encontrar equilíbrios de uma equação não local. Esta equação não local possui uma onda viajante de velocidade zero cujo perfil é o mesmo da equação original e, com esta equação, é possível aproximar, ao mesmo tempo, o perfil e a velocidade da onda viajante. Como a intenção é usar métodos numéricos para aproximar tais soluções, o problema não local foi analisado em um intervalo limitado verificando a existência e algumas propriedades espectrais em domínios limitados.
Titre en anglais
Approximating traveling waves by equilibria of nonlocal equations
Mots-clés en anglais
FiztHugh-Nagumo
Nonlocal equations.
Traveling wave solutions
Resumé en anglais
The FitzHugh-Nagumo systems have a special kind of solution named traveling wave, which has a form µ(x,t)=ø(x+ct) and w(x,t)=ѱ(x+ct) and furthermore it is a stable solution. It is our interest to obtain a characterization of its profile (ø,ѱ) and speed of propagation c. Changing variables, we transform the problem of finding these solutions in the problem of finding an equilibria in a nonlocal equation. This nonlocal equation has a traveling wave with zero speed whose profile is the same of the original equation, and the nonlocal equation is used to approximate the profile and speed of the traveling wave at the same time. To use numerical methods for approximating such solutions, the nonlocal problem was analyzed in a finite interval to check that the existence and some spectral properties on bounded domains.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
tese_glauce.pdf (1.28 Mbytes)
Date de Publication
2017-11-16
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.